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Chapter 0

Introduction

Let Q(ζm) be the cyclotomic field of conductor m and denote by C its ideal

class group and by h = |C| its class number. In the same way let C+ and h+ denote

the ideal class group and class number of the maximal real subfield Q(ζm)+. The

natural map C+ −→ C is an injection [30, Theorem 4.14] and we have the well

known result h = h+ h−. The relative class number h− is easy to compute as there

is an explicit and easily computable formula for its order [30, Theorem 4.17]. Schoof

in [24] determined the structure and computed the order of h− for a large number of

cyclotomic fields of prime conductor. The number h+ however is extremely hard to

compute. The class number formula is not so useful as it requires that the units of

Q(ζm)+ be known. Methods that use the classical Minkowski bound become useless

as m grows, and other methods based on Odlyzko’s discriminant bounds (see [20]

and [21]) are only applicable to fields with small conductor. Masley in [19] computed

the class numbers for real abelian fields of conductor ≤ 100 and Van der Linden in

[29] was able to calculate the class number of a large collection of real abelian fields

of conductor ≤ 200. For fields of larger conductor however, the above methods can

not be effective. As a result, other methods and techniques were developed that

approach the problem from a different angle.

One of these methods is introduced by Schoof in [25] and is designed for real
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cyclotomic fields of prime conductor. It is the goal of this thesis to extend his

method to real cyclotomic fields of conductor equal to the product of two distinct

odd primes. Schoof developed an algorithm that computes the order of the module

B=Units/(Cyclotomic Units), which is precisely equal to h+ in his case where the

conductor of the field is a prime number. In our case the order of B is h+, by

Sinnott’s formula that we give in Section 1.3, and therefore we could still work

with the same B as Schoof’s. The complicated structure of the group of cyclotomic

units however when the conductor is not prime, as we will see in 1.3.1, forces us to

provide a replacement for the group of cyclotomic units and therefore for B. Schoof

calculated the various l-parts of h+ by proving that the order of each l-part equals the

order of the finite module B[M ]⊥, M being some power of l. He then proved that the

various B[M ]⊥ are isomorphic to I/{f<(η)}{<}, where I is the augmentation ideal

of the group ring R = (Z/MZ)[G], G is the galois group of the extension Q(ζp)
+/Q

and the maps f< ∈ HomR(E/{±1}, R) correspond to the frobenius elements of

unramified prime ideals < which split completely in the extension Q(ζp)
+(ζ2M).

These maps are evaluated on η, which is a generator of the group of cyclotomic

units. To facilitate his calculations, he broke each module B[M ]⊥ into its Jordan-

Hölder factors and expressed these factors in terms of polynomials so as to compute

their order. He applied his method to real cyclotomic fields of prime conductor p <

10000 and he calculated the l-part of h+ for the largest subgroup of Bl whose Jordan-

Hölder factors have order < 80000. One of the great advantages of his method is

that it did not exclude the primes dividing the order of the extension, as opposed

to other methods that we discuss below. However, since he computed the order of
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the largest subgroup of Bp whose Jordan-Hölder factors have order less than 80000,

there is a slight probability that he did not get the full l-part of h+ but only part

of it.

Many of the other methods employ the well known Leopoldt’s decomposition

of the class number h+ of a real abelian field K, see [17], which derives from his

decomposition of the cyclotomic units into the product of the cyclotomic units of

all cyclic subfields Kξ of K. More specifically, we have that h+ = Q
∏

χ hχ, where

the product runs over all non-trivial characters χ irreducible over the rationals, each

‘class number’ hχ is the index of the cyclotomic units of Kχ in its full group of units

Eχ and Q is some value which equals 1 in the case where the extension K/Q is cyclic

of prime order, but which is very hard to compute in the general case.

Gras and Gras in [12] used the above decomposition of cyclotomic units and

proved that for each cyclic subfield Kχ of K, there is a unit ε in the full group of

units Eχ of Kχ which is of the form ε = ηm, where η is a cyclotomic unit, and

ε has the property that m equals the order of the ‘class number’ of the specific

cyclic subfield Kχ. In the same paper we find a method that checks whether the

m-th root of a unit belongs to a subfield of K. This method has been employed by

Schoof in [25] and Hakkarainen in [13] and we use it here as well, in the third step

of our algorithm, modified however, in order to fit our case. In a different paper by

Gras, see [11], one can find some interesting results proved for a special case of real

abelian fields. Gras worked with cubic, cyclic extensions and proved that for any

Z ′-submodule F of the full group of units E there exists an element ω in the group

ring Z ′ = Z[G]/(1 + σ+ σ2) ∼= Z[ζ3] with the property that [E:F ] = NQ(
√
−3)/Q(ω).
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This element ω is associated with the class number of these extensions and, together

with other facts proved in this article, Gras was able to calculate the class number

for cubic, cyclic extensions of conductor < 4000.

Recently in his thesis, Hakkarainen in [13] also used Leopoldt’s decomposition

to prove whether a prime l divides h+, and since he worked with arbitrary real

abelian fields K he could not draw exact conclusions about the l-part of h+ for the

primes that divide the degree of the extension K/Q. In order to prove the divisibility

of h+ by a prime l not dividing the degree, it sufficed to prove that l divides any of the

‘class numbers’ of the cyclic sub-extensions of K, since in Leopoldt’s decomposition

of the class number, any prime dividing h+ that does not divide the degree of the

extension can only come from the ‘class numbers’ of the cyclic sub-extensions. In

practice Hakkarainen checked the divisibility of h+ by all primes < 10000. He used

the method of Schwarz, see [27], in order to exclude the primes that do not divide h+

and used some ideas from van der Linden to search for units that are l-th powers in

the full group of units. Finally, he employed a method from [12] that we mentioned

above, to verify the divisibility of h+ by l. He applied his method to real abelian

number fields of conductor < 2000. In this thesis we apply our algorithm to the

fields of conductor pq that appear in Hakkarainen’s tables. We verify all the primes

that he obtained and we also complete his results in the sense that we verify the

divisibility of h+ by the exact power of those primes l < 10000 that also happen to

divide the degree of the extension.

There are also other methods that approach the problem of computing h+ in

different ways to the ones described above. Aoki, in [3], describes a method for

4



computing annihilators of the ideal class group. The method for the annihilators

of the plus part of the ideal class group that he describes in this paper involve

the construction of maps like the ones used in Schoof [25] for the description of

his modules whose order give the l-part of h+. The image of these maps in Aoki’s

paper, when applied on cyclotomic units give higher annihilators for the l-part of

h+. These ideas are based on the work of Thaine [28], as well as on the work of V.

Kolyvagin and K. Rubin. In another paper by Aoki and Fukuda [4], an algorithm

is introduced for the calculation again of the l-part of h+, but for odd primes not

dividing the degree of the extension.

Cornacchia in [7] studied a Galois module L introduced by Anderson in [2],

whose structure is related to both the circular units and the Stickelberger ideal.

Cornacchia studied this module for cyclotomic fields of prime conductor. He de-

composed Anderson’s module into its χ-components, where χ is a l-adic character

of the subgroup D of the galois group G with (|D|, l)=1 and then proved that

Ldualχ
∼= (Z[G]χ/M)/Jχ, where Jχ is an ideal generated by homomorphisms repre-

senting maps from the group of l - units into Zχ[G]/M , where M is some sufficiently

large power of l. By applying his results with l = 2, he was able to calculate the

2-part of h+ for cyclotomic fields of prime conductor < 10000. Some of Cornacchia’s

ideas are also employed by Schoof in [25] that we have already discussed above.

In Chapter 1 that follows the introductory part of this thesis, we discuss in

more detail the method of Schoof. We stress the difficulties that arise when one

tries to apply it to cyclotomic fields of non-prime conductor and we show how to

generalize it in order to apply it to our case of cyclotomic fields of conductor pq. We
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present a new unit and calculate the index of the subgroup that it generates, in the

full group of units. This group will replace the group of cyclotomic units that was

used for the fields of prime conductor. We then reformulate the main theorems of

Schoof in order to match our generalized case. In Chapter 2 we describe the results

of Chapter 1 in terms of polynomials so that we can perform our calculations, and

we give some basic facts about Gröbner Bases since our polynomials are in two

variables. We then describe the three steps of the algorithm and give an example.

In Chapter 3 we present and discuss the tables with our results and in Chapter 4

we finish with the conclusion and future projects that can follow from this work.
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Chapter 1

Extension of Schoof’s Method

to Real Cyclotomic Fields of Conductor pq

As was already explained in the introduction, the methods for calculating the

class number h+ of a real cyclotomic field which are based on discriminant bounds

become useless as the conductor of the field grows. That is why other techniques

were developed that approached the problem from a different angle. One of these is

Schoof’s method presented in [25], which focuses on the real cyclotomic fields Q(ζp)
+

with prime conductor p. We will give a brief description of the method below so

that the reader can understand the changes one has to make in order to generalize it

to fields of non-prime conductor. A complete and formal description of our method

for real cyclotomic fields of conductor pq will start from Section 3, right after the

definition and some properties of finite Gorenstein Rings in Section 2, which we will

need to support the theoretical part of our method.

1.1 Schoof’s Method

For the fields Q(ζp)
+ that Schoof focused on, we have that h+ = [E:H], where

E is the group of units of Q(ζp)
+ and H is its subgroup of cyclotomic units. The

quotient B = E/H is a finite Z[G]-module, where G = Gal(Q(ζp)
+/Q) is a cyclic

group of order (p − 1)/2 and we see that |B| = h+. Let l be any prime number.
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As the order of B is the product of its l-parts, Schoof studied the modules B[M ]⊥

instead, where M is a power of l, since as we will see in the next section, for finite

Gorenstein rings R and any finite R-module A we have that

HomR(A,R) = A⊥ ∼= Adual = HomZ(A,Q/Z)

and therefore |A| = |Adual| = |A⊥|. Now, for each B[M ]⊥ Schoof found the order of

its simple Jordan-Hölder factors since the product of those factors gives the order

of B[M ]⊥. First, he expressed the modules B[M ]⊥ in a way that facilitated the

calculations. For I, the augmentation ideal of the ring R = (Z/MZ)[G], he proved

that B[M ]⊥ ∼= I/{f<(η)}{<} where η is a generator of the group of cyclotomic units

H, f< is the frobenius group ring element that corresponds to an unramified prime

ideal < which splits completely in the extension Q(ζp)
+(ζ2M)/Q, and < runs through

all such unramified prime ideals. Since he studied the l-parts of B he worked in Zl

and he used the isomorphism

Zl[G] ∼= Zl[x]/(x(p−1)/2 − 1)

where x ↔ σ : ζp + ζ−1
p 7→ ζgp + ζ−gp , g a primitive root modulo p. The frobenius

maps he wrote as polynomials in the variable x. More specifically, for each fixed

l he wrote the order of G as mla with (m, l) = 1, so that the polynomial xm − 1

could be written as a product of irreducible polynomials φ in Zl[x]. This gave the

following isomorphism of Zl-algebras

Zl[G] ∼= Zl[x]/(x(p−1)/2 − 1) ∼= Zl[x]/((xl
a
)m − 1) ∼=

∏
φ Zl[x]/(φ(xl

a
))

where the factors Zl[x]/(φ(xl
a
)) are complete local Zl[G]-algebras with maximal

ideals (l, φ(x)) and residue fields isomorphic to F = Fl[x]/(φ(x)). The order of F

8



is lf , where f is the degree of φ. Using the above decomposition of the ring Zl[G],

one can write the l-part of any finite Zl[G]-module A as

A⊗ Zl ∼=
∏
φ

Aφ

where

Aφ = A⊗Zl[G] Zl[x]/(φ(xl
a

)).

