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AbstractUnicast connections lead to performance and scalability problems when a large client population attemptsto access the same data. Broadcast push and broadcast disk technology address the problem by broadcastingdata items from a server to a large number of clients. Broadcast disk performance depends mainly on cachingstrategies at the client site and on how the broadcast is scheduled at the server site. An on-line broadcastdisk paging strategy makes caching decisions without knowing access probabilities. In this paper, we subjecton-line paging algorithms to extensive empirical investigation. The Gray algorithm [25] always outperformedother on-line strategies on both synthetic and Web traces. Moreover, caching limited the skewness neededfrom a broadcast schedule, and led to favor e�cient caching algorithms over re�ned scheduling strategieswhen the cache was not small. Prior to this paper, no work had empirically investigated on-line pagingalgorithms and their relation with server scheduling.



1 IntroductionThe demand of network data services has been growing exponentially during the past few years. Moreand more often, increased workloads cannot be satis�ed by current technology. In particular, when clientsrequested several million connections to a hot Web site during peak periods (e.g. Deep Blue chess match,Olympic games), servers were overmatched by the heavy workload. The problem was that point-to-point(unicast) connections satis�ed each request individually, and server performance did not scale with thenumber of requests. In general, the point-to-point paradigm poses a scalability problem that is exacerbatedby the exponential and sustained growth of data service demand. In this scenario, broadcast push promises toaddress the issue. Broadcast push has servers broadcast the same data items to a large number of clients, andthus it overcomes the bottleneck that unicast creates at the server site. Broadcast push is being incorporatedin several commercial systems. For example, Hughes Network System [1] delivers Web pages via satellitelinks, and Hybrid Networks Inc. [2] will broadcast data via cable lines.Broadcast Disks [20] attempt to improve broadcast push performance by the combination of two methods:they establish client caching and �x a cyclical broadcast schedule over long periods of time. Clients arehelped by local caching because they avoid waiting on the network if they can �nd data items in theirown cache. Cyclical schedules help caching strategies to weigh di�erent eviction choices [4, 25]. Moreover,cyclical schedules lead to scalable and widely supported multicast techniques over the Internet [8] and arenecessary in a mobile environment where clients need to know when to tune in to receive data [26]. Ourmain contributions are the �rst empirical study of on-line algorithms for broadcast disk caching, and the�rst analysis of the interaction between client caching and broadcast scheduling.Cache management in a broadcast disk environment di�ers from other caching problems because:� Caching aims at reducing the time spent waiting during a �xed broadcast schedule. By contrast, min-imizing (say) the number of page faults in isolation could not bring in any performance improvement.� Prefetching can sometimes be executed at no cost for servers and clients [5].Previous broadcast disk paging algorithms assumed that clients requested data items with given prob-abilities and that those probabilities were known to paging strategies [4, 5, 34]. In practice, probabilisticassumptions could be di�cult to �nd and to validate, and so it is critical to have e�cient paging strategiesthat operate without probabilistic parameters. A breakthrough came with the Gray algorithm, which workswith no probabilistic assumption and that is provably optimal in terms of worst-case ratios [25]. In thispaper, we subject on-line paging algorithms to extensive empirical investigation on both synthetic and Webtraces. On-line paging algorithms had not previously been studied experimentally. The Gray algorithm al-ways outperformed classical on-line strategies, and thus it is the �rst truly on-line paging strategy algorithmto o�er performance improvements in broadcast disk systems.Caching alters patterns of client accesses to non-local data because some data requests can be resolvedlocally. As a result, caching changes the frequency with which data items are accessed from the serverbroadcast. Caching cut long tails of the access distribution in our experiments. Scheduling is the problem ofestablishing a broadcast schedule. Ideally, scheduling should depend on client access patters. For example,typical schedules broadcast hot pages more often [12, 31]. Scheduling is strongly interrelated with cachingbecause client access patterns are modi�ed by caching. Conversely, caching strategy are a�ected by schedulingbecause a schedule determines the cost for loading pages. In this paper, we investigate trade-o�s betweenscheduling and caching. In no previous paper had scheduling been investigated in relation to the presence ofcaches at the client sites. Scheduling provides performance improvements when caches are small. However,schedules need not be very skewed when larger caches are used, and in this case e�cient caching algorithmsshould be favored to re�ned broadcast schedules.2 The Broadcasting EnvironmentThe broadcast disk environment is well-known in the literature [4, 5, 20, 25] and we only outline it here. Adatabase of ServerDBSize pages is cyclically broadcast by a server1 . Pages have all the same size and it1The ServerDBSize pages need not be the whole server database, but they can simply be the database portion that theserver has assigned for broadcast (see e.g. [8, 30]). The important assumption is that the broadcast data set changes so slowly1
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Figure 1: Example of a 
at broadcast program. Pages are numbered from 0 to ServerDBSize � 1, and arecyclically transmitted by the server in that order.takes the same amount of time to broadcast any page. At �rst, we will assume that pages are broadcastwith the same frequency (
at broadcast), and we will discuss this assumption later on. We will say thata broadcast tick is the time needed to transmit a page. We will say that a rotation is the time needed totransmit the whole server database. Therefore, a rotation is ServerDBSize broadcast ticks. An example ofa broadcast program is illustrated in �gure 1. Pages are received by the clients in the same order as theyare broadcast. Each client can cache a subset of CacheSize < ServerDBSize pages. As in previous papers[4, 5, 25], we consider a special environment that is restricted as follows:� The broadcast schedule is �xed by the server, and is known by clients.� Pages are read-only, and cannot be updated by either the server or the clients.� Clients cannot communicate with each other, and so clients cannot exchange pages and cannot devisea common strategy.� Clients receive pages only from the server broadcast. Such assumption is justi�ed either when thebroadcast channel is the only communication link between clients and server, or when additionalchannels exist, but the server refuses to replicate broadcast data on those channels.Since clients are isolated from each other and the broadcast schedule is �xed, the performance of each clientis independent of the behavior of any other client. In the broadcast disk environment, each clients requestsa sequence of pages. At each step, the client �nds the requested page either in its local cache or in thebroadcast disk. If the client has cached the page, it can access it immediately. Otherwise, the client waitsfor the server to broadcast the desired page again. In broadcast disks, client computation is blocking, thatis, no other page request is issued while waiting for a faulting page. The main objective of broadcast diskpaging algorithms is to reduce the total waiting time incurred by a client. An important characteristic ofbroadcast disk paging is the role of prefetching: a client prefetches a page p if p is loaded in the cache eventhough p is not requested by the client computation. In broadcast disks, some prefetching can be executedfor free. Speci�cally, suppose that a client is waiting for a faulting page q to be retransmitted by the server.While the client is waiting, other pages are transmitted by the server and can be loaded on the 
y. Thosepages are not requested, and so, according to our de�nition, they would be prefetched. However, no time iswasted to load those pages as they are loaded while waiting for another page.3 Page Replacement StrategiesIn this paper, we will compare three di�erent page replacement strategies. All strategies are completely on-line, that is, they do not assume neither knowledge of future page requests nor knowledge of a probabilitythat we can assume it remains constant for the duration of our simulations.2



