
An Interprocedural Framework for Placement of AsynchronousI/O Operations �Gagan Agrawal and Anurag Acharya and Joel SaltzUMIACS and Department of Computer ScienceUniversity of MarylandCollege Park, MD 20742(301)-405-2756fgagan,acha,saltzg@cs.umd.eduAbstractOverlapping memory accesses with computations is a standard technique for improvingperformance on modern architectures, which have deep memory hierarchies. In this paper,we present a compiler technique for overlapping accesses to secondary memory (disks) withcomputation. We have developed an Interprocedural Balanced Code Placement (IBCP)framework, which performs analysis on arbitrary recursive procedures and arbitrary control
ow and replaces synchronous I/O operations with a balanced pair of asynchronous opera-tions. We demonstrate how this analysis is useful for applications which perform frequentand large accesses to secondary memory, including applications which snapshot or checkpointtheir computations or out-of-core applications.1 IntroductionModern architectures have large number of memory hierarchies. Processors have one or two levelsof cache, followed by primary memory (RAM), secondary memory (disks) and tertiary memory.The cost of data access increases rapidly with the depth of access. Achieving and sustaininggood performance in presence of deep memory hierarchies is a very important problem and hasreceived signi�cant attention in the last few years.Several research projects have worked on code transformations to improve locality [6, 31, 32].Most of the programs still spend considerable amount of their time in accessing data frommemory at a deeper level in the hierarchy. The overhead of deep memory accesses can bereduced by using asynchronous operations overlapped with computations. Substantial work hasbeen done on compiler analysis for overlapping memory accesses with computations, mostly inthe context of reducing overheads of cache stalls [8, 23].Several classes of applications involve large and frequent accesses to data stored in thesecondary memory. The need for reading or writing data in secondary memory can arise for�This work was supported by NSF under grant No. ASC 9213821, by ONR under contract No. N00014-93-1-0158, by ARPA under the Scalable I/O project (Caltech Subcontract 9503) and by NASA/ARPA under contractNo. NAG-1-1485. The authors assume all responsibility for the contents of the paper.1

several reasons: 1) the program may operate on data structures which do not �t into the primarymemory of the processor (out-of-core programs), 2) the state of the computation may be output(for future analysis) several times during the execution of the program, or 3) the main datastructures may be frequently checkpointed so as to be able to restart in presence of failures. Forprograms that use a large fraction of the primary memory, large write requests would over
owthe �le cache and would cause the program to be stalled till the data is written into the disks.Because of the relatively low disk bandwidth, writing into disks can take a large amount of time.If such I/O requests are frequent, the performance of the program will be severely degraded.This degradation can be avoided if the disk accesses can be overlapped with the computation.Several current operating systems provide asynchronous I/O operations for this reason. Webelieve that compiler analysis can automate the usage of asynchronous I/O operations, thushiding the architectural complexities from the application programmers.To be able to overlap disk accesses with computation, it is important for the compiler toanalyze code across procedure boundaries. In contrast, the existing compiler analysis for over-lapping cache stalls or communication has considered analysis within a single procedure andusually does not consider moving operations outside conditionals or in presence of arbitrary
owof control.In this paper, we present an Interprocedural Balanced Code Placement (IBCP) frameworkfor overlapping large latency operations with computation. This framework is able to dealwith arbitrary control
ow as well as arbitrary recursive procedures. Each synchronous largelatency operation is replaced by a balanced pair of asynchronous operations. The asynchronousoperations are placed to achieve overlap with the computation, while maintaining correctnessand safety. In general, our analysis can be used for any large latency operation, including diskaccesses, frame bu�er writes, network I/O, co-processor operations and remote memory accesses.In this paper, we have focussed on the use of this analysis for the placement of disk accesses.We have implemented a Fortran source to source transformation tool, which performs the IBCPanalysis. This tool is based upon the Parascope/D System Fortran front end.We have used two applications for demonstrating the e�cacy of our scheme: dsmc-3d, aparticle simulation code which periodically outputs its state and satellite, a satellite dataprocessing template which repeatedly modi�es an out-of-core image. Our results show that use ofcompiler placed asynchronous operations can reduce the I/O overhead by 30%-70% and improvethe overall performance by 15% - 20%. Performing interprocedural analysis for placement wascritical for getting better performance in both these applications, almost no overlap would havebeen possible if the analysis was restricted intraprocedurally.The rest of the paper is organized as follows. In Section 2, we further examine the classesof applications which have large I/O requirements. In Section 3, we state the requirementsfor our code placement framework and motivate our analysis. In Section 4, we present ourinterprocedural analysis. We present experimental results in Section 5. We brie
y compare ourwork with related work in Section 6 and conclude in Section 7.2

