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Abstract

Unicast connections lead to performance and scalability problems when a large client population attempts
to access the same data. Broadcast push and broadcast disk technology address the problem by broadcasting
data items from a server to a large number of clients. Broadcast disk performance depends mainly on caching
strategies at the client site and on how the broadcast is scheduled at the server site. An on-line broadcast
disk paging strategy makes caching decisions without knowing access probabilities. In this paper, we subject
on-line paging algorithms to extensive empirical investigation. The Gray algorithm [25] always outperformed
other on-line strategies on both synthetic and Web traces. Moreover, caching limited the skewness needed
from a broadcast schedule, and led to favor efficient caching algorithms over refined scheduling strategies
when the cache was not small. Prior to this paper, no work had empirically investigated on-line paging
algorithms and their relation with server scheduling.



1 Introduction

The demand of network data services has been growing exponentially during the past few years. More
and more often, increased workloads cannot be satisfied by current technology. In particular, when clients
requested several million connections to a hot Web site during peak periods (e.g. Deep Blue chess match,
Olympic games), servers were overmatched by the heavy workload. The problem was that point-to-point
(unicast) connections satisfied each request individually, and server performance did not scale with the
number of requests. In general, the point-to-point paradigm poses a scalability problem that is exacerbated
by the exponential and sustained growth of data service demand. In this scenario, broadcast push promises to
address the issue. Broadcast push has servers broadcast the same data items to a large number of clients, and
thus it overcomes the bottleneck that unicast creates at the server site. Broadcast push is being incorporated
in several commercial systems. For example, Hughes Network System [1] delivers Web pages via satellite
links, and Hybrid Networks Inc. [2] will broadcast data via cable lines.

Broadcast Disks [20] attempt to improve broadcast push performance by the combination of two methods:
they establish client caching and fix a cyclical broadcast schedule over long periods of time. Clients are
helped by local caching because they avoid waiting on the network if they can find data items in their
own cache. Cyclical schedules help caching strategies to weigh different eviction choices [4, 25]. Moreover,
cyclical schedules lead to scalable and widely supported multicast techniques over the Internet [8] and are
necessary in a mobile environment where clients need to know when to tune in to receive data [26]. Our
main contributions are the first empirical study of on-line algorithms for broadcast disk caching, and the
first analysis of the interaction between client caching and broadcast scheduling.

Cache management in a broadcast disk environment differs from other caching problems because:

e Caching aims at reducing the time spent waiting during a fixed broadcast schedule. By contrast, min-
imizing (say) the number of page faults in isolation could not bring in any performance improvement.

o Prefetching can sometimes be executed at no cost for servers and clients [5].

Previous broadcast disk paging algorithms assumed that clients requested data items with given prob-
abilities and that those probabilities were known to paging strategies [4, 5, 34]. In practice, probabilistic
assumptions could be difficult to find and to validate, and so it is critical to have efficient paging strategies
that operate without probabilistic parameters. A breakthrough came with the Gray algorithm, which works
with no probabilistic assumption and that is provably optimal in terms of worst-case ratios [25]. In this
paper, we subject on-line paging algorithms to extensive empirical investigation on both synthetic and Web
traces. On-line paging algorithms had not previously been studied experimentally. The Gray algorithm al-
ways outperformed classical on-line strategies, and thus it 1s the first truly on-line paging strategy algorithm
to offer performance improvements in broadcast disk systems.

Caching alters patterns of client accesses to non-local data because some data requests can be resolved
locally. As a result, caching changes the frequency with which data items are accessed from the server
broadcast. Caching cut long tails of the access distribution in our experiments. Scheduling is the problem of
establishing a broadcast schedule. Ideally, scheduling should depend on client access patters. For example,
typical schedules broadcast hot pages more often [12, 31]. Scheduling is strongly interrelated with caching
because client access patterns are modified by caching. Conversely, caching strategy are affected by scheduling
because a schedule determines the cost for loading pages. In this paper, we investigate trade-offs between
scheduling and caching. In no previous paper had scheduling been investigated in relation to the presence of
caches at the client sites. Scheduling provides performance improvements when caches are small. However,
schedules need not be very skewed when larger caches are used, and in this case efficient caching algorithms
should be favored to refined broadcast schedules.

2 The Broadcasting Environment

The broadcast disk environment is well-known in the literature [4, 5, 20, 25] and we only outline it here. A
database of ServerDBSize pages is cyclically broadcast by a server!. Pages have all the same size and it

1The ServerDBSize pages need not be the whole server database, but they can simply be the database portion that the
server has assigned for broadcast (see e.g. [8, 30]). The important assumption is that the broadcast data set changes so slowly
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Figure 1: Example of a flat broadcast program. Pages are numbered from 0 to ServerDBSize — 1, and are
cyclically transmitted by the server in that order.

takes the same amount of time to broadcast any page. At first, we will assume that pages are broadcast
with the same frequency (flat broadcast), and we will discuss this assumption later on. We will say that
a broadcast tick is the time needed to transmit a page. We will say that a rotation is the time needed to
transmit the whole server database. Therefore, a rotation is ServerDBSize broadcast ticks. An example of
a broadcast program is illustrated in figure 1. Pages are received by the clients in the same order as they
are broadcast. Each client can cache a subset of CacheSize < ServerDBSize pages. As in previous papers
[4, 5, 25], we consider a special environment that is restricted as follows:

e The broadcast schedule is fixed by the server, and is known by clients.
e Pages are read-only, and cannot be updated by either the server or the clients.

e Clients cannot communicate with each other, and so clients cannot exchange pages and cannot devise
a common strategy.

e Clients receive pages only from the server broadcast. Such assumption is justified either when the
broadcast channel is the only communication link between clients and server, or when additional
channels exist, but the server refuses to replicate broadcast data on those channels.

Since clients are isolated from each other and the broadcast schedule is fixed, the performance of each client
is independent of the behavior of any other client. In the broadcast disk environment, each clients requests
a sequence of pages. At each step, the client finds the requested page either in its local cache or in the
broadcast disk. If the client has cached the page, it can access it immediately. Otherwise, the client waits
for the server to broadcast the desired page again. In broadcast disks, client computation is blocking, that
18, no other page request is issued while waiting for a faulting page. The main objective of broadcast disk
paging algorithms is to reduce the total waiting time incurred by a client. An important characteristic of
broadcast disk paging is the role of prefetching: a client prefetches a page p if p is loaded in the cache even
though p is not requested by the client computation. In broadcast disks, some prefetching can be executed
for free. Specifically, suppose that a client 1s waiting for a faulting page ¢ to be retransmitted by the server.
While the client is waiting, other pages are transmitted by the server and can be loaded on the fly. Those
pages are not requested, and so, according to our definition, they would be prefetched. However, no time is
wasted to load those pages as they are loaded while waiting for another page.

3 Page Replacement Strategies

In this paper, we will compare three different page replacement strategies. All strategies are completely on-
line, that 1s, they do not assume neither knowledge of future page requests nor knowledge of a probability

that we can assume it remains constant for the duration of our simulations.



distribution over pages. We will also compare the three on-line strategies with PT [5], which is not on-line
because it uses access probabilities. PT is included as a point of comparison for the other algorithms. We
will define each algorithm and then describe our efficient implementation for the case of a flat broadcast
schedule.

