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Liposomes enable the compartmentalization of compounds making them 

interesting as drug delivery systems.  A drug delivery system (DDS) is a transport vehicle 

for a drug for in vivo drug administration.  Drugs can be encapsulated, bound, or 

otherwise tethered to the carrier which can vary in size from tens of nanometers to a few 

micrometers.  Liposomal DDSs have shown their capability to deliver drugs in a new 

fashion, allowing exclusive sales of encapsulated drugs to be extended beyond the initial 

compound’s patent expiration date.  However, existing methods to form liposomes and 

encapsulate drugs are based on bulk mixing techniques with limited process control and 

the produced liposomes frequently require post-processing steps. 

In this dissertation, a new method is demonstrated to control liposome formation 

and compound encapsulation that pushes beyond existing benchmarks in liposome size 

homogeneity and adjustable encapsulation.  The technology utilizes microfluidics for 

future pharmacy-on-a-chip applications.  The microfluidic system allows for precise 

control of mixing via molecular diffusion with reproducible and controlled 

physicochemical conditions compared to traditional bulk-phase preparation techniques 

(i.e. test tubes and beakers).  The laminar flow and facile fluidic control in microchannels 



enables reproducible self-assembly of lipids into liposomes in a sheathed flow-field.  

Confining a water-soluble compound to be encapsulated to the immediate vicinity where 

liposome formation is expected to occur reduces sample consumption without affecting 

liposome loading.  The ability to alter the concentration and control the amount of 

encapsulated compounds within liposomes in a continuous-flow mode is another 

interesting feature towards tailored liposomal drug delivery.  The liposome formation 

strategy demonstrated in this dissertation offers potential for point-of-care drug 

encapsulation, eliminating shelf-life limitations inherent to current liposome preparation 

techniques. 
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Chapter 1: Introduction 

1.1 Motivation 

Utilizing liposomes as drug delivery systems (DDSs) offers the ability to 

formulate drugs for sustained release, targeted delivery, and extended longevity of 

sensitive encapsulated molecules. 

A DDS is a combination of a transport vehicle and a drug for in vivo 

administration.  Drugs can be encapsulated, bound, or otherwise tethered to the carrier, 

which can vary in size from tens of nanometers to a few micrometers.  Examples for 

carriers are liposomes, solid lipid particles, polymeric particles, dendrimers, and 

functionalized particles.1,2  DDS products amount to about 13 % of the global 

pharmaceutical market sales.3  The global drug delivery market is predicted to have 

revenues of $543.8 billion with an expected annual growth rate of 5 % between 2005 and 

2010.4  The estimated sales of DDSs in the U.S. alone are expected to grow to $153.5 

billion by 2011.5  The success of a DDS is not determined by its level of sophistication 

but the ability to add value to the pharmaceutical product.  One such value is found in life 

cycle management of already marketed products.3  Drug companies face a substantial 

commercial demise of their major branded drugs as they reach their patent expiration date 

through reallocation of billions of dollars in revenues towards generic drug makers.  

DDSs can be applied to existing drugs to extend their commercial life. 

Doxil®,the first liposomal DDS approved by the Food and Drug Administration 

(FDA) in 19956, gained sales of $177 million in the US and 5 major European countries 

in 2005.7  Liposomal DDSs have shown their capability to deliver drugs in a new fashion, 

allowing exclusive sales of encapsulated drugs to be extended beyond the initial 



compound’s patent expiration date.  However, existing methods to form liposomes and 

encapsulate drugs are based on bulk mixing techniques with limited process control and 

the produced liposomes frequently require post-processing steps.  In this dissertation, a 

new method is proposed to control liposome formation and compound encapsulation that 

pushes beyond existing benchmarks in liposome size homogeneity and adjustable 

encapsulation.  The technology utilizes microfluidics for future pharmacy-on-a-chip 

applications. 

Microfluidics allows for explicit control of mixing via molecular diffusion with 

reproducible and controlled mechanical fluid forces over micrometer length-scales.  

Decreasing a sample streamwidth to sub-micrometer length-scales allows for controlled 

and reproducible mechanical and chemical conditions across the stream width, especially 

compared to traditional bulk-phase preparation techniques (i.e. test tubes and beakers).  

The laminar flow enables reproducible flow conditions for the self-assembly of lipids into 

liposomes in a sheathed flow-field.  Confining a water-soluble substance to be 

encapsulated to the immediate vicinity of the alcohol stream where liposome formation is 

expected to occur reduces the sample consumption without adversely affecting the 

encapsulation of compounds into liposomes.  The possibility of altering the concentration 

of the encapsulant from an initial starting concentration via controlled diffusive mixing 

enabling control over the loading efficiency of liposomes in a continuous flow mode is 

another interesting feature towards tailored liposomal drug delivery.  The liposome 

formation strategy proposed in this dissertation could be implemented for point-of-care 

drug encapsulation eliminating shelf-life limitations of the liposome preparation method. 
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1.2 What are Liposomes? 

Liposomes are microscopic spherical self-closed structures formed by one or 

more concentric lipid bilayers that can entrap water-soluble (hydrophilic) pharmaceutical 

agents in their internal water compartment and water-insoluble (hydrophobic) 

pharmaceuticals into the lipid-membrane, as shown in Figure 1.8,9  Liposomes are made 

of amphiphiles (molecules composed of a polar and apolar region) and have attracted 

great interest since their discovery in 1965 by A. Bangham et al. for a wide range of 

biological, pharmaceutical, and industrial applications.8,10-13  Liposomes are the smallest 

artificial vesicles of spherical shape, that can be completely produced from naturally 

occurring substances and are biocompatible, biodegradable, and non-immunogenic.8 

All biological membranes contain lipids as primary constituents.  Lipid 

molecules, the building blocks of liposomes, are surface-active amphiphiles with a head 

group that is strongly hydrophilic, coupled to a hydrophobic tail.  Lipid molecules are 

insoluble in water and form colloidal dispersions.  In this proposal, lipids are 

distinguished from detergent molecules by the fact that lipids are generally composed of 

two hydrocarbon chains, whereas detergent molecules contain only one hydrocarbon 

chain.  If a large head group is attached to a single hydrocarbon chain, the molecule is 

wedge-shaped and will tend to form spherical micelles, which are spherical structures 

formed by a single layer of molecules that have a hydrocarbon core and a polar surface.  

A double tail yields a roughly cylindrical molecule.  Such molecules can easily pack in 

parallel to form extended sheets of bilayer membranes with the hydrophilic head groups 

facing outwards into the aqueous regions on either side.  The vesicle size ranges from 

20 nm to several dozen micrometers while the thickness of the membrane is about 4 nm 

to 5 nm. 

 3  



 

 

Figure 1  Schematic of a liposome that encapsulates a hydrophilic compound (red) 

in the interior and intercalates a lipophilic compound (green) within the lipid 

membrane.  Shown is a lipid molecule that arranges into an ordered bilayer, which 

then closes into a spherical structure (liposome).  Adapted from 14. 

 

Because of their solubility properties the structure of liposomes involves the 

ordering of lipid molecules in such a way, that the polar head is in contact with water 

while the nonpolar hydrocarbon chain is hidden from water in the interior of the bilayered 

structures.  Depending on the form factor of the lipid molecule they can form bilayers, 

micelles, or vesicles when in contact with water. 
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1.2.1 Classification of Liposomes 

Liposomes occur in a large variety of structures.  Figure 2 groups liposomes 

according to their structural properties and field of applications.15  An important 

structural feature of liposomes is their size.  Depending on its diameter liposomes are 

differentiated into small unilamellar (20 nm to 150 nm), large unilamellar (150 nm to 

1000 nm), and multilamellar vesicles (>1000 nm).  Liposomes can be composed of one or 

multiple bilayers and are distinguished into unilamellar or multilamellar vesicles.  Further 

classification can be achieved by grouping liposomes according to their surface charge 

and surface property, which can be easily changed by modifying the lipid blend and 

adding new ingredients prior to the liposome preparation.  Modifying the liposomes’ 

coatings can result in long-circulating liposomes in vivo.  The bandwidth of diagnostic or 

therapeutic applications of liposomes is very large.  An example is immunoliposomes, 

liposomes that have antibodies attached to their surfaces, which are able to accumulate in 

a specific location in the body as they recognizes and bind to its antigen.  In this proposal 

primarily anionic, small unilamellar liposomes without further surface modification 

through additional substances are investigated. 
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According to size 

Small unilamellar vesicles (SUVs) 

Large unilamellar/multilamellar vesicles (LUVs/LMVs) 

Giant unilamellar/ mulilamellar vesicles (GUVs/GMVs) 

According to circulation  in vivo 

Classical or conventional liposomes; sterically stabilized liposomes 

According to lamellarity 

Unilamellar, multilamellar 

According to application 

Diagnostic, therapeutic 

According to surface charge 

Cationic/Liposomal DNA vector, anionic, neutral 

Specialized liposomes, targeted liposome 

Immunoliposome, transferosome 

Liposomal DNA vector, LPDI (cationic with poly-L-lysine DNA complex), LPDII 

(anionic) 

 

Figure 2  Classification of liposomes according to their properties and 

applications.15 
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1.2.2 Applications of Liposomes 

The ability to encapsulate and thereby segregate aqueous components led to a 

variety of applications of liposomes.  These include their use in biological systems as 

quantized reagent packets for the delivery of genes16,17 and deoxyribonucleic acid (DNA) 

vectors, drugs or other therapeutic agents18-27, contrast agents for enhanced magnet 

resonance imaging (MRI)28-31, model systems for the study of biological membranes and 

their fusion, transport studies, investigation of membrane proteins that can be 

reconstituted in liposomes,32 encapsulation of cells and proteins33, protective coatings for 

enzymes entrapped in silica sol-gel biocomposites34, or as templates for the formation of 

solid hydrogel nanoparticles.35,36  Liposomes are especially interesting as transport 

vehicles for in vivo applications such as drug delivery systems (DDSs) where they can 

achieve selective and high localization of active drug at the disease site.  Due to their 

biphasic character, liposomes can act as carriers for both lipophilic drugs that are 

compartmentalized in the bilayer and hydrophilic compounds that are encapsulated in 

their aqueous interior.  A homogenous size distribution is important to assure a controlled 

drug dosage while liposome size ultimately influences the detection and clearance rate by 

the complement system.37 

The extreme versatility of liposomes is due to the variability in their composition 

and surface modifications that allow liposomes to be tailored to a myriad of specific 

applications.  Modifying liposomes with low molecular weight polyethyleneglycol (PEG) 

renders their surface more hydrophilic, which allows increased circulation times in the 

blood stream.  These so called "stealth" liposomes are currently being used as carriers for 

hydrophilic anticancer drugs like doxorubicin, mitoxantrone and others.1  Other 
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modifications include rendering the liposome surface positive (cationic liposomes) for 

enhanced cell uptake or with antibodies for targeted drug delivery.  Multiple liposomal 

DDSs that are FDA approved and have reached the market (i.e. Doxil/Caelyx 

(1995/1999), Myocet (2000), DepoCyt (1999), etc.) or are undergoing clinical 

evaluations are shown in Figure 3.1,8 

 

 

Figure 3  Liposomal drugs approved for clinical application or undergoing clinical 

evaluation.  Adapted from Torchilin.8 
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1.2.3 Traditional Liposome Bulk Formation Methods 

In order to produce liposomes, lipid molecules must be introduced into an 

aqueous environment.  However, most of the liposome-forming molecules, including all 

phospholipids, are insoluble in water.  Mixing of dry powders or waxes with water results 

in inefficacious formation of liposomes: most of the lipid is not fully hydrated but instead 

trapped in the interior of structures, which are hydrated only in the outermost bilayers.  

Furthermore, in most cases the lipid mixture will not mix evenly into the particles 

formed.  Additional treatment such as prolonged heat and mechanical treatments, even if 

successful in hydrating the lipids, generate lipid degradation.  To facilitate the hydration 

of lipids one has to increase the surface-to-volume ratio of the lipid.  This is commonly 

done either by preparing a dried thin lipid-film by evaporation from an organic phase, a 

porous cake of freeze-dried lipid, or fine powder of spray-dried lipid from the organic 

solution.  The alternative possibility is to introduce lipids directly into water from the 

organic phase.  This can be accomplished, depending on the miscibility of the particular 

organic solvent with water by emulsification, injection, solvent dialyses and extraction.  

Upon diffusion of the organic solvent into the surrounding water and vice versa, lipid 

monomers aggregate as the solvent mixes with the surrounding aqueous solution. 

There are a variety of methods available to produce liposomes in bulk solution 

processes (e.g., alcohol injection 38-41, membrane extrusion 40, detergent dialysis 40, and 

sonication 40,42), but in all cases they are formed by the self-assembly of phospholipid 

molecules in aqueous solution to form a lipid bilayer membrane that encapsulates an 

aqueous core.  Comparison of liposome populations produced from those different 

techniques reveals a great deal of variability in terms of average diameter and size 
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homogeneity, but the narrowest size distributions are most often obtained from multi-step 

methods that include an initial self-assembly followed by a post-processing step (most 

often, sonication or membrane extrusion). 

Figure 4 shows an overview of the most common procedures to generate 

liposomes from a lipid blend.  In the commercially common thin-film-hydration method 

(Figure 4( )) a lipid mixture is dissolved in an organic solvent, which is subsequently 

evaporated and results into a thin lipid-film on the inside wall of a glass flask.  Hydration 

of the dry lipid-film with an aqueous solution and mechanical agitation results in the 

formation of liposomes. 

LIPIDMIXTURE 

dissolution 

(colloidal) lipid solution 

detergent

depletion / injection

dry lipid-film hydration emulsification 

MLV dispersion (micro) emulsion 

gel 

LUV 

miscible immiscible 

LUV MLV SUV 

budd off 

extrusion 

fragmentation

LUV 

Figure 4  Overview of common liposome preparation techniques.  The blue arrows 

( ) depict a very common liposome formation procedure. The red arrow ( ) shows 

the basic steps of the solvent injection method that can result in SUVs and LUVs 

( ). 
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Liposomes prepared with thin-film-hydration are characterized by a very 

heterogeneous dispersion of predominantly large multi-lamellar vesicles (LMV’s).  

Lipids can also be introduced into the aqueous phase directly from an organic solution 

(Figure 4 ( ), ( )), so called alcohol injection method.38-41  Solvent injection is used 

when the organic solution is water-miscible, whereas demulsification is used when the 

solvent is immiscible with water.  Injection of a lipid-containing organic solution yields 

liposomes when the organic solvent concentration in the final homogenous solution falls 

below the solubility limit of lipids. 

Additional mechanical, chemical, or electrostatic treatment will produce mixtures 

that form smaller less lamellar vesicles up to homogenous solutions of small unilamellar 

vesicles (SUV’s) depending on the intensity of the respective post processing procedure.  

Most frequently, extrusion through filters with pores of different diameters, high pressure 

extrusion of a suspension of multilamellar liposomes through a French pressure cell43, or 

sonication is applied to achieve a homogenous size of liposomes.  In these post-

processing techniques, the initial multilamellar vesicles are torn apart into small bilayered 

fragments or flakes, which upon fusion self-close into the desired small unilamellar 

vesicles.32  Small unilamellar liposomes with diameters of approximately 25 nm are 

usually obtained by either directly immersing a high-energy probe sonicator into the 

liposome solution or by suspending phospholipid dispersion in a glass vial in a low-

energy ultrasonic cleaning bath.  High-energy sonication potentially causes oxidation and 

degradation of phospholipids and may damage the solute molecules it is desired to 

encapsulate in the liposomes interior space.  Furthermore, titanium particles erode from 

the probe tip and have to be removed.  Low-energy sonication as in the cleaning bath 
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varies often in its efficiency requiring prolonged periods of sonication, which at the end 

can also be destructive to the phospholipids molecules.38 

In summary, traditional liposome preparation methods are generally conducted 

through mixing of bulk phases.  The bulk methods often produce inhomogeneous 

chemical and/or mechanical conditions at the lipid phase–aqueous phase interface during 

liposome formation; resulting in liposomes that are polydisperse in size and lamellarity.  

To yield the desired homogeneous liposome populations traditional methods to formulate 

liposomes require additional steps such as solvent removal,33 membrane extrusion,38 or 

sonication42.  Methods that can control liposome size during formation obviating 

additional steps would simplify their preparation.  The challenge is to produce liposome 

formulations with a defined size for the specific application and with little size variation 

in their population, while guaranteeing batch-to-batch consistency.  The methods for 

liposome production should also be flexible so that a protocol can be optimized for the 

desired concentration of encapsulated compounds and for functionalizing their surfaces.  

Lastly, shelf life of the formulation is of concern, and so the ability for production on 

demand would be of interest. 

 

1.3 Nanoparticle Formation with Microfluidics 

One of the great benefits of microfluidics is that it enables fine control and 

manipulation of fluids and fluid interfaces.  Small packets of fluids with volumes 

measured in the picoliter- to attoliter-range can be manipulated, split, or combined with 

precise timing.  Mixing can occur by simple diffusion or in a patterned channel that 

promotes folding of the fluid layers to reduce diffusion distances.  Fluid streams flowing 
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toward one another can merge and form very sharp and well-defined interfaces by virtue 

of laminar flow.44 

Application examples for microfluidic technologies which takes advantage of 

these features are synthesis, formation, and self-assembly of microscale and nanoscale 

particles.  Nanoscale particles that have been formed using microfluidics include 

semiconductor quantum dots 45, metal colloids 46, and more recently, liposomes 41,47,48 

and lipid nanotubes49-51.  For both quantum dots and metal colloid formation, 

microfluidic synthesis has been reported to be superior to benchtop methods for 

producing high quality, monodisperse particles due to the ability maintaining fine control 

of all solution variables including reactant concentration, timing of reagent addition, and 

temperature.52-55  Microfluidic methods for rapid mixing and exquisite control of reagent 

concentration can produce the precise conditions required for nanoparticle production.  

These methods include hydrodynamic focusing 56, flow lamination 57, and fluid folding 58 

or chaotic mixing 59.  Flow focusing has been applied to generate homogeneous 

emulsion.60 

Kuribayashi et al. showed electroformation of giant liposomes in microfluidic 

channels 61.  Specifically, a polymethylvinylsiloxane sheet containing the microchannel is 

sandwiched between two indium tin oxide glass plates which serve as transparent 

electrodes.  A thin lipid film is dried on the bottom of a microchannel, hydrated with 

deionized water by capillary filling, and subsequently exposed to an alternating current 

(AC) signal producing giant unilamellar vesicles.  Electro-formation of liposomes in this 

manner resulted in giant unilamellar liposomes (liposomes composed of a single bilayer 

membrane) in contrast to giant multilamellar liposomes (liposomes composed of many 
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bilayer membranes) that are produced by gentle hydration of lipid films without the 

electric field.  Liposomes prepared by electro-formation were overall larger with a mean 

liposome diameter of about 12 µm compared to those produced by gentle hydration 

without applying an AC field with a mean liposome diameter of about 5 µm.  This is 

thought to be due to liposome fusion caused by the vibrational energy induced by the AC 

field. 

In another study Wagner et al. used the fluidic cross-flow ethanol injection 

method to produce homogenous liposome populations on an industrial scale.41  The 

cross-flow injection technique utilizes two welded stainless steel tubes that form a cross, 

as shown in Figure 5. 

 

Figure 5  Welded steel tube arrangements of the Wagner41 cross-flow method.  The 

injection pinhole is 100 µm to 250 µm in diameter at the welded intersection. 
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At the connecting point a hole with a diameter of 150 µm to 250 µm serves as an 

injection point for a lipid/ethanol mixture.  This method is an improvement to the 

traditional ethanol injection method in which a lipid/ethanol mixture is slowly injected 

manually into a rapidly vortexing aqueous buffer.  The cross-flow injection method 

provides better control and reproducibility compared to manual injection of the lipid.  In 

this method, the ethanol/lipid stream is injected obliquely into the water stream.  One part 

of the ethanol/lipid stream forms a non-miscible interface with the stainless steel tubing 

and the other forms an active liquid miscible interface with the buffer.  Liposomes form 

at the miscible buffer/ethanol interface.  The liposomes produced with the cross-flow 

injection method vary in diameter between 200 nm and 500 nm. 