2 I/O Intensive ApplicationsIn this section, we discuss how the need for large and frequent I/O accesses arises in several classesof scienti�c applications. There are at least three di�erent scenarios in which the applicationmay need to access secondary memory frequently and therefore, can potentially become I/Obound.Snapshoting. By snapshoting, we mean the frequent copying of the state of the computationto disks. There are two main reasons for snapshoting: the computation has a time-dependentsolution (as opposed to a steady state solution) or the user may want to visualize the progressof the computation. In the former case, a series of program states are written to disks forpost-processing. In the latter case, the state of the computation is periodically piped into anappropriate visualization tool. Examples of applications that require snapshoting include DirectSimulation Monte Carlo (DSMC) [5], simulation of a
ame sweeping through a volume [27],airplane wake simulations [19], etc. The amount of data generated per time-step is often large,e.g., if one million particle are simulated in a particular run of the three-dimensional dsmc-3dcode, then each snapshot is 24 MB (3 double precision numbers per particle).Checkpointing. Checkpointing is often required for long running applications which can getinterrupted for a variety of reasons [12]. Checkpointing is also used for parametric studies, i.e.,modifying some of the checkpointed values and restarting the computation [11].Out-of-Core Computations. Several scienti�c and engineering computations operate onlarge data structures which do not �t into the main memory. Such codes need to access thesecondary memory very frequently. Examples include several sensor data processing codes whichperform out-of-core reductions on images which are several hundred MB in size. Restructur-ing the computation can often reduce the frequency and increase the granularity of secondarymemory access [1, 6], however, such codes can still spend signi�cant amount of their time in I/Ooperations.3 Problem De�nitionIn this section, we de�ne the interprocedural balanced code placement problem and motivateour analysis framework.As we stated in Section 2, scienti�c applications may make frequent and large I/O requestsfor a variety of reasons. In the applications which checkpoint or snapshot the progress of thecomputation, the programmer may explicitly insert synchronous write operations. In the out-of-core applications, an initial phase of the compilation may determine when disk operationsneed to be made and correspondingly may insert synchronous read or write operations [6, 26].For our purpose, we consider original program text (or a compiler processed representation)which has explicit calls to read or write operations. We denote by Op, any such synchronous3

