
CS-TR-3606 January 1996
UMIACS-TR-96-14
ISERN-96-03

Evaluating Predictive Quality Models Derived from Software

Measures: Lessons Learned

Filippo Lanubile
Computer Science Department

University of Maryland
Institute for Advanced Computer Studies

College Park, Maryland 20742
lanubile@cs.umd.edu

Giuseppe Visaggio
Dipartimento di Informatica

University of Bari
Via Orabona 4, 70126 Bari, Italy

visaggio@seldi.uniba.it

ABSTRACT1

This paper describes an empirical comparison of several modeling techniques for predicting the

quality of software components early in the software life cycle. Using software product measures,

we built models that classify components as high-risk, i.e., likely to contain faults, or low-risk, i.e.,

likely to be free of faults.

The modeling techniques evaluated in this study include principal component analysis,

discriminant analysis, logistic regression, logical classification models, layered neural networks,

and holographic networks. These techniques provide a good coverage of the main problem-

solving paradigms: statistical analysis, machine learning, and neural networks.

Using the results of independent testing, we determined the absolute worth of the predictive

models and compare their performance in terms of misclassification errors, achieved quality, and

verification cost. Data came from 27 software systems, developed and tested during three years of

project-intensive academic courses. A surprising result is that no model was able to effectively

discriminate between components with faults and components without faults.

1 This work was partially supported by NASA under grant 01-5-26775 and the Italian MURST under the 40%
project “V&V in software engineering”.

2

1. Introduction

The construction of predictive systems is one of the main purposes of software measurement.

Predictive systems have been built from product metrics by applying different kinds of modeling

techniques. Multiple linear regression analysis has been used to predict the number of corrective

changes [13, 14]. Discriminant analysis has been applied to detect fault-prone modules [16, 19].

Logistic regression has been used for modeling to identify high-risk components [3, 4]. Principal

component analysis has often been used to improve the accuracy of discriminant models [15, 19]

or regression models [3, 4, 14]. Logical classification models have been used extensively to

identify high-risk modules [3, 4, 20, 21, 27] and reusable software components [8]. Layered

neural networks have already been applied to building reliability growth models [11, 12], to

predicting the gross change [16], and the degree of reuse [2]. Holographic networks, a non-

connectionist type of neural network, have been proposed for predicting software quality [18].

Empirical investigations have not yet been performed in the software engineering field but have in

other areas such as financing [28] and manufacturing [10].

Many of the past studies have focused on predicting the presence of faults early in the software

life cycle. Being able to know just after the coding phase, or even design, which parts are more

subject to fail, allows software managers to focus their resources on inspecting or testing those

error-prone components. The expected benefit is to achieve a more reliable product at a lower

cost. However, all the studies have applied a very few candidate techniques (usually two or three).

Furthermore, we cannot directly compare the results across the studies because of the lack of

common evaluation criteria.

Theories and models become accepted by the scientific communities when different researchers

obtain the same results running independent empirical studies. Thus, we began this study with the

goal of externally replicating these past studies, and thus to understand which modeling technique,

if any, is better in predicting the fault-proneness of software components. Our replication is

characterized by the following features:

• Use of product measures as indirect metrics of software quality

Software product metrics are very popular as indirect metrics of quality. Most studies measure

both design and code attributes but there is not a unique set of product metrics that all the studies

3

use. Our indirect metrics of software quality are essentially the same used by Munson and

Khoshgoftaar [19] to construct their predictive models.

• Reduction of the prediction problem to a classification problem.

A major problem in predicting software quality using the number of component faults as a direct

metric is the highly skewed distribution of faults, because the majority of components have no

faults or very few faults. Instead of estimating the number of potential faults in a software

component, we determine whether a component is likely to be fault-prone or not. In this case, the

direct metric of software quality is the class to which the software component belongs (high-risk

or low-risk), and the prediction model is reduced to a classification model.

• Broader coverage of the modeling techniques already used in practice for classification.

Classification problems have traditionally been solved by various methods, which originate from

different problem-solving paradigms: statistical analysis, machine learning, and neural networks.