As a finite module, A admits a Jordan-Hölder filtration with simple factors, each of

which is isomorphic to some F . All these hold in particular for the module B=E/H

and the various B[M ]⊥ described above. A Jordan-Hölder factor of B[M ]⊥ has

order lf and it corresponds to the unique subfield of Q(ζp)
+ of degree equal to the

order of x in Fl[x]/(φ(x)). Schoof examined the divisibility of h+ by all primes <

80,000, for all cyclotomic fields of prime conductor p < 10,000, and calculated all

the Jordan-Hölder factors of the various B[M ]⊥ which had order ≤ 80,000.

As we see above, one of the great advantages of Schoof’s Method, which will

also apply in our method as well, is that it does not exclude the primes dividing the

order of the group, in contrast to other methods that we have already discussed in

the introduction.

1.2 Finite Gorenstein Rings

In this section we give the definition and some basic properties of finite Goren-

stein rings that we will need later on. We follow Schoof [25].

Let R be a finite commutative ring and A any R-module. Define

A⊥ = HomR(A,R) and Adual = HomZ(A,Q/Z).

9



Both of these groups are R-modules.

Definition 1.1. The ring R is Gorenstein if the R-module Rdual is free of rank 1

over R.

Let R be a finite Gorenstein ring. For any M ∈ Z, any finite abelian group

G, and any irreducible polynomial g(x) ∈ R[x], we have that the rings Z/MZ,

(Z/MZ)[G] and R[x]/(g(x)) are finite Gorenstein rings.

In the next proposition we prove a fact that we already mentioned above and

which we will also use in the next chapter.

Proposition 1.1. Let R be a finite Gorenstein ring and let χ : R→ Q/Z denote a

generator of the R-module HomZ(R,Q/Z). Then, for every R-module A, the map

Φ : A⊥ → Adual : f 7→ χ · f is an isomorphism of R-modules.

Proof: For any R-module A we have the canonical isomorphism

HomR(A,HomZ(R,Q/Z)) ∼= HomZ(A,Q/Z).

We also have the R-isomorphism R ∼= HomZ(R,Q/Z) via the map that maps 1 to

χ. Hence A⊥ = HomR(A,R) ∼= HomZ(A,Q/Z) = Adual via the map Φ given in the

statement above. 2

We will also need the two propositions below. The first one shows that any

finite R-module is Jordan-Hölder isomorphic to its dual, and together with Propo-

sition 1.1. above, justifies the use of the Jordan-Hölder factors of B⊥ instead of B.

The idea of the second one we will use in the third step of our algorithm.

Proposition 1.2. Let R be a finite Gorenstein ring. Any finite R-module is Jordan-

Hölder isomorphic to its dual.
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Proof : Consider the exact sequence

0→ mA→ A→ A/mA→ 0.

Since the functor A → Adual from the category of finite Z/MZ-modules to itself is

exact, we apply it to the sequence above and we obtain the exact sequence

0→ (A/mA)dual → Adual → (mA)dual → 0.

We therefore have that

(A/mA)dual ∼= Adual/(mA)dual ∼= Adual[m] = {a ∈ Adual : µa = 0 for all µ ∈ m}.

This implies that

|A/mA| = |(A/mA)dual| = |Adual[m]|

and both are vector spaces over R/m. Hence, they have the same dimension and

therefore the same number of simple Jordan-Hölder factors R/m. If mA = 0 then

we are done by the above. If A/mA = 0 then there are no Jordan-Hölder factors

of R/m for A or for Adual. Now suppose A 6= mA 6= 0. We need the following

definition

Definition 1.2. If the simple factor modules of a composition series of a module

M are Q1, Q2, ..., Qn, we define

jh(M) = Q1 ⊕Q2 ⊕ ...⊕Qn

By induction, we may assume the proposition for all modules of order smaller

than |A|. In particular,

jh(mA) = jh((mA)dual) and jh(A/mA) = jh((A/mA)dual).

11



From the two exact sequences above and by [23, Lemma 7.86] we have that

jh(A) = jh(mA)⊕ jh(A/mA) and jh(Adual) = jh((A/mA)dual)⊕ jh(mAdual).

But since

jh(A/mA) = jh(Adual/mAdual) and jh(mA) = jh(mAdual).

we have that jh(A) = jh(Adual) and this complete the proof of the proposition. 2

Proposition 1.3. Let R be a finite Gorenstein ring and I an ideal of R. Suppose

there is an ideal J ⊂ R and a surjection g : R/J → I⊥ with the property that

AnnR(J) annihilates R/I. Then g is an isomorphism.

Proof: We have that |I| = |I⊥| ≤ |R/J | = |(R/J)⊥| = |AnnR(J)|. The last

equality follows from the fact that (R/J)⊥ is isomorphic to AnnR(J). Since AnnR(J)

⊂ I, we also have that |I| ≥ |AnnR(J)|, so that we must have equality everywhere,

and g is an isomorphism. 2

This concludes our brief introduction to finite Gorenstein rings. We continue

with the theoretical outline of our method.

1.3 Extension of the Method to Real Cyclotomic Fields

of Conductor pq

From our description of Schoof’s method in Section 1, one sees that the first

thing that needs to be considered is the group of units that will replace the group of

cyclotomic units that we have in the case of prime conductor. This subject will be
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dealt with in 1.3.1. The second step will be to reformulate the main theorem which

describes the modules B[M ]⊥ in terms of the augmentation ideal and the frobenius

maps. This we will present in 1.3.2. In Chapter 2, we will describe everything in

terms of polynomials so that we can perform our calculations.

1.3.1 Cyclotomic Units

The group of cyclotomic units of the fields Q(ζm)+ for m not a prime number,

and therefore for the fields Q(ζpq)
+, has a complicated structure. Sinnott in [26]

defined the cyclotomic units attached to an abelian field K as follows:

Definition 1.3. Let K be an abelian field and let Km = K ∩ Q(ζm). Let a be an

integer not divisible by m. The number NQ(ζm)/Km(1 − ζam) lies in K∗. Denote by

Dm the group generated in K∗ by −1 and all such elements NQ(ζm)/Km(1− ζam). The

circular units H are defined by H = E ∩ Dm, where E is the full group of units of

K.

In the same paper, Sinnott calculated their index in the full group of units to

be

[E : H] = 2bh+

where b = 0 if g = 1 and b = 2g−2 + 1− g if g ≥ 2 and g is the number of distinct

prime numbers of the conductor m.

Kuc̆era and Conrad investigated the group of cyclotomic units described in

the definition above, for K being the cyclotomic field of conductor m. Kučera in

[14] found a basis for H and showed that every cyclotomic unit can be written as
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a product of a root of unity and elements in that basis. Similarly, Conrad in [6]

constructed a basis B for H, with the property that Bd ⊂ Bm for d|m.

In the case where m is an odd prime power, the following units ξa together

with −1 were proven to form a system of independent generators for the group of

cyclotomic units of Q(ζm)+

ξa = ζ(1−a)/2
m

1− ζam
1− ζm

, 1 < a <
1

2
m, (a,m) = 1.

For a proof of this see for example [30, Lemma 8.1].

When m is not a prime power however, a set similar to the above does not

work since for example the unit (1− ζm) is not of that form or even worse, this set

might be of infinite index in the group of units and hence does not give full rank.

In this case, other sets of independent units were introduced which, even though

they do not generate the full group of cyclotomic units, they are of finite index in

the full group of units. See for example Ramachandra’s set of independent units in

[22] and Levesque’s system of independent units in [18], which is a generalization of

Ramachandra’s units with smaller index in the full group of units.

In earlier work, Leopoldt in [17] had also studied the group of cyclotomic units.

His approach was to decompose it into the product of the groups of cyclotomic units

that come from all cyclic subfields of the field in hand. The index of this product of

groups in the full group of units however contains a factor whose value is not always

known. We will explain Leopoldt’s decomposition of the cyclotomic units in more

detail below, since many of the methods for computing prime divisors of h+ adopt

this decomposition as it is less complicated to work with the cyclic subfields and

14



their units, instead of the whole field.

Finally, for a detailed presentation and comparison of the various groups of

cyclotomic units and their index in the full groups of units, for the special case of a

compositum of real quadratic fields, see [15].

1.3.2 Leopoldt’s Cyclotomic Units and

the Decomposition of the Class Number of a Real Abelian Field

Let ξ denote a rational character of G irreducible over Q and for each such

ξ 6= ξ0 let Ker(ξ) = {α ∈ G|ξ(α) = ξ(1)}. Then the fields Kξ fixed by Ker(ξ)

are cyclic of conductor fξ and with cyclic galois group Gξ = G/Ker(ξ) of order

gξ. For each Dirichlet character χ let eχ = 1
|G|
∑

α∈G χ(α−1)α be its corresponding

idempotent and therefore denote by eξ =
∑

χ∈[ξ] eχ the orthogonal idempotent of

the algebra Q[G] that corresponds to ξ, with equivalence class denoted by [ξ]. We

should also explain here that two characters ξ belong to the same equivalence class

if they generate the same cyclic subgroup.

Definition 1.4. A real unit ε is a ξ-unit if and only if ε2 ∈ Kξ and NKξ/L(ε2) = 1

for all proper subfields L of Kξ.

For each ξ 6= ξ0 let Eξ ⊂ Kξ be the group of proper ξ-units of Kξ. In other

words, Eξ is the set of ξ-units that lie in Kξ. Denote by Fξ the group generated by

the element θξ = η
γξ
ξ , where ηξ and γξ are defined as follows:

For every automorphism α ∈ Gal(Q(ζfξ)
+/Kξ) we choose an extension ᾱ ∈
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Gal(Q(ζfξ)/Kξ) and we define

ηξ =
∏
α

ᾱ(ζfξ − ζ−1
fξ

).

Let αξ be a generator of Gξ and for every ξ 6= ξ0 define

γξ =
∏
r|gξ

(1− αgξ/rξ )

where the product runs over all prime divisors r of gξ. The element η
γξ
ξ is in Kξ and

we have that

η
|G|·γξ
ξ = ±ηuξ

where

uξ =
∑
α∈G

ξ(α−1)s and η =
∏
ξ 6=ξ0

η
γξ
ξ .

We have Fξ = 〈(±θξ)α|α ∈ Gξ〉 and we see that Fξ is a subgroup of Eξ. Let E0
ξ

denote the group of ξ-units. It is a result of Leopoldt that

[E :
∏
ξ 6=ξ0

E ∩ E0
ξ ] = QK <∞

and also that QK divides gg−1 and [E0
ξ : Eξ] is some power of 2. We therefore have

that

[E :
∏
ξ 6=ξ0

Eξ] = 2aKQK = Q+
K

for some aK . We can now state a main result of Leopoldt:

h+ =
Q+
K√
gg−2∏
ξ 6=ξ0

dξ

∏
ξ 6=ξ0

hξ

where hξ = [Eξ : Fξ] and dξ is the discriminant of the cyclotomic polynomial Φgξ(x).

Rearranging we get

h+ = Q+
Kg

(2−g)/2
∏
ξ 6=ξ0

√
dξ
∏
ξ 6=ξ0

hξ
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Since the discriminants dξ are only divisible by the primes dividing the order of G,

then so is the factor

Q+
Kg

(2−g)/2
∏
ξ 6=ξ0

√
dξ.

Therefore, if we have that a prime l divides some hξ and (l, |G|) = 1, then we know

that l|h+. If l happens to be a divisor of |G| however, then this l might be canceled

out by the above factor. Therefore for this case, the formula for h+ above does not

give us exact information, except of course from the cases that Q+
K can be computed.

Gillard in [8], [9] and [10] also studied the cyclotomic units introduced by

Leopoldt. In [8] he worked with the unit

Θ =
∏
ξ 6=ξ0

θξ

where the product runs over all rational, non-trivial, irreducible characters of G and

the θξ are as above, and calculated the index of ±ΘI in the full group of units,

where I is the augmentation ideal of Z[G]. One could adopt this unit and generalize

Schoof’s method by letting B = E/±ΘI . We applied our method to Gillard’s unit

but we saw that for fields with big conductor, its complicated structure made the

computational part take too long.

