
Structure and Performance of Decision Support Algorithms onActive DisksMustafa Uysal Anurag Acharya Joel SaltzDept. of Computer Science Dept. of Computer Science Dept. of Computer ScienceUniversity of Maryland University of California University of MarylandCollege Park Santa Barbara College ParkAbstractGrowth and usage trends for large decision support databases indicate that there is a need for archi-tectures that scale the processing power as the dataset grows. These trends indicate that the processingdemand for large decision support databases is growing faster than the improvement in performance ofcommodity processors. To meet this need, several researchers have recently proposed Active Disk/IDISKarchitectures which integrate substantial processing power and memory into disk units. In this paper,we examine the utility of Active Disks for decision support databases. We try to answer the followingquestions. First, is it possible to restructure algorithms for common decision support tasks to utilize Ac-tive Disks? Second, how does the performance of Active Disks compare with that of traditional serversfor these tasks? Finally, how would Active Disks be integrated into the software architecture of decisionsupport databases?1 IntroductionGrowth and usage trends for large decision support databases indicate that there is a need for architecturesthat scale the processing power as the dataset grows. These trends indicate that the processing demandfor large decision support databases is growing faster than the improvement in performance of commodityprocessors. Results from the 1997 and 1998 Winter Very Large Database surveys document the growthof decision support databases [52, 53]. For example, the Sears Roebuck and Co decision support databasegrew from 1.3 TB in 1997 to 4.6 TB in 1998. The usage trends indicate that there is a change in userexpectations regarding large databases { from primarily archival storage to frequent reprocessing in theirentirety. Patterson et al [37] quote an observation by Greg Papadopolous - while processors are doublingperformance every 18 months, customers are doubling data storage every nine-to-twelve months and wouldlike to "mine" this data overnight to shape their business practices [36].1

To meet this need, several researchers have recently proposed Active Disk/IDISK architectures whichintegrate substantial processing power and memory into disk units [2, 22, 27, 42]. These architectures allowapplication-speci�c code to be downloaded and executed on the data that is being read from (written to)disk. To utilize Active Disks, an application is partitioned between a host-resident component and a disk-resident component. The key idea is to o�oad bulk of the processing to the disk-resident processors andto use the host processor primarily for coordination, scheduling and combination of results from individualdisks. Active Disks present a promising architectural direction for two reasons. First, since the number ofprocessors scales with the number of disks, active-disk architectures are better equipped to keep up withthe processing requirements for rapidly growing datasets. Second, since the processing components areintegrated with the drives, the processing power will evolve as the disk drives evolve. This is similar to theevolution of disk caches { as the drives get faster, the disk caches become larger.In this paper, we examine the utility of Active Disks for decision support databases. We try to answerthe following questions. First, is it possible to restructure algorithms for common decision support tasks toutilize Active Disks? To be able to take advantage of Active Disks, it should be possible to partition thesealgorithms such that most of the processing can be o�oaded to the disk-resident processors. Second, howdoes the performance of Active Disks compare with that of traditional servers for these algorithms? Finally,how would Active Disks be integrated into the software architecture of decision support databases?We address these questions in three ways. First, we present Active Disk algorithms for a suite of eightcommon decision support tasks: select, aggregation, group-by, the datacube operation [24], external sort,project-join queries, datamining association rules from retail transaction data and materialized views. Wehave derived these algorithms from well-known e�cient algorithms in the literature [4, 7, 14, 21, 40, 54].Second, we compare the performance of Active Disks with that of shared memory multiprocessor servers forthese tasks. Shared memory multiprocessors are widely used for relational databases (Strenstrom et al [48]estimate that in 2000, 40% of such machines will be sold for handling relational databases). Finally, we showhow the stream-based programming model that has been proposed for Active Disks [2] meshes well with thesoftware architecture of relational databases.2 Background: Active DisksIn this section, we provide a brief introduction to Active Disks. Active Disks integrate signi�cant processingpower and memory into a disk drive and allow application-speci�c code to be downloaded and executed onthe data that is being read from (written to) disk. To utilize Active Disks, an application is partitionedbetween a host-resident component and a disk-resident component. The key idea is to o�oad bulk of theprocessing to the disk-resident processors and to use the host processor primarily for coordination, schedulingand combination of results from individual disks. Figure 1 presents a schematic for Active Disk architectures.Acharya et al [2] propose a stream-based programming model for disk-resident code (a disklet) and its2

P DRAM PP DRAMDRAM P DRAM

I/O Interconnect

. . .

HostDRAMP
external

network

Figure 1: Schematic of Active Disk architectures. The I/O interconnect is Fibre Channel (one or morearbitrated loops { multiple loops are connected via switches). Note that individual disks can communicatedirectly with each other as well as with the front-end host. All interaction with external clients is handledby the front-end host.interaction with its peers on other disks as well as on the front-end host. Disklets take streams as inputsand generate streams as outputs. Each disklet must have at least one input stream and at least one outputstream. Files (and ranges in �les) are represented as streams. Streams are accessed using a standard interfacewhich delivers the data in bu�ers whose size is known a priori. Each disklet has an initialization functionwhich is run when the disklet is installed and a processing function (read/write) which is run as data isread/written. It may, optionally, contain long-term scratch space (which is allocated on its behalf before itis installed and is automatically reclaimed after it exits), a set of parameters that can be used to customizeits behavior, and a �nalization function which is run when the disklet terminates (either by consuming thedata on all its input streams or by calling exit).A disklet is not allowed to initiate I/O operations on its own. All I/O operations are initiated by thehost-resident program and are checked for validity by the host-resident �le-system. This has two advantages.First, disklets cannot corrupt the �le-system. Second, the operating-system layer on the disk need notprovide �le-system functionality. While a disklet is not allowed to initiate I/O operations, it is allowedto skip subranges in an input stream by notifying the operating-system layer on the disk. The skippedsubranges are not delivered to the disklet. This allows disklets to safely implement algorithms in whichfuture I/Os depend on data from previous I/Os. For example, an algorithm that uses a disk-resident indexto decide which chunks of data are to be read can be implemented by a disklet with two input streams { onecorresponding to the index �le and the other corresponding to the data �le. It uses the data delivered onthe index stream to decide which parts of the data stream are to be read and which are to be skipped. Animportant feature of this model allows multiple streams to be merged. Bu�ers delivered over the streamsbeing merged are interleaved in arbitrary order and are delivered as coming from a single stream to thedestination disklet. This allows disklets with a large number of communicating peers to avoid needlesspolling on individual streams. 3