Statistical methods usually try to find an explicit numerical formula, which determines a

classification completely. Machine learning methods try to deduce exact if-then-else rules that can

be used in the classification process. The neural network paradigm, instead of producing formulas

or rules, trains a neural network to reproduce a given set of correct classification examples. Our

study compares the following modeling techniques which cover all three classification paradigms:

discriminant analysis, logistic regression, logical classification models, layered neural networks,

and holographic networks. Principal component analysis has also been included as an optional

preprocessing step before applying discriminant analysis and logistic regression.

The next section characterizes the software environment and the data used in the empirical study.

The third section describes how the modeling techniques where used to build the predictive

models. The fourth section shows the criteria that we used to validate and compare the models.

The fifth and sixth sections report, respectively, the results of testing our predictive models

against the evaluation criteria, and the results from other similar studies. Finally, the last section

summarizes the lessons we learned from this study.

4

2. Data Description

The data for this study was collected from projects performed by 27 teams of three students,

during three years of a software engineering course at the University of Bari, Italy. Each team

developed a business application, based on the same requirements specification, but independently

designed and coded over a period of 4-10 months. The resulting software systems range in size

from 1100 to 9400 lines of Pascal source code.

From each system, we randomly selected a group of 4-5 components, ranging in size from 60 to

530 lines of code, for a total of 118 components. Here, the term software component refers to a

functional abstraction of code such as a procedure, function or main program. Each group of 4-5

components was tested by a different student team from another software engineering course.

Faults found during testing were attributed to individual components.

The distribution of faults discovered during the independent unit testing, shown in Figure 1, was

heavily skewed in favor of components with no faults or only one fault. To build unbiased

classification models, we decided to have an approximately equal number of components in the

classes of reliability. Thus, we defined as high-risk any software component where faults were

detected during testing, and low-risk any component with no faults discovered.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of faults

No. of
cmpnts

Figure 1. Distribution of faults per software component

5

Besides the fault data, 11 software product metrics were used as predictor variables to construct

the predictive models. Table 1 shows the product metrics we used in this study. The metrics have

been selected to measure both the implementation and the design attributes of the components,

such as size, control flow structure, data structure, and coupling; one documentation metric is

also measured.

Symbol Name/Description

Size

LOC Number of lines of code
NCLOC Number of non-comment lines of code
N Halstead program length, where N = N1+ N2 and N1is the total number of operators
V Halstead volume, where V = N ∗ log2n and n = n1 = n2 is the program vocabulary

Control Flow Structure

VG McCabe cyclomatic complexity, where VG = e − n + 2 for a flowchart with e edges
and n nodes

Data Structure

n2 Halstead number of unique operands
N2 Halstead total number of operands

Coupling

fanin Henry&Kafura fan-in, where the fan-in of a module M is the number of local flows
that terminate at M, plus the number of data structures from which information is
retrieved by M

fanout Henry&Kafura fan-out, where the fan-out of a module M is the number of local
flows that emanate from M, plus the number of data structures that are updated by M

IF Henry&Kafura information flow, where IF = (fanin∗ fanout)2

Documentation

DC Density of comments, where DC = CLOC / LOC and CLOC is the number of
comment lines of program text

Table 1. Predictor variables

6

3. Building the Predictive Models

For each of the 118 components, we had 11 product metrics and the risk class resulting from

testing. We divided the data set into two groups. Two thirds of the components (79 observations)

were randomly selected to create and tune the predictive models. The remaining third of the

components (39 observations) provided the data to test the models. From now on, the first group

of observations will be called the training set, and the second one the testing set.

There are many ways to build a predictive model using a given modeling technique. We describe

our implementation choices to make possible the replication of the experiment in other

environments as well as improvement in the application of the techniques.

3.1 Principal component analysis

Linear modeling applications, such as regression and discriminant analysis, can produce unstable

models when the independent variables are strongly related. In this case, principal component

analysis is applied to reduce the dimensions of the metric space and obtain a smaller number of

orthogonal domain metrics [7].

In our study, the principal component analysis applied on the eleven product metrics produced

three distinct complexity domains, having eigenvalues greater than 0.9. In Table 2, each column

shows the degree of relationship between the eleven metrics and the three orthogonal domains.