3.1 LRU and CF
3.1.1 Algorithm Definition

We now describe two completely on-line strategies: LRU and CF. The algorithm LRU responds to a miss
by evicting the page that has been used least recently. The Closest-First (CF) strategy works as follows.
When a page request causes a page fault, CF waits for the requested page to be broadcast, loads it into the
cache, and evicts the page that is currently in the cache and that will be retransmitted first. The evicted
page is the one that can be reloaded with the least waiting time. Both LRU and CF are completely on-line
algorithms. LRU and CF are antithetic in the following sense. LRU evicts pages independently of the waiting
time needed to reload them. The gist of LRU is that past accesses should predict future accesses [33], and
so LRU should incur few page faults. To the contrary, CF does not base evictions on previous history, but
only on waiting times. However, if CF makes an eviction mistake and if CF immediately detects it, then it
can recover from it at little cost. In conclusion, LRU and CF are antithetic because LRU uses past history
independently of waiting times, while CF does not use any history, but only waiting times. LRU and CF are
similar in the following respect: neither algorithm executes prefetching. LRU is a classic paging algorithm
[33], while CF is a new, but natural, paging algorithm for broadcast disks.

3.1.2 Implementation

LRU can be implemented with a (binary) heap of size CacheSize that contains the cache elements ordered
by the step of most recent usage. When LRU faults, it removes the top of the heap and inserts the newly
requested page. Thus, LRU takes O(log CacheSize) time per fault.

CF’s implementation maintains the cache as a red-black tree [16] ordered by transmission times. When
CF faults on page p, CF inserts p in the red-black trees. Then, CF tries to find p’s successor in the tree,
that is, the smallest tree element ¢ that is larger than p. If there is a successor ¢ of p, then ¢ is removed
from the tree. If there is no successor, then CF determines the minimum element in the tree and removes
it. All these operations take O(log CacheSize) time, and thus CF takes O(log CacheSize) time per fault.

3.2 The Gray Algorithm

The Gray algorithm [25] (U.S. patent pending) combines LRU’s history with CF’s waiting times, executes
prefetching, and i1s completely on-line. It has been shown that, in terms of worst-case performance ratio,
Gray outperforms LRU by a factor proportional to CacheSize/log CacheSize and that in fact Gray achieves
the best possible worst-case performance ratio [25]. In this paper, we show that Gray outperforms LRU also
in simulations. For the sake of clarity, we will not present the complete algorithm immediately, but we will
define it by steps. We will also explain the intuition behind Gray as we progressively shape the algorithm.
First, we consider a version of LRU that maintains only one bit for each page. At the very beginning, all
pages are unmarked. When a page is requested it is marked. When a page fault occurs, an unmarked page
is evicted from the cache. The 1-bit LRU algorithm proceeds in this way, and finally it replaces in the cache
all unmarked pages with marked pages. At this point, we say that a phase ends: the algorithm unmarks
all marked pages and starts another phase afresh. We remark that 1-bit LRU evicts unmarked pages in
any arbitrary order (the 1-bit LRU algorithm is also known as the marking algorithm [23]). A theoretical
result establishes that, in terms of number of page faults, the worst-case performance ratio of 1-bit LRU is
exactly the same as LRU’s [23]. In other words, one bit per page achieves the same worst-case performance
ratio as the regular LRU algorithm. We remark that such result holds only in the worst case and when the
only cost metric is the number of page faults. In broadcast disks, the cost structure is more complex, as the
cost of a fault on page p is the time spent waiting for p. Since CF takes into account the different costs of
reloading different pages, we will integrate 1-bit LRU with CF. In 1-bit LRU, unmarked pages can be evicted



(a) Initial configuration. (b) Request for page 2.

Figure 2: Gray’s cache in the examples. The initial configuration is depicted in (a), and the configuration
after a request for page 2 in (b). Pages are numbered from 0 to ServerDBSize — 1 and are transmitted in
clockwise direction. Cached pages are marked by a C. The outer arrow gives the current time step reached
along the transmission schedule.

in any arbitrary order. Therefore, we could combine 1-bit LRU with CF as follows: the unmarked page to
be evicted should be the one that will be retransmitted earliest in the future. The current version of (1-bit
LRU + CF) works as follows. At the very beginning all pages are unmarked. When a page is requested, it
is marked. When a page fault occurs, the algorithm evicts the unmarked page that will be retransmitted
the soonest in the future. When all pages in the cache are marked, the algorithm unmarks all pages and a
new phase starts. In this way, the algorithm combines the best worst-case page fault ratio of (1-bit) LRU
with the more complex cost structure of broadcast disks that is exploited by CF. However, at this point,
our algorithm still does not take advantage of prefetching?. The Gray algorithm will use prefetching to keep
a dynamically changing set of unmarked pages in cache. Specifically, Gray will maintain a color with each
of the ServerDBSize pages in the server database (later, we will show how to reduce the number of marks
to 2 - CacheSize). Pages that are marked by 1-bit LRU will be colored black. Pages that were black in the
previous phase (i.e. that were requested during the previous phase) are marked gray, and all other pages are
white. The Gray algorithm works as follows. Initially, all pages in the cache are gray and all other pages are
white. When a page is requested, it is marked black. When all pages in the cache are black, the algorithm
changes the color of gray pages to white and the color of black pages to gray, and starts a new phase. At
each step, the algorithm keeps in the cache all the black pages, plus the set of gray pages that are furthest
away along the transmission schedule. In other words, the set of uncached gray pages are the gray pages
that can be reloaded with the smallest waiting time.

Example. In figure 2(a), CacheSize = 5, page 0 has just been received, page 0, 3, 5 are black and page 1, 4,
6 are gray. So, it will take 1, 4, and 6 broadcast ticks respectively before the gray pages are received again.
Then, the Gray algorithm will have in its cache page 0, 3, 5 (all black pages), and have two more slots for
gray pages. The Gray algorithm will then have also page 4 and 6 (the two gray pages that are furthest away
along the transmission schedule from the current time step).

Again, we observe that Gray combines 1-bit LRU with CF. However, the Gray algorithm changes dy-
namically the set of Gray pages that reside in the cache, and so Gray needs to execute prefetching in order
to keep the right set of pages in the cache at each step.

2We verified that the algorithm (l—bit LRU + CF) is almost always worse than LRU.



Example. Let us suppose that a request for page 2 arrives. Gray waits for two time units, loads page 2 and
marks 1t black. Now the set of black pages is 0, 2, 3, 5, and there is only one slot for a gray page. Among
gray pages, the Gray algorithm will choose to cache the one that is furthest away along the transmission
schedule. It will take 2 broadcast ticks before page 4 is broadcast again, 4 broadcast ticks before page 6 is
broadcast again, and ServerDBSize — 1 broadcast ticks before page 1 is broadcast again. So, the cached gray
page is page 1, as shown in figure 2(b). On the whole, when page 2 was requested, Gray waited one time
unit and loaded page 1 at the expenses of (say) page 4. Then, it received page 2 and evicted page 6. Page 1
was loaded without being requested, which is to say that page 1 was prefetched. Moreover, no time is spent
waiting for page 1 because page 1 was loaded while waiting for page 2.

It can be shown that the right set of cached gray pages can be maintained by using prefetching, and so
no additional time is to prefetch gray pages [25]. Intuitively, the reason is that, after a gray page has been
broadcast, it immediately becomes the page that will be retransmitted the furthest in the future. Only the
set of black and gray marks have to be maintained, and so the Gray algorithm needs only to maintain two
sets of size at most CacheSize rather than ServerDBSize marks. The sets of black and gray pages are Gray’s
candidate set from which cached pages are selected. In general, prefetching algorithms, such as Gray or
PT, maintain a candidate set of more than CacheSize pages, among which they select the CacheSize cached
pages, and enforce their decision through prefetching.

3.2.1 Implementation

The Gray algorithm can be implemented to run in amortized O(log CacheSize) time per request by using
order-statistic trees [16]. Gray’s implementation is worse than LRU’s or CF’s that use O(log CacheSize) time
per fault and O(1) time on any other request. At any rate, Gray implementation would be especially useful
in long simulations — in practice, the Gray algorithm executes only a constant number of operations during
each broadcast tick. The implementation maintains gray pages in an order-statistic tree. When Gray faults,
it searches the gray page that immediately follows the faulting page and determines its rank. Gray can now
determine the maximum rank of a cached gray page. On a request for a non-black page, Gray looks it up in
the order-statistic tree, determines its rank and decides if that page is cached or not.