Despite the development of a variety of new liposome formation methods there is 

still a limited understanding of the mechanism of lipid-to-liposomes self-assembly with 

conventional bulk methods.  Vesicle formation is mostly determined by experimental 

parameters such as flow velocity, injection pressure, or stirring rate but precise control of 

the exact mixing parameters but their impact on formation remains untenable.  This 

limited understanding is probably due to the often uncontrolled turbulent mixing 

conditions in batch processing38,39 or visual inaccessibility of mixing performance41. 

In the following chapter a new method is described to produce homogeneous 

unimodal liposome populations with average vesicle diameters that can be chosen 

between 45 nm to 150 nm.  Microfluidic hydrodynamic focusing (MHF) takes advantage 

of laminar flow in microfluidics.  The microfluidic approach to form liposomes allows 

controlling the vesicle diameter and offers high reproducibility of the vesicle size 

distribution. 
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Chapter 2: Concept of Microfluidic Liposome Formation 

2.1  Liposome Formation with MHF 

Hydrodynamic focusing has been applied in various fields such as micromixers56, 

flow cytometers62, and fluidic switches to name a few.  The concept of hydrodynamic 

focusing is based on conventional flow cytometry with an axially symmetric sample and 

sheath flow.  A sample stream is thinned or focused by an adjacent sheath-flow and 

passed through a detection region, where particles or cells are counted or separated.63  

The focusing of the sample stream depends on the volumetric flow rate ratio between the 

sample and the surrounding sheath flow.  Although the concept of hydrodynamic 

focusing and its rapid mixing on the micrometer length-scale is well established, 

hydrodynamic focusing to our knowledge has not been applied to control lipid self-

assembly into liposomes in a microfluidic device until recently.47,48 

The formation of vesicles with microfluidic hydrodynamic focusing (MHF) is 

adapted from the batch solvent injection method.38,39  The conventional standard solvent 

injection into a glass vial filled with aqueous solution or buffer does not allow for 

reproducible control of shear forces and mixing conditions and therefore generally results 

in polydisperse liposome populations.  Contrary, MHF enables the facile and 

reproducible control of the fluidic mixing conditions under laminar flow, thereby 

producing predictable flow conditions, which can be studied by fluid momentum and 

mass transport simulations.  The focusing is visually accessible and allows the 

comparison of experimental with simulated focusing profiles.  MHF produces a 

controlled steady-state concentration distribution profile of the miscible alcohol/water 

system.  The controlled environment of the MHF method allows further elucidating the 
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vesicle formation process and investigating it more thoroughly by extracting the mixing 

details of alcohol and aqueous buffer in this system with numerical simulations.  These 

include the concentration profiles of alcohol/water mixtures as they change for different 

focusing conditions and velocities as well as the viscous anisotropy that is often inherent 

in these miscible solvent-buffer combinations.64-68 

Liposome formation in MHF occurs by a diffusively driven process, when a 

stream of lipids dissolved in an organic solvent such as 2-propanol (IPA) is 

hydrodynamically sheathed between two oblique phosphate buffered saline (PBS) 

streams in a microfluidic channel.  The main concept of hydrodynamic focusing is to 

reduce the streamwidth and consequently the mixing path length of the focused stream.  

A stream of lipids resolubilized in IPA is hydrodynamically focused into a very narrow 

sheet with a thickness varying from a few micrometers down to sub-micrometers 

depending on the respective PBS-to-IPA volumetric flow rate ratios (FRR).  The laminar 

flow conditions facilitate controlled diffusive mixing at the two liquid interfaces 

reproducibly diluting the IPA concentration below the solubility limit of lipids and 

initiating lipid self-assembly into small unilamellar vesicles ranging in diameters from 

40 nm to 150 nm.  In Figure 6a simulation of the mixing of IPA as it is focused by two 

oblique aqueous buffer streams and vesicle formation at the alcohol/water interface is 

shown.  A fluorescence microscope image is shown in Figure 6b that depicts the focusing 

of a lipid stream containing a fluorophore in a microfluidic device. 
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a) 

b) 

 

Figure 6  Schematic of the lipid self-assembly into liposomes with MHF (a).  The 

color contours are generated by finite element analysis modeling of the flow field 

with Navier-Stokes convection and Stoke-Einstein diffusion equations and represent 

the concentration ratio of IPA to PBS.  Lipid vesicles are formed where the 

concentration ratio of alcohol to buffer is at a critical condition and lipids are no 

longer soluble.47  (b) Fluorescence microscope image of the focused IPA stream on a 

microfluidic chip (double cross design).  A non-polar fluorophore (DiIC18) is mixed 

into the IPA/lipid stream to visualize the focusing. 
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According to a theory by Lasic et al., lipids dissolved in an organic solvent 

transform into intermediate bilayer phospholipids fragment (BPF) structures.  Reducing 

the solubility conditions of lipids by increasing inter-diffusion of water and alcohol leads 

to thermodynamic instabilities at the edges of BPFs which induces bending and closing 

of the BPF upon itself and formation of vesicles.32,47,48 

Changes in FRR result in variable stream widths of the focused solvent/lipid 

stream.  As FRR decreases, the solvent stream width increases; therefore the 

concentration gradient decreases providing a central region with higher solvent content.  

This potentially stabilizes BPFs and allows larger congregation of lipids to yield larger 

BPFs, which eventually results in larger vesicles and broader distribution.  At higher 

FRRs the solvent stream is focused into a narrower stream, the results are smaller and 

more homogenous liposome populations. 

In contrast to batch solvent injection38,39, from which MHF is adapted, MHF 

enables the facile and reproducible control of the fluidic mixing conditions under laminar 

flow, thereby producing predictable flow conditions.  A controlled steady-state 

concentration distribution profile of the miscible alcohol-water system is established and 

can be studied by fluid momentum and mass transport simulations.  The controlled 

environment of the MHF method allows further elucidating the vesicle formation process 

and investigating it more thoroughly by extracting the mixing details of alcohol and water 

in this system with numerical simulations.  These include concentration profiles of 

IPA/water mixtures as they change for different focusing conditions and velocities as 

well as the viscous anisotropy (discussed in Chapter 4) often inherent in these miscible 

solvent-buffer systems.64-68 

 19  



2.2  Encapsulation with MHF 

Encapsulation of compounds into liposomes can be accomplished by one of three 

primary mechanisms: encapsulation, partitioning, and reverse/remote loading.69  

Encapsulation is useful for hydrophilic drugs, where the drug is dissolved in the 

hydration buffer.  As the lipids self-assemble into liposomes in the hydration buffer they 

compartmentalize the drug in their aqueous interior.  The partitioning strategy is suitable 

for lipophilic drugs, which are intercalated in the membrane interstitial of liposomes.  

The lipophilic drug is dissolved in a suitable organic solvent along with the phospholipids 

and subsequently added to the hydration buffer.  As liposomes form, the drug is 

solubilized in the intrabilayer space.  Residual solvent is removed under vacuum.  

Reverse or remote loading can be used for weakly acidic or alkaline drugs.  Drug loading 

is achieved with either a pH gradient or an ammonium salt gradient between the inside 

and the outside of the liposome membrane.  The idea is that neutral drug molecules are 

shuttled into the aqueous interior of the liposome across the phospholipid bilayer and 

become subsequently charged inside the liposome due to the different pH.  Once charged, 

the drug molecule is not lipophilic enough to permeate through the bilayer again and is 

trapped inside the liposome.69,70  The reverse loading method allows very high 

accumulation of the drug inside liposomes that can be as high as 100-fold the compound 

concentration in the remote loading medium and can achieve up to 90 % encapsulation 

efficiency.71  Liposome loading of a hydrophilic drug simulant with MHF is 

accomplished by means of passive encapsulation.  Encapsulation with the multiple-inlet 

microfluidic channel device addresses a major drawback in encapsulating solutes with 

other bulk formation processes.  In Figure 7 the encapsulation of a hydrophilic drug with 

the standard alcohol injection method is depicted.  An alcohol/lipid tincture is injected 
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with a syringe into an aqueous hydration buffer solution containing a homogenous 

concentration of drug.  As lipids self-assemble into liposome due to the polarity of the 

hydration buffer, they simultaneously sequester the surrounding medium into the 

liposomes interior.  However, due to the maximum amount of solvent that can be mixed 

with the hydration buffer and still result in formation of stable liposomes, only a fraction 

of the drug is eventually encapsulated in the liposome’s interior.  The non-encapsulated 

drug is subsequently separated from the liposome sample with gel filtration.  To increase 

the encapsulation efficiency (the amount of drug encapsulated into liposomes versus the 

total amount of drug in the hydration buffer) it would be desirable to confine the drug 

only to the liposome formation region. 

 

Figure 7  Schematic of drug encapsulation with standard alcohol injection and 

hypothetically increasing the encapsulation efficiency (E.E.) by confining the drug to 

the area where liposome formation occurs. 
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Confining a drug to the liposomes formation site as shown with the standard 

injection methods in Figure 7 is unfeasible.  However, the MHF approach allows 

confining the drug to the immediate vicinity where lipids self-assemble into liposomes. 

This is shown in Figure 8 where the encapsulant carboxyfluorescein (CF) is confined to 

the liposome formation region, rather than throughout the entire aqueous fluid.  This 

allows reducing the amount of non-encapsulated compound. 

 

 

Figure 8  Micrograph of the multiple-inlet channel that allows confining the 

compound of interest to the immediate vicinity of liposome formation (left).  3D-

confocal micrograph at an angle that shows the sheathing of green CF (the 

compound to be encapsulated) in PBS to the IPA/lipid solution (DiIC18 fluorophore 

is added to visualize the focusing).  Transparent PBS is sheathed next to the CF 

containing PBS and fills the majority of the center channel. 
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2.3 Microfluidic Channel Design and Device Fabrication 

Liposome formation via hydrodynamic focusing was investigated with three 

different microfluidic devices, as shown in Figure 9.  A T-channel served as a proof of 

concept for liposome formation in microchannels.  However, the T-channel design 

produces solid-liquid interactions of lipids at the channel wall in addition to liquid-liquid 

interactions between the buffer and the lipid solvent stream.  In order to limit the lipid 

interactions to the liquid phase, the T-channel design was replaced soon after by a second 

design, the double-cross channel design, as shown in Figure 9a.  In the double-cross 

channel design the solvent stream is sandwiched between two buffer streams minimizing 

lipid interaction at the wall during lipid self-assembly.  The channel layout in Figure 9b 

includes multiple inlets to allow separate injection of a solute of interest to be 

encapsulated into liposomes through the two inner side channels.  Figure 9c shows a 

single cross microchannel layout that has narrower channels compared to the previous 

two designs and plays an integral part in the investigation of the effect of channel 

dimensions on liposome formation. The multiple-inlet design and single cross design 

have microchannel with a higher aspect-ratio (ratio of channel depth to channel width) 

and a rectangular cross sectional area compared to the shallower trapezoidal channels of 

the double-cross design.  The goal is to homogenize the 3-dimensional parabolic flow-

profile across the depth of the channel. 
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a) 

b) 

c) 

 

Figure 9  Shown are three microchannel designs applied for liposomes formation 

with MHF.  (a) The double-cross design has a trapezoidal channel cross-section. The 

channels are 200 µm wide channels (on the top) and 40 µm deep.  (b) The multiple-

inlet design allows separate injection of an encapsulant.  The channel cross-section 

area is rectangular. The channel width is 42 µm for the IPA/lipid, SRB, and three 

outlet channels and 65 µm for the PBS and mixing channel.  All channels are either 

100 µm or 120 µm deep.  (c)  A cross channel design with rectangular channel cross 

section.  The channels are 10 µm wide and 36 µm deep. 
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Furthermore, in the multiple-inlet design, the fluid access holes at each channel 

terminus are confined within the microchannel; meaning the through-holes do not extend 

past the microchannel width (Figure 9b) in contrast to Figure 9a and Figure 9c where the 

access holes at the channel terminus are wider than the microchannel.  Limiting the fluid 

access-holes to within the microchannel width reduces dead volume and vortices in the 

injection points.  The three outlets in the double cross and multiple inlet designs serve the 

purpose of increasing the collected liposome concentration by removing excessive buffer 

through the two waste outlets. 

The double cross-channel design is fabricated with an anisotropic wet-etching 

technique.  The anisotropy of the wet-etching technique depends on the orientation of the 

silicon crystal structure in the silicon wafer.  Due to this constraint, the channels must be 

aligned orthogonally to each other and the etched structures will be of rectangular 

geometry with respect to the surface, while the cross-sectional area will be trapezoidal or 

triangular, depending on the depth of the channel.  The multiple inlet and single-cross 

design is fabricated with deep reactive ion-etching (DRIE).72 

The microchannel layouts were etched into a silicon wafer (<100> orientation, 

75 mm diameter 0.3 mm thickness, Nova Electronics Material Inc., TX).  The silicon 

wafer is then anodically bonded to a borofloat glass wafer (BSG) to seal the 

microchannels.  Fluidic connectors are glued to the backside of the silicon wafer to 

facilitate the injection of fluid with syringes through PEEK capillary tubing. 

Figure 10 depicts the details of the fabrication process flow for the multiple-inlet 

channel designs.  A silicon (Si) wafer is dipped into hydrofluoric (HF) acid to strip the 

native oxide layer, and subsequently dried on a hotplate for 5 min at 115 C.  
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Hexamethyldisiloxane (HMDS) is spin-coated at 2500 rpm for 50 s onto the frontside of 

a Si-wafer to improve the adhesion of a 3 µm thick layer of positive tone photo resist 

(Shipley SPR-220-3; Rohm and Haas, Marlborough, MA, USA), which is subsequently 

spin-coated at 2500 rpm for 45 s.  A prebake on a hotplate at 115 C for 90 s solidifies the 

resist.  The channel layout is transferred lithographically in hard-contact mode with a 

patterned chrom/glass mask and a mask aligner (MA6; Suss MicroTec, Waterbury, VT, 

USA) onto the photoresist.  The photoresist is exposed to UV light (i-line) at 21 mW/cm2 

for 30 s followed by a postexposure-bake on a hotplate at 115 C for 90 s.  The photoresist 

is subsequently developed for approximately 1 min in a basic MF351 developer.  A 

oxidized Si-wafer is spin-coated with SPR-220-3 and bonded to the first Si-wafer.  Both 

wafers are hard-baked on a hotplate at 115 C for 30 min.  The channels are etched 

100 µm to 120 µm deep with DRIE.73  After the microchannels are etched into the front 

side of the Si-wafer, the wafers are separated.  The microfluidic through-holes are etched 

into the backside of the Si-wafer in the same manner.  After the through-holes are etched 

into the Si-wafer, the wafer is striped again of native oxide in buffered oxide etch (6:1 

HF). 

Prior to bonding, the glass wafer (75 mm diameter, 0.1 mm thick, Corning Pyrex 

7740) and the silicon wafer are thoroughly cleaned and dehydrated to ensure conformal 

contact between the wafers.  Cleaning is accomplished by dipping the oxidized silicon 

wafers in RCA1 (NH4OH, H2O2, H2O; 1:1:5) at 80 C for 10 min to remove organic 

compounds, followed by a short dip into 2% HF and immersing for another 10 min into 

80 C RCA2 (HCl, H2O2, H2O; 1:1:5) to remove remaining metal and alkali impurities.  

The wafers are then anodically bonded at 400 ºC for 60 min with a ramp rate of 
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25 ºC min-1 at a bonding voltage of 800 V.  The glass is connected to the negative 

electrode while the silicon is connected to the positive electrode of the power supply, thus 

the sodium ions drift towards the negative electrode creating a very large electric field at 

the silicon/glass interface, which pulls the two surfaces together facilitating the bonding 

of the two surfaces. 

Fluidic nanoports (F-124S, Upchurch Scientific, USA) connect external capillary 

tubing to the microchannel network.  These ports minimize fluid dead volume between 

the external capillary tubing and the microfluidic device.  The nanoports are bonded to 

the backside of the silicon wafer using vendor supplied adhesive rings according to their 

instructions.  Capillary tubes deliver the fluid from glass syringes to the microchannel 

network. 
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Figure 10  Schematic of the fabrication process for the multiple-inlet design. 
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2.3  Characterization of Liposome Size, Size Distribution, and Encapsulation 

Light scattering is commonly used to determine the size and size distribution of 

colloidal systems.  As light interacts with matter the electrical field of the electromagnetic 

wave separates charges in the particle.  The amount of charge separation depends on the 

polarizability of the particle itself.  If the wavelength of the light is much longer than the 

physical dimensions of the particle the separated charges produce a dipole field.  The 

oscillating electric field of the light creates an oscillating dipole in the particle, which 

then reradiates the light predominantly in the plane perpendicular to the incident 

polarized light.  Depending on the size of the particle the perpendicular scattering is 

characterized by an angular scattering dependence.74  When the particles are below a 

critical physical dimension compared to the wavelength of the oscillating field, its 

scattering is nearly independent of the angle perpendicular to the incident light.  At a 

wavelength of about 690 nm of the incident light, as in the light scattering instrument 

utilized, isotropic scattering occurs at particle sizes of less than 10 nm radius and 

anisotropic scattering occurs with larger radii; this allows size characterization of small 

unilamellar vesicles (SUVs) with diameters of about 20 nm to 25 nm.  Larger particles 

scatter more light and show a larger angular dependence of scattered light than smaller 

particles.  Analysis of the particle scattering pattern and intensity allows for 

determination of particle size.  To obtain an accurate characterization of the liposome size 

distribution it is necessary to fractionate liposomes.  Asymmetric flow field-flow 

fractionation (AF4), a type of liquid chromatography that does not use a stationary phase, 

separates particles by a cross-flow field in an otherwise laminar flow.  It allows the 

separation of particles with sizes ranging from 1 nm to several 1000 nm encompassing 

the separation of micelles, liposomes, emulsions, viruses, bacteria, cells, proteins, glyco-
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proteins, and protein-complexes.75  The combination of AF4, multi-angle laser light 

scattering (MALLS), and quasi elastic light scattering (QELS) allows for determination 

of liposome size distributions with very high resolution. 

Other commonly used techniques to measure liposome size and size distribution 

include transmission electron microscopy (TEM) and atomic force microscopy (AFM).  

TEM measurements of liposomes often require complicated sample preparation and can 

induce artifacts such as shrinkage and shape distortion as liposomes are removed from 

their native environment.  The structural information about the morphology is very good 

and allows very precise particle characterization.  Nevertheless, TEM measurements are 

very time consuming if one wants to obtain statistically meaningful and representative 

size distributions of a vesicle population and hence TEM is not amenable to being a 

routine measurement.76  On the other hand AFM, which was developed in 1986, allows 

for easy and fast sample preparation while still allowing the vesicles to remain preserved 

in their native aqueous environment.  The ability of the AFM to operate in a non-contact 

mode prevents deformation of soft-matter particles such as liposomes.  Nevertheless, 

even if using AFM in non-contact mode and operating in aqueous solution the 

measurement requires that the liposomes are deposited on substrate such as silicon or 

mica.  Ruozi et al. reported recently that already 10 minutes after deposition liposomes 

showed a progressive tendency to turn into asymmetrical and flattened structures often 

describes as planar vesicles.77  This tendency to change their structure varies with the 

composition of the liposomes.  While both AFM and TEM provide excellent information 

about the morphology in respect to lamellarity and nanometer-scale resolution on 

vesicles, they require meticulous sample preparation to minimize artifacts of the vesicle 

 30  



size and shape.  The continuous improvement of AFM and TEM measurement 

procedures in the field of soft-matter particles will eventually provide a very important 

tool to better characterize liposomes for drug delivery applications. 