A disklet cannot allocate or free memory. All memory management is done by the operating-systemlayer on the disk. Furthermore, all memory accesses by a disklet must be within a sandbox de�ned by thebu�ers for its input stream(s) and the long-term scratch space (if any). The disklet binary is analyzed atdownload-time (as in software fault-isolation [50]); disklets that may violate memory-safety are rejected. Thestream-based programming model simpli�es the analysis as it de�nes a natural sandbox for disklets.Communication between a disklet and its environment is restricted to its input and output streams. Thesources and sinks for these streams are speci�ed by the host-resident program as a part of the installation ofthe disklet. A disklet is not allowed to determine (or change) where its input stream comes from or where itsoutput stream goes to. This has two advantages. First, a disklet does not handle bu�ering and schedulingfor its communication, the operating-system layer does. This reduces the complexity of disklets. Second,in a heterogeneous environment with both Active Disks and conventional disks, this allows disklets thatprocess data from conventional disks to be transparently executed on the front-end host (or on dedicatedcomputation nodes).Active Disks require a thin layer of operating system support (the DiskOS) at the disk. The DiskOSprovides three services { memory management, stream communication and disklet scheduling. The stream-based model simpli�es memory management as all memory is allocated in contiguous blocks whose size isknown a priori and the lifetime of all blocks is known. The stream-based model also simpli�es the commu-nication support required as all stream bu�ers are allocated and managed by the DiskOS. Depending on theamount of memory available, it can allocate multiple bu�ers and overlap data movement and computation.The stream-based model also simpli�es scheduling for disklets. A disklet is ready to run whenever there isnew data available on one or more of its input streams.3 AlgorithmsIn this section, we present Active Disk algorithms for eight common decision support tasks: select, aggrega-tion, group-by, the datacube operation [24], external sort, project-join queries, datamining association rulesfrom retail transaction data and maintainingmaterialized views. In addition, we also describe shared memorymultiprocessor (SMP) algorithms for these tasks. We use the SMP algorithms to help compare the perfor-mance of Active Disks with that of SMPs. For each task, we started with a well-known e�cient algorithmfrom the literature and adapted it for each architecture and the corresponding programming model.For Active Disks, we adapted the algorithms to use the stream-based programming model. Note that,overlapping computation, communication, and I/O is handled by the DiskOS (the disk-resident OS layer)by using multiple bu�ers per stream. For SMPs, we adapted the algorithms to use one-way block-transfers(shmemput/shmemget) and remote queues [13] for moving data between processors. Given the volume ofdata being transferred and the one-way nature of the data movement, block-transfers and remote queuesare suitable for these tasks. We striped each �le over all disks using a 64 KB chunk size per disk. To4

take advantage of the aggressive I/O subsystem, each processor issues up to four 256 KB asynchronousrequests (each request transferring 64 KB from four disks). Note that for sort and join, which shu�e theirentire dataset and write it back to disk, we partitioned the disks into separate read and write groups (as inNOW-sort [7]). Since all processors can address all disks, we did not a priori partition the input datasetsto processors. Instead, we maintained two shared queues (read/write) of �xed-size blocks in the order theyappear on disk. When idle, each processor locks the queue and grabs the next block o� the queue. Thistechnique reduces the seek costs at the disks as the overall sequence of requests roughly follows the order inwhich data has been laid out on disk. A priori partitioning of the dataset would result in a potentially longseek for every request.SQL select and aggregate: these are simple one-pass algorithms { select �lters tuples from a relationbased on a user-speci�ed predicate and aggregate computes a single aggregate value for all tuples in arelation.1 The Active Disk algorithm performs the �ltering/aggregation locally and forwards the results tothe front-end host. The front-end concatenates/aggregates data from di�erent disks. In the SMP algorithm,each processor dynamically selects 256 KB chunks from the input relation and directly writes the results tothe destination bu�er using block-transfer. Both select and aggregate perform little computation/byte.SQL group-by: The group-by operation computes a one-dimensional vector of aggregates indexed by alist of attributes [32]. It partitions a relation into disjoint sets of tuples based on the value(s) of indexattribute(s) and computes an aggregate value for each set of tuples. Graefe [21] shows that hashing-basedtechniques outperform sort-based and nested-loop-based techniques for implementing the group-by operation.Accordingly, we used the hashing-based algorithm from [21] as the starting point for our algorithms. TheActive Disk algorithm performs the group-by in two steps. In the �rst step, each disk performs localgroup-bys as long as the number of aggregates being computed �ts in its memory. When it runs out ofspace at a disk, it ships the partial results to the front-end and reinitializes its memory. The front-endaccumulates the partial results. In the SMP algorithm, each processor computes a local version of thegroup-by; results from all processors are merged at the end. Note that, in our experiments, group-bygenerates signi�cantly larger results than select. It also performs more computation/byte as it needs tomaintain a hash-table of aggregates.Datacube: the datacube is the most general form of aggregation for relational databases. It computes multi-dimensional aggregates that are indexed by values of multiple aggregates [24]. In e�ect, a datacube computesgroup-bys for all possible combinations of a list of attributes. Several e�cient methods for computing adatacube are presented in [4]. We use one of these algorithms, called PipeHash, as the starting point for ouralgorithms. PipeHash represents the datacube as a lattice of related group-bys. A directed edge connectsgroup-by i to group-by j if j can be generated from i and has exactly one less attribute. Each edge has an1Using one of the �ve SQL aggregation operations: min, max, sum, avg and count.5

Raw data

A B C

all

ABC

AB

ABC

AB

A

BC

ACBC

AC A AB

all B C

BCFigure 2: Search lattice and pipelines for the PipeHash algorithm. The bold lines in the search lattice indicatethe minimum spanning tree computed by the algorithm using estimated sizes of individual group-bys. Theright hand side shows four pipelines. In each pipeline, the data placed in a box at the bottom is read fromdisk.associated weight which re
ects the estimated size of the group-by. PipeHash determines the set of group-bys to perform by computing a minimum spanning tree over the lattice (see Figure 2 for an example). Itschedules the group-bys as a sequence of pipelines; all the group-bys in a pipeline are computed as a partof a single scan of disk-resident data. The results of each pipeline are stored back on disk and are used asinput for following pipelines (see Figure 2 for examples of pipelines). For individual group-bys, PipeHashuses a hashing-based technique [21]. The Active Disk algorithm partitions the available memory at eachdisk in proportion to the estimated size of the group-bys being performed in the pipeline (Figure 3). Forthe �nal combination operation for every group-by, it partitions the range of values of the attribute beinggrouped over to all the disks; each disk is responsible for combining results from all peers for that range ofvalues. Each disk performs local group-bys as long as the number of aggregates being computed �ts in itsmemory. When it runs out of space, it partitions the partial results and ships each partition to the disk that isresponsible for the corresponding range of values. The SMP algorithm performs the group-bys in a batchedmanner { similar to that for group-by. After all the results for a group-by have been accumulated, theresult is written to disk. Note that since datacube performs multiple group-bys in a single scan, it performsmore computation per byte read than group-by. Also, since it computes a multi-dimensional aggregate, itgenerates and communicates signi�cantly more data.External sort: we used the two-pass parallel NOW-sort [7] as the starting point for our sort algorithms.NOW-sort is based on a long history of external sorting research in the database community (e.g. [3] and[34]) and currently holds the record for the fastest external sort (the Indy MinuteSort record [23]). TheActive Disk algorithm uses two disklets for the �rst phase, the partitioner and the sorter (Figure 4(a)).The partitioner uses its scratch-space to form as many buckets as the number of disks. It examines eachrecord and appends it to the bucket corresponding to its destination disk. When one of these bu�ers �lls,it is forwarded to the sorter disklet on the destination disk. The sorter sorts each bu�er using a partialradix sort and writes it to disk by sending it to the output stream. In the second phase, each sorted partition6