operation, which the compiler may want to replace by a corresponding asynchronous or split-phase operation. In general, this operation Op has a number of parameters (usually specifyingthe bu�er which is to be written out or �lled in and their dimensions). The operation can resultin a modi�cation to some of these parameters (e.g., the contents of the array may be read in)and/or modi�cation to the contents of a disk. We assume that this operation does not result inany other change of state.To overlap this operation with computation, the compiler will have to place correspond-ing Start op and End op operations in the program text. A Start op operation starts anasynchronous I/O operation and the corresponding End op ensures that the operation hascompleted.The goal of the analysis is to place Start op as early as possible and End op as late aspossible, i.e., allow as much overlap of the computation with disk operations as possible withoutviolating the following guarantees: as follows:� Balance and Safety. Consider any control
ow path from the beginning of the program tothe end of the program. Suppose this path contains n (n � 0) occurrences of particularoperation Op (which reads or writes a bu�er). After the compiler inserts asynchronousoperations, this path will include exactly n occurrences of Start op and exactly n occur-rences of End op.� Correctness. The e�ect of the asynchronous operation will the same as the e�ect of thecorresponding synchronous operation i.e., the modi�cations to the parameters of the op-eration and the contents of the disks will be the same as the synchronous operation wouldhave resulted in. Further, any access to any variable in the program, will have the sameresult as it would have with synchronous operations.Note that the �rst requirement mentioned above has two implications:� The occurrences of Start op and End op will match each other irrespective of the control
ow paths taken during the execution of the program. This is also known as the balancedcode placement property [16].� In any execution of the program, there will exactly be the same number of asynchronousoperations as there were synchronous operations, i.e., under no circumstances, the newplacement will increase the number of I/O operations on any path. This is known as thesafety property [22].Note that we do not consider redundancy elimination as part of our analysis i.e., there isalways exactly one asynchronous operation placed for each synchronous operation in the originalprogram text. In case of checkpointing or snapshoting, the application programmer expects tosee the same number of outputs as he/she had inserted initially. In the case of out-of-coreprograms, the initial phase of the compilation can possibly generate redundant requests. In thiscase, some redundancy elimination analysis like Interprocedural Partial Redundancy Elimination(IPRE) [4] can be applied before applying the analysis we present in this paper.4

4 Interprocedural Balanced Code Placement FrameworkIn the previous section, we described the requirements of our interprocedural code placementframework. In this section, we present Interprocedural Balanced Code Placement (IBCP) frame-work, which performs such placement. We �rst describe the full program representation we use,then we present the interprocedural analysis on our full program representation. Finally, wepresent the intraprocedural phase of our analysis.Data
ow analysis has been a key method for performing various optimization in the pro-gram text, without imposing any restrictions on control-
ow [20]. Various intraprocedural codeplacement frameworks like Partial Redundancy Elimination [22] and Give-N-Take [16] performdata
ow analysis on Control Flow Graph (CFG) of a single procedure.A number of di�erent program representations have been used for various interproceduraldata
ow problems. The most commonly used program representation is a Call Graph [14]. Acall graph is a directed multi graph, which has a single node for each procedure in the program.A directed edge from node i to node j means that procedure i calls procedure j. Call Graphis a very concise representation and no information is available in a call graph about
ow ofcontrol between di�erent call sites within a single procedure. On the other extreme, Myer'sSuperGraph [24] is a very detailed representation. SuperGraph is constructed by linking control
ow graphs of procedures by inserting edges from call site in the caller to start node in callee.The total number of nodes in SuperGraph can get very large and consequently the solutionmay take a long time to converge. We have developed a new full program representation whichpreserves information about the call sites but is more concise than a SuperGraph.4.1 Program RepresentationWe now de�ne the full program representation we use for the purpose of our analysis. We assumethat a variable is either global to the entire program or is local to a single procedure. We furtherassume that all parameters are passed by reference. We do not consider the possibility of aliasingin our discussion.We de�ne a basic block to consist of consecutive statements in the program text withoutany intervening procedure calls or return statements, and no branching except at the beginningand at the end. A procedure can then be partitioned into a set of basic blocks, a set of callstatements and a set of return statements. Each call statement is a call site of the procedureinvoked there.In our program presentation, the main idea is to construct blocks of code within each proce-dure. A block of code comprises of basic blocks which do not have any call statement betweenthem. In the directed graph we de�ne below, each edge e corresponds to a block of code B(e).The nodes of the graph specify the control-
ow relationships between the blocks of code.5

Program FooArrays A, Bd =Call Q(c) ... cs 1Do i = 1, 100if cond thenCall R(A,d) ... cs 2Call Q(c) ... cs 3elseA = ...endifCall S(B,d) ... cs 4Call P(A,d) ... cs 5Call P(B,d) ... cs 6EnddoEndProcedure P(x,y)Write op(x,y)..other computations ..EndProcedure Q(z)z = ...z...EndProcedure R(x,y)x = ...x.....other computations ..EndProcedure S(x,y)x = ...x.....other computations ..EndFigure 1: An example program: call sites arelabelled