Information about the bilayer structure can also be obtained with small angle 

neutron scattering (SANS), small angle X-ray scattering (SAXS) or nuclear magnetic 

resonance (NMR) spectroscopy.76  SAXS and SANS both belong to scattering 

technologies just as light scattering but while light and X-rays are both scattered by 

electrons surrounding the atomic nuclei, neutron are scattered by the nucleus itself.  The 

lower energy of the neutrons in SANS measurements compared to that of X-ray photons 

in SAXS makes the former more suitable for the study of sensitive biological samples 

such as lipid vesicles.78  In the case of SAXS Bouwstra et al.79 reported that the scattering 

curve changes dramatically when a small fraction of multilamellar vesicles is present in a 

sample of mostly unilamellar vesicles.  This could potentially lead to erroneous 

interpretations about the overall lamellarity of the vesicle population.  In the 31P NMR 

technique Mn2+, which interacts with the negatively charged phosphate groups of 

phospholipids, is added to a liposome sample to quench the 31P NMR signal from 

phospholipids on the exterior of the outermost phospholipids bilayer.  The lamellarity can 

be subsequently determined from the signal ratio before and after Mn2+ addition to the 

liposome sample.  However, this technique is quite sensitive to Mn2+ concentrations and 

buffer concentrations and the type of lipids used.  While SAXS, SANS, and NMR are 

certainly important and mature techniques to analyze the lamellar structure of vesicles, 

the sample preparation and costs that are often associated with these techniques but also 

the required vesicle concentrations that are much higher than obtained with the 
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microfluidic focusing method make QELS and MALLS the preferred method to 

characterize the size distribution of submicrometer-scale liposomes.  Additionally, 

cryogenic-TEM (cryo-TEM) is applied to investigate the lamellarity of liposomes 

prepared with the microfluidic hydrodynamic focusing method.  Here, a liposome sample 

is rapidly frozen in liquid ethane cooled to -180 ºC by liquid nitrogen.  The rapid freezing 

prevents ice-crystal formation which would otherwise result in the destruction of the 

liposomes. 

The common goal of drug delivery systems (DDSs) is to achieve a very high 

encapsulation efficiency and reduce the amount of solute waste that has to be 

preprocessed for subsequent use.  The number of molecules encapsulated within 

liposomes is analyzed with fluorescence cumulant analysis (FCA).80  FCA is a 

modification of fluorescence correlation spectroscopy (FCS).  The latter is a widely used 

and powerful tool that measures temporal fluctuations of the fluorescence.  The major 

drawback of FCS is its insensitivity to discriminate between similar sized particles.  FCA 

resolves heterogeneous samples based on differences in fluorescent intensity instead of 

temporal fluctuations as in FCS.  FCA exploits information from higher moment analysis 

of the probability distribution of photon counts.81  It therefore distinguishes molecular 

species by difference in their fluorescent intensity and not their diffusion coefficients.  

Combining the results from FCA with the liposome size distribution obtained from light 

scattering provides information about the average fluorescence or number of entrapped 

molecules in a liposome. 
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Chapter 3: Microfluidic Directed Liposome Formation of Controlled Size 

3.1 Introduction 

A new method to tailor liposome size distributions in a microfluidic format is 

presented.  A method is described to engineer liposomes of a particular size distribution 

by changing the flow conditions in a microfluidic channel, obviating the need for post-

processing.  A stream of lipids dissolved in IPA is hydrodynamically focused between 

two sheathed aqueous streams in a microfluidic channel.  The laminar flow in the 

microchannel enables controlled diffusive mixing at the two liquid interfaces where the 

lipids self-assemble into vesicles.  The liposomes formed by this self-assembly process 

are characterized using asymmetric flow field-flow fractionation (AF4) combined with 

quasi-elastic light scattering (QELS) and multi-angle laser light scattering (MALLS).  It 

is observed that the vesicle size and size distribution are tunable over an average diameter 

from approximately 50 nm to 150 nm by adjusting the ratio of the buffer-to-alcohol 

volumetric flow rate ratio (FRR).  Furthermore, it is observed that liposome formation 

depends more strongly on the focused alcohol stream width and its diffusive mixing with 

the aqueous stream than on the shear forces at the solvent-buffer interface. 

 

3.2 Description of Experimental Procedures 

3.2.1 Device Fabrication 

Microfluidic channels are fabricated in a silicon wafer (76.2 mm (3 in.) diameter, 

305 µm to 355 µm thick, Nova Electronics Materials, Inc., Carrollton, TX) with deep 

reactive ion etching (DRIE) using the Bosch process and sealed by anodic bonding to a 

borosilicate glass (BSG) wafer (75 mm diameter, 0.1 mm thick, Corning Pyrex 7740), as 
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described in the previous chapter.  The microchannels in the multiple-inlet design 

(Figure 9b) have a rectangular cross section with a depth of 100 µm and a width of either 

42 µm (center inlet channel) or 65 µm (side channel and mixing channel).  A schematic 

of the assembled wafers and fluid-ports is depicted in Figure 11.  PEEK capillary tubes 

(Upchurch Scientific, Oak Harbor, WA) with an inner diameter of 254 µm (0.01 in.) 

connect the Nanoports to a syringe.  A 0.02 µm filter (Anatop, Whatman, NJ) is placed 

on the syringes to ensure that all fluids introduced to the microchannel network are dust-

free to prevent clogging of the channels.  Fluidic reagents are introduced to the 

microfluidic network from glass gastight syringes (Hamilton, Reno, NV) by syringe 

pumps (model PHD2000, Harvard Apparatus Inc., Holliston, MA). 

 

Figure 11  Schematic of the microfluidic device. Exploded view showing the fluid 

ports attached to the backside of the silicon wafer, the channel network etched into 

silicon with five inlet channels (a-e) on the left and three outlet channels (g-i) on the 

right, and the sealing with a glass wafer via anodic bonding. 
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3.2.2 Materials 

Saturated 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), cholesterol 

(both Avanti Polar Lipids Inc., Alabaster, AL), and dihexadecyl phosphate (DCP) 

(Sigma-Aldrich) in a molar ratio of 5:4:1 are dissolved in dry chloroform (Mallinckrodt 

Baker Inc., Phillipsburg, NJ).  The chloroform solvent is evaporated under a stream of 

nitrogen at room temperature to form a dry lipid film on the bottom of a scintillation vial.  

The scintillation vial is subsequently placed into a vacuum desiccator for at least 24 h to 

ensure complete solvent removal.  The dried lipid mixture is resolubilized in dry IPA at a 

5 mmol/L concentration of total lipid.  Phosphate buffered saline (PBS) solution 

(10 mmol/L phosphate, 2.7 mmol/L potassium chloride, 138 mmol/L sodium chloride, 

pH 7.4, 3 mmol/L sodium azide) is used as a hydration buffer. 

 

3.2.3 Liposome Formation 

Unilamellar liposomes are prepared by injecting a lipid mixture dissolved in IPA 

into the center channel of the microfluidic network shown in Figure 11.  PBS is injected 

into the oblique side channels intersecting with the center channel.  The flow rate ratio 

(FRR), defined as buffer volumetric flow rate (QB) to IPA volumetric flow rate (QS), is 

varied from 10 to 60.  Liposome formation at different shear forces is investigated by 

changing the total volumetric flow rate (Qt) from 31 µL/min to 186 µL/min maintaining a 

constant FRR of 30. 
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3.2.4 Microscopic Imaging 

The hydrodynamically focused flow in the microfluidic channel is imaged with a 

confocal laser-scanning microscope (LSM 510 Meta, Carl Zeiss, Thornwood, NY) with a 

30 mW HeNe laser (excitation, 543 nm; power output, 18 %; objective LD-Achroplan, 

20x/0.4; detector gain, 468; amplifier gain, 1.00 V; amplifier offset, 0.1 V; filter, LP 560; 

beamsplitter, MBS HFT 488/543; 12-bit image resolution; 1.6 µs pixel time; 94 µm 

pinhole).  Vendor supplied image processing software is used (Carl Zeiss, Thornwood, 

NY).  The alcohol concentration is determined by measuring the fluorescent intensity of 

sulforhodamine B (SRB) as a function of IPA concentration. 

 

3.2.5 Cryogenic Transmission Electron Microscopy 

Cryogenic transmission electron microscopy (cryo-TEM) involves the 

examination of a vitrified hydrated sample directly on a cryo stage in the TEM.  Five 

microliter drops of liposome suspensions were placed on 1000-mesh copper electron 

microscope (EM) grid.  Specimens were frozen by clamping each grid into spring-loaded 

forceps of a Leica KF80 freezing machine.  The grid was blotted with filter paper to leave 

a thin film of liposome suspension just prior to plunging the grid into liquid ethane 

cooled to -180 ºC by liquid nitrogen.  The frozen grid was then loaded under liquid 

nitrogen into a Gatan model 626 specimen holder and cryotransferred into an FEI CM120 

transmission electron microscope (Philips) equipped with Gatan anticontaminator blades.  

Suitably thin specimen regions were imaged at a beam voltage of 120 kV and at an 

electron dose of less than 1000 electrons per square nanometer using a Gatan GIF100 

post-column imaging filter equipped with a 1024x1024 pixel cooled CCD camera.  
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Contrast was enhanced by energy-filtering the transmitted electrons and by underfocusing 

the objective lens to about 500 nm. 

 

3.2.6 Light Scattering and AF4 Procedure 

High-resolution size-based separation of the liposome population is carried out 

using asymmetric flow field-flow fractionation (AF4) with multi-angle laser light 

scattering (MALLS) and quasi-elastic light scattering (QELS) detection and 

characterization (model DAWN EOS and QELS, Wyatt Technology, Santa Barbara, CA).  

A vendor-supplied spacer (250 µm thickness) is used to define the flow channel thickness 

with a 10 kg/mol MWCO (molecular weight cut-off) regenerated cellulose membrane 

(Millipore, Bedford, MA) for the cross-flow partition.  PBS is used as the carrier liquid in 

the particle size separation.  The flow is controlled with vendor-supplied software 

(Eclipse 2, Wyatt Technology, Santa Barbara, CA).  A sample volume of 100 µL is 

injected with an auto-sampler at a flow rate of 0.2 µL/min and focused into a thin band in 

the separation flow-channel at a flowrate of 3 mL/min for 4 min.  The injection step is 

followed by a second focusing step at 3 mL/min for 3 min.  The cross-flow is ramped 

linearly from 3 mL/min to 0 mL/min over 60 min while eluting the separated particles at 

0.8 mL/min.  The radii of the eluted vesicle fractions are monitored using MALLS and 

QELS detection with data processing, using software supplied by the vendor (ASTRA, 

Wyatt Technology, Santa Barbara, CA).  MALLS is measured at 15 angles 

simultaneously.  The liposome sample is measured at 1 s and 5 s intervals for the 

MALLS and QELS, respectively.  The autocorrelation function (ACF) of the QELS is 

fitted to a single-mode exponential decay model to determine the hydrodynamic radius 
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(Rh).  A coated sphere model (i.e., a spherical structure with two radial regions of 

differing refractive index) showing good fit with the MALLS data is applied for size 

analysis of the geometric radius (Rg) of the fractionated samples. 

 

3.3 Results and Discussion 

Hydrodynamic focusing in a microfluidic device allows for fast and controlled 

mixing of miscible liquids with the benefit of reduced sample consumption. In the 

microfluidic device presented in Figure 11, four aqueous buffer streams (channels a, b, d, 

and e) hydrodynamically focus a lipid tincture entering through the center channel 

(channel c) at the cross junction.  Hydrodynamic focusing reduces the center channel 

stream width and consequently the diffusion length for liquids to mix.  The sample 

stream injected into channel c is focused into a thin sheet.  Simple mass flow balance 

within the microchannel can provide a theoretical model to estimate the absolute 

minimum continuum width of the focused sample stream 

hDvhwvQ ccfsfS ⋅⋅=⋅⋅=     (3.1) 
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where wfs is the stream width of the focused sample stream in the center of channel f, QS 

and QB are lipid mixture and buffer volumetric flow rate, vc and is the average flow 
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velocities of channel c and vf  the maximum flow velocity in the center of channel f, Dc 

and Df are the widths of channels c and f, respectively, and h is the channel depth, which 

is constant for the entire microchannel network.  The estimated focused stream width, wfs, 

in eq. 3.3 idealizes the otherwise complicated system by assumimg that (1) all liquids 

entering the channels have the same density, (2) all liquids have a parabolic flow-profile 

across the width of the channel, and (3) diffusive mixing is negligible.  It can be seen 

from eq. 3.3 that wfs than only depends on the microchannel geometry and the buffer-to-

solvent flow rate ratio (FRR).  Because eq.3.3 does not consider molecular diffusion of 

IPA into PBS it really only provides an estimate of the focused sample streamwidth 

within the first 100 µm of the entrance of channel f of the hydrodynamically focused 

stream at low FRRs.  The high flow velocities result in sub-millisecond residence time 

over a distance of 100 µm where diffusive spreading of the focused stream is minimal 

due to the short convective residence time.  Although diffusion is neglected in eq. 3.3, it 

gives a rough estimate of the width of the focused stream in the entrance region of 

channel f.  The estimated stream width roughly agrees with the measured stream width 

from Figure 12 for FRRs of 5 and 10.  At higher FRRs IPA diffusion becomes substantial 

compared to the estimated stream width and diffusion must be considered for accurate 

streamwidth estimates.  Figure 12 shows a confocal microscope image sequence of the 

IPA concentration across and along the center channel as a function of varying FRRs 

increasing from 5 (left) to 35 (right) in increments of 5. 
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Figure 12  False color confocal microscope images showing hydrodynamic focusing 

of an IPA stream by two adjacent aqueous buffer streams (not visible). The focused 

IPA stream, containing sulforhodamine B for visualizing purposes, enters from the 

top.  Shown are 7 different FRRs, increasing from 5 to 35 in increments of 5 from 

left to right at a constant Qt of 100 µL/min. 

 
 

 

As the FRR increases, the alcohol stream width decreases.  A smaller alcohol 

stream width results in a shorter diffusion length, and therefore the IPA concentration 

decreases more rapidly.  The hydrodynamic focusing process due to extensional flow is 

completed once the focused stream enters the mixing channel (channel f). While mixing 

in the focusing region is due to both convection and diffusion, in the mixing channel it is 

dominated by molecular diffusion.

Laminar flow conditions in the channel allow for mixing that is based entirely on 

molecular diffusion in a direction normal to liquid flow streamlines.  At a critical 

alcohol-to-water ratio the lipid monomers in the alcohol stream become insoluble and 

spontaneously self-assemble into closed spherical structures concomitantly sequestering 

 40  



the surrounding fluid.  A smaller wfs results in reduced diffusion lengths for mixing 

between the alcohol center stream and aqueous side stream, thereby reducing the distance 

downstream of the focusing region to reach the critical alcohol concentration where lipids 

spontaneously self-assemble into spherical vesicles.  The effects of Qt and FRR between 

sheath and sample flow on liposome formation are investigated using MALLS and QELS 

combined with AF4. 

 

3.3.1 Influence of Qt and Shear Forces on Liposomes Formation 

Figure 13 shows the liposome size distributions for six different Qts ranging from 

30 µL/min (Re ≈ 6) to 180 µL/min (Re ≈ 6) at a constant FRR of 30.  At a constant FRR, 

the width of the focused lipid/alcohol stream remains constant because the liquid is 

incompressible, and therefore the stream width, does not depend on the magnitude of the 

inlet and side channel volumetric flow rates but on the FRR.  By maintaining a constant 

FRR and increasing the flow rates, the streamwidth and dilution rate remain constant; 

however, the shear forces at the interface of the two fluids increase.  As Qt increases 6-

fold from 30 µL/min  to 180 µL/min, the eluted liposomes are of approximately the same 

size and size distribution with a number weighted average geometric radius (Rg) of 29 nm 

and a distribution width of ±4 nm (≈3σ), as shown in Figure 13.  This indicates that the 

absolute magnitude of the shear forces between the parallel layered streams has no 

significant impact on liposome size or size distribution.  The increased noise in the data at 

a geometric radius less than 27 nm is due to lower concentrations and smaller sizes of 

particles, yielding a lower scattering intensity of the molecular solution. 
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Figure 13  Liposome size and size distribution at a constant FRR of 30 and different 

Qts.  Increasing Qt 6-fold does not change the size distribution significantly.  This 

indicates that the magnitude of shear stresses during liposome self-assembly has no 

or only little influence on the liposome size distribution. 

 

3.3.2 Influence of FRR on Liposomes Formation 

Figure 14 and Figure 15 show liposome size distribution at different FRRs.  As 

the FRR decreases the mean liposome size increases and the size distribution broadens.  

One possible mechanism to explain this phenomenon is as follows: assuming that the 

lipids are homogeneously distributed in the alcohol stream, when the alcohol stream first 

comes into contact with the aqueous streams, the lipids at that interface will quickly reach 

the critical alcohol concentration and self-assemble into liposomes.  The resulting 

liposomes have a markedly decreased diffusion coefficient and will convect along the 

stream lines of the fluid flow.  It is then possible that as the alcohol continues to diffuse, 

the alcohol concentration will increase in a direction normal to the streamlines.  If enough 
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alcohol is in the common alcohol-aqueous stream (i.e., the alcohol portion of the stream 

is wide enough), it will cause the local alcohol concentration around the liposomes, that 

were formed at the initial interface, to increase above the critical concentration for 

liposome formation and the liposomes to partially disassemble.  As the two streams 

continue to mix, the alcohol concentration near the initially formed liposomes will again 

decrease below the critical concentration, causing the liposome to reassemble.  As the 

FRR decreases, the amount of alcohol introduced into the system and the alcohol stream 

width increase, causing the alcohol concentration to remain above the critical alcohol 

concentration for a longer length of the channel, and the magnitude of this phenomenon 

will increase.  In contrast, as the FRR increases, the amount of alcohol in the system 

decreases, and fewer liposomes will experience alcohol concentrations high enough to 

induce this disassembly-reassembly phenomenon.  Further increases in FRR lead to 

smaller changes in the stream width and the size and size distribution asymptotically 

approach limits, which depend on the maximum focusing of the center stream by the four 

buffer streams. 
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Figure 14  Liposome size distribution for different FRRs.  Increasing FRR 6-fold 

reduces the liposome radius from approximately 55 nm to 25 nm and the size 

distribution from ±25 nm to ±5 nm (≈3σ). 

 

The QELS measurements of the hydrodynamic radii of the liposomes produced at 

different FRRs as a function of time as the liposomes elute from the AF4 channel is 

presented in Figure 15.  QELS allows determining the diffusion coefficient of particles 

through the autocorrelation of its time-dependent fluctuations of scattered light.  

Typically, this is transformed into Rh through the Stoke-Einstein relation, where Rh 

represents the radius of a solid sphere that has the same diffusion coefficient as the 

measured particles.  Measurement of Rh with QELS and Rg with MALLS allows for 

additional compositional characterization of the liposomes with respect to lamellarity.  
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From the data observed for Rh and Rg, it can be concluded that the liposomes are 

predominantly unilamellar. 
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Figure 15  QELS measurements of the hydrodynamic radius Rh of liposomes at 

different FRRs as a function of time.  A low FRR results in a rather broad liposome 

distribution with Rh varying between 30 nm and 70 nm.  As the FRR increases (30 

and higher) the average Rh decreases and the liposome size distribution becomes 

narrower with Rh varying between 22 nm and 27 nm.  The excess Rayleigh 

scattering ratio of the liposomes which depends on the number of liposomes and 

liposome size is shown on the right axis.  The Rayleigh-ratio or excess Rayleigh 

scattering is the excess of scattered light intensity of the liposome suspension above 

that scattered by the solvent itself. 
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Figure 16 shows a cryo-TEM image of approximately 100 nm diameter 

liposomes.  Cryo-TEM allows studying the shape, size, and morphology of the vesicles.  

As can be seen in Figure 16 the larger vesicles prepared with microfluidic hydrodynamic 

focusing appear to be unilamellar which is in agreement with the light scattering data.  

However, it can also be seen in Figure 16 that the vesicles are not perfectly spherical, 

which is most likely due to the liposome sample preparation for the cryo-TEM 

measurements. 

