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On a typical day, more than 53 million tons of goods valued at about $36 

million are moved on the US multimodal transportation network. An efficient freight 

transportation industry is the key in facilitating the required movement of raw 

materials and finished products. Among different modes of transportation, trucking 

remains the shipping choice for many businesses and is increasing its market share. 

Less-than-truckload (LTL) trucking companies provide a transportation service in 

which several customers are served simultaneously by using the same truck and 

shipments need to be consolidated at some terminals to build economical loads.  

Intelligent transportation system (ITS) technologies increase the flow of 

available data, and offer opportunities to control the transportation operations in real-

time. Some research efforts have considered real-time acceptance/rejection of 

shipping requests, but they are mostly focused on truckload trucking operations. This 

study tries to use real-time information in decision making for LTL carriers in a 

dynamically changing environment.  

The dissertation begins with an introduction of LTL trucking operations and 

different levels of planning for this type of motor carriers, followed by the review of 



literature that are related to tactical and operational planning. Following a brief 

discussion on multi commodity network flow problems and their solution algorithm, a 

mathematical model is proposed to deal with the combined shipment and routing 

problem.  

Furthermore, a decision making procedure as well as a decision support 

application are developed and are presented in this dissertation. The main step in the 

decision making procedure is to solve the proposed mathematical problem. Three 

heuristic solution algorithms are proposed and the quality of the solutions is evaluated 

using a set of benchmark solutions.  

Three levels of numerical experiments are conducted considering an auto 

carrier that operates on a hub-and-spoke network. The accuracy of the mathematical 

model and the behavior of the system under different demand/supply situations are 

examined. Also, the performance of the solutions provided by the proposed heuristic 

algorithms is compared and the best solution method is selected. The study suggests 

that significant reductions in operational costs are expected as the result of using the 

proposed decision making procedure. 
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Chapter 1: Introduction 

 

Freight Transportation 

According to an estimate by the Bureau of Transportation Statistics (BTS) of 

the US DOT’s Research and Innovative Technology Administration (RITA) and 

FHWA, over 19 billion tons of freight valued at $13 trillion was transported in the 

United States in 2002. This means that on a typical day about 53 million tons of 

goods valued at about $36 million moved on the US multimodal transportation 

network [1].  

An efficient freight transportation industry is the key in facilitating the 

required movement of raw materials and finished goods. Maintaining the availability 

of raw materials and providing fast and reliable delivery of final product, support 

production, trade, and consumption activities. Freight transportation is a major 

element of the economy and needs to adapt to the current rapidly changing economic 

trends such as just-in-time production and distribution, internet-based electronic 

businesses (e-commerce), business-to-business, and business-to-customers 

environments where distributors and retailers are being eliminated. 

Carriers provide transportation services. Railways, shipping lines, intermodal 

containers, and trucking companies are different types of carriers. Despite the recent 

advances in the US freight transportation system, some previous freight trends 

continue. Among the modes of transportation, trucking industry’s market share is 

increasing and it is still the best choice for many businesses. According to [2], in 

2002, trucking industry’s share was estimated to be 74 percent of the total value, 67 

percent of the weight, and 40 percent of the overall ton-miles (Table 1). In 2002, the 

total ton-miles for this mode of freight transportation had increased more than 40% 

compared to1993. Since 1980, overall truck vehicle miles have doubled from 108 

billion to 216 billion in 2003. Figure 1 shows the estimated average annual daily 

truck traffic for 1998 and 2020 [1]. 
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Table 1 – Commercial freight activity in the U.S. by mode of transportation [2] 

Mode of Transportation 
Value 
1993 

(billion $) 

Value 
2002 

(billion $) 

Value 
Change 

(%) 

Tons 
1993 

(millions) 

Tons 
2002 

(millions) 

Tons 
Change 

(%) 

Ton-miles 
1993 

(billions) 

Ton-miles 
2002 

(billions) 

Ton-miles 
Change 

(%) 

All Modes 5,846.3 8,397.2 43.6 9,688.5 11,667.9 20.4 2,420.9 3,137.9 29.6 

Total Single Modes 4,941.5 7,049.4 42.7 8,922.3 11,086.7 24.3 2,136.9 2,867.9 34.2 

    Truck 4,403.5 6,235.0 41.6 6,385.9 7,842.8 22.8 869.5 1,255.9 44.4 

        For-hire truck 2,625.1 3,757.1 43.1 2,808.3 3,657.3 30.2 629.0 959.6 52.6 

        Private truck 1,755.8 2,445.3 39.3 3,543.5 4,149.7 17.1 235.9 291.1 23.4 

    Rail 247.4 310.9 25.7 1,544.1 1,873.9 21.4 942.6 1,261.6 33.8 

    Water 61.6 89.3 45.0 505.4 681.2 34.8 272.0 282.6 3.9 

        Shallow draft 40.7 57.5 41.2 362.5 458.6 26.5 164.4 211.5 28.7 

        Great Lakes NA 0.8 NA 33.0 38.0 15.1 12.4 13.8 11.4 

        Deep draft 19.7 31.0 57.1 109.9 184.6 67.9 95.2 57.4 -39.8 

    Air 139.1 265.0 90.5 3.1 3.8 19.8 4.0 5.8 45.5 

    Pipeline 89.8 149.2 66.1 483.6 685.0 41.6 NA NA NA 

Total Multiple Modes 662.6 1,079.2 67.7 225.7 216.7 -4.0 191.5 225.7 17.9 
    Parcel, U.S. Postal 
    Service or courier 563.3 987.7 75.4 18.9 25.5 35.0 13.2 19.0 44.5 

    Truck and rail 83.1 69.9 -15.8 40.6 43 5.8 37.7 45.5 20.8 

    Truck and water 9.4 14.4 52.9 68.0 23.3 -65.7 40.6 32.4 -20.2 

    Rail and water 3.6 3.3 -8.4 79.2 105 32.7 70.2 115.0 63.8 

    Other multiple modes 3.2 3.8 18.8 18.9 19.8 4.4 NA 13.8 NA 

Total Unknown Modes 242.3 268.6 10.9 540.5 364.6 -32.6 92.6 44.2 -52.2 
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Figure 1 – Estimated average annual daily truck traffic for 1998, and 2020 
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From an operational point of view, trucking services are classified as 

“truckload” (TL), and “less-than-truckload” (LTL). Truckload trucking offers a 

typical example of door-to-door transportation, where a truck is assigned to each 

customer. When a customer request for pickup and delivery of a load, the carrier 

decides whether to accept or reject the request. If the carrier accepts the load, a truck 

moves empty to its origin to pick it up and move it to its destination. After unloading, 

the truck is ready for a new assignment. The carrier may assign a new load to the 

truck, move the truck empty to a new location to handle future demands, or keep it 

idle at the same location. Unlike truckload operations, in less-than-truckload trucking 

several customers are served simultaneously by using the same truck. The main focus 

of this study is LTL trucking services, which will be discussed in the following 

sections. 

 

LTL Trucking Service 

Considering a trucking company with a fleet of trucks, there is usually a 

sequence of delivery requests within a region either by phone, fax, or Internet. A 

pickup-delivery (TL) trucking service moves the loads to the origin terminal. Through 

LTL network, shipments are moved to the destination terminal using highway trailers 

(long-haul movement). At the end, loads are delivered to the final destination, again 

using TL trucking services. LTL motor carriers haul shipments weighing from 100 to 

10,000 pounds that are less than a full truckload, and the majority of them are less 

than 1000 pounds. Since trailers hold 30,000 to 50,000 pounds, a truck can carry an 

average of 20 to 30 shipments that may have different origins and destinations. Thus, 

shipments need to be consolidated at some terminals to build economical loads and 

that is why this operation is called “consolidation transportation”.   
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- LTL Network 

An LTL network consists of two types of terminals (Figure 2): 

- End-of-line: It is the origin and destination of freights. Note that, the local 

pickup and delivery problem is not solved in this study. Hence, for each end-

of-line terminal the closest hub is considered as the origin/destination of the 

loads. 

- Breakbulk (hub): It handles the unloading, sorting, and reloading of the freight 

from one truck to another. Each end-of-line is typically associated with one 

“primary break” which is usually the closest breakbulk with respect to the 

direction of the delivery. The end-of-lines connected to a given primary 

breakbulk are called the “satellites” of that breakbulk.  

 

- Line Operations Network 

Because of the restrictions on driving time, the movement of trucks between 

terminals must follow a line operations network. Figure 3-1 shows an example. The 

length of any link in this network cannot exceed what a driver can cover in 11 hours 

driving time. The nodes of the line operations network are points at which drivers are 

often changed and consist of all terminals as well as additional relay points. 

When the volume of shipment between two terminals is high, the carrier is 

said to offer a “direct service” between two terminals and as a rule, trucks are loaded 

at one terminal and completely unloaded at the other. Offering direct service between 

two terminals generally implies a regular operation with trailers leaving at least two 

or three times per week. At lower frequencies, some shipments may experience 

unacceptably long delays waiting for the trailer to leave.  
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- Load Planning Network 

It is important to determine to which pairs of terminals the carrier should offer 

direct service. Since a direct service between two terminals may comprise several 

links of the line operations network, the load-planning network is introduced. Figure 

3-2 illustrates an example. In principle, the load-planning network might consist of 

links that connect every terminal to every other terminal. For large national networks, 

however, direct end-of-line to end-of-line movements are rare and for discussion 

purposes can be ignored. Thus, the set of load planning links can be viewed as all 

links that begin or end at a breakbulk. Of this total remaining set of load planning 

links, only about 10 to 20% will be used for direct service. The problem in strategic 

and tactical level of planning is to determine which ones to use. 

Carriers generally manage level of service by requiring that the frequency of 

service over each link satisfy a specified minimum. In most cases, direct service will 

not be offered between two terminals unless it is possible to fill at least the minimum 

number of trailers per week, with the exception of movements between satellites and 

primary breaks where departures occur regardless of the amount of freight on the 

trailer. Typical weekly minimums for breakbulk to breakbulk moves or from an end-

of-line and non-primary break are 3-5 trailers per week.  

 

- An Illustration of LTL Trucking Operations 

Figure 4 illustrates an LTL trucking operations. The LTL network consists of 

12 end-of-lines and 5 breakbulks (hubs). A total of 36 loads must be shipped to their 

destinations using a fleet of 11 trucks. The capacity of each truck is 3 loads. Different 

colors have been used to define the relationship between loads, and their final 

destinations. Each load must be shipped to the associated end-of-line with the similar 

color. As an example, it is shown how three “green” loads from different origins are 

shipped through their primary breaks to an intermediate hub, where the consolidation 

takes place, and then loads are delivered to the final destination.  
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Figure 3 – Line Operation Network (1), and Load Planning Networks (2) 
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 Figure 4 – An Illustration of LTL Trucking Operations (12 end-of-lines, 5 hubs, 36 loads, and 11 trucks) 
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3 4 
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Market Segmentation 

The LTL market is often segmented between national and regional carriers for 

ease of discussion. However, this is a simplistic segmentation, and American 

Trucking Association Foundation (ATA) proposes a better segmentation [3]: 

- Long-haul Carriers 

The long haul carriers are usually referred to as national LTL carriers, and 

generally offer full coverage of the United States. Carriers in this long-haul group use 

union labor. Their average length of haul is approximately 1200 miles, and transit 

times run 3 to 5 days, with some 2-day and some 6-day lanes. National LTL carriers 

are operating extensive hub-and-spoke terminal networks, and generate 

approximately 38 percent of total LTL sector revenues. 

 

- Superregional Carriers 

These carriers account for roughly 30 percent of LTL sector revenues. Like 

the long-haul carriers, the superregionals operate hub-and-spoke networks. In contrast 

however, they focus mostly on 2-day lanes with significant overnight and 3-day lanes 

as well. Their average length of haul runs from 400 to 750 miles. Many private LTL 

carriers also qualify as superregionals. 

 

- Regional Carriers 

These carriers focus on overnight freight movements, with some specific 2-

day lanes. In contrast to carriers with hub-and-spoke networks, this group focuses on 

direct movements of freight between terminals with no intermediate sort at a hub. The 

average length of haul is generally less than 300 miles. Most regional carriers are 

nonunion. Regionals generate roughly 27 percent of LTL sector revenues. 
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- Trend to watch 

When gas price was still at a dollar a gallon, LTL carriers could afford a little 

more inefficiency. But with gas prices and other costs going up in recent years, errors 

in daily operations could hurt the profit of LTL trucking business significantly. YRC 

Worldwide Inc. and Old Dominion freight Line Inc., two of the US largest LTL 

carriers both reported 2007 third-quarter earnings that missed Wall Street’s 

expectations [4]. FedEx freight, a leading regional next-day and second-day LTL 

carrier announced more than 5 percent rate increase in January 2008 [5].  

In recent years, Superregional carriers have been expanding their service areas 

and as a result the long-haul LTL carriers have faced a loss of market share to 

superregional and regional LTL carriers [3]. The superregional carriers have been 

expanding their geographic coverage areas for two reasons: 

- As shippers use fewer trucking companies it makes sense to offer a broader 

geography to retain the business of larger accounts. Their wider scope 

therefore puts superregional carriers in a better competitive position. 

- It is easier for the superregional carriers to compete with long-haul carriers 

than with pure regional carriers. The long-haul carriers, with their labor forces 

and overbuilt terminal networks, are high cost carriers. The superregional 

carriers can often offer faster and/or cheaper transportation. Furthermore, the 

1994 Teamster strike against the long-haul carriers encouraged shippers to 

deal with nonunion carriers to avoid service disruptions.  

 

The national LTL carriers are working hard to meet the competitive 

challenges. Their strategy is to: 

- Try to give the customers more of what they want, such as faster transit times 

- Increase their market share with pricing 

 

Carriers try to reduce the number of times the freight is handled. The goal is to 

cut transit times throughout the network by at least a day and to reduce handling and 

claims costs. The approach is slightly different from carrier to carrier, but most are 

closing a significant number of end-of-line terminals and consolidating the number of 
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hubs in their systems. They are all moving to scheduled departures for their line-haul 

moves. The lower-cost superregional LTL carriers are likely to continue to gain 

market share from the unionized long-haul carriers in the 2- and 3-day lane markets, 

although it could be a long-term process.  

- New Technologies and LTL Operations 

As a part of this research study, a limited survey was conducted to investigate 

the type of technologies, in forms of hardware or software, which is being used by 

LTL carriers for fleet management purposes. To perform this survey, the top LTL 

carriers in United States are selected using the 2003 financial and operating statistics 

of auto carriers [6]. For the purpose of this survey, a generic email was prepared and 

sent to key contact persons or departments within each LTL company. The main goal 

of the research was discussed briefly. The journal paper [7] that was published based 

on this research was introduced as a reference to show that this is just a request for 

information that does not intend to advertise any product. The information regarding 

the technologies and the software that the company uses to manage and optimize the 

daily operations were requested. Fortunately, a number of responses were received 

from top players in LTL industry.  

LTL carriers have been installing data communication units in their pickup-

and-delivery trucks to improve the efficiency and productivity of their operations. 

The volume and destination of shipments are estimated based on past trends, but 

typically are not confirmed until the pickup-and-delivery trucks return. However, 

there is considerable variability from day to day; for example, a shipper may call in 

an estimated shipment of 2000 pounds but the load’s actual size may be 6000 pounds. 

In addition the decision time window for load planning is very short. Therefore 

having confirmed information on a shipment even one or two hours before the 

pickup-and-delivery truck returns to the terminal is enough to optimize the loading 

and dispatching of outbound trailers. Carriers are using data terminals (either in the 

truck or hand-held) to capture changes in shipment size and destination. These data 

can be sent immediately to the terminal, where they can be used to plan terminal 

operation and dispatching the outbound traffic. 
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Some of the top LTL carriers (e.g. Con-Way Transportation Services, Inc.) do 

not acquire a commercial software package to manage their day to day operations. 

They have a software development center at their corporate IT department through 

which they develop their own dispatch, load allocation and routing management 

system to meet the very specific and unique needs of their operating environment. 

Other LTL carriers use commercial software to help them manage their fleet 

management process. Using online search and also based on the information received 

from LTL carriers a number of companies are selected that develop freight 

management solution to answer the needs of LTL industry. Here are two major 

features of the fleet management products that are provided by these companies: 

1- Hardware: They develop a wireless fleet management system that provides 

real-time, two-way data communication between trucks and dispatching center. 

Additional features include vehicle tracking and vehicle position reporting using 

Global Positioning System (GPS). Using these state-of-the-art information networks, 

trucking companies move data as much as they move packages in order to reduce 

their overall fleet miles and improve their efficiency.  

2- Software: They design applications that utilize the data provided by the 

information network to improve productivity and customer service. These products 

handle the operations as well as financial and administrative requirements of trucking 

companies to reduce their paperwork and chance of data entry errors. Using 

computerized mappings, dispatchers can access the detailed information on trucks 

and shipments locations in real time. Some of these commercial softwares are also 

being advertised as a tool to optimize the operational plan for LTL carrier. However, 

they do not provide any detail on their optimization process. Based on the limited 

survey that is conducted for the purpose of this research, it is not clear if there is any 

mathematical formulation that is being used to model the optimization problem. Most 

of these commercial applications seem to be powerful tools that help the dispatching 

centers to handle the job by providing more information and decreasing operator 

errors.          
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Motivation of Research 

Real-time decision making problems are playing an increasingly important 

role in the economy due to advances in communication and information technologies 

that now allow real-time information to be quickly obtained and processed. The 

intelligent transportation system (ITS) technologies increase the flow of available 

data and offer opportunities to control the transportation in real-time. Some research 

efforts have considered the real-time acceptance/rejection of the requests for service, 

dispatching, assignments, routing and rerouting of the vehicle (Regan, Mahmassani, 

and Jaillet [8,9,10], Yang, Jaillet and Mahmassani [11,12], Jung [13], Mahmassani, 

Kim, and Jaillet [14], Gendreau et al. [15,16,17], and Kim, Mahmassani and Jaillet 

[18,19]). All of these studies focused on truckload trucking operations and very little 

work has been done to take advantage of the real-time information in decision making 

for LTL carriers in a dynamically changing environment.  

LTL motor carriers generally accept as many loads as they can, and rely on 

the human dispatchers to make the appropriate decisions on the basis of experience 

and the available real-time information. If they use tactical planning strategies and 

create the load plan, their operation would be under go-when-filled strategy subject to 

a minimum frequency constraint (typically 3-5 trailers/week) to manage the level of 

service. For the LTL carrier the main objective is to minimize the operating cost, so 

they try not to dispatch half full trucks. That is why a typical shipment spends more 

than 50% of its total travel time at terminals for loading which causes customer 

dissatisfaction. 

Auto carriers are one class of motor carriers that work on hub-and-spoke 

networks. They don’t guarantee pickup and delivery dates (after booking the request, 

they provide an estimate transit time that the shipment will take). Customers can 

check the status of the progress of shipment and track them either online or by calling 

the carrier. There are a large number of online complaints that have been posted by 

dissatisfied customers, mostly because of delays in delivery. Badbusinessbureau.com 

is one of many websites that allow individuals to post their opinions and comments 

against companies and businesses that have treated them unfairly. On this website, 

there are hundreds of complaints about auto carriers that transport vehicles 
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throughout the United Sates and operate on hub-and-spoke networks. The followings 

are some of the recent complaints that have been posted online, and show how the 

companies failed in making real-time decisions for their operations [20]: 

 

Posted on: 10/24/2005 
Company: AAAdvantage Auto Transport (Arizona) 
“My uncle purchased a car for me and the only thing left for me to do was 
get it delivered from Pittsburgh, PA to California. After checking out a 
number of auto transporting companies, and searching for the one, which 
charged the least amount, I discovered AAAdvantage auto transport. I was 
told that the car would be picked up in Pittsburgh within 3 days and 
delivered within 14-16 days. I gave this company $1,046 on Sept 21. On Oct. 
21, I found out that my car had never been picked up and it was still at the 
dealership. I spoke with another customer service rep that notified me that 
my car should be arriving by Nov.15…” 
 
Posted on 8/13/2005 
Company: Major Transport (New York) 
“My car was scheduled for pick up in New York to be delivered to Live Oak, 
TX. I called on 8/1 and was told 8/3 would be the pick up date. They stated 
that the estimated delivery date would be in about 5-7 business days. On 8/9 
the dispatcher called me back to state the driver was in Virginia picking up 
another car and I would be the next stop made. On 8/12 after my vehicle was 
still not delivered I contacted them once again and was told that it will arrive 
by 8/25 or within a total of 21 business days. Nowhere in the contract that I 
did not sign, states that it could take up to 21 business days for my vehicle to 
reach the final destination point...” 
 
Posted on: 7/10/2005 
Company: A-1 Auto Transport (Nevada) 
“On March 4, 2003, I contracted A1 Auto Transport of Carson City, Nevada 
to transport a vehicle from Indianapolis, IN to Pacific, WA. I received quotes 
ranging from $850 to $1100. A1 offered to ship the vehicle for $1090. They 
assured me they could pick up and ship my vehicle within 3-5 days, and put a 
latest pickup date of March 10, 2003 on the contract. On March 10th I had 
not heard a word from A1, so I contacted the company. I received an e-mail 
back saying the car would not be picked up until Friday, March 14th? This 
pushed their 3-5 day window to 10 days. I could've contracted through any 
other company for a less rate and been assured 10 days...” 
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Contributions 

The majority of studies related to LTL networks are related to load planning, 

and service network design. Using tactical planning only that part of demand can be 

satisfied which has a high degree of certainty (which is 60-80% of total demand). The 

rest of the demand is revealed dynamically. Decision makers (dispatchers) must be 

able to answer these questions in real-time: 

 

- How to accept/reject a request? 

- How to route a shipment through the LTL network? 

- How to assign the shipments to trucks? 

- How to route the trucks? 

- How to schedule the trucks (what is the best policy for trailer closing? What is 

the best choice of fill-rate requirement?) 

- How to assign drivers to trucks? 

 

These issues can be addressed using an operational planning practice, which is 

the focus of this study. The main contributions of this research are: 

 

- To develop a mixed integer programming (MIP) model to optimize the 

combined dynamic shipments routing and dynamic trucks routing and 

scheduling for LTL trucking operations 

- To introduce a heuristic algorithm to solve the MIP problem 

- To find a lower bound for the MIP problem, and check the quality of the 

solution provided by the heuristic algorithm 

- To propose a decision making procedure to handle the requests for LTL 

shipments in an environment that changes dynamically 

- To develop a set of simulation experiments to evaluate the effect of decision 

making techniques on LTL operations, and compare them to what the carriers 

do in practice (as the benchmark) 
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Organization of the Dissertation 

Chapter 2 begins with a brief presentation of different levels of planning for 

LTL trucking. It is followed by the review of literature that is related to tactical and 

operational planning. In each part previous studies have been grouped based on the 

problems they try to solve. For each group of studies, a review is presented in 

chronological order. 

Chapter 3 presents a mathematical formulation for the proposed model. It 

starts with a short introduction that highlights the difference between rail operations 

and LTL trucking operations. The mathematical model assumptions, notations, 

decision variables, objective function, and constraints are presented as well as 3 

extensions to the original formulation to capture the non-homogeneous fleet, the 

driver routing and the additional waiting costs.  

In Chapter 4 a procedure is proposed to make acceptance/rejection decisions 

for LTL motor carriers. Fast-acceptance techniques are proposed that can be used 

under high demand condition to increase the ability of handling the requests when 

solving the optimization problem is computationally expensive. The discussion is 

followed by presentation of a decision support application that is developed based on 

the proposed decision making procedure.  

Chapter 5 presents the sensitivity analyses results based on 2 sets of numerical 

experiments. The main goal of performing the first set of numerical experiments is to 

check the accuracy of the mathematical formulation and 3 computer programs that are 

discussed in Chapter 4. The second set of numerical experiments is conducted on a 

10-terminal network to study the system behavior and sensitivity of the solution with 

respect to changes in the contributing factors. 

One major step in all decision making procedures is to solve the shipment and 

truck routing problem repeatedly. In Chapter 6 three heuristic solution algorithms are 

proposed to solve the MIP problem. The first 2 approaches are based on a search 

algorithm, which tries to find the best paths to route the shipments. The last approach 

uses a graphic partitioning to reduce the size of the problem which is solved using 

CPLEX. In order to evaluate the effectiveness of the solution algorithms, three 

benchmark solutions are proposed; “do-nothing”, “literature-reported operation” and 
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the “lower bound”. The performance of the proposed solution methods are analyzed 

in the next Chapter. 

Chapter 7 reports the results of numerical experiments on medium and large-

size networks. The first set of numerical experiments is conducted on a 10-terminal 

network to check the quality of the solution provided by the proposed algorithm to 

solve the MIP problem. In the second numerical experiment the performance of the 

proposed methods are analyzed using a more realistic large-size 17-terminal network. 

Besides, a simulation framework is introduced and the effectiveness of the proposed 

decision making procedure is evaluated. 

Chapter 8 summarizes the research objectives, contributions and 

achievements. Other areas for research on LTL trucking operation are addressed and 

a list of recommended future research is provided in this Chapter.  
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Chapter 2: Literature Review 

 
This Chapter discusses the major research efforts and studies that have been 

conducted on truckload trucking, less-than-truckload-trucking, tactical and 

operational planning for LTL trucking operations and finally the multi-commodity 

network flow problem and solution algorithms.  

 

TL Trucking 

As discussed earlier, trucking services are classified as truckload (TL) and 

less-than-truckload (LTL) based on the type of operations. In truckload trucking one 

truck is assigned to each customer. When a customer requests for pickup and delivery 

of a load, the carrier makes the decision to accept or reject the request. If the load is 

accepted, a truck moves empty to pick it up and moves the load to its destination. 