Values in bold print indicate which domain dominates a metric. Domain 1 includes the metrics

measuring implementation attributes, domain 2 contains those metrics related to design attributes,

and domain 3 consists of the only metric that was intended to capture the documentation

characteristics. The three principal components account for 85 percent of the variability in the

eleven metrics. For each software component of our data set, the values of the three domain

metrics were derived and used as input to discriminant analysis and logistic regression.

7

Metric Domain 1 Domain 2 Domain 3

V 0.98338 0.07621 -0.04700

N 0.98209 0.09208 -0.04874

LOC 0.97486 0.07603 -0.02989

NCLOC 0.97448 0.06976 -0.05521

N2 0.95392 0.11957 -0.06178

v(G) 0.87488 0.19214 -0.01642

η2 0.73870 0.01342 -0.00998

fanout 0.16845 0.88696 0.01091

IF -0.01610 0.85161 0.02215

fanin 0.12539 0.82472 -0.12569

DC -0.07395 -0.06408 0.99215

Eigenvalues 6.306010 2.102089 0.980321

Table 2. Rotated factor pattern

3.2 Discriminant analysis

Discriminant analysis develops a discriminant function or classification criterion to place each

observation into one of a set of mutually exclusive groups [7]. It requires that there exists a prior

knowledge of the classes, in our case low-risk and high-risk components. To develop the

classification criterion, we used a parametric method that uses a measure of generalized square

distance and is based on a pooled covariance matrix. Using the generalized square distance, a

posteriori probability of an observation belonging to one of the two groups is computed. An

observation is classified into the group with the greatest probability of membership. We built two

different discriminant models: the first one, applying discriminant analysis directly on the original

eleven product metrics, and the second one, using as input the three domain metrics obtained

from the principal component analysis.

8

3.3 Logistic regression

Logistic regression refers to an analysis that computes the probability of class membership

according to the following equation [1]:

log
p

p
c c x

1- 0 i
i =1

n

i

 = + ∗∑

where p is the probability that a software component is high-risk, and xi are the predictor

variables. The regression coefficients ci are computed through a maximum-likelihood estimation.

As for the discriminant analysis, two regression models were built: the first one is based on the

eleven product measures, while the second one uses the three domain metrics that have been

generated from the principal component analysis.

3.4 Logical classification models

Logical classification models are classifiers that can be expressed as decision trees or sets of

production rules. They are generated through a recursive algorithm that selects metrics that best

discriminate between components within a target class and those outside it. To automatically build

the classification model we used the C4.5 system [23], a variation on the ID3 system [22]. The

C4.5 system partitions continuous attributes, in our case the indirect metrics of reliability, finding

the best threshold among the set of training cases. The recursive partition method continues to

subdivide the training set until each subset in the partition contains cases of a single class, or until

no test offers any improvement. The decision tree was transformed into a collection of rules, by

removing the conditions that were not helpful for discriminating between classes and by excluding

rules that did not contribute to the accuracy of the set of rules as a whole.

3.5 Layered neural networks

We used a typical feed-forward neural network [24], characterized in our experiment by one input

layer of eleven neurons, each connected to a product metric, one output layer of only one neuron

that provides the predicted risk, and one layer of fifty hidden neurons. Among the supervised

algorithms we chose the most popular one, the back-propagation algorithm, which adjusts

network weights by iteration until a user-defined error tolerance is achieved or a maximum

9

number of iterations has been completed. The network weights were initially set to random values

between -1.0 and 1.0 using a sigmoid distribution. We trained the network with a value of 0.1 for

the error tolerance, 1 for the learning rate, and 0.7 for the momentum rate. We stopped the

training after 9000 iterations with 78 recognized observations over 79.

Since the network’s input and output are bounded between 0 and 1, we reduced input data using

a direct scaling. When testing the network, we increased the error tolerance to 0.5 so that low-

risk components correspond to observations with an output value in the first half of [0, 1] and

high-risk components to observations with an output value in the second half.

3.6 Holographic networks

With holographic networks, information is encoded inside holographic neurons rather than in the

connection weights between neurons [29]. A holographic neuron holds a correlation matrix that

enables memorizing stimulus-response associations. Individual associations are learned

deterministically in one non-iterative transformation. Holographic neurons internally work with

complex numbers in polar notation so that the magnitude (from 0.0 to 1.0) is interpreted as the

confidence level of data, and the phase (from 0 to 2π) serves as the actual data value.