3.3 PT
3.3.1 The PT Algorithm

The last replacement strategy we consider is PT [5]. PT maintains two values for each page ¢ in the server
database. The first value is p;, the probability that page ¢ will be requested. The second value is ¢;, which
is the waiting time needed to load i once the current request has been satisfied. At each broadcast tick,
PT maintains a candidate set consisting of the pages in the cache plus the currently broadcast page. The
candidate set can have either CacheSize or CacheSize + 1 pages. The candidate set has CacheSize pages
if the currently broadcast page is in the cache; and has size CacheSize + 1 otherwise. PT always keeps
in the cache pages from the candidate set. If the candidate set has CacheSize pages, no further decision
is required. However, if the candidate set has CacheSize + 1 pages, a subset of CacheSize pages has to
be chosen. PT compares the values of p;#; for all pages in the candidate set, and keeps in the cache the
CacheSize pages with the largest value of p;t;. Intuitively, PT should minimize the expected cost per fault.
Another characteristic of PT is that it executes prefetching, as we turn now to show. If the candidate set has
size CacheSize + 1 and the page that is currently transmitted does not have the smallest value of p;t;, then
the currently transmitted page is loaded in the cache, or, in other words, it is prefetched. There are some
problems with the algorithm PT. In the first place, PT assumes knowledge of page accesses probabilities.
The second problem is that PT uses Q(ServerDBSize) space to maintain those probability values. Finally,
the running time of PT is much worse than LRU’s; as we will discuss next.

3.3.2 Implementation

A previous implementation of PT takes O(CacheSize) time on each broadcast tick [5]. Therefore, when a
page fault forces PT to wait for Wait broadcast ticks, PT’s cost is O( CacheSize - Wait) time. We will now



| Parameter | Description | Base Value |

ServerDBSize number of pages in the broadcast 5000
AccessRange number of pages accessed by a client 1000
RegionSize number of pages with the same access probability 50
CacheSize client cache size 50,250,500,750,875
Length trace length 15000

Table 1: Parameters used to generate synthetic workloads.

give a new implementation of PT. Our implementation uses a well-known algorithm in a trivial way and
reduces the running time to O(CacheSize + Wait) per fault. Our implementation is based on the selection
algorithm. The selection algorithm takes as input a set of n distinct elements and finds the kth largest
element in time O(n) [16]. In our simulator, we used the randomized version of the selection algorithm.
We now describe how the selection algorithm can be used for an efficient implementation of PT. When PT
faults, it moves one broadcast tick at a time, forms a candidate sets, and rejects at most one element in the
candidate set. However, PT can be equivalently described in the following, rather different way. When PT
faults, it forms a set C' that contains all the pages that were in the cache before the fault, plus all the pages
that are transmitted while waiting for the faulting page. After the fault, PT caches the faulting page plus the
CacheSize — 1 pages in C' that have the largest value of p;t;. The new definition of PT suggests the following
implementation. PT could invoke the selection algorithm with n = |C| and k = CacheSize — 1 to determine
the set of cached pages. However, the selection algorithm requires that all p;¢; values be distinct. We obviate
the problem by numbering the elements in C' from 1 to |C|. Then, we break ties among p;l; values by order
number and run the selection algorithm. In conclusion, PT takes O(n) = O(|C|) = O(CacheSize + Wait)
time on each fault. Although this implementation improves on the previous one from quadratic to linear,
PT’s running time is at least exponentially worse than LRU’s O(log CacheSize) time per fault.

4 Simulation Set-up

In this section, we will describe how we set up the simulation of the page replacement strategies. Most of
the environment was described in §2. Here, we will focus on the workloads at the client site. We defer some
details to appendix A. The parameters that define the following workloads are stated in table 1. Most of
these parameters are the same as those in previous papers [4, 5].

4.1 Basic Workloads

Our first workload is Rendom. In this workload, we extract a sequence of Length page requests uniformly at
random from the server database. The Random workload is not likely to be representative of a realistic client
workload. For example, Random lacks any form of locality. We include it because it is a natural workload
and because we suspected that Random was going to tax our algorithms more than any other stochastic
workload.

Our second workload assumes a stationary Zipf distribution and is similar to the one defined in the
existing literature on broadcast disks [4, 5]. The Zipf distribution is often used to model skewed access
patterns because it gives some pages a higher probability of being requested [28]. The synthetic trace is
generated as follows. At the very beginning, a set of AccessRange < ServerDBSize pages is extracted
uniformly at random from the server database. The synthetic trace will contain only the pages in the access
range, and will not use any other database page. The access range i1s then partitioned into NumRegions
regions of equal size RegionSize = AccessRange | NumRegions. At this point, the generation of a page
sequence begins. First, we extract a region according to a Zipf distribution with parameter § = 0.95. In
other words, the probability that region r is extracted is proportional to 1/r® (r ranges between 1 and
NumRegions). Then, we extract a page uniformly at random from the chosen region. The process is then



repeated to generate a sequence of Length page requests. We will say that such traces are generated by the
default Zipf workload. While pages in the same region have the same probability of being requested, pages
in different region have different probabilities. We will say that a region is hotter than another if its pages
have a higher probability of being accessed.

4.2 Robustness

We measured the robustness of the paging algorithm by changing the parameters of the default Zipf workload
and measuring the algorithm sensitivity to those changes.

First, we measured the robustness to changes in the Zipf parameter §. When # = 0, we have a uniform
distribution among regions, and no region is hotter or colder than any other region. Such workload is very
similar to Random except that we use only AccessRange pages rather than the whole server database. As @ in-
creases, the distribution becomes more and more skewed. We executed experiments for § = 0,.25,.5,.75,.95.

The second parameter change was region placement. In the default workload, we defined regions to be
disjoint sets extracted uniformly at random from the server database. We intended to measure the algorithm
performance when the placement of pages into region is not random, but follows a regular pattern related
to access probabilities. In the Uniform Region workload, the regions are consecutive intervals of pages. The
coldest region are the first in the broadcast schedule and the hottest are the latest.

Example. If we have three regions of size RegionSize = 5 (and so AccessRange = 15), then the uniform
regions are given by the sets of pages R3 = {0,1,...,4}, Ry = {5,6,...,9}, and Ry = {10,11,...,14}. The
probability that R; is selected is proportional to 1, that R is selected is proportional to 1/2%, and that R
is selected is proportional to 1/37.

The Reverse Region workload is identical to the uniform region workload, except that hot regions precede
cold regions.

In the Zipf workloads above, access probabilities do not change with time. We intend to measure al-
gorithm performance when client interests shift over time. We will model changing access patterns with
two parameters: the SwitchTime and the Offset, which will be utilized as follows. The synthetic trace is
generated as in the default Zipf workload, except that every SwitchTime page requests, the region contents
are changed: in every region, we discard Offset pages, and we replace them with a new set of Offset pages.
Regions will again be disjoint after the shift, but we will allow a discarded page to be extracted for the same
or for another region. We experimented with Offset = 45, which corresponds to a radical shift of 90% of
RegionSize, and with Offset = 25, which replaces only half a region. We also chose SwitchTime = 1000,
which induces 15 shifts per trace, and with a milder SwitchTime = 8000, which changes the access pattern
only once during a trace. When SwitchTime = 1000 and Offset = 45, the workload tends to be more random
than for larger values of SwitchTime and smaller values of Offset.

4.3 Web Workload

We also executed experiments with two Web server traces. The simulation has significance in the con-
text of information dissemination over the Internet when clients are intermediate information brokers [20].
The first trace was epa-http®. We discarded references to URLs containing a question mark and we iden-
tified URLs that can be syntactically determined to correspond to the same page (e.g. ~liberato and
~liberato/index.html). The second Web trace was the first half of the August 95 NASA trace®.