Given all the above and the complexity of the group of cyclotomic units for

fields of non-prime conductor, we decided to work instead with a unit η that we

introduce below. We prove that the group H = ±ηZ[G] is of finite index in the full

group of units and modify the method of Schoof accordingly.
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1.3.3 A New Cyclotomic Unit η

Let p and q be distinct odd primes. From now on, E will denote the group of

units of the real cyclotomic field Q(ζpq)
+ and O its ring of integers. Without loss of

generality we will always assume that p < q. Choose and fix g and h, primitive roots

modulo p and q respectively. Denote by η(g,h) the following real unit of Q(ζpq)
+:

η(g,h) = ζ−(p+q)
pq (1− ζpqp+q)2 ζ

−g/2
p

ζ
−1/2
p

(1− ζgp )

(1− ζp)
ζ
−h/2
q

ζ
−1/2
q

(1− ζhq )

(1− ζq)

and by H(g,h) the group ±ηZ[G]
(g,h). We will usually omit the subscripts and just write

H and η since we will let ηα denote the unit η with the galois element α acting on it.

With this notation in mind, we are ready to prove a statement about the regulator

of the units {ηα}α∈G.

Proposition 1.4. Let E be the group of units of Q(ζpq)
+ and H = ±ηZ[G] = ±ηZ[G]

(g,h)

as above, where g and h are any two fixed primitive roots modulo p and q respectively.

The index [E:H] is always finite and it equals:

[E : H] =
2|G|−1h+

|G|
·

∏
χ=χp 6=1

1

2

[
2(χ(q)−1−1)+(χ(g−1)−1)(q−1)

]
·
∏

χ=χq 6=1

1

2

[
2(χ(p)−1−1)+(χ(h−1)−1)(p−1)

]
where the characters χ in the first product are the even characters χp of conductor

p and those in the second product are the even characters χq of conductor q.

Proof : Define f by f(α) = log|ηα|. We see that
∑

α f(α) = log|
∏

α ηα| = 0.

Denote by χ an even Dirichlet character and note that for any root of unity ζ we

have that log|ζ i(1− ζj)| = log|1− ζj|, where i and j are arbitrary. The regulator R
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of the units ηα is:

R = R({ηα})

= ±det(log|ηαβ|)α,β 6=1

= ±det(f(αβ))α,β 6=1

= ±det(f(βα−1))α,β 6=1 (by rearranging the rows)

= ± 1

|G|
∏
χ 6=1

∑
β∈G

χ(β)f(β) (by [30, Lemma5.26(c)])

= ± 1

|G|
∏
χ 6=1

1

2

∑
1≤β≤pq
(β,pq)=1

χ(β)
[
log|1− ζβ(p+q)

pq |2 + log|
1− ζgβp
1− ζβp

|+ log|
1− ζhβq
1− ζβq

|
]

(∗)

Before we continue with the proof of the proposition, we need the following

lemmas (the proofs are taken from [30]).

Lemma 1.1. For m|n ∈ Z+, if fχ does not divide (n/m) then

∑
1≤b≤n,(b,n)=1

χ(b) log|1− ζbmn | = 0.

Proof: We need an a ≡ 1 mod n/m with (a, n)=1 and χ(a) 6= 1. If no such a

exists then for every a ≡ 1 mod(n/m), if (a, n)=1 then χ(a)=1. But this means that

the character χ : (Z/nZ)× → C× can be factored through (Z/(n/m)Z)×, therefore

fχ| (n/m), contradiction. Hence such a exists and since a ≡ 1 mod(n/m) we have

that ζbmn = ζabmn , hence

∑
1≤b≤n
(b,n)=1

χ(b) log|1− ζbmn | =
∑

1≤b≤n
(b,n)=1

χ(b) log|1− ζabmn | =

χ(a)−1 ·
∑

ab(mod n)
(ab,n)=1

χ(ab)log|1− ζabmn | = χ(a)−1 ·
∑

1≤b≤n
(b,n)=1

χ(b)log|1− ζbmn |.
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Since χ(a)−1 6= 1, we have that

∑
1≤b≤m
(b,m)=1

χ(b) log|1− ζbmn | = 0,

as we wanted. 2

Lemma 1.2. Let n = mm′ with (m,m′) = 1 and assume fχ| m. Then

∑
1≤b≤n,(b,n)=1

χ(b) log|1− ζbm′n | = φ(m′) ·
∑

1≤a≤m,(a,m)=1

χ(a) log|1− ζam|.

Proof: Since fχ| m, χ factors through (Z/mZ)× and for every b with (b, n) =

1 there is a 0 ≤ c < m′ and an 1 ≤ a < m such that (a,m) = 1 and b = a + cm.

Conversely, for every a with (a,m) = 1 there are φ(m′) different choices for c such

that (b = a + cm, n) =1. Since ζbm
′

n = ζbm we have that ζbm
′

n depends only on a and

it is clear that χ also only depends on a. The lemma now follows. 2

Lemma 1.3. Let P,Q, g ∈ Z+ with fχ|P and g|P . Then

∑
1≤b≤PQ,(b,g)=1

χ(b)log|1− ζbPQ| =
∑

1≤a≤P,(a,g)=1

χ(a)log|1− ζaP |.

Proof: We can write b as b = a + cP for 1 ≤ a ≤ P and 0 ≤ c ≤ Q− 1. Then

(b, g) = 1 if and only if (a, g) = 1. Also, from the polynomial identity

1− xQ =
∏

0≤c≤Q−1

(1− ζcPPQx)

we get the identity

1− ζaP = 1− (ζaPQ)Q = 1− ζaP =
∏

0≤c≤Q−1

(1− ζa+cP
PQ ).

Since the values of the character χ only depend on a, the lemma follows. 2
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Lemma 1.4. Let n ∈ Z+ and assume fχ| n. Then

∑
1≤b≤n
(b,n)=1

χ(b) log|1− ζbn| =
∏
p|n

(1− χ(p))
∑

1≤b≤n

χ(b)log|1− ζbn|.

Proof Let n =
∏

i p
ei
i with ei ≥ 1 be the prime factorization of n. When we

expand the product
∏

p|n(1− χ(p)), the right hand side equals

∑
1≤b≤n
(b,n)=1

χ(b) log|1− ζbn| −
∑
pi

χ(pi)
∑

1≤b≤n

χ(b)log|1 − ζbn| +

∑
pi 6=pj

χ(pipj)
∑

1≤b≤m

χ(b)log|1− ζbn| − ...

We see that only those primes with (fχ, pi) = 1 appear in the sum above since

otherwise χ(pi) = 0. Therefore, we have that fχ| (n/pi) and by Lemma 1.3 above

with g =1, the sum becomes equal to

∑
1≤b≤n

χ(b)log|1 − ζbn| −
∑
pi

∑
1≤b≤m
pi|b

χ(b)log|1 − ζbn| + ... =

∑
1≤b≤n
(b,n)=1

χ(b)log|1 − ζbn|. 2

We can now continue with the proof of Proposition 1.3.

For a character χ and the first summand in the brackets in (∗) above, we have

2
∑

1≤β≤pq
(β,pq)=1

χ(β) log|1− ζβ(p+q)
pq | =

2χ(p+ q)−1
∑

β(p+q) mod(pq)
(β(p+q),pq)=1

χ(β(p+ q)) log|1− ζβ(p+q)
pq |

= 2χ(p+ q)−1(1− χ(q))(1− χ(p))
∑

1≤β≤pq

χ(β) log|1− ζβpq| (by Lemma 1.4).
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To this sum, for characters of conductor p or q, we apply Lemma 1.3. The first sum

in (∗) now equals:

=


2χ(p+ q)−1

∑
1≤β≤pq χ(β) log|1− ζβpq| , iffx = pq

2χ(q)−1(1− χ(q))
∑

1≤α≤p χ(α) log|1− ζαp | , if fχ = p

2χ(p)−1(1− χ(p))
∑

1≤α≤q χ(α) log|1− ζαq | , if fχ = q

For a character χ and the second summand we have

∑
1≤β≤pq
(β,pq)=1

χ(β)
[
log|1 ζgβp | − log |1− ζβp |

]

= χ(g)−1
∑

gβ(mod pq)
(β,pq)=1

χ(gβ)log|1− ζgβp | −
∑

1≤β≤pq
(β,pq)=1

χ(β)log|1 − ζβp |

= (χ(g−1)− 1)
∑

1≤α≤pq
(α,pq)=1

χ(α)log|1 − ζαp |.

If fχ = pq then

∑
1≤α≤pq
(α,pq)=1

χ(α)log|1 − ζαp | =
∑

1≤α≤pq
(α,pq)=1

χ(α)log|1 − ζqαpq | = 0 (by Lemma1.1).

Similarly, by applying Lemma 1.1 to the second summand for characters of conductor

q, we also get 0. For the characters of conductor p, we apply Lemma 1.2 to the second

summand. All of the above give the following:

=


0 , iffχ = pq

(χ(g−1)− 1)(q − 1)
∑

1≤α≤p χ(α)log|1 − ζαp | , if fχ = p

0 , if fχ = q

Similarly, the third summand equals:
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=


0 , iffχ = pq

0 , if fχ = p

(χ(h−1)− 1)(p− 1)
∑

1≤α≤q χ(α)log|1 − ζαq | , if fχ = q

Putting all three together and denoting by χpq, χp and χq the characters of

conductor pq, p and q respectively, we have that

R = ± 1

|G|
∏

χ=χpq 6=1

1

2
· 2 χ(p+ q)−1

∑
1≤β≤pq

χ(β) log|1− ζβpq|·

∏
χ=χp 6=1

1

2

[
2χ(q)−1 (1− χ(q)) + (χ(g−1)− 1)(q − 1)

] ∑
1≤α≤p

χ(α)log|1− ζαp |·

∏
χ=χq 6=1

1

2

[
2χ(p)−1 (1− χ(p)) + (χ(h−1)− 1)(p− 1)

] ∑
1≤α≤q

χ(α)log|1− ζαq |

The product over all characters of the term χ(p+ q)−1 will give ±1 since the value

of each χ is canceled out by that of χ̄. Therefore the above equals

= ± 1

|G|
·
∑

1≤β≤pq

χ(β) log|1− ζβpq|·

∏
χ=χp 6=1

1

2

[
2(χ(q)−11) + (χ(g−1)− 1)(q − 1)

] ∑
1≤α≤p

χ(α)log|1− ζαp |·

∏
χ=χq 6=1

1

2

[
2(χ(p)−1 − 1) + (χ(h−1)− 1)(p− 1)

] ∑
1≤α≤q

χ(α)log|1− ζαq |.

The L-series attached to each even character χ satisfies

L(1, χ) = −τ(χ)

fχ

∑
1≤b≤fχ

χ̄(b)log|1 − ζbfχ|

therefore R is now equal to

R = ± 1

|G|
∏

χ=χpq 6=1

(−fχ)

τ(χ)
L(1, χ)·
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∏
χ=χp 6=1

1

2

[
2(χ(q)−11) + (χ(g−1)− 1)(q − 1)

](−fχ)

τ(χ)
L(1, χ)·

∏
χ=χq 6=1

1

2

[
2(χ(p)−1 − 1) + (χ(h−1)− 1)(p− 1)

](−fχ)

τ(χ)
L(1, χ) =

± 1

|G|
∏

16=χeven

τ(χ)L(1, χ)·

∏
χ=χp 6=1

1

2

[
2(1−χ(q))+(χ(g−1)−1)(q−1)

] ∏
χ=χq 6=1

1

2

[
2(1−χ(p))+(χ(h−1)−1)(p−1)

]
.