distribution over pages. We will also compare the three on-line strategies with PT [5], which is not on-linebecause it uses access probabilities. PT is included as a point of comparison for the other algorithms. Wewill de�ne each algorithm and then describe our e�cient implementation for the case of a 
at broadcastschedule.3.1 LRU and CF3.1.1 Algorithm De�nitionWe now describe two completely on-line strategies: LRU and CF. The algorithm LRU responds to a missby evicting the page that has been used least recently. The Closest-First (CF) strategy works as follows.When a page request causes a page fault, CF waits for the requested page to be broadcast, loads it into thecache, and evicts the page that is currently in the cache and that will be retransmitted �rst. The evictedpage is the one that can be reloaded with the least waiting time. Both LRU and CF are completely on-linealgorithms. LRU and CF are antithetic in the following sense. LRU evicts pages independently of the waitingtime needed to reload them. The gist of LRU is that past accesses should predict future accesses [33], andso LRU should incur few page faults. To the contrary, CF does not base evictions on previous history, butonly on waiting times. However, if CF makes an eviction mistake and if CF immediately detects it, then itcan recover from it at little cost. In conclusion, LRU and CF are antithetic because LRU uses past historyindependently of waiting times, while CF does not use any history, but only waiting times. LRU and CF aresimilar in the following respect: neither algorithm executes prefetching. LRU is a classic paging algorithm[33], while CF is a new, but natural, paging algorithm for broadcast disks.3.1.2 ImplementationLRU can be implemented with a (binary) heap of size CacheSize that contains the cache elements orderedby the step of most recent usage. When LRU faults, it removes the top of the heap and inserts the newlyrequested page. Thus, LRU takes O(logCacheSize) time per fault.CF's implementation maintains the cache as a red-black tree [16] ordered by transmission times. WhenCF faults on page p, CF inserts p in the red-black trees. Then, CF tries to �nd p's successor in the tree,that is, the smallest tree element q that is larger than p. If there is a successor q of p, then q is removedfrom the tree. If there is no successor, then CF determines the minimum element in the tree and removesit. All these operations take O(logCacheSize) time, and thus CF takes O(logCacheSize) time per fault.3.2 The Gray AlgorithmThe Gray algorithm [25] (U.S. patent pending) combines LRU's history with CF's waiting times, executesprefetching, and is completely on-line. It has been shown that, in terms of worst-case performance ratio,Gray outperforms LRU by a factor proportional to CacheSize= logCacheSize and that in fact Gray achievesthe best possible worst-case performance ratio [25]. In this paper, we show that Gray outperforms LRU alsoin simulations. For the sake of clarity, we will not present the complete algorithm immediately, but we willde�ne it by steps. We will also explain the intuition behind Gray as we progressively shape the algorithm.First, we consider a version of LRU that maintains only one bit for each page. At the very beginning, allpages are unmarked. When a page is requested it is marked. When a page fault occurs, an unmarked pageis evicted from the cache. The 1-bit LRU algorithm proceeds in this way, and �nally it replaces in the cacheall unmarked pages with marked pages. At this point, we say that a phase ends: the algorithm unmarksall marked pages and starts another phase afresh. We remark that 1-bit LRU evicts unmarked pages inany arbitrary order (the 1-bit LRU algorithm is also known as the marking algorithm [23]). A theoreticalresult establishes that, in terms of number of page faults, the worst-case performance ratio of 1-bit LRU isexactly the same as LRU's [23]. In other words, one bit per page achieves the same worst-case performanceratio as the regular LRU algorithm. We remark that such result holds only in the worst case and when theonly cost metric is the number of page faults. In broadcast disks, the cost structure is more complex, as thecost of a fault on page p is the time spent waiting for p. Since CF takes into account the di�erent costs ofreloading di�erent pages, we will integrate 1-bit LRU with CF. In 1-bit LRU, unmarked pages can be evicted3
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(b) Request for page 2.Figure 2: Gray's cache in the examples. The initial con�guration is depicted in (a), and the con�gurationafter a request for page 2 in (b). Pages are numbered from 0 to ServerDBSize � 1 and are transmitted inclockwise direction. Cached pages are marked by a C. The outer arrow gives the current time step reachedalong the transmission schedule.in any arbitrary order. Therefore, we could combine 1-bit LRU with CF as follows: the unmarked page tobe evicted should be the one that will be retransmitted earliest in the future. The current version of (1-bitLRU + CF) works as follows. At the very beginning all pages are unmarked. When a page is requested, itis marked. When a page fault occurs, the algorithm evicts the unmarked page that will be retransmittedthe soonest in the future. When all pages in the cache are marked, the algorithm unmarks all pages and anew phase starts. In this way, the algorithm combines the best worst-case page fault ratio of (1-bit) LRUwith the more complex cost structure of broadcast disks that is exploited by CF. However, at this point,our algorithm still does not take advantage of prefetching2. The Gray algorithm will use prefetching to keepa dynamically changing set of unmarked pages in cache. Speci�cally, Gray will maintain a color with eachof the ServerDBSize pages in the server database (later, we will show how to reduce the number of marksto 2 �CacheSize). Pages that are marked by 1-bit LRU will be colored black. Pages that were black in theprevious phase (i.e. that were requested during the previous phase) are marked gray, and all other pages arewhite. The Gray algorithm works as follows. Initially, all pages in the cache are gray and all other pages arewhite. When a page is requested, it is marked black. When all pages in the cache are black, the algorithmchanges the color of gray pages to white and the color of black pages to gray, and starts a new phase. Ateach step, the algorithm keeps in the cache all the black pages, plus the set of gray pages that are furthestaway along the transmission schedule. In other words, the set of uncached gray pages are the gray pagesthat can be reloaded with the smallest waiting time.Example. In �gure 2(a), CacheSize = 5, page 0 has just been received, page 0, 3, 5 are black and page 1, 4,6 are gray. So, it will take 1, 4, and 6 broadcast ticks respectively before the gray pages are received again.Then, the Gray algorithm will have in its cache page 0, 3, 5 (all black pages), and have two more slots forgray pages. The Gray algorithm will then have also page 4 and 6 (the two gray pages that are furthest awayalong the transmission schedule from the current time step).Again, we observe that Gray combines 1-bit LRU with CF. However, the Gray algorithm changes dy-namically the set of Gray pages that reside in the cache, and so Gray needs to execute prefetching in orderto keep the right set of pages in the cache at each step.2We veri�ed that the algorithm (1-bit LRU + CF) is almost always worse than LRU.4