5 Experimental Results
In this section, we present the results of our experimental comparison among LRU, CF, and Gray. We will

also compare our on-line algorithms with PT. We will measure the waiting times of our heuristics in terms
of broadcast ticks. Therefore, our measurements scale with channel bandwidth and express fundamental

3The trace is available at http://ita.ee.1bl.gov/html/contrib/EPA-HTTP .html.
*The trace is available at http://ita.ee.1bl.gov/html/contrib/HASA-HTTP.html.



LRU Gray speed-up A
CacheSize | mean | o | CF% | mean | o | mean | o mean | o
50 6644 | 32 | 0.13% | 6523 |35 | 1.9% | 0.3% | 121 18
250 3927 | 46 | T.9% | 3673 |44 | 6.9% | 0.6% | 254 | 21
500 1909 | 31 19% 1704 | 29 | 12% 1% 204 | 19
750 692 | 20 | 30% 566 | 18 | 22% 2% 125 | 10
875 269 | 17 | 36% 198 | 10 | 36% 6% 71 13

Table 2: Performance of LRU, CF, and Gray in the default Zipf workload. The LRU and Gray column
report the average cost and sample standard deviation of LRU and Gray over a sequence of thirty trials.
Costs are given in number of rotation (1 rotation = ServerDBSize broadcast ticks). The CF column gives
the percentage cost increase of CF over LRU; negative percentages correspond to cost reduction. The speed-
up column gives the average and sample standard deviation of the speed-up of Gray over LRU. Positive

percentage correspond to an improvement over LRU. The A column gives the average and standard deviation
of the cost difference of Gray over LRU.

trade-offs among heuristics. In this section, we will give results for a flat broadcast, and we will discuss
non-flat schedules in §6.

On the Random workload, Gray always outperformed LRU and CF. We defer further details to appendix
B. We will now turn to the default Zipf workload.

5.1 Zipf Workloads
5.1.1 Waiting Times

We report the waiting time statistics in table 2. The first column gives the value of the ClacheSize parameter.
The LRU and Gray columns give the cost of LRU and Gray. Costs are expressed in number of rotations
(1 rotation = ServerDBSize ticks). For each workload and for each value of CacheSize, we executed thirty
experiments, as described in appendix A. The mean column reports the average cost of LRU and Gray
in number of rotations, and the ¢ column reports the sample standard deviation. The CF% column gives
the percentage waiting time increase of CF over LRU; negative percentages would represent improvements
of CF over LRU. The speed-up and A columns are defined as follows. We executed thirty trials for each
combination of workload and CacheSize. For each experiment ¢ = 1,2, ..., 30, we computed the performance
difference A; of Gray over LRU and the speed-up speed — up, of Gray over LRU. We then took the average
speed — up, and its standard deviation and reported it under column speed-up. We took the average A; and
its standard deviation and reported it under column A. Although table entries are rounded to number of
rotations, we computed speed-ups and A’s with the exact number of broadcast ticks.

CF’s waiting times were always worse than LRU’s and increase with CacheSize from 0.1% to 36%. The
mean waiting times of LRU and Gray were less than for the Random workload (compare table 2 with table
5). We were confirmed our belief that the Random workload is harder on page replacement strategies than
a skewed access pattern. The Gray algorithm was always better than LRU. Gray outperformed LRU by 2%
to 36% (column speed-up). The speed-up of Gray over LRU increased with CacheSize. Moreover, the value
of the standard deviation is small compared to the mean. Consider for example CacheSize = 875. In this
case, the mean speed-up is 36% and the standard deviation is 6%. Therefore, we can make the following
claim: For 99.9% of all Zipf traces, the speed-up of Gray over LRU will exceed 36% —3c¢ = 18%. Analogous
claims can be made for all other experiments. So, Gray is not only superior to LRU on average, but it is
also consistently superior to LRU with high probability.

Similar considerations hold also for the cost difference A. The only difference between A and speed-up
is that while speed-up increases with CacheSize, A increases to a peak and then decreases. The percentage
difference keeps increasing because when A starts decreasing, the absolute cost also decreases.



| Trace | beThresh | ServerDBSize | Length |

epa-http 1 2674 43845
8 630 37016
NASA 95 32 1036 603907
64 734 589701

Table 3: Characteristics of the Web traces. beThresh is the broadcast threshold: only pages referenced more
than bcThresh times are broadcast. ServerDBSize is the number of distinct pages in the broadcast, and
Length is the length of the resulting trace.

5.1.2 Robustness

We defer further results to appendix C. In the appendix, we will report page fault statistics, a comparison
of PT with LRU, CF, and Gray, and we will analyze the sensitivity of our results to skewness, changes in
access patterns, and region placement. Gray always outperformed CF and LRU on average and with high
probability.

5.2 Web Workloads

We turn now to examine the algorithm performance on the Web traces. CF was severly outmatched by
the other strategies, and so we do not report its performance here. In Internet data delivery, pages that
are referenced sporadically are not usually broadcast [8, 30] (as, for example, in the motivating examples in
the introduction). We insert in the broadcast disk schedule only those pages that are broadcast more than
bcThresh times. Different values of beThresh entail a different Length of the resulting trace and a different
number of distinct pages (ServerDBSize) that appear in the broadcast. We report the resulting values of
those parameters in table 3. The NASA trace is longer than epa-http and we chose larger bcThresh values.
For the two different values of bc Thresh, the ServerDBSize is very different, whereas the trace Length is much
closer. Therefore, there are many files that are accessed very few times. Since ServerDBSize is different
in the two traces, we performed experiments for different sets of CacheSize values. Figure 3 and 4 report
percentage speed-ups of Gray over LRU for various CacheSizes.

Again, Gray always outperformed LRU. In the epa-http trace, the speed-up is modest when bcThresh = 1,
but becomes very significant when beThresh = 8, especially for larger caches. Gray significantly outperformed

LRU also on the NASA trace.

5.3 TFlat Disks: Discussion

The Gray algorithm always outperformed the other on-line algorithms LRU and CF. The Gray algorithm was
better than LRU and CF across a wide variety of synthetic workloads and two Web traces. Gray exhibited
significant speed-up both in the average and with high probability.

While Gray was always better than LRU, there are a few factors that reduced the gap between the two
algorithms:

Small caches In general, Gray’s speed-up increases with CacheSize. Small caches gave rise to the smallest
speed-up percentages in almost all workloads. The only exception was when Switch Time = 1000, where
the speed-up showed an irregular behavior. In all other workloads, small caches corresponded to small
speed-up values.

Randomness and small caches More random workloads were harder for all algorithms. Moreover, more
random workloads resulted in reduced speed-up values when CacheSize = 50 or CacheSize = 250.

Skewness and large caches When we fixed the CacheSize value and increased the skewness 8, Gray’s
speed-up diminished.
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Frequent and radical interest shifts As the access patterns shifted more frequently or more radically,
the speed-up of Gray over LRU dropped.

We remark that these factors resulted in a reduction of Gray’s speed-up, but they never resulted in LRU
outperforming Gray. Finally, we found that Gray and LRU are not sensitive to the placement of pages in
the broadcast schedule.

6 Caching and Scheduling

In this section, we will explore the relation between caching and scheduling. Caching and scheduling affect
one another. A scheduling policy determines the cost of loading a page, and thus affects the caching policy.
However, caching affects scheduling as well. For example, suppose that page p is hot. A straightforward
schedule could decide to broadcast p often. However, a caching policy might end up caching p permanently.
Therefore, a client would never access the broadcast disk for page p, and the best scheduling policy would
be not to transmit p at all.