After unloading, the truck is ready for a new assignment. The truck can be assigned to 

a new load, or can be moved empty to a new location, or can be kept idle at the same 

location. During the past decade many studies focused on real-time dispatching, 

assignment, routing and re-routing of vehicles for TL trucking operations. Due to 

similarities between TL and LTL trucking operations the literatures on TL trucking 

are also discussed in this section. The ideas that have been introduced for TL trucking 

operations can be helpful in development of decision support tools for other 

transportation systems, including LTL trucking. 

Regan et al. [8] identified the potential uses of real-time information for the 

efficient management of truckload carrier operation. They proposed and analyzed the 

en-route diversion strategies in response to unknown customer demand. They used 

single-vehicle simulation experiments to compare diversion strategies versus two 

base cases (assignment in the exact order of arrival, and assignment after re-

sequencing the demands waiting for service). Their findings suggested that 
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meaningful potential exists for reducing travel distances and improving efficiency by 

using diversion strategies. 

In 2 other studies Regan et al. [9,10] developed a simulation framework to 

evaluate the performance of alternative load acceptance and assignment strategies 

using real-time information. They considered different types of geographic region, 

demand arrival patterns and number of vehicles as the elements of the simulation 

framework. A number of load acceptance and assignment strategies were analyzed. 

The results for single-vehicle simulation showed that less restrictive acceptance rules 

are more effective than restrictive ones. The diversion strategies performed well 

especially when time windows for acceptance are short. The results also showed that 

under more realistic demand and larger fleet size the flexible assignment strategies 

work well, which means that company can provide much better service to customers 

and at the same time remain profitable. So they suggested that a hybrid system which 

would choose the assignment strategy based on current congestion level of system 

may result in increased efficiency.  

Yang et al. [11] studied the on-line algorithm for truck fleet assignment and 

scheduling under real-time information. They introduced a mathematical formulation 

of truckload pick-up and delivery problem with time windows. The problem was 

formulated as an off-line assignment problem. An on-line strategy (which was called 

“optimal”) solves the off-line problem in a rolling horizon framework. The problem is 

solved using CPLEX solver each time a new request is received. A set of simulation 

experiments were conducted to compare the heuristic strategies and the optimal 

strategy. The results showed that the strategies with re-sequencing loads outperform 

strategies without re-sequencing. Optimal strategy outperformed all the others, but 

required the most time to execute. 

Mahmassani et al. [14] presented a hybrid strategy to solve dynamic 

commercial fleet management problem. In the first stage the incoming load is 

assigned to a vehicle based on some heuristic rules. The computation is fast, so the 

operator can respond the customer. In the second stage, after initial assignment, the 

operator has enough time to reconsider the vehicles’ routes and schedules before a 

new load request is received, so the reassignment is done using optimization methods. 
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In this study, some strategies were suggested to control the size of the problem, such 

as merging the close demands. Simulation experiments were performed to test these 

strategies. The results showed that the merging of close demands reduces the 

computing time in large problems. 

Kim et al. [18] studied the dynamic truckload truck routing and scheduling in 

oversaturated demand situations (when the demand exceeds the system’s average 

capacity). Three assignment techniques were developed and applied to the problem 

(all use a mixed integer programming model). To maximize the computation 

capability within a given time, a dynamic adaptive dispatching strategy was proposed 

to arrange the application of three types of assignments. A simulation framework was 

developed to evaluate the performance of the algorithm. They showed that the 

dynamic adaptive dispatching strategy significantly improves profit and reduces 

response time. The results suggested that, in oversaturated demand environment, 

keeping the number of waiting jobs in the queue below the holding capacity is more 

beneficial than accepting and holding as many demand as possible. 

Yang et al. [12] focused on Real-time multi-vehicle truckload pick-up and 

delivery problems. They used a mixed integer programming formulation for the off-

line version of the problem. They proposed a new strategy which assumes some 

knowledge about the probability law of future job pickup (and delivery) location. 

They compared this new strategy and 4 other rolling horizon strategies (previous 

studies) under varying traffic intensities, degrees of advance information and varying 

degrees of flexibility for job rejection decision. The new re-optimization policy is 

shown to systematically outperform the other heuristic strategies that work based on 

simple local rules. 

Jung [13] used a genetic algorithm approach to solve the vehicle routing 

problem with time-dependent travel times. The author considered multiple vehicles 

with different capacities, real-time service requests, and real-time variations in travel 

time. The problem was formulated as a mixed integer programming problem. A 

heuristic method (GA) was proposed to solve the MIP problem along with a 

methodology to find a lower bound. Optimal solutions, lower bound solutions, and 

genetic algorithm solutions were compared on randomly generated test problem. The 
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author also developed a time dependent shortest path algorithm and used a simulation 

framework to compare the deterministic, and time-dependent routing plan. 

In one of the latest studies on dynamic truckload routing, scheduling and load 

acceptance, Kim et al. [19] considered high priority demands. The delivery service is 

classified into two types (Priority, and Regular service). A previously presented 

mixed integer programming model is developed for two-class demand situation. They 

proposed a dynamic acceptance/rejection policy. Simulation experiments were 

conducted to evaluate the performance of proposed strategy. The results showed that 

the new policy significantly improves the total profit and reduces the delay compared 

to benchmark policies. They suggested a future research direction would be to 

consider multiple pickups/deliveries for less-than-truckload delivery service 

considering the truck capacity constraints. 

 

This section discussed some of the most significant research efforts and 

different approaches to control the truckload trucking operations using real-time 

information. In these studies the real-time acceptance/rejection of the requests, 

dispatching, assignments, routing and rerouting of the vehicle were discussed. 

Despite the differences between the truckload and less-than-truck operations, they 

have some similar components. Both use a group of drivers, a fleet of trucks, a set of 

terminals and a dispatching center to respond to the demand which changes in a 

dynamic fashion. Therefore, the ideas that have been introduced for TL trucking 

operations can be helpful in development of decision support tools for LTL trucking. 

 

LTL Trucking 

During the past two decades, several approaches have been introduced to 

tackle the management problems for less-than-truckload motor carriers. Delmore et 

al. [21], Golden and Assad [22], Crainic and Laporte [23,24], and Roy [25] reviewed 

the optimization-based operations research methodologies that have been proposed in 

the literature and identified the major trends, challenges and developments. From a 

planning point of view one can classify this research into 3 levels: strategic, tactical 
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and operational. The goals, rules, policies and guidelines are defined at higher levels 

and move from strategic planning toward operational planning. Data and information 

that is required for decision-making is moving backward from the lowest level 

(operational level) to strategic level. 

- Strategic (log-term) Planning 

This is the highest level of management and typically concerns the design of 

transportation system. It usually needs a large investment over a long-term horizon, 

and must be revised periodically to capture the changes in the environment. Strategic 

plans aim to: 

- Identify the fundamental elements of a transportation system, such as demand, 

and supply 

- Design the physical network (i.e. line operations network), and design the 

location of major facilities (i.e. end-of-line, and hubs) 

- Tactical (medium-term) Planning 

The main goal at this level is to determine the required medium-term activities 

to achieve the best possible performance of the system. The tactical plans aim to: 

- Adjust the system capacity based on demand forecast 

- Design the service network 

- Determine the routes, service schedules, and vehicle/shipment routing 

- Operational (short-term) Planning 

This level of planning concerns very short-term day-to-day operations. It is 

performed by local management, and dispatchers in a highly dynamic environment. 

Based on the transportation plans developed at the tactical level carriers assign drivers 

and vehicles and update transportation schedules in response to daily variations in 

demand, and in resource availability. The operational plans aim to: 

- Dynamically decide to accept or reject the requests for service 
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- Dynamically handle the demand, and allocate the resources (i.e. route the 

shipments, assign the vehicles to the loads, and assign the drivers to the 

vehicles) 

- Dynamically adjust the schedules for maintenance activities 

 

Tactical Planning  

Literatures related to the LTL trucking operations at the tactical level can be 

divided into 2 separate groups. Some researchers focused on solving the load 

planning problem while others analyzed the routing of freight shipment through 

many-to-many logistic networks. This part summarizes both groups of studies.  

The load planning model for LTL motor carriers introduced by Powell and 

Sheffi [26,27], and Powell [28] uses a frequency service network design formulation 

where level of service constraints are represented through a set of minimum 

frequencies on links. In these studies the load-planning problem is formulated as a 

large-scale mathematical model. They decompose the problem hierarchically into a 

network design problem, and a series of subproblems determining the routing of LTL 

shipments, the routing of TL shipments and the routing of empty trailers to balance 

the network. They solve the network design problem as a structured local 

improvement heuristic that successively adds and drops links to and from the network 

in search of opportunities to reduce costs. The model and the solution method are at 

the core of an interactive decision support system dubbed APOLLO, and have been 

implemented at a major US less-than-truckload trucking company. Impressive results 

are reported with respect to the impact of the system both on load planning operations 

and strategic studies of potential terminal location. 

In a research by Powell and Koskosidis [29] the service network is taken as 

fixed, and they focus instead on the shipment routing subproblem to minimize the 

total transportation and handling costs, subject to two key constraints: Minimum 

frequency for service between two terminals and the tree constraint. The latter is 

derived from real world consideration, which requires that instructions to the field be 
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of the form “freight at terminal X headed for destination Y must move next to 

terminal Z”. A solution approach is developed using a shortest path based formulation 

and a local improvement heuristic is presented to solve the problem. They also 

developed a separate set of primal-dual algorithms which provide both upper and 

lower bounds. The effectiveness of the algorithm has been evaluated through a set of 

numerical experiments. 

Crainic and Roy [30] studied the design of driver routes for the LTL motor 

carrier industry. Forecasts must be made for that part of the demand for transportation 

services which is considered to be stable over a given planning horizon. These market 

forecasts are then used as inputs to the tactical planning process that produces a load 

plan for the stable part of demand for LTL services. Such a plan can be established, 

for example, by using the interactive optimization system, APOLLO, based on ideas 

proposed by Powell and Sheffi [28], or the NETPLAN software developed from a 

tactical planning model proposed by Roy and Delmore [31] and based on a 

methodology by Crainic and Rousseau [32]. The next step is to design the regular 

driver routes. The results indicate that the proposed methodology can provide 

assistance to motor carriers in making better use of their resources and improve their 

productivity. 

Daganzo [33] examined the structure of many-to-many logistics networks. 

Using as little data as possible this study attempts to answer macroscopic questions 

such as: how many terminals should be used? Should they be used at all? What 

should be the frequency of service? They show that near-optimal network structures 

can be characterized by two dimensionless constants, which can be determined from 

the data. They also highlight the difference between many-to-many and one-to-many 

(or many-to-one) networks, the role breakbulk terminals play in many-to-many 

logistic networks and how using transshipments can reduce cost. 

A study by Hall [34] used two measures of consolidation (number of terminals 

and number of links) to compare 4 strategies for routing shipments through hub-and-

spoke network. They showed that decreasing the number of links and the number of 

terminals leads to increased consolidation and reduced operating and shipping costs. 

They discussed the best application for each strategy. One strategy is two-terminal 
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routing, which means each shipment passes through two terminals. This strategy is 

attractive when the number of origins and the number of destinations is large, and it is 

a logical strategy for LTL carriers.  

In the routing schemes developed by Daganzo [33], and Hall [34] the 

shipments are consolidated either at the origin of the freight or at the origin terminal. 

The methodology proposed by Akyilmaz [35] allows the consolidation of the 

shipments at intermediate breakbulk terminals and it explicitly specifies the routing of 

the shipments. Solution results of the numerical experiments show that the algorithm 

offers an efficient and reasonably accurate method for the routing of LTL shipments 

via the intermediate terminals. 

 

Operational Planning  

Manufacturing, service and transportation companies try not only to cut their 

logistics costs, but also to compete on service differentiation. Not surprisingly, a fast 

growing body of research focused on time constrained routing and scheduling 

(Desrosiers et al. [36]). The time dimension has been considered in these problems in 

the form of customer-imposed time window constraints. This part discusses the 

literature related to planning at the operational level, for which the time dimension is 

a major element. 

Multi-commodity network flow problems (MCNF) can be used to model 

many real-world problems, including the freight distribution problem of LTL motor 

carriers. MCNF problem with linear cost is simply a linear program but when it is 

used to model real-world problems the mathematical programming problem is so 

large that cannot be solved using the revised simplex method. The MCNF problem 

and its solution algorithms have been extensively studied in the past. Assad [37] and 

Kennington [38] provide reviews on these solution algorithms. A summery on the 

MCNF problem and solution algorithms are provided in the last section of this 

Chapter.  
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Haghani [39] used MCNF to model the combined train routing and makeup, 

and empty car distribution problem. The proposed formulation results in a large-scale 

mixed-integer programming problem with non-linear objective function and linear 

constraints. A heuristic decomposition technique is developed to solve the model. 

This solution procedure decomposes the problem to smaller sub-problems based on 

the type of decision variables.  

Barnhart and Sheffi [40] presented a primal-dual heuristic solution approach 

for MCNF problems. To demonstrate the effectiveness of the solution strategy, a 

large-scale freight assignment problem in LTL trucking industry is formulated as a 

MCNF problem. Two linear programming based exact solution strategies are unable 

to achieve even an initial solution for the problem (because of excessive memory 

requirements). The proposed heuristic, however, determines a solution. They used a 

smaller test problem to compare the performance of the proposed heuristic with that 

of the exact procedures.  

Similar to the previous work, Farvolden et al. [41] present a new solution 

approach for the MCNF based on both primal partitioning and a decomposition 

technique which simplifies the computations required by the simplex method. This 

solution was developed specifically for problems with the characteristics of the LTL 

shipment routing problem. This work was followed by the study done by Farvolden 

and Powell [42], which provides a combined formulation of the service network 

design problem and shipment routing problem in a dynamic setting. They developed 

local-improvement heuristics to solve the resulting MCNF problem. The heuristics 

are based on subgradients derived from the optimal dual variables of the shipment 

routing subproblems. The empty balancing is considered as an independent sub-

problem and is not addressed in this study. 

Kleywegt and Papastavrou [43] studied the acceptance and dispatching 

policies for LTL carriers. This paper formulates a dynamic and stochastic distribution 

problem (DSDP) that combines acceptance and dispatching policies for LTL 

distribution operations over a network.  They developed a Markov decision process 

model and proposed an algorithm that utilizes the structure of the problem.  One 

important assumption was that after loads have been consolidated at their origin 
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terminals they are shipped directly to their destinations. Therefore their model does 

not consider intermediate cross-docking besides that at origin and destination 

terminals. 

The LTL carriers operate on a hub-and-spoke freight transportation network 

and simulation is a powerful too that can be used to study the impact of dynamic 

decision making on these type of systems. In a work done by Cheung and 

Muralidharan [44], a comprehensive simulation model is developed to capture the 

relationship between the LTL network configuration, load planning, work rules and 

trailer closing policies. Their simulation results suggest that changing the shipment 

routes and the trailer closing rules in a dynamic fashion has a large impact on the 

level of service. Based on the results they also formulate the trailer closing policy for 

one OD pair as a dynamic programming model.  

Cheung and Muralidharan [45] considered a shipment routing strategy for the 

priority shipments on an LTL network. By using a network formulation, this strategy 

can be approximated by finding a dynamic shortest path over a stochastic network. 

They show that the expected travel times from all nodes to a destination node can be 

computed very quickly via a dynamic programming algorithm off-line. These 

expected travel times capture the ability to change shipment routes when some of the 

uncertainty is revealed over time. Their numerical experiments indicate that this 

adaptive routing strategy allows the priority shipments to reach their destination faster 

for the shipments that have long loading times and that are most likely to miss their 

due date. 

 

MCNF problem and solution algorithms 

The multi-commodity network flow (MCNF) problem is defined for a 

network where more than one commodity needs to be transported. Unlike SCNF 

problem, in multi-commodity flow problems no commodity can be transformed into 

another commodity, so each has its own flow conservation constraints. All 
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commodities use the same network and resources that are represented by arc 

capacities. There are three different types of MCNF problems [46]:  

 

- Max MCNF problem, which maximizes the sum of flows for all commodities 

between their origin and destinations. 

- Max-concurrent flow problem, which maximizes the fraction of satisfied 

demands for all commodities. 

- Min-cost MCNF problem, which finds the flow which satisfies the demands 

of all commodities with minimum cost (considering the capacity constraint on 

all arcs). In this research the minimum cost MCNF problem has been used.  

 

Due to the existence of bundle constraints that limit the total flow of all 

commodities to arc capacities, the MCNF problem is much more difficult than the 

SCNF problem. Solving the integer MCNF problem is NP-complete [47, 48].  

In the last four decades the MCNF problem was the main motivation for many 

operations research studies. For example, the Dantzig-Wolfe decomposition 

algorithm [49] was originated from the study done by Ford and Fulkerson [50] on 

Maximal multi-commodity network flow problem. The MCNF mathematical model 

was involved in many real-world OR applications. The most recent applications of 

MCNF models are in telecommunication network routing [51-54], routing and 

scheduling in transportation and logistics [55-59], production scheduling and 

planning [60, 61], VLSI design [62-65], traffic equilibrium [66, 67], graph 

partitioning [68-72], and network design [73-77]. Wang [46] provides reviews on 

some of these applications. 

The MCNF problem has been presented using two different formulations. 

Both formulations will be referenced in this dissertation. In this section simple 

notations are used to present both forms along with the discussion of their major 

differences.  

Given a network, which consists of a set of nodes (N) and a set of arcs (A), a 

set of commodities (k∈K) must be shipped from their origin to their destinations. It is 

assumed that there is a cost CL( k, ij ) associated with shipping commodity k on arc 
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ij∈A. Capacity of arc ij is assumed to be equal to U( ij ) that limits the total flow on 

arc ij∈A. Associated with each commodity k∈K at each origin/destination node i∈N, 

there is a parameter B( k , i ) that represents the demand/supply of commodity k at 

that node. The decision variable is XL( k , ij ), which is the flow of commodity k∈K 

on arc ij∈A. Given the above notations and definitions the “Node-Arc” (link-based) 

formulation of MCNF is as follows: 

       

Minimize  
[ ]∑ ∑

∈ ∈Kk Aij
ijkCLijkXL ),().,(                           (1) 
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                                                                              Aij ∈∀   (3) 

0),( ≥ijkXL                                                                           AijKk ∈∀∈∀ ,    (4) 

XL (k , ij) = 0, 1, 2,…                                                             AijKk ∈∀∈∀ ,     (5) 

 

Parameter B(k, i) is positive when i is an origin node. It is negative when i is a 

destination node, and it is equal to zero when it is neither origin nor destination node. 

The objective is to minimize the total cost (1), while the flow conservation constraints 

(2) and bundle constraints (3) are satisfied. Constraints (4) and (5) represent the non-

negativity and integrality. 

Tomlin [78] proposed an alternative form of the min-cost MCNF problem. 

This form, which is called “Arc-Path” (Path-based) formulation, can be obtained by 

extending the flow decomposition theorem [79] to multi-commodity flows as follows 

[80]:  

 

“Flow Decomposition Theorem: 
Any non-negative feasible flow can be decomposed to the sum of cycle flows 
and path flows. Path flows originates from one supply node and destines to a 
demand node. The decomposition is not necessarily unique.   
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By assuming that all unit cost are non-negative, there will be no cycles with 
negative cost, and the optimal solution meets the following proposition: 
 
Proposition: An instance of the integer multicommodity problem in which all 
cycles have non-negative cost and the set of feasible solutions is non-empty 
has an optimal solution such that all cycle flow are equal to zero. The same 
can be stated about the optimal solution of the linear relaxation of the 
problem. 
 
Proof: In any solution, the cycle flow can take any positive value without 
violating the flow conservation constraints. On the other hand, as bundle 
constraints are of type “≤ ”, any positive cycle flow can be driven to zero in 
a way such that all constraints are still satisfied and the objective function 
decreases monotonically, because all cycle variables have a non-negative 
coefficient in the objective function.” 
 

P( k ) is assumed to be the set of all paths between the OD pairs of commodity 

k. Cost CP( k, p) is associated with shipping commodity k on path p∈P( k ). If arc ij 

belongs to path p of commodity k, then D(p, k, ij) is equal to 1 (and zero, otherwise). 

The decision variable is XP( k , p ), which is the flow of commodity k∈K on path 

p∈P( k ). Given the above notations and definitions the Arc-Path formulation of 

MCNF is as follows: 

       

Minimize  
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The objective is to minimize the total cost (6), while the flow conservation 

constraints (7) and bundle constraints (8) are satisfied. Constraints (9) and (10) 

represent the non-negativity and integrality.  
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The node-arc formulation has |K||A| variables and |N||K|+|A| constraints. In 

the worst case, |K| is O(|N|2) and the node-arc form will have O(|N|3)  constraints. 

This makes the memory management inefficient and the computations would be more 

difficult compared to arc-path formulation. On the other hand, the arc-path 

formulation does not have more than O(|N|2) constraints, but the number of variables 

grows exponentially with the size of the network. Usually column generation 

techniques are used to tackle such problems with large number of decision variables.   

The MCNF problem has a block-angular structure, for which there are many 

solution methods that have been suggested in the literature. In this study, due to the 

characteristics of the commodities and the special connections between them, the 

problem cannot be treated as a general MCNF problem. On the other hand an 

efficient problem-specific solution algorithm is needed to be implemented for 

practical use in dynamically changed environment. 

Basis partitioning methods are solution algorithms based on which the 

simplex basis matrix is partitioned and the network is exploited in order to make the 

inversion of the basis more efficient. In resource-directive methods, a capacity is 

assigned to each arc for each commodity and the original problem becomes 

equivalent to a resource allocation problem, for which there are a number of solution 

algorithm in the literature.  

Lagrange relaxation and Dantzig-Wolfe decomposition are among the price-

directive methods where by associating the bundle constraints with a penalty function 

the MCNF problem would be decomposed into a series of easy SCNF problems. 

Primal-dual method starts with a feasible dual solution and then uses the 

complementary slackness to build the primal feasibility subproblem, iteratively. 

Using the optimal dual solution of the subproblem it improves the current dual 

solution and continues until there is no primal infeasibility.  

Interior point methods are suitable algorithms to tackle very large linear 

programs such as MCNF problems. This algorithm, which has been inspired by 

Karmarkar's algorithm [81], is a fast algorithm that searches in the interior of the 

feasible set rather than on the boundary (like the simplex methods).   

http://en.wikipedia.org/wiki/Karmarkar%27s_algorithm�


 

 33 
 

There are a number of comprehensive survey papers that have been published 

during the past 3 decades and focused on solution techniques and computational 

results for MCNF problems (Assad [37] and Kennington [38]). Previous 

computational experiments suggested that the price-directive methods are better 

techniques, in general, compared to the resource-directive and basis-partitioning 

methods. During the past decade, there has been also a significant improvement in the 

quality of solution provided by solver packages (i.e. CPLEX) by implementing some 

of the solution techniques (i.e. interior point methods) and impressive results have 

been reported in the literature. 

 

This Chapter discussed some of the most significant research efforts focused 

on truckload trucking, less-than-truckload-trucking, tactical and operational planning 

for LTL trucking operations and finally the multi-commodity network flow problem 

and solution algorithms. The intelligent transportation system (ITS) technologies 

increase the availability of data and offer opportunities to control the transportation 

operations in real-time. As discussed earlier in this Chapter some efforts have 

considered real-time acceptance/rejection of shipping requests, but mostly focused on 

truckload trucking operations. This study tries to use real-time information in decision 

making for LTL carriers in a dynamically changing environment. In the next Chapter, 

based on the general structure of MCNF problems, a mathematical model is 

developed to capture the dynamic shipment and vehicle scheduling problem in LTL 

trucking operations.  
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Chapter 3: Mathematical Model 

 
The problem is formulated as a capacitated Multi Commodity Network Flow 

problem (MCNF). The capacity of a link is the product of the number of loaded 

trucks on each link and the capacity of each truck.  

The operation of commercial airlines and trains are similar to that of LTL 

trucking. These are different transportation modes, but they all operate on hub-and-

spoke networks and take advantage of shipment/customer consolidation. One major 

difference between trucking operation and airline or train operation is that trucks have 

more flexibility in terms of the routing path/link and schedules.  

As discussed in the previous section, Haghani [39] developed a MCNF model 

for the rail operations which is a type of consolidation transportation. That study has 

been taken as the main reference to develop the mathematical model for the LTL 

trucking operations. Despite the similarities between the rail operations and the LTL 

trucking operations, there are some major differences between the two. The main 

components of those systems and the relationship between them are different. 

Decision making for rail operations includes assigning the blocks of freight cars to 

trains, routing trains, and redistribution of empty freight cars but the decision making 

problem for the LTL trucking operations consists of routing the shipments, assigning 

the shipments to trucks, routing the loaded trucks, and redistribution of the empty 

trucks.  

This chapter presents the mathematical formulation for the dynamic shipment 

and vehicle routing and scheduling problem for LTL trucking operation. The 

discussion follows by presenting 3 extensions to the original formulation to capture 

the non-homogeneous fleet, the driver routing and the additional waiting costs.  