 

 

Figure 16  Cryo-TEM of unilamellar liposomes at 120 kV beam voltage and less 

than 1000 electrons per square nanometer electron dose.  The image shows 

unilamellar liposomes produced by the microfluidic hydrodynamic focusing 

method. 
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3.4  Summary 

The creation of liposomes using microfluidic techniques has been demonstrated to 

produce narrow liposome size distributions.  The average liposome diameter can be 

controlled by adjusting the fluid flow rates of alcohol and buffer in the microfluidic 

network.  Microfluidics allows for precise control of mixing over micrometer length-

scales.  Decreasing the sample streamwidth to micrometer length-scales allows for 

controlled and reproducible physicochemical conditions across the streamwidth, 

especially compared to more traditional bulk-phase preparation techniques (i.e., test tubes 

and beakers).  The laminar flow and precise fluidic control in a microchannel enables 

reproducible flow-fields for the self-assembly of lipids into liposomes in the sheathed 

flow-field.  The lipid self-assembly strategy described here, could potentially open 

applications for on-demand liposome mediated delivery of point-of-care personalized 

therapeutics; thus, liposome-mediated drug delivery could eliminate procedure dependent 

liposome shelf-life limitations. 
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Chapter 4: Geometric and Hydrodynamic Aspects of Liposome Formation 

The previous chapter showed that liposome size distributions can be controlled by 

varying the FRR between the solvent and aqueous buffer phase.  Discussions at 

conferences often raised the question if geometric parameters of the microchannel could 

possibly influence the liposome size distribution.  This chapter will show that similar 

liposome size distribution can be obtained from different microchannel geometries.  

Especially, the investigation of the microchannel geometry provided more detail and 

helped to further elucidate the liposome formation process.  This chapter also describes 

that reducing the microchannel geometry provides a means to increase the liposome 

concentration without affecting the final size distribution.  This is especially interesting in 

regards to increasing the encapsulation efficiency of compounds within liposomes. 
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4.1 Introduction 

A more thorough investigation of microfluidic hydrodynamic focusing (MHF) 

shows that the vesicle size distribution is not only a function of the FRR as previously 

reported47,48 but a rather complex function of multiple parameters.  While the FRR 

suffices to describe vesicle formation in one channel size and at a single flow rate, it is 

not predicable between different mixing channel designs and flow rates.  This chapter 

shows that the vesicle formation process depends strongly on the geometric parameters of 

the microchannel design (i.e. channel width and cross sectional area) and hydrodynamic 

parameters (i.e. FRR and flow velocity).  The numerical simulation section summarizes 

the results for vesicle formation based on the concept of two mixing regions; convective-

diffusive mixing in the focusing or transition region and diffusive mixing in the outlet or 

mixing channel. 

It will be shown that microchannels with a smaller cross sectional area produce 

comparable average vesicle diameters at lower FRRs than wider microchannels.  The 

findings indicate that neither the focused streamwidth nor the final alcohol concentration 

solely determine the vesicle formation process.  In certain flow regimes the flow velocity 

provides an additional parameter to modulate the vesicle diameter distribution.  

Numerical simulations of the experimental parameters that influence the mixing of 

alcohol with water show that liposome formation with MHF, though relatively simple 

experimentally implemented, is a complex system of mass and momentum transfer as 

well as self-assembly.  Additionally, batch-to-batch consistency is evaluated, which turns 

out to be another hallmark of the MHF method and strengthens its future applicability in 

drug delivery and point-of-care applications 
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4.1  Description of Experimental Procedures 

4.1.1 Device Fabrication 

Two different channel intersection layouts with varying microchannel widths are 

prepared.  The first design consists of a double-cross intersection in which two oblique 

side channels intersect with the corresponding end of the central channel at an angle of 

45 º.  The slanted inlet configuration is fabricated as described in the previous chapter.  

The microchannels have rectangular cross-sections as a result of the chosen dry etching 

technique (DRIE) with a depth of 120 µm, a center inlet width of 42 µm, and mixing 

channel width of 65 µm.  The side channel width is either 65 µm (Figure 17a) or 42 µm 

(Figure 17b).  The second design consists of two orthogonally intersecting microchannels 

with a rectangular cross section with a depth of 36 µm and a width of 10 µm 

(Figure 17c).  The latter design is fabricated in a similar manner as previously described 

with the microchannels on one side of the silicon wafer and the fluid access ports on the 

opposite side.  Fluidic reagents are introduced into the central microchannel using a 

gastight glass syringe (Hamilton, Reno, NV) and into the oblique side microchannels 

with standard syringes (BD, Franklin Lakes, NJ) by syringe pumps (model PHD2000, 

Harvard Apparatus Inc., Holliston, MA).  All fluids are filtered with 0.2 µm pore sized 

filters (Anatop, Whatman, NJ) to prevent particulate contamination and clogging of the 

microfluidic device. 
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b) 

c) 

a) 

 

Figure 17  Microscope images of the different channel layouts.  (a,b) All micro-

channels are 120 µm deep, the left center inlet channel is 42 µm wide, the right 

mixing channel is 10 mm long and 65 µm wide, and the oblique side channels are (a) 

65 µm and (b) 42 µm wide.  (c) All channels are 10µm wide and 36 µm deep. 
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4.1.2 Materials 

The lipid-blend (DMPC:Cholesterol:DCP in a molar ratio of 5:4:1) is prepared 

identical as described in the previous chapter.  The dried lipid blend is resolubilized in 

IPA at a 5 mmol/L concentration of total lipid.  PBS solution as previously described is 

used as a hydration buffer. 

 

4.1.3 Liposome Formation 

Unilamellar liposomes are prepared by injecting a lipid-blend dissolved in IPA at 

a concentration of 5 mmol/L into the center channel of the microfluidic network shown in 

Figure 17a-c.  PBS is injected into the two oblique side channels intersecting with the 

center channel.  The buffer-to-solvent flow rate ratio (FRR) is varied from 12 to 48 and 

from 6 to 36 in the 65 µm wide and 10 µm wide microchannels, respectively.  The 

average flow velocity in the mixing channel of the 65 µm and the 10µm device is held 

constant at 0.25m/s, when comparing the FRR.  Additionally, liposome formation at three 

different Qts (25 µL/min, 50 µL/min, and 100 µL/min) is investigated for different FRRs 

of 14, 19, 29, and 49 in the 65 µm wide microchannel design. 

 

4.1.4 Light Scattering and AF4 Procedure 

High-resolution size-based separation of each liposome population is carried out 

using AF4 with MALLS and characterization (model DAWN EOS, Wyatt Technology, 

Santa Barbara, CA) as described in the previous chapter.  The injected sample volume is 

120 µL. 
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4.2  Results and Discussion 

It is important to point out that the scaling of the devices is not ideal.  The aspect 

ratio between channel depth and nozzle width is approximately 3 for the 65 µm wide 

outlet channel (Figure 17a and b) and 3.6 in the 10 µm wide channel design (Figure 17c).  

The side channels in the 10 µm channel layout are perpendicular to the center channel, 

whereas in the in the 65 µm device they are at an angle of 45º.  The maximum average 

Reynolds number (Re) is approximately 3 in the 10 µm channel and approximately 20 in 

the 65 µm channel.  Nevertheless, the following results will show that the different 

channel layouts can be compared with each other.  The liposome size distribution for 

65 µm (Figure 17a) and 42 µm (Figure 17b) wide side channels is nearly identical, as is 

shown in Figure 18.  Similar FRRs between the two designs mean that the flow velocity 

in the 42 µm side channels is higher than in the 65 µm, while the average flow velocities 

in the mixing and lipid injection channel are about equal.  As can be seen from Figure 18 

a minor deviation between the liposome size distributions is apparent at a low FRR of 12.  

Due to the increasing sensitivity of the liposome size distribution towards low FRRs the 

small deviation may not be attributed to a different side channel width but may be an 

artifact of a slight variation at the low FRR. 

The very similar size distributions shown in Figure 18 suggest that the width of 

the side channel and the minor change in the area of the transition region where the 

lipid/IPA stream is focused do not strongly impact the liposome size distribution.  At 

similar FRRs, both designs produce comparable liposome size distributions.  With a Re 

of less than 40 at a maximum Qt of 200 µL/min in the mixing channel inertial effects are 

small.  Hence, mixing of the focused stream with the surrounding fluid should be 

independent of the angle between the side channels and the outlet channel.82  From these 
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results a comparison between the 65 µm (with 65 µm wide side channels) and 10 µm 

device is justified. 
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Figure 18  Comparison between 65 µm and 42 µm wide side channels at identical 

FRRs and a constant vm of 0.25 m/s.  The inlet channel width (42 µm) and mixing 

channel width (65 µm) is identical for both designs. 
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4.2.2 Influence of Microchannel Geometry on Liposome Formation 

A lipid blend resolubilized in IPA is injected through the center inlet channel and 

hydrodynamically focused into a narrow stream by two oblique buffer streams.  The total 

average flow velocity (vm) is held constant and is limited to 0.25 m/s for both channel 

geometries to ensure complete mixing of the focused IPA by the sheathing PBS streams 

before exiting the mixing channel.  Figure 19a and Figure 19b show the distribution of Rg 

for liposomes produced with the 10 µm and 65 µm wide mixing channels, respectively. 

Decreasing FRR from 36 to 6 in the 10 µm wide channel design produces peak 

vesicle number fractions with Rgs ranging from approximately 25 nm to 74 nm, while 

decreasing the FRR from 48 to 12 in the 65 µm wide channel design produces peak 

vesicles number fractions with Rgs ranging from about 28 nm to 70 nm.  The 10 µm 

channel geometry produces comparable liposome size distributions at about half the FRR 

of the 65 µm channel and hence about double the final alcohol concentrations in the 

liposome suspension.  Furthermore, it can be seen from Figure 19a and Figure 19b that 

the distribution shape changes from a skewed distribution to a more symmetric 

distribution as the FRR increases. 
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Figure 19  Distribution of the average geometric radius (Rg) of liposomes produced 

at different buffer-to-solvent flow rate ratios, FRR, and constant total flow velocity 

vm=0.25 m/s.  Liposome size distribution produced in a 10 µm wide and 36 µm deep 

channel (a) and in a 65 µm wide and 120 µm deep channel (b). 
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The results indicate that liposome formation is not solely dependent on focused 

stream width or on the final solvent concentration in the sample, in contrast to previous 

results where the injection of a larger amount of lipid-alcohol into pure buffer solution 

gives a larger polydispersity39.  Neglecting a slightly flattened parabolic flow profile in 

the channel due to a higher solvent viscosity, the focused stream width scales linearly 

with the mixing channel width, so that the focused stream width is approximately 

6.5 times larger in the 65 µm channel than in the 10 µm channel at a given FRR.  For an 

arbitrary FRR of 6 in the 10 µm device and 44 in the 65 µm device the focused stream 

width equals to approximately 1.4 µm in both mixing channels.  As can be seen from 

Figure 19 the liposomes size distributions vary significantly for these two cases.  

Although no liposome size distribution is shown for a FRR of 44 in the 65µm device, the 

liposome size distribution must be between that of a FRR of 36 or 48.  This can be 

explained by the fraction of convective-diffusive mixing of the focused alcohol-lipid 

stream with the sheathing buffer streams that occurs in the focusing region versus the 

diffusive mixing region in the outlet channel. 
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4.2.3 Influence of Qt on Liposome Formation at High and Low FRRs 

In the previous chapter it was shown that the vesicle size distribution remains 

nearly unaffected by Qt at high FRRs.47,48  While Qt has little impact on the average 

vesicle size at high FRRs (i.e. FRR > 30 in the 65 µm wide channel), its affect on the 

vesicle geometric radius increases noticeably towards lower FRRs (i.e. FRR < 20 in the 

65 µm wide channel), as seen in Figure 20.  Figure 20 a shows that decreasing Qt results 

in smaller vesicle radii and increasing homogeneity apparent by the increasing peak 

height.  Furthermore, it clearly shows that increasing Qt changes the shape of the vesicle 

distribution from a skewed distribution to a more symmetric distribution, similar to 

decreasing FRR.  From Figure 20 

 

 

a it can be seen that a FRR of 14 at a Qt of 25 µL/min 

produces a peak number fraction of the vesicle Rg at about 40 nm similar to a FRR of 19 

and a Qt of 100 µL/min (Figure 20 b).  However, a higher FRR produces a narrower 

vesicle radii distribution.  Figure 20b suggests that increasing Qt beyond 100 µL/min at a 

FRR of 19, can possibly produce larger and more homogenous liposomes than is possible 

with a lower FRR.  However, substantially increasing Qt beyond 100 µL/min at low 

FRRs requires a longer channel; otherwise mixing of IPA with PBS will be incomplete 

within the mixing channel.  Although the width of the vesicle radii distribution changes 

slightly, the peak height increases towards lower Qt at low FRRs, indicating an improving 

homogeneity.  As the FRR increases, the vesicle radii distribution changes only subtly 

with Qt.  Since Qt does not affect the vesicle size distribution at high FRRs it provides a 

means to increase the vesicle production rates.  Figure 21  shows that the same trend is 

apparent in the 10 µm wide channel design. 
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Figure 20  Liposome size distributions are determined with MALLS.  Increasing Qt 

from 25 µL/min to 100 µL/min at a constant FRR in the 65 µm wide channel 

increases the average liposome diameter.  The velocity dependence is subtle at high 

FRR of 49 and increases noticeably towards low FRR of 14 in the 65 µm wide 

microchannel while only slightly affecting the vesicle homogeneity. 
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Figure 21  Liposome size distribution determined with MALLS.  Increasing Qt from 

2.7 µL/min to 8.1 µL/min at a constant FRR of 6 increases the average liposome 

diameter in the 10 µm wide channel noticeably.   

 

4.2.4 Influence of Diffusive and Convective Mixing on Liposome Formation 

MHF does play an important role in applications that require short mixing times 

and low sample consumption.  In the MHF method a central stream is sandwiched 

between two adjacent streams and focused into a thinner stream, thereby reducing the 

mixing length, according to the FRR between the miscible center and adjacent streams.  

The width of the focused stream is proportional to the width of the mixing channel and 

inversely proportional to the FRR, neglecting a slightly flattened flow profile that 

deviates from a parabolic flow profile due to the different viscosities between IPA and 

water.48  The laminar flow in the microchannel makes this system very suitable for 

numerical analysis.83,84 The mixing of IPA with water is investigated by simulating the 

experimental flow conditions.  The obtained vesicle size distribution for the a FRR of 14 
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and 49 at a Qt of 25 µL/min and 100 µL/min (Figure 20a and d) and FRR of 6 at a Qt of 

2.7 µL/min and 8.1 µL/min (Figure 21) is explained on the concept of two mixing 

regions, the convective-diffusive transition region and the diffusive region in the outlet 

channel to explain the different vesicle size distribution. 

The concentration distribution of IPA sheathed by two adjacent water streams is 

simulated with a 2-dimensional model in FEMLAB 3.4 (Comsol, MA).  The simulation 

couples the convective and diffusive mass transfer of IPA with the full Navier-Stokes 

equation for incompressible flow, considering spatially varying viscosity that depends on 

the local IPA/water volume fraction.  The mass diffusivity of IPA and water results from 

the mass flux due to diffusion and the concentration gradient at the diffusive IPA/water 

interface.  The directionality of the mass flux occurs from high concentration towards low 

concentrations of the respective solute.  This means IPA diffuses from high concentration 

of IPA towards the aqueous phase whereas the water diffuses towards the focused IPA 

stream.  The model approximates flow at the vertical midplane with two-dimensional 

flow simulations which is an idealization of the three-dimensional channel flow in the 

microchannel.  The following state equations are solved iteratively, 

 

( )( ) 0=∇+∇⋅+∇+∇⋅∇− puuuu T ρη    (4.1) 

 

0=⋅∇ u       (4.2) 

 

( ) 0=+∇−⋅∇− uccD      (4.3) 
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where η is the dynamic viscosity, u is the velocity with components u and v in the x and y 

directions, ρ is the density, p is the pressure, D is the diffusivity, and c is the 

concentration of IPA. 

Equations 4.1 - 4.3 are subject to the following boundary conditions: 

 

( ) 0=wxu       (4.4) 

0ˆ =⋅∇ nc       (4.5) 

 

where xw denotes the location of the wall and n is the wall unit normal vector.  

Equation 4.4 accounts for the no-slip condition and no penetration boundary condition at 

the wall, while equation 4.5 enforces the condition of zero diffusional flux at the walls.85   

The boundary conditions at the inlets and outlets are as following (Table 1): 

 

 Center-inlet Side-inlet Outlet 

Concentration c=1 c=0 Convective flux 

( ) 0=⋅∇− ncD  

Velocity 

u: in x-direction 

v: in y-direction 

average velocity 

u=u0 

v=0 

average velocity 

u=0 

v=v0 

outlet flow, pressure 

p0=0 Pa 

( )( ) 0=⋅∇+∇ nuu Tη

 

Table 1  Inlet and outlet boundary conditions for the momentum and mass-diffusion 

analysis. 
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At the outlet, the diffusive mass transport is neglected in the normal direction of 

the microchannel cross-section and the mass-transport is mainly driven by convection.  

The convective flux boundary condition in regards to mass transport at the channel outlet 

eliminates concentration gradients in the flow direction; it is an appropriate boundary 

condition for convection dominated mass balances where the outlet concentration is 

unknown as in this simulation.  The average velocities in x- and y-direction are 

determined by the volumetric flow-rate (Qt) at the respective buffer-to-solvent flow rate 

ratio (FRR) across the respective inlet channel cross-section.  The center- and side-inlet 

channel length of the simulated geometry is approximately twice as long than the 

minimum channel length required for a constant velocity to develop into a parabolic flow 

profile according to Shah and London86 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+

⋅+
⋅≈ hD

hD
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where Le is the entrance length, Dh is the hydraulic diameter of the channel, and ReDh is 

the Reynolds number for the respective hydraulic diameter.  Hence, it can be safely 

assumed that a parabolic flow-profile is completely developed before the different fluids 

intersect at the channel intersection. 

In order to build a memory efficient model an unstructured mesh is chosen with 

low node numbers or low mesh densities far from the focused center stream and high 

node numbers (i.e. high mesh densities) within and in the immediate vicinity of the 

hydrodynamically focused stream.  The reasoning being that the concentration gradient is 
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the steepest in the immediate vicinity of the mixing interface and therefore requires a 

higher mesh density to reduce the error across the mesh elements.  Furthermore, the 

convective term leads to instabilities in the solutions; therefore a fine mesh is required to 

obtain a stable solution for the concentration field.  The minimum mesh element quality 

of 0.47 is above the acceptable value of 0.3.  Overall the mesh element quality is close to 

1.  In the incompressible Navier-Stokes application mode a triangular Lagrange p2-p1 

element is used.  Here, the velocity components are modeled with second-order Lagrange 

elements while the pressure is modeled with linear elements.  The final mesh and 

geometry are shown in Figure 22 
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Figure 22  Shown are the respected meshes for the 10 µm (a) and 65 µm (b) wide 

microchannel geometries.  The discontinuous rectangle in a) and b) show the 

truncated region for which the simulation results are shown in the following figures.  

The mesh of each geometry contains approximately 26.000 mesh elements, with 

higher mesh densities at the diffusive interface region between alcohol and water. 
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Homogenous mixing of IPA with water at the molecular scale is assumed in the 

simulation thereby neglecting micro-heterogeneities due to alcohol cluster 

formation64,65,68, which showed that the motion of water molecules is strongly correlated 

with those of alcohol in alcohol rich mixtures above 50 mol % and alcohol cluster 

formation below 20 mol %.  Viscous anisotropy due to mixing of IPA and water is 

accounted for by a fifth-order polynomial function fitting empirical data for the viscosity 

and mutual diffusion coefficient (D12) at different volume fractions reported by Pratt et 

al.67 (seeFigure 23). 
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Figure 23  Experimental data for the dynamic viscosity ( ) and the mutual 

diffusion coefficient for IPA/water mixtures ( ) are obtained from Pratt et al. for a 

temperature of 25 ºC.  The dashed curves represent fifth-order polynomial fits to 

the experimental data for the dynamic viscosity (- - -) and the mutual diffusion 

coefficient (- - -) that are applied to the simulation model. 
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The following simulations show the resulting IPA concentration profile and the 

corresponding diffusive flux qualitatively for two different FRRs and Qts in the 10 µm 

(Figure 24) and 65 µm (Figure 25) wide channels, respectively.  It is pointed out that the 

length of the focusing region between the 10 µm and the 65 µm channel design differs 

substantially.  The length of the focusing region is with 10 µm in the 10 µm device 

approximately 9 times shorter than in the 65 µm device, while the average flow velocity 

is about the same in both devices. 