Foo

Foo

Procedure Entry Node

Procedure Return Node

Q

Q

R

R

S

 S

P

 P

cs 1 cs 3

cs 1

cs 1
cs 3

cs 4

cs 4

cs 4

cs 4

cs 2

cs 2

cs 6

 cs 6

cs 6

cs 5

cs 5

cs 6

cs 2

1

2

3 4

5

6 7
8

9

10

11

12 13

14

cs 4

Figure 2: FPR for program in the left. Edgenumbers and call sites at which edges start/end(whenever applicable) are marked in the Fig-ure.6

Full Program Representation: (FPR) is a directed multigraph G = (V;E), where theset of nodes V consists of an entry node and a return node for each procedure in the program.For procedure i, the entry node is denoted by si and the return node is denoted by ri. Edgesare inserted in the following cases:1. Procedures i and j are invoked by procedure k at call sites cs1 and cs2 respectively andthere is a path in the CFG of k from cs1 to cs2 which does not include any other call statements.Edge (ri; sj) exists in this case. The call site cs1 is associated with the start of this edge andthe call site cs2 is associated with its end. The block of code B(e) consists of basic blocks ofprocedure k which may be visited in any control
ow path p from cs1 to cs2, such that the pathp does not include any other call statements.2. Procedure i invokes procedure j at call site cs and there is a path in the CFG of i fromthe entry node of procedure i to cs which does not include any other call statements. In thiscase, edge (si; sj) exists. The call site cs is associated with the end of this edge. The block ofcode B(e) consists of basic blocks of procedure i which may be visited in any control
ow pathp from start of i to cs, such that the path p does not include any other call statement.3. Procedure j invokes procedure i at call site cs and there is a path in the CFG of j fromcall site cs to a return statement within procedure j which does not include any other callstatements. In this case, edge (ri; rj) exists. The call site cs is associated with the start of thethis edge. The block of code B(e) consists of basic blocks of procedure j which may be visitedin any control
ow path p from cs to a return statement of j, such that the path p does notinclude any call statements.4. In a procedure i, there is a possible
ow of control from entry node to a return statement,without any call statements. In this case, edge (si; ri) exists. The block of code B(e) consistsof basic blocks of procedure i which may be visited in any control
ow path p from start of i toa return statement in i, such that the path p does not include any call statements.An example program and its FPR are shown in Figures 1 and 2 respectively.A block of code is the primary unit of placement in our analysis, i.e. we initially considerplacement only at the beginning and end of a block of code. Note that a basic block in a blockof code may or may not be visited along a given control
ow path from source to sink of theedge. Also, a basic block may belong to several blocks of code. This is taken into accountduring intraprocedural analysis done for determining �nal local placement, which we discuss inSection 4.6.The following information is pre-computed and assumed to be available during our analysisphase. For each edge in FPR, we compute the list of variables modi�ed in the correspondingblock of code. Similarly, we also compute the list of variables referred to in each block of code.These sets are used by the TRANSe functions de�ned later. For each procedure, we also computethe list of variables modi�ed and referred to by the procedure or any of the procedures invoked7