  

Assumptions 

At the arrival time of a request the company is given the pick-up location, the 

delivery location, the earliest pick-up time, and the latest delivery time for each 
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shipment. The company can either accept or reject a service request within a small 

amount of time. The revenue generated from the delivery of each load is proportional 

to the distance between its pick-up and delivery locations. There will be a penalty for 

completion beyond the latest delivery time. The penalty is proportional to the delivery 

distance and amount of delay. For serving the sequence of requests, there are some 

additional operating costs proportional to the loaded/empty distance traveled by 

trucks in order to serve the accepted request. Note that in this study, both terms “full 

truck” and “loaded truck” refer to a “non-empty truck”. Here is the list of 

assumptions: 

 

- Number and location of end-of-line and break-bulk terminals are known 

- Service network is known (Tactical planning is already done)  

- End-of-line terminals are taken as the points of origination and termination 

 (The local pickup/delivery problem is not solved in this study) 

- Travel times are fixed (since LTL companies operate on the intercity 

network) 

- There is a time window for each demand within which the demand should 

be served, otherwise there will be a penalty (soft time windows) 

- Demand info (origin, destination, time windows) are revealed dynamically 

- Number of vehicles (fleet size) is known 

 

Time-Space Network 

In this research a time-space network is used to represent the model. Time-

space network is an effective modeling framework for scheduling and routing 

problems. These models, which are also known as dynamic network models, were 

developed in the 1950’s. Due to the logical setup of the time-space networks one can 

clearly describe the structure of the problem using these models.  

In this research, the space is the region for which the carrier provides the LTL 

service and is represented in one dimension and time lies in the other dimension. 
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Each node within the network shows an event taking place in a specific terminal at a 

specific time. Each arc represents the linkage among different nodes. The next section 

presents the notations as well as the definitions of different elements in both physical 

as well as time-space network.   

Notations 

- Physical Network  

The physical network consists of a set of nodes (terminals) and a set of links 

as shown in Figure 5.  

N                = Set of all nodes (end-of-line, and breakbulk terminals) n∈N 

L                 = Set of all links l∈L 

TT ( l )        = Travel Time on link l∈L 

 

 
Figure 5 – Physical network  

 

- Time-Space Network  

The time-space network consists of a set of nodes (terminals) for each time 

period, a set of routing links for all connected terminals for each time period, and 

finally a set of waiting links for each terminal between each two consecutive time 

periods as shown in Figure 6.  

t                = Time Period  

T               = End of time horizon 

LR ( t )      = Set of all routing links that end at time period  t∈[0 , T] 

LW ( t )     = Set of all waiting links that end at time period  t∈[0 , T] 
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LE ( n , t ) = Set of all links that end at node n∈N, at time period  t∈[0 , T] 

LB ( n , t ) = Set of all links that begin at node n∈N, at time period  t∈[0 , T] 

 

 
Figure 6 – Time-space network (3-terminal network) 

 

- Shipments 

S              = Set of all shipments 

W ( s )      = Weight (size) of shipment  s∈  S 

O ( s )       = Origin of shipment  s∈  S 

D ( s )       = Destination of shipment  s∈  S 

TE ( s )     = Earliest pickup time for shipment  s∈  S 

TL ( s )     = Latest delivery time for shipment  s∈  S 

 

- Trucks 

WF           = Capacity of a truck 

WE           = Minimum fill rate of a truck 

SE ( n , t ) = Supply of empty trucks on node n∈N at time period  t∈[0 , T] 

 

- Cost Functions 

CF ( l )        = Full (loaded) truck routing cost over link l∈  LR ( t ) 

CE ( l )        = Empty truck routing cost over link l∈  LR ( t ) 

CH ( s )       = Handling cost for shipment s∈  S  

CW ( s )       = Waiting cost for shipment s∈  S  
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CN ( s , n )  = Penalty cost for delivery failure by the end of the time horizon   

(for shipment s∈  S ends up being at node n≠ D(s), at  t = T ) 

CL ( s )        = Penalty cost for late delivery for shipment s∈  S  

 

- Decision Variables 

XS ( s , l ) = Flow of shipment  s∈  S  on link  l∈  LR ( t ) 

XF ( l )     = Flow of full (loaded) trucks on link  l∈  LR ( t ) 

XE ( l )     = Flow of empty trucks on link  l∈  LR ( t ) 

 

Objective Function 

- Routing Costs 

Routing costs are equal to the total flow of full (loaded) and empty trucks over a 

routing link multiplied by the associated cost over link l ( CF( l ), and CE( l ) ) 

summed over all routing links in all periods of the time-space network. 
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- Handling Costs 

Handling costs are equal to the total flow of shipments s over a routing link 

multiplied by the associated cost over link l ( CH( s ) ), summed over all routing links 

in all periods of the time-space network. 
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- Waiting Costs 

Waiting costs are equal to the total flow of shipments s over a waiting link multiplied 

by the associated cost over link l ( CW( s ) ), summed over all waiting links in all 

periods of the time-space network. 
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- No-Delivery Penalty Costs 

No-delivery penalty costs are equal to the total flow of shipments s over all links that 

end at node n at the end of the time horizon, multiplied by the associated cost ( CN( s 

, n ) ), summed over all nodes other than the destination for s ( N-{D( s )} ), for all 

shipments. 
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- Late-Delivery Penalty Costs 

Late-delivery penalty costs are equal to the total flow of shipments s over all links 

that end at this destination nodes ( D(s) ) at time period t, multiplied by the difference 

between the actual delivery time and the latest delivery time ( t - TL( s ) ), multiplied 

by the associated cost ( CL(s) ), summed over all time periods later than the latest 

delivery time for shipments s. 
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Constraints 

- Shipment Conservation 

Shipment Origin:  

The flow of the shipments s that departs from O(s) at the earliest pickup time 

is equal to the total size of the shipments s (Figure 7). The flow of shipments s that 

arrive at O(s) at all other time other than the shipment’s earliest pickup time is equal 

to zero  (Figure 8). 
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Figure 7 – Shipment conservation at shipment origin (constraint 16) 
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Figure 8 – Shipment conservation at shipment origin (constraint 17) 
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Shipment Destination:  

The Flow of the shipments s that arrive at D(s) at all time periods is less than 

or equal to the total size of the shipments s (Figure 9). The flow of shipments s that 

departs from D(s) at all time periods is equal to zero (Figure 10). 

)(),(
0 )),((

sWSlsXS
T

t tsDLEl

≤∑ ∑
= ∈

                                                         Ss ∈∀   (18) 

 
Figure 9 – Shipment conservation at shipment destination (constraint 18) 
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Figure 10 – Shipment conservation at shipment destination (constraint 19) 

 

Other Nodes:  

The flow of the shipments s that arrives at every node in the time-space 

network is equal to the flow of the shipments s that departs from that node (Figure 

11). 
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Figure 11 – Shipment conservation at all nodes (constraint 20) 

 

- Shipment-Loaded Truck Connection:  

The flow of all shipments over a link in the time-space network is less than or 

equal to the total truck capacity and greater than or equal to the total minimum fill 

rate on that link (Figure 12). 

Truck Capacity: 

WFlXFlsXS
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Truck Minimum Fill Rate: 

Note that, the following constraint is in form of “greater than or equal to” and 

is included in the mathematical formulation only to capture those instances where the 

dispatcher wants to impose some limitations on the minimum number of loads per 

each loaded truck. The constraint is added for the purpose of conducting some 

numerical experiments. Since this is a minimization problem, this constraint might 

even have a negative impact on the optimal solution.  
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Figure 12 – Shipment-full (loaded) truck connection (constraints 21 and 22) 
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- Truck Conservation 

The total number of loaded and empty trucks that arrive at every node in the 

time-space network is equal to the total number of trucks that depart from that node 

(Figure 13). 
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Figure 13 – Truck conservation (constraint 23) 

- Non-Negativity 

0),( ≥lsXS                                 ],0[),()(, TttLWtLRlSs ∈∀∪∈∀∈∀   (24) 

 

- Integrality 

XF ( l ) = 0, 1, 2,…                                                      ],0[),( TttLRl ∈∀∈∀   (25) 

XE ( l ) = 0, 1, 2,…                                      ],0[),()( TttLWtLRl ∈∀∪∈∀   (26) 
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Mathematical Formulation 

The final formulation of the model, which deals with the routing of shipments, 

loaded trucks, and empty trucks will have the following form: 

 
Minimize 
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Subject to: 
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Extension 1: Non-homogeneous Fleet 

In this study, fleet can be treated as a commodity in the MCNF model. In the 

previous sections, the mathematical model was developed with the assumption of 

having a homogeneous fleet. As the first extension to the original mathematical 

model, fleet is assumed to be non-homogeneous. To capture this assumption, one 

commodity is added to the system for each type of trucks. This section presents the 

minor modifications that are required in order to deal with the non-homogeneous fleet 

assumption: 

 

Trucks 

K                   = Set of all types of trucks k∈K 

WF ( k )         = Capacity of a type k truck 

WE ( k )         = Minimum fill rate of a type k truck 

SE ( k , n , t ) = Supply of empty type k trucks on node n∈N at time period  t 

 
Cost Functions 

CF ( k ,  l )     = Full (loaded) type k truck routing cost over link l∈  LR ( t ) 

CE ( k ,  l )     = Empty type k truck routing cost over link l∈  LR ( t ) 

 
Decision Variables 

XF ( k  ,  l )    = Flow of full (loaded) type k trucks on link  l∈  LR ( t ) 

XE ( k  ,  l )    = Flow of empty type k trucks on link  l∈  LR ( t ) 

 
Routing Costs 
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Truck Capacity 
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Truck Minimum Fill Rate 
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Truck Conservation 
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Integrality 

XF ( k ,  l ) = 0, 1, 2,…                               ],0[),(, TttLRlKk ∈∀∈∀∈∀     (31) 

XE ( k , l ) = 0, 1, 2,…                ],0[),()(, TttLWtLRlKk ∈∀∪∈∀∈∀     (32) 

 

In summary, the routing costs of the homogeneous problem are replaced with 

the routing costs of the non-homogeneous fleet. Truck capacity, minimum fill rate, 

conservation and integrality constraints are also modified to capture the non-

homogeneous fleet assumption. All the other components of the objective function 

and the constraints that are associated with shipments remain unchanged. The final 

formulation of the mathematical model considering the non-homogeneous fleet 

assumption is as follows: 

 

Minimize (27) + (12) + (13) + (14) + (15) 

Subject to constraints (16) to (20), (24) and (28) to (32) 
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Extension 2: Driver Routing 

An important dimension of the LTL trucking operations is driver 

management. This is the second extension to the original mathematical model. The 

original model is modified by considering the driver routing and scheduling problem, 

combined with truck/shipment routing and scheduling problem. 

Driver work rules limit the length of time a driver can work. There are 

limitations on the number of work hours during a shift. Also, drivers cannot be on the 

road without having a rest period between each two shifts. To incorporate these 

constraints it is assumed that the LTL network is designed in a way that the length of 

each link is not longer than what a driver can driver during a work shift.  

Drivers in LTL trucking may spend a couple of weeks away from home (their 

base terminal). Most carriers try to return a driver home earlier. In order to take this 

important factor into account, a penalty cost is defined that is associated with keeping 

drivers away from home for a long period of time.  

This section introduces the required additions to assumptions, notations, 

objective function and constraints of the original mathematical formulation in order to 

model the combined driver/truck/shipment routing and scheduling problem. Note 

that, the proposed extension would increase the complexity of the problem and 

solving the resulting problem is beyond the focus of this study. However, limited 

numerical experiments were conducted considering the driver routing extension and 

the results are reported in Chapter 5. 

By adding the following assumptions, notations, additional cost functions and 

constrains, the characteristics of the driver routing problem will be captured: 

 

Assumption 

TT ( l )   <  Maximum driver duty time per day 

 

Drivers 

D          = Set of all drivers d∈  D 

H ( d )   = Base (home) terminal for driver d∈  D 

T ( d )   = Maximum number of duty time periods for driver d∈  D 
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SD ( d , n , t )   = 1 when driver d is at terminal n at time t, 0 otherwise 

 

Cost Function 

CD ( d , n )   = Penalty cost associated with keeping driver d at terminal n  

(any terminal other than home) at the end of horizon 

 

Decision Variable 

XD ( d  ,  l )    = 1 if driver d works/rests on link l,  and 0 otherwise  

 

Routing Costs 
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Driver-Truck Connection 
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Driver Conservation 
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Driver Work Time Regulation 
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Integrality 

XD ( d ,  l ) = 0, 1                  ],0[),(, TttLRlDd ∈∀∈∀∈∀    (37) 

 

In summary, the driver related routing costs are added to the objective 

function of the original problem. Additional constraints are added to capture the 

driver-truck connection, driver conservation, driver work time regulation and 
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integrality. All other components of the objective function and the constraints remain 

unchanged. The final formulation of the mathematical model considering the driver 

routing problem is as follows: 

 

Minimize (11) + (12) + (13) + (14) + (15) + (33) 

Subject to constraints (16) to (26) and (34) to (37) 
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Extension 3: Early Delivery Costs 

This section introduces a new addition to the operational costs. The main goal 

is to capture the situations where a part of a shipment arrives at the destination 

terminal, while the rest is still on its way. In these cases the customer doesn’t accept 

loads in separate batches and wants them to be delivered all at once. Hence, the 

carrier has to provide storage to keep that part of the demand that is delivered earlier. 

This section presents the additional cost element, which is called “early delivery 

cost”. The results of sensitivity analyses are conducted to show how changes in early 

delivery cost factors may affect the system performance. He results are reported in 

Chapter 5. 

  

Cost Functions 

CP ( s ) = Penalty (Waiting) cost for partial delivery for shipment s∈  S 

 
Early Delivery Cost 
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In summary, one additional component is added to the objective function that 

covers the early delivery costs. Other parts of the original mathematical model remain 

unchanged. The final formulation of the mathematical model considering the 

additional waiting costs is as follows: 

 

Minimize (11) + (12) + (13) + (14) + (38) 

Subject to constraints (16) to (26) 
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This section introduced the mathematical formulation that is developed for the 

dynamic shipment and vehicle routing and scheduling problem for LTL trucking 

operation. The original mathematical formulation can be modified to include other 

dimensions in LTL trucking operation. Three extensions were presented in this 

Chapter with details on major modification that is required to capture the non-

homogeneous fleet, the driver routing and the additional waiting costs. These 

extensions can be considered individually or combined. Considering these extensions 

would result in a much more realistic optimization model. However, it would also 

increase the complexity of the mathematical problem, and solving the resulting 

problem is beyond the focus of this study. Limited numerical experiments are 

conducted considering these extensions and the results are reported in Chapters 5 and 

7. The main goal of this presentation is to pave the road for the future research efforts.  
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Chapter 4: Decision Making Procedures 

 
This Chapter presents a procedure that is proposed to make 

acceptance/rejection decisions for LTL motor carriers. The discussion is followed by 

a presentation of a decision support application which is developed based on the 

proposed decision making procedure.  

As discussed earlier it is assumed that strategic and tactical level decisions 

have been made already which means the LTL service network structure (terminal 

location, direct services, etc.) and fleet characteristics (fleet size and locations) are 

known. Furthermore, there are parameters related to the length of time periods, 

duration of the planning horizon, trucks (capacity, minimum fill rate, etc.), and 

shipments (size, origin, destination, etc.) that are used as additional inputs for the 

proposed decision making procedure.   

Figure 14 shows the conceptual framework of the decision making procedure. 

The system real-time information is available either through simulation or the real 

data from the field. At the end of the time horizon or each time a request arrives, the 

mathematical formulation of the problem is generated considering the updated empty 

truck locations and shipments information. Then the problem is solved either by 

CPLEX, or by heuristic solution methods as needed. In this study three heuristic 

solution methods are introduced as an alternative to the available exact solution 

methods (i.e. CPLEX). The detail discussion on these proposed algorithms and their 

performance are provided in the next Chapters.   

After solving the problem, the performance of the new solution is analyzed 

and the effects of accepting the new requests are examined based on the acceptance 

criteria. LTL trucking is similar to a manufacturing firm in which the input is the LTL 

network, fleet and demand and the output is the delivery service. The marginal cost is 

the increase or decrease in the operational cost as the result of one more unit of 

output.  
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Figure 14 - Decision making procedure 
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- Fleet Size 
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Like most manufacturing firms, in LTL trucking, the marginal costs decrease 

as the volume of output increases (accepting more shipments for delivery) due to 

economies of scale. This is achieved by shipment consolidation that leads to an 

efficient use of supply. On the other hand, less efficient input can cause diseconomies 

of scale which increase the marginal cost. Marginal cost can be used for pricing the 

LTL transportation services and also as a measure to evaluate the effects of 

acceptance/rejection of a shipment request. Based on these acceptance criteria the 

carrier may offer a price that makes a shipment profitable. Therefore, the rates that 

are offered by the company for delivery service can be a function of shipment 

characteristics.   

Based on the acceptance criteria, the decision is being made either to accept 

the load or to reject it. If the load is accepted the operation plan will be prepared and 

sent to the field. Otherwise, no change is applied to the current operation plan.  

Normally, the customers shop around and get quotes from a number of 

trucking companies. They read customer reviews on those companies, compare their 

rates and make their final decision. Considering the customer behavior, and based on 

the results obtained from the decision making procedure the dispatcher may pick one 

of these options: 

- If the load is economical, it is accepted and the regular rate can be offered 

- If the load is economical, it is accepted and a rate lower than regular rate can 

be offered to the customer based on the marginal cost of the shipment delivery  

- If the load is not economical, the dispatcher can wait for the future shipments 

requests that may affect the current decision 

- If the load is not economical, a rate higher than regular rate can be offered to 

the customer to compensate the additional costs of shipment delivery 

In other words, this procedure suggested that the carrier never provides 

information regarding the rejection of a load to a customer. Instead, either a rate 

higher than regular rate is offered, or the dispatcher waits for future requests that may 

bring a better opportunity for consolidation for the currently unaccepted loads. For 

large-size problems and under high demand for LTL shipments, it is not practical to 
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use CPLEX. One way to resolve this issue is to solve the MIP using a heuristic 

approach that is the main focus of Chapter 6. 

Fast-Acceptance Techniques 
In this section, a variation of the decision making procedure is proposed that 

can be used under high demand condition to increase the ability of handling the 

requests when solving the optimization problem is computationally expensive. By 

applying these methods the dispatcher can avoid solving the main MIP program each 

time a new shipment arrives. These techniques do not provide the best solution but 

they act fast in the dynamic environment by accepting the most profitable loads. 

One way to speed up the decision-making process is to identify the shipments 

that are compatible with the current operation plan. Based on the proposed procedure 

(Figure 15) each time a new request arrives the acceptance techniques are used to 

check if the new request can be inserted into the current solution without any further 

changes. If the load gets accepted the operation plan will be updated. Those requests 

that cannot be picked at this stage will have another chance to get selected. Such 

requests are all added to a pool of unaccepted requests. When the pool reaches its 

capacity the re-optimization process will proceed to make the decision to 

accept/reject the loads.  

In order to check the compatibility of the new shipments with the current 

solution two different algorithms are proposed. In both approaches, a new MCNF 

problem is generated based on the new shipments and the current solution. The size 

of this problem is smaller compare to the original problem and it can be solved much 

faster using the exact or heuristic methods.        

- Technique 1 (Fixed Truck Routing) 

In the preparation step, the excess capacity of all links is calculated. To 

calculate this value, the total number of shipments that go through a link is subtracted 

from the total available capacity on the empty and half-loaded trucks on the same link 

based on the current routing plan.  

In the new MCNF problem, only the new shipments are considered. The 

objective function consists of all costs related to shipments, which includes 
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components (12), (13), (14) and (15) in the objective function of the original problem. 

The goal is to minimize these costs subject to constraints (16)-(20) and (24). 

Furthermore, the sum of the new shipments that routed over each link must be less 

than or equal to the total excess capacity of that link. 

The decision variables in this new MCNF problem are only the volumes of the 

new shipments on each link. After solving the problem and finding the value of these 

volumes, the volumes of empty and loaded trucks on each link are updated. 

Obviously, this problem is much smaller than the original problem, in terms of 

number of variables and constraints. By solving this problem, the marginal cost of 

accepting new shipments can be estimated and decisions can be made on the 

acceptance or rejection of the new loads.   

- Technique 2 (Adaptive Truck Routing) 

This technique is similar to the 1st fast acceptance technique in terms of their 

ultimate goal, which is using the excess capacity in the current routing plan to satisfy 

the new demand. However, unlike the first technique, in this approach all shipments 

are considered; the new shipments as well as the already accepted ones. The current 

shipment plan is used and the volume of old shipments on the network assumed to be 

fixed. This means that the algorithm make all accepted loads to go through the same 

path that the current routing plan suggested. By applying this shipment partitioning, a 

large number of decision variables are removed from the problem and the size of the 

resulting MCNF problem would be much smaller than the original problem. 

 The decision variables in this new MCNF problem are the volumes of the 

new shipments and empty/loaded trucks on each link. After solving the problem and 

finding the value of these volumes, the marginal cost of accepting new shipments can 

be estimated and decisions can be made on the acceptance or rejection of the new 

loads. In this approach the possible changes in the volume of empty and loaded trucks 

are taken into account. Therefore, the solution provided by this approach is expected 

to have better quality compared to the results that are obtained from the first 

technique.  
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Figure 15 - Decision making procedure (with Fast-Acceptance Technique) 
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Decision Making Application 
 A dynamic decision making application is developed, based on the original 

decision making procedure. The application which is shown in Figure 16 is a decision 

support system that can be used to analyze the effects of accepting different combination 

of shipments. This is an interactive tool, which has been developed using Visual Basic, 

and consists of the following components: 

 

- Shipment Management Panel: This panel is used for data entry and managing 

the list of shipments. When a new request arrives the dispatcher enters the shipment and 

its related information to the list. This provides a tool for manual and automatic 

dispatching. Dispatcher can select any combination of shipments, add them to the list or 

remove them from the list prior to solving the optimization problem. On the top of this 

panel, the list of accepted shipments is shown. 

 

- Decision Making Panel: In the next step the dispatcher generates the 

optimization problem by clicking on the “Generate Problem” button. This command runs 

the Problem Generator program that uses the updated information for trucks and 

shipments and creates the mathematical model for the problem. The problem 

characteristics are summarized by the application and can be used to double-check the 

inputs. After the problem is solved (by CPLEX or heuristics), a second C program 

(Operation Plan) prepares the performance measures and shipments routing/dispatch 

plans that are available for dispatchers to make the final decision. Figures 17, 18, 19, and 

20 are examples of performance measures, shipment routing, shipment dispatch, and 

truck dispatch that all are generated by “Operation Plan” based the solution of the 

mathematical problem. To capture the dynamic nature of the system a third program is 

also developed in C called “Data Update”.  This program operates in the background and 

updates the empty truck locations and shipment information at each stage of the decision-

making process.  
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Figure 16 - Dynamic decision making application for LTL trucking operations 
 



 

 60 
 

Figure 17 – LTL application output: Performance measures 
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Figure 18 – LTL application output: Shipment routing plan  
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Figure 19 – LTL application output: Shipment dispatch plan 
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Figure 20 – LTL application output: Truck dispatch plan 
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As discussed earlier, the main goal in dynamic decision making is to reduce 

the response time. The time-consuming components of the process are: 

 

- Data management and handling the input/output files 

- Solving the optimization problem 

 

This section presented the decision support application that was developed in 

order to facilitate the data management and handling the input/output files. The user 

takes the advantage of shipment management panel, tries different load combination 

and updates the database without working with the actual data files. The decision 

support tool provides the required connection between “Problem Generator”, CPLEX 

(or other problem solver program), “Data Update” and “Operation Plan” programs. 

The user is capable of evaluating the impacts of different decision making techniques 

on the system performance. The proposed application can be used both in simulation 

runs and the literature-reported operation. 
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Chapter 5: Preliminary Numerical Experiments 

 
The results of two numerical experiments are reported in this Chapter. The 

first numerical test is on a small-size 5-terminal network in order to check the 

accuracy of the mathematical formulation as well as the computer programs that have 

been developed to generate the problem and manage the solution results. The second 

set of numerical experiments is conducted on a 10-terminal network to study the 

system behavior and sensitivity of the solution with respect to changes in the 

contributing factors. 

The American Trucking Association Foundation (ATA) uses the following 

classification for motor carriers based on the annual gross operating revenue [6]: 

 

- Class I carriers are those receiving annual gross operating revenues (including 

interstate and intrastate) of $10 million or more from operations. 

- Class II carriers are those receiving annual gross operating revenues 

(including interstate and intrastate) of $3 million to $9,999,999 from 

operations. 

- Class III carriers are those receiving annual gross operating revenues 

(including interstate and intrastate) of less than $3 million from operations.  

   

The collection of trucking company financial and operating statistics (F&OS) 

data is a mandatory program managed by the Bureau of Transportation Statistics 

(BTS). Motor carriers which have gross annual operating revenue of $3 million or 

more are required to report annually, while carriers with revenues of $10 million or 

more must also file four quarterly reports each year.  

Auto carriers are one class of motor carriers that transport vehicles throughout 

the United States for individuals, car dealers, automobile manufacturers, vehicle 

leasing companies and moving companies who are involved in the auto transport of 

household goods as well as car moving. Tables 2 to 6 show lists of class I and class II 
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auto carriers, their base state, operating revenue and expenses, total miles, tons and 

ton-miles based on their annual reports to DOT for 5 years 1999 through 2003 [6]. 

Auto carriers are similar to LTL trucking companies in terms of network 

structure, size of shipments and type of operations, so this type of carriers are selected 

to perform the numerical experiments in this study. Auto carriers operate using hub-

and-spoke networks. Customers can place a request for service either online or by 

calling the company.  

Auto carrier asks for three types of information: Customer information 

(Name, and contact information), Vehicle information (Year, Make, Model, Type, 

Color, and Operating Condition) and Shipment Information (Origin and Destination). 