Example. Let us suppose that a request for page 2 arrives. Gray waits for two time units, loads page 2 andmarks it black. Now the set of black pages is 0, 2, 3, 5, and there is only one slot for a gray page. Amonggray pages, the Gray algorithm will choose to cache the one that is furthest away along the transmissionschedule. It will take 2 broadcast ticks before page 4 is broadcast again, 4 broadcast ticks before page 6 isbroadcast again, and ServerDBSize�1 broadcast ticks before page 1 is broadcast again. So, the cached graypage is page 1, as shown in �gure 2(b). On the whole, when page 2 was requested, Gray waited one timeunit and loaded page 1 at the expenses of (say) page 4. Then, it received page 2 and evicted page 6. Page 1was loaded without being requested, which is to say that page 1 was prefetched. Moreover, no time is spentwaiting for page 1 because page 1 was loaded while waiting for page 2.It can be shown that the right set of cached gray pages can be maintained by using prefetching, and sono additional time is to prefetch gray pages [25]. Intuitively, the reason is that, after a gray page has beenbroadcast, it immediately becomes the page that will be retransmitted the furthest in the future. Only theset of black and gray marks have to be maintained, and so the Gray algorithm needs only to maintain twosets of size at most CacheSize rather than ServerDBSize marks. The sets of black and gray pages are Gray'scandidate set from which cached pages are selected. In general, prefetching algorithms, such as Gray orPT, maintain a candidate set of more than CacheSize pages, among which they select the CacheSize cachedpages, and enforce their decision through prefetching.3.2.1 ImplementationThe Gray algorithm can be implemented to run in amortized O(logCacheSize) time per request by usingorder-statistic trees [16]. Gray's implementation is worse than LRU's or CF's that use O(logCacheSize) timeper fault and O(1) time on any other request. At any rate, Gray implementation would be especially usefulin long simulations | in practice, the Gray algorithm executes only a constant number of operations duringeach broadcast tick. The implementation maintains gray pages in an order-statistic tree. When Gray faults,it searches the gray page that immediately follows the faulting page and determines its rank. Gray can nowdetermine the maximum rank of a cached gray page. On a request for a non-black page, Gray looks it up inthe order-statistic tree, determines its rank and decides if that page is cached or not.3.3 PT3.3.1 The PT AlgorithmThe last replacement strategy we consider is PT [5]. PT maintains two values for each page i in the serverdatabase. The �rst value is pi, the probability that page i will be requested. The second value is ti, whichis the waiting time needed to load i once the current request has been satis�ed. At each broadcast tick,PT maintains a candidate set consisting of the pages in the cache plus the currently broadcast page. Thecandidate set can have either CacheSize or CacheSize + 1 pages. The candidate set has CacheSize pagesif the currently broadcast page is in the cache, and has size CacheSize + 1 otherwise. PT always keepsin the cache pages from the candidate set. If the candidate set has CacheSize pages, no further decisionis required. However, if the candidate set has CacheSize + 1 pages, a subset of CacheSize pages has tobe chosen. PT compares the values of piti for all pages in the candidate set, and keeps in the cache theCacheSize pages with the largest value of piti. Intuitively, PT should minimize the expected cost per fault.Another characteristic of PT is that it executes prefetching, as we turn now to show. If the candidate set hassize CacheSize + 1 and the page that is currently transmitted does not have the smallest value of piti, thenthe currently transmitted page is loaded in the cache, or, in other words, it is prefetched. There are someproblems with the algorithm PT. In the �rst place, PT assumes knowledge of page accesses probabilities.The second problem is that PT uses 
(ServerDBSize) space to maintain those probability values. Finally,the running time of PT is much worse than LRU's, as we will discuss next.3.3.2 ImplementationA previous implementation of PT takes O(CacheSize) time on each broadcast tick [5]. Therefore, when apage fault forces PT to wait for Wait broadcast ticks, PT's cost is O(CacheSize �Wait ) time. We will now5



Parameter Description Base ValueServerDBSize number of pages in the broadcast 5000AccessRange number of pages accessed by a client 1000RegionSize number of pages with the same access probability 50CacheSize client cache size 50,250,500,750,875Length trace length 15000Table 1: Parameters used to generate synthetic workloads.give a new implementation of PT. Our implementation uses a well-known algorithm in a trivial way andreduces the running time to O(CacheSize +Wait) per fault. Our implementation is based on the selectionalgorithm. The selection algorithm takes as input a set of n distinct elements and �nds the kth largestelement in time O(n) [16]. In our simulator, we used the randomized version of the selection algorithm.We now describe how the selection algorithm can be used for an e�cient implementation of PT. When PTfaults, it moves one broadcast tick at a time, forms a candidate sets, and rejects at most one element in thecandidate set. However, PT can be equivalently described in the following, rather di�erent way. When PTfaults, it forms a set C that contains all the pages that were in the cache before the fault, plus all the pagesthat are transmitted while waiting for the faulting page. After the fault, PT caches the faulting page plus theCacheSize�1 pages in C that have the largest value of piti. The new de�nition of PT suggests the followingimplementation. PT could invoke the selection algorithm with n = jCj and k = CacheSize � 1 to determinethe set of cached pages. However, the selection algorithm requires that all piti values be distinct. We obviatethe problem by numbering the elements in C from 1 to jCj. Then, we break ties among piti values by ordernumber and run the selection algorithm. In conclusion, PT takes O(n) = O(jCj) = O(CacheSize +Wait)time on each fault. Although this implementation improves on the previous one from quadratic to linear,PT's running time is at least exponentially worse than LRU's O(logCacheSize) time per fault.4 Simulation Set-upIn this section, we will describe how we set up the simulation of the page replacement strategies. Most ofthe environment was described in x2. Here, we will focus on the workloads at the client site. We defer somedetails to appendix A. The parameters that de�ne the following workloads are stated in table 1. Most ofthese parameters are the same as those in previous papers [4, 5].4.1 Basic WorkloadsOur �rst workload is Random. In this workload, we extract a sequence of Length page requests uniformly atrandom from the server database. The Random workload is not likely to be representative of a realistic clientworkload. For example, Random lacks any form of locality. We include it because it is a natural workloadand because we suspected that Random was going to tax our algorithms more than any other stochasticworkload.Our second workload assumes a stationary Zipf distribution and is similar to the one de�ned in theexisting literature on broadcast disks [4, 5]. The Zipf distribution is often used to model skewed accesspatterns because it gives some pages a higher probability of being requested [28]. The synthetic trace isgenerated as follows. At the very beginning, a set of AccessRange < ServerDBSize pages is extracteduniformly at random from the server database. The synthetic trace will contain only the pages in the accessrange, and will not use any other database page. The access range is then partitioned into NumRegionsregions of equal size RegionSize = AccessRange / NumRegions. At this point, the generation of a pagesequence begins. First, we extract a region according to a Zipf distribution with parameter � = 0:95. Inother words, the probability that region r is extracted is proportional to 1=r� (r ranges between 1 andNumRegions). Then, we extract a page uniformly at random from the chosen region. The process is then6



repeated to generate a sequence of Length page requests. We will say that such traces are generated by thedefault Zipf workload. While pages in the same region have the same probability of being requested, pagesin di�erent region have di�erent probabilities. We will say that a region is hotter than another if its pageshave a higher probability of being accessed.4.2 RobustnessWe measured the robustness of the paging algorithm by changing the parameters of the default Zipf workloadand measuring the algorithm sensitivity to those changes.First, we measured the robustness to changes in the Zipf parameter �. When � = 0, we have a uniformdistribution among regions, and no region is hotter or colder than any other region. Such workload is verysimilar to Random except that we use only AccessRange pages rather than the whole server database. As � in-creases, the distribution becomes more and more skewed. We executed experiments for � = 0; :25; :5; :75; :95.The second parameter change was region placement. In the default workload, we de�ned regions to bedisjoint sets extracted uniformly at random from the server database. We intended to measure the algorithmperformance when the placement of pages into region is not random, but follows a regular pattern relatedto access probabilities. In the Uniform Region workload, the regions are consecutive intervals of pages. Thecoldest region are the �rst in the broadcast schedule and the hottest are the latest.Example. If we have three regions of size RegionSize = 5 (and so AccessRange = 15), then the uniformregions are given by the sets of pages R3 = f0; 1; : : :; 4g, R2 = f5; 6; : : :; 9g, and R1 = f10; 11; : : :; 14g. Theprobability that R1 is selected is proportional to 1, that R2 is selected is proportional to 1=2�, and that R3is selected is proportional to 1=3�.The Reverse Region workload is identical to the uniform region workload, except that hot regions precedecold regions.In the Zipf workloads above, access probabilities do not change with time. We intend to measure al-gorithm performance when client interests shift over time. We will model changing access patterns withtwo parameters: the SwitchTime and the O�set , which will be utilized as follows. The synthetic trace isgenerated as in the default Zipf workload, except that every SwitchTime page requests, the region contentsare changed: in every region, we discard O�set pages, and we replace them with a new set of O�set pages.Regions will again be disjoint after the shift, but we will allow a discarded page to be extracted for the sameor for another region. We experimented with O�set = 45, which corresponds to a radical shift of 90% ofRegionSize, and with O�set = 25, which replaces only half a region. We also chose SwitchTime = 1000,which induces 15 shifts per trace, and with a milder SwitchTime = 8000, which changes the access patternonly once during a trace. When SwitchTime = 1000 and O�set = 45, the workload tends to be more randomthan for larger values of SwitchTime and smaller values of O�set .4.3 Web WorkloadWe also executed experiments with two Web server traces. The simulation has signi�cance in the con-text of information dissemination over the Internet when clients are intermediate information brokers [20].The �rst trace was epa-http3. We discarded references to URLs containing a question mark and we iden-ti�ed URLs that can be syntactically determined to correspond to the same page (e.g. �liberato and�liberato/index.html). The second Web trace was the �rst half of the August 95 NASA trace4.5 Experimental ResultsIn this section, we present the results of our experimental comparison among LRU, CF, and Gray. We willalso compare our on-line algorithms with PT. We will measure the waiting times of our heuristics in termsof broadcast ticks. Therefore, our measurements scale with channel bandwidth and express fundamental3The trace is available at http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html.4The trace is available at http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.7