by this procedure. In the absence of aliasing, this information can easily be computed by
ow-insensitive interprocedural analysis in time linear to the size of call graph of the program [10].This information is used by the FSUMcs functions de�ned later.4.2 Candidates for PlacementWe now introduce the format of the read and write operations that we assume. We are onlyinterested in the parameters which can e�ect the placement of the operation and not in thearchitecture dependent parameters which come in the exact format of the statements. A reador write operation, for our purposes, has the formatOp(Arrayname; s1; s2::::)where, Arrayname is the name of the array which is to be read in or written out. s1; s2; :::, arevarious size speci�ers, they specify the size of the array being input/output or the section of thearray which is to be input/output.The operation op results in either a modi�cation to the contents of the array Arrayname(in case of reads) or a modi�cation of the contents of an attached disk (in case of writes). Theparameters s1; s2, ..., or any other program variables are not modi�ed.For the purpose of our discussion, we refer to any synchronous operation, which the compilermay want to replace by asynchronous operation, as a candidate for placement. We refer to theparameters of a candidate as its in
uencers.4.3 Interprocedural AnalysisWe now present the IBCP scheme we have developed. We use the terms edge and block of codeinterchangeably in this section.Our method is based upon the notions of availability and anticipability. Availability of acandidate C at any point p in the program means that C is currently placed on all of the pathsleading to p and if C were to be placed at this point, C will have the same result as the resultof the last occurrence on any of the paths. Anticipability of a candidate C at a point p in theprogram means that C is currently placed on all the paths leading from p, and if C were to beplaced at p, C will have the same result as the result of the �rst occurrence on any of the paths.We use anticipability for determining placement of Start op and availability for determiningplacement of End op. Both anticipability and availability are computed for the beginning andthe end of each block of code (edge) in the FPR. For a candidate C, anticipability at thebeginning of a block of code e is denoted by ANTINC(e) and anticipability at the end of theblock of code is denoted by ANTOUTC(e). Similarly, availability at the beginning of the blockof code is denoted by AVINC(e) and availability at the end of the block of code is denoted byAVOUTC(e).We now list the major problems that need to be addressed in our analysis:1. A procedure containing a candidate (or a procedure invoking such a procedure) may beinvoked at multiple call sites, possibly with di�erent sets of actual parameters. (e.g. in the8

Infl1 Infl2 Inflm..........

Figure 3: Lattice used in the data
ow problemscode shown in Figure 1, procedure P is invoked at two call sites with di�erent parameters).While considering placement of the candidate outside the procedure it is originally placed,asynchronous operations must be placed corresponding to each invocation of the procedure inwhich the candidate was originally placed.2. For placement of a candidate in a procedure, all in
uencers of the candidate must be visibleinside that procedure, i.e. each of them is either a global variable, a formal parameter or a localvariable. (e.g. in the code shown in Figure 1, no placement will be possible inside procedure Q).3. If a procedure is invoked at several call sites in the program, our program representationshows paths from edges ending at a call site calling this procedure to the edges starting at othercall sites for this procedure. (e.g. in Figure 2, there is a path from edge 1 to edge 3 to edge 7.Edge 1 ends at call site cs1 whereas edge 7 starts at callsite cs3.) These paths are never takenand the data
ow analysis must not lose accuracy because of such paths in the graph.Consider again the example given in Figure 2. We denote the synchronous write operationin Procedure P as candidate C. If we decide to do a placement outside procedure P, we reallyneed to consider two di�erent candidates, one each corresponding to the calls to the procedureP at call sites cs5 and cs6. We will refer to these two candidates as C cs5 and C cs6 respectively.Note that if the original occurrence of a candidate is in a nested sequence of procedure calls, andif each of these procedures is called at several call sites, we can potentially have an exponentialnumber of candidates to consider. 9