The class number formula for a real number field K of degree n, discriminant d,

class number h+ and regulator R+, is given by the formula

2|G|h+R+

2
√
|d|

=
∏

1 6=χeven

L(1, χ).

By applying this formula to the above, we have that R is now equal to

R =
2|G|−1h+R+

|G|
·

∏
χ=χp 6=1

1

2

[
2(χ(q)−1−1)+(χ(g−1)−1)(q−1)

] ∏
χ=χq 6=1

1

2

[
2(χ(p)−1−1)+(χ(h−1)−1)(p−1)

]
.

Therefore,

R

R+
=

2|G|−1h+

|G|
·

∏
χ=χp 6=1

1

2

[
2(χ(q)−1−1)+(χ(g−1)−1)(q−1)

] ∏
χ=χq 6=1

1

2

[
2(χ(p)−1−1)+(χ(h−1)−1)(p−1)

]
.

So now, by [30, Lemma 4.15], we have that

[E : H] =
R

R+
=

2|G|−1h+

|G|
·

∏
χ=χp 6=1

1

2

[
2(χ(q)−1−1)+(χ(g−1)−1)(q−1)

] ∏
χ=χq 6=1

1

2

[
2(χ(p)−1−1)+(χ(h−1)−1)(p−1)

]
as desired.
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To show that [E:H] is always finite it suffices to show that the regulator is

never zero. Assume it is zero. Then for some character of conductor p the sum

2(χ(q)−1 − 1) + (χ(g−1)− 1)(q − 1)

is zero or for some character of conductor q the sum

2(χ(p)−1 − 1) + (χ(h−1)− 1)(p− 1)

is zero. But

2(χ(q)−1 − 1) + (χ(g−1)− 1)(q − 1) = 0

⇔

2χ(q)−1 + (q − 1)χ(g)−1 = 2 + (q − 1)

which never happens as χ(g)−1 can never equal 1, since g is a primitive root. Simi-

larly for a character of conductor q. Therefore, the regulator is never zero and this

completes the proof of Proposition 1.3. 2

Denote by P the factor

2|G|−1

|G|
·

∏
χ=χp 6=1

[
2(χ(q)−1−1)+(χ(g−1)−1)(q−1)

] ∏
χ=χq 6=1

[
2(χ(p)−1−1)+(χ(h−1)−1)(p−1)

]
which appears in the index [E:H] in Proposition 1.3 above. We now have

[E : H] = P · h+.

One can take advantage of the fact that any choice of primitive roots g and h give a

finite index, and for each field Q(ζpq)
+ one can choose the pair (g,h) with the prop-

erty that P(g,h) is divisible by the smallest number of distinct primes. Furthermore,
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for the primes that appear in this P(g,h) one can can check to see if those primes

divide the greatest common divisor of all the P(g,h) for every pair of primitive roots

(g,h). In the case that a prime l does not divide the greatest common divisor, there

is some pair (g0, h0) for which l does not divide P(g0,h0). We can therefore repeat the

first part of our algorithm that we explain in the next chapter, for this pair (g0, h0)

and for this prime l. If l does not come up as a possible divisor for this pair of

primitive roots this means that it only divides P(g,h) for the initial choice of g and

h and not the class number. Hence, we do not need to consider this l in the next

steps of the algorithm. These facts are very useful in the computations described in

the next chapter, since they narrow down the number of primes that one needs to

check to see if they divide h+ and hence speed up the calculations.

In the remainder of this chapter we reformulate Schoof’s main theorem that

describes the module B = E/H in terms of the various B[M ]⊥.

1.3.4 The module B= E/H = E/±ηZ[G]

We denote by B be the Z[G]-module E/H, where H = ±ηZ[G] as above. From

Proposition 1.3 we have that the order of B is finite and equals the index [E : H].

Therefore, by generalizing Schoof, we can calculate its order and then multiply by

1/P in order to get h+, as desired.

Since H is of finite index in E we have that the map
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Φ : Z[G]→ E

: α 7→ ηa

is a homomorphism whose image H is of finite index and therefore Z-isomorphic to

Z |G|−1. We have that H ∼= Z[G]/NG as Z[G]-modules, where NG is the norm of G.

Let M > 1 denote a power of a prime l. We let F = Q(ζpq)
+(ζ2M) and ∆ =

Gal(F/Q(ζpq)
+).

Lemma 1.5. The kernel of the natural map

j : E/EM → F ∗/F ∗M

is trivial if l odd and it has order two and is generated by −1 if l = 2.

Proof: Fix an embedding F ⊂ C. Then Q(ζpq)
+ identifies with a subfield

of R. Suppose 0 < x ∈ E ⊂ R is in Kerj. Then x = yM , some y ∈ F ∗.

Since µM ⊂ F we may assume that y ∈ R and therefore conj(y)=y, where conj

is complex conjugation in ∆. Since ∆ commutative, s(y)=s(conj(y))=conj(s(y))

∀s ∈ ∆, therefore s(y)=±y ∀s ∈ ∆, since y and all its conjugates are real M -

th roots of x. If l 6= 2 then M is odd. Assume ∃s ∈ ∆ with s(y)=−y. Then

x=s(x)=s(yM)=(s(y))M=(−y)M=−x, contradiction. Therefore ∆ fixes y and hence

y ∈ (Q(ζpq)
+)∗ and x ∈ EM . Since we took x > 0 we need to check for −1 as well.

Since M odd, (−1)M = −1 therefore −1 ∈ EM as well and in this case j is an

injection. If l = 2 we see that s(y2) = s(y)2 = y2 therefore y2 ∈ Q(ζpq)
+∗. The

quadratic subextensions of F/Q(ζpq)
+ are Q(ζpq)(i) and Q(ζpq)

+(
√
±2) and hence
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y2 = 2u2 or = ±u2, for some u ∈ E. If y2 = 2u2, then 2 = y2 v2, with v such that

vu =1, which can not happen since then (2) = (v)2 as ideals but 2 does not ramify

in Q(ζpq)
+. So we can only have the second case where x=yM=(y2)2(k−1)

. For k ≥ 2

we have x = u2 and therefore x ∈ EM . When k = 1 we have x = y2 = ±u2, but

since x > 0 we still get x = u2 which implies that x ∈ EM . For −1, observe that −1

= ζM2M but −1 is not even a square in Q(ζpq)
+ which means kerj = 〈−1〉 of order

two in this case. 2

Let Ω = Gal(F/Q). We have the following exact sequence of galois groups

0→ ∆→ Ω→ G→ 0.

Let < be any prime ideal of F of degree 1, ρ a prime ideal of Q(ζpq)
+ and r a prime

number such that < | ρ | r. We have r ≡ ±1 mod(pq) and r ≡ 1 mod(2M). Let g

= |G| = (p−1)(q−1)
2

and consider the following diagram:

ε ∈ E
f1 // ~ε ∈ (O/rO)∗

f3
��

f2 // (OF/rOF )∗∆

f ′3
��

µM(O/rO) µM(OF/rOF )∆

f ′2

oo (Z/MZ)[Ω]∆
f4

oo (Z/MZ)[G]
f5

oo

The map f1 is reduction modulo the ideal rO and ~ε = (ε1, ..., εg) where εi ≡ ε mod ρi

and the ρi are the primes dividing r. The maps f2 and f ′2 are just inclusion maps.

The vertical maps f3 and f ′3 raise the units to the power (r − 1)/M and therefore

become M -th roots of unity in O/rO (respectively in OF/rOF ). Here µM(R) denotes

the M -th roots of unity of a commutative ring R. The map f4 maps 1 ∈ (Z/MZ)[Ω]

to the unique element in µM(OF/rOF ) that is congruent to ζ2M mod < and congruent
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to 1 modulo all the other primes <′ that lie over r. There is such an ε ∈ E with

f ′3f2f1(ε) ≡ ζ2M(mod<) and f ′3f2f1(ε) ≡ 1(mod<′), by the Chinese Remainder

Theorem. Furthermore, since r splits completely in F , the orders of the two groups

are equal and therefore the map f4 is an isomorphism. Finally, the map f5 sends an

element ḡ ∈ G ∼= Ω/∆ to the sum of its inverse images and once we fix an inverse

image g, this comes down to multiplying g by the ∆-norm =
∑

s∈∆ s. The map f5

is an isomorphism since (Z/MZ)[Ω]∆ is fixed by ∆. Let f< = f−1
5 f−1

4 f ′3f2f1. Since

−1 = ζ2M
M we have that f<(−1) = 0 and hence f< factors through the quotient

f< : E/± EM → (Z/MZ)[G].

Lemma 1.6. The maps f< correspond to the frobenius elements of the primes over

< in Gal(F ( M
√
E)/F ). Furthermore, every map in HomR(E/ ± EM , R) is of the

form f< for some < ∈ S where S denotes the set of unramified prime ideals < of

Q(ζpq)
+(ζ2M) of degree 1 and R = (Z/MZ)[G].

Proof: Let µM denote the M -th roots of unity and once we choose a primitive

M -th root we have the isomorphism

HomZ(E/± EM , µM) ∼= HomZ(E/± EM , Z/MZ)

which is naturally isomorphic to HomZ(E/± EM , Q/Z). The group E/± EM is a

module over the group ring (Z/MZ)[G] = R, hence

HomZ(E/± EM , Q/Z) ∼= HomZ(E/± EM ⊗R R,Q/Z)

and the Adjoint Isomorphism Theorem gives

HomZ(E/± EM ⊗R R,Q/Z) ∼= HomR(E/± EM , HomZ(R,Q/Z)).
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By Definition 1.1. we have that

HomZ(R,Q/Z) = Rdual ∼= R

and we have therefore shown that

HomZ(E/± EM , µM) ∼= HomR(E/± EM , R).

Now, from Lemma 1.5 above, we can identify the group E/± EM with a subgroup

of F ∗/F ∗M . Consider the extension F ( M
√
E)/F . Since < splits completely, we can

associate to it a uniquely determined element β in Gal(F ( M
√
E)/F ), namely the

frobenius automorphism corresponding to <, such that β( M
√
ε) ≡ ( M

√
ε)r(mod <).

From our definition of f< above we have f<(ε) =
∑

s∈G xss where xs is determined

by

s−1(ε)(r−1)/M ≡ ζxsM mod <.

The corresponding homomorphism in HomZ(E/±EM , Z/MZ) maps ε to x1. Since

β(ε)/ε is an M -th root of unity, we can write β( M
√
ε)/ M
√
ε ≡ ζx1

M mod < ⇔ ε(r−1)/M

≡ ζx1
M mod <. Therefore every f< corresponds to the frobenius map of < in

Gal(F ( M
√
E)/F ). From Kummer Theory we have that

Gal(F (
M
√
E)/F ) ∼= HomZ(E/± EM , µM)

and we showed above that HomZ(E/ ± EM , µM) ∼= HomR(E/ ± EM , R). By Ce-

botarev’s Density Theorem every element of HomR(E/± EM , R) is of the form f<

for some prime < of degree 1. This concludes the proof of the lemma. 2

Theorem 1.1. Let l and M be as above and let I denote the augmentation ideal of
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R = (Z/MZ)[G]. We have B[M ]⊥ ∼= I/{f<(η) : < ∈ S}, where S denotes the set

of unramified prime ideals < of Q(ζpq)
+(ζ2M) of degree 1.

Proof: Applying the Snake Lemma to the following diagram

0 −→ H/{±1} −→ E/{±1} −→ B −→ 0

↓M ↓M ↓M

0 −→ H/{±1} −→ E/{±1} −→ B −→ 0

yields the exact sequence of R-modules

0 −→ B[M ] −→ H/±HM −→ E/± EM .