LRU Gray speed-up �CacheSize mean � CF% mean � mean � mean �50 6644 32 0.13% 6523 35 1.9% 0.3% 121 18250 3927 46 7.9% 3673 44 6.9% 0.6% 254 21500 1909 31 19% 1704 29 12% 1% 204 19750 692 20 30% 566 18 22% 2% 125 10875 269 17 36% 198 10 36% 6% 71 13Table 2: Performance of LRU, CF, and Gray in the default Zipf workload. The LRU and Gray columnreport the average cost and sample standard deviation of LRU and Gray over a sequence of thirty trials.Costs are given in number of rotation (1 rotation = ServerDBSize broadcast ticks). The CF column givesthe percentage cost increase of CF over LRU; negative percentages correspond to cost reduction. The speed-up column gives the average and sample standard deviation of the speed-up of Gray over LRU. Positivepercentage correspond to an improvement over LRU. The � column gives the average and standard deviationof the cost di�erence of Gray over LRU.trade-o�s among heuristics. In this section, we will give results for a 
at broadcast, and we will discussnon-
at schedules in x6.On the Random workload, Gray always outperformed LRU and CF. We defer further details to appendixB. We will now turn to the default Zipf workload.5.1 Zipf Workloads5.1.1 Waiting TimesWe report the waiting time statistics in table 2. The �rst column gives the value of the CacheSize parameter.The LRU and Gray columns give the cost of LRU and Gray. Costs are expressed in number of rotations(1 rotation = ServerDBSize ticks). For each workload and for each value of CacheSize, we executed thirtyexperiments, as described in appendix A. The mean column reports the average cost of LRU and Grayin number of rotations, and the � column reports the sample standard deviation. The CF% column givesthe percentage waiting time increase of CF over LRU; negative percentages would represent improvementsof CF over LRU. The speed-up and � columns are de�ned as follows. We executed thirty trials for eachcombination of workload and CacheSize. For each experiment i = 1; 2; : : :; 30, we computed the performancedi�erence �i of Gray over LRU and the speed-up speed � upi of Gray over LRU. We then took the averagespeed � upi and its standard deviation and reported it under column speed-up. We took the average �i andits standard deviation and reported it under column �. Although table entries are rounded to number ofrotations, we computed speed-ups and �'s with the exact number of broadcast ticks.CF's waiting times were always worse than LRU's and increase with CacheSize from 0.1% to 36%. Themean waiting times of LRU and Gray were less than for the Random workload (compare table 2 with table5). We were con�rmed our belief that the Random workload is harder on page replacement strategies thana skewed access pattern. The Gray algorithm was always better than LRU. Gray outperformed LRU by 2%to 36% (column speed-up). The speed-up of Gray over LRU increased with CacheSize. Moreover, the valueof the standard deviation is small compared to the mean. Consider for example CacheSize = 875. In thiscase, the mean speed-up is 36% and the standard deviation is 6%. Therefore, we can make the followingclaim: For 99.9% of all Zipf traces, the speed-up of Gray over LRU will exceed 36% �3� = 18%. Analogousclaims can be made for all other experiments. So, Gray is not only superior to LRU on average, but it isalso consistently superior to LRU with high probability.Similar considerations hold also for the cost di�erence �. The only di�erence between � and speed-upis that while speed-up increases with CacheSize, � increases to a peak and then decreases. The percentagedi�erence keeps increasing because when � starts decreasing, the absolute cost also decreases.8