It can be seen from Figure 24a and Figure 24c that a higher FRR causes a stronger 

focused stream at a specific Qt.  As the FRR increases the volume of the focused stream 

in the transition region decreases, while the surface area at the buffer-solvent interface 

increases.  The result of the inverse relationship between decreasing volume and 

increasing interface area at increasing FRR is, that the lipid depletion rate due to self-

assembly is higher than at lower FRRs.  The more lipid molecules are depleted within the 

convective-diffusive transition region, the less lipid molecules are available to form 

larger liposomes in the diffusion dominated mixing channel.  Conversely, at low FRRs 

the jet volume increases and the interface area decreases in the transition region resulting 

in a lower depletion rate of lipid molecules as a result of their self-assembly into 

liposomes.  The fraction of lipid self-assembly in the mostly diffusion dominated mixing 

channel increases compared to the liposomes formed in the convective-diffusive focusing 

region, resulting in a greater amount of larger liposomes.  
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a) e)
FRR=6; Qt=2.7 µL/min 

c) g)
FRR=36; Qt=2.7 µL/min

d) h)
FRR=36; Qt=8.1 µL/min

b) f) 
FRR=6; Qt=8.1 µL/min 

 

Figure 24  Simulated IPA concentration (a-d) and diffusive flux (e-h) profiles of the 

focused stream at a low FRR of 6 and a high FRR of 36 for a volumetric flow rate Qt 

of 2.7 µL/min and 8.1 µL/min in the 10 µm wide channel device. 
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Modulating Qt affects the convective-diffusive mixing of IPA and water in the 

focusing region as well as in the outlet channel section resulting in varying concentration 

profiles of IPA in water.  A decrease of Qt from 8.1 µL/min to 2.7 µL/min at a constant 

FRR of 6 for the 10 µm channel device results in a steeper IPA concentration gradient 

(Figure 24a and c).  Figure 24 shows the diffusive flux at low Qt, where a large fraction 

of the total diffusive flux is concentrated in the convective-diffusive transition region 

(Figure 24e).  On the contrary, as Qt increases a high diffusive flux can be seen over an 

extended region in the mixing channel (Figure 24f).  The shape of the focused stream 

changes only minutely, considering a slightly different flow profile due to a different 

mixing and hence viscosity profile.  This means that the surface-to-volume ratio does 

remain approximately constant at varying Qt and constant FRR.  Similar to decreasing Qt, 

increasing the FRR increases the amount of mixing of the focused stream in the focusing 

region.  At a high FRR of 36 IPA in the focused stream is strongly diluted within the 

focusing region and most of the diffusive flux occurs within or close to the convective-

diffusive mixing region, as can be seen in Figure 24c and Figure 24g.  Increasing Qt only 

slightly shifts the diffusive flux into the solely diffusive region in the outlet channel 

(Figure 24h).  Furthermore, the high focusing (high surface-to-volume ratio) depletes the 

lipid molecules due to self-assembly into liposomes at a higher rate.  Hence, the 

remaining lipid-molecules in the diffusive mixing region form not as many larger 

liposomes.  The same applies to the 65 µm wide channel and can be seen qualitatively in 

Figure 25. 
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FRR=14, Qt=25 µL/min a) e)

f) FRR=14, Qt=100 µL/min b) 

g)FRR=49, Qt=25 µL/min c) 

 

FRR=49, Qt=100 µL/min d) h)

Figure 25  Simulated IPA concentration profiles of the focused stream at the lowest 

FRR of 6 and the highest FRR of 36 for a volumetric flow rate Qt of 2.7 µL/min and 

8.1 µL/min in the 65 µm wide channel (a-d) and their respective diffusive flux (e-h). 
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The following image sequence in Figure 26 shows a comparison of the focused 

IPA stream in a the 65 µm wide microchannel imaged with a fluorescence microscope 

and the 2-dimensional model simulation for the respective FRRs of 14 and 49 and Qts of 

25 µL/min and 100 µL/min.  It also shows that the shape of the focused IPA stream is 

represented correctly in the simulation.  A measurement of the width of the focused 

stream is not possible as IPA and water continuously interdiffuse along the interface. 

 

Figure 26  A comparison of the fluorescent microscope image (a-d) with the 

respective simulation (e-h) shows a very good correlation in the shape and the 

approximate width of the focused stream.  This shows that the 2-dimensional model 

qualitatively represents the 3-dimensional experimental system.  The fluorescence 

microscope images are obtained with 30 µmol/L SRB dissolved in PBS injected from 

the oblique side channels and IPA injected through the center inlet channel at the 

respective FRRs and Qts shown in the images (e-h). 
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The results show that similar vesicle size distribution can be obtained in both 

channel geometries, despite the fact that lipid molecules convect through different 

concentration gradient per time along the symmetry line.  This suggests that the lipid self-

assembly time scale is shorter than the convective time scale for lipid molecules to 

convect along the steep concentration gradient in the 10 µm channel.  A high ratio of 

diffusive flux within the transitions region tends to produce smaller more homogeneous 

liposomes, while a higher fraction of the diffusive flux in the mixing channel region 

produces vesicles with a larger average Rg and broader size distribution.  The qualitative 

description of IPA/water mixing and depletion along the interface and the separation of 

the vesicle formation into two different mixing domains provide a unifying concept to 

explain the obtained vesicle size distributions at different flow conditions and geometries.  

From the results of both channel designs it can be concluded that increasing the FRR and 

thereby increasing the focusing of the IPA stream increases the fraction of lipid self-

assembly in the convective-diffusive transition region versus the diffusive mixing 

channel.  Figure 19 shows that a higher FRR results in smaller liposomes, suggesting that 

they are primarily formed in the transition region before the focused jet enters the mixing 

channel.  In contrast, a low FRR results in larger liposomes, which are primarily formed 

in the diffusively dominated mixing channel.  The results clearly indicate that the lipid 

self-assembly strongly depends on the solvent-buffer interface and not solely on the final 

solvent concentration or focused stream width. 
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4.2.5 Reproducibility of Liposome Formation with MHF 

The ability to produce similar average liposomes diameter with the same FRR and 

Qt repeatedly suggests a fundamental underlying mechanism and rules out that the 

formation occurs after the microchannel exit, where mixing is uncontrolled.  Figure 27 

shows the vesicle size distributions at a FRR of 19 and 49 and a Qt of 50µL/min, and 

150µL/min prepared on three different days with a complete new set of reagents.  The 

dynamic and static light scattering instruments have an accuracy of 2 % to 5 % for their 

respective particles size range (MALLS 10 nm to 500 nm, QELS 1 nm to 30 nm in flow 

mode) and obtain reproducibility between measurements of better than 1 %.  As can be 

seen in Figure 27, the average liposome geometric radius shows only minor variations 

that are within less than 10 % of the number-weighted average radii for each set of 

experiments.  It can also been seen that the weighted average radii varies less than 5 % 

for liposomes formed at a high FRR of 49.  The number-weighted average radii of 

liposomes prepared on different days but with the focus on applying similar conditions 

vary less than 10 % for larger vesicles and less than 5 % for smaller vesicles.  Variations 

in the sample preparation procedure such as desiccation time and the use of dry IPA vs. 

regular IPA reduce the batch-to-batch consistency especially for liposomes obtained from 

a less focused stream.  Batch-to-batch consistency is especially affected by the use of 

proper inline filters.  It is advisable to use syringe-filters with low to no dead volume and 

carefully wet them, paying specific attention to the removal of entrapped gas bubbles.  

Entrapped gas bubbles in the filter can induce oscillations during focusing and hence 

affect the liposomes size distribution in consecutive runs. 
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Figure 27  Shown are liposome size distribution of liposomes prepared in the 65 µm 

wide multiple-inlet channel design on three different days under various flow 

conditions; (a) FRR=19 and Qt=50 µL/min, (b) FRR=19 and Qt=150 µL/min, (c) 

FRR=49 and Qt=50 µL/min, and (d) FRR=49 and Qt=150 µL/min. 
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4.3  Summary 

The results of these experiments are used to elucidate several phenomena related 

to microfluidic directed liposome formation including the effects of focused stream 

width, alcohol concentration gradients, and flow velocity.  The combined effect of the 

technological advances and improved understanding of formation processes will 

potentially facilitate on-chip integration of this technique as well as its use in point-of-

care medical treatment.  Using a narrower channel width, the channel length can be 

reduced due to smaller focused stream width and shorter mixing times, reducing the 

footprint of the device for on-chip integration.  The smaller microfluidic device presented 

produces comparable liposome size distribution that are slightly narrower particularly 

between 60 nm to 80 nm liposome geometric radii, and higher liposome concentrations 

for a given size distribution due to lower buffer-to-solvent flow rate ratios. 

Changing the device geometry provides a simple means to increase the liposome 

concentration in a sample.  A higher vesicle concentration in the smaller channel 

geometry should therefore allow higher encapsulation efficiencies and may increase the 

applicability of liposome formation with MHF for drug delivery applications.  

Reproducibility measurements demonstrate that microfluidic liposome formation allows 

for consistency beyond that of other techniques, which is essential for the integration and 

application of this technique. 

The laminar flow conditions prevalent in MHF allows simulating mass and 

momentum transport and enables a more thorough investigation of the vesicle formation 

process.  The combined experimental and simulation results suggest that the obtained 

liposome size distribution can be correlated in a first approximation by considering the 
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formation in the convective-diffusive focusing region and the diffusive mixing channel 

region. 

The results discussed herein provide directions to be used in numerical simulation 

to improve channel design and optimize vesicle size distributions to hopefully provide 

very narrow vesicle size distributions of larger vesicles in the future.  The facile control 

of liposome formation with MHF provides a means to systematically investigate the 

liposome formation process.  A complete understanding of the formation process requires 

further investigation including viscous anisotropy of alcohol/buffer systems and the 

polarity and chemical potential of different alcohols. 

Considering the viscous anisotropy and polarity of various alcohols is a next step 

that may help to understand the different vesicle size distributions obtained with other 

solvent-water combinations such as ethanol or methanol in water.  Another effect not yet 

investigated experimentally but through simulation is viscous anisotropy.  The viscosity 

of an IPA-buffer mixtures increases from the viscosity of pure IPA, peaks at about 3 

times the viscosity of water, and decreases to the viscosity of water in the absence of IPA.  

This viscous anisotropy retards molecular diffusion at the IPA/water interface and can 

have a pronounced effect on the lipid self-assembly into liposomes.  A big role to further 

elucidate the lipid self-assembly process could come from molecular dynamics 

simulations combined with mass and momentum transport simulation. 
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Chapter 5: Controlled Encapsulation of a Model Drug in Nano-Liposomes 

The previous chapter focused on details of the liposomes formation process of 

with microfluidic hydrodynamic focusing (MHF).  It was demonstrated that geometric 

aspects regarding the channel design and hydrodynamic aspects such as FRR and Qt 

influence the final liposome size distribution.  This chapter focuses on the encapsulation 

characteristic of liposomes formed with MHF. 

 

5.1  Introduction 

Nanoparticles can either be used for drug delivery applications to achieve 

selective and sufficiently high localization of “active” drug at the disease site, or as 

container for single molecules studies.  A promising candidate for both spectra, high 

loading as in drug delivery applications as well as encapsulation of single or few 

molecule, are liposomes.  While selective localization by means of passive and active 

targeting is not in the scope of this work, the encapsulation characteristic of compounds 

into liposomes is.  In order to successfully apply liposomes in drug delivery applications 

it is important to controllably load the compounds (i.e. drugs, vaccines, therapeutics, etc.) 

of interest into liposomes.  This can be achieved by passive or active loading.  In the 

microfluidic approach as discussed in this work, the loading of liposomes is facilitated by 

passive means.  In conventional passive loading techniques, liposomes are formed in a 

bulk aqueous solution containing a homogenous concentration of water-soluble 

encapsulant.  Unfortunately, due to the formation method only a small fraction of the 

compound is eventually encapsulated and a large fraction of non-encapsulated compound 

needs to be recycled for further use.  In contrast to macro-scale batch liposome formation 
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and loading, microfluidics allows minimizing the amount of non-encapsulated compound 

by confining it solely to the immediate vicinity where liposomes formation and 

concomitant encapsulation occurs. 

A common approach to determine the amount of encapsulated compounds 

requires one to measure the liposome concentration, lyse the liposomes, and measure the 

fluorescence intensity of the new solution.76,87-89  This approach has several 

shortcomings.  First, the characterization process destroys the sample; second, lysing the 

liposome sample requires the addition of a surfactant (Triton X-100, etc) which itself 

typically shows strong fluorescent properties; finally, this approach assumes one can 

measure the absolute concentration of a liposome sample or that the concentration in a 

liposomes equals that in the initial medium90,91.  Techniques such as direct counting, used 

for cellular analysis, will not work for nanometer-sized liposomes and scattering 

experiments require model dependent parameters to estimate the true particle 

concentration.  These models can lead to large uncertainties in absolute particle numbers. 

The fluorophore sulforhodamine B (SRB) serves as a hydrophilic drug simulant 

that is encapsulated into liposomes to investigate the loading characteristic with MHF.  

The number of encapsulated SRB molecules is determined with fluorescence fluctuation 

analysis, which is a non-destructive technique.92-94  Specifically, we combine FCS 

analysis with the first two cumulants of the fluorescence intensity fluctuations to quantify 

the number of encapsulated SRB molecules.  In the analysis it is not assumed that the 

liposomes in a given sample are equally bright, but rather, the number of SRB molecules 

per liposome follows a Poissonian.  This allows analyzing the number of encapsulated 
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SRB molecules at low dye concentrations where the average number of encapsulated dye 

molecules is less than one. 

The ability to control the entrapped amount of compound by adjusting the flow 

parameters in the multiple-inlet microfluidic channel network is discussed.  Additionally, 

it is demonstrated that in the applied passive continuous-flow microfluidic encapsulation 

strategy, the number of encapsulated molecules depends on the liposome size and the 

compound concentration in the mobile phase.  It is shown that the microfluidic system 

allows controlling the number of encapsulated SRB molecules while minimizing the 

compound consumption. 

 

5.2  Description of Experimental Procedures 

The multiple-inlet microchannel design is used to investigate the loading 

characteristics of liposomes with MHF.  The fabrication of the microchannel is according 

to the previous chapters.  Briefly, the microchannels have a rectangular cross section due 

to DRIE.  The width of the center inlet channel is 42 µm, the mixing channel and the 

oblique side channels for PBS are 65 µm, and the two inner side channels for the 

compound to be encapsulated are 42 µm wide.  All microchannels are 120 µm deep. 

High resolution separation of the liposome population according to their 

hydrodynamic radius and subsequent size distribution analysis was performed using AF4 

with multi-angle laser light scattering (MALLS) and quasi-elastic light scattering (QELS) 

(model DAWN EOS and QELS, Wyatt Technology, Santa Barbara, CA) as described in 

the previous chapters. 
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5.2.1 Materials 

The lipid-blend composed of DMPC:Cholesterol: DCP at a molar ratio of 5:4:1 is 

prepared as described previously.  Sulforhodamine B (SRB) was dissolved in PBS at 

multiple concentrations ranging from 500 nmol/L to 500 µmol/L.  Polyethyleneglycol 

with a molecular weight of 6 kDa (from hereon referred to as PEG-6000) is mixed into a 

liposome sample at a concentration of 10 % by weight to determine if fast fluctuation 

measured with FCS stem from background SRB or encapsulated SRB. 

 

5.2.2 Liposome Formation 

A lipid mixture dissolved in IPA is injected into the left center channel of the 

microfluidic network, SRB dye is dissolved in PBS at a concentration of 0.5 mmol/L and 

injected into the two inner side channels, and PBS without SRB dye into the two 

outermost side channels all intersecting with the center channel, as is shown in Figure 28.  

Encapsulation studies to reduce the amount of non-encapsulated SRB were performed 

with a constant FRR of 35 and a Qt of 200 µL/min.  The total SRB dye content in the 

system was varied between 5 v/v % to 40 v/v % of the total liquid volume by adjusting 

the volumetric flow rate of the outer and the inner side-channels, respectively.  A volume 

of 500 µL of the liposome effluent was collected from the outlet channels of the 

microfluidic network and subsequently filtered through a polyacrylamide column with a 

MWCO of 6 kDa to remove non-encapsulated SRB.  In order to determine if gel filtration 

affects the liposome size distribution, multiple liposomes samples are prepared at a Qt of 

100 µL/min and 200 µL/min and at FRRs of 19, 29, and 39.  The samples are measured 

before and after gel filtration.  The number of SRB molecules encapsulated into 
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liposomes is investigated with vesicles prepared at a Qt of 100 µL/min and two FRRs of 

19 and 49; all side channels contained SRB dissolved in PBS at concentrations varying 

from 500 nmol/L to 250 µmol/L. 

 

 

 

Figure 28  False color confocal fluorescence micrograph of the microchannel 

network showing the fluorescent intensity of 0.5 mmol/L SRB in PBS injected into 

the left two inner side channels.  PBS without SRB dye is injected into the left two 

outer side channels, and lipid mixture is injected into the left center channel. 

 

5.2.3 Fluorescence Fluctuation Spectroscopy 

The experimental work is performed on a confocal fluorescence microscopy setup 

built upon an inverted microscope (Axiovert 200, Carl Zeiss, Germany), as shown 

schematically in Figure 29.  A frequency doubled Nd:YAG laser (SLM-532-50, 

Crystalaser, Reno, NV) operating in continuous wave mode at 532 nm is sent through the 

back aperture of a 63x, 1.2 NA, water-immersion microscope objective (Carl Zeiss, 

Germany).  The laser beam underfills the back aperture of the objective to create an 
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excitation volume greater than the diffraction limited volume.  The laser power measured 

after the light passes through the microscope objective is 150 μW.  A constant laser 

power is maintained by manually adjusting the polarization optics to eliminate intensity 

fluctuations between sample runs (on the order of 10 minutes). 

532 nm laserAPD

iris

sample

 

Figure 29  A schematic drawing of the experimental setup.  Not all lenses and 

mirrors are shown.  The adjustable iris before the microscope objective shutters 

down the input beam in order to increase the excitation volume.  The fluorescent 

light is sent back through the objective and passes through a dichroic mirror and is 

directed into the single photon counting module (APD).  TTL pulses from the APD 

are sent to a computer for processing. 

 

A chamber for the 100 µL of the sample solution (liposomes and free SRB dye) is 

made by drilling a 1 cm hole through a microscope slide and sealing both sides of the 

microscope slide with a #1.5 glass coverslip using vacuum grease.  Fluorescence light 

from the sample is focused down onto a 100 μm pinhole, appropriate dichroic mirrors 

and optical filters (Omega Optical, Brattleboro, VT) direct the fluorescence light of 
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interest onto the active area of an avalanche photodiode (AQR-SPCM-14, Perkin Elmer, 

Ontario, Canada).  Most photon arrivals create transistor-transistor logic (TTL) pulses 

that are sent to a peripheral component-interconnect (PCI) hardware counting card (PCI-

6602, National Instruments, Houston, TX). 

The TTL pulses are counted and analyzed with a homemade software (Labview 

8.0, National Instruments) multi-tau correlator having a temporal range from 4 μs to 2 s.95  

The software bins the number of photons arriving within 16 μs integration time to create 

a photon counting histogram (PCH).  The ACF and PCH is stored every 10 s.  Typically, 

30 data sets are collected for each sample from which the first two moments along with 

standard deviations are calculated.  Deadtime and afterpulsing effects are corrected for 

following a method described elsewhere.94  Occasionally, large photon bursts occur from 

a cluster of liposomes diffusing through the laser beam.  Any 10 s data-set that leads to a 

value greater than 4 standard deviations from their respective means for either of the first 

two fluorescence moments is discarded.  All results are reported with standard error bars 

at the 95 % confidence interval. 