ABC

ABC ABC

ABC

ADACAB

A

ABC

A

AB AC AD

ABC

Pipe-Hash CombineFigure 3: Schematic of disklet organization for datacube. There are two disklets running on each ActiveDisk, pipe-hash and combine. Shaded boxes indicate inputs to each disklet (i.e. stream bu�ers). Eachgroup-by is allocated a hash table in the scratch space whose size is proportional to the estimated size ofthe group-by. After the pipeline completes execution (or runs out of memory), pipe-hash partitions thelocal group-by based on the keys and sends the partitions to combine disklets on destination disks. After allcontributions are combined, group-bys are written to disk. Note that all the streams destined to a combinedisklet are merged.created in the �rst phase is mapped to a di�erent stream; these streams are attached to a merger diskletas its inputs (Figure 4(b)). The merger selects the lowest key from all of its input streams and copies it toits output stream (which is mapped to the output �le). Note that, no data is sent to host in this phase;merging is done locally at each Active Disk.The SMP algorithm is multi-threaded. The �rst phase uses two threads on every processor - a reader-thread to read data and move tuple pointers to buckets and a writer-thread to sort each bucket with partial-radix sort2 and write the bucket. The second phase uses three threads per processor to merge the sortedpartitions created in the �rst phase. A reader reads one block from each sorted partition into one of four3sets of merge bu�ers; a merger selects the lowest-valued key from the current block of each partition andcopies it to one of four write bu�ers; a writer writes bu�ers to disk.The Active Disk algorithm is fully pipelined in that it overlaps reading data, sending data to peers andsorting and writing data. The SMP algorithm overlaps just two operations; reading and writing operationsare performed synchronously (Arpaci-Dusseau et al [7] recommend that for less than four disks, all operationsshould be overlapped whereas for more than four disks, only the �rst two should be overlapped). The �rstpass of these algorithms repartitions their entire input on disks. The second pass for the Active Diskalgorithm is localized; each disk operates on its own partition. The SMP algorithm uses a disjoint set ofdisks for reading and writing in the �rst phase { it divides the total number of disks into two groups for thispurpose. Note that the �rst pass of sort is communication-intensive and requires all-to-all communication.Since it repartitions its entire dataset, sort performs signi�cantly more communication than datacube.Project-Join query: we used sort-merge join algorithms for this task. A sort-merge join partially sorts2Making two passes over the keys with a radix size of 11-bits [3] plus a cleanup.3Two bu�ers in the original algorithm. 7

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
�����

��
��

��
��
��

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
�����

���
���

���
���
���
��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��
��
��
��

��
��
��

���
���
���

���
���
���

...
.
..

..
.

..
.

.

.
. .

PartitionerSorter

���
���
���
���

��
��
��
��
��
��
��
��

run1 run2 Sorted

Merge

Merger Disklet

run0(a) First pass (b) Second passFigure 4: Organization of the disklets for external sort. The partitioner maintains a bucket for eachdestination disk in its scratch space. When a bucket �lls, it is forwarded to the corresponding sorterdisklet. Sorter combines the tuples from all disks in its scratch space - when this space is �lled, tuplesare sorted and written to disk to create a run. All the streams destined to a sorter disklet are merged.Figure 4(b) presents the structure of a merger disklet that is used to merge multiple runs on a disk into asorted �le. Note that the second pass is local to each Active Disk.each of the relations being joined and performs a join by stepping through the partially sorted relationsusing a pair of loops. We based our join algorithms on the two-pass NOW-sort. The �rst two passes ofthese algorithms are similar, in structure, to the �rst pass of a two-pass sort: the �rst pass repartitions andcreates sorted runs for the �rst relation; the second pass does the same for the second relation. The thirdpass of these algorithms is similar to the second pass of a two-pass sort: it maintains a heap for the headsof the sorted runs for each relations and performs the join by picking elements from the two heaps. The�rst two passes of these algorithms have large communication and I/O requirements. The third pass for theActive Disk algorithm is localized as each disk operates on its own partition. The SMP algorithm uses adisjoint set of disks for reading and writing in the �rst two passes { it partitions the total number of disksinto two groups for this purpose. Note that the �rst pass of join is communication-intensive and requiresall-to-all communication. Since both sort and join repartition their entire dataset, their communicationrequirements are similar.Datamining: we focus on determining frequent itemsets for mining association rules in retail transactiondata [5]. We used the eclat algorithm [54] as the starting point for our algorithms. It is a multi-passalgorithm with the �rst two passes same as the count distribution algorithm proposed by Agrawal et al [6].After the �rst two passes, it clusters the candidate itemsets into equivalence classes and uses these classesto �lter, transpose and repartition the input data sets. The third pass is localized and does not requireany communication. It is I/O-optimized as each processor is able to perform all its remaining computationwith a single scan of its partition. Unlike external sort and sort-merge join, this algorithm repartitions onlya fraction of its input dataset (the exact fraction depends on the parameters the algorithm is run with).The eclat algorithm was originally described for shared memory multiprocessors. We adapted it for ActiveDisks by reverting to count distribution in the �rst two passes. The original SMP algorithm performed �ne-8

CREATE VIEW foo ASSELECT store.manager, sale.sale_id, item.item_id, item.item_nameFROM store, sale, item, lineWHERE store.store_id = sale.sale_id andsale.sale_id = line.sale_id andline.item_id = item.item_id andstore.state = ``CA'' andsale.year = 1998Figure 5: Example of a select-project-join view (from [40]).grained updates; we modi�ed it to batch the updates to the counters associated with itemsets. The originalalgorithm built a large triangular array of counters in its second pass. We noticed that a large fraction ofthe elements were zero in all our experiments and optimized it for memory consumption by using a sparsearray. Note that dmine needs to communicate only the counters in the �rst two passes and a signi�cantlyreduced version of its input data in the third pass. Its communication requirements, therefore, are smallerthan that of sort, join and datacube.Maintaining Materialized Views: a view is a derived relation de�ned in terms of base relations stored inthe database. Materialized views are pre-computed views that are used to speedup queries to decision supportdatabases { in e�ect, materialized views are cached versions of views. Incremental view maintenance keepscached views consistent with their base relations as the base relations are modi�ed. Mumick et al [14, 40] haveproposed e�cient algorithms for maintaining select-project-join views (see Figure 5 for an example of suchviews). We borrowed the ideas of deferred maintenance and self-maintainable views from their algorithms.We �rst describe our core algorithm for parallel maintenance of select-project-join views. Then, we describeits Active Disk and SMP versions.Each relation is partitioned over all disks using its join-attribute as the partitioning attribute. For theview de�ned in Figure 5, the relations store, sale, line and item are partitioned on the attributes store id,sale id, item id and item id respectively. An auxiliary view Vi is created for every base relation Ri (asin [40]) by applying the appropriate select and project operations. The auxiliary view corresponding to arelation is partitioned the same way as the relation itself and is kept sorted. Updates to the base relations areallowed to proceed immediately. This allows base relations to be consistent at all times. Updates to auxiliaryviews are deferred by adding the tuples to (unsorted) deltas. Updates to both auxiliary and primary viewsare propagated at refresh time. The algorithm propagates the updates one join at a time. We illustrate thestructure of the algorithm by describing its operation for a sequence of two joins (R1 1 R2 1 R3). Theinputs for this join are: V1, V2 and V3, the sorted auxiliary views for R1, R2 and R3 respectively; and �V1,�V2, and �V3, the corresponding (unsorted) deltas.1. Create sorted runs for �V1 9