6.1 Background
Let p; be the probability that page ¢ is requested and

_ Vi
VP

The square-root law suggests that page ¢ should be broadcast with frequency 7; (and not with probability
pi) [12, 21, 31]. The Mean Aggregate Delay (MAD) algorithm is a scheduling algorithm that approximates
the square-root law [12, 31]. The MAD algorithm maintains a value s; associated with each page i. The
quantity s; 1s the number of broadcast ticks since the last time page ¢ was broadcast. The MAD algorithm
broadcasts a page ¢ with the minimum value of (s; + 1)?p;. In particular, when all p;’s are equal, MAD
generates a flat broadcast. We remark that MAD is only an approximation of the square-root law, and
does not guarantee optimal schedules in general, but that does guarantee a cyclical schedule. The MAD
schedule can be generated very simply at the server site. On the other hand, MAD is very complex at a
client site that runs either CF or Gray. Indeed, CF or Gray need to know the next broadcast tick when
a page will be transmitted. Such information can be obtained through different implementations, but no
known implementation is either space or time efficient. MAD needs an estimate of access probability, and
thus it introduces into broadcast systems a component that is not completely on-line.

Ti

6.2 Generated and Filtered Traces

In this section, we will discuss how caches change client access patterns. Clients generate sequences of
requests to data pages, and we will say that such sequences are generated traces. In other words, a generated
trace 1s the actual sequence of pages needed by a client. Some requests in the generated sequence can be
satisfied by the local cache, while others cannot and cause a page fault. Then, clients will access the broadcast
disk for the faulting pages. In fact, clients will access the broadcast disk only for faulting pages. We will say
that the sequence of faulting pages is the filtered trace. The distinction between generated and filtered traces
is depicted in in figure 5. Filtered traces depend on client access patterns, as well as on the paging strategy
and on CacheSize. On the contrary, generated patterns depends only on client access patterns. A simple,
but important observation is that scheduling should take into account filtered traces rather than generated
ones. Indeed, the broadcast is accessed only for pages in the filtered trace, while other page references are
resolved locally. From the viewpoint of a broadcast scheduler, the filtered trace is the sequence of client
requests.

We will now investigate the transformation from generated into filtered traces, and its effect on the
resulting broadcast schedules. The histograms in figure 6 report the number of LRU faults on the horizontal
axis and the number of pages that caused that many faults on the vertical axis. Bars are relative to different
values of CacheSize.

11
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| CacheSize | Gray |

50 6509
75 6058
80 5958
90 5811
100 5621

Table 4: Cost of Gray on one default Zipf workload trace.

The major effect of caching is that it broke very long tails in the distribution of faults. When CacheSize
= 50, there were pages that cause between 1 and 70 faults. As the CacheSize increases, the number of
pages that caused a large number of faults decreased and then disappeared. Correspondingly, the number
of pages that caused few faults increased. In other words, traces filtered by large caches no longer showed
a large variation in the number of faults a page causes. In conclusion, the filtered trace lost the long tails
of the generated trace. However, more subtle effects appear when caching is used. In particular, while the
generated trace is a sequence pages extracted independently one of the other, such assumption is no longer
valid for filtered traces. For example, when LRU is used, if a page ¢ causes a fault at request ¢, then it will
not cause another fault before request ¢ + CacheSize.

We now turn to discuss the effect of the tail cutting for a square-root broadcast scheduler. If CacheSize
= 50, then the most frequently broadcast page will be transmitted v/70 ~ 8.4 times more often than the least
frequently broadcast page. If CacheSize = 250, the ratio already drops to v/22 ~ 4.7, and if CacheSize =
875, the ratio is v/3 ~ 1.7. In conclusion, caching cuts long tails in the fault distribution and the square-root
law contracts the schedule skewness even more.

6.3 Should Gray go MAD?

There are two serious difficulties in the way of an integration of Gray with MAD: circularity of the problem
and efficiency of the implementation. The behavior of Gray depends on the broadcast schedule. Therefore,
the filtered trace depends on the scheduling algorithm. However, scheduling parameters depend on page
frequencies in the filtered trace. Therefore, the integration of Gray and MAD gives rise to a circular problem.
Moreover, even if the probability estimates had been fixed and MAD was run, it is not clear how to efficiently
calculate future transmission times and how to extend Gray’s efficient implementation that we presented for
a flat schedule.

6.4 Caching and Scheduling in Isolation

Both scheduling and caching improve performance in isolation. In this section, we measure how caching and
scheduling compare with each other. On one side, we will have the scheduling algorithm MAD when there
is no cache, on the other Gray as CacheSize increases and the schedule is flat. The set-up 1s the same as
that described in §4 for the default Zipf workload. The only difference is that we use only one trace instead
of thirty because we do not have an efficient implementation of MAD. MAD is subjected to a warm-up
process during which it is run for a random number of times between 0 and ServerDBSize. The probability
estimates p; used by MAD are obtained as follows. First, we measured the frequency with which ¢ occurs
in the trace. Such frequencies are then divided by the trace Length. The resulting p;’s are the maximum
likelihood estimates of actual probabilities. Several pages will have p; = 0 and MAD will never broadcast
them. In order to make a fair comparison between Gray and MAD, we will count a MAD rotation equal
to the number of pages with positive p;’s. The algorithm MAD took 5909 rotations to satisfy the resulting
trace. By comparison, Gray costs are reported in table 4. Scheduling brought about the same performance
improvement of a cache of size between 80 and 90 managed by Gray.

13
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Figure 7: Performance of Gray on a flat broadcast against LRU’s performance on a MAD broadcast. The
cost difference and speed-up are relative to the cost of LRU on a flat broadcast. Graph scales differ.

6.5 Flat Gray vs. MAD LRU

We now turn to examine the performance of Gray on a flat broadcast against that of LRU on a MAD
broadcast. The probability estimates p; used by MAD are obtained with a procedure similar to that in the
previous section. Access frequencies are estimated from the trace filtered by the appropriate CacheSize, and
then divided by the Length of the filtered trace. We compared flat Gray and MAD LRU against flat LRU
and report speed-ups and A’s in figure 7(a).

Both flat Gray and MAD LRU improved over flat LRU for all values of CacheSize. However, MAD
LRU is more effective for smaller CacheSizes, whereas flat Gray is more effective for larger CacheSizes. An
important remark is that, for all CacheSizes, the MAD schedule is obtained from filtered trace frequencies,
and so it 18 perfectly tailored for that particular value of CacheSize. The two curves intersect for CacheSize
between 250 and 500.

A summary of our findings is:
e The MAD schedule became closer and closer to a flat one as CacheSize increases (as discussed in §6.2).
o Figure 7 shows that also MAD LRU’s performance became closer and closer to flat LRU.
e Table 2 and figure 7 show that Gray’s speed-up over flat LRU increased with CacheSize.
In conclusion, Gray outperformed LRU when caches are big, and MAD had no power to help LRU in those

cases because it generated a rather flat broadcast.

6.6 MAD and Noisy

MAD uses the parameters p;, which are probability estimates that page ¢ will be requested of the broadcast.
In general, we cannot expect to have always a precise estimate of access probabilities; and in this section we
will examine how imperfect estimates affect algorithm performance. Of course, Gray on a flat schedule does
not depend on any probability estimate, but MAD LRU does. As a consequence, Gray performance will be
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Figure 8: Performance of Gray and MAD LRU under noise for CacheSize = 250. The parameter A is a
bound on the multiplicative noise introduced in the probability estimate.

plotted as a constant values for any type of noise, while MAD LRU’s will change. First, we study the effect of
noise by adding directly an error term to the probability estimates. We compute probability estimates from
the filtered trace exactly like in the previous section, add a random noise, renormalize the resulting values,
and then run MAD LRU with the noisy probability estimates. If p; is the probability estimate obtained from
the filtered trace and A; is a random value in the interval (—A, 4+A), our noisy probability estimates are

o= (14 X\)p;
(LA p;

When A increase, the noise in the estimates increases as well. Our findings for different values of A and for
CacheSize = 250 are reported in figure 8. MAD LRU outperformed flat Gray when there 1s little noise, but
it was worse for A > .35.