The fluorescence properties of the detection system are calibrated with 1 nmol/L 

SRB in PBS.  A stock solution of 1 nmol/L SRB in PBS is prepared and 100 μL of it is 

measured before and after each liposome sample.  From the calibration data three 

parameters of interest are extracted; the free SRB diffusion time, τD(SRB), the ratio of the 

axial extension and waist of the excitation volume, z/w, and the molecular brightness of a 

single SRB molecule, xSRB.  The measurements result in a laser exaction volume and 

standard deviation of 11.2±0.5 fL, corresponding to a full beam waist w0 of 1.4 µm and a 
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diffusion coefficient D of 4 x 10-10 m2/s.  The brightness of a single SRB molecule is 

determined with a photon counting histogram as following, 

P

PP
xSRB

−Δ
=

2

.     (5.1) 

A non-systematic error of 5%-10% is present in the values for xSRB throughout the 

course of the day.  This drift is not dependent on laser power fluctuations because it is 

monitored before and after each sample run, and is stable during the measurement time of 

approximately 2-3 minutes.  There are also no moving parts in the laser path (e.g., flipper 

mount mirrors).  Therefore, this error is propagated as a standard deviation throughout all 

the relevant calculations. 

The autocorrelation of each liposome sample is used to extract the average 

number of background SRB molecules, NSRB, contained within the laser excitation 

volume.  It is assumed that the liposomes are non-interacting and point-like (no 

significant contribution of Brownian fluctuation from encapsulated SRB).  For this type 

of system, Qian et al. developed relationships between the mean and variance of the 

number of photon counts detected per unit time from this arrangement and the brightness, 

xi, and number, Ni, of the fluorescent species within the excitation volume.96 

  
P = N ixi

i=1

k

∑ + PB ,     (5.2) 

  
ΔP( )2

− P = N ixi
2

i=1

k

∑ ,     (5.3) 
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where  is a time average, 〈P〉 is the average number of photons detected per 

unit time, and   PB  is the average background count rate (count rate for a sample with no 

fluorescent species) which we assume to be Poissonian. 

Each liposome in a given ensemble contains an integer number, n, of SRB dye 

molecules (n = 0, 1, 2, …).  Liposomes containing n SRB molecules will be n times 

brighter than a free SRB molecule as long as the concentrations are within the non-self-

quenching regime of SRB.  The number of encapsulated SRB molecules across the 

liposome population is described with the brightness probability distribution, Π(n), 

defined as the probability for a given liposome to contain n fluorescent SRB molecules.  

It is assumed that not all SRB in our sample is sequestered into the liposomes, but rather, 

some amount of SRB is freely diffusing in the exterior of the liposomes.  For an 

ensemble of liposomes, each having an integer number of SRB molecules, the first two 

cumulants of the fluorescent signal can than be rewritten from eq. 5.2. and 5.3 as, 

[ ] BSRBlipSRBSRB PnxNQNP +⋅⋅+⋅=  and (5.4) 

( ) [ ]2222 nxNxNPP SRBlipSRBSRB ⋅+⋅=−Δ    (5.5) 

where, xSRB is the free SRB dye molecular brightness measured in the number of detected 

photons per molecule per unit time, Nlip and NSRB are the average number of liposomes 

and free SRB dye molecules (independent of n) within the laser excitation volume, 

PPP −=Δ  are the fluctuations about the mean number of detected photons per unit 

time, and 

[ ] ( )∑Π=
n

xx nnn ,      (5.6) 
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where [ ] represents and average over the brightness probability distribution.  Combining 

eq. 5.4 and 5.5 results in the following expression, 

[ ]
[ ]

( )
( )SRBdyeBSRB

SRBdye

xNPPx

xNPP

n
nJ

⋅−−⋅

⋅−−Δ
==

222
.   (5.7) 

Assuming all liposomes in a given sample are equally bright (a common 

assumption) is equivalent to setting [n2] = [n]2 and J = [n] equals the average number of 

dye molecules contained per liposome.  A more realistic assumption is that the number of 

molecules per liposome is given by a Poisson distribution ([n2] = [n]2 + [n]).  From this 

distribution we find an expression for the average number of molecules per liposome, 

n[ ]= J −1.       (5.8) 

Equation 5.8 is a critical result, namely a proper assumption of the brightness distribution 

function, Π(n), will avoid overestimates of encapsulated SRB in liposomes.  This 

observation becomes especially important in the low concentration limit ([n] < 1). 

 

5.3  Results and Discussion 

5.3.1 Liposome Size Distribution after Gel Permeation Chromatography 

Before analyzing the fluorescence intensity of the liposomes the non-encapsulated 

SRB in PBS must be removed.  This is accomplished by filtering 500 µL of the sample 

containing liposomes and non-encapsulated SRB through a 6 kDa MWCO 

polyacrylamide gel column.  A major concern during gel-filtration is the possible 

interaction of liposomes with the gel matrix of the column and thereby a change of the 

original liposome size distribution.  Figure 30 shows the liposome size distribution for 

two different sets of liposomes before and after gel permeation chromatography. 
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Figure 30  Shown are the liposome size distributions before and after gel permeation 

chromatography for liposome prepared at a FRR of 19, 29, and 39, at a Qt of 

100 µL/min (a) and 200 µL/min (b). 
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It can be seen from Figure 30 that the liposomes size distributions remain nearly 

unaffected after the gel filtration process within the investigated liposome diameter, 

ranging from approximately 60 nm to 90.  The results show that no artificial selection for 

a particular vesicles diameter occurs during the filtration process and the filtered 

liposome sample represents the liposome size distribution obtained during the formation 

process in the microchannel. 

 

5.3.2 Free SRB Dye Fluctuations 

The gel filtration process is sufficient for removing free SRB from the liposome 

sample.  Nevertheless, a small quantity of free SRB is often detectable.  The fluorescent 

contribution of the free SRB is negligible when the liposomes encapsulate a large number 

of SRB molecules.  However, in the case of low SRB loading into the liposomes, the 

background SRB component can become significant, as is shown in Figure 31.  As 

mentioned before, FCS allows extracting the background SRB concentration.  To 

estimate the free SRB concentration it is important to ensure that the fast component of 

the FCS measurement truly originates from external SRB in PBS and not from internal 

fluctuation of SRB inside liposomes as the vesicles translate across the focal volume. 

In order to prove that the background SRB concentration in our FCS 

measurements originates from freely diffusing SRB in PBS outside the liposomes and not 

from fluctuations of SRB inside the liposomes we add PEG-6000 at a concentration of 

10 % by weight to the sample.  PEG-6000 does not permeate through the liposome 

membrane; hence, it will increase the viscosity of PBS only outside but not inside the 

liposomes. 
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Figure 31  ACF from FCS measurements of liposomes with low SRB concentration 

fitted to a two component fit. 

 

Figure 32a shows the fast dye component FCS data for free SRB in PBS and with 

addition of PEG-6000 to PBS at a concentration of 10% by weight.  The addition of 

PEG-6000 increases the viscosity of the exterior PBS and increases the diffusion time of 

the contained particles.  An FCS measurement is performed on a liposome sample before 

and after the addition of the PEG-6000.  It can be seen from Figure 32 b that the liposome 

solution fit before the PEG addition has a fast component that matches the same time 

constant as the free dye in solution.  The liposomes after the PEG addition shows the fit is 

best performed with the slow diffusion component.  This is direct evidence that the fast 

component in the FCS measurement of the liposome sample indeed stems from 

background dye diffusing in the exterior PBS and is not due to fluctuations of SRB 

encapsulated within liposomes. 
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Figure 32  (a) Free SRB in PBS at 1 nmol/L concentration (red curve with τ=280 µs) 

and mixed with PEG-6000 at 10% by weight (blue curve with τ=850 µs).  The 

addition of PEG-6000 increases the viscosity and therefore decreases the diffusion of 

SRB.  (b) Liposomes formed at a SRB concentration of 500 nmol/L in PBS and 

subsequently mixed with PEG-6000 at a concentration of 10 % by weight.  The data 

is fit with a fast component (red curve with τ=280 µs) and slower component (blue 

curve with τ=850 µs).  The fit strongly suggests the fast dye component is affected by 

PEG-6000, which suggests that the fast component originates from free SRB and not 

from SRB encapsulated inside liposomes. 

b) 

 a)
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5.3.3 High Encapsulation of Low Concentrated SRB in Nano-liposomes 

The encapsulated SRB concentration in liposomes versus the SRB concentration 

dissolved initially in PBS was investigated for 60 nm and 80 nm vesicles at initial SRB 

concentration in PBS ranging from 500 nmol/L to 250 µmol/L.  SRB is a is membrane 

impermeable zwitterionic fluorophore with a net charge of zero at neutral pH (~7.4).97  

The maximum non-selfquenching SRB concentration is limited to about 1 mmol/L of 

SRB in PBS.  The maximum SRB concentration is a result of increasing background 

SRB after gel filtration and a maximum brightness of the liposomes measurable with the 

used avalanche photo diode (APD).  Higher concentration can certainly be encapsulated 

but require an optical density filter that reduces the fluorescence signal to avoid damage 

of the sensitive avalanche photo diodes.  Furthermore, SRB quenching needs to be 

considered at higher loading concentrations.  Figure 33 the liposome size distribution is 

shown for the 60 nm and 80 nm vesicles produced at a FRR of 19 and 49. 
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Figure 33  Vesicle size distributions obtained at a Qt of 100 µL/min and a FRR of 19 

and 49. 

 
It can be seen from Figure 34a, that the SRB concentration in the 80 nm vesicles 

amounts to approximately 39 % of the initial SRB concentrations within 10mmol/L 

and 100 µmol/L dissolved in PBS.  In between we can see that the concentration of 

encapsulated SRB is slightly higher but always below the starting concentration of SRB 

in PBS.  However, as can be seen in Figure 34b, the 60 nm vesicles show an 

unexpectedly high SRB concentration that exceeds the starting concentration of SRB 

dissolved in PBS at SRB concentrations below 100 µmol/L.  Notice the experimental 

data approaches zero, which suggests the Poissonian loading assumption is valid and 

also, that the molecular brightness is unaffected by being encapsulated in the liposomes.  

A single encapsulated SRB molecule appears as bright as a single free SRB molecule in 

PBS. 
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Figure 34  Average number of encapsulated SRB molecules in 80 nm (a) and 60 nm 

(b) diameter vesicles.  The red curve represents the number of encapsulated SRB 

molecules where the concentration in the liposome equals the starting concentration 

of SRB in PBS.  The blue curve is the best weighted fit for encapsulated SRB that 

amounts to 39 % of the SRB concentration in PBS.  The error bars show the 95% 

confidence interval calculated by multiplying the error propagated standard 

deviation by 1.96 and dividing by the square root of number of 10-second intervals 

measured for a given loading concentration (generally 25 sets). 
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The higher SRB concentration in the smaller vesicles, although not yet confirmed, 

may be due to a spatial SRB concentration enhancement induced by viscous anisotropy 

and partitioning of SRB in the microchannel as IPA mixes with aqueous solutions.  The 

number of encapsulated SRB molecules generally increases with increasing SRB 

concentrations.  The fluorescence measurement show that liposomes with a diameter of 

80 nm encapsulate a slightly larger average numbers of SRB molecules than 60 nm 

liposomes at concentrations of SRB in PBS > 100 µmol/L.  This seems obvious 

considering that 80 nm diameter vesicles have an approximately 2.5-fold larger interior 

volume than 60 nm vesicles.  Despite the larger aqueous interior of the 80 nm vesicles the 

number of encapsulated SRB molecules is only 50 % higher than that of the 60 nm 

vesicles (within the measured range) and therefore results in an overall lower SRB 

concentration than the SRB concentration in PBS for the larger vesicles.  Considering the 

larger volume of the 80 nm vesicles it is surprising that the 60 nm vesicles encapsulate 

more SRB molecules when the SRB concentration in PBS falls below 100 µmol/L.  From 

the simulation it can be seen in Figure 35 that the mixing of IPA and PBS in the sheathed 

flow results in a viscous anisotropy across the two mixing streams that is highly non-

linear.  The viscosity increases three-fold from the viscosity of PBS as it mixes with IPA.  

This viscous anisotropy and a possible partitioning of SRB between IPA and PBS could 

manifest in an SRB enhancement in the highly viscous region where the diffusion 

coefficient of SRB reaches a minimum.  Investigations are currently underway to further 

validate this phenomenon. 
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Figure 35  Simulation of IPA and PBS mixing during hydrodynamic focusing.  The 

resulting concentration profile (a), viscosity distribution (b) and mutual diffusion 

coefficient (c) are shown for the mixing of IPA and PBS.  The viscosity ratio and 

normalized diffusion coefficient for SRB within of the simulation in (b) and (c) are 

shown in the graph in (d).  Greatly exaggerated shown is the enhancement of SRB 

as a results of viscous anisotropy and possible partitioning between IPA and PBS. 
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5.3.4 Reducing the Amount of Non-Encapsulated SRB with MHF 

Control of the number of encapsulated SRB into liposomes was studied by 

injecting different volume fractions of SRB (2.5 v/v %, 5 v/v %, 10 v/v %, 20 v/v %, 

30 v/v %, 40 v/v %) with a total VFR of 200 µL/min.  The confocal fluorescence images 

in Figure 36 illustrate the fluorescence intensity of SRB for various PBS-to-SRB flow 

rate ratios.  It can be seen that increasing the volumetric flow rate of SRB, while keeping 

the overall PBS flow rate constant, reduces the amount of mixing of SRB prior to the 

focusing region (see  

 

Figure 36).  The degree of mixing between SRB and the adjacent 

PBS depends on the flow velocity, SRB-to-PBS flow rate ratio, and length of the channel 

section between the SRB injection and the center inlet channel over which mixing can 

occur.  Figure 36d illustrates a side channel that is completely filled with SRB, which 

would be analogous to encapsulation with the batch solvent injection method, in which 

the buffer contains a homogenous distribution of the solute to be encapsulated into the 

liposomes.  In addition to controlling the number of molecules loaded into the liposomes, 

a reduced volume fraction of SRB was determined that allowed encapsulation without 

adversely affecting the SRB concentration in the liposomes. Figure 37 shows the 

liposome size and size distribution obtained during the encapsulation studies.  It further 

demonstrates the high reproducibility of liposome formation achievable in a microfluidic 

format. 
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c) d) 

a) b) 

 

Figure 36  False-color confocal fluorescence micrograph of the microchannel 

network showing the fluorescent intensity of 0.5 mmol/L SRB in PBS injected into 

the left two inner side channels.  PBS without SRB dye is injected into the left two 

outer side channels, and lipid mixture is injected into the left center channel.  The 

total Qt is 200 µL/min and the FRR is constant at 9.  The SRB volume fractions 

shown are 5 % (a), 25 % (b), 50 % (c), and 100 % (d). 
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Figure 37 shows the normalized vesicle size distribution for a FRR of 35 and a Qt of 

200 µL/min at different volume fractions of SRB.  It can be seen from Figure 37 that the 

vesicle size distributions remains approximately constant and the largest fraction of the 

vesicles have a geometric radius, Rg, which varies slightly between 29 nm and 32 nm. 
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Figure 37  Similar liposome size and size distribution at constant Qt of 200 µL/min 

and FRR of 35 for 6 different volume fractions of SRB in the total sample volume. 

 

Figure 38 shows that the volume fraction of SRB can be reduced significantly 

before a moderate change in the amount of encapsulated SRB is detected.  A 40-fold 

reduction in SRB content reduces the total number of encapsulated SRB molecules by 

about a factor of 2.  In contrast to common batch fabrication methods, microfluidics has 

the ability to spatially localize the encapsulant to the immediate vicinity where 

encapsulation is expected and thereby reduce the encapsulant waste substantially without 
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adversely affecting the concentration of compound inside the liposome.  Control of the 

encapsulated SRB concentration in liposomes can be achieved below 20 v/v % of SRB of 

the total sample volume.  This allows for tuning the concentration of compound 

encapsulated in the liposome from an initial SRB concentration. 

 

0 5 10 15 20 25 30 35 40 45
5

6

7

8

9

10

11

12

13

14

A
vg

. #
 o

f S
R

B
 m

ol
ec

ul
es

 p
er

 li
po

so
m

e

SRB volume fraction [v/v%]

 
Figure 38  Data shows the number of SRB molecules per liposome along with the 

95 % confidence interval.  Reducing the SRB volume fraction reduces the number 

of encapsulated SRB molecules from about 14 to 7.  Maximum encapsulation is 

already achieved at 20 % volume fraction of SRB in the channel, reducing the SRB 

waste by almost 80 %. 

 

Varying SRB concentrations inside the liposomes are facilitated by the laminar 

flow conditions in the microchannel which enables controlled diffusive mixing at the 

liquid interfaces prior to mixing with the center stream.  In macro-scale batch-processing 
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this can only be achieved by replacing the entire buffer volume.  Filling all side-channels 

with PBS containing SRB is representative of common batch processing. 

In addition to reduced sample consumption, which is desired from an economical 

standpoint, the continuous-flow microfluidic approach allows controlling the 

concentration of the substance to be encapsulated from an initial starting concentration 

via controlled diffusive mixing.  This enables facile control of the concentration of 

encapsulated SRB into liposomes. 

 

5.4  Summary 

The formation of liposomes and encapsulation of a hydrophilic drug simulant 

(SRB) has been demonstrated using a microfluidic technique.  Microfluidics enables 

reproducible and fine control over liposome size and size distribution, tunable loading of 

liposomes, and substantially reduced encapsulant consumption, without adversely 

affecting the encapsulation.  The waste of compound (SRB) can be reduced significantly 

by confining it to the immediate vicinity where liposome formation and concomitant 

encapsulation occurs.  The perturbation of the liposome size distribution after gel 

permeation chromatography is minute.  Additionally, results showed an unexpectedly 

high loading of low concentrated SRB for small vesicles produced at high FRRs.  It is 

hypothesized that viscous anisotropy and partitioning of SRB, as a result of the mixing 

between IPA and PBS, leads to diffusive retardation at locally high viscosities at the 

diffusive liquid-liquid interface and therefore spatial concentration enhancement of SRB.  

This new technique could yield an improvement over the generally low encapsulation 

efficiencies of liposomes observed with passive loading methods, especially with a 
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smaller channel design which increases the liposome concentration and thereby could 

further enhance the encapsulation efficiency. 

The simplicity of this liposome formation and drug encapsulation strategy could 

allow for implementation in point-of-care drug encapsulation, eliminating shelf-life 

limitations of liposome preparation and reducing encapsulant consumption.  Furthermore, 

fluorescence correlation spectroscopy in combination with fluorescence cumulant 

analysis provides a non-destructive approach to determine average loading efficiencies 

and has the potential for integration in future lab-on-a-chip applications and for online 

liposome characterization. 

 101  



Chapter 6: Summary and Future Work 

This dissertation demonstrates a novel microfluidic method to continuously 

produce liposomes with an average diameter in the range of 50 nm to 150 nm and 

controllably encapsulate a hydrophilic drug simulant.  The liposome size range is relevant 

for drug delivery applications from the standpoint of clearance rate by the mononuclear 

phagocyte system and permeation through for example fenestrated tumor vasculature.  

Furthermore, the achievable liposome size range is also interesting for nanometer-scale 

confinement strategies in single molecule studies.  A single or a few molecules can be 

compartmentalized in nanometer-scale liposomes which can be subsequently tethered to a 

surface while enabling free Brownian motion of the entrapped molecules.  This is in 

contrast to common single molecules studies where the molecule of interest is tethered to 

a surface to facilitate long observation times. 

The narrow liposome size distributions obtained with MHF do not require size-

altering post-processing procedures which often decrease the yield of the liposome 

sample through further dilution.  A comparison of liposome size distributions obtained 

with different methods is shown in Figure 39.  It shows the liposome size distribution 

obtained with MHF without any further post-processing, after 11 cycles of membrane 

extrusion through a 100 nm pore filter at elevated temperatures, and with the cross-flow 

method by Wagner et al.41. 
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Figure 39  A comparison of liposome size distribution obtained with different 

methods. 

 

The continuous-flow approach maintains a stable solvent/buffer concentration 

distribution.  This is in contrast to the standard solvent injection method where the 

solvent concentration changes continuously during the injection process until the entire 

desired amount of solvent/lipid mixture is injected into the beaker.  The liposome size 

distribution remains constant for a particular flow condition and channel geometry and 

can be continuously collected.  The MHF method allows facile control over the liposome 

diameter by adjusting the FRR or Qt that has not been reported with any other method. 