After receiving the information the carrier contacts customer with a quote 

price within a couple of hours. They don’t guarantee the pick-up date and time but 

they typically say they pickup any vehicle within two to three days. They also say that 

their competitors typically require 1-3 weeks to set up a pickup time! There are 

different types of equipments that auto carriers use to haul the cars [82]. The only 

type of car carrier that is recognized as multiple car carrier by the DOT are 

“Stingers”, the same type used to transport new vehicles from manufacturing plant to 

dealerships (Figure 21). These trailers can haul up to 10 to 12 cars. 

 

 

 

 
Figure 21 – Multiple-car carrier 
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Table 2 – Financial and operating statistics of class I, and class II auto carriers (1999) 
 

# 
Motor 

Carrier 
# 

State 

Total 
Operational 

Revenue 
($ million) 

Total 
Operational 

Expenses 
($ million) 

Miles 
(million) 

Tons 
(thousand) 

Ton-
Miles 

(million) 

1 71902 Missouri --- 107.7 38.0 --- 442.4 
2 112391 California 103.9 100.8 33.0 3601.6 330.3 
3 26396 Montana --- 76.1 45.1 --- --- 
4 177129 Colorado --- 74.8 30.7 --- 265.6 
5 215978 Missouri 54.7 53.0 14.0 1450.2 145.1 
6 208434 Georgia 35.1 35.5 11.9 505.1 78.2 
7 170323 Florida 31.9 31.4 --- --- --- 
8 133993 Alabama 24.7 24.4 11.6 --- --- 
9 134614 Washington --- 19.7 8.7 152.4 --- 
10 224791 Florida 10.9 10.2 4.2 --- --- 
11 226461 Texas 13.6 9.5 4.5 190.8 68.7 
12 174971 California --- 9.4 --- --- 48.2 
13 153385 Colorado --- 8.8 3.7 --- 50.9 
14 117380 Nevada --- 8.0 1.1 --- --- 
15 148860 Maryland 7.9 7.8 3.2 130.0 --- 
16 265499 Indiana --- 5.6 --- --- --- 
17 257561 Oklahoma 6.0 4.8 2.0 218.4 18.7 
18 163921 Florida --- 4.7 2.2 --- --- 
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Table 3 – Financial and operating statistics of class I, and class II auto carriers (2000) 
 

# 
Motor 

Carrier 
# 

State 

Total 
Operational 

Revenue 
($ million) 

Total 
Operational 

Expenses 
($ million) 

Miles 
(million) 

Tons 
(thousand) 

Ton-
Miles 

(million) 

1 213250 Georgia 794.8 791.7 241.1 10839.8 2460.6 
2 42537 Illinois --- 202.2 75.7 221.2 911.7 
3 177129 Colorado 126.5 120.0 54.9 700.4 448.0 
4 71902 Missouri --- 116.9 41.0 --- 1092.0 
5 112391 California 112.5 104.7 32.4 3563.0 319.6 
6 103993 Indiana 93.2 102.7 71.9 1121.5 476.4 
7 215978 Missouri --- 58.4 15.6 --- 271.2 
8 155097 Missouri --- 41.2 --- --- --- 
9 133993 Alabama --- 32.0 11.9 --- --- 
10 248649 Indiana --- 23.1 32.4 270.0 0.3 
11 134614 Washington 18.9 22.9 1.0 182.1 --- 
12 170323 Florida --- 22.2 18.0 --- --- 
13 226461 Texas --- 14.2 6.3 --- 100.9 
14 153385 Colorado 8.9 12.1 4.2 121.7 57.6 
15 36824 Texas 11.5 11.3 5.0 --- --- 
16 174971 California --- 10.1 --- --- 53.3 
17 98938 Massachusetts 9.0 9.1 2.5 60.4 1.3 
18 117380 Nevada --- 8.9 1.2 --- --- 
19 148860 Maryland --- 8.8 3.7 --- --- 
20 193564 Texas --- 8.4 --- --- --- 
21 143453 New Jersey 6.9 6.8 2.6 11.5 5.9 
22 164021 Indiana --- 5.7 6.6 102.5 71.9 
23 250710 Indiana --- 5.2 --- --- --- 
24 224791 Florida --- 5.1 --- --- --- 
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Table 4 – Financial and operating statistics of class I, and class II auto carriers (2001) 
 

# 
Motor 

Carrier 
# 

State 

Total 
Operational 

Revenue 
($ million) 

Total 
Operational 

Expenses 
($ million) 

Miles 
(million) 

Tons 
(thousand) 

Ton-
Miles 

(million) 

1 213250 Georgia --- 727.4 --- --- --- 
2 42537 Illinois --- 177.1 65.0 3508.3 857.7 
3 71902 Missouri 103.0 114.8 40.0 3019.5 880.5 
4 103993 Indiana --- 95.4 63.8 --- 477.2 
5 112391 California 100.0 90.4 28.1 3200.4 277.0 
6 177129 Colorado --- 68.1 --- --- --- 
7 215978 Missouri 62.6 59.5 16.2 1613.2 272.0 
8 155097 Missouri --- 43.6 --- --- --- 
9 133993 Alabama --- 37.8 10.5 --- --- 
10 170323 Florida --- 22.2 8.2 --- --- 
11 134614 Washington --- 22.0 9.5 --- --- 
12 248649 Indiana --- 21.1 26.8 --- --- 
13 226461 Texas --- 15.6 8.1 266.1 120.0 
14 36824 Texas 12.4 12.4 5.8 --- --- 
15 210561 Arizona --- 11.8 2.9 --- --- 
16 380001 Florida --- 10.6 3.5 196.9 78.9 
17 153385 Colorado 9.5 10.2 4.3 241.3 58.0 
18 174127 Missouri --- 10.2 --- --- --- 
19 363019 Florida --- 9.8 --- --- --- 
20 148860 Maryland --- 9.2 3.7 --- --- 
21 255969 Michigan --- 9.1 4.0 --- 37.0 
22 98938 Massachusetts --- 8.8 2.4 56.4 --- 
23 117380 Nevada --- 8.3 1.2 --- --- 
24 174971 California --- 8.2 --- --- --- 
25 106205 New York --- 7.8 1.1 --- --- 
26 193564 Texas 6.8 6.7 --- --- --- 
27 143453 New Jersey --- 6.1 2.7 --- 5.4 
28 246636 Kansas --- 5.7 4.8 --- --- 
29 164021 Indiana --- 5.2 8.3 --- 113.9 
30 250710 Indiana --- 4.3 --- --- --- 
31 210733 Pennsylvania --- 3.8 2.1 22.5 36.3 
32 163921 Florida --- 3.5 1.5 --- --- 
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Table 5 – Financial and operating statistics of class I, and class II auto carriers (2002) 
 

# 
Motor 

Carrier 
# 

State 

Total 
Operational 

Revenue 
($ million) 

Total 
Operational 

Expenses 
($ million) 

Miles 
(million) 

Tons 
(thousand) 

Ton-
Miles 

(million) 

1 42537 Illinois 176.2 174.2 64.4 3487.5 867.2 
2 71902 Missouri 120.5 130.2 45.7 2440.0 697.0 
3 112391 Michigan 103.3 95.8 29.8 3338.7 294.6 
4 177129 Colorado 88.8 88.3 34.2 947.4 439.6 
5 215978 Missouri 64.8 60.7 16.6 1624.6 272.2 
6 249800 Texas --- 59.6 19.9 137.9 47.3 
7 134614 Washington 24.5 27.6 12.0 281.2 --- 
8 226461 Texas 24.4 17.7 8.4 --- 123.8 
9 133993 Alabama --- 14.0 --- --- --- 
10 36824 Texas --- 12.8 6.4 --- --- 
11 363019 Florida --- 11.8 --- --- --- 
12 210561 Arizona 12.4 11.8 3.0 --- --- 
13 148860 Maryland --- 10.5 4.1 171.3 --- 
14 255969 Michigan 7.3 9.5 4.5 143.7 40.9 
15 153385 Colorado --- 9.4 3.8 --- 52.2 
16 117380 Nevada --- 8.8 1.2 --- --- 
17 98938 Massachusetts --- 8.8 2.6 54.0 --- 
18 174971 California --- 7.9 2.4 --- 39.8 
19 106205 New York --- 7.8 1.3 --- --- 
20 174127 Missouri --- 6.9 --- --- --- 
21 143453 New Jersey --- 6.7 2.6 --- 5.1 
22 250710 Indiana --- 4.8 --- --- --- 
23 210733 Pennsylvania 5.4 4.7 2.3 24.2 39.5 
24 163921 Florida --- 3.7 1.5 --- --- 
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Table 6 – Financial and operating statistics of class I, and class II auto carriers (2003) 
 

# 
Motor 

Carrier 
# 

State 

Total 
Operational 

Revenue 
($ million) 

Total 
Operational 

Expenses 
($ million) 

Miles 
(million) 

Tons 
(thousand) 

Ton-
Miles 

(million) 

1 26396 Montana --- 179.4 89.4 --- --- 
2 42537 Illinois 174.2 176.8 59.8 3653.4 954.5 
3 71902 Missouri 127.3 137.3 46.8 2563.6 750.7 
4 112391 Michigan --- 96.3 28.0 3176.2 --- 
5 177129 Colorado 91.1 90.8 35.0 1044.9 --- 
6 249800 Texas 71.3 70.8 21.4 144.4 45.9 
7 215978 Missouri 6.6 64.7 16.9 1691.5 269.7 
8 134614 Washington 29.6 34.9 14.0 372.0 --- 
9 36824 Texas 14.8 14.5 6.9 --- --- 
10 363019 Florida --- 12.7 7.0 --- --- 
11 210561 Arizona --- 12.3 3.3 --- --- 
12 117380 Nevada --- 11.7 1.7 --- --- 
13 255969 Michigan 8.1 10.8 5.0 160.8 --- 
14 153385 Colorado --- 10.0 4.1 --- 66.0 
15 148860 Maryland 10.4 9.8 4.2 165.9 --- 
16 174127 Missouri --- 8.0 --- --- --- 
17 106205 New York --- 7.5 1.1 --- --- 
18 250710 Indiana --- 5.1 --- --- --- 
19 225762 Texas 0.6 4.6 0.2 --- --- 
20 210733 Pennsylvania 4.2 3.8 1.6 24.9 27.4 
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To haul the cars over shorter distances, there are smaller 2-3 car capacity 

trailers (called “Hotshot”) that are pulled by a pick-up or small trucks. Hotshots are 

also used for classics or other valuable vehicles. Other smaller carriers are "Flat-Bed" 

or "Drop-Deck" Trailers, which are used to haul larger Trucks or vans. 

In some cases, it is necessary to unload some of the cars in order to make a 

delivery. This would be a crucial factor that increases the risk of damages to the cars 

depending on drivers’ training and experience. Customers can minimize this risk by 

requesting a particular spot on the trailer for their car. The position of a car on the 

trailer is determined based on the size and weight of the vehicle. Safety regulations on 

the height, the length and the weight play a major role in loading cars on a multi-car 

trailer.  

Some auto transport companies offer special services, i.e. express delivery, 

door-to-door, or enclosed transport with some additional charges. Among those 

services, the so-called door-to-door service is a misconception, since the size of most 

trailers makes it extremely difficult to maneuver them through residential 

neighborhoods. There is also a possibility of damages from tree branches to the cars 

that are loaded on the top rack. So, usually the car is unloaded in a terminal close to 

the final destination, and either the customer picks up the car or the final delivery is 

done using smaller trucks. 

Table 7 and Figure 22 show some sample quote prices for car delivery from 

College Park, Maryland to different destinations within the United States. As shown 

in the diagram, the rates increase linearly up to the point where the delivery distance 

is roughly equal to 1000 miles. From that point forward there a smaller change in rate 

with respect to the increase in delivery distance. Usually, different rates are offered 

by different carriers. Their rates also change differently when the delivery distance 

increases. This is mainly related to the location of the satellite and breakbulk 

terminals, the fleet size and the efficiency of the trucking operations.    

As discussed earlier customers can check the status of the progress of 

shipment and track them either online or by calling the carrier but they don’t 

guarantee a delivery. Customers can check the status of the progress of shipment and 

track them either online or by calling the carrier but delivery date is not guaranteed. 
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Table 7 – Auto transport cost for different origin/destination (online quote) 
 

# Origin Destination Distance
(miles) 

Standard Transport  
Cost ($) 

Enclosed Transport 
Cost ($) 

1 College Park, MD Richmond, VA 120 475 730 
2 College Park, MD Albany, NY 380 575 890 
3 College Park, MD Columbus, OH 420 575 890 
4 College Park, MD Boston, MA 430 575 890 
5 College Park, MD Chicago, IL 700 660 1030 
6 College Park, MD Miami, FL 1060 890 1390 
7 College Park, MD Dallas, TX 1340 875 1345 
8 College Park, MD Salt lake City, UT 2080 890 1390 
9 College Park, MD San Diego, CA 2710 990 1530 

10 College Park, MD Sacramento, CA 2730 990 1530 

 

 

        
      Figure 22 – Auto transport cost for different delivery distances (online quote) 
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 In most cases the delay is duo to the fact that they don’t have enough loads to 

consolidate and dispatch to the next hub on their way to their destination, so loads 

have to wait at the terminal. There are a large number of online complaints that have 

been posted by unsatisfied customers mostly because of delays in delivery. 

Network with 5 Breakbulks 

The main goal of performing the first set of numerical experiments is to check 

the accuracy of the mathematical formulation, and the 3 computer programs that have 

been discussed earlier. As shown in Figure 23 an auto carrier company operates on a 

5-terminal network and provides consolidation transportation service. It is assumed 

that the fleet of 15 trucks is homogeneous and each vehicle can carry up to 10 cars.  

The network structure, empty truck locations and shipment information are shown in 

Figure 23. 10 requests for shipments (total of 200 cars) arrive at time 0. The number 

of time periods in the planning horizon is assumed to be equal to 10.  

The mathematical formulation is generated using the “Problem Generator”. It 

contains 1910 variables and 324 constraints. The problem is solved in 58 sec. using 

CPLEX on a Pentium M (1.60GHz) machine.  Based on the optimal solution the 

“Operation Plan” program generates the performance measures and the details of 

shipments/trucks routing plan. The performance measures are presented in Figure 24. 

197 cars are delivered within the planning horizon. The average fill rate of the trucks 

is 97.9%, and the total cost is equal to 142.55 units. Based on the recommended plan, 

there will be 29 trips by loaded trucks along with 3 additional empty trips.  

To check the accuracy of mathematical formulation and the computer 

programs the time-space diagram of the operation is designed in AutoCAD based on 

the routing and dispatching plans. Figure 25 shows routing of shipments 1, 2, 3, 4, 

and 7 and Figure 26 illustrates the dispatching plan for all trucks. The number of 

trucks on each link is shown in a small box on the link. These diagrams were used to 

verify the accuracy of the components of the mathematical formulation. It was also 

used during the process of debugging the computer programs that were developed in 

this research. 
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Figure 23 – Problem characteristics (Numerical experiment 1 - Base case) 
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Figure 24 – Performance measures (Numerical experiment 1) 
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Figure 25 – Flow of shipments in optimal solution (Numerical experiment 1) 
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Figure 26 – Flow of full and empty trucks in optimal solution (Numerical experiment 1) 
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Network with 10 Breakbulks 

This section presents the second set of numerical experiments that is 

conducted to set the problem parameters and study the sensitivity of the solution with 

respect to changes in the contributing factors.  

Figure 27 shows the medium-size network that is used in this section. This is a 

more realistic problem compared to the first computational effort that is described in 

the previous section. The network consists of 20 undirected links that connect 10 

breakbulk terminals that are located in the proximity of 10 major cities in the US. All 

links are assumed to be approximately 600 miles long. A fleet of auto-carrier trucks is 

providing auto transport service by covering a region larger than half of the United 

States. If total of 40 shipments arrive per day, considering the average of $600 

revenue/shipment the trucking company is a Class II motor carrier with over 

$8M/year revenue (referring to the online quotes listed in Table 7). A set of 

preliminary numerical experiments have been conducted considering different fleet 

sizes and number of time periods to set the base values for the problem parameters. 

For the base case, the demand is fully satisfied when the number of time periods is 9 

and the fleet size is 10. The problem characteristics are shown in Figure 28. The 

problem is solved using CPLEX. Figure 29 shows the performance measures that are 

generated using “Operation Plan” program. 
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Figure 27– Physical network (10-terminal) 

 

 

 

                       

Dallas (08)

New Orleans (09)
Jacksonville (10)

Raleigh (07)

Kansas City (05)

Minneapolis (01)

Chicago (02)

Nashville (06)

Cleveland (03)
New York (04)

Dallas (08)

New Orleans (09)
Jacksonville (10)

Raleigh (07)

Kansas City (05)

Minneapolis (01)

Chicago (02)

Nashville (06)

Cleveland (03)
New York (04)



 

 81 
 

Figure 28 – Problem characteristics (Numerical experiment 2 – Base case) 
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Figure 29 – Performance measures for the optimal solution (Numerical experiment 2 – Base case) 
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The shipment routing and truck scheduling plan that is generated using the 

optimization method depends on the following parameters: 

 

- Length of planning horizon 

- Demand characteristics 

o Shipment size 

o Shipment origin/destination 

o Shipment handling cost factors 

o Shipment waiting cost factor 

o Shipment delivery failure cost factor 

o Shipment late delivery cost factor 

o Shipment early delivery cost factor 

- Supply characteristics 

o Number of service links 

o Fleet size 

o Empty truck locations 

 

In this section, by changing the above parameters of the problem, 10 different 

cases are created. The first case is a parameter setting exercise, based on which the 

number of time periods are selected for the base case. The rest of the cases are used to 

analyze the system behavior. For each case all of the contributing factors are set to a 

constant value except one. By changing the value of the selected factor, several 

instances of the mathematical formulation is generated using the “Problem 

Generator” program and the problem is solved using CPLEX on a Pentium M 

(1.60GHz) machine.  Based on the optimal solution and by running the “Operation 

Plan” program the performance measures are calculated and used as the basis for the 

analysis. The following sections present the characteristics of the cases that have been 

studied with detail discussion of the analysis’ results.  
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- Parameter Setting Experiment 

 

Number of Time Periods 
 

The length of the dynamic planning horizon is one of the characteristics of the 

time-space network that has a huge impact on the problem size. The number of time 

periods are determined based on the supply/demand characteristics. The goal would 

be to pick the number of time periods in a way that most of the demand that is 

generated at time zero can be delivered within the planning horizon. In this sensitivity 

analysis the number of time periods changed from 6 to 12 and the relative impacts are 

studied. The results are presented in Table 8 and Figures 30 to 33. 

As shown in Figures 30, when the number of time periods increases the 

customers’ associated cost decreases. Assuming that no other request is received 

during the planning horizon, 9 time periods are enough for delivery of 40 shipments 

and further increase in the length of the planning horizon doesn’t improve the 

solution.  

As presented in Table 8 and Figure 31, by increasing the number of time 

periods the size of the problem (number of variables and constraints) grows linearly. 

However, the execution time increases exponentially. Using a lengthy planning 

horizon might not have a huge impact on the quality of the solution but it will 

definitely decrease the performance of the proposed dynamic decision making 

procedure.  

Figure 32 and 33 illustrate the impacts of the length of the planning horizon 

on other performance measures. The number of deliveries increases to the point at 

which the demand is fully served. The average fill rate also declines due to the 

shipment splits and from some point onwards there is no change.   

Based on the results obtained by analyzing the effects of variable number of 

time periods it appears that choosing the planning horizon to be equal to 9 or 10 time 

periods is an appropriate selection for the 10-terminal network considering the 

assumed supply/demand combination.    
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Table 8 - Variable Number of Time Periods 
                        

Number of 
Time Periods 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier 
Cost (unit) 

Customer
Cost (unit) 

Total 
Cost (unit) 

Loaded 
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average 
Fill Rate 

(%) 

6 5960 565 7 20.35 3.65 24.00 12 2 35 5 60.0 

7 7100 655 22 21.05 3.20 24.25 12 2 36 4 61.7 

8 8240 745 31 22.25 2.10 24.35 13 2 38 2 56.9 

9 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.6 

10 10520 925 128 23.30 1.15 24.45 14 2 40 0 53.6 

11 11660 1015 323 23.30 1.15 24.45 14 2 40 0 53.6 

12 12800 1105 269 23.30 1.15 24.45 14 2 40 0 53.6 

 
Note: Number of Links = 20, Number of Trucks = 8, Total Shipment Size = 40, WE = 1 
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    Figure 30 – Customer cost vs. Number of time periods 
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     Figure 31 – Execution time vs. Number of time periods 
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    Figure 32 – Shipment delivered vs. Number of time periods 
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    Figure 33 – Average fill rate vs. Number of time periods 

 



 

 88 
 

- Sensitivity Analyses 

 
Case 1: Variable Number of Trucks 
 

The number of trucks is among the variables that represent the supply. To 

analyze the sensitivity of the results with respect to changes in fleet size the problem 

is solved considering 7 different values for the number of trucks. Other parameters 

including the number of shipments, the size of shipments, the number of links and the 

number of time periods remain constant. Table 9 and Figures 34 to 37 show the 

results.  

The results confirm the expectation that both the customers’ associated cost 

and total cost decrease when more trucks are operating. However, the rate of cost 

reduction is declining and adding more than 10 trucks to the system doesn’t improve 

the performance. The carrier’s associated cost is increasing first due to the increase in 

loaded/empty truck movements. Then, it decreases when more trucks are added to the 

system and some of the additional trucks are not operating. Note that in this study it is 

assumed that all trucks are owned by the company and there is no cost associated 

with having a truck idle at a terminal. Considering the realistic case where a portion 

of fleet is leased, the total and the carrier associated cost would form “U” shape 

functions. 

 Figure 35 indicates that the average fill rate also decreases by increasing the 

number of trucks. When fleet size increases the demand is distributed among the 

available trucks, therefore there are fewer loads on each truck. Furthermore, based on 

Table 9 and Figures 36 and 37, there are less empty movements and more shipments 

are being delivered to their final destination. Overall, the results obtained from the 

sensitivity analysis perfectly meet the expectations regarding the impacts of the 

changes in fleet size.  

Note that, for each sensitivity analysis, different instances of the problem are 

generated by changing the value of only one parameter at a time. The location of the 

empty trucks at the beginning of the operation has a significant impact on the 

operation plan. For this case study, it is assumed that one truck is available at each 
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terminal. A more appropriate way of generating the problem is to have multiple 

instances of randomly generated truck locations for each fleet size. If 20 different 

truck locations are generated for each fleet size, the total number of problem that 

must be solved for this case would be 140, which is beyond the scope of this limited 

sensitivity analysis. However, the impact of the empty truck locations is studied as a 

separate case and the results are presented in this Chapter. 
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Table 9 - Variable Number of Trucks (Case 1) 
                        

Number of  
Trucks 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier 
Cost (unit) 

Customer
Cost (unit) 

Total 
Cost (unit) 

Loaded  
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average 
Fill Rate 

(%) 

2 9380 835 239 21.45 13.50 34.95 8 2 23 17 71.3 

4 9380 835 1484 22.95 4.00 26.95 12 3 37 3 63.3 

6 9380 835 193 22.15 3.15 25.30 13 3 36 4 56.2 

8 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.6 

10 9380 835 37 22.10 1.40 23.50 14 0 39 1 53.6 

12 9380 835 37 22.10 1.40 23.50 14 0 39 1 53.6 

14 9380 835 37 22.10 1.40 23.50 14 0 39 1 53.6 

            
Note: Number of Time Periods = 9, Number of Links = 20, Total Shipment Size = 40, WE = 1 
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    Figure 34 – Cost vs. Number of trucks (Case 1) 
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   Figure 35 – Average fill rate vs. Number of trucks (Case 1) 
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        Figure 36 – Loaded truck number of trips vs. Number of trucks (Case 1) 
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    Figure 37 – Shipment left vs. Number of trucks (Case 1) 
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Case 2: Variable Number of Links 
 

As discussed earlier, it is assumed that the service network is designed 

through the tactical planning process. The location of terminals and the configuration 

of service links have been finalized prior to the operational planning. This section 

analyzes the impacts of the network size on the quality of trucking service and the 

performance of the proposed decision making procedure is analyzed in this section. 

The results are presented in Table 10 and Figures 38 and 39. 

The original network (Figure 27) consists of 20 links. Other networks are 

constructed based on the original network and by removing/adding links as follow: 

 

Network with 14 links: Remove 1-2, 2-5, 3-4, 3-7, 5-9 and 7-9 

Network with 16 links: Remove 2-5, 3-7, 5-9 and 7-9 

Network with 18 links: Remove 5-9 and 7-9 

Network with 22 links: Add 1-9 and 4-9 

Network with 24 links: Add 2-8, 3-10, 1-9 and 4-9 

Network with 26 links: Add 1-6, 4-6, 2-8, 3-10, 1-9 and 4-9 

    

It is assumed that all service links have equal length. The number of links is 

one of the variables that represent the level of supply. As shown in Figure 38, by 

increasing the number of links and expanding the network size there are better paths 

available to route the shipments efficiently. This means that customers experience 

less delay in service and as a result the customers’ associated cost and therefore the 

total cost are decreasing. 

By growing the network size and increasing the number of service links the 

total number of variables and constraints are increasing linearly while the execution 

time is increasing exponentially. As discussed earlier, one major step in all the 

proposed procedures is to solve the shipment and truck routing problem repeatedly. 

For real size networks it is not practical to use exact solution method to solve the 

result mathematical problem and therefore it will be necessary to develop and use the 

heuristic solution algorithm.     
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As shown in Table 10 and Figure 39, the execution time of problem with 22 

links is less than that of problem with 20 links. This is an unexpected result since the 

size of the problem grows by adding links to the network. However, the convergence 

is faster due to the configuration of the new links, the network structure and the 

number of branches that cancels out implicitly. 