In our study, input data were converted to the range [0, 2π] using a sigmoid function and

interpreted as phase orientation of complex values with a unity magnitude. On the other hand, the

response was converted using a linear interpolation. These conversion methods provided the

maximum symmetry in the distribution of data. We trained the network to obtain a maximum

error of 0.1 for each observation.

4. Evaluation Criteria

To evaluate the predictive models we used a set of criteria that are based on the analysis of

categorical data. In our study we have two variables, real risk and predicted risk, that can assume

only two discrete values, low and high, in a nominal scale. Thus the data can be represented by a

two-dimensional contingency table, shown in Table 3, with one row for each level of the variable

real risk and one column for each level of the variable predicted risk. The intersections of rows

and columns contain the frequency of observations (nij) corresponding to the combination of

10

variables. Row totals (ni•) and column totals (n• j) correspond to the frequency of observations for

each of the variables. In our context, the first row contains low-risk components, i.e., with no

faults, while the second row contains high-risk components, including at least one fault. The first

column contains components that the models classify as low-risk, while the second column

contains components classified as high-risk.

The evaluation criteria are predictive validity, misclassification rate, achieved quality and

verification cost. We use the criterion of predictive validity for assessment, since we determine the

absolute worth of a predictive model by looking at its statistical significance. A model that does

not meet the criterion of predictive validity should be rejected. The remaining criteria are used for

comparison, taking into account that the choice between the accepted models depends from the

perspective of the software engineering manager. In practice one might be more interested in

achieving better quality even at a high verification cost, or be satisfied with lower quality, sparing

verification effort.

Predicted Risk

Real Risk low high

low n11 n12 n1•

high n21 n22 n2•

n•1 n•2 n

Table 3. Two-dimensional contingency table

4.1 Predictive validity

Predictive validity is the capability of the model to predict the future component behavior from

present and past behavior. The present and past behavior are represented by data in the training

set while the future behavior of components is described by data in the testing set. Having data

represented by a contingency table, we apply the predictive validity by testing the null hypothesis

of no association between the row variable (real risk) and the column variable (predicted risk),

i.e., the predictive model is not able to discriminate low-risk components from high-risk

11

components. The alternative hypothesis is one of general association. A chi-square (χ2) statistic

[6] with a distribution of one degree of freedom is applied to test the null hypothesis.

4.2 Misclassification rate

For our predictive models, which classify components as either low-risk or high-risk, two

misclassification errors are possible. A Type 1 error is made when a high-risk component is

classified as low-risk, while a Type 2 when a low-risk component is classified as high-risk. It is

desirable to have both types of error small. However, since the two types of errors are not

independent, software engineering managers should consider their different implications. As a

result of a Type 1 error, an actual high-risk component could pass quality control. This would

cause the release of a lower quality product and more fix effort when a failure happens. As a

result of a Type 2 error, an actual low-risk component will receive more testing and inspection

effort than needed.

In the contingency table, the number of Type 1 and Type 2 errors is given, respectively, by n21

and n12. We use the following measures of misclassification [26]:

• Proportion of Type 1: P1 = n21 / n

• Proportion of Type 2: P2 = n12 / n

• Proportion of Type 1 + Type 2: P12 = (n21 + n12) / n

4.3 Quality achieved

We are interested in measuring how effective the predictive models are in terms of the quality

achieved after the components classified as high-risk have undergone an extra verification activity.

We suppose that the verification will be so exhaustive as to find all the faults in the components

that are actually high-risk. So if all the high-risk components are properly classified, all defects

will be removed by the extra verification, and perfect quality will be achieved. However, quality

will be degraded with each high-risk component that is not identified.

We measure the criterion of achieved quality using the completeness measure [3] which is the

percentage of faulty components that have been actually classified as such by the model.

• Completeness: C = n22 / n2•

12

4.4 Verification cost

Quality is achieved by increasing the cost of verification due to an extra effort in inspection and

testing for the components that have been flagged as high-risk. We measure the verification cost

by using two indicators. The former, inspection [26], measures the overall cost by considering the

percentage of components that should be verified. The latter, wasted inspection, is the percentage

of components that do not contain faults but have been verified because they have been

incorrectly classified.