A non-destructive methodology was developed to determine the true 

concentration of encapsulated SRB in liposomes using fluorescence fluctuation 
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spectroscopy.  This technique can potentially be integrated into a microchip format and 

hence, can enable real-time on-chip characterization for purposes of quality control.  It 

was shown that the encapsulation depends on the concentration of the compound in the 

mobile phase as well as the size of the liposomes.  The loading behavior of the liposomes 

can potentially contribute to understanding the self-assembly process in the solvent 

injection method with MHF. 

The comparison of different channel geometries and fluid dynamic parameters 

revealed that the liposome concentration can be increased by reducing the channel widths 

without affecting the liposome size distribution.  The investigation of the channel 

geometry resulted in the distinction of liposome formation in convective and diffusive 

mixing regimes.  Increasing the liposome concentration is especially interesting in 

regards to improving the encapsulation efficiency of compounds into liposomes.  In 

addition, reducing the footprint of the microchannel network makes it more amenable to 

integration in lab-on-a-chip devices. 

The MHF method pushes the benchmark in regards to reproducible liposome 

formation.  Liposomes of constant diameter can be formed over extended periods of time 

as long as the hydrodynamic parameters are not varied, with the time only being limited 

to the size of the containers or syringes that contain the buffer and solvent. 

Liposome formation with MHF provides predictable momentum and mass 

transport due to laminar flow and enables the investigation of non-observable parameter 

with fluid dynamics and mass transport simulations.  A continuation towards molecular 

dynamics simulation may eventually elucidate the assembly process on a molecular scale.  
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The investigation of fundamental parameters instead of process parameter can help to 

increase the understanding of lipid self-assembly. 

The facile control of lipid self-assembly into liposomes with MHF combined with 

highly sensitive (single molecule detection) fluorescence fluctuation spectroscopy 

showed an unexpected encapsulation behavior at low compound concentrations.  The 

concentration of encapsulated compounds exceeds the initial concentration in the mobile 

phase.  The origin of this phenomenon is not yet clearly understood and requires further 

investigation. 

 

6.1  Future Work: Functionalizing Liposomes 

The successful formation of liposome and encapsulation of compound was 

demonstrated with this technique.  Future work will focus on two topics; (a) entrap 

medically relevant drugs into liposomes with MHF and conduct cell-uptake studies of 

these liposomes in vitro as well as with animal studies, (b) reconstitute membrane 

proteins into the lipid bilayer during the lipid self-assembly process with MHF. 

Membrane proteins are key factors in many vital functions of the cell and their 

investigation is essential to understanding their ligand and signaling pathways which are 

fundamental for a wide spectrum of physiological processes. 

The goal of the second project is to develop a microfluidic method for the 

screening of membrane protein inhibitors in a solution-based format.  As an example of 

this screening of inhibitors of the cell surface receptor CD47 is envisioned.  CD47 will be 

reconstituted into liposomes created by the MHF technique47,48.  One of CD47 natural 

ligands is thrombospondin 1 (TSP-1); currently known as the only protein-ligand 

relationship that blocks physiologic nitric oxide (NO) signaling.98  The control of the 
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regulatory function of TSP-1 on NO signaling is of paramount importance for the 

recovery from ischemic injuries and to overcome a deficit NO-responsiveness in aging.98 

Microfluidically engineered liposomes carrying the reconstituted CD47 will be 

exposed to potential blocking agents; as the agent interacts with CD47 it will prevent the 

interaction of CD47 (and the liposomes attached to it) with a surface bound CD47 agonist 

of a liposome binding assay.99  Currently, screening of potential therapeutic agents that 

block NO-signaling via CD47 is accomplished with cell culture assays100 which lack 

efficiency and consistency, often cause false positives, are very elaborate, and add 

complexity because of the variable and somewhat uncontrolled nature of primary 

vascular cells.  Engineered liposomes that have a controlled size, a high concentration of 

encapsulated marker, and that only display the membrane receptors for a specific 

application would provide a sufficient and simplified cellular mimic for a microfluidic 

binding assay. 

The continuous-flow microfluidic chip shown in Figure 40 will be produced in 

low-fluorescence cyclic olefin copolymer (COC).  COC is a halogen-free, high purity 

plastic that is known to be useful in diagnostic and medical devices.101  Precision micro-

milling of COC allows rapidly designing and optimizing a microchannel layout.  

Exposure of the COC microchannel network to O3 allows it to easily bond to a glass 

microscope slide patterned with several molecules including CD47 blocking antibodies, 

TSP-1, or signal-regulatory protein α (SIRPα).102 
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c) 

a) b) 

Figure 40  (a) Schematic of a microfluidic immunoassay that combines liposome 

formation, liposome functionalization with membrane bound proteins, 

immobilization of the liposomes to a specific target printed on a glass microscope 

slide, and fluorescent evaluation of fluorescent laden liposomes immobilized to its 

therapeutic agent.  (b) Bottom view through the microscope slide of the assembled 

COC microchannel. (c) Cross section view along the symmetry line, showing the 

lower channel height in the immobilization chamber. 

 

Two continuous-flow microfluidic methods are proposed to functionalize 

liposomes with CD47.  CD47 is reconstituted either into preformed liposomes (two step 

process) or reconstituted during the lipid self-assembly into liposomes (one step process).  

The inhibition of CD47 is addressed by producing fluorescent/biotinylated liposomes 

from a lipid blend and reconstitute purified CD47 (readily available through the 

laboratory of Dr. David Roberts at NCI, NIH, Bethesda, Maryland)100 in the lipid 

membrane.  A schematic of the functionalized liposome containing either entrapped SRB 

or membrane intercalated biotin is shown in Figure 41. 
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Figure 41  Liposome with reconstituted CD47 and encapsulated fluorophores (SRB) 

for fluorescent readout.  (c) Liposome-CD47 complex with biotinylated lipids to 

which a horseradish peroxidase-streptavidin complex can be attached for a 

subsequent colorimetric readout. 

 

In the two step process fluorescent liposomes with controlled average diameters 

from 50 nm to 150 nm are formed separately in a continuous-flow microfluidic device as 

previously demonstrated47,48 and injected into the two inner side channels at the star-like 

intersection of the flow focusing device shown in Figure 40. 

Secondly, phosphate buffered saline (PBS) containing soluble CD47 and a low 

concentration of a mild detergent (to prevent the aggregation of CD47), n-octyl-D-

glucopyranoside (OG) is injected into the center channel and sheathed between the two 

adjacent buffer streams containing fluorescent liposomes.  Alternatively, CD47 is 
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solubilized in the outer sheath-flow and the liposomes are injected into the center stream.  

The narrow streamwidth in both scenarios rapidly dilutes OG into the surrounding buffer 

solutions, similar to the detergent dialysis methods, originally developed for the 

reconstitution of membrane proteins with OG103, to achieve subsequent intercalation of 

CD47 into the lipid membrane. 

In the one step procedure a lipid tincture is injected into the center channel of the 

flow-focusing device and PBS containing soluble CD47 and a low concentration of OG is 

injected adjacent to the center lipid stream.  CD47 reconstitution into the liposomes 

occurs during the lipid self-assembly process and can be optimized by either injecting 

PBS containing CD47 into the inner or the outer two side channels of the microfluidic 

device shown in Figure 40. 

Incorporation of CD47 into the lipid membrane and determination of the binding 

constant will be evaluated with epi-fluorescence microscopy or colorimetrically as 

liposomes bind to surface tethered CD47 antibodies, TSP-1, SIRPα, or agonist peptides, 

i.e., 7N3 or 4N1K104,105. 

A liposome binding assay will be used to optimize the process parameters for the 

reconstitution of CD47 into liposomes with microfluidics.  For the colorimetric readout 

of the liposomes binding assay the lipid blend contains a low molar fraction of 

biotinylated lipids which are incorporated into the liposome during the lipid self-

assembly process.  CD47 antibodies, TSP-1, or SIRPα are adsorbed to a commercially 

available polystyrene microtiter plate according to standard protocols.  The surface is 

then treated with (i) liposomes functionalized with CD47 and biotin that bind to the 

surface adsorbed proteins of interest and unbound liposomes are washed away; and (ii) a 
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solution containing the peroxidase-streptavidin complex.  After the unbound enzyme-

complex is washed away substrate is added to the wells.  The product formation can be 

monitored colorimetrically.  For the fluorescent readout SRB dissolved in PBS will be 

encapsulated into the aqueous interior of the liposome. 

Highly fluorescent functionalized liposomes are suitable for future high-

throughput screening of NO-signaling blocking agents in the volume-limited microfluidic 

domain where binding events will be evaluated with epifluorescent microscopy.  Once 

the optimal parameters to reconstitute CD47 are developed the liposome-CD47 complex 

will be tested against a therapeutic agent to determine its functionality.  This will be 

achieved with a liposome binding assay in which TPS-1, SIRPα, or CD47 antibodies are 

tethered to the surface of a polystyrene titer plate and functionalized liposomes as well as 

the therapeutic agent are added. 
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Appendix A 

Gel Permeation Chromatography 

Gel permeation chromatography is a method that allows separating molecules of 

different dimension based in their relative abilities to penetrate into a suitable stationary 

gel matrix.  The stationary matrix consists of very small, uncharged porous particles and 

is packed into a column.  Based on the pore size of the stationary phase different levels of 

separation can be achieved.  In the context of this dissertation gel permeation 

chromatography is used to separate non-encapsulated fluorescent dye molecules from a 

sample containing vesicles with encapsulated dye.  A mixture sample containing non-

encapsulated fluorophores and vesicles with encapsulated fluorophores are added to the 

top of a column.  As the mixture passes through the column the much smaller 

fluorophores penetrate into the porous gel beads and follow a convoluted pass through 

the bead while the larger vesicles remain in the mobile solvent phase and hence elute 

faster than the fluorophores.  Figure 42 shows a cartoon of the separation process where 

the larger particles elute faster compared to the small fluorophores that are slowed down 

by their convoluted pass through the porous beads.  

The technical grade fluorophore sulforhodamine B (SRB) (Sigma Aldrich) with a 

molecular weight of 580.6 g/mol is separated from the vesicles through a 5 mL 

polyacrylamide column with an exclusion limit for globular proteins of 6 kDa MWCO 

(Pierce, Rockford, IL, USA).  The polyacrylamide column has a void volume of 1.75 mL 

and a wet bead diameter of 90 µm to 180 µm.  The columns are flushed with 60 mL (at 

least 5 column volumes) of PBS at a flow rate of 150 µL/min to equilibrate the column.  

To obtain an optimal sample separation the sample size should not exceed 10 % of the 
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column volume.  A sample of 500 µL is collected from the outlet of the microfluidic 

network and subsequently filtered through the polyacrylamide column.  2mL of pre-

filtered PBS solution (PBS is filtered with a 0.2 µm filter) is added to the column after 

the 500 µL of sample has entered the gel.  The initial 500 µL effluent is discarded as 

waste because it will not contain any vesicles since the column size has a volume of 

1.75 mL of which 500 µL are sample.  This approach reduces the dilution of the sample 

after gel permeation chromatography.  The remaining 1.5 mL is collected in black 1.5 mL 

volume centrifugation tubes (Daigger, Vernon Hills, IL, USA) to prevent photobleaching 

of SRB by ambient light.  After the separation is completed the columns are equilibrated 

with 60 mL of PBS to separate subsequent samples. 

 

Figure 42  Schematic of the separation of a mixture of fluorophores and vesicles 

with encapsulated fluorophores based on their size. 
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Lightscattering 

A variety of measurement methods exist to determine the average vesicle size.  

While the repertoire of methods is manifold, only few accurate and convenient methods 

that do not require assumptions about the fundamental nature of the particle size 

distributions are available.  Transmission Electron microscopy (TEM) (e.g., cryo- and 

freeze fracture-TEM), sedimentation field-flow fractionation, nuclear magnetic resonance 

(NMR) spectroscopy, and static and dynamic light scattering are among these methods.  

TEM can introduce artifacts and is destructive of the liposome sample whereas 

sedimentation field-flow fractionation requires a complex centrifugation apparatus.  Size 

exclusion chromatographic methods require column calibrations, often standards whose 

molecular weight values have been previously measured with light scattering.74  

Nondestructive methods based on dynamic light scattering and NMR can yield accurate 

average vesicles sizes but require user input of the size distribution functional form.  The 

lack of complete understanding of the vesicle size distribution shape that results from 

various synthesis methods does not allow to measure the vesicle size distribution 

unambiguously with DLS or NMR.106  However, combining a separation method, 

asymmetric flow field-flow fraction (AF4) with continuous-flow multi-angle laser light 

scattering (MALLS), provides a convenient non-destructive method for measuring 

absolute vesicle size distributions without any prior assumptions about the nature of the 

distribution function form. 

A great advantage of light scattering over other technologies for particle size 

analysis such as optical and electron microscopy, sedimentation, centrifugation, filtration, 

diffusion, size exclusion chromatography is that the system under study can be observed 

in situ without significant perturbations.  The theory permits reduction of the data directly 
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to the final result without the need of secondary calibration schemes as often required in 

size exclusion chromatography.  The measurements are almost instantaneous and can be 

recorded continuously so that rate processes may be followed.107  Particle analysis by 

light scattering requires that the particles are randomly positioned in space and hence the 

system must be sufficiently dilute.  The result of this dilution is that the scattering of an 

array of particles is incoherent, meaning that the phase shift of the scattered light by the 

particles is random and the scattering intensities are simply added.  This assumption 

allows using the scattering function or form factor corresponding to an isolated particle. 

 

Quasi-Elastic Light Scattering 

Quasi-elastic light scattering (QELS), also known as dynamic light scattering, is a 

method to determine the average radius of a sample of vesicles in solution.  In QELS 

rapid time-intensity fluctuation in the scattered light by the suspended vesicles are 

analyzed, which are a result of the Brownian motion of the vesicles in solution.  The rate 

of the time-intensity fluctuations is directly related to the translational diffusion 

coefficient of the vesicles.  Figure 43 shows schematically that the rate of the time-

intensity fluctuations is inversely proportional to the vesicles size, in that smaller vesicles 

produce higher time intensity fluctuations and vice versa.  While the analysis of QELS 

data is straightforward for monodisperse samples, it becomes more complicated for 

unfractionated polydisperse samples.  Major limitations of QELS are its sensitivity to 

large vesicles in the dispersion and that it requires a priori assumptions of the size 

distribution of the vesicles in the sample.108  It has been demonstrated by Wong et al., 

that if a dispersion containing 10 % or more of larger vesicles of a mixture of 20 nm and 
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90 nm diameter vesicles, the size detected by QELS is that of the larger 90 nm 

vesicles.109  Due to successive improvements of computational analysis of intensity 

fluctuations, a priori assumption of the vesicle diameter distribution are not required 

anymore.  However, the results remain still biased in favor of the larger vesicles in a 

polydisperse sample.108  The size determined with QELS is therefore most meaningful if 

the sample is either monodisperse or fractionated according to the vesicle size before the 

measurement. 

 

 

Figure 43  Schematic graphs of the light intensity fluctuations of 40 nm (a) and 4 nm 

(b) diameter vesicles in water showing the higher intensity fluctuation rate for the 

smaller vesicles.  The graphs in (c) and (d) schematically show the respective auto-

correlation function on a log time scale from which the diffusion coefficient can be 

derived. 
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The result of a QELS measurement is a second order correlation function 

( ) ( ) ( )
( ) 2tI

tItI
g

τ
τ

+⋅
= ,     (6.1) 

where I(t) is the scattered light intensity at a time t, and the brackets indicate averaging 

over all t.  The correlation function g(τ) embodies all the information regarding the 

diffusion of vesicles within the sample being measured.  It depends on the delay time τ, 

which is the amount that a duplicate intensity trace is shifted from the original before the 

averaging is performed.  Fitting eq. 6.1 to an exponential decay function allows 

extracting the diffusion coefficient 
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where β  is the baseline of g(τ) at infinite delay, α is the correlation function amplitude at 

zero delay τ, D is the diffusion coefficient of the vesicles, and q is the scattering vector 
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where n0 is the refractive index of the solvent, λ0 is the vacuum wavelength of the 

incident light, and θ is the scattering angle.  A schematic representation of the auto-

correlation function of a scattering intensity fluctuation is shown in Figure 40 where 

smaller particles have a shorter diffusion time and vice versa.  The hydrodynamic radius 

Rh for a diffusing sphere is then interpreted from the diffusion constant D via the Stoke-

Einstein equation 

D
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⋅
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ηπ6

,      (6.4) 

where kB is the Boltzman constant, T is the temperature, and η is the dynamic viscosity. 
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The integrated on-line WyattQELS instrument (Wyatt Technology, Inc., Santa 

Barbara, CA) applied in the continuous-flow system allows determining the 

hydrodynamic radii of vesicles ranging from 2 nm to 30 nm.  The upper limitation of the 

hydrodynamic radius to 30 nm is due to the short residence time of the particles in the 

observation volume as they flow through the flow cell.  While smaller particles below 

2 nm generate a highly fluctuating intensity profile that can be auto-correlated within the 

short residence time in the observation volume, larger particles do not produce intensity 

fluctuation long enough to properly fit an autocorrelation function.  Figure 44 shows the 

schematic of the QELS arrangement.  The sample flows at a defined velocity through the 

bore of the flow cell.  The laser is aligned such that the incident laser light passes through 

the same bore.  The hydrodynamic radius is derived from the scattered laser light 

intensity fluctuations of the vesicle and is detected at a user-defined angle. 

 

 

Figure 44  Schematic of the QELS detection configuration. 
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Multi-angle Laser Light Scattering 

Multi-angle Laser light scattering (MALLS) is also known as static light 

scattering (SLS) and allows the determination of the size, shape, mass, and vesicle-

solvent interaction of vesicles in solution.  Instead of measuring the scattered light-

intensity fluctuation rates as in QELS, MALLS measures the angular excess Rayleigh 

ratio of the laser light scattered from a dilute suspension of vesicles.  The angular 

dependence of the excess Rayleigh ratio scattered by particles smaller than the 

wavelength of the incident light is described by the Rayleigh-Gans-Debye (RGD) 

approximation.74  An expression for the vesicle size distribution can be derived from the 

expression of Zimm (1948) based on the fluctuation theory of light scattering110, 

( ) ( ) ( )[ ]θθθ PcMAPcMKR vvvv ⋅⋅⋅⋅−⋅⋅⋅⋅= 221 ,   (6.5) 

where R(θ) is the excess Rayleigh scattering (excess of scattered light intensity of the 

molecular solution above that scattered by the solvent itself), θ is the detector angle, Mv is 

the vesicle molecular weight, P(θ) is the vesicle scattering function (it relates the vesicle 

size and shape to the angular dependence of scattered light intensity), cv is the vesicle 

concentration, A2 is the second virial coefficient (it is a measure of the solute-solvent 

interaction), and K* is a scattering coefficient for vertically polarized laser light, 
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In eq. 6.6, dn/dc is the differential refractive index increment with respect to a 

change in vesicle concentration, n0 is the refractive index of the solvent, NA is 

Avogadro’s number, and λ0 is the vacuum laser wavelength. 
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The RGD approximation embodies the two basic principles of light scattering; (a) 

the intensity of light scattered is directly proportional to the product of the vesicle 

molecular weight and the vesicle concentration, 

2
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅∝

dc
dncMIscattered ,     (6.7) 

and (b) the angular variation of the scattered light is directly related to the size of the 

molecule.  The measurable quantity of light is the intensity (I), which is proportional to 

the square of the electric field amplitude (E), i.e., I∝|E|2.  This RGD approximation is 

only valid if the incident wave remains essentially unaffected by the scattering molecule.  

This includes two important conditions: 

1. The scattering molecule must be effectively indistinguishable from the refractive 

index of the solvent 

11 <<−m ,      (6.8) 

where m is the refractive index of the solvated molecule to that of the solvent (m=n/n0). 

2. The scattering molecule must not disturb the phase of the incident laser light wave 

as it passes through the scattering molecule 

( )[ ] ( ) 12/sin1/4 00 <<⋅−⋅⋅⋅⋅ θλπ mnr ,   (6.9) 

where r is the characteristic radius of the molecule and λ0 is the laser wavelength in 

vacuum. 