Note that, for each sensitivity analysis, different instances of the problem are 

generated by changing the value of only one parameter at a time. The location of the 

extra service links, the location of the empty trucks at the beginning of the operation 

and also the characteristics of demand has a significant impact on the operation plan. 

For this case study, a more appropriate way of generating the problem is to have 

multiple instances of randomly generated extra service link locations, truck locations 

and demand characteristics for each network size. The total number of problem that 

must be solved for this case is beyond the scope of this limited sensitivity analysis. 

However, the impact of the empty truck locations and demand characteristics are 

studied as separate cases and the results are presented in this Chapter. 
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Table 10 - Variable Number of Links (Case 2) 
                        

Number of 
Links 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier 
Cost (unit) 

Customer
Cost (unit) 

Total 
Cost (unit) 

Loaded 
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average 
Fill Rate 

(%) 

14 7160 643 9 24.85 2.55 27.40 15 2 38 2 54.7 

16 7900 707 25 22.20 3.10 25.30 13 2 36 4 55.4 

18 8640 771 88 22.20 3.10 25.30 13 2 36 4 55.4 

20 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.6 

22 9936 883 51 23.05 1.40 24.45 14 2 39 1 53.6 

24 10584 939 137 22.60 1.85 24.45 13 2 39 1 56.9 

26 11232 995 67 23.05 1.40 24.45 14 2 39 1 53.6 

            
Note: Number of Time Periods = 9, Number of Trucks = 8, Total Shipment Size = 40, WE = 1 
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    Figure 38 – Total cost vs. Number of links (Case 2) 
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    Figure 39 – Execution time vs. Number of links (Case 2) 
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Case 3: Variable Total Shipment Size 
 

This case focuses on the level of demand. Considering all other parameters are 

fixed, the total requested shipment size is changed from 10 cars to 70 cars per day. 

Table 11 and Figures 40 through 43 show the effects of shipment volume on different 

performance measures.    

By increasing the total shipment size there will be better opportunity for 

shipment consolidation, therefore both the carrier’s associated cost (per shipment) as 

well as the customers’ associated cost (per shipment) are decreasing until the system 

reaches the saturation level. From that point onwards there is not enough supply 

(trucks) to provide a satisfactory level of service and the customers experience more 

delay.  

By increasing the demand volume the number of trips (per shipment) by full 

trucks declines. Moreover, there will be more shipments on each truck so the average 

fill rate increases. All of the above observations completely match the expectations 

regarding the impact of increasing the demand volume on the system performance 

and the quality of trucking services.  

Note that, for this sensitivity analysis, different instances of the problem are 

generated by changing the value of only one parameter, the demand volume. The 

characteristics of demand have a significant impact on the operation plan. For this 

case study, a more appropriate way of generating the problem is to have multiple 

instances of randomly generated demand characteristics for each demand size. This 

creates a large number of optimization problems that must be solved for this 

sensitivity analysis. As an alternative, the impact of the demand characteristics are 

studied as separate case and the results are presented in this Chapter. 
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Table 11 - Variable Total Shipment Size (Case 3)  
                             

Total 
Shipment 

Size 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec)

Carrier 
Cost (unit)

Customer
Cost 
(unit) 

Total
Cost 
(unit) 

Loaded 
Truck

Number
of Trips

Empty
Truck 

Number
of Trips

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average
Fill Rate 

(%) 

Customer
Cost 
per 

Shipment 
Size 

Carrier
Cost 
per 

Shipment
Size 

Loaded 
Truck 

# of Trips
per 

Shipment
Size 

10 3230 760 3 8.20 2.10 10.30 5 0 8 2 36.0 0.21 0.82 0.50 

20 5280 785 11 12.85 2.15 15.00 8 1 18 2 45.0 0.11 0.64 0.40 

30 6920 805 19 17.55 1.70 19.25 11 1 28 2 52.7 0.06 0.59 0.37 

40 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.6 0.03 0.58 0.35 

50 11430 860 629 26.95 2.40 29.35 16 1 49 1 60.0 0.05 0.54 0.32 

60 13480 885 123 28.90 3.30 32.20 17 1 57 3 70.0 0.06 0.48 0.28 

70 15940 915 5700 35.40 2.85 38.25 20 3 68 2 63.0 0.04 0.51 0.29 

               
Note: Number of Time Periods = 9, Number of Links = 20, Number of Trucks = 8, WE = 1 
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    Figure 40 – Carrier’s cost vs. Total shipment size (Case 3) 
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    Figure 41 – Customers’ cost vs. Total shipment cost (Case 3) 
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      Figure 42 – Loaded truck number of trips vs. Total shipment size (Case 3) 
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    Figure 43 – Average fill rate vs. Total shipment size (Case 3) 
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Case 4: Variable Shipment Configuration 
 

This case focuses on the configuration of demand. Considering that all other 

parameters are fixed, 20 different instances of demand are generated randomly (using 

a uniform distribution). Table 12 presents the results. The first row is the so-called 

“base case”, which is used for the previous sensitivity analyses. As shown in Table 

12, most of the performance measures do not show serious fluctuations with respect 

to changes in demand configuration. However, the execution time has a relatively 

high standard deviation. This means that the time required for CPLEX to find the 

optimal solution largely depends on the way that demand is distributed across the 

service area.     

 

 
 
Case 5: Variable Truck Locations 
 

The last case focuses on the location of empty trucks at the beginning of the 

operation. Considering that all other parameters are fixed, 20 different instances of 

truck locations are generated randomly (using a uniform distribution). The results are 

presented in Table 13. Similar to the last case, the first row is the “base case” that is 

used for the previous sensitivity analyses. As shown in Table 13, standard deviations 

are relatively low and most of the performance measures do not show fluctuations 

with respect to changes in the location of empty trucks. However, the execution time 

has a relatively high standard deviation. This means that the time required for CPLEX 

to find the optimal solution depends on the initial location of the empty trucks.  
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Table 12 - Variable Shipment Configuration (Case 4) 
                        

Shipment 
Configuration 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier
Cost 
(unit) 

Customer
Cost (unit) 

Total 
Cost 
(unit) 

Loaded 
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average
Fill Rate 

(%) 

01 (Base Case) 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.6 
02 8560 825 14 20.85 2.25 23.10 13 1 38 2 49.2 
03 9380 835 93 23.70 2.10 25.80 14 1 39 1 50.7 
04 8560 825 61 22.60 2.60 25.20 13 2 38 2 59.2 
05 9380 835 60 18.50 3.50 22.00 11 0 36 4 54.5 
06 9380 835 71 20.20 1.85 22.05 12 2 38 2 47.5 
07 8150 820 7 20.10 1.95 22.05 12 0 38 2 51.7 
08 9790 840 172 26.20 1.40 27.60 16 1 40 0 51.2 
09 7740 815 29 24.85 1.05 25.90 16 0 40 0 48.1 
10 8560 825 75 22.20 0.90 23.10 14 0 40 0 54.3 
11 9380 835 88 22.80 2.90 25.70 14 0 37 3 50.7 
12 8970 830 80 24.25 1.75 26.00 15 1 38 2 41.3 
13 8970 830 21 22.85 1.90 24.75 14 2 38 2 50.7 
14 9380 835 15 20.65 2.00 22.65 12 2 38 2 56.7 
15 8970 830 6 24.75 1.10 25.85 16 1 39 1 48.8 
16 8150 820 71 23.00 1.30 24.30 14 2 39 1 51.4 
17 8150 820 10 22.35 1.75 24.10 13 2 39 1 56.9 
18 9380 835 45 23.55 2.05 25.60 14 2 38 2 46.4 
19 8970 830 20 20.45 3.05 23.50 12 2 37 3 56.7 
20 8970 830 270 25.30 3.00 28.30 15 1 39 1 54.0 

Average 8909 829 67 22.62 1.98 24.60 13.7 1.2 38.5 1.6 51.7 
Std. Dev. 553 7 65 2.00 0.73 1.80 1.5 0.8 1.1 1.1 4.2 

            
Note: Number of Time Periods = 9, Number of Trucks = 8, Total Shipment Size = 40, Number of Links = 20, WE = 1 
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Table 13 - Variable Truck Locations (Case 5) 
                        

Shipment 
Configuration 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier
Cost 
(unit) 

Customer
Cost (unit) 

Total 
Cost 
(unit) 

Loaded 
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average
Fill Rate 

(%) 

01 (Base Case) 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.6 
02 9380 835 68 22.00 2.10 24.10 13 1 38 2 56.9 
03 9380 835 162 22.15 3.15 25.30 13 3 36 4 56.2 
04 9380 835 128 22.40 3.30 25.70 13 3 36 4 54.6 
05 9380 835 51 22.50 2.70 25.20 13 3 37 3 56.9 
06 9380 835 48 23.30 1.15 24.45 14 2 40 0 53.6 
07 9380 835 87 23.10 2.00 25.10 14 1 38 2 52.9 
08 9380 835 86 22.60 2.70 25.30 13 2 37 3 56.2 
09 9380 835 114 22.20 3.35 25.55 13 4 36 4 56.9 
10 9380 835 112 21.75 2.70 24.45 13 0 37 3 56.9 
11 9380 835 49 22.65 2.90 25.55 13 3 37 3 56.2 
12 9380 835 98 21.90 2.95 24.85 13 3 36 4 54.6 
13 9380 835 137 22.65 2.85 25.50 13 3 37 3 54.6 
14 9380 835 234 22.85 3.35 26.20 13 4 36 4 56.2 
15 9380 835 42 22.10 1.40 23.50 14 0 39 1 53.6 
16 9380 835 199 22.10 3.65 25.75 12 3 38 4 61.7 
17 9380 835 82 23.75 1.95 25.70 14 2 39 1 53.6 
18 9380 835 36 22.60 1.85 24.45 13 2 39 1 56.9 
19 9380 835 41 21.70 2.95 24.65 13 2 36 4 54.6 
20 9380 835 151 22.70 3.20 25.90 13 3 37 3 54.6 

Average 9380 835 103 22.52 2.57 25.08 13.2 2.3 37.5 2.7 55.6 
Std. Dev. 0 0 55 0.55 0.76 0.69 0.5 1.1 1.4 1.4 2.0 

            
Note: Number of Time Periods = 9, Number of Trucks = 8, Total Shipment Size = 40, Number of Links = 20, WE = 1 
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Cases 6-10: Variable Shipment Cost Factors 
 

In this study, for the purpose of numerical experiments, it is assumed that a 

truck consumes one gallon of gas for every 100 ton-miles. Considering $4 per gallon 

fuel cost, the total gas consumption of a full truck on each 600 mile trip is equal to 

$480. The unit cost is defined to be equal to $400. Therefore, the loaded truck routing 

cost is 1.2 units. Other cost factors that are associated with the shipments are selected 

based on some limited preliminary experiments. When the proposed decision making 

procedure and optimization methods are applied to a real world operation, all the 

shipments’ associated costs must be calibrated to reflect the company’s characteristics 

and also their attitude toward customer satisfaction. Case studies 6 through 10 show 

how changes in different cost factors may affect the system performance. 

 

- Case 6 - Variable Shipment Handling Cost Factor (Table 14 and Figure 44, 

45): The shipment handling cost is associated with the terminal operation and 

labor costs. As the handling cost factors increases, the company tends to 

deliver less shipment to be able to reduce the number of loaded truck 

movements.   

- Case 7 - Variable Shipment Waiting Cost Factor (Table 15 and Figure 46, 47): 

The shipment waiting cost is associated with the costs of holding a shipment 

in a terminal. As the waiting cost factors increases, the number of loaded truck 

trips increases to avoid holding a shipment at intermediate breakbulks. As 

shown in Figure 47, by increasing the shipment waiting cost more trucks are 

operating to improve the delivery time. However, the number of shipments 

that are delivered remains constant. When the shipment waiting cost factor 

becomes equal to 0.3 all shipment can be delivered and there is an increase in 

average fill rate. Note that the optimization model does not intend to 

maximize the average fill rate; therefore any fluctuation in average fill rate 

would be acceptable. 

- Case 8 - Variable Shipment Delivery Failure Cost Factor (Table 16 and Figure 

48, 49): As the delivery failure cost factors increases, the company delivers as 
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many shipments as possible by scheduling more loaded truck trips. This 

shows that the delivery failure cost is dominating the fuel costs. 

- Case 9 - Variable Shipment Late Delivery Cost Factor (Table 17 and Figure 

50, 51): In this case the early delivery becomes so crucial that the company 

would rather not to deliver those shipments that arrive late at their 

destinations. The number of truck movements remains the same, but with less 

shipment in each truck. 

- Case 10 - Variable Shipment Early Delivery Cost Factor (Table 18 and Figure 

52, 53): As discussed in Chapter 3 (Formulation Extension 3), an additional 

cost can be considered when there is a partial delivery for a shipment. In these 

cases, the carriers have to provide storage for that part of demand that is 

delivered earlier, so that the entire shipment for each customer can be 

delivered at once. This section shows how changes in early delivery cost 

factors may affect the system performance. As shown in Table 18 and Figure 

52, when the storage cost factor becomes equal to 0.25 the optimal solution 

would be obtained by reducing the number of shipments that are delivered. 

Hence there is a sudden drop in the value of objective function. Also when 

storage cost is equal to 0.35, more loaded and empty truck movements are 

required in order to maintain the optimality of the solution.   
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Table 14 – Shipment Handling Cost Factor (Case 6) 
                        

Shipment 
Handling 

Cost 
Factor 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier 
Cost (unit) 

Customer
Cost (unit) 

Total 
Cost (unit) 

Loaded  
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average 
Fill Rate 

(%) 

0.05 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.60 

0.10 9380 835 34 26.05 2.10 28.15 13 2 38 2 56.90 

0.15 9380 835 56 29.10 2.55 31.65 13 2 37 3 53.80 

0.20 9380 835 54 30.90 4.05 34.95 12 3 34 6 53.30 

0.25 9380 835 31 31.10 6.60 37.70 11 3 32 8 47.30 

0.30 9380 835 13 33.70 6.60 40.30 11 3 32 8 47.30 

0.35 9380 835 10 36.30 6.60 42.90 11 3 32 8 47.30 

            
Note: Number of Time Periods = 9, Number of Links = 20, Number of Trucks = 8, Total Shipment Size = 40, WE = 1 
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          Figure 44 – Loaded truck # of Trips vs. Handling cost factor (Case 6) 
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              Figure 45 – Shipment delivered vs. Handling cost factor (Case 6) 
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Table 15 – Shipment Waiting Cost Factor (Case 7) 
                        

Shipment 
Waiting 

Cost 
Factor 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier 
Cost (unit) 

Customer
Cost (unit) 

Total 
Cost (unit) 

Loaded  
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average 
Fill Rate 

(%) 

0.05 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.60 

0.10 9380 835 142 25.15 1.40 26.55 14 2 39 1 53.60 

0.15 9380 835 191 26.90 1.35 28.25 15 2 39 1 49.30 

0.20 9380 835 253 28.40 1.30 29.70 16 2 39 1 47.50 

0.25 9380 835 104 29.65 1.30 30.95 16 2 39 1 47.50 

0.30 9380 835 166 31.00 1.00 32.00 17 2 40 0 49.40 

0.35 9380 835 131 31.65 1.35 33.00 17 2 40 0 53.50 

            
Note: Number of Time Periods = 9, Number of Links = 20, Number of Trucks = 8, Total Shipment Size = 40, WE = 1 

 

 



 

 109 
 

 

 

0
2
4
6
8

10
12
14
16
18

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Shipment Waiting Cost Factor 

Lo
ad

ed
 T

ru
ck

 #
 o

f T
ri

ps

 
            Figure 46 – Loaded truck # of trips vs. Waiting cost factor (Case 7) 

 

 

47.00

48.00

49.00

50.00

51.00

52.00

53.00

54.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Shipment Waiting Cost Factor 

A
ve

ra
ge

 F
ill

 R
at

e 
(%

)

 
                   Figure 47 – Avg. fill rate vs. Waiting cost factor (Case 7) 
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Table 16 – Shipment Delivery Failure Cost Factor (Case 8) 
                        

Shipment 
Delivery 
Failure 

Cost Factor 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier 
Cost (unit) 

Customer
Cost (unit) 

Total 
Cost (unit) 

Loaded  
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average 
Fill Rate 

(%) 

0.05 9380 835 17 18.85 2.15 21.00 8 0 25 15 70.00 

0.10 9380 835 27 19.50 2.75 22.25 10 2 31 9 63.00 

0.15 9380 835 71 20.25 2.85 23.10 11 2 32 8 62.70 

0.20 9380 835 179 21.10 2.65 23.75 12 2 35 5 60.00 

0.25 9380 835 129 22.35 1.90 24.25 13 2 38 2 56.90 

0.30 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.60 

0.35 9380 835 33 23.30 1.15 24.45 14 2 40 0 53.60 

            
Note: Number of Time Periods = 9, Number of Links = 20, Number of Trucks = 8, Total Shipment Size = 40, WE = 1 
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       Figure 48 – Loaded truck # of trips vs. Delivery failure cost factor (Case 8) 
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              Figure 49 – Avg. fill rate vs. Delivery failure cost factor (Case 8) 
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Table 17 – Shipment Late Delivery Cost Factor (Case 9) 
                        

Shipment 
Late 

Delivery 
Cost Factor 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier 
Cost (unit) 

Customer
Cost (unit) 

Total 
Cost (unit) 

Loaded  
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average 
Fill Rate 

(%) 

0.05 9380 835 128 23.30 1.15 24.45 14 2 40 0 53.60 

0.10 9380 835 56 23.05 2.20 25.25 14 2 39 1 53.60 

0.15 9380 835 31 23.00 2.85 25.85 14 2 38 2 50.70 

0.20 9380 835 56 22.60 3.60 26.20 14 2 36 4 50.00 

0.25 9380 835 21 23.30 3.00 26.30 14 3 35 5 45.00 

0.30 9380 835 21 23.30 3.00 26.30 14 3 35 5 45.00 

0.35 9380 835 52 23.30 3.00 26.30 14 3 35 5 45.00 

            
Note: Number of Time Periods = 9, Number of Links = 20, Number of Trucks = 8, Total Shipment Size = 40, WE = 1 
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          Figure 50 – Shipment delivered vs. Late-delivery cost factor (Case 9) 
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                Figure 51 – Avg. fill rate vs. Late-delivery cost factor (Case 9) 
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Table 18 – Shipment Early Delivery (Storage) Cost Factor (Case 10) 
                        

Shipment 
Late 

Delivery 
Cost Factor 

Number of 
Variables 

Number of 
Constraints 

Execution
Time (sec) 

Carrier 
Cost (unit) 

Customer
Cost (unit) 

Total 
Cost (unit) 

Loaded  
Truck 

Number 
of Trips 

Empty 
Truck 

Number 
of Trips 

Shipment
Delivered

(size) 

Shipment 
Left 
(size) 

Average 
Fill Rate 

(%) 

0.05 9380 835 50 23.75 1.85 25.60 13 2 39 1 56.90 

0.10 9380 835 58 24.60 1.85 26.45 13 2 39 1 56.90 

0.15 9380 835 39 25.45 1.85 27.30 13 2 39 1 56.90 

0.20 9380 835 177 26.30 1.85 28.15 13 2 39 1 56.90 

0.25 9380 835 672 25.65 3.25 28.90 13 2 37 3 55.40 

0.30 9380 835 471 25.95 3.25 29.20 13 2 37 3 55.40 

0.35 9380 835 1017 26.55 2.75 29.30 15 3 38 2 57.30 

            
Note: Number of Time Periods = 9, Number of Links = 20, Number of Trucks = 8, Total Shipment Size = 40, WE = 1 
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  Figure 52 – Shipment delivered vs. Storage cost factor (Case 10) 
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      Figure 53 – Carrier’s cost vs. Storage cost factor (Case 10) 
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- Driver Routing 

In Chapter 3, as an extension to the original mathematical model, the driver 

routing and scheduling problem was combined with truck/shipment routing and 

scheduling problem. The required additions to assumptions, notations, objective 

function and constraints of the original mathematical formulation were addressed. 

The numerical experiments were conducted using the 10-terminal network. This 

section presents the results of these experiments and discusses the impact of driver 

routing extension on the size of the optimization model, and the computation time 

that is required to solve the problem.  

In the base case of the 10-terminal problem, 8 trucks are available at to deliver 

40 shipments. It is assumed that at time 0 there is one driver for each empty truck. All 

the other characteristics of the problem are the same as the original problem.  

To generate the mathematical problem for problem with driver routing, the 

“Problem Generator” C program is modified by adding the additional cost function 

and constraints. A new input file is added that contains the information related to each 

driver; the identification number, location, home and the associated cost factors. 

Problem characteristics are shown in Figure 54 and 55. 

The “Operation Plan” C program is also modified. Additional processed 

output files are added that show the driver dispatch plan at each terminal and driver 

routing plan for each driver. Problem is solved by CPLEX and the performance 

measures are presented in Figure 56 and 57. The samples of new driver related output 

files are shown in Figure 58 and 59. 

Using CPLEX the optimal solution can be obtained for the original problem 

(without driver routing) in 128 seconds. However, the problem with driver routing is 

solved in 29,112 seconds (~8 hours) using CPLEX. As shown in Figure 55, 

considering the driver routing problem would add 6,000 variables and 2,200 more 

constraints to the MIP problem which results in an exponentially increased execution 

time.  
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Figure 54 – Problem characteristics (without driver routing) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55 – Problem characteristics (with driver routing) 
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Figure 56 – Performance measures (without driver routing) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57 – Performance measures (with driver routing) 
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Figure 58 – Driver dispatch plan at terminal 6 

 

 

 

 

 

 

 

 

 

 

 

Figure 59 – Driver routing plan for driver 8 
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Chapter 6: Solution Algorithms 

 
In the Chapter 4 different procedures were proposed to make 

acceptance/rejection decisions for LTL motor carriers. One major step in all the 

proposed procedures is to solve the shipment and truck routing problem, repeatedly. 

When the size of the problem is large, one cannot rely on the exact solution methods 

(i.e. CPLEX) to solve the MIP and obtain the solution in a timely manner. Therefore 

under high demand for LTL shipments it is not practical to use CPLEX. One way to 

resolve this issue is to solve the MIP using heuristic approaches that are the main 

subjects of this Chapter.   

In this study, three different solution algorithms are proposed to solve the MIP 

problem. These approaches are presented in the same order that they were developed 

during this research. The first 2 approaches are based on a search algorithm that tries 

to find the best paths to route the shipments. The last approach uses a graphic 

partitioning to reduce the size of the problem that is solved using CPLEX. The 

development of the first two solution algorithm led us to come up with the idea of 

path-based network partitioning that is used in the 3rd approach. In all 3 algorithms, 

instead of working with link variables, shipments and trucks routing paths are the 

main variables. That approach helps us to reduce the number of variables and the size 

of search space significantly.  

In order to evaluate the effectiveness of the solution algorithms, three 

benchmark solutions are proposed. The first two benchmarks are “do-nothing” and 

“literature-reported operation”, which represent the upper bound or the worst possible 

solutions. Obviously, all proposed solution algorithms must perform better than these 

benchmarks. The last benchmark is the lower bound that is derived using a relaxation 

method. The lower bound will be used particularly to determine the quality of the 

solution provided by the network partitioning method, which is the 3rd proposed 

solution algorithm. In this section, the step by step procedure shows how the 

benchmarks and heuristic solutions are developed. Next Chapter will focus on 

analyzing the performance of the proposed methods.     
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Benchmark 1: Do-Nothing 

Naturally, the do-nothing solution would be the first choice to be used as a 

benchmark to evaluate the performance of the solution. The do-nothing solution is 

considered to have the worst possible approach to handle the demand. Clearly, any 

other approach that performs worse than do-nothing would not be considered as a 

candidate to solve the optimization problem.  

To generate the do-nothing solution, it is assumed that all shipments stay at 

their origin terminals and there is no delivery.  There will be no loaded or empty truck 

movements. Waiting costs and delivery failure costs will be the only costs that are 

associated with this solution.  In order to calculate the objective function for do-

nothing solution a C program was developed. The program uses the shipment data as 

input and calculates the objective function by adding waiting and delivery failure 

costs. The outputs follow the CPLEX format, so by running the “operation plan” 

program the performance measures are generated and used as a benchmark to 

compare with the solution provided by the proposed heuristic algorithms.  

 

Benchmark 2: Literature-Reported Operation  

Based on the literature [27, 28], what LTL companies do in practice is to solve 

the network design problem, find the service links and operate on those links by 

routing shipments over the network. The routing plan is also called load plan or 

service network plan, and includes a series of routing instructions of the form: 

shipment at terminal i with destination j should be assigned to truck headed to a 

specific terminal (regardless of the origin terminal). So, all shipments between each 

pair would be assigned to the same path, each time. There is no shipment split. They 

manage to keep a frequency of trucks running on each link to handle the shipment 

delivery task.  
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In order to create a similar solution to what carriers do in practice the heuristic 

search algorithm is modified and used. The in-depth discussion on the proposed 

method will be provided in the next section. In real world operation, only the 1st 

shortest path is selected to route the shipments. The shipments are assigned to the first 

available outbound truck. Shipments are not held at any intermediate hubs unless 

there is no truck to take them to their next stop. To mimic the literature-reported 

operations, the empty trucks movements are also allowed.  

The program uses the shipment and truck data as inputs and calculates the 

objective function. The program generates a set of formatted outputs that can be 

utilized by “operation plan” program to generate the performance measures. The 

results are used as a benchmark to compare with the solution provided by the 

proposed heuristic algorithms.  