V1 V2 V1∆ V2∆

V1 V1∆+ V2 V2∆+ V1∆ V2∆

V1 V2∆ V2 V1∆

∆ (V1 V2)Figure 6: Merge operation in the materialized view algorithm. This operation executes �ve pipelines con-currently to produce V1 +�V1, V2 + �V2, V1 1 �V2, V2 1 �V1 and �V1 1 �V2. �(V1 1 V2) is obtainedby taking the union of the output of last three pipelines. Note that, since pipelines are inter-dependent, theorder in which the pipelines get executed is data-dependent.2. Create sorted runs for �V23. Merge V1, V2, sorted runs of �V1, and sorted runs of �V2 to generate: (a) updated and sorted versionsof V1 and V2, and (b) �(V1 1 V2). Recall that input versions of V1 and V2 are assumed to be alreadysorted. Details of this merge operation are shown in Figure 6.4. Partition the tuples in �(V1 1 V2), based on their join-attribute, into bu�ers destined for every disk.Send each bu�er to its destination disk.5. Receive tuples from �(V1 1 V2) sent by other disks. Create sorted runs before writing to disk. Notethat steps 3, 4, and 5, that is, the merging, partitioning, and receiving operations are overlapped.6. Create sorted runs for �V37. Merge V1 1 V2, V3, sorted runs of �(V1 1 V2), and sorted runs of �V3 to generate: (a) the updatedV1 1 V2 and V3, and (b) �(V1 1 V2 1 V3).The Active Disk algorithm performs all operations in disk. The algorithm operates in a sequence ofphases. Each phase performs one join and consists of a localized part, in which sorted runs are created andthe merge operation is performed, and a distribution part in which the data for the next join is repartitioned.The deltas for the subsequent join are sorted into runs as they arrive at the destination disk. The SMPalgorithm is similar. 10

FC

. . .

XBow Hub

CPUCPU

DRAM FC

. . .

XBow
Node

Node Node Node Node. . . .

Network InterconnectFigure 7: Schematic of the shared memory architectures assumed in the experiments.4 Evaluation4.1 Con�gurationsFor comparison between architectures, we con�gured each of them with identical disks and used con�gura-tions with equal number of disks (and processors). For the rest of the components, we follow the con�gurationguidelines suggested by experts. For each architecture, we de�ned con�gurations with 16, 32, 64 and 128disks (and processors). To understand the impact of scaling individual components and to identify thebottleneck resources for individual algorithms, we performed additional experiments by selectively scalingindividual components.For all con�gurations, we assumed disks similar to the Seagate 39102FC from the Cheetah 9LP diskfamily [45]. These disks have a spindle speed of 10,025 rpm, a formatted media transfer rate of 14.5-21.3 MB/s, an average seek time of 5.4 ms/6.2 ms (read/write) and a maximum seek time of 12.2 ms/13.2 ms(read/write). They support Ultra2 SCSI and dual-ported Fibre Channel interfaces.Active Disks: For the Active Disk con�gurations, we assumed that: (1) a Cyrix 6x86 200MX processor(200 MHz) and 32 MB of 10ns SDRAM were integrated in the disk units; (2) all the disks were connectedby a dual-loop Fibre-channel interface with a bandwidth of 200 MB/s (100 MB/s per loop); (3) the diskscan directly address and communicate with each other using a SCSI-like interface; and (4) communicationswith clients are handled by a front-end host with a 450 MHz Pentium II and 1 GB RAM.To identify the bottleneck resources for individual algorithms, we studied alternative con�gurations thatindividually scaled: (1) the aggregate bandwidth of the serial interconnect to 400 MB/s; and (2) the memoryintegrated into the disk unit to 64 MB and 128 MB. No software changes were associated with scaling thebandwidth of the serial interconnect. To take advantage of the additionalmemory available in the 64 MB/diskand 128 MB/disk con�gurations, the number of bu�ers allocated per stream by the DiskOS was increasedfrom two to four and eight respectively. This allowed these con�gurations to tolerate longer communication11

and I/O latencies.Shared memory multiprocessors (SMPs): For the SMP con�gurations, we followed the guidelines forcon�guring decision support servers (as quoted in [27]): (1) put as many processors in a box as possible toamortize the cost of enclosures and interconnects; (2) put as much memory as possible into the box to avoidgoing to disk as much as possible; and (3) attach as many disks as needed for capacity and stripe data overmultiple disks to quickly load information into memory. We assumed an SMP con�guration similar to theSGI Origin 2000: (1) two-processor boards (with 250 MHz processors) that directly share 128 MB memory;(2) a low-latency, high-bandwidth interconnect between these boards (1�s latency and 780 MB/s bandwidth);(3) a high-performance block-transfer engine (521 MB/s sustained bandwidth [28]); (4) a high-bandwidthI/O subsystem (two I/O nodes with a total of 1.4 GB/s bandwidth), similar to XIO, that connects to thenetwork interconnect; and (5) a dual-loop Fibre Channel I/O interconnect (200 MB/s) for all disks. Figure 7illustrates the SMP con�gurations. Note that the amount of memory is scaled with the number of processors{ a 64-processor con�guration having 4 GB and a 128-processor con�guration having 8 GB.We assumed that these machines ran a standard full-function operating system like IRIX and providedthe lio listio asynchronous I/O interface and user-controllable disk striping for individual �les. Further,we assumed that these machines provided a remote queue abstraction (as suggested by Brewer et al [13]).To study the impact of variation in the I/O interconnect, we studied alternative con�gurations that scaledthe bandwidth of the serial I/O interconnect to 400 MB/s.4.2 SimulatorTo conduct these experiments, we developed a simulator called Howsim which simulates all three architec-tures. Howsim contains detailed models for disks, networks and the associated libraries and device driversand relatively coarse-grain models of processors and I/O interconnects.For modeling the behavior of disk drives, controllers and device drivers, Howsim uses the Disksim simula-tor developed by Ganger et al [19]. Disksim has a detailed disk model that supports zoned disks, spare regions,segmented caches, defect management, prefetch algorithms, bus delays and control overheads. Disksim hasbeen validated against several disk drives using the published disk speci�cations and SCSI logic analyzers;it achieves high accuracy - the worst case demerit �gure [43] for Disksim is only 2.0% of the correspondingaverage response time [19]. For modeling I/O interconnects, Howsim uses a simple queue-based model thathas parameters for startup latency, transfer speed and the capacity of the interconnect.For modeling the behavior of user processes, Howsim uses a trace of processing times and I/O requestsfor individual tasks. It models variation in processor speed by scaling these processing times. To acquire thetraces of processing time for user-level tasks, we implemented each algorithm on a DEC Alpha 2100 4/275workstation with 256 MB of memory. We ran each algorithm with the same dataset and I/O request sizes asused in our experiments. For algorithms that use the amount of memory available as an explicit parameter12

