Managing the Destructive Potential of Biotechnology

Presentation for

Regional Workshop on Dual-Use Research

Teresópolis, Brazil

December 8 – 10, 2006

John Steinbruner

University of Maryland
Conception of the Fundamental Problem

• Rapid progress in basic molecular biology is apparently enabling extraordinarily consequential applications, including in principle deliberate intervention in the process of evolution.

• The same basic science simultaneously identifies both therapeutic and destructive possibilities.

• The extended consequences of this situation are potentially large but cannot be determined with confidence.

• Those consequences will assuredly involve social dynamics as well as basic science.
Recent reconstruction of the 1918 influenza virus is currently the leading instance of the more general problem.

- Work actually motivated by “historical curiosity” but does have potentially important therapeutic implications.

- Has highly destructive applications as well.

- Degree of oversight and containment applied does not appear commensurate with the magnitude of risk entailed.
 - Reconstructed strain is substantially more virulent than standard reference strains.
 - SARS has escaped BSL 3 containment at least 3 times.

- Decision on publication made with no intermediate option available.
Evident Implications

• The scale and character of potential consequences mandate more advanced protective procedures than have yet been devised.

• In principle appropriate procedures should:
 – Prevent the deliberate or inadvertent creation of pathogens more destructive than those that have naturally evolved.
 – Assure prudent exploration of protective and therapeutic applications.
 – Assure equitable access to all constructive applications.
The Basic **Principle** of Protection

- Since the potential for constructive and destructive application of biotechnology cannot be categorically disentangled, effective protection depends on reinforcing and existing behavioral rule:

 Biotechnology must not be used to do deliberate harm under any circumstance for any reason

- Categorical rule must be adapted to specific context to be meaningfully applied.
• That basic principle is reasonably well established as a universal norm.

• Has been authoritatively articulated:
 – The Hippocratic Oath.

• Is broadly upheld and not expressly rejected.

• Nonetheless must be substantially strengthened if it is to be the practical foundation for protection.
Recent Developments in the US

• 2003 report by US National Academy of Sciences -- *Biotechnology Research in an Age of Terrorism (Fink Committee)*:
 – Acknowledged the extraordinary consequence and inevitably associated danger of biotechnology.
 – Noted that current US regulatory procedures do not provide for independent review of the social consequences of fundamental research.
– Recommended extending current RAC review process to examine social consequences for 7 “experiments of concern,” ones that might:
 • Render a vaccine ineffective.
 • Confer antibiotic or antiviral drug resistance.
 • Enhance the virulence of a pathogen.
 • Increase the transmissibility of a pathogen.
 • Alter the host range of a pathogen.
 • Evade diagnostic detection.
 • Enable weaponization.
– Noted that effective oversight measures would have to be global in scope.

– Urged international discussion of that requirement especially within the scientific community.
• 2004 Biosecurity initiative established the National Science Advisory Board for Biosecurity (NSABB) to:
 – Develop guidelines for local and national oversight.
 – Develop code of conduct for scientists and lab workers.
 – Develop education and training programs.
 – Develop guidelines for dissemination of results.
 – Promote international extension.
• National Biodefense Analysis and Countermeasures Center (NBACC) established in 2005 incorporating four components:
 – Biological Threat Characterization Center (BTCC)
 – Bioforensic Analysis Center (BAC)
 – Biodefense Knowledge Center (BKC)
 • Livermore National Laboratory
 – Agricultural Biodefense Center (ABC)
 • Plum Island Animal Disease Center
BTCC and BAC are to be housed at a new facility under construction at Ft. Detrick MD

- 160,000 ft² total floor space,
- 20% of which will be devoted to BSL – 4 containment laboratories.
- Suggests research efforts in the $100 million range annually.
- Entire facility to be operated as a Secure Compartmentalized Information Facility

BTCC mandated to explore the destructive potential of biotechnology to identify what potential terrorists might attempt.

- Projected efforts include genetic manipulation of pathogen virulence and aerosol dispersion of agents.
Evident Problems

• Oversight procedures recommended by the Fink committee and projected by the NSABB:
 – Would not be comprehensive within the US – would not include commercial and biodefense research.
 – Would not be mandatory and therefore probably not adequately financed.
 – Would not apply beyond the US.
 – Offer no metric for dimensions of concern.
• BTCC mandate is of questionable legality under provisions of the 1972 BWTC.
 – US would consider the NBACC equivalent in any other country to be *prima facie* illegal.
 – Evident double standard promises to incite both objection and emulation.