• Inspection: I = n•2 / n

• Wasted Inspection: WI = n12 / n•2

5. Results

We applied the evaluation criteria on the testing set and analyzed the resulting data.

Table 4 shows the associations of the predictions and the real behavior of the components. The

rightmost two columns show the chi-square values and the probabilities of incorrectly rejecting

the null hypothesis, that is incorrectly saying that there is a significant association. The most

popular probability value used as a threshold to establish significance is 0.05. If p is less than 0.05

there is a significant association and it is correct to reject the null hypothesis. Since all the

probability values are much higher than 0.05 we must accept the null hypothesis of no association

between predicted risk and real risk.

Table 5 shows the results of comparing the predictive models to each other with respect to the

remaining criteria. All the data are represented as percentages. The first three columns of data

show the misclassification rates. Recall that a random prediction should have a proportion of Type

1 + Type 2 errors of 50 percent, and proportions of Type 1 and Type 2 errors of 25 percent each.

In this study the proportions of Type 1 + Type 2 errors ranges between 46 and 59 percent.

Discriminant analysis and logistic regression, when applied in conjunction with principal

component analysis, have high proportions of Type 2 error (respectively 41 and 46 percent) in

comparison with the proportions of Type 1 error (respectively 15 and 13 percent). On the other

hand, the other models have balanced values of Type 1 and Type 2 error, ranging between 20 and

28 percent.

13

Modeling Techniques χ2 p*

Discriminant analysis 0.244 0.621

Principal components + Discriminant analysis 0.685 0.408

Logistic regression 0.648 0.421

Principal components + Logistic regression 1.761 0.184

Logical classification model 0.215 0.643

Layered neural network 0.648 0.421

Holographic network 0.227 0.634

p* is the probability of incorrectly rejecting the null hypothesis (no association)

Table 4 Assessment of predictive models

Misclassification
rate

Achvd
quality

Verification
cost

Modeling Techniques P1 P2 P12 C I WI

Discriminant analysis 28.21 25.64 53.85 42.11 46.15 55.56

Principal comp. + Discriminant analysis 15.38 41.03 56.41 68.42 74.36 55.17

Logistic regression 28.21 28.21 56.41 42.11 48.72 57.89

Principal comp. + Logistic regression 12.82 46.15 58.97 73.68 82.05 56.25

Logical classification model 25.64 20.51 46.15 47.37 43.59 47.06

Layered neural network 28.21 28.21 56.41 42.11 48.72 57.89

Holographic network 25.64 28.21 53.85 47.37 51.28 55.00

Table 5 Comparison of predictive models

14

Looking at the achieved quality and verification cost results, it is possible to better interpret the

misclassification results. The highest values of quality correspond to the models built with

principal component analysis followed by either discriminant analysis or logistic regression

(completeness is, respectively, 68 and 74 percent). However, these high values of achieved quality

are obtained by inspecting the great majority of components (inspection is, respectively, 74 and 82

percent), thus wasting more than one half of the verification effort (wasted inspection is,

respectively, 55 and 56 percent). None of the other models discovers even half of the high-risk

components and waste nearly half or more of the verification effort.

6. Related Work

Some empirical studies, relevant to this work, are summarized in the following.

Briand et al. [4] presented an experiment for predicting high-risk components using two logical

classification models (Optimized Set Reduction and classification tree) and two logistic regression

models (with and without principal components). Design and code metrics were collected from

146 components of a 260 KLOC system. OSR classifications were found to be the most complete

(96 percent) and correct (92 percent), where correctness is the complement of our wasted

inspection. The classification tree was more complete (82 percent) and correct (83 percent) than

logistic regression models. The use of principal components improved the accuracy of logistic

regression, from 67 to 71 percent completeness and from 77 to 80 percent correctness.

Porter [20] presented an application of classification trees to data collected from 1400

components of six FORTRAN projects in a NASA environment. For each component, 19

attributes were measured, capturing information spanning from design specifications to

implementation. He measured the mean accuracy across all tree applications according to

completeness (82 percent) and to the percentage of components whose target class membership is

correctly identified (72 percent), that is the complement of the Proportion of Type 1 and Type 2

error.