We turn to measure a type of error that arises as a direct consequence of caching and is due to a wrong
estimate of the CacheSize. In §6.5, the p; values were obtained from the frequencies in the filtered trace.
However, the filtered trace depends on the value of CacheSize, and a wrong estimate of CacheSize leads to
a wrong estimate of the p;’s. The error is analyzed in figure 7. In figure 7(b), the MAD schedule is obtained
under the assumption that there is no cache, while in fact the CacheSize takes increasing values. In figure
7(a), the MAD schedule is obtained from the right estimate of CacheSize. While the difference between the
two MAD LRUs is small for CacheSize = 50, MAD LRU (with wrong CacheSize) is much worse than MAD
LRU (with right CacheSize) for larger values of CacheSize. When CacheSize > 500, MAD LRU (wrong
CacheSize) is even worse than flat LRU. The intersection point between the flat Gray and the MAD LRU
curves has now decreased to CacheSize < 250.

6.7 Web Workload

Figure 9 gives flat Gray’s and MAD LRU’s speed-up over flat LRU on the epa-http workload for beThresh =
8. Again, MAD LRU is better for smaller caches and flat Gray is better for larger caches. The balance point
was for CacheSize slightly less than 250, which is about 1/3 of the ServerDBSize for this trace (compare
with table 3).

6.8 Discussion

In general, MAD helped LRU if the CacheSize is small, while Gray on a flat schedule was better for larger
caches. For large caches, Gray outperformed MAD LRU even when the broadcast schedule was perfectly
tailored to LRU’s access pattern. In synthetic workloads, the intersection point depended on the error in the
probability estimates, but it was roughly for CacheSize = 250, a value that is not particularly big compared
with the size of the AccessRange = 1000.
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On the positive side, MAD led to significant performance improvements for small caches. On the negative
side, MAD is a qualitatively different algorithm from flat Gray because MAD requires knowledge of access
probability. Thus, MAD is not completely on-line. Moreover, complicate scheduling is hard to justify when
client access patterns do not match estimated ones or when actual cache sizes are bigger than anticipated.
Non-flat scheduling makes cost-dependent paging strategies (e.g. Gray) hard to implement efficiently. In
mobile computing, non-flat schedules require that a complicate indexing structure be maintained in order
to keep track of the schedule itself [26]. As a consequence, complicate algorithms are needed at the server
and client sites to build and look-up the index and part of the bandwidth is now employed to broadcast the
index rather than data pages. In conclusion, the adoption of a non-flat schedule could be beneficial, but
it depends on the accuracy of delicate assumptions on access patterns and cache sizes, and it complicates
paging and indexing algorithms.

7 Related Work

Broadcast disks have received substantial attention in the literature. Survey papers summarize previous
contributions to the broadcast disk literature, areas of research, and the position of broadcast disks among
other push and push/pull data dissemination architectures [20]. Information dissemination on the Internet
has been considered by various authors [14, 17, 37] and systems [1, 2]. Cyclic multicast over the Internet is
discussed in [8].

Ammar gives a prefetching strategy that loads pages on the basis of links embedded in previously loaded
pages [9]. Other approaches execute prefetching without using hints. Acharya el al. considered prefetching
on broadcast disks, and propose the PT algorithm, which we described in §3 [5]. Subsequently, Tassiulas
et al. considered optimal algorithms for prefetching when more than one page can be requested in one
broadcast tick [34]. Both works assume that traces of page requests are generated by a stationary probability
distribution and that paging strategies know it. The Gray algorithm was the first completely on-line strategy
tailored for broadcast disk paging [25]. While the Gray algorithm had been analyzed in the worst-case, no
simulation result was known before the present paper. No previous paper has given efficient implementation
of broadcast disk paging algorithms.

Prefetching in broadcast disks is somewhat related to other techniques used in mobile environments
[13, 27, 32]. The difference is that broadcast disks prefetching aims at improving performance, whereas
other works focus on increasing availability or avoiding accesses to stale data.
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Broadcast disk paging poses a trade-off between the number of page faults and the cost per fault. Similar
trade-offs exist in a variety of context, as for example, Web caching [7, 35] and hierarchical paging [15].

The problem of finding an optimal cyclic schedule is NP-hard [12], but it can be solved in polynomial time
if ServerDBSize = 2 [11]. The square-root law has been proposed by several authors [10, 9, 21, 31]. The golden
ratio algorithm instantiate the rule and gives a 1.125-approximation for all ServerDBSizes [12]. A simpler
approximation of the rule is the MAD algorithm [31, 12]. Scheduling with non-uniform transmission times
has been investigated as well [24, 36]. In a mobile environment, the objective of scheduling is to minimize
a combination of response time and tuning time. Khanna et al. present an algorithm that inserts index
pages along the server broadcast and perform scheduling in order to reduce both response and tuning time
[26]. Several authors have studied the problem of broadcast scheduling when pull is also supported [6, 3, 30].
The crux of scheduling is the estimation of page popularities. Stathatos et al. use a pull backchannel for
data communication and, indirectly, to estimate page popularity and its dynamic over time [30]. Our work
assumes that no backchannel is integrated with broadcast disks, and so scheduling is necessarily an off-line
procedure. To the best of our knowledge, the relationship between server scheduling and client caching had
not been studied prior to the present paper.

8 Summary and Conclusion

In this paper, we have studied client caching in broadcast disks and its relation with the broadcast schedule.
We considered on-line algorithms, that is, algorithms that do not know future data requests and that do
not have a probabilistic estimate of access patterns. On-line algorithms are critical in many circumstances
because probability estimates are often unavailable, difficult to validate, or inaccurate. First, we considered
a flat broadcast schedule, that is, one where all data items are broadcast with the same frequency, and then
we turned to examine the relation between caching and broadcast schedules. For a flat broadcast:

e We gave new efficient implementations of various broadcast disk paging algorithms. Although we used
well-known and practical algorithms, we reduced PT’s running time per fault from quadratic to linear.

e We conducted the first experimental analysis of the Gray algorithm. Gray outperformed our other on-
line algorithms (LRU and CF) on average and with high probability across a large number of synthetic
workloads. Gray outperformed LRU also on Web trace simulations.

e In particular, Gray improved performance even if client access patterns shifted over time.

In conclusion, the Gray algorithm does not use any probabilistic assumption and substantially outperforms
traditional on-line algorithms in a variety of settings.

We then turned to investigate several trade-offs between caching and scheduling algorithms. We consider
MAD schedules, a simple, but provably good scheme to broadcast data on the basis of client access patterns
[12, 31]. MAD LRU was effective when caches were small, but not for larger caches. Meanwhile, Gray on
a flat schedules became progressively more effective. The balance point was for caches of size 250, which
is between 1/4 and 1/3 of the working set in our experiments. However, MAD LRU is inherently different
from flat Gray, because MAD LRU requires knowledge of access probabilities. Consequently, MAD LRU is
affected by errors in probability estimates, while flat Gray i1s not. Moreover, MAD and all other non-flat
schedules complicate the implementation of caching strategies and indexing structures. Flat Gray is more
effective for larger caches, and it 1s a better choice in a truly on-line setting.
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Simulation Details

We generated thirty sequences for each workload. The same thirty traces were used for all algorithms

and

all cache sizes. We collected average values across the thirty traces, as well as standard deviations.