4.3.1 Lattice for Data Flow ProblemsIf a candidate is available or anticipable at a certain point in the program, it is always with acertain set of in
uencers, which will be used in placing it (i.e. if it is decided that the candidateis to be placed at this location). For this reason, we use a three-level lattice for the data
owproblems. The lattice is shown in Figure 3. Each middle element in the lattice refers to a listof in
uencers, i.e. Infli = < v1; v2; : : : ; vn >. We de�ne the following functions on this lattice:_ and ^ are standard binary join and meet operators. For ease in presenting our data
owequations, we use W and V as con
uence join and meet operators i.e. for computing join andmeet respectively over a set of elements. : is a unary operator which returns ? when appliedto a list of in
uencers or to > and returns > when applied to ?.4.3.2 TerminologyWe use the following terms to specify the data
ow equations in this paper. We had de�ned ourprogram representation earlier in Section 4.1. In our Full Program Representation (FPR), theentry node corresponding to the main procedure is referred to as begin node and the returnnode corresponding to the main is referred to as the end node.The set of procedure entry nodes is represented by E and the set of procedure return nodesis represented by R. Consider an edge e = (v; w). The source of e (i.e. the node v) is referredto as So(e) and the sink of e (i.e. the node w) is referred to as Si(e). We use pred(e) to referto the set of edges whose sink is v. We denote by succ(e) the set of edges whose source is w.If the sink of the edge e is a procedure entry node, then the call site associated with theend of edge e is denoted by Si0(e). We use succ0(e) to refer to the set of edges which have thecall site Si0(e) associated at their start. Alternatively, if the source of the edge e is a procedurereturn node, then the call site associated with the start of edge e is denoted by So0(e). We referby pred0(e) the set of edges which are associated with the call site So0(e) at their end.Consider any edge e whose source is a procedure entry node. The set cobeg(e) comprises ofedges whose source is the same as the source of edge e. If an edge e has a procedure returnnode as the source and if cs is the call site associated with the start of the edge e, then the setcobeg(e) comprises of the edges which have the call site cs associated at their start.Next, consider any edge e whose sink is a procedure return node. The set coend(e) comprisesof the edges whose sink is the same as the sink of the edge e. If an edge e has a procedure entrynode as the source and if cs is the call site associated with the end of the edge e, then the setcoend(e) comprises of edges which have the call site cs associated at their end.The sets pred(e), pred0(e), succ(e), succ0(e), cobeg(e) and coend(e) for edges in the Graphshown in Figure 1 are shown in Figure 4.At any call site cs, the set of actual parameters passed is apcs and the jth actual parameteris apcs(j). The set of formal parameters of the procedure invoked at the call site cs is fpcs.(Clearly, this set is the same for all call sites which invoke this procedure). The jth formalparameter is denoted by fpcs(j). The set of global variables in the program is gv.10

e pred(e) pred0(e) succ(e) succ0(e) cobeg(e) coend(e)1 - - 3 5,6 1 12 4 5,8 3 7 2 23 1,2 - 5,6,7 - 3 34 5,8 - 2 - 4 45 3 1 4 2 5,6 5,86 3 1 10 11 5,6 6,7,97 3 2 10 11 7 6,7,98 12 13 4 2 8,9,14 5,89 12 13 10 11 8,9,14 6,7,910 6,7,9 - 11 - 10 1011 10 6,7,9 12 13 11 1112 11,13 - 8,9,13,14 - 12 1213 12 11 12 8,9,14 13 1314 12 13 - - 8,9,14 14Figure 4: pred(e), pred0(e), succ(e) and succ0(e) sets for Graph in Figure 24.4 Placement of Start opWe determine the placement of Start op by computing anticipability of the candidates. Thekey idea is to place the candidates at the earliest points where they are still anticipable. Thisallows for maximum overlap of the operation with the computation without violating the safety,correctness or balance guarantees.The equations for computing anticapability and determining placement are shown in in theFigure 6. All unknowns are initialized with >. This state means that the candidate may beanticipable, but we do not yet know what the list of in
uencers will be, if it is anticipable. Thebottom element in the lattice means that the candidate is not anticipable.Initially, the local data
ow property ANTLOC(i) of the edges in the graph is determined.(For a block of code, ANTLOC means that there is an occurrence of this candidate inside theblock which can be moved to the beginning of the block.) Let C be the candidate for placement.Consider any block of code (edge) i in which the original occurrence of the operation is placed.From the beginning of this block of code, if the occurrence of the candidate is not enclosed inany conditional or loop, and none of its in
uencers are modi�ed or referred to then, we markANTLOCC(i) = InflcHere, Inflc is the list of parameters of the call to the operation. Only if ANTLOCC(i) isInflc for all blocks of code i in which the original occurrence of this operation occurs, we canconsider moving the start op earlier than the original location.Two sets of functions FTRANS1 and FSUM1 summarize the mod/ref information, and areused for propagating data
ow information. If we are considering early placement of a writeoperation, FTRANS1e[< Arrayname; s1; s2; :: >], for an edge e, returns the same list if noneof the in
uencers in the list is modi�ed in the block of code associated with this edge. If any11