Since Q/Z is an injective Z-module, the contravariant functor HomZ(−, Q/Z) is an

exact functor. Furthermore, from Proposition 1.1 we have that A⊥ ∼= Adual. From

both of the above, we therefore get the exact sequence

HomR(E/± EM , R) −→ HomR(H/±HM , R) −→ HomR(B[M ], R) −→ 0.

which gives the isomorphisms

HomR(B[M ], R) = B[M ]⊥ ∼= HomR(H/±HM , R)/HomR(E/± EM , R).

As we showed earlier,

H/{±1} ∼= Z[G]/NG

and similarly here

(Z/MZ)[G]/NG
∼= H/±HM ,

so the G-norm kills every R-homomorphism f : H/±HM → R. We see that
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HomR(H/±HM , R) ∼= HomR(R/NG, R) ∼= AnnR(NG) ∼= I.

Furthermore, the map

HomR(E/± EM , R)→ HomR(H/±HM , R)→ I

is given by restriction and then evaluation on η. Therefore, by Lemma 1.6 we have

that

HomR(E/± EM , R) ∼= {f<(η) : < ∈ S}

where S denotes the set of unramified prime ideals < of Q(ζpq)
+(ζ2M) of degree 1.

From all of the above we obtain

B[M ]⊥ ∼= I/{f<(η) : < ∈ S},

as we wanted. 2

In the next chapter, we describe everything in terms of polynomials so that

we can perform our calculations, and then we give an example.
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Chapter 2

The Computational Part and an Example

In this chapter we will use Theorem 1.1 and express B[M ]⊥ in terms of poly-

nomials, so that we can perform our calculations. In this chapter, l will denote an

odd prime.

2.1 Reformulating Theorem 1.1 in terms of Polynomials

Let l be a fixed odd prime, M > 1 some fixed power of l and G denotes the

galois group of Q(ζpq)
+. The group G is of order (p− 1)(q − 1)/2 and we have the

isomorphisms

G ∼=
(

(Z/pZ)? × (Z/qZ)?
)
/{±1} ∼=

〈σ, τ : σ(p−1) = 1, τ (q−1) = 1, σ(p−1)/2τ (q−1)/2 = 1〉

where σ : ζp 7→ ζγp and τ : ζq 7→ ζδq with γ and δ being fixed primitive roots modulo

p and q respectively. The last of the three relations is the relation for complex

conjugation. The primitive roots γ and δ will be fixed throughout and will always

represent the generators of (Z/pZ)× and (Z/qZ)× respectively. We see that

Z[G] ∼= Z[x, y]/(xp−1 − 1, yq−1 − 1, x(p−1)/2y(q−1)/2 − 1)

via the map that sends σ to x and τ to y. Similarly,

(Z/MZ)[G] ∼= (Z/MZ)[x, y]/(xp−1 − 1, yq−1 − 1, x(p−1)/2y(q−1)/2 − 1).
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Using this notation, the maps f< that were introduced in the previous chapter can

now be expressed as polynomials in the variables x and y as follows:

f<(x, y) =
∑

1≤i≤p−1

∑
1≤j≤(q−1)/2

logl(η(i,j)) · xi · yj

where

η(i,j) = ζ−γ
i

p ζ−δ
j

q (1− ζγip ζδ
j

q )2 ζ
−gγi/2
p

ζ
−γi/2
p

(1− ζgγip )

(1− ζγip )

ζ
−hδj/2
q

ζ
−δj/2
q

(1− ζhδjq )

(1− ζδjq )
.

Here, logl denotes the discrete log which gives logl(η) = s where s ∈ Z/MZ is such

that η(r−1)/M ≡ ζsM mod <.

We note here that the second sum in the definition of f<(x, y) goes from 1 up

to (q − 1)/2 since we are in the real subfield of Q(ζpq).

Given the above, we can now reformulate Theorem 1.1 of the previous chapter

as follows:

Theorem 2.1. Let l be a fixed prime and let M > 1 be some fixed power of l.

Denote by R the ring

(Z/MZ)[x, y]/(xp−1 − 1, yq−1 − 1, x(p−1)/2y(q−1)/2 − 1)

and let B[M ]⊥ be as in Theorem 1.1. Then

B[M ]⊥ ∼= (x− 1, y − 1)
/
{f<(x, y) : < ∈ S}

where S = {the degree 1 prime ideals of Q(ζpq)
+(ζ2M)}.

Proof: From our polynomial description of Z[G] above, it follows that (x −

1, y−1) is the augmentation ideal of (Z/MZ)[G]. The result is now immediate from

Theorem 1.1. 2
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We have now expressed the modules B[M ]⊥ in terms of polynomials. Another

step that is necessary for our calculating of their orders, especially for fields with

big conductors, is to find a way to break down these modules into smaller pieces.

This we handle in the next section.

2.2 The Decomposition of the modules B[M ]⊥

Let G̃ denote the Galois group of the extension Q(ζpq)/Q. We can write Zl[G̃]

as follows: for the same fixed prime l as above, write p−1 = m1l
a1 and q−1 = m2l

a2

where la1||p− 1 and la2||q− 1. Since now l does not divide m1 and m2, we have that

Zl[G̃] ∼= Zl[x, y]/(xp−1 − 1, yq−1 − 1) ∼=

Zl[x, y]/((xl
a1 )m1 − 1, (yl

a2 )m2 − 1) ∼=

∏
φx,φy

Zl[x, y]/(φx(x
la1 ), φy(y

la2 )) ∼=

∏
φx

Zl[x]/(φx(x
la1 ))⊗

∏
φy

Zl[y]/(φy(y
la2 ))

where the product runs over all irreducible divisors φx of xm1 − 1 and φy of ym2 − 1.

We see that Zl[x]/(φx(x
la1 )) and Zl[y]/(φy(y

la2 )) are complete local Zl[G̃]-algebras

with maximal ideals (l, φx(x)) and (l, φy(y)), respectively, and the orders of their

residue fields are lf1 and lf2 , where f1 = deg(φx(x)) and f2 = deg(φy(y)). Let ∆

denote the subgroup of G̃ of order prime to l. From the decomposition of Zl[G̃]

above, we can write any finite Zl[G̃]-module A as a product of its φ-parts

Aφx,φy = A⊗Zl[G̃]

(
Zl[x]/(φx(x

la1 ))⊗
∏
φy

Zl[y]/(φy(y
la2 ))

)
.
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The simple Jordan-Hölder factors of each Aφx,φy over Zl[∆] are the same as those

over Zl[G̃] since we ‘removed’ the powers of x and y dividing the order of G̃.

All of the above about the module A also hold in particular for B, the var-

ious B[M ]⊥ and their φ-parts B[M ]⊥φx,φy . Therefore, when we want to find the

Jordan-Hölder factors of B we can start by taking all combinations of degrees f1

and f2. Since x and y are non-zero elements in the corresponding residue fields[
Zl[x]/(φx(x

la1 ))
]
/(l, φx(x)) and

[
Zl[y]/(φy(y

la2 )
]
/(l, φy(y)), we must have that the

orders of x and y in the ring attached to φx and φy must divide (lf1−1) and (lf2−1)

respectively. Let d1 = gcd(p− 1, lf1 − 1) and d2 = gcd(q − 1, lf2 − 1) and let

Rd1,d2 = (Z/MZ)[x, y]/((xl
a1 )d1 − 1, (yl

a2 )d2 − 1).

Since the rings Rd1,d2 and Rφx,φy are direct summands of R, any map from their mod-

ules B[M ]d1,d2 and B[M ]φx,φy , respectively, to R will end up in these smaller rings.

Therefore we can refer to B[M ]⊥d1,d2 and B[M ]⊥φx,φy as Rd1,d2 and Rφx,φy modules,

respectively.

We see that, instead of going all the way down to the various B[M ]⊥φx,φy and

looking for the simple Jordan-Hölder factors, one could evaluate directly the order

of the various Rd1,d2-modules

B[M ]⊥d1,d2
∼= (x− 1, y − 1)/〈(xla1 )d1 − 1, (yl

a2 )d2 − 1, cnj, f<(x, y) : < ∈ S〉 (i)

where S is as in Theorem 2.1 and cnj denotes the conjugation relation

cnj = x(p−1)/2y(q−1)/2 − 1

as above. We have that (1± c)/2 are idempotents in (Z/MZ)[G̃] for M odd, where
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c denotes complex conjugation. Therefore, the conjugation relation in the ideal

J = 〈(xla1 )d1 − 1, (yl
a2 )d2 − 1, cnj, f<(x, y) : < ∈ S〉 (ii)

from (i) above, makes B[M ]⊥d1,d2 a (Z/MZ)[G]-module. Note that here, the poly-

nomials f< are restrictions of the frobenius elements of Theorem 2.1 to this smaller

extension determined by the set of polynomials (xl
a1 )d1 − 1 and (yl

a2 )d2 − 1. They

are therefore of the form

f<(x, y) =
∑

1≤i≤d1la1

∑
1≤j≤d2la2

logl(
∏

m≡imod(d1l
a1 )

n≡jmod(d2l
a2 )

η(m,n)) · xi · yj (iii).

2.3 Gröbner Bases

Before we continue with the outline of the algorithm, one last thing that needs

to be discussed is the way we handle the appearance of two variables x and y in

our calculations of the ideals J defined in the previous section, in order to get

a description of the various B[M ]⊥d1,d2 and to also calculate their order. We use

the theory for Gröbner Bases, which we present here by following [1]. As before,

d1 = gcd(p − 1, lf1 − 1) will be the order of x and d2 = gcd(q − 1, lf2 − 1) will be

the order of y in the ring Rd1,d2 , where f1 and f2 are the degrees of some irreducible

polynomials φx and φy respectively. Again, let B[M ]⊥d1,d2 be the corresponding

Rd1,d2-module and

J = 〈(xla1 )d1 − 1, (yl
a2 )d2 − 1, cnj, f<(x, y) : < ∈ S〉

the corresponding ideal. All the computations for the calculation of the frobenius

polynomials were performed in PARI and the computations for a basis for the ideal
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J in MATHEMATICA, which allows the computations of bases for ideals whose

elements are polynomials in more than one variable and their coefficients are in any

ring (Z/MZ), not necessarily a field.

In this section, R = A[x, y] will denote a polynomial ring in two variables x

and y with coefficients in a Noetherian ring A. Hence R is Noetherian as well. This

R is not necessarily related to the various rings Rd1,d2 of the previous section. We

use R more generally. Because of the appearance of more than one variable in our

polynomials, we need to agree on the order of the variables and also find a way to

compare every element. We call a power product an element of the form xayb with

a, b non-negative integers and we denote by T 2 the set of all power products of the

polynomial ring Rd1,d2 defined in the previous section as

Rd1,d2 = (Z/MZ)[x, y]/((xl
a1 )d1 − 1, (yl

a2 )d2 − 1).

Following the definition of term order given in [1], we define a total order on T 2 as

follows:

Definition 2.1. By a term order on T 2 we mean a total order < on T 2 which

satisfies the following conditions:

(i) 1 < xayb for all 1 6= xayb ∈ T 2

(ii) If xa1yb1 < xa2yb2 then (xa1yb1)(xcyd) < (xa2yb2)(xcyd) for all (xcyd) ∈ T 2.

The type of term order that we use here is the lexicographical order on T 2

which we define below:

Definition 2.2. The lexicographical order on T 2 with x > y is defined as:
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For (a1, b1), (a2, b2) with ai, bi positive integers, we define xa1yb1 < xa2yb2 if

and only if (a1 < a2 or (a1 = a2 and b1 < b2)). We therefore have

1 < y < y2 < y3 < ... < x < xy < xy2 < ... < x2 < ...

Now that we have chosen a term order on our polynomial ring, for each poly-

nomial

f = c1x
a1yb1 + c2x

a2yb2 + ...+ cnx
anybn

with ci 6= 0 in (Z/MZ) and xa1yb1 > xa2yb2 > ... > xanybn , we can define:

lp(f) = xa1yb1 , the leading power product of f ,

lc(f) = c1, the leading coefficient of f ,

lt(f) = c1x
a1yb1 , the leading term of f .