The sequences were generated with an inversive congruential random number generator. The properties
of inversive congruential generators have been studied in theory [18, 19] and experimentally [29]. The
implementation we used is contained in the pLab package, version 2.2 (http://random.mat.sbg.ac.at/).
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LRU Gray speed-up A
CacheSize | mean | o CF% mean | 0 | mean | o mean | o
50 7395 | 40 | -0.03% | 7383 | 40 | 0.18% | 0.06% 12 4.8
250 6996 | 45 | -0.037% | 6938 | 42 | 0.84% | 0.2% 58 11
500 6508 | 43 | -0.0563% | 6394 | 41 | 1.8% 0.2% 114 10
750 6028 | 44 | -0.039% | 5862 | 41 | 2.8% 0.3% 165 18
875 5786 | 36 | -0.043% | 5601 | 42 | 3.3% 0.4% 185 21

Table 5: Performance of LRU, CF, and Gray in the Random workload. The LRU and Gray column report the
average cost and sample standard deviation of LRU and Gray over a sequence of thirty trials. Costs are given
in number of rotation (1 rotation = ServerDBSize broadcast ticks). The CF column gives the percentage
cost increase of CF over LRU; negative percentages correspond to cost reduction. The speed-up column
gives the average and sample standard deviation of the speed-up of Gray over LRU. Positive percentage
correspond to an improvement over LRU. The A column gives the average and standard deviation of the
cost difference of Gray over LRU.

We used a period p = 2147483647, and parameters a = 14288, b = 758634. We validated some of our earlier
experiments with random(3B), the non-linear additive feedback random number generator in the SunOS/BSD
compatibility library with a state of 256 bytes. We could not observe significant differences between random
and the inversive congruential generator. We extracted Zipf random values with the algorithm by Gray et al.
[22], which does not exactly extract Zipf values, but an approximation of the Zipf distribution. We wrote our
simulator in C and performed our experiments on a SUN SPARCstation LX with the gcc -03 compiler. We
measured the waiting time incurred by the algorithms after the following warm-up process. Fach algorithm’s
cache is filled with the first CacheSize distinct pages requested in each sequence. In addition, LRU will have
those warm-up pages in LRU order. In the Web workloads, we assumed that the broadcast pages are large
enough to contain every file in the trace. We remark that this is only a simulation choice, and that we could
have taken smaller page sizes. Another simulation choice was to scatter the pages in random order along
the cyclical broadcast.

B Random Workload

We first report the results on the Random workload in table 5.

The algorithms had all roughly the same cost. However, Gray always outperformed LRU. The speed-up
of Gray over LRU increases with CacheSize and it reaches 3% for CacheSize = 875. We now turn to the
Zipf workload, which will be the main focus of the rest of the paper.

C Robustness

In this section, we report some results that have been omitted from the regular paper. The results are
relative to the default Zipf workload. We examine the number of page faults (as opposed to waiting times)
and algorithm sensitivity to skewness and changes in access patterns, we compare PT with the LRU, CF,
and Gray, and we analyze the sensitivity of the on-line algorithms for changes in the region placement.

C.1 Page Faults

We report statistics on the page fault rate in table 6. The number of page faults is not the best performance
measure for broadcast disks — waiting time is. However, we give page fault statistics because it 1s interesting
to compare page fault rates with waiting times. We give the number of page faults incurred by LRU and the
percentage increase in number of page faults incurred by CF and Gray. Negative percentages would show
an improvement of CF or Gray over LRU.
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| CacheSize | LRU | CF | Gray |

50 13284 | 0.42% | 0.058%
250 7854 | 8.3% 1.8%
500 3821 20% 4.4%
750 1384 32% 6.1%
875 539 38% 7.8%

Table 6: Number of page faults incurred by LRU, CF, and Gray. The LRU column reports the number of
page faults incurred by LRU. The CF and Gray columns report the percentage increase in the number of
page faults incurred by CF and Gray.

|Cach65ize | PT | LRU | CF | Gray |

50 5188 | 28.07% | 28.24% | 25.73%
250 2346 | 67.42% | 80.66% | 56.57%
500 951 | 100.7% | 139.6% | 79.13%
750 216 | 219.7% | 316.3% | 161.6%
875 47 | 470.4% | 674.2% | 319.4%

Table 7: Comparison between the on-line algorithm and PT. PT’s cost is in number of rotations. The on-line
algorithm columns report the gap between the algorithm and PT.

We notice the following facts. The number of page faults of LRU decreased with CacheSize. CF’s was
within .4% to 38% of LRU, and the gap increased with CacheSize. CF’s percentage increase in number of
page faults was bigger than CF’s increase in waiting times (compare with table 2). Therefore, CF spent less
waiting time than LRU per fault. Unfortunately, CF incurred such a larger number of faults that its total
waiting time i1s much worse than LRU’s. Gray was always worse than LRU in terms of number of page faults.
The percentage difference was as high as 7.8%. The relative difference increased with CacheSize. However,
Gray always outperformed LRU in terms of waiting times, which is to say, Gray waited less than LRU on a
page fault. In fact, the largest speed-up of Gray over LRU (38%) occured when it CacheSize = 875, which
is also when the number of page faults was favoring the most LRU over Gray (7.8%). In conclusion, the
number of page faults was not a predictor of waiting times. For example, Gray became better and better
than LRU while at the same time it occurred a larger and larger relative number of page faults. Gray was
much better than CF in terms of page faults.

C.2 On-line Algorithms and PT

We compared the on-line algorithms with PT. Our findings are in table 7. PT significantly outperformed
the three on-line algorithms in our experiments. When the cache size is 50, PT outperformed the on-line
algorithms by 26% to 28%. As the cache grew larger, all percentage differences became larger. Eventually,
when the cache size is 875, Gray was 3.2 times worse than PT and LRU was 4.7 times worse than PT. The
gap between PT and the on-line algorithms was always much bigger than the gap between any two on-line
algorithms. There was a very significant gap between our on-line algorithms and PT. However, it is not
clear whether improved on-line algorithms could reduce such gap or if a substantial performance difference
1s intrinsically due to PT’s use of off-line information.

C.3 Sensitivity to Skewness

We now examine the algorithm behavior when the Zipf skew parameter § was varied. Our results are in
table 8. Notice that the subtable corresponding to § = 0.95 is identical to table 2. For any fixed CacheSize,
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LRU Gray speed-up A

CacheSize # | mean | o CF% mean | 0 | mean | o mean | o
50 0 7097 | 39 | -0.068% | 7037 | 42 | 0.86% | 0.2% 60 12
25| 7080 | 33 | -0.013% | 7019 | 34 | 0.87% | 0.1% 61 10

5| 7010 | 36 | -0.12% 6937 | 36 1% 0.1% 72 10

75| 6855 | 34 | -0.042% | 6765 | 32 | 1.3% | 0.2% 90 16

.95 | 6644 | 32 0.13% 6523 | 35| 1.9% | 0.3% | 121 18

250 0 5519 | 41 -0.14% 5252 | 41 | 5.1% | 0.3% | 266 | 16
25| 5435 | 42 | 0.079% 5164 | 35 | 5.2% | 0.5% | 270 | 25

b bl143 | 46 1.1% 4861 | 40 | 5.8% | 0.4% | 281 | 21

7H | 4577 | 46 3.7% 4296 | 39 | 6.5% | 0.5% | 280 | 22

.95 | 3927 | 46 7.9% 3673 | 44| 6.9% | 0.6% | 254 | 21

500 0 3574 | 42 | -0.0028% | 3162 | 26 | 13% 1% 411 | 36
.25 | 3458 | 44 0.8% 3004 | 30 | 13% 1% 404 | 34

b | 3068 | 42 4.9% 2706 | 37 | 13% | 0.7% | 351 18

7H | 2458 | 41 12% 2182 | 37 | 13% 1% 275 | 25

.95 | 1909 | 31 19% 1704 | 29 | 12% 1% 204 | 19

750 0 1704 | 23 | -0.71% 1318 | 19 | 29% 2% 386 | 19
.25 | 1594 | 28 2.3% 1236 | 21 | 29% 2% 358 | 20

b 1308 | 25 10% 1035 | 19 | 26% 2% 273 | 21

THh | 96h | 27 21% 775 18 | 25% 3% 190 | 19

95 692 | 20 30% 566 18 | 22% 2% 125 | 10

875 0 807 | 21 -1.2% 549 14 | 4% 3% 257 | 16
25 730 | 22 5.7% 500 15 | 46% 4% 230 | 20