 

Benchmark 3: Lower Bound  

The combined shipment and truck routing MIP problem is an NP-hard 

combinatorial optimization problem. Solving such problems using the exact solution 

methods (e.g. CPLEX) requires an amount of time that increases exponentially with 

the problem size. Therefore, the approximation algorithms are often used to find good 

solutions in a reasonable amount of time. The objective of the problem is to minimize 

the total operational costs. Hence, the value that is obtained for the lower bound can 

be used as a benchmark to check the quality of the solutions generated by 

approximation methods. 

Lower bounds on the minimum solution value are used not only in evaluating 

the quality of approximate solutions but also in limiting the search effort to find the 

optimum solution. The Lagrangian relaxation is the most common method to identify 

the lower bound for minimization problems. However, the MIP problem that is 

formulated in this study is a very complex problem that contains a large number of 

integer variables. Hence, even the Lagrangian relaxation requires a very long 

computation time and this method is not implemented in this study. An easy way to 
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find the lower bound is by dropping some of the constraints and solving the 

remaining simpler problem that can be done within a short time. The 3rd benchmark 

(lower bound) is generated using this method. 

Figure 60 shows the modifications that have been applied to the mathematical 

program to derive the lower bound on the solution value. It is assumed that unlimited 

number of trucks is available at each terminal. Therefore, there is no capacity on the 

fleet size and there will be no need to make the empty movements. This assumption is 

captured by removing 2 constraints from the original MIP problem; the truck 

conservation constraints and the integrality constraints for empty trucks. 

In LTL trucking operations, the shipment size (weight) is not necessarily an 

integer value; therefore in the general formulation of the problem, there is no 

integrality constraint on shipment decision variables. However, in the more complex 

instance of the problem that is used for the numerical experiments the shipments are 

cars, and therefore the integrality constraints are included.  

Auto carriers are one class of motor carriers that transport vehicles throughout 

the United States for individuals. Auto carriers are similar to LTL trucking companies 

in terms of network structure, size of shipments and type of operations. In this study, 

the numerical experiments are conducted for these types of motor carriers. In this type 

of trucking operations the shipments are cars. This important fact imposes an 

integrality constraint on the decision variables related to volume of shipments. To 

find the lower bound, in addition to the constraints related to empty trucks, all 

shipment related integrality constraints are also dropped.  

The relaxed optimization problem is generated using a modified “Generate 

Problem” C program. The numerical experiments on different size of networks are 

performed and the results are reported in the next Chapter. The lower bound provides 

a tight bound on the minimum value of the objective function and is used as the 

benchmark to check the quality of heuristic solutions for the large size problems, 

where the solution to MIP problem cannot be obtained using CPLEX. 
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Figure 60 – Modified mathematical problem used to derive the lower bound 
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Algorithm 1: Path-Based Heuristic Search 

Unlike the exact solution methods (e.g. branch and bound), the heuristic 

search algorithms are designed to find sufficiently “good” solutions for large scale 

optimization problems. Starting with an initial feasible solution, the search algorithm 

iteratively performs small changes to this solution in order to move to a neighbor 

feasible solution with an improved value of objective function. The iterative 

improvements change the current solution to one in its neighborhood that has a lower 

cost. The algorithm stops when no better neighbor exists.  

The first proposed solution algorithm is a local search procedure that is 

performed to find the best combination of shipment and truck paths. As discussed 

earlier, in order to decrease the size of the search area, instead of considering link 

volumes as the variable the shipment paths are used as the primary variables of the 

search process.  

In tactical planning for LTL trucking operations all loads with the same origin 

and destination are routed through the same path, which is the shortest path that 

connects their origin and destination. This is a simplifying rule that is also used by 

trucking companies in their daily operation. In this study, unlike what is being done in 

practice and in tactical planning, shipments with the same origin and destination are 

allowed to be separated and routed through different paths.  

Figure 61 presents an example to show how LTL trucking companies can 

avoid the risk of underutilizing their resources by using the multi-path approach in 

routing the shipments. The physical network, demand information and travel times 

are shown in Figure 61. The fleet is assumed to be homogeneous with the truck 

capacity that is equal to 10 units. Based on the assumptions, here are the best 2 

shortest paths between terminal 2 and terminal 4:  

First shortest path: 2-5-4 

Second shortest path: 2-3-4 
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If the shipment number 2 is routed using the 1st shortest path, there will be 6 

units of loads on links 2-5 and 5-4. On the other hand, when the 2nd shortest path is 

used to route this shipment, the available capacity will be used more efficiently, since 

there will be 10 units of loads on links 2-3 and 3-4. Moreover, the overall operational 

costs are reduced since a single truck is used to deliver all the shipments to their final 

destination. This example proves the crucial fact that using the shortest path to route 

all the shipments is not necessarily the best strategy to obtain the optimal solution. In 

this study, in all proposed algorithms the multi-path approach is used to route the 

shipments.        

 

 

 

                        
 From To Travel 

Time  Shipment From To Size  
  

 1 2 2  1 2 4 6    
  1 4 2  2 2 3 4    
  1 5 2  3 3 4 4    
  2 3 1         
  2 5 1         
  3 4 2         
  3 5 2         
  4 5 1         
                        

   Figure 61 – Physical network (5-terminal) and demand info   

 

 

A program called “Problem Solver” is coded in C programming language to 

implement the path-based heuristic search. LTL network structure, fleet 

characteristics and shipments’ information are the main inputs to the program. The 

initial solution is generated either randomly or using the solution obtained from the 

2nd benchmark (literature-reported operation). The initial solution consists of routing 

paths for each and every shipment. At this point, program enters its main loop, 

through which it takes a series of actions repeatedly until it reaches the limit of the 

number of iterations. 
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The Path-based heuristic search algorithm is as follows: 

 

Step 0      Find an initial solution that consists of routing paths for all 

shipments.   

Step 1     If the iteration count has not reached the limit; find the neighbor of 

the current solution by changing the routing path for a randomly 

selected subset of shipments. Otherwise report the best solution. 

Step 2 Calculate the total number of shipments on each link and assign 

them to available empty trucks.  

Step 3      Schedule an empty truck to handle the unassigned shipments. 

Step 4 Calculate the objective function. 

Step 5    If the neighbor’s solution is better than current best solution; set it as 

the best solution and update all related variables. Otherwise, go to 

Step 1. 

 

Figure 62 shows the flowchart of the program. The following sections provide 

detail discussions on “shipment routing procedure”, “truck dispatch procedure”, 

“objective function calculation” and “solution improvements”. 

  

- Shipment Routing Procedure 

First, the neighbor solution of the current solution is constructed. To generate 

the neighbor, a subset of shipments is selected randomly and their routing paths are 

modified. “Shipment Routing Function” is in charge of this task. Figure 63 and 64 

illustrate how the program works on a 5-terminal network. It is assumed that a 

shipment from terminal 1 to terminal 3 is among those loads that are picked 

randomly. In this example, the first 7 shortest paths between 1 and 3 are being 

considered. Let’s assume the current route for this shipment is the first shortest path 

between 1 and 3. One of the other 6 shortest paths is selected randomly as the new 

current shortest path. 
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Figure 62 – Path-based heuristic search algorithm 

Use current solution and generate a neighbor solution by 
picking a subset of shipments randomly and change their 

routing paths (Shipment Routing Function) 

LTL Service Network Structure 
Fleet Characteristics 

Shipment Information 
Problem Parameters 

Neighbor  
solution cost < Best 

solution cost ? 

Create an initial solution 
(Randomly OR using practice solution) 

and set it as the best solution 

Part 1: Calculate total number of shipments on each link and 
assign them to available empty trucks 
Part 2: Schedule an empty truck movement to handle the 
un-assigned shipments 

 (Truck Dispatch Function) 

Calculate the objective function (solution cost) 
 (Cost Function) 

No 

Set the neighbor solution as the best solution and 
update the related variables (Volume of shipments and 

empty/loaded trucks on each link, Number of 
shipments and trucks at each node, and Total cost) 

Yes

Number of iterations  
< Iteration limit? 

No

Yes 

Report the best solution 
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  Figure 63 – Select one of the K shortest paths to route the shipment 

 

 
  Figure 64 – Insert waiting times along the selected path to route the shipment 
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The shorter shortest paths have higher possibilities to be picked as the 

replacement and this important fact has been incorporated into the program. After the 

path selection, waiting periods are inserted into the path randomly as shown in Figure 

65. In this example, 2 waiting time periods added at terminal 1 (origin) and 1 waiting 

period added at intermediate hub, terminal 5. 

As it is shown in the above example, the path selection step is the basis of 

generating a new neighbor solution. Hence, a K shortest path routine is needed to 

provide the required set of potential candidates to route the shipments. Usually, the 

shortest path routines are called repeatedly, so the efficiency of their algorithm plays 

a major role in the performance of the application. In all methods that are proposed in 

this study, the shortest path algorithm is called only once at the beginning of the 

program. The all-to-all K shortest paths are generated and stored in arrays that are 

used throughout the algorithm. Therefore, the efficiency of the shortest path 

algorithm is not the main focus of this study since it has no impact on the overall 

performance of the proposed solution algorithm.  

Sequential algorithms that find the generic shortest path (a single shortest 

path) are well known. Dijkstra [83] proposed one of the first label setting algorithms 

for finding the shortest path tree in a network. This algorithm is the core of the K 

shortest path algorithm that is implemented in this study. 

A very large body of research has focused on single-path as well as multiple-

path shortest path problems. Azevedo et al. [84],Brander et al. [85], Carraresi [86], 

Chong et al. [87], Consiglio et al. [88], Dryfus [89], Fox [90], Horne [91], Kumar et 

al. [92], Law et al. [93], Lawler [94], Martins [95], Minieka [96, 97], Perko [98], 

Ruppert [99], Shibuya [100], Shier [101, 102, 103], Skicism et al. [104], Weigand 

[105], Yen [106, 107] studied K shortest path problem and proposed algorithms and 

procedures to solve the problem.  

The idea behind finding the K shortest path (SP) is that each two paths can 

share some but not all their links. The first step would be to find 1st shortest path (SP) 

between every two nodes (terminals). To find the 2nd SP between each pair, all the 

links that appear in the 1st SP are removed, one at a time. Then, the shortest path is 

generated in the modified network using Dijkstra.  
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  Figure 65 – Calculate the number of loads going through each link 

 

 
  Figure 66 – Dispatch empty/loaded trucks to handle the loads 
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For example if there are 5 links on the 1st SP by removing one link at a time, 5 

candidates are generated and the shortest one would be the 2nd SP. To find the 3rd SP 

there are 2 sets of links; one for the 1st SP and the other one for the 2nd SP. Two links 

are removed (one from each set) and the 3rd SP is the shortest path that is generated 

for the modified network.    

- Truck Dispatch Procedure 

The next step is performed using “Truck Dispatch Function”, where the 

available trucks are assigned to the loads. First, the total number of shipments on each 

link is calculated. Then, the program starts from the first time period and moves 

forward. Shipments are assigned to the available empty trucks at each terminal. If 

needed, the program checks the possibility of empty truck movement to handle the 

unassigned shipments. Figure 65 shows all the shipments (including the one with 

newly modified path), which are going to arrive at terminal 5 at time period 6 and 

must be moved to terminal 3. As shown in Figure 66, loads are assigned to a truck 

that is moved empty from terminal 4 to terminal 5 and is ready at time period 6 to 

haul the loads. 

- Objective Function Calculation 

Now that the new solution (neighbor) is generated, the program calculates the 

objective function. In any search algorithm, the performance can be improved 

significantly by reducing the time that is required to generate and evaluate the new 

neighbor solution. In order to increase the efficiency in calculating the objective 

function, all required link variables are updated as program proceeds. Therefore the 

data associated with shipments, empty and loaded trucks volumes are always ready. 

Four individual loops calculate the elements of objective function as soon as the new 

neighbor solution is generated. Handling, waiting, delivery failure and late-delivery 

costs are added and the value objective function is sent to the main function. 
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- Solution Improvements 

The objective function for the neighbor solution and the current best solution 

are compared. If the neighbor solution is worse than the current one, program goes 

back to the beginning of loop and generates the next neighbor. If the solution is 

improved, the new solution would become the current best solution and the related 

variables need to be updated. The volume of shipments and empty/loaded trucks on 

each link, the number of shipments and trucks at each node and the total cost are the 

key attributes of each solution and are updated each time that a better solution is 

found. The algorithm terminates when the specified stopping criteria is reached. The 

stopping criteria are determined using a set of preliminary runs and based on the 

timeframe that is available to run the program. In heuristic search algorithms more 

iterations and longer search would lead to better results. The outputs follow the 

CPLEX format, so by running the “operation plan” program all the performance 

measures can be generated. 
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Algorithm 2: Path-Based Heuristic Search with Simulated Annealing  

The heuristic search algorithm that is proposed in the previous section 

provides a locally optimal solution, which is not necessarily a “good” solution. Such 

greedy search algorithm has a fatal flaw; it can easily get stuck at local optima. 

Therefore, a mechanism is required to help the algorithm to escape the local optima 

and continue the search.  

Tabu search, simulated annealing and genetic algorithm are among the most 

distinguished meta-heuristic approaches that have been combined with the search 

algorithms to improve the solutions obtained by greedy heuristics. In this study, 

simulated annealing (SA) is used in conjunction with the path-based search algorithm, 

mainly due to the simplicity of its implementation and the robustness of its 

application to solve the mathematical problems. A brief introduction of tabu search 

and genetic algorithm will be followed by a detail discussion on the path-based search 

algorithm with simulated annealing. 

- Tabu Search 

When all neighbors of the current solution are examined, the best neighbor 

solution is selected to be used to start the next round of search. However, there is 

chance that the best move from the current best neighbor solution takes the algorithm 

back to one the already visited neighbors. To prevent this from happening, tabu 

search algorithm keeps a list of solutions that had been selected as the local optimum.  

- Genetic Algorithm 

Genetic algorithms are inspired by the evolution process of organisms. The 

problem solution represents an organism’s genetic string. In this algorithm, the first 

step is to generate a set of starting solution that is called the “population”. The goal is 

to produce better generations through either “mutation” of randomly a selected 

member of the population or performing a “crossover” operation using 2 randomly 
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selected members of the population (parents). Using of the newly generated 

population, the old population, and based on a selection strategy, the “survivor” 

members are selected. These survivors form the new population that is used in the 

next round of algorithm. These operations are performed repeatedly until the 

convergence is achieved. The elite members of the last population would be the 

solution that is provided by the genetic algorithm.        

- Simulated Annealing 

Simulated annealing (SA) was invented before tabu search and genetic 

algorithms. It was gradually improved during the past 3 decades. Metropolis et al. 

[108] proposed an algorithm to simulate the physical cooling process. Their algorithm 

was the main inspiration for Kirkpatrick et al. [109] who introduced simulated 

annealing algorithm as a tool to solve the optimization problems. The annealing is the 

heat-treatment process of metals. One can obtain desirable properties of the melted 

metal (i.e. hardness, flexibility…) by managing the cooling process.  

Similar to tabu search algorithm, simulated annealing is a local search 

algorithm that moves from one neighbor to another and tries to improve the current 

solution. Tabu search allows “uphill move” (that make the current solution worse) 

only if the algorithm is stuck at a local optima, but using simulated annealing the 

“uphill move” can be done at any time.  

Simulated annealing algorithm utilizes a control parameter called 

“temperature” to simulate the physical annealing process. The temperature controls 

the possibility of moving to a worse neighborhood solution. As the search proceeds, 

the temperature is lowered. During high temperature phase more random movements 

are allowed within the solution. This would help the algorithm to escape from local 

optima. As algorithm gradually goes toward a good solution the temperature 

decreases until the algorithm reaches the minimum defined temperature and settles 

into so-called “frozen” state.  
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The following procedure shows the outline of the SA technique that has been 

adapted for the minimization problem based on Kirkpatrick’s algorithm [109]: 

 

Step 0      Find an initial solution s(initial), Choose a method to find a 

neighborhood solution, an initial temperature t(initial), a cooling 

function F(t), number of iteration at each temperature N and the 

stopping condition (e.g. a final temperature t(final) or total number 

of iteration ).   

Step 1     Find s(neighbor) the neighbor of the current solution s(current). 

Step 2     Calculate Δ  which is the difference in their objective functions  

              Δ  = Z( s(neighbor) ) – Z( s(current) )  

Step 3      Decide whether to accept the new solution or not: 

 If s(neighbor) is better than s(current), set s(neighbor) as s(current).  

 If s(neighbor) is worse than s but passes the Boltzmann trial 

exp(-Δ /T)>random U(0,1), set s(neighbor) as s(current). 

Step 4    If s(neighbor) is better than current best solution s(best), set it as  the 

best solution. 

Step 5  If the iteration count at the t(current) reaches N, reduce the 

temperature using F(t). 

Step 6    If the stopping conditions are satisfied (e.g. t(current) is less than 

t(final) or the total iteration limit has reached), output the s(best) as 

the final solution. Otherwise, start from step 1.  

 

To implement this general simulated algorithm one needs to identify the 

elements of the cooling process, which includes: the initial temperature, the final 

temperature, the cooling function and the number of iterations at each temperature.  

Generally, the initial temperature is selected high enough to allow uphill 

moves during the early stages of the process. However, when the SA algorithm starts 

with a high quality initial solution, it is suggested to use a lower temperature. 

Kirkpatrick et al. [109], Dowsland [110, 111], Johnson et al. [112, 113] and Ben-

Ameur [114] have suggested different methods to determine the initial temperature. 
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The most popular cooling function is the linear function ( f(t) = α t ) that is 

also used in this study. The temperature reduction rate is a constant in range of [0.80, 

0.99]. In very low temperatures, most of the solutions are rejected. This might have a 

negative impact on the performance of the algorithm. Hence, some researchers 

suggest a reheating process when algorithm is stuck in local optima at a very low 

temperature. 

Different stopping conditions are suggested in the literature. The conventional 

method is to stop the algorithm when it reaches the frozen state. The other idea is to 

stop the algorithm when the acceptance ratio of the uphill moves is less than a 

predefined minimum. The computation time and the total number of iterations are 

among the other parameters that can be monitored to determine a stopping point for 

the algorithm.  

 

As discussed previously, the heuristic search algorithm that is proposed 

produces a locally optimal solution, which is not necessarily a “good” solution. When 

the algorithm gets stuck in local optima, a mechanism is required to make the search 

process escape from the local optima. One alternative, which is used in this study, is 

to apply meta-heuristic methods such as simulated annealing (SA) combined with the 

path-based search algorithm.  

 

The Path-based heuristic search algorithm with simulated annealing is as 

follows: 

 

Step 0      Find an initial solution that consists of routing paths for all 

shipments and set it as current solution.   

Step 1     If the iteration count has not reached the limit; find the neighbor of 

the current solution by changing the routing path for a randomly 

selected subset of shipments. Otherwise report the best solution. 

Step 2 Calculate the total number of shipments on each link and assign 

them to available empty trucks.  

Step 3      Schedule an empty truck to handle the unassigned shipments. 
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Step 4 Calculate the objective function. 

Step 5    If neighbor’s solution is better than current best solution; set it as the 

current and the best solution and start from Step 1.  

Step 6   If the neighbor’s solution is better than current solution OR if it is 

worse than current solution but it passes the Boltzmann trial; set it as 

the current solution. Go to Step 1. 

 

Figure 67 shows how the simulated annealing procedure is incorporated into 

the heuristic search algorithm. The flowchart introduces the second algorithm that is 

proposed in this study. The next Chapter provides the detail discussion on the 

implementation of this algorithm to solve the shipment and truck routing MIP 

problem.  
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Figure 67 – Path-based heuristic search with simulated annealing 

Use CURRENT solution and generate a NEIGHBOR solution by 
picking a subset of shipments randomly and change their routing paths 

(Shipment Routing Function) 

LTL Service Network Structure 
Fleet Characteristics 

Shipment Information 
Problem Parameters 

NEIGHBOR  
solution cost < BEST 

solution cost ? 

Create an initial solution 
(Randomly OR using practice solution) 

and set it as the CURRENT and BEST solutions 

Part 1: Calculate total number of shipments on each link and assign 
them to available empty trucks 

Part 2: Schedule an empty truck movement to handle the un-assigned 
shipments 

 (Truck Dispatch Function) 

Calculate the objective function (solution cost) 
 (Cost Function) 

No 

Set the NEIGHBOR solution as the 
CURRENT and BEST solution 

variables 

Yes 

Number of iteration < Iter. limit 
Temperature < Final temp.? 

No

Yes 

Report the best solution 

NEIGHBOR  
solution cost < CURRENT 

solution cost OR it passes the 
Boltzmann trial? 

Set the NEIGHBOR solution as the 
CURRENT solution 

Yes

No



 

 140 
 

Algorithm 3: Path-Based Network Partitioning  

The heuristic search with and without simulated annealing is used to solve the 

mathematical problem. The results of the numerical experiments on different size 

networks are reported in the next Chapter. The proposed heuristic search can improve 

the solution quality compared to what is being done in practice. However, even for 

the smaller size problems the results are far from the optimal solution provided by 

CPLEX. In an effort to further improve the quality of the solution, the third proposed 

solution algorithm seeks to take advantage of path-based network partitioning. 

 The path-based network partitioning that is presented in this section is 

inspired by the procedure that is used to find the neighbor solution in the previous 

solution algorithms. Routing costs play a major role in total operational costs of the 

carrier. The carrier may reduce the overall routing costs simply by routing the 

shipments through the shortest path. However, as it was proven in the last section, 

this method is not necessarily the best way to obtain the optimal solution. An 

alternative would be to generate and pick the shipment routing path using the first K-

shortest path. This method takes advantage of consolidation opportunities to avoid 

underutilizing the system’s resources.  

As the 3rd proposed method to solve the mathematical problem, a path-based 

network partitioning is used in conjunction with an exact solution algorithm (e.g. 

branch-and-bound). When the problem is solved using CPLEX, all possible paths to 

route a shipment are checked implicitly. The optimal solution presents the best set of 

the routing paths after considering all different combinations. However, in majority of 

cases the path that is picked by CPLEX to route the shipment is among the first K 

(e.g. 4 or 5) best shortest paths. The idea is to reduce the network size for each 

shipment by choosing only the links that appear in the first K shortest path for that 

particular shipment.  

Partitioning the network reduces the number of decision variables 

significantly. Hence, it would be practical to use the exact solution methods to solve 

the resulting modified MIP problem for large size networks.  

In this section, the path-based network partitioning method is described using 

the medium size network with 10 terminals. This is the same network that is also used 
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to perform the numerical experiments (Figure 68). All the links are assumed to be 600 

miles long and undirected. Table 19 lists the characteristics of the first 8 shortest 

paths between New York and Kansas City (Terminal 4 to Terminal 5).     

The maximum reduction in network size is obtained by using only one path to 

partition the network. As shown in Figure 69, for shipment from 4 to 5 the reduced 

network consists of 3 links; 4-3, 3-2 and 2-5. Before solving the problem using 

CPLEX, the volume of the shipments from 4 to 5 is pre-set to zero for all links other 

than the above 3 links. Assuming that there are 10 time periods in the time-space 

network for this problem, the number of pre-set decision variables for this particular 

shipment would be over 300. When only the first shortest path is used for 

partitioning, the resulting network is called “SP-1”. 

SP-2, SP-3 and SP-8 are presented in Figure 70 to 72. Some of the links are 

shared among the shortest paths. The number of links in SP-2, SP-3 and SP-8 

modified networks is 5, 8 and 14, respectively. Naturally, considering more paths in 

the modified network increases the computation time. However, the optimal solution 

will be closer to that of the original non-modified problem. Therefore, a set of 

preliminary numerical experiment is required to find the optimum number of shortest 

path to be used in the network partitioning process. Figure 73 illustrates the result 

multi-path routing network considering the reduced size network for all the 

shipments. 

To construct the SP-K network the shortest paths are selected based on their 

ranks for each O-D pair. Tables 20 and 21 list the length of 8 first shortest paths from 

terminal 1 and 5 to all other terminals in a 17-terminal network. This large size 

network is also used for the numerical experiments presented in the next Chapter. The 

length of the shortest path for each pair does not increase linearly. Therefore, when 

the paths are chosen based on their ranks, it is quite possible that some non-

competitive paths are selected while some of the competitive paths are ignored. 