T1(vi) = (vi if vi 2 gvfpcs(j) if vi = apcs(j)RNM1cs[< v1; : : : ; vn >] = (? if 9i; (vi =2 gv) ^ (8j ; vi 6= apcs(j))< T1(v1); : : : ;T1(vn) > otherwise (1)T2(vi) = (vi if vi 2 gvapcs(j) if vi = fpcs(j)RNM2cs[< v1; : : : ; vn >] = (? if 9i; (vi =2 gv) ^ (8j ; vi 6= fpcs(j))< T2(v1); : : : ;T2(vn) > otherwise (2)Figure 5: Renaming functionsof these in
uencers is modi�ed, this function returns ?. If we are considering early placementof a read operation, FTRANS1e[< Arrayname; s1; s2; ::] for an edge e, returns the same list ifArrayname is not referred to and the other in
uencers s1,s2,.. are not modi�ed. FTRANS1e[>]and FTRANS1e[?] are de�ned to be > and ? respectively.For a call site cs which invokes procedure p, FSUM1cs[< Arrayname; s1; s2; :: >] returns thesame list if none of the in
uencers in the list is modi�ed by the procedure p (or by a procedure in-voked by p). Otherwise ? is returned. For a read operation, FSUM1cs[< Arrayname; s1; s2; :: >]checks if Arrayname is not referred to and the other in
uencers s1,s2,.. are not modi�ed.FSUM1cs[>] always returns > and FSUM1cs[?] always returns ?.OCRC(cs) determine if the procedure p (or any procedure invoked by p) includes any occur-rence of the candidate C. (Clearly, this will be the same for all call sites which call procedure p).Whenever there is no scope for ambiguity, we drop the subscript C. OCR(cs) returns > or truewhen there is an occurrence of the candidate in the procedure p and ? (or false) when there isno occurrence of the candidate at procedure p.For renaming of formal parameters at call sites, we de�ne two functions RNM1cs and RNM2cs(see Figure 5). Suppose a candidate is anticipable at a call site cs with a list of in
uencersInfli. The function RNM1cs determines if this candidate can be anticipable inside the procedureinvoked at cs, and if so, with what list of in
uencers. If any of in
uencers is neither a globalvariable nor an actual parameter at cs, RNM1cs returns ?, otherwise, each actual parameter inthe list is replaced by corresponding formal parameter. RNM1cs[>] and RNM1cs[?] are de�ned tobe > and ? respectively. Suppose a candidate is anticipable at the beginning of a procedure andlet cs be one of the call sites which invoke this procedure. RNM2cs determines if this candidatewill be anticipable at the entry of the edges which end at call site cs. If any of the in
uencersof the candidate inside the procedure is neither a global variable, nor a formal parameter, thenRNM2cs returns ?. Otherwise, each formal parameter is replaced by the actual parameter atcall site cs.The equations for propagation of anticipability (Figure 6) can be explained as follows. Con-12