D 574 | 17 14% 405 16 | 42% 5% 169 | 16

75| 400 | 18 27% 287 | 13 | 40% 5% 113 | 13

95| 269 | 17 36% 198 10| 36% 6% 71 13

Table 8: Sensitivity to changes in access pattern skewness.
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the absolute cost of LRU and Gray decreased as 6 increased. Both algorithms were able to exploit the
increased locality of a more skewed distribution. The result is consistent with our previous comparison of
the Random workload with the Zipf workload. In fact, if we order the workloads according to their skewness
from Random (no skew) to # = 0,...,.95 (more skewed), we observe that the algorithm cost decreased as
the distribution became more and more skewed. The Gray algorithm was always better than LRU. Once
again, standard deviations were smaller compared to mean values, which implies that Gray was superior to
LRU with high probability.

We now turn to summarize the trends of the speed-up and A as the parameters CacheSize and € change.
For a fixed value of CacheSize, the speed-up increased with 8 when CacheSize = 50, 250 and decreased when
CacheSize was larger. The largest value of the speed-up was found for the largest CacheSize = 875 and for
the smallest # = 0. For any fixed value of 8, the speed-up increased with CacheSize. An increased § worked
against Gray’s speed-up when the cache is large. In other words, LRU took better advantage of a skewed
access pattern when there was a larger cache.

For a fixed value of CacheSize, the difference A increases with § when CacheSize = 50, it reached a peak
and decreased when CacheSize = 250, and decreased when CacheSize was larger. The largest difference
occured when CacheSize = 500 and # = 0. For a fixed value of 8, A always reached a peak and then
deceased as CacheSize increased.

We turn now to examine CF’s performance. First of all, we notice that when CF outperforms LRU,
the improvement is not statistically significant. For example, when CacheSize = 875 and # = 0, then CF
has a 1.2% improvement over LRU. In other words, CF cost was (100% — 1.2%)x (the waiting time of
LRU), which is .988 - 807 ~ 797 rotations. The cost difference between LRU and CF is 10 rotations, which
is less than LRU’s standard deviation. Analogous computations hold whenever CF outperformed LRU. In
conclusion, there was no experiment where CF outperformed LRU in a statistically significant way. For a
fixed CacheSize, CF became worse than LRU as # increased. Consider now a fixed § and vary the CacheSize.
There was no statistically significant change with CacheSize when 6 = 0, but CF was worse and worse than
LRU as the CacheSize increases when 6 > 0.

In conclusion, although speed-ups and differences varied with CacheSize and 8, Gray was always superior
to LRU both on average and with high probability.

C.4 Sensitivity to Changes in Access Patterns

In table 9 we report our findings for the case when the client access pattern changes with time. For a
given value of CuacheSize, the rows are ordered from SwitchTime = 1000, Offset = 45 (frequent and radical
interest shifts) to SwitchTime = 8000, Offset = 25 (infrequent and gradual shift). For a fixed CacheSize,
the waiting time of LRU and Gray decreased as the shift become more gradual and infrequent. Again, Gray
outperformed LRU and small standard deviations clearly separate the two algorithms. However, Gray’s
speed-up was not as large as when there was no access pattern shift. When CacheSize = 50, there is no
significant difference between LRU and CF. However, significant differences were found for larger values of
CacheSize, and CF was up to 72% worse than LRU.

C.5 Sensitivity to Region Placement

We now discuss how region placement affects algorithm performance. Our results are in table 10. We will
also compare table 10 with the default Zipf workload of table 2. LRU and Gray were largely independent
of the region placement. In fact, for any given algorithm and for fixed cache sizes, cost differences were
small compared with standard deviations. CF improved on LRU only for CacheSize = 875 in the uniform
region workload, but such improvement is not statistically significant. However, CF did better in the uniform
and reverse workload than in the default Zipf workload (scattered regions) — compare table 2 and 10. In
conclusion, LRU and Gray were not influenced by region placement, while CF actually improved if the
regions are not scattered. By contrast, Acharya et al. showed two off-line algorithms that benefited from
scattering [5]. We do not know if there is any “sensible” on-line algorithm that would benefit from scattering.
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LRU Gray speed-up A
CacheSize | SwitchTime | Offset | mean | o | CF% | mean | o | mean | o mean | o
50 1000 45 6660 | 36 | 0.34% | 6547 |36 | 1.7% | 0.2% | 112 | 12
25 6650 | 42 | 0.27% | 6535 |42 | 1.8% | 0.2% | 115 | 13
8000 45 6642 | 39 | 0.22% | 6522 |41 | 1.8% | 0.2% | 120 | 14
25 6643 | 38 | 0.24% | 6525 |36 | 1.8% | 0.3% | 118 | 17
250 1000 45 4307 | 43 | 12% | 4147 | 38 | 3.9% | 0.5% | 160 | 22
25 4163 | 44 | 11% 3980 | 40 | 4.6% | 0.6% | 183 | 23
8000 45 3955 | 45 | 8.5% | 3707 |40 | 6.7% | 0.6% | 247 | 20
25 3946 | b4 | 8.2% | 3692 |46 | 6.9% | 0.7% | 2h3 | 24
500 1000 45 3202 | 30 | 20% 3163 | 40 | 1.2% | 0.6% 39 18
25 2747 | 36 | 22% 2641 | 43| 4% | 0.9% | 106 | 22
8000 45 1998 | 30 | 24% 1807 | 32 | 11% 1% 191 | 21
25 1960 | 32 | 23% 1763 | 32 | 11% 1% 197 | 19
750 1000 45 2846 | 33 | 15% 2782 | 34 | 2.3% | 0.4% 63 12
25 2135 | 36 | 23% 2065 | 37 | 3.9% | 0.5% 79 10
8000 45 890 | 22 | 51% 808 | 17 | 10% 1% 82 11
25 829 | 23 | 46% 735 | 20 | 13% 2% 93 12
875 1000 45 2680 | 34 | 13% 2604 | 30 | 2.9% | 0.4% 76 11
25 1913 | 34 | 23% 1826 | 30 | 4.8% | 0.7% 87 13
8000 45 551 | 17 | 72% 495 | 24 | 11% 4% 55 19
25 472 | 15| 66% 400 | 20 | 18% 5% 71 18
Table 9: Sensitivity to changes in access pattern.
LRU Gray speed-up A
Workload | CacheSize | mean | o CF% | mean | o | mean | o mean | o
Uniform 50 6646 | 35 | 0.082% | 6525 | 34 | 1.8% | 0.3% | 120 18
250 3937 | 40 | 4.4% 3653 | 41 | 7.8% | 0.7% | 284 | 23
500 1909 | 34 | 2.9% 1687 | 29 | 13% 1% 221 17
750 697 | 21 | 0.43% 563 | 20 | 24% 3% 133 14
875 270 | 14 ] -0.96% | 195 | 10 | 39% 5% 75 8.5
Reverse 50 6645 | 28 | 0.18% | 6520 | 31 | 1.9% | 0.2% | 125 14
250 3937 | 53 | 5.3% 3661 | 45 | 7.5% | 0.6% | 275 24
500 1916 | 33 | 5.6% 1690 | 28 | 13% 1% 226 23
750 694 | 19 7% 563 | 15 | 23% 2% 131 12
875 272 | 12 | 4.4% 197 9 | 38% 6% 75 11

Table 10: Sensitivity to changes in region placement.

24