Hence, choosing the set of paths based on their rank is not necessarily the best 

strategy. A variation to this method is to use the length of the path as the selection 

criteria. 
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Figure 68 – Physical network (10-terminal) 

 

 

Table 19 – Characteristics of the first 8 shortest paths from terminal 4 to terminal 5  

Shortest Path     Path       Approximate 
Length (miles) 

1st Shortest Path   4 - 3 - 2 - 5     1800 
2nd Shortest Path   4 - 3 - 6 - 5     1800 
3rd Shortest Path   4 - 7 - 9 - 5     1800 
4th Shortest Path   4 - 7 - 6 - 5     1800 
5th Shortest Path   4 - 3 - 2 - 1 - 5   2400 
6th Shortest Path   4 - 3 - 6 - 8 - 5   2400 
7th Shortest Path   4 - 7 - 9 - 8 - 5   2400 
8th Shortest Path   4 - 7 - 6 - 8 - 5   2400 
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       Figure 69 – Reduced network with the first SP between 4 and 5 

 

      
       Figure 70 – Reduced network with the first two SP between 4 and 5 
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       Figure 71 – Reduced network with the first three SP between 4 and 5 

 

      
       Figure 72 – Reduced network with the first eight SP between 4 and 5 
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 Figure 73 – Multi-Path routing network 
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Table 20 - The length of the first 8 shortest paths between terminal 1 and all other terminals in the network 
                  
Origin>Destination 1>1 1>2 1>3 1>4 1>5 1>6 1>7 1>8 1>9 1>10 1>11 1>12 1>13 1>14 1>15 1>16 1>17 
1st Shortest Path  600 1200 600 600 1200 1800 1800 2400 1200 1800 2400 2400 2400 2400 3000 3000 
2nd Shortest Path  1200 1800 1200 1200 1200 1800 2400 3000 1200 1800 2400 2400 3000 2400 3000 3000 
3rd Shortest Path  1800 2400 1800 1200 1800 1800 2400 3000 1800 1800 2400 2400 3000 2400 3000 3000 
4th Shortest Path  1800 2400 1800 1800 1800 2400 2400 3000 1800 1800 2400 2400 3000 2400 3000 3000 
5th Shortest Path  2400 2400 2400 1800 1800 2400 2400 3000 1800 2400 2400 3000 3000 3000 3000 3000 
6th Shortest Path  2400 2400 2400 3000 2400 2400 3000 3000 2400 2400 2400 3000 3000 3000 3000 3600 
7th Shortest Path  3000 3000 3000 3000 2400 2400 3000 3000 2400 2400 2400 3000 3000 3000 3000 3600 
8th Shortest Path  3000 3000 3000 3000 2400 2400 3000 3000 2400 2400 2400 3000 3000 3000 3000 3600 
Average Length  2025 2325 2025 1950 1875 2175 2550 2925 1875 2100 2400 2700 2925 2700 3000 3225 

                  
                  
                                   
Table 21 - The length of the first 8 shortest paths between terminal 5 and all other terminals in the network 
                  
Origin>Destination 5>1 5>2 5>3 5>4 5>5 5>6 5>7 5>8 5>9 5>10 5>11 5>12 5>13 5>14 5>15 5>16 5>17 
1st Shortest Path 600 600 1200 600  600 1200 1800 2400 600 1200 1800 1800 2400 1800 2400 2400 
2nd Shortest Path 1200 1200 1800 1200  1200 1800 1800 2400 1200 1200 1800 2400 2400 1800 2400 3000 
3rd Shortest Path 1200 1200 1800 1200  1800 1800 2400 2400 1800 1800 1800 2400 2400 2400 2400 3000 
4th Shortest Path 1800 1800 1800 1800  1800 2400 2400 3000 1800 1800 2400 2400 3000 2400 2400 3000 
5th Shortest Path 1800 2400 2400 2400  2400 2400 2400 3000 2400 2400 2400 2400 3000 2400 2400 3000 
6th Shortest Path 3000 2400 2400 2400  2400 2400 2400 3000 2400 2400 2400 2400 3000 2400 2400 3000 
7th Shortest Path 3000 2400 2400 3000  2400 2400 2400 3000 3000 2400 2400 2400 3000 2400 3000 3000 
8th Shortest Path 3000 3000 3000 3600  3000 2400 2400 3000 3000 3000 2400 2400 3000 3000 3000 3000 
Average Length 1950 1875 2100 2025  1950 2100 2250 2775 2025 2025 2175 2325 2775 2325 2550 2925 
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The highlighted paths in Tables 20 and 21 are longer than the average length 

of the first 8 shortest paths for each OD pair. As an alternative one would select this 

set of paths to partition the network. The resulting network is called SP-8*. As seen in 

Tables 20 and 21, the number of paths that are selected for different OD pairs 

depends on the average length of the path that connects each pair. For some OD pairs 

all 8 shortest paths stay in the network while for some others only one shortest path 

participates. More discussion on comparing the different methods of network 

partitioning is addressed in the next Chapter.   

Figure 74 shows how the proposed path-based network partitioning is 

embedded in the decision making procedure. The system real-time information is 

available either through the simulation or the real data from the field. At the end of 

the time horizon or each time a request arrives, the mathematical formulation of the 

problem is generated considering the updated empty truck locations and shipments 

information. A modified version of “Problem Generator” C program is developed to 

generate the mathematical formulation. A K-shortest path algorithm is added to the 

program to generate the all-to-all first K shortest paths. The proposed network 

partitioning is performed by selecting a subset of these K-shortest paths. The volume 

of each shipment is set equal to zero on all links except those that appear in the 

selected subset. The result MIP problem is solved using CPLEX. After solving the 

problem, the performance of the new solution is analyzed and the effects of accepting 

the new requests are examined based on the acceptance criteria. 

 

One major step in all decision making procedures is to solve the shipment and 

truck routing problem repeatedly. In this Chapter, three heuristic solution algorithms 

are proposed to solve the MIP problem. The first 2 approaches are based on a search 

algorithm, which tries to find the best paths to route the shipments. The last approach 

uses a graphic partitioning to reduce the size of the problem, which is solved using 

CPLEX. In order to evaluate the effectiveness of the solution algorithms, three 

benchmark solutions are proposed; “do-nothing”, “literature-reported operation” and 

the “lower bound”. The performance of the proposed solution methods are analyzed 

in the next Chapter. 
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 Figure 74 – Decision making procedure (with path-based network partitioning) 

Fleet Characteristics: 
- Fleet Size 
- Empty Truck Locations 

Generate the mathematical formulation of the problem and set the volume 
of each shipment equal to zero on all links except those that are selected 

using the K first shortest paths for that shipment  
(Run Modified Problem Generator)

LTL Service Network Structure: 
-Terminals 
- Links 
- Travel Times 

Historical Data and 
Demand Forecast 

Shipment Information: 
- Size 
- Origin/Destination 
- Earliest Pickup Time 
- Latest Delivery Time 
- Handling Costs 
- Inventory Costs 
- Late/No-Delivery Costs 

Parameters: 
- Length of One Time Period 
- Length of Planning Horizon 
- Truck Capacity 
- Truck Min Fill Rate 
- Empty/Loaded Truck Operation 
Costs (Fuel Cost) 
- Truck Loading/Unloading Time 
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Chapter 7: Numerical Experiments 

 
The results of two numerical experiments are reported in this Chapter. The 

numerical experiments are conducted to analyze the performance of the proposed 

algorithm to solve the MIP problem. Besides, a simulation framework is introduced 

and the effectiveness of the proposed decision making procedure is evaluated. 

As discussed in Chapter 5, Auto carriers are one class of motor carriers that 

transport vehicles throughout the United States. These  carriers are similar to LTL 

trucking companies in terms of network structure, size of shipments and type of 

operations, so this type of carriers are selected to perform the numerical experiments 

in this study.  

Network with 10 Breakbulks 

This section presents the numerical experiment that is conducted in order to 

check the quality of solution provided by the proposed algorithm to solve the MIP 

problem. The 10-terminal medium-size network was introduced in Chapter 5 (Figure 

27). The network consists of 20 undirected links that connect breakbulk terminals that 

are located in the proximity of 10 major cities in the US. All links are assumed to be 

approximately 600 miles long. Based on the preliminary numerical experiments it is 

assumed that the total number of time periods is 9 and the fleet size is 10. The 

problem characteristics have been addressed in detail in Chapter 5 (Figure 28).  

One major step in decision making procedure is to solve the shipment and 

truck routing problem repeatedly. For large size problem using the exact solution 

methods (i.e. CPLEX) to solve the MIP is not practical. Therefore, three different 

solution algorithms were proposed in the previous Chapter to solve the MIP problem. 

The first 2 approaches are based on a search algorithm, which tries to find the best 

paths to route the shipments. The last approach uses a graphic partitioning to reduce 

the size of the problem which is solved using CPLEX.  

In order to evaluate the effectiveness of the solution algorithms, three 

benchmark solutions were also proposed; “do-nothing”, “literature-reported 
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operation” as upper bounds and also a “lower bound” that is derived using a 

relaxation method. In this section the performance of the proposed methods are 

analyzed using the 10-terminal network.    

Figure 75 presents the objective function obtained using 4 different 

combination of heuristic search algorithm to solve the base case (40 shipment and 8 

trucks). Here are 4 versions of heuristic search algorithm that have been analyzed: 

 

- Heuristic search + Simulated Annealing + Literature-reported operation 

solution as the initial solution (Blue) 

- Heuristic search + Simulated Annealing + Random initial solution (Green) 

- Heuristic search + Literature-reported operation solution as the initial 

solution (Orange) 

- Heuristic search (Red) 

 

The optimal, do-nothing and literature-reported operation (practice) solutions 

are also shown in the diagram as the benchmarks. To implement the SA algorithm in 

conjunction with the proposed search algorithm a set of preliminary experiments were 

conducted to calibrate the parameters of annealing process. Instead of considering the 

absolute value of change in objective function, the rational value is used in the 

implementation of simulated annealing for this problem. Therefore, the difference in 

objective functions is calculated as follows: 

 

Δ  = [ Z( s(neighbor) ) – Z( s(current) )] /  Z( s(current ) ) 

 

The initial temperature is 0.05, and the annealing process stops when the 

temperature reaches 0.001. The cooling rate is 0.99 and 100 iterations are performed 

at each temperature. Based on the results, the heuristic search algorithm with the 

simulated annealing (Blue and Green) outperforms other approaches. Unlike the 

greedy heuristic search, the SA helps the solution to escape from the local optima.  
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      Figure 75 – Solution method comparison (Numerical experiment 2)  
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Considering the literature-reported operation as the initial solution does not 

improve the quality of the solution. Furthermore, when the problem is solved using 

only the greedy heuristic search (without SA) the random initial solution seems to be 

a better option. Hence, the value of objective function for an initial solution cannot 

necessarily show the effectiveness of using that initial solution. Due to the large 

number of feasible solutions there is no guarantee that the optimal solution and a low 

cost initial solution are neighbors. However, since the problem is solved at the end of 

each planning horizon of every time a new demand arrives one suggestion would be 

to use the operation plan of last run as the initial solution for the new run. This 

suggestion is just for the future research and its effectiveness is not examined in this 

study.  

Overall the quality of the solution obtained by using the heuristic search is not 

promising. As shown in Figure 75, even using the simulated annealing approach with 

39,000 iterations (140 sec.) the solution is no where close to the optimal solution. In 

an effort to further improve the quality of the solution, the third proposed solution 

algorithm is proposed.       

Table 22 and Figures 76 and 77 present the result of solving the optimization 

problem for the 10-terminal network. The problem is solved under 7 different demand 

levels. The problem is solved using CPLEX, the proposed solution algorithm and the 

benchmarks. Execution times have been reported for exact solution method (CPLEX) 

and the path-based partitioning.  

As discussed in the previous Chapter, the path-based partitioning method 

takes advantage of consolidation opportunities to avoid underutilizing the system’s 

resources. The idea is to reduce the network size for each shipment by choosing only 

the links that appear in the first K shortest path for that particular shipment. 

Partitioning the network reduces the number of decision variables significantly. The 

results indicate that the path-based partitioning method outperforms other heuristic 

solution methods in terms of the quality of solution. Moreover, this method has a 

significant impact on the execution time reduction. Hence, it would be practical to use 

the exact solution methods to solve the modified problem for large size networks. 
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Table 22 - Variable Total Shipment Size 
           

Total Operation Costs (units)   
Total 

Shipment 
Size 

  
Number of 
Variables 

  
Number of
Constraints 

  
CPLEX 

Execution
Time (sec) 

  
CPLEX with 
Partitioning 

Exec. Time (sec) 

Lower
Bound CPLEX 

CPLEX with 
Path-based 
Partitioning 

Path-based 
Heuristic 
Search 

Literature
-Reported
Operation 

Do-Nothing 

10 3230 760 3 1 10.30 10.30 10.30 13.05 16.30 15.90 

20 5280 785 11 2 14.65 15.00 15.05 17.65 24.60 28.80 

30 6920 805 19 4 18.90 19.25 19.30 24.20 32.05 43.50 

40 9380 835 128 25 23.50 24.45 25.05 30.55 42.10 55.20 

50 11430 860 629 48 28.85 29.35 29.55 36.15 49.85 69.90 

60 13480 885 123 51 31.45 32.20 32.40 45.50 56.80 84.60 

70 15940 915 5700 590 35.55 38.25 38.45 52.70 73.05 99.30 

           
Note: Number of Time Periods = 9, Number of Links = 20, Number of Trucks = 8, WE = 1 
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          Figure 76 – Solution method comparison (Numerical experiment 2) 
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          Figure 77 – Solution method comparison (Numerical experiment 2) 
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Network with 17 Breakbulks 

In the previous section, the performance of the proposed solution methods is 

analyzed using a mid-size network with 10 terminals. Three benchmark solutions 

were proposed to evaluate the effectiveness of the solution algorithm. The 

benchmarks are “do-nothing”, “literature-reported operation” as upper bounds and 

also the “lower bound”. The results indicate that the path-based partitioning method 

outperforms other heuristic solution methods in terms of the quality of solution. 

Moreover, this method has a significant impact on the execution time reduction.  

In this section the performance of the proposed methods are analyzed using a 

more realistic large-size 17-terminal network. The main focus is to compare different 

versions of the path-based partitioning method with respect to the quality of solution 

and also the execution time. This section starts with the characteristics of the demand, 

the fleet and the network components. The discussion is followed by the results of the 

solution method comparison.  

 

- Realistic Case Study 

Trucking companies are trying to make more revenue by increasing their 

market share. It is important to know the characteristics of demand in different region 

to be able to focus company’s services on customers’ needs. Trucking companies do 

not reveal their markets and it is almost impossible to have any access to their 

demand OD matrix.  

As discussed earlier in Chapter 5, the collection of trucking company financial 

and operating statistics (F&OS) data is a mandatory program managed by the Bureau 

of Transportation Statistics (BTS). Motor carriers which have gross annual operating 

revenue of $3 million or more are required to have annual reports, while carriers with 

revenues of $10 million or more must also file four quarterly reports each year. Even 

in these reports the annual operating revenue or the total annual shipment size are 

mostly missing. 
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In this section, 6 auto carriers are selected that were among class I carriers for 

5 consecutive years from 1999 through 2003. The total annual operating expenses and 

total miles for these 5 carriers are available in BTS report. Using the available data 

for these 5 carriers and based on a series of assumptions the realistic case study is 

constructed. The data is used to evaluate the performance of the proposed solution 

algorithms. 

The names, numbers and the States of the selected auto carriers are listed in 

Table 22. The information regarding the service area and number of hubs are 

available for some companies from their website. Pacific Motor and Jack Cooper are 

among top auto carrier companies that provide service to as many as 26 States.  

The operational revenue and miles traveled per year are the average of 

numbers that were reported by companies from 1999 to 2003 [6]. Based on the online 

quotes listed in Table 7, it is assumed that the delivery of each shipment (car) has 

average operational revenue of $600 for the company. Therefore the average number 

of shipments that are being delivered per day can be calculated. It is also assumed that 

each truck can travel 605 miles per day on average (considering 11 working hours for 

driver and 55 miles/hr average speed). Based on these assumptions and using the 

average operational miles per day one can calculate the average number of trucks that 

are operating on a daily basis. Furthermore, the average number of shipments per 

truck can be calculated. The calculated values appear in last 4 rows in Table 23. 

According to shipment/truck value, Ewing Bro Inc’s operation was more efficient 

than other companies. They generated more than $7 revenue for each mile traveled by 

their trucks.  

The number of requests for these top auto transport companies can go up to a 

maximum of 500 shipments per day. As discussed earlier, around 60-80 % of this 

demand has a high degree of certainty. This part of demand mostly includes new 

vehicles that must be shipped from assembly plants to dealers/customers or between 

dealers. The uncertain portion of demand mostly consists of pre-owned vehicles 

transported between dealers, auctions, or private parties (e.g. online sellers and 

buyers).  
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Using tactical planning a carrier can manage that part of demand that has a 

high degree of certainty. They solve the network design problem in order to find the 

direct service links. A minimum frequency is maintained on each link and the 

shipment requests are handled by implementing the minimum fill-rate requirements, 

holding time limits and go-when-fill policies. Based on the information presented in 

Table 22 and considering the worst possible scenario where 40% of demand is 

revealed dynamically, up to 200 shipments per day must be handled using the 

proposed dynamic decision making based on the online shipment/truck routing and 

scheduling.  
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Table 23 - Class I Auto Carriers (1999-2003)  
              

Motor 
Carrier 

Company 

EWING 
BROS 
INC 

DMT 
TRUCKING 

INC 

AUTOMOBILE 
TRANSPORT 
SPECIALISTS 

INC 

SELLAND 
AUTO 

TRANSPORT
INC 

PACIFIC 
MOTOR 

TRUCKING 
COMPANY 

JACK 
COOPER 

TRANSPORT
COMPANY 

Motor Carrier # 117380 148860 153385 134614 215978 71902 

City LAS 
VEGAS BALTIMORE AURORA SEATTLE KANSAS 

CITY 
KANSAS 

CITY 

State NV MD CO WA MO MO 

Number of States NA NA NA 11 26 26 

Number of Hubs NA NA NA 7 NA NA 

Operational 
Revenue ($) 9,130,979 9,235,600 10,092,152 25,419,151 59,259,023 121,375,537 

Miles 1,281,307 3,769,856 4,036,672 10,802,771 15,859,207 42,277,163 

Shipments / Day 42 42 46 116 271 554 

Miles / Day 3510 10328 11059 29597 43450 115828 

Number of Trucks 6 17 18 49 72 191 

Shipments / Truck 7.2 2.5 2.5 2.4 3.8 2.9 
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The average loading/unloading time for a truck is estimated to be around 20 

minutes. Therefore, the total loading/unloading for a 10-car auto carrier truck is 

considered to be about 6 hours, which is selected as the length of one time period in 

the time-space network. Considering the 200 shipments per day assumption, the 

average demand for each time period would be equal to 50 cars. The solution method 

comparison is performed based on the above assumptions.        

The next step is to construct the network for the realistic case study, and the 

main goal would be to cover the largest possible area throughout the United States. 

Hubs (break-bulk terminals) were allocated near major cities. Microsoft Streets and 

Trips software is used to ensure that the actual highway mileage between each 2 

terminals meets the driver working hour requirements. Several combinations of node 

locations and service links were examined.  

Figure 78 shows the final design of the hub-and-spoke network, which 

consists of 17 terminal and 36 links. Note that, these are the main hubs of the 

network. Satellite terminals operate regionally around each break-bulk terminal. 

Those are the main origins and destinations for the shipments. The loads (cars) are 

being hauled between these satellites and primary break-bulk terminals using smaller 

trailers (e.g. hotshots, flat-bed, drop-decks…). 

Clearly, when satellite terminals are considered as a part of network, a more 

realistic problem is generated. However, solving the resulting problem is beyond the 

scope of this study. In the last Chapter of this dissertation, this issue is addressed and 

recommendations are provided for future studies on dealing with the local pickup and 

delivery problem in conjunction with the shipment and truck routing problem for the 

hub-and-spoke network. The main focus of this study is to solve the shipment and 

truck routing and scheduling problem on the hub network. 

Based on the estimates provided in Table 23, it is assumed that there are 17 

auto carrier trucks available over the region, one truck at each hub/terminal. The fleet 

is assumed to be homogeneous and all characteristics of trucks are the same. The next 

section of this Chapter discusses the effect of considering the non-homogeneous fleet 

on the complexity of the mathematical model.  
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  Figure 78 – Physical network (17-terminal) 
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- Solution Method Comparison 

As discussed earlier, in this section a large-size problem is used to evaluate 

the performance of the proposed solution algorithms. In decision making procedure 

the combined shipment and truck routing problem is solved repeatedly. In the 

previous Chapter three different solution algorithms were proposed to solve the large-

size MIP problem when using the exact solution methods is not practical. The results 

of the numerical experiments on a mid-size problem suggest that the path-based 

partitioning method outperforms other heuristic solution methods in terms of the 

quality of solution. This method has a significant impact on the execution time 

reduction.  

This section mainly focuses on different versions of the path-based 

partitioning method. The numerical experiment is conducted using a Pentium M 

(1.60GHz) machine. By running the “Operation Plan” program the performance 

measures are calculated and used as the basis for the analysis and solution method 

comparison. Similar to the previous experiments on the 10-terminal problem, the 

proposed benchmarks; “do-nothing”, “literature-reported operation” as upper bounds 

and also a “lower bound” are used to evaluate the effectiveness of the solution 

algorithms. CPLEX cannot be used to solve the problem to optimality since the 

branch-and-cut trees become really large and getting the insufficient memory errors 

cannot be prevented even by setting the memory parameters. Hence, the execution 

time and the solution gap limit parameters have been set to manage the CPLEX 

running time. The results are used as additional benchmarks.  

As the 3rd proposed method to solve the mathematical problem, a path-based 

network partitioning is used in conjunction with CPLEX. The idea is to reduce the 

network size for each shipment by choosing only the links that appear in the first K 

shortest path for that particular shipment. Partitioning the network reduces the 

number of decision variables significantly. Hence, it would be practical to use the 

exact solution methods to solve the resulting modified MIP problem for large size 

networks. The maximum reduction in network size is obtained by using only one path 
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to partition the network and the resulting network is called “SP-1”. In general SP-K 

represents a partitioned network containing only the K first shortest paths for each 

shipment. Naturally, considering more paths in the modified network improves the 

solution quality. However, the computation time also increases. Therefore, a set of 

preliminary numerical experiment is required to maintain a balance between solution 

quality and execution time by finding the optimum number of shortest paths to be 

used in the network partitioning process.  

Table 24 and Figure 79-82 present the result of solving the problem for the 

17-terminal network. As discussed in the previous Chapter, using simulated annealing 

combined with the heuristic search improves the solution quality, but it has a 

relatively high execution time. Therefore this method is excluded from the list of 

candidate solution methods that is considered in this section. Here is the list of 

solution methods that are compared: 

 

- Heuristic search without simulated annealing 

- SP-K (for K from 1 through 7) 

- SP-8* (SP-8 considering paths that are longer than the average) 

 

As discussed in the previous Chapter, the path-based partitioning method 

takes advantage of consolidation opportunities to avoid underutilizing the system’s 

resources. The network size is reduced for each shipment by choosing only the links 

that appear in the first K shortest path for that particular shipment. Partitioning the 

network reduces the number of decision variables. As shown in Table 24, even the 

largest reduced-size problem (SP-7) can be solved using CPLEX in less than 2 hours, 

but the actual MIP problem cannot be solved in 28 hours. 

The quality of the solution improves by including more paths in the path-

based partitioning method. However, considering more paths is computationally 

expensive. As shown in Table 24, using SP-7 would result a 1% reduction in total 

cost compared to SP-4, while the execution time of using SP-7 is 20 times more than 

that of SP-4. Therefore, the best level of partitioning must be picked to solve the 

problem considering the execution time constraint to solve the problem.  
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Based on the results obtained from this numerical experiment, it seems that 

SP-4 would be the most efficient choice in this example. The quality of its solutions is 

acceptable compare to the results obtained from CPLEX with <5% gap. Moreover, its 

execution time guarantees that the solution method can be used for dynamic 

application. 
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Table 24 - Solution Methods 
                

Performance 
Measure 

Do-
Nothing 

Literature
-Reported 
Operation 

Heuristic 
Search 

CPLEX 
with 
SP 1 

CPLEX 
with 
SP 2 

CPLEX 
with 
SP 3 

CPLEX 
with 
SP 4 

CPLEX 
with 
SP 5 

CPLEX 
with 
SP 6 

CPLEX 
with 
SP 7 

CPLEX 
with 

SP 8* 

CPLEX
(600 
sec) 

CPLEX
(7200 
sec) 

CPLEX
(<5% 
gap) 

Lower 
Bound 

# of Loaded 
Truck Moves 0 46 64 52 52 46 40 40 40 40 44 48 42 40   

# of Empty Truck 
Moves 0 0 2 8 2 4 2 2 2 2 2 4 2 0   

# of Loaded 
Truck Trips 0 23 32 26 26 23 20 20 20 20 22 24 21 20   

# of Empty Truck 
Trips 0 0 1 4 1 2 1 1 1 1 1 2 1 0   

Loaded Truck  
Routing Cost 
(units) 

0.00 55.20 76.80 62.40 62.40 55.20 48.00 48.00 48.00 48.00 52.80 57.60 50.40 48.00   

Empty Truck  
Routing Cost 
(units) 

0.00 0.00 40.00 1.60 0.40 0.80 0.40 0.40 0.40 0.40 0.40 0.80 0.40 0.00   

Average 
Fill Rate (%) 0 26 32 38 39 44 55 55 55 57 48 47 56 59   

# of Shipments 
Delivered 0 30 44 46 49 47 46 46 46 47 47 48 45 45   

# of Shipments 
Not-Delivered 50 20 6 4 1 3 4 4 4 3 3 2 5 5   

Carrier's Cost 
(units) 50.00 78.15 89.60 75.90 71.90 66.10 60.85 60.85 60.85 60.35 64.75 71.50 61.05 58.15   

Customers' Cost 
(units) 91.80 38.70 10.95 6.30 0.90 4.50 4.70 4.70 4.70 4.50 4.80 3.20 5.10 5.90   

Total Cost (units) 141.80 116.85 100.55 82.20 72.80 70.60 65.55 65.55 65.55 64.85 69.55 74.70 66.30 64.05 63.30 
Execution Time 
(sec) 0 0 231 1 594 224 223 834 1301 4675 3851 600 7200 102792 437 

Time to reach the 
best solution (sec)       1 94 165 50 670 450 780 760         

CPLEX Best  
Bound (units)                      59.15 59.37 61.07   

CPLEX Gap (%)                       21 11 5   
 
Note: Number of Terminals=17, Number of Time Periods= 20, Number of Links= 36, Number of Trucks= 17, Number of Shipments= 50 
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    Figure 79 – Solution method comparison based on the objective function (Numerical experiment 3)  
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Execution Time vs. Solution Method
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    Figure 80 – Solution method comparison based on the execution time (Numerical experiment 3) 
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Average Fill Rate vs. Solution Method
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    Figure 81 – Solution method comparison based on the average fill rate (Numerical experiment 3) 
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# of Loaded Truck Trips vs. Solution Method
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    Figure 82 – Solution method comparison based on the number of loaded truck trips (Numerical experiment 3) 
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As shown in Table 24 and Figure 80, the execution time of CPLEX with SP2 

is more than that of CPLEX with SP3. This is an unexpected result since SP2 is a 

much smaller problem than SP3. However, as shown in Table 24, CPLEX finds the 

best solution for SP2 in only 94 minutes. Then it takes more time to search all 

solutions in branch-and-bound tree to ensure that the solution is optimal. In case of 

SP3, the convergence is faster due to the structure of the problem and the number of 

branches that cancels out implicitly.   