• Constructive discussion by the international community has become more urgent but is not yet organized.
Basic Features of an Effective Alternative

• Strong expectation that oversight will eventually be imposed as the fundamental method of protection.
 – That technique is applied to virtually all matters of high consequence.
 • Financial transactions
 • Handling of nuclear explosives

 – Can be based on established procedures for scientific peer review.
• To provide maximum protection at acceptable cost an oversight process would have to be:
 – Global in scope of application – all parts of the world
 – Categorically inclusive – all relevant research activities.
 – Credibly focused.
 – Legally mandatory.
 – Actively practiced.
 – Efficiently organized.
 – Appropriately constrained.
An Illustrative Design

• An oversight process meeting those requirements might operate in three tiers:
 – International jurisdiction over research activities of extreme concern that might generate pathogens more lethal or otherwise more consequential than those currently extant in nature.
 – National jurisdiction over research activities of moderate concern – the more lethal of currently regulated agents.
 – Local jurisdiction over activities of potential concern involving agents that might be elevated to moderate or extreme categories by use of advanced manipulation techniques.
• Using a conceptual definition of danger based on:

 – **Spontaneous transmissibility** =
 capacity to propagate between hosts and penetrated immune defenses under standard conditions.

 – **Virulence** =
 capacity to generate a lethal of otherwise hostile effect within an infected host.
• Such an arrangement:
 – Would license relevant individuals and research facilities.
 – Would subject individual projects to prior review.
 – Would set conditions for the conduct of research and for the dissemination of results calibrated to the degree of danger involved.
 – Would initiate procedures of harmonizing the review judgments made in separate jurisdictions
Practical Implementation

• Criteria for determining oversight jurisdiction:
 – **Activities of Extreme Concern (AEC):**
 • Any work on the variola virus (smallpox) or a comparably virulent agent that has been eradicated in nature,
 • Any spontaneously infectious agent requiring BSL 4/ABSL 4 level of containment,
 • *De novo* synthesis of any agent matching the above characteristics,
 • Expanding the host range of an agent or changing the tissue range of an agent that would otherwise be assigned to a lower tier category,
 • Constructing vaccine resistant or antibiotic resistant strains of agents that would otherwise be assigned to lower tier categories.
– Activities of Moderate Concern (AMC):
 • Increasing virulence of listed agent or related agent.
 • Insertion of host genes into listed agent or related agent.
 • Increasing transmissibility or environmental stability of listed agent or related agent.
 • Powder or aerosol production of listed agent or related agent.
 • Powder or aerosol dispersal of listed agent or related agent.
 • De novo synthesis of listed agent or related agent.
 • Construction of antibiotic- or vaccine-resistant related agent.
 • Genome transfer, genome replacement, or cellular reconstitution of listed agent or related agent.
– **Activities of Potential Concern (APC):**

 • Work with listed agent— or exempt avirulent, attenuated, or vaccine strain of select agent — not covered by AEC/AMC.
 • Increasing virulence of non-listed agent.
 • Increasing transmissibility or environmental stability of non-listed agent.
 • Powder or aerosol production of non-listed agent.
 • Powder or aerosol dispersal of non-listed agent.
 • *De novo* synthesis of non-listed agent.
 • Genome transfer, genome replacement, or cellular reconstitution of non-listed agent
A survey of US grant applications and research publications 2000 – 2005 indicates that under these criteria of jurisdiction a total of 310 research facilities and 2,574 individuals would have been subjected to oversight, of which:

- 12 facilities and 185 individuals would have been assigned to international oversight;
- 14 facilities and 133 individuals would have been assigned to national oversight.
- 231 facilities and 2,119 individuals would have been assigned to local oversight.
- 53 facilities and 137 individuals would have encountered multiple jurisdictions.
• Criteria for risk-benefit assessment:
 - **Biosafety Rating**: whether proposed research plan minimizes risk to public and environment.
 - **Adequacy of Research Plan**: whether there are scientific reasons why same outcome cannot be pursued through other means.
 - **Public health rationale**: whether research will advance understanding of disease causing properties of existing pathogens.
 - **Biodefense rationale**: whether work being done in response to validated or theoretical threat.
 - **Current necessity of work**: whether there are medical countermeasures available for use against agents to be constructed.
 - **Potential impact**: whether proposed results will inform policy
Current State of the Problem

- Momentum of the research process is continuously generating highly consequential lines of inquiry.

- Immediate terrorist threat is comparable to or less than the natural incidence of infectious disease – and can be addressed by enhanced public health measures.

- Hostile competition among national threat assessment programs is a more serious immediate concern than potential terrorism.

- Exclusive subordination of national threat assessment activities to public health jurisdiction and application of transparency rules are urgent priorities.
Impressions from May workshop in Hungary

• 30 participants from 15 European countries, WHO, OECD and UNESCO.
• General agreement that an effective oversight arrangement would have to be comprehensively applied.
• Broad support for:
 – Codes of conduct among scientists
 – Education and training programs on dual-use dilemma
 – Independent per review of consequential projects
 – Transparency as the basic principle of protection.
• Concern about overly intrusive regulation.
• Disagreement about:
 • The adequacy of existing regulatory arrangements
 • the relative merits of voluntary and mandatory measures

• Interest short of endorsement in the global oversight outline presented.