Munson and Khoshgoftaar [19] detected faulty components by applying principal component

analysis and discriminant analysis to discriminate between programs with less than five faults and

programs having five or more faults. The data set included 327 program modules from two

15

distinct Ada projects of a command and control communication system. They collected 14

metrics, including Halstead’s metrics together with other code metrics. Applying discriminant

analysis with principal components resulted in correctly recognizing 79 percent of the modules

with a total misclassification rate of 5 percent.

Khoshgoftaar et al. [15] again applied principal component analysis and discriminant analysis to

identify fault-prone modules (modules with five or more faults) in a large telecommunications

system. They used 1980 modules consisting of 194 new, 917 reused but modified, and 869 reused

without modification. For product metrics, they used 3 call-graph-based metrics and 6 control-

flow-graph-based metrics. They also used reuse information as additional categorical predictor

variables. They classified 38.0 percent of the modules as fault prone when using product metrics

only, and 31.4 percent when including the reuse variables too. The real percentage of faulty

modules was 12.1 percent. The Proportion of Type 1 error (Type II misclassification rate in their

study) was 21.25 percent with product metrics only, and 13.75 percent with also reuse variables.

The Proportion of Type 2 error (Type I misclassification rate in their study) was, respectively,

32.4 percent and 23.8 percent. Finally, the Proportion of Type 1 and Type 2 error combined was

31.1 percent using only product metrics and 22.6 including the reuse variables.

7. Lessons Learned

This empirical investigation of the modeling techniques for identifying high-risk components has

taught us three main lessons:

• Principal component analysis does not always produce a better input for predictive models.

In our study, we built two classification models for both discriminant analysis and logistic

regression. The first pair of models was based on the eleven original product measures, while the

second pair used the three domain metrics that had been generated from the principal component

analysis. An unexpected result of the models using orthogonal domain metrics is that the good

performance in achieved quality was exclusively the result of classifying many components to be

high-risk.

16

• It is not always possible to successfully predict the future behavior of software products.

Despite the variegated selection of modeling techniques, no model satisfied the criterion of

predictive validity, that is no model was able to discriminate between components with faults and

components without faults. This result is in contrast with the software measurement literature

which always reports successful results in recognizing fault-prone components from product

measures. The previous section provides some examples.

• Predictive modeling techniques are only as good as the data they are based on.

The relationship between software product measures and the presence of faults cannot be

considered an assumption that holds for any data set and project. An assumption is a statement

that is postulated to be true without the need to be verified. Past positive findings at showing

correlation between product measures and number of faults have built a confidence that this

relationship is a general property. However, the underlying phenomena continue to be poorly

understood and we do not really know what findings can be reused across environments and

projects. Whereas the research underlying the validation of software product measures as internal

attributes of software quality is not novel, it is only within the past few years that researchers have

begun to worry about a rigorous and local validation [5, 9, 17, 25]. Predictive models are very

attractive to build but they can be a waste of time if we rely on false assumptions instead of

building a local process for selecting valid predictors.

Acknowledgments

We would like to thank the students from the University of Bari for providing the fault data used

in this study, Aurora Lonigro and Giulia Festino for their support in processing and analyzing the

data, and Carolyn Seaman for her suggestions and comments on a first draft of this paper.

17

References

[1] Agresti, A., Categorical Data Analysis, John Wiley & Sons, New York, 1990.

[2] Boetticher, G., Srinivas, K., and Eichmann, D., A neural net-based approach to software
metrics, in Proc. 5th Int. Conf. Software Eng. and Knowledge Eng., 271-274, 1993.

[3] Briand, L. C., Thomas, W. M., and Hetmanski, C. J., Modeling and managing risk early in
software development, in Proc. 15th Int. Conf. Sofware Eng., 55-65, 1993.

[4] Briand, L. C., Basili, V. R., and Hetmanski, C. J., Developing interpretable models with
optimized set reduction for identifying high-risk software components, IEEE Trans.
Software Eng., 19 (11), 1028-1044, November (1993).

[5] Briand, L., El Eman, K., and Morasca, S., Theoretical and empirical validation of software
product measures, ISERN-95-03, International Software Engineering Research Network,
1995.

[6] Conover, W. J., Practical Nonparametric Statistics, Wiley, New York, 1971.