Trace bcThresh ServerDBSize Lengthepa-http 1 2674 438458 630 37016NASA 95 32 1036 60390764 734 589701Table 3: Characteristics of the Web traces. bcThresh is the broadcast threshold: only pages referenced morethan bcThresh times are broadcast. ServerDBSize is the number of distinct pages in the broadcast, andLength is the length of the resulting trace.5.1.2 RobustnessWe defer further results to appendix C. In the appendix, we will report page fault statistics, a comparisonof PT with LRU, CF, and Gray, and we will analyze the sensitivity of our results to skewness, changes inaccess patterns, and region placement. Gray always outperformed CF and LRU on average and with highprobability.5.2 Web WorkloadsWe turn now to examine the algorithm performance on the Web traces. CF was severly outmatched bythe other strategies, and so we do not report its performance here. In Internet data delivery, pages thatare referenced sporadically are not usually broadcast [8, 30] (as, for example, in the motivating examples inthe introduction). We insert in the broadcast disk schedule only those pages that are broadcast more thanbcThresh times. Di�erent values of bcThresh entail a di�erent Length of the resulting trace and a di�erentnumber of distinct pages (ServerDBSize) that appear in the broadcast. We report the resulting values ofthose parameters in table 3. The NASA trace is longer than epa-http and we chose larger bcThresh values.For the two di�erent values of bcThresh, the ServerDBSize is very di�erent, whereas the trace Length is muchcloser. Therefore, there are many �les that are accessed very few times. Since ServerDBSize is di�erentin the two traces, we performed experiments for di�erent sets of CacheSize values. Figure 3 and 4 reportpercentage speed-ups of Gray over LRU for various CacheSizes.Again, Gray always outperformed LRU. In the epa-http trace, the speed-up is modest when bcThresh = 1,but becomes very signi�cant when bcThresh = 8, especially for larger caches. Gray signi�cantly outperformedLRU also on the NASA trace.5.3 Flat Disks: DiscussionThe Gray algorithm always outperformed the other on-line algorithms LRU and CF. The Gray algorithmwasbetter than LRU and CF across a wide variety of synthetic workloads and two Web traces. Gray exhibitedsigni�cant speed-up both in the average and with high probability.While Gray was always better than LRU, there are a few factors that reduced the gap between the twoalgorithms:Small caches In general, Gray's speed-up increases with CacheSize. Small caches gave rise to the smallestspeed-up percentages in almost all workloads. The only exception was when SwitchTime = 1000, wherethe speed-up showed an irregular behavior. In all other workloads, small caches corresponded to smallspeed-up values.Randomness and small caches More random workloads were harder for all algorithms. Moreover, morerandom workloads resulted in reduced speed-up values when CacheSize = 50 or CacheSize = 250.Skewness and large caches When we �xed the CacheSize value and increased the skewness �, Gray'sspeed-up diminished. 9
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Frequent and radical interest shifts As the access patterns shifted more frequently or more radically,the speed-up of Gray over LRU dropped.We remark that these factors resulted in a reduction of Gray's speed-up, but they never resulted in LRUoutperforming Gray. Finally, we found that Gray and LRU are not sensitive to the placement of pages inthe broadcast schedule.6 Caching and SchedulingIn this section, we will explore the relation between caching and scheduling. Caching and scheduling a�ectone another. A scheduling policy determines the cost of loading a page, and thus a�ects the caching policy.However, caching a�ects scheduling as well. For example, suppose that page p is hot. A straightforwardschedule could decide to broadcast p often. However, a caching policy might end up caching p permanently.Therefore, a client would never access the broadcast disk for page p, and the best scheduling policy wouldbe not to transmit p at all.6.1 BackgroundLet pi be the probability that page i is requested and�i = ppiPj ppj :The square-root law suggests that page i should be broadcast with frequency �i (and not with probabilitypi) [12, 21, 31]. The Mean Aggregate Delay (MAD) algorithm is a scheduling algorithm that approximatesthe square-root law [12, 31]. The MAD algorithm maintains a value si associated with each page i. Thequantity si is the number of broadcast ticks since the last time page i was broadcast. The MAD algorithmbroadcasts a page i with the minimum value of (si + 1)2pi. In particular, when all pi's are equal, MADgenerates a 
at broadcast. We remark that MAD is only an approximation of the square-root law, anddoes not guarantee optimal schedules in general, but that does guarantee a cyclical schedule. The MADschedule can be generated very simply at the server site. On the other hand, MAD is very complex at aclient site that runs either CF or Gray. Indeed, CF or Gray need to know the next broadcast tick whena page will be transmitted. Such information can be obtained through di�erent implementations, but noknown implementation is either space or time e�cient. MAD needs an estimate of access probability, andthus it introduces into broadcast systems a component that is not completely on-line.6.2 Generated and Filtered TracesIn this section, we will discuss how caches change client access patterns. Clients generate sequences ofrequests to data pages, and we will say that such sequences are generated traces. In other words, a generatedtrace is the actual sequence of pages needed by a client. Some requests in the generated sequence can besatis�ed by the local cache, while others cannot and cause a page fault. Then, clients will access the broadcastdisk for the faulting pages. In fact, clients will access the broadcast disk only for faulting pages. We will saythat the sequence of faulting pages is the �ltered trace. The distinction between generated and �ltered tracesis depicted in in �gure 5. Filtered traces depend on client access patterns, as well as on the paging strategyand on CacheSize. On the contrary, generated patterns depends only on client access patterns. A simple,but important observation is that scheduling should take into account �ltered traces rather than generatedones. Indeed, the broadcast is accessed only for pages in the �ltered trace, while other page references areresolved locally. From the viewpoint of a broadcast scheduler, the �ltered trace is the sequence of clientrequests.We will now investigate the transformation from generated into �ltered traces, and its e�ect on theresulting broadcast schedules. The histograms in �gure 6 report the number of LRU faults on the horizontalaxis and the number of pages that caused that many faults on the vertical axis. Bars are relative to di�erentvalues of CacheSize. 11



Generatedtrace - Cache - FilteredtraceClientFigure 5: Caches �lter traces.
0

2 0

4 0

6 0

8 0

100

120

140

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 7 0

faults

p
ag

es 5 0

250(a) 0

5 0

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

faults

p
ag

es

500

750

875(b) .Figure 6: Distribution of pages according to the number of LRU page faults they cause. The horizontal axisreports the number of page faults and the vertical axis the number of pages that caused that many faults.Fault values between 26 and 69 are small and omitted for lack of space. Bars are relative to di�erent valuesof CacheSize. Graph scales di�er. 12