Since the coefficients are not necessarily in a field, we need to ‘re-define’ divi-

sion.

Definition 2.3. Let G be a set of polynomials in R, G = {g1, g2, ..., gn}. We say

that f reduces to h modulo the set G in one step, denoted

f
G // h ,

if and only if

h = f − (c1x
a1yb1f1 + ...+ csx

asybsfs)

for c1, ..., cs ∈ R and with lp(f) = xaiybilp(fi) for all i such that ci 6= 0 and lt(f) =

c1x
a1yb1lt(f1) + ...+ csx

asybslt(fs).
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Definition 2.4. Let f , h and f1, f2, ..., fs be polynomials in R, with fi 6= 0 ∀ 1 ≤

i ≤ s, and let F = {f1, f2, ..., fs}. We say that f reduces to h modulo F , denoted

f F // h ,

if and only if there exist polynomials h1, ..., ht−1 ∈ R such that

f F // h1
F // h2

F // ... F // ht−1
F // h .

We note that if

f
F // h ,

then f − h ∈ 〈f1, ..., fs〉.

We will now give the statement of a theorem ([1, Theorem 4.14]) which basi-

cally serves as the definition for a Gröbner Basis. We need to state first that the

leading term ideal of an ideal V of a ring R, denoted by LT (V ), is defined as:

LT (V ) = 〈{lt(v) : v ∈ V }〉.

Theorem 2.2. Let V be an ideal of R and let G = {g1, ..., gn} be a set of non-zero

polynomials in V . The following are equivalent:

(i) LT (G) = LT (V ).

(ii) For any polynomial f ∈ R we have

f ∈ V if and only if

f
G // 0

(iii) For all f ∈ V , f = h1g1 + ...+ hngn for some polynomials h1, ..., hn ∈ R,

such that lp(f) = max1≤i≤n(lp(hi)lp(gi)). 2
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Definition 2.5. A set G of non-zero polynomials contained in an ideal V of a ring

R is called a Gröbner basis for V if and only if G satisfies any one of the three

equivalent conditions of Theorem 2.2 above. Obviously G is a Gröbner basis for

〈G〉.

The Noetherian property of the ring R and Theorem 2.2 above, yield the

following Theorem ([1, Corollary 4.1.17]):

Theorem 2.3. Let J ⊆ R[x, y] be a non-zero ideal. Then J has a finite Gröbner

Basis. 2

Denote by GJ a Gröbner basis for our ideal J of the ring Rd1,d2 as above. We

see that the order of B[M ]⊥d1,d2 is the order of the quotient

(x− 1, y − 1)/ 〈GJ〉.

In the last step of the algorithm we will also need to compute the annihilator

of some ideal 〈GJ〉 over the finite ring Rd1,d2/Nd, where Nd is the polynomial in

Rd1,d2 representing the norm element. For this we follow a method outlined in [1,

Proposition 4.3.11] and we calculate the ideal quotient

T : 〈GJ〉 = {f ∈ Rd1,d2/Nd : f〈GJ〉 ⊆ T}

where T = 〈(xla1 )d1 − 1, (yl
a2 )d2 − 1, Nd〉. We therefore see that

Ann(Rd1,d2/Nd)(〈GJ〉) = T : 〈GJ〉.

We are now ready to describe the steps of the algorithm.
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2.4 The Algorithm

2.4.1 Step 1

Fix distinct odd primes p and q and an odd prime l. The product pq is

the conductor of the field Q(ζpq)
+ whose class number h+ we want to calculate

and M = l is the prime that we check to see if it divides h+. Factor xm1 − 1

and ym2 − 1 into irreducibles in Z/lZ where, as above, gcd(mi, l)=1 for i=1,2 and

m1l
a1 = p − 1 and m2l

a2 = q − 1. As before, let (f1, f2) be a pair of degrees

of irreducible polynomials φx, φy respectively, which appear in the factorization of

Z[G̃]. Let d1 = gcd(p − 1, lf1 − 1) and d2 = gcd(q − 1, lf2 − 1). For various primes

r with r ≡ ±1(mod pq) and r ≡ 1(mod 2l) we calculate the frobenius elements

f< as in (ii). Let J0 denote the zero ideal of Rd1,d2 together with the conjugation

relation cnj. We pick several frobenius polynomials f<i that we calculated above

and we let Ji = Ji−1 + (f<i). This ascending chain of ideals will computationally

stabilize at some ideal J l ⊆ (x− 1, y− 1) in Rd1,d2 . If J l happens to equal the whole

augmentation ideal (x − 1, y − 1) of Rd1,d2 , then the module B[l]d1,d2 is trivial. If

however, for some pair of degrees (f1, f2) we have a strict inclusion J l ⊂ (x−1, y−1)

then the corresponding B[l]⊥d1,d2 is not trivial, if J l has indeed stabilized at the correct

ideal J . Hence we believe that l divides the index [E:H].

As expected, in most cases the ideal J l is the whole augmentation ideal and

so we do not continue to steps 2 and 3 for this prime l. When we do get a non-

trivial quotient (x− 1, y − 1)/J l for some l however, we do not proceed to the next

step right away but we follow first the procedure outlined right after the proof of
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Proposition 1.1.3. That is, for each prime l that appears in the factor P(g,h) for the

specific pair of (g, h) with which we run step 1, but does not appear in the greatest

common divisor of all the P(g,h), we run step 1 again with a pair of primitive roots

(g0, h0) for which l does not divide P(g0,h0). If l gives a non-trivial factor, then we

proceed to the next steps. We follow this procedure because it is computationally

much faster to run step 1 with the same pair of primitive roots (g, h) for all primes,

instead of trying to determine which pair is best for each prime and then running

the test. Furthermore, most primes will give a trivial factor anyway and therefore

it is not worth trying to find the best pair (g, h) for each one of them.

2.4.2 Step 2

In this step we repeat the procedure of step 1 but with higher powers of l, i.e.

for M = l2, l3, etc, and only for those primes which ‘passed’ step 1. The coefficients

of the frobenius polynomials f< now lie in (Z/MZ) and we have to make sure that

the primes r satisfy r ≡ 1(mod 2M) for the specific power M of l. As before, let

Rd1,d2 = (Z/MZ)[x, y]/((xl
a1 )d1−1, (yl

a2 )d2−1), and denote by IM its augmentation

ideal. As in Step 1, for each M we have that the sequence of ideals

J0 ⊂ J1 ⊂ ... ⊂ Ji ⊂ ...

will stabilize at some ideal JM and from the sequence of surjective maps

...→ IlM/J
lM → IM/J

M → ...

we have that the orders of the modules IM/J
M are non-decreasing. Since B[M ]⊥d1,d2

is finite and its order is bounded above by |Bd1,d2| which is finite and indepen-
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dent of M , the orders of the quotients IM/J
M will have to stabilize. We will have

that for some power M of l, |IlM/J lM | = |IM/JM | hence IlM/J
lM ∼= IM/J

M .

Therefore M annihilates IlM/J
lM and therefore it also annihilates its quotient(

IlM/J
lM
)
/〈f<(x, y) : < ∈ S〉 ∼= B[lM ]⊥d1,d2 . This implies that M(B[lM ]duald1,d2

) =

0 which gives M(B[lM ]d1,d2) = 0 since as finite abelian groups, B[lM ]duald1,d2
and

B[lM ]d1,d2 are isomorphic. Therefore B[Ml]d1,d2 = B[M ]d1,d2 and

|MBd1,d2| = |Bd1,d2/B[M ]d1,d2| = |Bd1,d2|/|B[Ml]d1,d2| = |lMBd1,d2|.

Therefore (MBd1,d2)/l(MBd1,d2) = 0 and by Nakayama’s Lemma, MBd1,d2 = 0.

Again, since Bd1,d2 and Bdual
d1,d2

are isomorphic as finite abelian groups, we obtain

MB⊥d1,d2 = 0.

2.4.3 Step 3

In the third and last step we determine the structure and hence the order of

the module B⊥d1,d2 , by showing that the surjective map

g : (x− 1, y − 1)/((xl
a1 )d1 − 1, (yl

a2 )d2 − 1, JM)→ B⊥d1,d2

is actually an isomorphism.

Let M be as in step 2, i.e. the power of l which annihilates B⊥d1,d2 . Consider

the exact sequence:

0 // B[M ]
ψ′ // H/±HM // H/± EM // 0

Recall that the (Z/MZ)[G]-module H/ ± Hm is isomorphic to (Z/MZ)[G]/NG.

Furthermore, since M annihilates B⊥d1,d2
∼= HomRd1,d2

(Bd1,d2 , Rd1,d2) that implies
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that M also annihilates Bd1,d2 . Therefore, tensoring by Rd1,d2 we obtain the following

exact sequence of Rd1,d2-modules

0 // Bd1,d2
ψ // Rd1,d2/Nd

// (H/± EM)d1,d2
// 0 .

With the ideals IM , J
M ⊆ Rd1,d2 as above, we have the exact sequence

0→ JM → IM → IM/J
M → 0

which yields the following exact sequence of Rd1,d2-duals

0→ HomRd1,d2
(IM/J

M , Rd1,d2)→ HomRd1,d2
(IM , Rd1,d2)→

HomRd1,d2
(JM , Rd1,d2)→ 0.

We need the following: For any ideal J ⊆ R, R some finite Gorenstein ring, du-

ality yields a surjection R ∼= HomR(R,R) → HomR(J,R). Therefore every R-

homomorphism from J to R is given by multiplication by some element of R and so

from the last exact sequence we have that

HomRd1,d2
(IM , Rd1,d2)

∼= Rd1,d2/AnnRd1,d2 (IM) = Rd1,d2/Nd.

Therefore, the kernel of the map

HomRd1,d2
(IM , Rd1,d2)→ HomRd1,d2

(JM , Rd1,d2)

is Ann(Rd1,d2/Nd)(J
M) and we have that (IM/J

M)⊥ = HomRd1,d2
(IM/J

M , Rd1,d2)
∼=

Ann(Rd1,d2/Nd)(J
M). From the surjection g : IM/J

M → B⊥d1,d2 that we established

from step 2 we have an injection

Ψ : Bd1,d2 ↪→ (IM/J
M)⊥ ∼= Ann(Rd1,d2/Nd)(J

M).
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Assume that AnnRd1,d2/(Nd)(J
M) annihilates

(
Rd1,d2/Nd

)
/ψ(Bd1,d2). Then

AnnRd1,d2/Nd(J
M) ⊆ ψ(Bd1,d2).

But now we have that

|AnnRd1,d2/Nd(J
M)| ≤ |ψ(Bd1,d2)| = |Bd1,d2| = |Ψ(Bd1,d2)| ≤ |Ann(Rd1,d2/Nd)(J

M)|.

Therefore we have that the orders of IM/J
M and B⊥d1,d2 are equal and hence g is an

isomorphism. From the second exact sequence above we have that

(
Rd1,d2/Nd

)
/ψ(Bd1,d2)

∼= (H/± EM)d1,d2 .

Hence, if we show that AnnRd1,d2/Nd(J
M) annihilates (H/ ± EM)d1,d2 , we will have

proved that g is an isomorphism.

To find the annihilator AnnRd1,d2/Nd(J
M) we find a Gröbner basis GJM for the

ideal JM and then we calculate the ideal quotient as explained before step 1 above.

That is, we calculate the ideal quotient

T : 〈GJ〉 = {f ∈ Rd1,d2/Nd : f〈GJ〉 ⊆ T}

where T = 〈(xa1)d1 − 1, (ya2)d2 − 1, Nd〉. We therefore see that

AnnRd1,d2/Nd(〈GJ〉) = T : 〈GJ〉.