The results of the numerical experiments on a large-size problem indicate that 

all different versions of the path-based partitioning method outperform the heuristic 

search algorithm in all the following aspects: 

 

- The quality of solution is higher, which means that there will be less customer 

associated cost (customer satisfaction) and less carrier associated cost (more 

profit). 

- The execution time is less than other methods, which means that the proposed 

method is capable of being used in a dynamic setting. 

- The average fill rates are higher, which shows that using this method the 

company can avoid underutilizing its resources. 

- The number of loaded truck movements is less, which leads the company to 

reduce all the operating costs that haven’t been considered in the objective 

function of the mathematical model.  
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- Non-Homogeneous Fleet 

As it is discussed in Chapter 3, fleet can be treated as a commodity in the 

proposed MCNF model. Therefore, in order to capture the non-homogeneous fleet 

condition, one commodity must be added for each type of trucks. Chapter 3 addressed 

the issue by introducing a modified version of the proposed mathematical model.  

This section describes the impact of non-homogeneous fleet assumption on 

the size of the optimization model, and the computation time that is required to solve 

the problem. In the base case of the 17-terminal problem, 17 similar trucks are 

available at hubs (1 truck at each terminal) to deliver 50 shipments. In order to 

compare the non-homogeneous fleet case against the homogeneous fleet case, a 

variation of the base case is constructed. In this slightly modified instance of the base 

case, the fleet of 17 trucks is divided into 4 different types of truck. All features of 

these 4 types of trucks are the same, except their colors! All the other characteristics 

of the problem with non-homogeneous fleet are the same as the problem with 

homogeneous fleet.  

To generate the mathematical problem for non-homogeneous case, the 

“Problem Generator” C program is modified by adding the additional cost function 

and constraints. As shown in Figure 83, a new input file contains the information 

related to each truck type; the capacity, minimum fill rate, and associated cost factors. 

Also, the modified empty truck input file reflects the type of the truck that is available 

at each terminal before the operation starts. 

The “Operation Plan” C program is also modified. As shown in Figure 84 and 

77, the new version of two processed output files that show the performance measures 

and truck dispatch plans contain information associated with each truck type. Both 

problems are solved by CPLEX using the path-based partitioning (SP3). The results 

are presented in Table 25. As a result of dividing the fleet into 4 types, the number of 

variables and constraints related to loaded and empty trucks are multiplied by 4.  
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Figure 83 – Fleet information (Non-homogeneous fleet)  
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Figure 84 – Performance measures (Non-homogeneous fleet) 
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Figure 85 – Truck dispatch plan (Numerical experiment 1) 
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Table 25 - Non-Homogeneous Fleet 
      

Measure Homogeneous Fleet 
(CPLEX with SP 3)  

Non-Homogeneous Fleet
(CPLEX with SP 3) 

Number of Shipment Variables 35992 35992 

Number of Loaded Truck Variables 1296 5184 

Number of Empty Truck Variables 1708 6832 

Total Number of Variables 38996 48008 

Number of Shipment Conservation Constraints 110 110 

Number of Truck Conservation Constraints 340 1360 

Number of Shipment-Truck Constraints 2592 2592 

Total Number of Constraints 3042 4062 

Number of Loaded Truck Trips 23 25 

Number of Empty Truck Trips 2 2 

Average Fill Rate (%) 44 44 

Number of Shipments Delivered 47 49 

Number of Shipments Not-Delivered 3 1 

Carriers' Associated Costs 66.10 70.15 

Customers Associated Costs 4.50 1.00 

Total Cost 70.60 71.15 

Execution Time (sec) 224 787 (<5% gap) 

   
Note: Number of Terminals=17, Number of Time Periods= 20, Number of Links= 36, Number of Trucks= 17, 
          Number of Shipments= 50, Type of Trucks (Only For Non-Homogeneous Fleet)= 4 
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Using CPLEX with the proposed path-based partitioning (SP3) an acceptable 

solution (<5% gap) can be obtained in a relatively short time (787 sec.). However, 

due to the lack of the available memory, even this problem cannot be solved using 

CPLEX up to optimality. For this numerical experiment the maximum possible 

memory is used by adjusting the WORKMEM parameter in CPLEX. In spite of the 

adjustment, CPLEX stops due to “running out of memory” error after 8233 seconds 

of running time. There is no improvement in the solution, and the gap between best 

bound and the best solution is still more than 4%. This shows the increased 

complexity of the problem after applying the non-homogenous fleet assumption. As 

shown in Table 24, the homogeneous problem is solved using CPLEX (with the 

partitioning) in 224 seconds. While there is only less than 25% increase in the total 

number of variables and constraints due to the non-homogeneous fleet assumption, 

the result MIP problem cannot be solved even after 2 hours by CPLEX (with the 

partitioning). 

A second experiment was conducted in order to study the impact of non-

homogeneous fleet on the service quality. In this numerical experiment each 10-car 

truck is replaced with 2 smaller 3-car and 7-car trucks. Empty and loaded truck cost 

factors are adjusted for smaller trucks and the SP-3 problem is solved using CPLEX. 

The results are presented in Figure 86. When the carrier utilizes smaller trucks the 

number of loaded/empty truck movements will be more compare to the homogeneous 

fleet case with 10-car trucks, therefore there is an increase in routing costs. However 

the average fill rate will be higher, more shipments are delivered and customers’ 

associated costs will be less.  
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Figure 86 – Fleet information (Non-homogeneous fleet)  
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Simulation Experiment 

All numerical experiments that have been reported in the previous sections the 

deal with a single snap shot of the operation. In all those examples it is assumed that 

at some point during the process, the demand and the supply information are known. 

The optimization problem is generated and solved to minimize the overall 

carrier/customer associated costs while the company is handling the shipment 

requests until the end of the planning horizon.  

In the real world operations more and more requests for shipment delivery 

arise over time and the configuration of demand is changing. Therefore the 

optimizations must be conducted repeatedly on a rolling horizon setting to be used in 

the proposed decision making procedure. This section introduces an experiment that 

simulates a 10-day operation in order to evaluate the effectiveness of the proposed 

decision making method.  

The auto carrier company operates on a 17-terminal network similar to the 

previous experiments. It is assumed that at the beginning of the simulation process 

there are 34 auto carrier trucks available over the region, two trucks at each 

hub/terminal. The fleet is homogeneous and all characteristics of the trucks are the 

same. The length of each time period in the time-space network is assumed to be 

equal to 6 hours. The shipment requests are randomly generated based on a 

homogeneous time Poisson process. The arrival rate is 10 shipments per time period 

(40 shipments per day). Origin and destination of loads are uniformly distributed over 

the 17-terminal network.  

The simulation experiment is conducted based on the framework of the 

decision making procedure that is described in Chapter 4 (Figure 14). At the end of 

each time period or each time a new request arrives, all the demand/supply 

information is updated. Then the mathematical formulation of the problem is 

generated considering the updated empty truck locations, and the new shipments 

information.  

After solving the problem, the performance of the new solution is analyzed 

and the effects of accepting the new requests are examined based on the acceptance 
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criteria. Based on the acceptance criteria, the decision is being made either to accept 

the load or to reject it and the operation plan is prepared and sent to the field. The 

primary goal of conducting this simulation experiment is to evaluate the performance 

of the optimization approach using the literature-reported operation as the benchmark. 

Therefore, similar to the literature-reported operation all shipments are accepted for 

delivery. 

Tables 26 and 27 show the simulation results using CPLEX (with SP-3) and 

the literature-reported operation, respectively. 40-time period (10-day) trucking 

operation has been simulated and the performance measures have been reported in 

these tables. Columns 2 and 3 show the number of shipments request at the beginning 

of each time period and the cumulative number of request arrivals. The total number 

of shipments that are in the system at each time period is reported on column 4. The 

average number of cars that are in-delivery at each moment throughout the simulation 

period is around 70 cars. Columns 2 and 3 show the number of shipments that are 

delivered at each time period and the cumulative number of deliveries. The last 4 

columns contain the information on resource utilization in terms of the number of 

trips by empty and loaded trucks.    

Figure 87 compares the two different planning approaches in terms of the 

number of cars that have been delivered. During the 10-day simulation period none of 

those approaches dominate the other. The literature-reported operation’s delivery 

curve appears on top for most of the time, but the optimization method catches up, 

eventually. At the end of simulation the difference between the numbers of deliveries 

is less than 3%.  

Figure 87 shows that out of the total 400 cars that are accepted for delivery 

319 cars are delivered using optimization method and 327 cars are delivered using 

literature-reported operation. However, as shown in Figure 88, the optimization 

approach has used the available resources more efficiently. During the last 5 days, 

where the operation reaches a steady state, 170 loaded trucks are dispatched using the 

literature-reported operation approach, while the optimization method handles the 

demand using only 90 loaded truck dispatches.  
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Table 26 - Simulation Results (CPLEX with SP3) 
          

Time 
Period 

# of  
New 

Shipments 

Total 
# of 

Requests 
Received 

#of 
Shipments

In 
Delivery 

# of 
Shipments
Delivered 

Total 
#of 

Shipments
Delivered 

# of 
Empty
Truck
Trips 

# of 
Loaded 
Truck 
Trips 

Total 
# of 

Truck
Trips 

Avg. 
# of 

Truck
Trips 

0 0 0 0 0 0 0 0 0 0.0 
1 10 10 10 0 0 0 2 2 2.0 
2 9 19 16 3 3 0 1 3 1.5 
3 9 28 25 0 3 0 5 8 2.7 
4 11 39 36 0 3 0 5 13 3.3 
5 11 50 47 0 3 0 4 17 3.4 
6 9 59 54 2 5 0 7 24 4.0 
7 11 70 60 5 10 0 5 29 4.1 
8 9 79 63 6 16 0 3 32 4.0 
9 10 89 70 3 19 1 3 36 4.0 

10 10 99 77 3 22 0 5 41 4.1 
11 9 108 78 8 30 1 4 46 4.2 
12 12 120 83 7 37 0 4 50 4.2 
13 9 129 87 5 42 1 5 56 4.3 
14 9 138 94 2 44 1 4 61 4.4 
15 10 148 96 8 52 0 6 67 4.5 
16 12 160 88 20 72 1 5 73 4.6 
17 10 170 89 9 81 1 2 76 4.5 
18 9 179 95 3 84 0 7 83 4.6 
19 10 189 82 23 107 0 7 90 4.7 
20 11 200 67 26 133 0 5 95 4.8 
21 9 209 67 9 142 2 5 102 4.9 
22 11 220 67 11 153 0 6 108 4.9 
23 9 229 62 14 167 2 3 113 4.9 
24 10 239 67 5 172 0 4 117 4.9 
25 11 250 70 8 180 0 8 125 5.0 
26 9 259 69 10 190 0 2 127 4.9 
27 11 270 78 2 192 0 4 131 4.9 
28 10 280 81 7 199 2 7 140 5.0 
29 10 290 75 16 215 2 1 143 4.9 
30 9 299 79 5 220 1 5 149 5.0 
31 10 309 85 4 224 0 6 155 5.0 
32 11 320 88 8 232 0 4 159 5.0 
33 9 329 94 3 235 0 5 164 5.0 
34 10 339 85 19 254 1 5 170 5.0 
35 10 349 82 13 267 1 4 175 5.0 
36 11 360 82 11 278 0 6 181 5.0 
37 10 370 77 15 293 1 3 185 5.0 
38 10 380 80 7 300 0 4 189 5.0 
39 9 389 74 15 315 1 5 195 5.0 
40 11 400 81 4 319 1 3 199 5.0 

Total 400     319   20 179     
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Table 27 - Simulation Results (Literature-Reported Operation) 
          

Time 
Period 

# of  
New 

Shipments 

Total 
# of 

Requests 
Received 

#of 
Shipments

In 
Delivery 

# of 
Shipments
Delivered 

Total 
#of 

Shipments
Delivered 

# of 
Empty
Truck
Trips 

# of 
Loaded 
Truck 
Trips 

Total 
# of 

Truck
Trips 

Avg. 
# of 

Truck
Trips 

0 0 0 0 0 0 0 0 0 0.0 
1 10 10 10 0 0 0 3 3 3.0 
2 9 19 16 3 3 0 5 8 4.0 
3 9 28 22 3 6 0 3 11 3.7 
4 11 39 30 3 9 0 6 17 4.3 
5 11 50 38 3 12 0 6 23 4.6 
6 9 59 42 5 17 0 5 28 4.7 
7 11 70 51 2 19 0 8 36 5.1 
8 9 79 49 11 30 0 5 41 5.1 
9 10 89 50 9 39 0 5 46 5.1 

10 10 99 54 6 45 0 9 55 5.5 
11 9 108 54 9 54 0 10 65 5.9 
12 12 120 59 7 61 1 7 73 6.1 
13 9 129 58 10 71 1 6 80 6.2 
14 9 138 63 4 75 0 7 87 6.2 
15 10 148 67 6 81 0 10 97 6.5 
16 12 160 75 4 85 0 8 105 6.6 
17 10 170 80 5 90 2 8 115 6.8 
18 9 179 79 10 100 0 10 125 6.9 
19 10 189 79 10 110 0 12 137 7.2 
20 11 200 85 5 115 0 8 145 7.3 
21 9 209 83 11 126 0 10 155 7.4 
22 11 220 85 9 135 0 11 166 7.5 
23 9 229 82 12 147 0 6 172 7.5 
24 10 239 84 8 155 0 10 182 7.6 
25 11 250 80 15 170 2 8 192 7.7 
26 9 259 76 13 183 0 6 198 7.6 
27 11 270 78 9 192 0 12 210 7.8 
28 10 280 75 13 205 1 9 220 7.9 
29 10 290 69 16 221 0 7 227 7.8 
30 9 299 69 9 230 0 13 240 8.0 
31 10 309 72 7 237 0 7 247 8.0 
32 11 320 76 7 244 0 7 254 7.9 
33 9 329 76 9 253 0 11 265 8.0 
34 10 339 70 16 269 1 6 272 8.0 
35 10 349 72 8 277 0 8 280 8.0 
36 11 360 76 7 284 0 13 293 8.1 
37 10 370 77 9 293 0 5 298 8.1 
38 10 380 82 5 298 0 7 305 8.0 
39 9 389 80 11 309 0 9 314 8.1 
40 11 400 73 18 327 0 5 319 8.0 

Total 400     327   8 311     
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   Figure 87 – Number of delivered shipments  
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   Figure 88 – Average number of truck trips  
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In general the fuel efficiency of the auto carrier trucks is less than the regular 

tractor-trailers that carry containers or tankers. The reason is the large number of 

“open air” spaces (gaps) between the cars that cause greater disruption to the air flow 

and the resulting drag. The greater the drag, the more horsepower is required, which 

has a direct negative impact on the level of fuel consumption. 

Considering 200 and 100 ton-mile/gallon gas consumption for empty and 

loaded trucks, and $4 per gallon fuel cost, the total gas consumption of empty/loaded 

trucks on each 600 mile trip is equal to $240/$480. Based on the above assumptions, 

the total fuel cost associated with optimization method and the literature-reported 

operation is equal to $82,560 and $46,560, respectively. Therefore, using the 

proposed optimization method would result more than 40% reduction in the operating 

costs.  

Assuming that the company operates 360 days a year, the total annual savings 

in fuel costs is more than $2.5 million if the company uses the optimization method 

for shipment routing and truck dispatching. Note that the annual revenue of this 

company is less than $10, considering 40 shipment requests/day and $600 

revenue/shipment assumptions.      

Figure 89 and 90 show the number of trucks across the network at each time 

period using a 3D surface. Both the top and the 3D views of the diagram are provided 

for both planning approaches. When the company uses the optimization method the 

trucks are concentrating at the center of the region (i.e. hubs 6, 7 and 12), as opposed 

to the literature-reported operation plans, based on which the trucks mainly stay at 

one side of the network (i.e. hubs 1-3 and 5-8). The observation shows that the 

optimization approach has better reaction to the demand pattern. Obviously, when the 

trucks are located at the central terminals better opportunity for consolidation would 

become available to the future demand, considering the fact that the origin and 

destination of requests are uniformly distributed. 

The trucking company can use truck location 3D diagrams to make some 

decisions in strategic and tactical levels of planning to adjust the supply 

characteristics based on the demand pattern.     
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    Figure 89 – Number of empty trucks at each terminal (CPLEX with SP-3) 
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    Figure 90 – Number of empty trucks at each terminal (literature-reported operation) 
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Figures 91 and 92 present 2 other types of diagrams that show the 

performance of the decision making procedure. Figure 91 shows the waiting time of 

the first 250 shipment requests that are received and handled using the optimization 

approach. There are 4 set of shipments, shown with a circle on the diagram, with 

more than 3 days waiting time until their final delivery. Looking at the individual 

optimization results for the very first time period right after each shipment arrival, it 

appears that these shipments are among the 5-10% that have not been delivered 

within the optimization horizon. 

The results indicate that the dispatcher can rely on the optimization problem 

that is solved at each step as a tool to make the acceptance/rejection decisions. For 

instance, one criterion would be to reject a shipment if it cannot be delivered in two 

consecutive optimization runs. 

Figure 92 shows the average cumulative waiting times for the first 250 

shipments when the optimization method is used for decision making. The curve that 

appears on top is related to the case where all shipments are accepted for delivery.  

There are 23 shipments that waited for 2 or more days along the road before they 

reach their final destinations. If these 23 shipments get rejected, the waiting time 

curve would be similar to the one that appeared at the bottom on the diagram.    

 

In this Chapter the result of the numerical experiments were reported.  The 

first set of numerical experiments was conducted on a 10-terminal network to check 

the quality of solution provided by the proposed algorithm to solve the MIP problem. 

In the second numerical experiment the performance of the proposed methods were 

analyzed using a more realistic large-size 17-terminal network. Besides, a simulation 

framework was introduced and the effectiveness of the proposed decision making 

procedure was evaluated.  
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    Figure 91 – Waiting time (CPLEX with SP-3) 
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    Figure 92 – Average cumulative waiting time (CPLEX with SP-3) 
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Chapter 8:  Summary, Conclusions and Recommendations for 
Future Research 

 
The main contributions of this research were: 

 

- To develop the a mixed integer programming (MIP) model to optimize the 

combined dynamic shipments routing and dynamic trucks routing and 

scheduling for LTL trucking operations 

- To introduce a heuristic algorithm to solve the MIP problem 

- To find a lower bound for the MIP problem, and check the quality of the 

solution provided by the heuristic algorithm 

- To propose a decision making procedure to handle the requests for LTL 

shipments in an environment that changes dynamically 

- To develop a set of simulation experiments to evaluate the effect of decision 

making techniques on LTL operations, and compare them to what the carriers 

do in practice (as the benchmark) 

 

The dissertation started with an introduction of LTL trucking operations and 

different levels of planning for this type of motor carriers, followed by the review of 

literature that are related to tactical and operational planning. Following a brief 

discussion on MCNF problems and their solution algorithm, a mathematical model 

was proposed to deal with the combined shipment and routing problem.  

A decision making procedure as well as a decision support application were 

presented. The main step in the decision making procedure was to solve the proposed 

mathematical problem. Three heuristic solution algorithms were proposed and the 

quality of the solutions was evaluated using a set of benchmark solutions.  

Three levels of numerical experiments were conducted considering an auto 

carrier that operates on a hub-and-spoke network. The accuracy of the mathematical 

model and the behavior of the system under different demand/supply situations were 
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examined. The performance of the proposed solution algorithms was compared and 

the Path-based portioning method was selected as the best solution method.  

Fleet management products provide real-time, two-way data communication 

between trucks and dispatching centers, using which trucking companies move data 

as much as they move packages in order to improve their efficiency. This study 

proposed a decision making process that utilizes the data provided by the information 

network to improve productivity and customer service by optimizing the combined 

vehicle routing and shipment dispatching. This study suggested that a significant 

reduction in operational costs can be obtained as the result of using the proposed 

decision making process.  

A list of suggestions and recommendation for the future research is as follows. 

These recommendations are divided into two groups. The first set includes those 

works that can be done based on the framework that is proposed in this study. These 

are research goals that can be achieved in short term to enhance the current system. 

The second part contains research recommendations that go beyond the scope of this 

study. Those studies are mainly time consuming and each can be a major research 

effort.     

 

- Short-term studies: 

Currently, some parts of the data handling efforts needed for decision making 

procedure are performed manually. Every time a new mathematical formulation is 

generated the resulting problem file is read and solved through the CPLEX dialog 

window. Then the solution is transferred from CPLEX log to a data file that is used 

by “Operation Plan” and “Data Update” C programs. One suggestion would be to 

used either the CPLEX concert technology or callable library and incorporate the 

CPLEX into the “Problem Generator” program or decision making application to 

facilitate the process of solving the MIP problem in a dynamic environment or 

simulation setting.  

In Chapter 4 of this dissertation, 2 versions of the fast acceptance technique 

were proposed for decision making under high demand condition. These methods 

would increase the ability of handling the requests when solving the optimization 
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problem is computationally expensive. A recommended future research would 

examine the performance of these techniques using the simulation framework that 

was introduced in the last Chapter of this dissertation. 

The other direction for the future research would be to design additional 

acceptance/rejection criteria and decision making procedures and examine the 

effectiveness of these methods. 

The heuristic search algorithm that is proposed in Chapter 6 of the dissertation 

is a locally optimal solution, which is not necessarily a “good” solution. One way to 

improve the solution quality is to apply the meta-heuristic methods incorporated into 

the proposed path-based search algorithm. In this study the simulated annealing 

procedure is used with the heuristic search algorithm, but the results were not 

promising. Future research efforts may focus on variations of the simulated annealing 

method or using other meta-heuristic methods (e.g. Genetic Algorithm or Tabu 

Search) to improve the quality of the solution provided by the path-based heuristic 

search. 

In this study the “Operation Plan” program has been developed to interpret the 

solution of the mathematical problem and to generate the required operation plans. 

However, when the optimization is performed repeatedly the shipment and truck 

routing and scheduling plans are modified. A program is required to generate the 

overall operation plans based on the individual optimization results. Such a program 

can be used extensively to study the simulation results. 

The proposed decision making procedure works based on the repeated 

optimization runs. A very crucial question is whether the mathematical problem must 

be solved at the end of each time period or a longer interval must be selected. Every 

time the operations plan changes the shipments that are already in the system need to 

adapt with the new plan. With longer intervals, there is more time to apply the 

previous routing plans before the new requests change the current operation plan. 

However, new shipments experience delay in delivery. Number of shipments would 

be more at each optimization run and this would increase the execution time. 
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- Long-term studies: 

An important dimension of the LTL trucking operations is driver 

management. Chapter 3 of this dissertation introduces the required additions to 

assumptions, notations, objective function and constraints of the original 

mathematical formulation in order to model the combined driver, truck and shipment 

routing and scheduling problem. Solving the resulting problem would be a direction 

for the future research.  

In Chapter 3 of the dissertation, a new waiting cost element was introduced to 

deal with the partial delivery situation. Additional modifications applied to the late-

delivery cost, waiting cost and shipment related constraints at shipment destination. 

The recommended future research effort would consider solving the resulting non-

linear optimization problem. 

When satellite terminals are considered as a part of network, a more realistic 

problem is generated. A future study would deal with the local pickup and delivery 

problem in conjunction with the shipment and truck routing problem on the hub-and-

spoke network. The problem is non-homogeneous due to the fact that different types 

of trucks operate on different parts of the system.  

The capacity of a hub and the efficiency of the hub operations have a 

significant impact on the performance of the trucking operations. Some previous 

research efforts focused on managing the hub operations (e.g. auto carrier’s 

loading/unloading sequence) in order to reduce the associated operating costs. 

Another area for future research is to optimize the shipment routing and truck 

dispatching problem considering the hub operations.  

The LTL trucking companies operate on intercity networks. However, most of 

the terminals (hubs) located in urban areas near the major metropolitans where 

congestions due to peak hour traffic, work-zones or accidents have a significant 

impact on the travel times and therefore the system performance. Imagine a truck that 

traveled over 600 miles from Charlotte to New York without any problem but cannot 

make the on-time delivery due to an accident that occurred within the last 5 miles of 

its trip. An idea for future study would be to consider travel time variability issue in 

the optimization model. 
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Chapter 3 addressed the non-homogeneous fleet assumption by introducing a 

modified version of the proposed mathematical model. Chapter 6 discussed the 

impact of non-homogeneous fleet assumption on the complexity of the optimization 

model. A recommendation would be to study the impact of non-homogeneous fleet 

on the carrier decision making process, the carrier performance and also the customer 

satisfaction. 

Considering the non-homogeneous fleet assumption, an important problem is 

to find the best fleet configuration. Another recommendation for future research is to 

consider solving this problem based on the demand pattern. This would help a 

company to figure out how many trucks, with what capacity must be either purchased 

or leased for each period of time.   
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