[7] Dillon, W. R., and Goldstein, M., Multivariate Analysis: Methods and Applications, John
Wiley & Sons, New York, 1984.

[8] Esteva, J. C., and Reynolds, R. G., Identifying reusable software components by induction,
Int. J. Software Eng. and Knowledge Eng., 1 (3), 271-292 (1991).

[9] Fenton, N. E., Software measurement: a necessary scientific basis, IEEE Trans. Software
Eng., 20 (3), 199-206, March (1994).

[10] Jensen, G., Quality control in manufacturing based on fuzzy classification, in Frontier
Decision Support Concepts (V. L. Plantamura, B. Soucek, G. Visaggio, eds.), John Wiley &
Sons, New York, 107-118, 1994.

[11] Karunanithi, N., Whitley, D., and Malaiya, Y. K., Prediction of software reliability using
connectionists models, IEEE Trans. Software Eng., 18 (7), 563-573, July (1992).

[12] Karunanithi, N., Whitley, D., and Malaiya, Y. K., Using neural networks in reliability
prediction, IEEE Software, 53-59, July (1992).

[13] Khoshgoftaar, T. M., Munson, J. C., Bhattacharya, B. B., and Richardson G. D., Predictive
modeling techniques of software quality from software measures, IEEE Trans. Software
Eng., 18 (11), 979-987, November (1992).

[14] Khoshgoftaar, T. M., Lanning, D. L., and Munson, J. C., A comparative study of predictive
models for program changes during system testing and maintenance, in Proc. Conf.
Software Maintenance, 72-79, 1993.

[15] Khoshgoftaar, T. M., Allen, E. B., Kalaichelvan, K. S., and Goel, N., Early quality
prediction: a case study in telecommunications, IEEE Software, 65-71, January (1996).

[16] Khoshgoftaar, T. M., and Szabo, R. M., Improving code churn prediction during the system
test and maintenance phases, in Proc. of the Int. Conf. Software Maintenance, 58-67, 1994.

18

[17] Kitchenham, B., Pfleeger, S. L., and Fenton, N., Towards a framework for software
measurement validation, IEEE Trans. Software Eng., 21 (12), 929-943, December (1995).

[18] Lanubile, F., and Visaggio, G., Quality evaluation on software reengineering based on fuzzy
classification, in Frontier Decision Support Concepts (V. L. Plantamura, B. Soucek, G.
Visaggio, eds.), John Wiley & Sons, New York, 119-134, 1994.

[19] Munson, J. C., and Khoshgoftaar, T. M., The detection of fault-prone programs, IEEE
Trans. Software Eng., 18 (5), 423-433, May (1992).

 [20] Porter, A. A., Developing and analyzing classification rules for predicting faulty software
components, in Proc. 5th Int. Conf. Software Eng. and Knowledge Eng., 453-461, 1993.

[21] Porter, A. A., and Selby, R. W., Empirically guided software development using metric-
based classification trees, IEEE Software, 46-54, March (1990).

[22] Quinlan, J. R., Induction of decision trees, Machine Learning, 1 (1), 81-106 (1986).

[23] Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kauffman Publishers, San
Mateo, CA, 1993.

[24] Rumelhart, D., Hinton, G., and Williams, R., Learning internal representations by error
propagation, in Parallel Distribuited Processing, vol.I, MIT Press, Cambridge, MA, 318-
362, 1986.

[25] Schneidewind, N. F., Methodology for validating software metrics, IEEE Trans. Software
Eng., 18 (5), 410-422, May (1992).

[26] Schneidewind, N. F., Validating metrics for ensuring Space Shuttle Flight software quality,
Computer, 50-57, August (1994).

[27] Selby, R. W., and Porter, A. A., Learning from examples: generation and evaluation of
decision trees for software resource analysis, IEEE Trans. Software Eng., 14 (12), 1743-
1757, December (1988).

[28] Soucek, B., Sutherland, J., and Visaggio, G., Holographic decision support system: credit
scoring based on quality metrics, in Frontier Decision Support Concepts (V. L. Plantamura,
B. Soucek, G. Visaggio, eds.), John Wiley & Sons, New York, 171-182, 1994.

[29] Sutherland, J., A holographic model of memory, learning and expression, Int. J. Neural
Syst., 1 (3), 259-267 (1990).