Then, we apply each generator h(x, y) of the annihilator to the unit ηd1,d2 , where

ηd1,d2 is the unit η with the ‘norm’ element (xp−1−1)(yq−1−1)

(xl
a1d1−1)(yl

a2d2−1)
applied to it. If η

h(x,y)
d1,d2

is an M -th power of a unit in E then we are done. To see whether it is an M -th

power we follow a method similar to the one in Gras and Gras [12] that we also
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mentioned in the Introduction. We reformulate here the main proposition from [12]

in order to make it applicable to our case and we prove it again, only for the case

that l is odd since we only calculate the odd l-parts of h+.

We denote by ηhd the unit η
h(x,y)
d1,d2

that we already described above and by Gd

the quotient of G containing the coset representatives of the embeddings in G, which

map ζp to ζg
i

p and ζq to ζh
i

q , for 1 ≤ i ≤ la1d1 and ≤ j ≤ la2d2.

Proposition 2.1. Let M be a fixed power of an odd prime l as above and consider

the polynomial

P (X) =
∏
a∈Gd

(X − (a(ηhd ))1/M)

where (a(ηhd ))1/M denotes the real M-th root of a(ηhd ). If P has coefficients in Z then

ηhd is an M-th power in Q(ζpq)
+.

Proof: Let N be the largest power of l for which the unit (ηhd )1/N lies in

Q(ζpq)
+. If M = N then we are done so we assume N < M . Then (ηhd )1/N is not

an element of (Q(ζpq)
+)l and therefore by [16, Chapter VIII, Theorem 16] we have

that the polynomial

T (X) = XM/N − (ηhd )1/N

is irreducible in Q(ζpq)
+. Since M/N ≥ 3, T (X) has at least one complex root.

Therefore (ηhd )1/M has at least one Galois conjugate that is not real. But P (X) ∈

Z[X] implies that the Galois conjugates are roots of P (X) which are real. Therefore

we have a contradiction. 2
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2.5 An Example

We finish Chapter 2 with an example. We choose the field of conductor 7·67 =

469 for which we agree with Hakkarainen that 3 is the only odd prime < 10000 which

divides h+. He only obtained however a 31 dividing h+, whereas our results show

that that the 3-part of h+ has order 32.

Let l =3, p=7, q=67 andQ(ζpq)
+ the real cyclotomic field of conductor pq=469.

We first compute the factor P(g,h) for all pairs of primitive roots (g, h) and then their

greatest common divisor. From the calculations we have that GCD(P(g,h)) = 232 and

so we see that it is best to run the test with the pair (g′, h′) = (3(mod7), 7(mod67))

for which P(g′,h′) has the smallest number of factors. In particular, P(g′,h′) = 298 ·172.

Next, we decompose the group ring Z[G] as we show in Section 2.2. We have that

xp−1−1 = (x3)2−1 and yq−1−1 = (y3)22−1 and so the polynomials that we factor

into irreducibles in Z/3Z are x2−1 and y22−1. We have the following factorization:

x2 − 1 = (x+ 1)(x+ 2)

y22 − 1 = (y + 1)(y + 2)(y5 + 2y3 + y2 + 2y + 2)(y5 + 2y3 + 2y2 + 2y + 1)(y5 + 2y4 +

2y3 + 2y2 + 1)(y5 + y4 + 2y3 + y2 + 2)

and so we run step 1 for all possible degrees d1 and d2 which in this case are d1 =

2 and d2 = 2 and 22.

Step 1 gave the primes 2, 3 and 17 to be the only primes < 10000 that are

possible divisors of the index. Since we chose not to calculate the 2-part of h+, the

only primes we have to consider are therefore 3 and 17. Before proceeding to step 2

however, we run step 1 again for the prime 17 because it did appear as a factor of
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P(g′,h′) but not of GCD(P(g,h)) and therefore it is possible that it might only divide

P(g′,h′) and not h+. The pair (g0, h0) = (5(mod7), 7(mod67)) does not have 17 as a

factor of P(g0,h0) and step 1 for 17 with this pair of primitive roots only gives trivial

Jordan-Hölder factors. Therefore we proceed to the next steps only for the prime 3.

In step 2 we repeat the same procedure as in step 1 but with higher powers

of 3. For each M = 3, 32, ... we determine the ideal JM at which all the ideals Ji

stabilize. We stop when for some M we have that |IM/JM | = |I3M/J
3M |. Below

we show the frobenius polynomials obtained for M = 3, 32 and 33 for the pair of

degrees (d1, d2) = (2,2), the ideals JM at which the ideals Ji stabilize and the order

of the quotients |IM/JM |.

(d1, d2) = (2, 2)

M = 3

r1 = 7521823

f<1 = (y5 +y4 +2y3 +2y2 +2y+2)x5 +(2y5 +2y4 +2y3 +2y2 +y+2)x4 +(2y5 +y4 +

y2+1)x3+(2y5+2y4+2y3+2y2+y+2)x2+(y5+y4+y3+2y+1)x+(y5+y4+y3+2y)

r2 = 8889427

f<2 = (2y5 + 2y4 + y3 + 2y2 + y + 2)x5 + (2y5 + 2y3 + 2y2 + 2y)x4 + (2y5 + 2y4 +

y3 + 2y + 2)x3 + (y5 + 2y3 + 2y2 + 2y)x2 + (2y4 + y)x+ (y5 + 2y4 + 2y3 + 2y2 + y)

r3 = 9573229

f<3 = (y4 + 2y3 + 2y+ 1)x5 + (y4 +y3 +y2)x4 + (y5 + 2y2 +y+ 2)x3 + (2y4 + 2y3)x2 +

(2y5 + 2y4 + y3 + y + 2)x+ (y5 + y3 + 1)
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r4 = 10257031

f<4 = (y5 + y + 2)x5 + (2y5 + 2y4 + 2y3 + 2y2)x4 + (2y4 + 2y3 + y2 + 2y)x3 + (y5 +

y2 + y + 1)x2 + (2y5 + 2y4 + y2 + 2y + 2)x+ (2y5 + y4 + 2y3 + y2 + y)

r5 = 20514061

f<5 = (2y5 + y3 + y2 + 2y + 1)x5 + (2y4 + y3 + y2 + 2y + 2)x4 + (2y5 + y4 + 2y3 +

y + 2)x3 + (y2 + y)x2 + (2y5 + y2 + 2y + 1)x+ (y5 + 2y3 + y2 + y)

r6 = 22565467

f<6 = (2y4 + y3 + y2 + 2)x5 + (2y5 + 2y3 + y+ 1)x4 + (y5 + y4 + y3 + y2 + 2y+ 1)x3 +

(2y4 + 2y3 + y2 + y + 2)x2 + (y5 + 2y4 + 2y3 + y2 + 2)x+ (2y5 + 2y4 + y3 + y2 + 1)

JM = (y2 − 1, y − x) ≡ ((y + 1)(y − 1), (y − 1)− (x− 1)) in Z/3Z.

From the second polynomial in JM we see that the two generators of the aug-

mentation ideal IM become equivalent in IM/J
M . From the first one we have that

y(y− 1) ≡ −(y− 1) in JM therefore we can only have constants in front of the only

generator of IM/J
M . Since we are in Z/3Z we have that |IM/JM | = 3.

M = 32

r1 = 7521823

f<1 = (4y5 + 7y4 + 5y3 + 8y2 + 5y + 2)x5 + (5y5 + 8y4 + 5y3 + 2y2 + 4y + 8)x4 +

(8y5 + 4y4 + 6y3 + 7y2 + 6y+ 4)x3 + (2y5 + 8y4 + 2y3 + 2y2 + y+ 8)x2 + (y5 + 7y4 +

y3 + 3y2 + 8y + 7)x+ (y5 + 4y4 + 7y3 + 3y2 + 2y + 6)

r2 = 8889427

f<2 = (2y5 + 2y4 + y3 + 2y2 + 4y+ 5)x5 + (2y5 + 3y4 + 8y3 + 2y2 + 5y+ 3)x4 + (2y5 +

50



8y4 + y3 + 5y+ 5)x3 + (7y5 + 6y4 + 5y3 + 2y2 + 2y+ 6)x2 + (6y5 + 2y4 + 3y2 + y)x+

(y5 + 2y4 + 5y3 + 2y2 + y + 6)

r3 = 9573229

f<3 = (4y4+8y3+5y+1)x5+(3y5+7y4+7y3+7y2+6y)x4+(y5+6y3+5y2+y+2)x3+

(6y5+5y4+5y3+3y2+3y+3)x2+(5y5+5y4+y3+7y+8)x+(4y5+3y4+7y3+3y2+6y+7)

r4 = 10257031

f<4 = (y5 +3y4 +y+2)x5 +(2y5 +5y4 +2y3 +8y2)x4 +(6y5 +2y4 +5y3 +y2 +5y)x3 +

(4y5 +7y2 +y+4)x2 +(8y5 +5y4 +6y3 +y2 +2y+8)x+(8y5 +7y4 +8y3 +4y2 +4y+6)

r5 = 20514061

f<5 = (5y5 + 3y4 + 7y3 + 7y2 + 2y + 4)x5 + (5y4 + 7y3 + 4y2 + 2y + 2)x4 + (5y5 +

4y4 + 8y3 + 3y2 + y + 2)x3 + (3y5 + 6y4 + 3y3 + y2 + y + 3)x2 + (8y5 + 6y4 + 3y3 +

7y2 + 8y + 7)x+ (4y5 + 3y4 + 8y3 + 7y2 + 7y + 6)

r6 = 22565467

f<6 = (3y5 + 5y4 + y3 + y2 + 3y + 2)x5 + (5y5 + 6y4 + 8y3 + 7y + 7)x4 + (y5 + 7y4 +

7y3 + 4y2 + 8y+ 1)x3 + (3y5 + 5y4 + 2y3 + 7y2 + 7y+ 8)x2 + (7y5 + 2y4 + 8y3 + 7y2 +

5)x+ (2y5 + 5y4 + y3 + y2 + 7)

JM = (y2− 3y+ 2, 3−x− 2y) = ((y− 1)(y− 2),−2(y− 1)− (x− 1)) in Z/9Z.

The same reasoning as above for the ideal J3 applies here as well and we have

that |IM/JM | = 32. Since |I3/J
3| is strictly smaller than |I32/J32| we need to con-

tinue as above with M = 33.