(Sort, Join, Datacube and Materialized Views), we generated traces for multiple memory sizes { to allow usto simulate architectures with di�erent amounts of memory.For modeling operating system behavior on hosts, Howsim uses parameters that represent the time takenfor individual operations of interest: read/write system calls, context switch time, the time to queue anI/O request in the device-driver and the time to service an I/O interrupt. We obtained the �rst two usinglmbench [31] on a 300MHz Pentium II running Linux (10�s for read/write calls, 103�s for context-switch).We charged a �xed cost of 16�s to queue an I/O request in the device-driver.For Active Disks, Howsim models a preliminary implementation of DiskOS which provides support forscheduling disklets as well as for managing memory, I/O and stream communication. It uses a modi�edversion of DiskSim that is driven by the disk operating system layer. Disklets are written in C and interactwith Howsim using a stream-based API [2]. Howsim has additional parameters for the DiskOS. For thisstudy, we assumed the system call and context switch costs on the DiskOS to be 1 �s. In addition, another1 �s is charged to initiate a disk request from DiskOS and to service an interrupt from the disk mechanism.Given that disklets execute within the same protection domain as the DiskOS, we believe that these costsare reasonable.For SMPs, Howsimmodels two-processor boards connected by a low latency, high bandwidth interconnect.For communication, it models one-way block-transfers, shmemget/shmemput, as available on the SGI Origin.Block transfers are suitable for the algorithms under consideration as they move large volumes of datain relatively large chunks. For synchronization on SMPs, Howsim provides spin-locks, remote queues [13]and global barriers. We used the at-memory fetch-and-op primitive as provided by SGI Origin for spin-locks(which cost around 3�s [26]). Howsimmodels a high-bandwidth I/O subsystem similar to the XIO subsystemavailable in the Origin 2000. The disk model is driven by a striping library written on top of the raw-diskaccess library.4.3 DatasetsWe used 16 GB datasets for all the tasks except join for which we used a 32 GB dataset and mview forwhich we used a 15 GB dataset. In this section, we describe the structure of the datasets for the di�erenttasks.Select, Aggregate, Group-by: for these tasks, we used a dataset with about 268 million tuples, each tuplebeing 64 bytes. For select, we test a single 4-byte �eld with a selectivity of 1%. For aggr and group-by,we used the sum operation on a 4-byte �eld. For group-by, we used a 4-byte �eld with 13.5 million distinctvalues as the grouping attribute.Datacube: for dcube, we used a dataset with 536 million tuples. Each tuple had eight 4-byte attributes.We used four attributes as group-by attributes and the remaining four as aggregation attributes with sumas the aggregation function. The number of distinct values for each of the group-by attributes were 5.3613

million, 536,000, 53,600 and 5,360. We created this dataset by scaling one of the datasets used in the paperthat described the PipeHash algorithm [4].Sort: for sort, we used a dataset with 100-byte tuples and 10-byte uniformly distributed keys. The totalnumber of tuples was about 170 million. We created this dataset based on the standard sort benchmarkdescribed in [23].Project-Join: for join, we used a dataset with 64-byte tuples and 4-byte uniformly distributed keys. Theprojection operation extracted eight 4-byte �elds from each tuple. Each relation was 16 GB and contained268 million tuples. The output for join was about 108 MB.Datamining: for dmine, we used a dataset with 300 million transactions. The total number of itemswas 1 million and the average length of the transactions was 4 items. We generated this dataset using theQuest datamining dataset generator which we obtained from IBM Almaden [39]. For generating the frequentitemsets, we used a minimum support parameter of 0.001 (0.1%).Materialized views: for mview, we used a dataset with three 4 GB derived relations (134 million tupleseach). The size of deltas for each relation was assumed to be 1 GB each (33.5 million tuples each). Weassumed 32-byte tuples for the derived relations with 4-byte �elds. Further, each join operation produced adelta view of 1 GB.5 ResultsFigure 8 compares the performance of all eight tasks on comparable con�gurations of both architectures.The results for each task on con�gurations of a particular size (16/32/64/128) are normalized with respectto the performance of the same task on the Active Disk con�guration of the same size. We make threeobservations:� For the same I/O interconnect, Active Disk con�gurations perform better than the correspondingSMP con�gurations. We note that this is true for all tasks and all con�gurations examined in ourexperiments. This includes tasks with small amounts of computation per byte of I/O (e.g., aggregate,select, and group-by), as well as tasks with substantially larger amounts of computation per byte ofI/O (e.g., sort, dcube, dmine). Note that this is in spite of the fact that the Active Disks contain a200 MHz CPU whereas the SMP con�gurations contain a 250 MHz CPU.� The performance advantage of Active Disks increases with con�guration size. For 16-disk con�gura-tions, the decision support tasks we examined run up to 1.3 times faster on Active Disks; for 128-diskcon�gurations, these tasks run between 3 and 9.5 times faster on Active Disks. The largest performancedi�erences (8.5-9.5 fold on 128-disk con�gurations) are for tasks that allow large data reductions on14

Active Disks, such as aggregation and select. However, even tasks that repartition all or part oftheir input dataset, such as sort, join, dmine, mview, are signi�cantly faster (4-6 fold on 128-diskcon�gurations) on Active Disks. Note that, the performance of group-by on Active Disks does notscale beyond 32-disk con�gurations. This is due to the serialization of the result collection at thefront-end host.� For tasks that repartition all or part of their input datasets, the performance advantage is primarilydue to the local nature of subsequent processing. In SMP con�gurations, data accessed in all phasespasses over the I/O interconnect, whereas in Active Disk con�gurations, no data passes over the I/Ointerconnect after repartitioning.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

AGGR
GBY

SELECT
SORT

JOIN
CUBE

DMINE
MVIEW

No
rm

aliz
ed

 Ex
ecu

tio
nT

im
e

Active

SMP

0

0.5

1

1.5

2

2.5

3

AGGR
GBY

SELECT
SORT

JOIN
CUBE

DMINE
MVIEW

No
rm

aliz
ed

 Ex
ecu

tio
n T

im
e

Active

SMP(a) 16 disk con�gurations (b) 32 disk con�gurations
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