CacheSize Gray50 650975 605880 595890 5811100 5621Table 4: Cost of Gray on one default Zipf workload trace.The major e�ect of caching is that it broke very long tails in the distribution of faults. When CacheSize= 50, there were pages that cause between 1 and 70 faults. As the CacheSize increases, the number ofpages that caused a large number of faults decreased and then disappeared. Correspondingly, the numberof pages that caused few faults increased. In other words, traces �ltered by large caches no longer showeda large variation in the number of faults a page causes. In conclusion, the �ltered trace lost the long tailsof the generated trace. However, more subtle e�ects appear when caching is used. In particular, while thegenerated trace is a sequence pages extracted independently one of the other, such assumption is no longervalid for �ltered traces. For example, when LRU is used, if a page i causes a fault at request t, then it willnot cause another fault before request t+ CacheSize.We now turn to discuss the e�ect of the tail cutting for a square-root broadcast scheduler. If CacheSize= 50, then the most frequently broadcast page will be transmitted p70 ' 8:4 times more often than the leastfrequently broadcast page. If CacheSize = 250, the ratio already drops to p22 ' 4:7, and if CacheSize =875, the ratio is p3 ' 1:7. In conclusion, caching cuts long tails in the fault distribution and the square-rootlaw contracts the schedule skewness even more.6.3 Should Gray go MAD?There are two serious di�culties in the way of an integration of Gray with MAD: circularity of the problemand e�ciency of the implementation. The behavior of Gray depends on the broadcast schedule. Therefore,the �ltered trace depends on the scheduling algorithm. However, scheduling parameters depend on pagefrequencies in the �ltered trace. Therefore, the integration of Gray and MAD gives rise to a circular problem.Moreover, even if the probability estimates had been �xed and MAD was run, it is not clear how to e�cientlycalculate future transmission times and how to extend Gray's e�cient implementation that we presented fora 
at schedule.6.4 Caching and Scheduling in IsolationBoth scheduling and caching improve performance in isolation. In this section, we measure how caching andscheduling compare with each other. On one side, we will have the scheduling algorithm MAD when thereis no cache, on the other Gray as CacheSize increases and the schedule is 
at. The set-up is the same asthat described in x4 for the default Zipf workload. The only di�erence is that we use only one trace insteadof thirty because we do not have an e�cient implementation of MAD. MAD is subjected to a warm-upprocess during which it is run for a random number of times between 0 and ServerDBSize. The probabilityestimates pi used by MAD are obtained as follows. First, we measured the frequency with which i occursin the trace. Such frequencies are then divided by the trace Length. The resulting pi's are the maximumlikelihood estimates of actual probabilities. Several pages will have pi = 0 and MAD will never broadcastthem. In order to make a fair comparison between Gray and MAD, we will count a MAD rotation equalto the number of pages with positive pi's. The algorithm MAD took 5909 rotations to satisfy the resultingtrace. By comparison, Gray costs are reported in table 4. Scheduling brought about the same performanceimprovement of a cache of size between 80 and 90 managed by Gray.13
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(b) Probability estimates from generated trace.Figure 7: Performance of Gray on a 
at broadcast against LRU's performance on a MAD broadcast. Thecost di�erence and speed-up are relative to the cost of LRU on a 
at broadcast. Graph scales di�er.6.5 Flat Gray vs. MAD LRUWe now turn to examine the performance of Gray on a 
at broadcast against that of LRU on a MADbroadcast. The probability estimates pi used by MAD are obtained with a procedure similar to that in theprevious section. Access frequencies are estimated from the trace �ltered by the appropriate CacheSize, andthen divided by the Length of the �ltered trace. We compared 
at Gray and MAD LRU against 
at LRUand report speed-ups and �'s in �gure 7(a).Both 
at Gray and MAD LRU improved over 
at LRU for all values of CacheSize. However, MADLRU is more e�ective for smaller CacheSizes, whereas 
at Gray is more e�ective for larger CacheSizes. Animportant remark is that, for all CacheSizes, the MAD schedule is obtained from �ltered trace frequencies,and so it is perfectly tailored for that particular value of CacheSize. The two curves intersect for CacheSizebetween 250 and 500.A summary of our �ndings is:� The MAD schedule became closer and closer to a 
at one as CacheSize increases (as discussed in x6.2).� Figure 7 shows that also MAD LRU's performance became closer and closer to 
at LRU.� Table 2 and �gure 7 show that Gray's speed-up over 
at LRU increased with CacheSize.In conclusion, Gray outperformed LRU when caches are big, and MAD had no power to help LRU in thosecases because it generated a rather 
at broadcast.6.6 MAD and NoisyMAD uses the parameters pi, which are probability estimates that page i will be requested of the broadcast.In general, we cannot expect to have always a precise estimate of access probabilities, and in this section wewill examine how imperfect estimates a�ect algorithm performance. Of course, Gray on a 
at schedule doesnot depend on any probability estimate, but MAD LRU does. As a consequence, Gray performance will be14
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at Gray when there is little noise, butit was worse for � > :35.We turn to measure a type of error that arises as a direct consequence of caching and is due to a wrongestimate of the CacheSize. In x6.5, the pi values were obtained from the frequencies in the �ltered trace.However, the �ltered trace depends on the value of CacheSize, and a wrong estimate of CacheSize leads toa wrong estimate of the pi's. The error is analyzed in �gure 7. In �gure 7(b), the MAD schedule is obtainedunder the assumption that there is no cache, while in fact the CacheSize takes increasing values. In �gure7(a), the MAD schedule is obtained from the right estimate of CacheSize. While the di�erence between thetwo MAD LRUs is small for CacheSize = 50, MAD LRU (with wrong CacheSize) is much worse than MADLRU (with right CacheSize) for larger values of CacheSize. When CacheSize � 500, MAD LRU (wrongCacheSize) is even worse than 
at LRU. The intersection point between the 
at Gray and the MAD LRUcurves has now decreased to CacheSize < 250.6.7 Web WorkloadFigure 9 gives 
at Gray's and MAD LRU's speed-up over 
at LRU on the epa-http workload for bcThresh =8. Again, MAD LRU is better for smaller caches and 
at Gray is better for larger caches. The balance pointwas for CacheSize slightly less than 250, which is about 1/3 of the ServerDBSize for this trace (comparewith table 3).6.8 DiscussionIn general, MAD helped LRU if the CacheSize is small, while Gray on a 
at schedule was better for largercaches. For large caches, Gray outperformed MAD LRU even when the broadcast schedule was perfectlytailored to LRU's access pattern. In synthetic workloads, the intersection point depended on the error in theprobability estimates, but it was roughly for CacheSize = 250, a value that is not particularly big comparedwith the size of the AccessRange = 1000. 15
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Figure 9: Speed-up of 
at Gray over MAD LRU on the epa-http workload for bcThresh = 8.On the positive side, MAD led to signi�cant performance improvements for small caches. On the negativeside, MAD is a qualitatively di�erent algorithm from 
at Gray because MAD requires knowledge of accessprobability. Thus, MAD is not completely on-line. Moreover, complicate scheduling is hard to justify whenclient access patterns do not match estimated ones or when actual cache sizes are bigger than anticipated.Non-
at scheduling makes cost-dependent paging strategies (e.g. Gray) hard to implement e�ciently. Inmobile computing, non-
at schedules require that a complicate indexing structure be maintained in orderto keep track of the schedule itself [26]. As a consequence, complicate algorithms are needed at the serverand client sites to build and look-up the index and part of the bandwidth is now employed to broadcast theindex rather than data pages. In conclusion, the adoption of a non-
at schedule could be bene�cial, butit depends on the accuracy of delicate assumptions on access patterns and cache sizes, and it complicatespaging and indexing algorithms.7 Related WorkBroadcast disks have received substantial attention in the literature. Survey papers summarize previouscontributions to the broadcast disk literature, areas of research, and the position of broadcast disks amongother push and push/pull data dissemination architectures [20]. Information dissemination on the Internethas been considered by various authors [14, 17, 37] and systems [1, 2]. Cyclic multicast over the Internet isdiscussed in [8].Ammar gives a prefetching strategy that loads pages on the basis of links embedded in previously loadedpages [9]. Other approaches execute prefetching without using hints. Acharya et al. considered prefetchingon broadcast disks, and propose the PT algorithm, which we described in x3 [5]. Subsequently, Tassiulaset al. considered optimal algorithms for prefetching when more than one page can be requested in onebroadcast tick [34]. Both works assume that traces of page requests are generated by a stationary probabilitydistribution and that paging strategies know it. The Gray algorithmwas the �rst completely on-line strategytailored for broadcast disk paging [25]. While the Gray algorithm had been analyzed in the worst-case, nosimulation result was known before the present paper. No previous paper has given e�cient implementationof broadcast disk paging algorithms.Prefetching in broadcast disks is somewhat related to other techniques used in mobile environments[13, 27, 32]. The di�erence is that broadcast disks prefetching aims at improving performance, whereasother works focus on increasing availability or avoiding accesses to stale data.16