M = 33
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r1 = 7521823

f<1 = (13y5 + 7y4 + 14y3 + 26y2 + 14y + 20)x5 + (5y5 + 17y4 + 5y3 + 11y2 + 13y +

26)x4 + (17y5 + 4y4 + 24y3 + 16y2 + 6y + 4)x3 + (20y5 + 8y4 + 11y3 + 11y2 + y +

26)x2 + (y5 + 25y4 + 19y3 + 21y2 + 26y + 7)x+ (10y5 + 22y4 + 25y3 + 3y2 + 2y + 6)

r2 = 8889427

f<2 = (20y5 + 2y4 + y3 + 11y2 + 22y + 23)x5 + (2y5 + 12y4 + 26y3 + 11y2 + 14y +

21)x4 + (2y5 + 26y4 + y3 + 18y2 + 14y+ 23)x3 + (16y5 + 15y4 + 14y3 + 20y2 + 11y+

15)x2 + (6y5 + 11y4 + 21y2 + 19y)x+ (10y5 + 11y4 + 23y3 + 11y2 + 10y + 24)

r3 = 9573229

f<3 = (9y5 + 4y4 + 17y3 + 18y2 + 5y + 19)x5 + (12y5 + 16y4 + 7y3 + 7y2 + 15y)x4 +

(10y5 + 24y3 + 14y2 + 10y + 20)x3 + (24y5 + 5y4 + 5y3 + 3y2 + 12y + 12)x2 + (5y5 +

5y4 + 19y3 + 9y2 + 7y + 26)x+ (13y5 + 21y4 + 25y3 + 12y2 + 6y + 16)

r4 = 10257031

f<4 = (10y5 + 3y4 + 18y3 + 19y + 2)x5 + (20y5 + 14y4 + 2y3 + 17y2 + 9y + 9)x4 +

(24y5 + 2y4 + 23y3 + 10y2 + 14y + 9)x3 + (22y5 + 9y4 + 9y3 + 7y2 + 10y + 22)x2 +

(26y5 + 5y4 + 15y3 + y2 + 2y + 26)x+ (17y5 + 16y4 + 26y3 + 4y2 + 22y + 15)

r5 = 20514061

f<5 = (14y5 + 3y4 + 25y3 + 16y2 + 11y + 22)x5 + (18y5 + 23y4 + 16y3 + 22y2 + 2y +

20)x4 + (23y5 + 22y4 + 17y3 + 21y2 + 10y+ 20)x3 + (21y5 + 6y4 + 12y3 + 19y2 + y+

3)x2 + (17y5 + 15y4 + 21y3 + 7y2 + 26y+ 16)x+ (13y5 + 3y4 + 26y3 + 25y2 + 7y+ 24)

r6 = 22565467

f<6 = (12y5 + 23y4 + 19y3 + 10y2 + 12y+ 11)x5 + (14y5 + 24y4 + 8y3 + 25y+ 7)x4 +

(10y5 + 16y4 + 7y3 + 4y2 + 8y + 1)x3 + (21y5 + 5y4 + 20y3 + 16y2 + 16y + 8)x2 +
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(25y5 + 2y4 + 8y3 + 16y2 + 5)x+ (20y5 + 14y4 + y3 + y2 + 16)

JM = (9(y − 1), 2− 3y + y2, 3− x− 2y) in Z/27Z.

We see here that J33
is generated by the same polynomials as J32

but it has

the extra polynomial 9(y − 1) which reduces the number of constants to 9 instead

of 27. Therefore |I32/J32| = |I33/J33| = 9 and so, as expected, the orders of these

quotients stabilize with M = 32.

For the pair of degrees (d1, d2) = (2,22) the frobenius polynomials give exactly

the same ideals JM as above and therefore we only need to consider the case for

(d1, d2) = (2,2). We now proceed to step 3 of the algorithm where we prove that

IM/J
M is isomorphic to B⊥d1,d2 . To do this, we first compute a set of generators for

the ideal AnnRd1,d2/Nd(〈GJM 〉) where M = 32 is the power of 3 that kills B⊥d1,d2 and

GJM is a Gröbner basis for the ideal JM . We found the following three polynomials

to be the generators of AnnRd1,d2/Nd(〈GJM 〉):

h1(x, y) = (3y5 + 3y4 + 3y3 + 3y2 + 3y + 3)x4 + (−3y5 − 3y4 − 3y3 − 3y2 − 3y −

3)x3 + (3y5 + 3y4 + 3y3 + 3y2 + 3y + 3)x+ (−3y5 − 3y4 − 3y3 − 3y2 − 3y − 3),

h2(x, y) = (3y3 + 3y2 − 3y − 3)x5 + (3y4 + 3y3 − 3y2 − 3y)x4 + (3y5 + 3y4 − 3y3 −

3y2)x3 + (3y5 − 3y4 − 3y3 + 3)x2 + (−3y5 − 3y4 + 3y + 3)x+ (−3y5 + 3y2 + 3y− 3),

h3(x, y) = (y4+4y2−2)x5+(y5−3y4+4y3−3y2−2y−3)x4+(3y5+4y4+3y3−2y2+3y+

1)x3+(4y5−2y3+y)x2+(−3y5−2y4−3y3+y2−3y+4)x+(−2y5+3y4+y3+3y2+4y+3).

For each hi we form the polynomial Pi(X) of Proposition 2.1. If the coefficients

of each Pi lie in Z, then the unit ηhid1,d2 and all its conjugates are 9-th powers in
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Q(ζpq)
+ and we are done. The Pi were calculated with a precision of 2000. They are

big polynomials with very large integer coefficients and therefore we do not present

them here. The reader can find them in the Appendix. Since all the Pi have integer

coefficients this implies that 32 is the order of the 3-part of h+.
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Chapter 3

Tables and Discussion of the Results

We present all our results in the Main Table below. For each field of conductor

pq we present the greatest common divisor of the P(g,h) for all pairs of primitive roots

(g, h), in the column GCD. Since we do not calculate the 2-part of h+, we leave out

the powers of 2 from the GCD. Therefore, if a ‘1’ appears in the column GCD for

some field, this means that no odd primes divide the greatest common divisor of the

various P(g,h). However, there are always powers of 2 in the GCD, as we see from

our calculations of the index [E : H] in chapter 1. In the column extra ‘nontrivial’

primes we present all the primes that step 1 gave to be possible divisors of h+,

besides the ones that already appear in the column GCD. The symbol h̃+ in the

fourth column, denotes the odd part of h+ for all primes l < 10000.

We have verified the results of Hakkarainen for the fields of conductor pq, for

the primes l that do not divide the degree of the extension. We mark with an

asterisk the fields whose class number we found to be divisible by a prime l which

also divides the degree of the extension. From those fields, there are three cases

where the primes that appear as possible divisors of h+ in Hakkarainen’s results,

i.e. divisors of a relative class number hχ, in our case they were only divisors of the

GCD and therefore not of h+. In other words, although these primes do divide the

index [E : H], we found that they come from GCD and not from h+. These are
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the fields of conductor 11 · 43 where we found that 3 does not divide h+, the field of

conductor 7·211 where we found that 7 does not divide h+ and the field of conductor

17 · 103 where we found that 17 does not divide h+. For the field of conductor 7 · 67

we found that the 3-part of h+ is 32. Finally, for the fields of conductor 13 · 61 and

13 · 103 we found that 3 and 32 respectively are also divisors of h+.

The polynomials of the third step, which are used to prove that the unit α(ηhd )

is an M -th power in E by showing that their coefficients are in Z, were computed

with very high precision. That is why we get hundreds of decimals which are all 9’s

or all 0’s. We did not continue to prove rigorously that the coefficients are indeed

integers. However, to a very small number of fields with small polynomials we did

apply the method outlined in Schoof [25], which proves that the coefficients of these

polynomials are integers. This method requires that we round off the coefficients

of P (X) and then show that this new polynomial divides P (XM). This proved to

be too time consuming for large polynomials and this is why we did not apply it to

most of our fields.

56



Table 3.1: Main Table

f = p · q GCD extra ‘non triv-
ial’ primes

h̃+

321=3·107 1 3 3
427=7·61 1 5 5 ∗
469=7·67 1 3 32 ∗
473=11·43 34 · 52 · 74 - 1 ∗
481=13·37 7 · 19 - 19
551=19·29 5 - 5
629=17·37 34 · 19 5 5·19
697=17·41 33 · 7 - 3
703=19·37 316 · 5 13,37 13·37
753=3·251 1 11 11
763=7·109 34 13 13
779=19·41 52 41 41
785=5·157 32 · 79 - 3 ∗
793=13·61 320 · 5 · 7 37 3 · 37 ∗
817=19·43 1 5 5
869=11·79 1 79 79
889=7·127 34 · 72 - 7 ∗
923=13·71 33 61 61
985=5·197 33 · 11 - 3
1101=3·367 1 3 3 ∗
1139=17·67 37 · 117 89 89
1141=7·163 1 19 19
1159=19·61 33 · 7 73 73
1207=17·71 32 17 17
1211=7·173 1 7 7
1241=17·73 34 · 7 · 37 · 109 5 5
1243=11·113 5 · 37 41 41
1257=3·419 1 3 3
1261=13·97 73 5,97 5 · 72 · 97
1271=31·41 33 · 56 7,11,31 7 · 11 · 31
1313=13·101 3 · 52 31 31
1339=13·103 37 · 175 13 32 · 13 ∗
1343=17·79 5 17 17
1355=5·271 33 · 5 37 37
1385=5·277 32 · 139 5,7 5 · 7
1387=19·73 34 · 7 · 101 17,19,37 172 · 19 · 37
1393=7·199 1 5 5
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Table 3.2: Main Table Continued

f = p · q GCD extra ‘non triv-
ial’ primes

h̃+

1465=5·293 32 · 72 - 32

1477=7·211 32 · 52 · 72 11 11 ∗
1509=3·503 1 3 3
1513=17·89 113 · 17 · 41 13 13 · 17
1591=37·43 326 · 78 · 11 · 19 · 487 43 43
1623=3·541 1 13 13
1641=3·547 1 5 5
1651=13·127 33 · 7 5 52

1687=7·241 1 13 13
1735=5·347 3 · 29 5 5
1739=37·47 235 5 5
1751=17·103 37 · 177 - 1 ∗
1761=3·587 1 7 7
1765=5·353 32 · 59 - 3
1865=5·373 32 · 11 · 17 5 5
1903=11·173 33 173 173
1921=17·113 33 · 19 17, 29 173 · 29
1937=13·149 32 · 52 · 7 109 3 · 109 ∗
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Chapter 4

Conclusion and Future Projects

In this thesis we studied the class number h+ of real cyclotomic fields. In

particular, we studied a pre-existing method introduced by Schoof [25] who calcu-

lated the l-part of h+ for cyclotomic fields of prime conductor, and we extended

this method to fields of conductor pq, p and q being distinct odd primes. We calcu-

lated the odd part of h+ for all odd primes less than 10000, for cyclotomic fields of

conductor < 2500. Our results verify the results of Hakkarainen [13] who studied

the divisibility of h+ by odd primes less than 10000, for fields of conductor < 2000.

Our results also complete his results in the sense that they give the full order of the

l-parts of h+ for each odd prime l < 10000, including the primes dividing the degree

of the field.

One can apply the second and third step of our algorithm to the prime l =

2 and therefore calculate the 2-part of h+ which we did not complete here, as well

as to primes l > 10000. For fields of conductor > 2000 the computations become

very time consuming. Therefore, if one is to calculate the l-parts of h+ for these

fields, one could set an upper bound to the degrees d1 and d2. Schoof in [25] for

example calculated the Jordan-Hölder factors of order up to 80000. Furthermore,

one could apply our method to fields of conductor equal to the product of more than

two distinct odd primes, by adjusting accordingly the unit η and the description
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of the galois group G in terms of polynomials. Of course we see that a larger

number of primes dividing the conductor implies a more complicated unit and more

variables. Therefore the calculations are expected to become very time consuming

as the conductor of the field grows.

One of the reasons that the primes that divide the degree of the field are

avoided in many methods for computing h+, lies in the difficulty of computing

the factor Q+
K that we discussed in Subsection 1.3.1. Our method could help in

calculating this value, by applying the method to Leopoldt’s cyclotomic unit θξ

introduced in 1.3.1 for the cyclic subfield Kξ. We could do that for every ξ 6= ξ0 and

only for the primes that divide the order of the galois group since only those primes

appear in the index Q+
K . We then divide this product with the product we find by

applying the method to our unit. The result is the order of Q+
K .
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Appendix

We present here the three polynomials Pi, i = 1, 3, which have integers coeffi-

cients and therefore prove that the units ηhid1,d2 are 9-th powers in the field Q(ζ7·67)+

of the Example of Chapter 2. The dots at the end of each coefficient indicate that

the series of 9’s or 0’s continues.

P1(X) = X36105396109733503507390551867013258435444498076254086208

5152313848962040818.0000000000000...X35 + 2777084986739178192915303912

34248702005025191951592254936473209198420081622550270940081688219392609

430187376349472858193364706484083803027707912.999999999999...X34

− 4430311868472799003847513079501905099728766646454366030912016726639832

850758681577874504523877519687818174685546698840102907552923787558038230

8338578005700533310506350239093259370803108073.99999999999999...X33
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