AGGR
GBY

SELECT
SORT

JOIN
CUBE

DMINE
MVIEW

No
rm

aliz
ed

 Ex
ecu

tio
n T

im
e

Active

SMP

0

1

2

3

4

5

6

7

8

9

10

AGGR
GBY

SELECT
SORT

JOIN
CUBE

DMINE
MVIEW

No
rm

aliz
ed

 Ex
ecu

tio
n T

im
e

Active

SMP(c) 64 disk con�gurations (d) 128 disk con�gurationsFigure 8: Performance of all eight tasks on comparable con�gurations of both architectures. The results foreach task on con�gurations of a particular size (16/32/64/128) are normalized with respect to the perfor-mance of the same task on the Active Disk con�guration of the same size. Note that the range of the y-axisis di�erent for every graph.The bar for dmine on the 128-node SMP con�guration is missing as we could notcomplete the simulation in time. 15

Figure 9 shows how the performance of each task scales for both architectures. The performance of mosttasks saturates relatively early on SMP con�gurations. Tasks whose performance is dominated by I/O, suchas select, aggregate and group-by, achieve no bene�t from larger con�gurations. Task performance scalesbetter on Active Disks. The performance of group-by on Active Disks saturates earlier than comparabletasks such as select. This is because for large con�gurations, the front-end host becomes a bottleneck forcombining the results from individual disks. Note that join seems to achieve better than perfect scalingfor both architectures. We suspect that this is due to cache capacity e�ects during the merge phase. Asimilar result was reported by Arpaci-Dusseau et al [7] for NOW-sort with more than 17 runs per node (ourexperiments had between 2 and 80 runs per node).
1

1/2

1/4

1/8
16 disks 32 disks 64 disks 128 disks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

AGGR
GBY

SELECT
SORT
JOIN

CUBE
DMINE
MVIEW

Ideal

1

1/2

1/4

1/8
16 disks 32 disks 64 disks 128 disks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

AGGR
GBY

SELECT
SORT
JOIN

CUBE
MVIEW

Ideal(a) Active Disks (c) SMPsFigure 9: Variation in performance of all eight tasks with con�guration size for both architectures. Theresults for each task on a given architecture are normalized with respect to the performance of the same taskon the 16-node con�guration of the same architecture. The ideal curve is for reference and indicates perfectscaling. Note that join seems to achieve better than perfect scaling for all architectures. We suspect thatthis is due to cache capacity e�ects during the merge phase.Figure 10 examines the impact of varying the I/O interconnect for both architectures. We note thatdoubling the I/O interconnect bandwidth has a large impact on the performance of SMP con�gurations for alltasks. This indicates that the I/O interconnect is a major bottleneck for these tasks on SMP con�gurations.For the Active Disk con�gurations, only sort, join and dcube achieve some, albeit small, performanceimprovement. This indicates that even for 64-disk and 128-disk con�gurations, the I/O interconnect doesnot become a bottleneck for Active Disks. We would like to point out that Active Disk con�gurations witha 200 MB/s I/O interconnect outperform SMP con�gurations with a 400 MB/s I/O interconnect (up to 1.5to 4.8 times faster for these tasks on 128-disk con�gurations).16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

AGGR
GBY

SELECT
SORT

JOIN
CUBE

DMINE

MVIEW

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e

200 MB (A)
400 MB (A)
200 MB (S)
400 MB (S)

0

1

2

3

4

5

6

7

8

9

10

AGGR
GBY

SELECT
SORT

JOIN
CUBE

DMINE

MVIEW

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e

200 MB (A)
400 MB (A)
200 MB (S)
400 MB (S)(a) 64-disk con�gurations (b) 128-disk con�gurationsFigure 10: Impact of varying the I/O interconnect bandwidth for both architectures. The results for eachtask on a given con�guration are normalized with respect to the performance of the same task on the ActiveDisk con�guration of the same size. In the legend, A stands for Active Disks and S stands for SMP.6 DiscussionIn this section, we discuss two issues. First, we discuss the integration of Active Disks into the software archi-tecture of decision support databases. Second, we give an indication of the cost of comparable con�gurationsfor Active Disks and shared memory multiprocessors.Relational databases have long used demand-driven data
ow based architectures. According to Graefe [21],\this model of operator implementation and scheduling resembles very closely those used in relational sys-tems, e.g., System R (and later SQL/DS and DB2), Ingres, Informix, and Oracle as well as in experimentalsystems, e.g., the E programming language used in EXODUS [41], Genesis [12], and Starburst [25]. Opera-tors implemented in this model are called iterators, streams, synchronous pipelines, row-sources, or similarnames in the lingo of commercial systems". According to Barclay et. al. [11], \relational databases areideally suited to data
ow approach" and that \the database community has adopted a data
ow approach todescribe and implement parallel algorithms".The stream-based programming model proposed for Active Disks closely resembles the operator/iteratorbased model used by relational databases. Corresponding to the open, next, close operations for an iterator,a stream in this model has openStream, getNextBuffer, closeStream operations. Disklets attached to astream perform the operations corresponding to the iterator function. The scratch space for a diskletcorresponds to the state record for an iterator. According to Graefe [21], \the type of state records isdi�erent for each iterator as it contains iterator-speci�c arguments and local variables (state), while theiterator is suspended, e.g., currently not active between invocations of the operator's next procedure". Thisis exactly the purpose of the scratch space in disklets. Given this close correspondence between the models,17

we expect that with a stream-based programming model, Active Disks could be integrated into the softwarearchitecture of decision support databases with relative ease.It remains a question, however, whether database vendors would choose to integrate Active Disks intotheir software. Keeton et. al. [27] indicate that initial reactions to active disks have been mixed: someindustrial database experts suggesting that Active Disks can succeed only if they require minimal change toexisting database software. We believe that this initial reluctance can be overcome for two reasons. First,with the stream-based programmingmodel, changes required to integrate Active Disks into existing databasesoftware are not likely to be extensive. Second, in other situations requiring modi�cations to existing software,database vendors have not been in
exible. Examples include the migration of most database servers to SMPsand the recent incorporation of Java virtual machines in some databases. To cite examples of the latter,Oracle's Aurora project [33] plans to integrate a Java virtual machine in the database engine such that Javacode can call SQL and SQL can call Java code (Aurora is scheduled to ship with Oracle 8.1). IBM's DB2UDB5 allows extension of the database server using Java user-de�ned functions and stored procedures [15].User-de�ned functions may be used in an SQL expression to compute a complex function of several valuesin a given row. They can also be used in the FROM clause in a query for on-the-
y creation of tables.To provide an indication of price/performance ratio for the architectures compared in this study, weestimated the prices of both architectures for 64 node con�gurations. We estimated the price of the SMPcon�guration using the SGI Origin 2000. The Avalon project at Los Alamos Labs quotes the list price ofa 64-processor SGI Origin 2000 with 250MHz processors and 8 GB memory to be about $1.8 million [9].Estimating the cost of 4 GB of memory to be (a generous) $300,000, we estimate the cost of the con�gurationstudied in this paper to be about $1.5 million. We estimated the price of the Active Disk con�guration usingSeagate ST39102 as the disks ($670) with Cyrix 6x86 200MHz as the embedded processor ($45), 32 MBSDRAM as the embedded RAM ($35), $100 for the Fibre Channel interconnect and $150 as the premiumfor being a high-end component. We assumed the Dell Poweredge 4300 as the front-end host with a LP3000Fibre Channel host bus adaptor from the Emulex Corporation.4 With these components, the price for a 64disk con�guration adds up to about $74,000 ($1000 for each Active Disk, $600 for the Fibre Channel adaptorand $9000 for the front-end).7 Related workThe idea of embedding a programmable processor in a disk is not new. The I/O processors in the IBM 360allowed users to download channel programs that were able to make I/O requests on behalf of the hostprograms [38]. One of the ISAM implementations on the IBM 360 used channel programs to traverse disk-resident linked lists. Database machines [46] in the late 1970s proposed various levels of processor integration4http://www.emulex.com 18