Broadcast disk paging poses a trade-o� between the number of page faults and the cost per fault. Similartrade-o�s exist in a variety of context, as for example, Web caching [7, 35] and hierarchical paging [15].The problem of �nding an optimal cyclic schedule is NP-hard [12], but it can be solved in polynomial timeif ServerDBSize = 2 [11]. The square-root law has been proposed by several authors [10, 9, 21, 31]. The goldenratio algorithm instantiate the rule and gives a 1.125-approximation for all ServerDBSizes [12]. A simplerapproximation of the rule is the MAD algorithm [31, 12]. Scheduling with non-uniform transmission timeshas been investigated as well [24, 36]. In a mobile environment, the objective of scheduling is to minimizea combination of response time and tuning time. Khanna et al. present an algorithm that inserts indexpages along the server broadcast and perform scheduling in order to reduce both response and tuning time[26]. Several authors have studied the problem of broadcast scheduling when pull is also supported [6, 3, 30].The crux of scheduling is the estimation of page popularities. Stathatos et al. use a pull backchannel fordata communication and, indirectly, to estimate page popularity and its dynamic over time [30]. Our workassumes that no backchannel is integrated with broadcast disks, and so scheduling is necessarily an o�-lineprocedure. To the best of our knowledge, the relationship between server scheduling and client caching hadnot been studied prior to the present paper.8 Summary and ConclusionIn this paper, we have studied client caching in broadcast disks and its relation with the broadcast schedule.We considered on-line algorithms, that is, algorithms that do not know future data requests and that donot have a probabilistic estimate of access patterns. On-line algorithms are critical in many circumstancesbecause probability estimates are often unavailable, di�cult to validate, or inaccurate. First, we considereda 
at broadcast schedule, that is, one where all data items are broadcast with the same frequency, and thenwe turned to examine the relation between caching and broadcast schedules. For a 
at broadcast:� We gave new e�cient implementations of various broadcast disk paging algorithms. Although we usedwell-known and practical algorithms, we reduced PT's running time per fault from quadratic to linear.� We conducted the �rst experimental analysis of the Gray algorithm. Gray outperformed our other on-line algorithms (LRU and CF) on average and with high probability across a large number of syntheticworkloads. Gray outperformed LRU also on Web trace simulations.� In particular, Gray improved performance even if client access patterns shifted over time.In conclusion, the Gray algorithm does not use any probabilistic assumption and substantially outperformstraditional on-line algorithms in a variety of settings.We then turned to investigate several trade-o�s between caching and scheduling algorithms. We considerMAD schedules, a simple, but provably good scheme to broadcast data on the basis of client access patterns[12, 31]. MAD LRU was e�ective when caches were small, but not for larger caches. Meanwhile, Gray ona 
at schedules became progressively more e�ective. The balance point was for caches of size 250, whichis between 1/4 and 1/3 of the working set in our experiments. However, MAD LRU is inherently di�erentfrom 
at Gray, because MAD LRU requires knowledge of access probabilities. Consequently, MAD LRU isa�ected by errors in probability estimates, while 
at Gray is not. Moreover, MAD and all other non-
atschedules complicate the implementation of caching strategies and indexing structures. Flat Gray is moree�ective for larger caches, and it is a better choice in a truly on-line setting.AcknowledgementsWe would like to thank Swarup Acharya, Demet Aksoy, Allan Borodin, Mike Franklin, Bob Gruber, SanjeevKhanna, and Samir Khuller for helpful conversations. The epa-http trace was collected by Laura Bottomleyof Duke University. The author was partly supported by the CAREER Award CCR-9501355.17
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LRU Gray speed-up �CacheSize mean � CF% mean � mean � mean �50 7395 40 -0.03% 7383 40 0.18% 0.06% 12 4.8250 6996 45 -0.037% 6938 42 0.84% 0.2% 58 11500 6508 43 -0.053% 6394 41 1.8% 0.2% 114 10750 6028 44 -0.039% 5862 41 2.8% 0.3% 165 18875 5786 36 -0.043% 5601 42 3.3% 0.4% 185 21Table 5: Performance of LRU, CF, and Gray in the Random workload. The LRU and Gray column report theaverage cost and sample standard deviation of LRU and Gray over a sequence of thirty trials. Costs are givenin number of rotation (1 rotation = ServerDBSize broadcast ticks). The CF column gives the percentagecost increase of CF over LRU; negative percentages correspond to cost reduction. The speed-up columngives the average and sample standard deviation of the speed-up of Gray over LRU. Positive percentagecorrespond to an improvement over LRU. The � column gives the average and standard deviation of thecost di�erence of Gray over LRU.We used a period p = 2147483647, and parameters a = 14288, b = 758634. We validated some of our earlierexperiments with random(3B), the non-linear additive feedback random number generator in the SunOS/BSDcompatibility library with a state of 256 bytes. We could not observe signi�cant di�erences between randomand the inversive congruential generator. We extracted Zipf random values with the algorithm by Gray et al.[22], which does not exactly extract Zipf values, but an approximation of the Zipf distribution. We wrote oursimulator in C and performed our experiments on a SUN SPARCstation LX with the gcc -O3 compiler. Wemeasured the waiting time incurred by the algorithms after the following warm-up process. Each algorithm'scache is �lled with the �rst CacheSize distinct pages requested in each sequence. In addition, LRU will havethose warm-up pages in LRU order. In the Web workloads, we assumed that the broadcast pages are largeenough to contain every �le in the trace. We remark that this is only a simulation choice, and that we couldhave taken smaller page sizes. Another simulation choice was to scatter the pages in random order alongthe cyclical broadcast.B Random WorkloadWe �rst report the results on the Random workload in table 5.The algorithms had all roughly the same cost. However, Gray always outperformed LRU. The speed-upof Gray over LRU increases with CacheSize and it reaches 3% for CacheSize = 875. We now turn to theZipf workload, which will be the main focus of the rest of the paper.C RobustnessIn this section, we report some results that have been omitted from the regular paper. The results arerelative to the default Zipf workload. We examine the number of page faults (as opposed to waiting times)and algorithm sensitivity to skewness and changes in access patterns, we compare PT with the LRU, CF,and Gray, and we analyze the sensitivity of the on-line algorithms for changes in the region placement.C.1 Page FaultsWe report statistics on the page fault rate in table 6. The number of page faults is not the best performancemeasure for broadcast disks | waiting time is. However, we give page fault statistics because it is interestingto compare page fault rates with waiting times. We give the number of page faults incurred by LRU and thepercentage increase in number of page faults incurred by CF and Gray. Negative percentages would showan improvement of CF or Gray over LRU. 20



CacheSize LRU CF Gray50 13284 0.42% 0.058%250 7854 8.3% 1.8%500 3821 20% 4.4%750 1384 32% 6.1%875 539 38% 7.8%Table 6: Number of page faults incurred by LRU, CF, and Gray. The LRU column reports the number ofpage faults incurred by LRU. The CF and Gray columns report the percentage increase in the number ofpage faults incurred by CF and Gray.CacheSize PT LRU CF Gray50 5188 28.07% 28.24% 25.73%250 2346 67.42% 80.66% 56.57%500 951 100.7% 139.6% 79.13%750 216 219.7% 316.3% 161.6%875 47 470.4% 674.2% 319.4%Table 7: Comparison between the on-line algorithm and PT. PT's cost is in number of rotations. The on-linealgorithm columns report the gap between the algorithm and PT.We notice the following facts. The number of page faults of LRU decreased with CacheSize. CF's waswithin .4% to 38% of LRU, and the gap increased with CacheSize. CF's percentage increase in number ofpage faults was bigger than CF's increase in waiting times (compare with table 2). Therefore, CF spent lesswaiting time than LRU per fault. Unfortunately, CF incurred such a larger number of faults that its totalwaiting time is much worse than LRU's. Gray was always worse than LRU in terms of number of page faults.The percentage di�erence was as high as 7.8%. The relative di�erence increased with CacheSize. However,Gray always outperformed LRU in terms of waiting times, which is to say, Gray waited less than LRU on apage fault. In fact, the largest speed-up of Gray over LRU (38%) occured when it CacheSize = 875, whichis also when the number of page faults was favoring the most LRU over Gray (7.8%). In conclusion, thenumber of page faults was not a predictor of waiting times. For example, Gray became better and betterthan LRU while at the same time it occurred a larger and larger relative number of page faults. Gray wasmuch better than CF in terms of page faults.C.2 On-line Algorithms and PTWe compared the on-line algorithms with PT. Our �ndings are in table 7. PT signi�cantly outperformedthe three on-line algorithms in our experiments. When the cache size is 50, PT outperformed the on-linealgorithms by 26% to 28%. As the cache grew larger, all percentage di�erences became larger. Eventually,when the cache size is 875, Gray was 3.2 times worse than PT and LRU was 4.7 times worse than PT. Thegap between PT and the on-line algorithms was always much bigger than the gap between any two on-linealgorithms. There was a very signi�cant gap between our on-line algorithms and PT. However, it is notclear whether improved on-line algorithms could reduce such gap or if a substantial performance di�erenceis intrinsically due to PT's use of o�-line information.C.3 Sensitivity to SkewnessWe now examine the algorithm behavior when the Zipf skew parameter � was varied. Our results are intable 8. Notice that the subtable corresponding to � = 0:95 is identical to table 2. For any �xed CacheSize,21