The intensity of light scattered at a particular angle increases rapidly with particle 

size up to a maximum value and then oscillates in a complicated fashion as the size 

increases further.  From this it follows that unless the particles are known to be isotropic 
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scatterers (particles that are smaller than the size at which the intensity becomes 

oscillatory with the angle of observation), a single measurement of the scattered intensity 

will not suffice to determine the particle size.  This leads to the arrangement of multiple 

detectors circularly arranged in one plane around the observation volume, as is shown in 

Figure 45. 

 

Figure 45  Schematic of the MALLS detection configuration showing one detector 

for QELS intensity fluctuation rate measurements.  Multiple detectors for MALLS 

allow determining the scattering intensity as a function of the scattering angle. 

 

Depending on the shape of the particle, different form factors P(θ) have been 

derived that describe the angular dependence of scattered light of a particle.  The form 

factor P(θ) depends on the size of the particle, the wavelength of the light, and the 

observation angle.  This means that particle size information can be obtained from the 

scattering intensity alone and no information of the concentration or dn/dc of the solute is 

nessecary.74  Generally, to calculate the angular distribution of scattered light it is 

necessary to integrate over the contributions of each of the scattering centers (an 

extended particle can be visualized as a number of scattering centers distributed over a 
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center of mass).  From the integration of the mass distribution over an extended particle 

the root mean square radius RG (RG is determined by integrating over the mass elements 

of the molecule with respect to the center of gravity of the molecule) can be obtained.  If 

the shape of the particle is known (i.e., sphere, rigid rod, random coil, etc.) than the RG 

can be used to compute the geometric radii (Rg) or dimension.  If the particle is much 

smaller than the wavelength of the incident light, less than 10 nm for 690 nm wavelength 

light, there will be no measurable angular variation of the light intensity in the plane 

perpendicular to the polarization axis.  Particles this small can no longer be accurately 

measured in size but the molar mass can still be accurately determined.74 

The form factor for a coated sphere model (Kerker 1969107) is, 
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where q is the scattering vector, 
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and Ri and R0 are the inner and outer vesicle radii. 

Assuming a vesicle coating or bilayer thickness allows fitting the analytical 

formula of eq. 6.10 to light scattering data and determining the outer radius R0 of the 

vesicle.  Alternatively, a Zimm or Debye formalism can be applied, in which a 

polynomial is fitted to the light scattering data and allows determining the RG, Mv, and A2 

of the suspended particles.  The rms radius depends on the internal mass distribution of 

the molecules and is not generally a measure of the molecule’s external geometry.  

Knowledge of the shape of the vesicle allows then to transform the rms radius into a 

conventional geometric radius (Rg). 
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Calibration 

The scattered light results in a specific detector voltage, which is proportional to the light 

intensity.  In order to measure the excess Rayleigh scattering R(θ) the detector voltages 

need to be calibrated with a solvent of known Rayleigh ratios to determine a 

configuration specific calibration constant (ACSCC) that accommodates, for the laser 

wavelength, laser power, scattering volume, material and geometry of the flow cell, and 

solid angle of the detector with respect to the scattering volume.  The calibration is 

performed at the 90º angle detector with reagent grade toluene filtered through a 0.02 µm 

pore filter.  Toluene is a solvent that is very well characterized and the highest Rayleigh 

ratio of any comment solvent with 1.406 x 10-5 cm-1 at a wavelength of 632.8 nm.111  The 

constant of ACSCC, which depends on the solvent type and cell type (refractive index and 

geometry of the K5 flow cell), is automatically combined with an instrument constant 

that accounts for the geometry and material of the flow cell.  It eventually provides a 

means to calibrate with a known Rayleigh scatterer and subsequently measure the 

Rayleigh ratio of different solute-solvent systems. 

 

Normalization 

In order to make meaningful measurements about the angular dependence of the 

scattering intensity, all detectors need to be normalized to the previously calibrated 90º 

detector, which by definition has always a normalization coefficient of 1.  The 

normalization is performed with an isotropic scatterer (an isotropic scatterer scatters light 

equally in all directions) with a radius of less than 10 nm.  Since the scattering angle is a 

function of the solvent refractive index, the normalization needs to be performed in the 
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same solvent as the samples that are analyzed.  The normalization procedure with an 

isotropic scattered relates each detector’s geometrical factor and sensitivity to the 

calibrated 90º angle detector.  The normalization is generally performed with 5 kDa 

dextran dissolved in phosphate buffered saline. 
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Asymmetric Flow Field-Flow Fractionation 

Asymmetric Flow Field-Flow Fraction (AF4) separates particles based on size.  

AF4 is a type of liquid chromatography, in which the separation takes place in a laminar 

flow without the use of a column media.  The separation is caused by a field of force.  In 

the method used the field of force is generated by a fluid cross-flow, in which the 

separation power can be adjusted with the magnitude of the cross flow.  This method 

allows separating particles from about 1 nm to several 1000 nm thereby covering the size 

of liposomes under investigation.  The application of AF4 allows determining the true 

particle size distribution and characterization from MALLS as it can separate a 

polydisperse vesicle population into monodisperse fraction subsequently analyzed with 

MALLS.  It is a non-destructive method that generates only minimal shearing and 

perturbation of the particles.  Figure 46 shows a schematic of the AF4 channel. 

 

Figure 46  Schematic separation geometry of the flow field-flow fractionation 

channel.  The smaller particles having a greater diffusion coefficient diffuse further 

into the parabolic flow stream and elute first.112 
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The channel consists of a 250 µm thick PEEK spacer and a top and bottom plate 

that are bolted together.  The upper channel plate is impermeable, while the bottom 

channel is made of a permeable porous frit material.  A thin cellulose membrane with a 

size barrier of 10 kDa covers the bottom plate and retains the vesicles while the mobile 

phase can permeate through. 

The pressure driven flow in the channel produces a parabolic laminar flow field 

across the spacer height with the maximum velocity at the center of the spacer height and 

decreasing flow velocities towards the upper and lower channel plate.  As the 

perpendicular flow force field is applied to the longitudinal laminar stream, the vesicles 

are driven towards the lower plate or “accumulation wall” by a drag force exerted by the 

perpendicular flow field according to Stoke’s law.  Diffusion of the particles associated 

with the Brownian motion creates a counteracting motion.  The particles will reach an 

equilibrium height in the channel, which depends on the sum of the two forces.  Smaller 

particles, which have a higher diffusion coefficient, tend to reach an equilibrium position 

higher up in the channel and therefore at a higher longitudinal flow velocity in the 

channel than larger particles.  The parabolic flow velocity profile inside the channel then 

separates different sizes of vesicles and smaller vesicles elute earlier than larger vesicles.  

The separation can be divided into three basic steps; a) sample introduction, b) sample 

relaxation, and c) sample separation.  Figure 47 shows each individual step and the 

respective signal for a fractionated sample schematically. 
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Figure 47  Schematic of the separation principle. a) The sample is introduced; b) the 

vesicles reach a equilibrium height over the lower wall; c) the elution speed 

correlates with the equilibrium height according on the force balance; d) smaller 

vesicles elute prior larger vesicles. 

 

While AF4 allows one to determine the diffusion coefficient and hence the 

hydrodynamic radius based on the retention time of the eluting samples, it is solely 

applied to fractionate an initially polydisperse sample according to the vesicle size.  The 

size analysis of the monodisperse vesicle fractions is subsequently performed with static 

and dynamic light scattering. 

 

Separation Method with AF4 

High-resolution size-based separation of the liposome population is carried out 

using AF4 with multi-angle laser light scattering (MALLS) and quasi-elastic light 

scattering (QELS) detection and characterization (model DAWN EOS and QELS, Wyatt 

Technology, Inc., Santa Barbara, CA).  A vendor-supplied spacer (250 µm thickness) is 
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used to define the flow channel thickness with a 10 kg/mol MWCO regenerated cellulose 

membrane for the cross-flow partition (Millipore, Bedford, MA).  Phosphate buffered 

saline (PBS) (10 mmol/L phosphate, 2.7 mmol/L potassium chloride, 138 mmol/L 

sodium chloride, pH 7.4, 3 mmol/L sodium azide) (Sigma Aldrich) solution is used as the 

carrier liquid in the separation.  The flow is controlled with vendor-supplied software 

(Eclipse 2, Wyatt Technology, Inc., Santa Barbara, CA).  The flow control parameters for 

the separation are shown in Figure 48.  Prior to the separation the flow channel is cleaned 

from particulates of a previous run and a cross flow of 3 mL/min.  A cross flow of 

3mL/min is sufficiently high to exert a large enough drag force that even the smallest 

vesicles (i.e., vesicle with a geometric radius of about 20 nm) do not elute prematurely.  

A sample volume of 100 µL is injected at a flow rate of 0.2 µL/min while focusing at 

3 mL/min for 4 min.  To ensure that the entire sample is injected into the separation 

channel 3 to 4 times the sample volume needs to be injected.  The cross-flow is ramped 

linearly from 3 mL/min to 0 mL/min over 90 min while eluting the separated particles at 

1.0 mL/min. 

 

     

 

Figure 48  AF4 injection and separation profile. 
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The radii of the eluted fractions are monitored using the MALLS and QELS 

detectors with data processing using software supplied by the vendor (ASTRA, Wyatt 

Technology, Santa Barbara, CA).  MALLS intensity is measured at 15 angles 

simultaneously.  The sample is measured at 1 s intervals for the MALLS and 5 s intervals 

for the QELS.  The autocorrelation function of the QELS is fitted to a single-mode 

exponential decay model to determine the hydrodynamic radius.  A coated sphere model 

(i.e., a spherical structure with two radial regions of differing refractive index) showing 

good fit with the MALLS data is applied for size analysis of the geometric radius of the 

fractionated samples. 

 

 

Figure 49  Light scattering and AF4 set-up. 
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The schematic light scattering set-up shown in Figure 49 illustrates the 

arrangement of the used components to perform vesicle size distribution measurement.  

PBS is the mobile phase in which the vesicles are dispersed.  PBS is first degassed and 

pumped through a coarse 1 µm and a fine 0.2 µm in-line filter combination to remove 

particulates in the mobile phase.  The autosampler containing the vesicle samples injects 

a specified volume of the sample into the system, which is then carried with the mobile 

phase to the asymmetric flow field flow fractionation (AF4) instrument, where the 

vesicles are fractionated and subsequently measured with the QELS/MALLS instrument.  

The light scattering data is then analyzed with a PC using vendor supplied software and 

the eluting sample is either discarded as waste or recollected. 
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Fluorescence Correlation Spectroscopy 

Fluorescence correlation spectroscopy (FCS)113,114 is a technique that can be used 

to determine the average concentration, hydrodynamic radii, diffusion coefficient, and 

kinetic chemical reaction rates of diffusing fluorescent particles,115 based on measuring 

the second-order intensity autocorrelation function (ACF) of the fluorescence signal P(t).  

In this work, it is assumed that the system consists of liposomes with encapsulated SRB 

and non-encapsulated freely diffusing SRB.  The FCS analysis is applied to determine 

background SRB concentrations in liposome samples.  It is assumed that P(t) is a 

stationary process which leads to a normalized ACF given by,  
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where the angular brackets 〈 〉 indicate a time average, P, is the fluorescence signal as a 

function of time, and τ is the delay time.   

Extracting useful information from an FCS measurement requires knowledge of 

the diffusion properties of the particles and the shape of the excitation volume.  For 

confocal microscopy the shape of the excitation volume depends on the laser beam, the 

microscope objective, the confocal pinhole, and the detector.  The instrument point 

spread function (PSF) describes the way in which light is transformed as it passes through 

and optical system.  The volume created in solution from the laser beam focused by the 

confocal microscope set-up can be described by a three-dimensional Gaussian excitation 

volume given by116, 
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with an effective beam waist z0 in the axial direction, a beam waist of the excitation 

profile w0, and an excitation intensity I0 at the center of the PSF.  This simple model has 

some deficiencies, as in many cases it apparently does not describe the shape of the 

excitation volume accurately and can introduce artifacts that manifest as, for example, 

apparent additional diffusing species in the solution, or some type of nonstandard 

diffusion.117  Hess et al suggests that the near three-dimensional PSF can be achieved by 

underfilling the back-aperture of the microscope objective and by using a small confocal 

back aperture117, as is done in this work.  Hence, the previous assumption of a 3-D 

Gaussian excitation volume is appropriate for this work.  The 3-D Gaussian excitation 

leads to the following expression for the ACF of a multi-species system
115
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where, τDk is the k
th 

species’ diffusion time through the observation volume, G∞ is the 

long time result for G∞ having a theoretical value of 1, and Gk(0) is related to the 

concentration and brightness of the k
th 

species in the following way, 
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The fluctuations of the fluorescence signal stem from changes either the number of 

fluorescent particles or the number of photons per particle and per second in the 

excitation volume.  A binary mixture of free SRB and liposomes that are equally bright 

(note: for the FCS analysis, only the background dye is of interest but not the distribution 

in liposome brightness) leads to the following expression from eq. 6.14, 
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An approximately 20-fold difference in the diffusion times exists between free SRB and 

liposomes, which is helps to extract GSRB(0) from the FCS signal, as shown schematically 

in Figure 50.  The value of GSRB(0) and eq. 6.15 are combined to arrive at an estimate for 

the concentration of free SRB in the excitation volume. 

Proper extraction of parameter estimates from FCS requires an accurate estimate 

of the error associated with the FCS measurement.  Following Wohland et al.118 the 

normalized FCS data, ( )τg  is reported, such that ( ) 10 =g  and 0=∞g , 
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where NS is the number of data samples measured and the standard error of ( )τg is given 

by, 
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The error in ( )τg  is absent of any systematic errors that may cause a change in the 

average number of particles between measurement sets.  This gives a more accurate 

estimate of the uncertainty in ( )τg . 
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Figure 50  Schematic to determine background SRB concentration from FCS. 
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Fluorescence Cumulant Analysis 

The study of the cumulants from a randomly fluctuation fluorescent field is a well 

established field.81,94,96,119,120  Consider a tightly focused laser beam which creates a 

fluorescence excitation volume, I(r), that is much smaller than the total sample volume.  

The sample contains k different, non-interacting, fluorescent species each having an 

average concentration and molecular brightness, given by ck and qk respectively.  In the 

absence of shot-noise, the fluorescent molecules interact with the laser resulting in an 

ideal fluorescence intensity, Φ(t).  Molecules diffuse randomly throughout the excitation 

volume which makes Φ a random variable.  Therefore, it only makes sense to deal with 

the mean, Φ and fluctuations about this mean, Φ−Φ=ΔΦ  where  represents a 

temporal average.  The first two cumulants of Φ are related to ck and qk by 

∑=Φ
k

kkcq ,1χ      (6.19) 

( ) ∑=ΔΦ
k

kk cq ,2
2

2 χ      (6.20) 

where .  The fluorescence intensity distribution, W(r), depends on the 

excitation and collection intensity profiles of the microscope. 

( )( ) rdrW n
n

3∫=χ

The fluorescence is measured by counting the number of photons arriving at a 

detector during an integration time, t.  It is assumed that the integration time is small 

enough so that changes in a particle’s position within the integration time can be 

neglected.  The measured fluorescence introduces a shot noise contribution to the ideal 

fluorescence.  A relation between the moments of the ideal and measured fluorescence is 

given by, 
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( ) ( )!/! nPPn −=Φ      (6.21) 

where P is the number of photons detected per integration time.  nP  is the nth moment 

of the measured fluorescence.  From eq. 6.21, the first two cumulants of the ideal and 

measured fluorescence are related as: 

P=Φ       (6.22) 

( ) ( ) PP −Δ=ΔΦ 22     (6.23) 

Equations 6.19 and 6.20 relate the experimental parameters ck and qk to the ideal 

fluorescence.  Equations 6.22 and 6.23 connect the ideal and measured fluorescence.  

Combining eqs. 6.19, 6.20, 6.22 and 6.23 allows extracting the relative brightness and 

absolute concentrations of a mixture of fluorescent particles from measurements 

of ( )2 and PP Δ . 

The spatial profile functions, χn, are absorbed into the c and q parameters with the 

following substitutions,   

,
2

2
1

χ
χ

=a       (6.24) 

,
1

2
kk qx

χ
χ

=       (6.25) 

where a can be thought of as the excitation volume and xk is the brightness of the kth 

molecular species measured in photon counts per unit time.  Substituting eq. 6.24 and 

6.25 into eq. 6.19 and 6.20 leads to expressions linear in ac which are set equal to N, the 

average number of particles in the excitation volume, 

P = Nk xk + P B ,
k

∑      (6.26) 
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ΔP( )2 − P = Nk xk
2.

k
∑     (6.27) 

where P B is the background count rate which is assumed to be Poissonian.  Each 

liposome in a given ensemble contains an integer number, n, of SRB dye molecules 

(n = 0, 1, 2,…).  It is assumed that the brightness of a particular liposome is given by 

nxSRB.  The amount of encapsulated compound across the liposome population is 

described with the brightness probability distribution, Π(n).  It is assumed that not all 

SRB in our sample is encapsulated inside the liposomes, but rather, some percentage of 

SRB is freely diffusing outside the liposomes.  With these assumptions eq. 6.26 and 6.27 

are written as following, 

  
P = N dyexSRB + N lipxSRB n[ ]+ P

B
   (6.27) 

    
ΔP( )2

− P = N dyexSRB
2 + N lipxSRB

2 n2[ ],  (6.28) 

where Ndye and Nlip are the average number of free dye molecules and liposomes 

(independent of n) in the excitation volume and 

  
nx[ ]= Π n( )nx

n
∑ .     (6.29) 

The confocal microscope system is calibrated with a known concentration of SRB to 

determine the brightness of a SRB molecule, xSRB.  Combining eq. 6.27 with 6.28 we 

arrive at the following expression, 

J =
n2[ ]
n[ ]

=
ΔP 2( ) − P − Ndye xSRB

2

xSRB P − P B − Ndye xSRB( )
 . (6.30) 

Assuming all liposomes in a given sample are equally bright (a common assumption) is 

equivalent to setting [n2] = [n]2 and J = [n] equals the average number of encapsulated 
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SRB molecules within a liposome.  A more realistic assumption for the number of 

encapsulated molecules per liposome is given by a Poisson distribution ([n2] = [n]2 + [n]).  

From this distribution we find an expression for the average number of molecules per 

liposome, 

n[ ]= J −1 ,     (6.31) 

which means the equal brightness assumption will overestimate the average number of 

encapsulated molecules by 1.  This overestimate is especially important in the limit of 

low n. 
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Nomenclature 

AC : Alternating current 

ACF : Autocorrelation function 

AF4 : Asymmetric flow field flow fractionation 

DDS  : Drug delivery system 

DiIC18 : 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate,   

  non-polar fluorescent membrane dye 

DMPC : Dimyristoyl phosphatidyl choline, lipid 

DCP : Dicetyl-phosphate, anionic phospholipid bilayer component 

DRIE : Deep reactive ion etching, anisotropic dry etching method 

E.E. : Encapsulation efficiency 

FCA : Fluorescence cumulant analysis 

FCS : Fluorescence correlation spectroscopy 

FRR : Buffer-to-solvent flow rate ratio  

IPA : 2-propanol, isopropanol, lipid solvent 

LP : Low-pass 

MHF : Microfluidic hydrodynamic focusing 

MALLS: Multi-angle laser-light scattering, for determining the geometric radius Rg 

MWCO: Molecular weight cut-off 

PBS : Phosphate buffered saline, hydration buffer for the lipid molecules 

PCH : Photon counting histogram 

PEG : Polyethylene glycol 

QELS : Quasi-elastic light scattering, for determining the hydrodynamic radius Rh 

SRB : Sulforhodamine B, water-soluble fluorophore 
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TTL : Transistor-transistor logic 

 

RG : Root mean square radius 

Rg : Geometric radius, determined with MALLS 

Rh : Hydrodynamic radius, determined with QELS 

Re : Reynolds number 

QB : Buffer (PBS) volumetric flow rate 

QS : Solvent (IPA) volumetric flow rate 

Qt : Total volumetric flow rate 

wfs : Focused IPA/lipid stream width 
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