into disk: processor per track [30, 35, 47, 49], processor per head [10, 29], and \o�-the-disk" designs thatused a shared disk cache with multiple processors and multiple disks [16, 44]. There are several di�erencesbetween the database machines of late 1970's and today's Active Disks. Unlike the database machineprocessors, the processors proposed for Active Disks are general-purpose commodity components and arelikely to evolve as the disks evolve. Unlike the low-bandwidth interconnects used in database machines,today's serial I/O interconnects such as Fibre Channel provide high bandwidth for commodity disk drives.Unlike the limited repertoire of operations performed by database machines, Active Disks take advantage ofalgorithmic research for shared-nothing architectures to provide e�cient implementations of a wide varietyof operations. Furthermore, Active Disks can be used to perform operations for non-relational data such asimage processing [2, 42] and �le-system and security-related processing [18, 51].Riedel et al [42] have also evaluated Active Disk architectures for databases. They show that ActiveDisks are able to provide scalable performance for nearest neighbor search in multimedia databases, forfrequent itemset determination for datamining association rules in retail transaction data and for edge-detection algorithms. Their results indicate that these algorithms can achieve signi�cant gains from theuse of Active Disks. Based on an analysis of several technological trends, Keeton et al [27] propose anarchitecture (IDISK) in which a processor-in-memory chip (IRAM [37]) is integrated into the disk unit andthe disk units are connected by a crossbar. They argue that IDISK architectures o�er several potential priceand performance advantages over traditional server architectures for decision support.Given the volume of data processed and the cost of fetching data from disk, optimizing I/O-intensivealgorithms is often a matter of setting up e�cient pipelines where each stage performs some processing on thedata being read from disk and passes it on to the next stage [1, 7]. As a result, data
ow-based models havebeen proposed by several researchers. Barclay et al [11] proposed a data
ow-based technique for parallelizingthe loading of a large database. Similar techniques are used by the Gamma [17] and Volcano [20] paralleldatabases. Recently, Arpaci-Dusseau et al [8] have proposed a data
ow-based programming model forscheduling I/O-intensive tasks on clusters.8 ConclusionsThere are four main conclusions of our study. First, for the same I/O interconnect, disks, and number ofprocessors, Active Disk con�gurations perform better than the corresponding SMP con�gurations for a widevariety of decision support tasks. We note that this is true for all tasks and all con�gurations examined inour study. This includes tasks with small amounts of computation per byte of I/O as well as tasks withsubstantially larger amounts of computation per byte of I/O. This is in spite of the fact that the Active Diskscontain a 200 MHz CPU whereas the SMP con�gurations contain a 250 MHz CPU. We would like to point outthat Active Disks achieve this performance at a small fraction of the cost of shared memory multiprocessorservers. The performance of the SMP con�gurations was limited by I/O interconnect bandwidth, particularly19

for large con�gurations. The I/O interconnect sits in between all the processors and all the disks; the datafor many tasks passes over it multiple times. Our results indicate that, Active Disk con�gurations with a200 MB/s I/O interconnect outperform SMP con�gurations with a 400 MB/s I/O interconnect (up to 1.5to 4.8 times faster on 128-disk con�gurations).Second, the performance advantage of Active Disks increases with con�guration size. For 16-disk con-�gurations, the tasks we examined in this study run up to 1.3 times faster on Active Disks; for 128-diskcon�gurations, these tasks run between 3 and 9.5 times faster on Active Disks. The largest performancedi�erences (8.5-9.5 fold on 128-disk con�gurations) are for tasks that allow large data reductions on ActiveDisks. Even tasks that repartition all or part of their input dataset, are signi�cantly faster (4-6 fold on128-disk con�gurations) on Active Disks.Third, we note that adding more memory to Active Disks provides limited advantage. Our resultsindicate that increasing the disk-memory to 128 MB provides less than 8% performance for 16 and 32 diskcon�gurations, less than 11% for 64 disk con�gurations and less than 21% for 128 disk con�gurations. Thisis not surprising given the streaming nature of decision support tasks.Finally, we note that there is a close correspondence between the stream-based programming modelproposed for Active Disks and the operator/iterator model used by most relational database systems. Giventhis similarity, we expect that with a stream-based programming model, Active Disks could be integratedinto the software architecture of decision support databases with relative ease.AcknowledgmentsWe would like to thank Greg Ganger for the DiskSim simulator. We would like to thank Mohammed Zakifor his implementation of the eclat algorithm which we used as the codebase for our implementation. Wewould like to thank Quest datamining group at IBM Almaden for their dataset generator. We would like tothank Ioana Stanoi and Amr El Abbadi for discussions regarding maintaining materialized views. We wouldlike to thank Jim Humphries and the other recipients of para-staff@umiacs.umd.edu for their continuedsupport.References[1] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth, J. Saltz, and A. Suss-man. Tuning the performance of I/O-intensive parallel applications. In Proceedings of the Fourth ACMWorkshop on I/O in Parallel and Distributed Systems, May 1996.[2] A. Acharya, M. Uysal, and J. Saltz. Active Disks: Programming Model, Algorithms and Evaluation.In Proceedings of ASPLOS VIII, pages 81{91, Oct 1998.20

[3] R. Agarwal. A super scalar sort algorithm for RISC processors. In Proceedings of 1996 ACM SIGMODInternational Conference on Management of Data, pages 240{6, 1996.[4] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S. Sarawagi. Onthe computation of multidimensional aggregates. In Proceedings of the 22nd International Conferenceon Very Large Databases, pages 506{21, 1996.[5] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in largedatabases. In Proceedings of the 1993 ACM SIGMOD Conference on Management of Data, pages207{16, 1993.[6] R. Agrawal and J. Shafer. Parallel mining of association rules. IEEE Transactions on Knowledge andData Engineering, 8(6):962{9, 1996.[7] A. Arpaci-Dusseau, R. Arpaci-Dusseau, D. Culler, J. Hellerstein, and D. Patterson. High-performancesorting on networks of workstations. In Proceedings of SIGMOD'97, 1997.[8] R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. Culler, J. Hellerstein, D. Patterson, and K. Yelick.Cluster I/O with Rivers: Making the Fast Case Common. Submitted for publication, 1998.[9] The Avalon FAQ5, 1998.[10] J. Banerjee, R. Baum, and D. Hsiao. Concepts and capabilities of a database computer. ACM Trans.on Database Systems, 3(4), Dec 1978.[11] T. Barclay, R. Barnes, J. Gray, and P. Sundaresan. Loading databases using data
ow parallelism.SIGMOD Record, 23(4):72{83, 1994.[12] D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twitchell, and T. Wise. GENESIS: Anextensible database management system. IEEE Transactions on Software Engineering, 14(11), 1988.[13] E. Brewer, F. Chong, L. Liu, S. Sharma, and J. Kubiatowicz. Remote queues: Exposing message queuesfor optimization and atomicity. In Proc. of the 7th SPAA, pages 42{53, 1995.[14] L. Colby, T. Gri�n, L. Libkin, I. Mumick, and H. Trickey. Algorithms for deferred view maintenance.In Proc. of SIGMOD'97, pages 469{80, 1997.[15] IBM DB2 Java Enablement. http://www.software.ibm.com/data/db2/java/index.html, 1998.[16] D. DeWitt. DIRECT - a multiprocessor organization for supporting relational database managementsystems. IEEE Trans. on Computers, 28(6):395{406, Jun 1979.5http://cnls.lanl.gov/avalon/FAQ.html 21