LRU Gray speed-up �CacheSize � mean � CF% mean � mean � mean �50 0 7097 39 -0.068% 7037 42 0.86% 0.2% 60 12.25 7080 33 -0.013% 7019 34 0.87% 0.1% 61 10.5 7010 36 -0.12% 6937 36 1% 0.1% 72 10.75 6855 34 -0.042% 6765 32 1.3% 0.2% 90 16.95 6644 32 0.13% 6523 35 1.9% 0.3% 121 18250 0 5519 41 -0.14% 5252 41 5.1% 0.3% 266 16.25 5435 42 0.079% 5164 35 5.2% 0.5% 270 25.5 5143 46 1.1% 4861 40 5.8% 0.4% 281 21.75 4577 46 3.7% 4296 39 6.5% 0.5% 280 22.95 3927 46 7.9% 3673 44 6.9% 0.6% 254 21500 0 3574 42 -0.0028% 3162 26 13% 1% 411 36.25 3458 44 0.8% 3054 30 13% 1% 404 34.5 3058 42 4.9% 2706 37 13% 0.7% 351 18.75 2458 41 12% 2182 37 13% 1% 275 25.95 1909 31 19% 1704 29 12% 1% 204 19750 0 1704 23 -0.71% 1318 19 29% 2% 386 19.25 1594 28 2.3% 1236 21 29% 2% 358 20.5 1308 25 10% 1035 19 26% 2% 273 21.75 965 27 21% 775 18 25% 3% 190 19.95 692 20 30% 566 18 22% 2% 125 10875 0 807 21 -1.2% 549 14 47% 3% 257 16.25 730 22 5.7% 500 15 46% 4% 230 20.5 574 17 14% 405 16 42% 5% 169 16.75 400 18 27% 287 13 40% 5% 113 13.95 269 17 36% 198 10 36% 6% 71 13Table 8: Sensitivity to changes in access pattern skewness.
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the absolute cost of LRU and Gray decreased as � increased. Both algorithms were able to exploit theincreased locality of a more skewed distribution. The result is consistent with our previous comparison ofthe Random workload with the Zipf workload. In fact, if we order the workloads according to their skewnessfrom Random (no skew) to � = 0; : : : ; :95 (more skewed), we observe that the algorithm cost decreased asthe distribution became more and more skewed. The Gray algorithm was always better than LRU. Onceagain, standard deviations were smaller compared to mean values, which implies that Gray was superior toLRU with high probability.We now turn to summarize the trends of the speed-up and � as the parameters CacheSize and � change.For a �xed value of CacheSize, the speed-up increased with � when CacheSize = 50, 250 and decreased whenCacheSize was larger. The largest value of the speed-up was found for the largest CacheSize = 875 and forthe smallest � = 0. For any �xed value of �, the speed-up increased with CacheSize. An increased � workedagainst Gray's speed-up when the cache is large. In other words, LRU took better advantage of a skewedaccess pattern when there was a larger cache.For a �xed value of CacheSize, the di�erence � increases with � when CacheSize = 50, it reached a peakand decreased when CacheSize = 250, and decreased when CacheSize was larger. The largest di�erenceoccured when CacheSize = 500 and � = 0. For a �xed value of �, � always reached a peak and thendeceased as CacheSize increased.We turn now to examine CF's performance. First of all, we notice that when CF outperforms LRU,the improvement is not statistically signi�cant. For example, when CacheSize = 875 and � = 0, then CFhas a 1.2% improvement over LRU. In other words, CF cost was (100% � 1:2%)� (the waiting time ofLRU), which is :988 � 807 ' 797 rotations. The cost di�erence between LRU and CF is 10 rotations, whichis less than LRU's standard deviation. Analogous computations hold whenever CF outperformed LRU. Inconclusion, there was no experiment where CF outperformed LRU in a statistically signi�cant way. For a�xed CacheSize, CF became worse than LRU as � increased. Consider now a �xed � and vary the CacheSize.There was no statistically signi�cant change with CacheSize when � = 0, but CF was worse and worse thanLRU as the CacheSize increases when � > 0.In conclusion, although speed-ups and di�erences varied with CacheSize and �, Gray was always superiorto LRU both on average and with high probability.C.4 Sensitivity to Changes in Access PatternsIn table 9 we report our �ndings for the case when the client access pattern changes with time. For agiven value of CacheSize, the rows are ordered from SwitchTime = 1000, O�set = 45 (frequent and radicalinterest shifts) to SwitchTime = 8000, O�set = 25 (infrequent and gradual shift). For a �xed CacheSize,the waiting time of LRU and Gray decreased as the shift become more gradual and infrequent. Again, Grayoutperformed LRU and small standard deviations clearly separate the two algorithms. However, Gray'sspeed-up was not as large as when there was no access pattern shift. When CacheSize = 50, there is nosigni�cant di�erence between LRU and CF. However, signi�cant di�erences were found for larger values ofCacheSize, and CF was up to 72% worse than LRU.C.5 Sensitivity to Region PlacementWe now discuss how region placement a�ects algorithm performance. Our results are in table 10. We willalso compare table 10 with the default Zipf workload of table 2. LRU and Gray were largely independentof the region placement. In fact, for any given algorithm and for �xed cache sizes, cost di�erences weresmall compared with standard deviations. CF improved on LRU only for CacheSize = 875 in the uniformregion workload, but such improvement is not statistically signi�cant. However, CF did better in the uniformand reverse workload than in the default Zipf workload (scattered regions) | compare table 2 and 10. Inconclusion, LRU and Gray were not in
uenced by region placement, while CF actually improved if theregions are not scattered. By contrast, Acharya et al. showed two o�-line algorithms that bene�ted fromscattering [5]. We do not know if there is any \sensible" on-line algorithm that would bene�t from scattering.23



LRU Gray speed-up �CacheSize SwitchTime O�set mean � CF% mean � mean � mean �50 1000 45 6660 36 0.34% 6547 36 1.7% 0.2% 112 1225 6650 42 0.27% 6535 42 1.8% 0.2% 115 138000 45 6642 39 0.22% 6522 41 1.8% 0.2% 120 1425 6643 38 0.24% 6525 36 1.8% 0.3% 118 17250 1000 45 4307 43 12% 4147 38 3.9% 0.5% 160 2225 4163 44 11% 3980 40 4.6% 0.6% 183 238000 45 3955 45 8.5% 3707 40 6.7% 0.6% 247 2025 3946 54 8.2% 3692 46 6.9% 0.7% 253 24500 1000 45 3202 30 20% 3163 40 1.2% 0.6% 39 1825 2747 36 22% 2641 43 4% 0.9% 106 228000 45 1998 30 24% 1807 32 11% 1% 191 2125 1960 32 23% 1763 32 11% 1% 197 19750 1000 45 2846 33 15% 2782 34 2.3% 0.4% 63 1225 2135 36 23% 2055 37 3.9% 0.5% 79 108000 45 890 22 51% 808 17 10% 1% 82 1125 829 23 46% 735 20 13% 2% 93 12875 1000 45 2680 34 13% 2604 30 2.9% 0.4% 76 1125 1913 34 23% 1826 30 4.8% 0.7% 87 138000 45 551 17 72% 495 24 11% 4% 55 1925 472 15 66% 400 20 18% 5% 71 18Table 9: Sensitivity to changes in access pattern.LRU Gray speed-up �Workload CacheSize mean � CF% mean � mean � mean �Uniform 50 6646 35 0.082% 6525 34 1.8% 0.3% 120 18250 3937 40 4.4% 3653 41 7.8% 0.7% 284 23500 1909 34 2.9% 1687 29 13% 1% 221 17750 697 21 0.43% 563 20 24% 3% 133 14875 270 14 -0.96% 195 10 39% 5% 75 8.5Reverse 50 6645 28 0.18% 6520 31 1.9% 0.2% 125 14250 3937 53 5.3% 3661 45 7.5% 0.6% 275 24500 1916 33 5.6% 1690 28 13% 1% 226 23750 694 19 7% 563 15 23% 2% 131 12875 272 12 4.4% 197 9 38% 6% 75 11Table 10: Sensitivity to changes in region placement.24