[17] D. DeWitt, S. Ghandeharizadeh, and D. Schneider. A performance analysis of the Gamma databasemachine. SIGMOD Record, 17(3):350{60, 1988.[18] G. Gibson et al. File server scaling with network-attached secure disks. In Proceedings of the ACMInternational Conference on Measurement and Modeling of Computer Systems (Sigmetrics '97), 1997.[19] G. Ganger, B. Worthington, and Y. Patt. The DiskSim Simulation Environment Version 1.0 ReferenceManual6. Technical Report CSE-TR-358-98, Dept of Electrical Engineering and Computer Science, Feb1998.[20] G. Graefe. Encapsulation of parallelism in the Volcano query processing system. SIGMOD Record,19(2):102{11, 1990.[21] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2):73{170,Jun 1993.[22] J. Gray. Put EVERYTHING in the Storage Device. Talk at NASD workshop on storage embeddedcomputing7, June 1998.[23] J. Gray. The Sort Benchmark Home Page. Available at http://research.microsoft.com/research/barc/-SortBenchmark/, 1998.[24] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operatorgeneralizing group-by, cross-tab, and sub-totals. In Proceedings of the 12th International Conference onData Engineering, pages 152{9, New Orleans, February 1996.[25] L. Haas, W. Chang, G. Lohman, J. McPherson, P. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. Carey,and E. Shekita. Starburst mid�ght: As the dust clears. IEEE Transactions on Knowledge and DataEngineering, 2(1), 1990.[26] D. Jiang and J. Singh. A methodology and an evaluation of the SGI Origin 2000. In Proc. of the Intl.Conf. on Measurement and Modeling of Computer Systems (SIGMETRICS), pages 171{81, Madison,WI, June 1998.[27] K. Keeton, D. Patterson, and J. Hellerstein. The Case for Intelligent Disks (IDISKS). SIGMOD Record,27(3), 1998.[28] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly scalable server. In In Proc. of Intl.Symposium on Computer Architecture, pages 241{51, Denver, CO, June 1997.6Available at http://www.ece.cmu.edu/ ganger/disksim/disksim1.0.tar.gz7http://www.nsic.org/nasd/1998-jun/gray.pdf 22

[29] H. Leilich, G. Stiege, and H. Zeidler. A search processor for database management systems. In Proc. ofVLDB'78, 1978.[30] S. Lin, D. Smith, and J. Smith. The design of a rotating associative memory for relational databaseapplications. ACM Trans. on Database Systems, 1(1):53{75, Mar 1976.[31] L. McVoy and C. Staelin. lmbench: portable tools for performance analysis. In In Proc. of 1996 USENIXTechnical Conference, Jan 1996.[32] J. Melton and A. Simon. Understanding the New SQL: A Complete Guide. Morgan Kaufman, 1993.[33] S. Meyer. Oracle's Aurora Java Virtual Machine. In Proc. of OOPSLA-98, page 181, 1998. In the panelon "The New Crop of Java Virtual Machines".[34] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. AlphaSort: a RISC machine sort. InProceedings of 1994 ACM SIGMOD International Conference on Management of Data, Minniapolis,May 1994.[35] E. Ozkarahan, S. Schuster, and K. Sevcik. Performance evaluation of a relational associative processor.ACM Trans. on Database Systems, 2(2), Jun 1977.[36] G. Papadopolous. The future of computing. Unpublished talk at NOW Workshop, July 1997.[37] D. Patterson et al. Intelligent RAM (IRAM): the Industrial Setting, Applications, and Architectures.In Proceedings of the International Conference on Computer Design, 1997.[38] D. Patterson and J. Hennessey. Computer Architecture: A Quantitative Approach. Morgan Kaufman,2nd edition, 1996.[39] IBM Quest Data Mining Project. The Quest retail transaction data generator8, 1996.[40] D. Quass, A. Gupta, I. Mumick, and J. Widom. Making views self-maintainable for data warehousing.In Proc. of PDIS'96, 1996.[41] J. Richardson and M. Carey. Programming constructs for database system implementation in EXODUS.In Proc. of SIGMOD'87, 1987.[42] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large scale data mining and multimediaapplications. In Proceedings of 24th Conference on Very Large Databases, 1998. To appear.[43] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer, 27(3):17{29,March 1994.8Available at http://www.almaden.ibm.com/cs/quest/syndata.html.23

[44] S. Schuster, H. Nguyen, E. Ozkarahan, and K. Smith. RAP.2 - an associative processor for databasesand its applications. IEEE Trans. on Computers, 28(6), 1979.[45] Seagate Technology Inc. The Cheetah 9LP Family: ST39102 Product Manual, July 1998. Publicationnumber 83329240 Rev B.[46] D. Slotnick. Logic per track devices. Advances in Computers, 10:291{6, 1970.[47] D. Slotnick. Logic per track devices. ACM Trans. on Database Systems, 1(3), Sep 1976.[48] P. Strenstrom, E. Hagersten, D. Lilja, M. Martonosi, and M. Venugopal. Trends in shared memorymultiprocessing. IEEE Computer, 1997.[49] S. Su and G. Lipovski. CASSM: a cellular system for very large databases. In Proc. of VLDB'75, pages456{72, 1975.[50] R.Wahbe, S. Lucco, T. Anderson, and S. Graham. E�cient software-based fault isolation. In Proceedingsof the 14th ACM Symposium on Operating System Principles, pages 203{16, 1993.[51] R. Wang. A �le system for intelligent disks9. Talk at NASD/NSIC Meeting, June 1998.[52] R. Winter and K. Auerbach. Giants walk the earth: the 1997 VLDB survey. Database Programmingand Design, 10(9), Sep 1997.[53] R. Winter and K. Auerbach. The big time: the 1998 VLDB survey. Database Programming and Design,11(8), Aug 1998.[54] M. Zaki, S. Parthasarathy, and W. Li. A localized algorithm for parallel association mining. In Pro-ceedings of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures, 1997.
9http://www.nsic.org/nasd/1998-jun/wang.pdf 24