ANTOUTC(e) = 8><>: ? if Si(e) is end nodeVs2succ(e) (RNM2So0(s) [ANTINC(s)]) if Si(e) 2 RFSUM1Si0(e)[Vs02succ0(e)ANTINC(s0)] if (Si(e) 2 E) ^ (:OCRC(Si0(e)))(3)ANTOUTC Si0(e)(e) = RNM1Si0(e)[Vs2succ(e)ANTINC(s)] if (Si(e) 2 E) ^ (OCRC(Si0(e))) (4)ANTINC(e) = 8><>: ? if So(e) is begin nodeANTLOCC(e) _(Vb2cobeg(e) FTRANS1b[ANTOUTC(b)]) otherwise (5)INS INC(e) = ANTOUTC(e) ^ (:ANTINC(e)) (6)INS BEGC(e) = 8>>>><>>>>: ANTINC(e) ^(Vp2pred(e):ANTOUTC Si0(p)(p)) if (So(e) 2 E) ^ (OCRC(Si0(p)))ANTINC(e) ^ (Vp2pred(e):ANTOUTC(p))^ (Vp02pred0(e):ANTOUTC(p0)) if So(e) 2 R (7)Figure 6: Data Flow Equations for Placement of Start opsider an edge e whose sink is a procedure return node. A candidate will be anticipable at theend of this edge e if the following holds: This candidate should be anticipable at the beginningof any edge s which starts at this procedure return node (i.e. s 2 succ(e)), and furthermore,after renaming (i.e. applying RNM1So0(s)), the list of in
uencers with which the candidate isanticipable should be the same for all such edges (see equation 3).If an edge e has a procedure entry node Si(e) as the sink, e is associated with call site Si0(e)at its end. The set succ(e) comprises of edges whose source is node Si(e) and the set succ0(e)comprises of edges which are associated with the call site Si0(e) at their start. Note that evenif the candidate is anticipable at the beginning of all the edges s0 (s0 2 succ0(e)) and none ofthe in
uencers is modi�ed inside the procedure, the candidate may not be anticipable inside theprocedure. This can happen for two reasons, all in
uencers of the candidate may not be visibleinside the procedure, or the procedure may be invoked at multiple call sites and the candidatemay not be anticipable at other call sites.For maintaining the accuracy of our analysis, we consider two di�erent cases. Let the callsite Si0(e) call procedure p. If the candidate's original occurrence is inside the invocation of theprocedure p (or any procedure invoked by the procedure p), then the value of ANTOUT(e) isdetermined by ANTOUT(s), for s 2 succ(e). Also, note that if the procedure p is called at morethan one call site (i.e. it is called at call site(s) besides Si0(e)), we need to consider di�erentcandidates corresponding to the di�erent call sites at which p is called. So, if the candidate Ccan be moved outside procedure p, we denote it as the candidate C Si0(e)(equation 4).If the procedure p does not include the original occurrence of the candidate C, then the valueof ANTOUT(e) is determined by ANTOUT(s0), for s0 2 succ0(e)(equation 3). The function13

FSUM1 checks the required mod/ref condition on the procedure invoked at call site Si0(e).Equation 5 determines anticipability of a candidate at the beginning of an edge or block ofcode. For solving the equations 3 through 5, all unknowns are initialized with > and largestsolution satisfying the equations is chosen.Equations 6 and 7 determine how placement decisions are made using the anticipabilityterms. For an edge e, the term INS BEG(e) means that placement of a candidate needs to bedone at the beginning of the edge e. The term INS IN means that placement is to be doneinside edge e, and further intraprocedural analysis will be required for determining the exactplacement. The equations can be explained as follows: Consider an block of code (edge) e, suchthat, for a particular candidate, ANTOUT(e) is true but ANTIN(e) is ?. i.e. the candidateis anticipable at the end of this block of code but is not anticipable at the beginning of thisblock of code. Note that this can happen for two reasons: First, the block of code e may notbe transparent with respect to this candidate or the candidate is not anticipable at the end ofa block of code b, for b 2 cobeg(e). In either of these two cases, INS IN(e) is marked true (seeequation 6). If INS IN(e) is true, this means that candidate will be placed inside the block ofcode e, however, further analysis (described in Section 4.6) will be required for determining the�nal placement.Now, consider an edge e whose source is a procedure entry node, i.e. So(e) 2 E . Supposethat ANTIN(e) is not ?. Consider any edge p, p 2 pred(e) and let ANTIN(p) be ?. It canthen be shown that ANTIN(p) will be ? for all the edges p, where p 2 pred(e). In this case,candidate is placed at the beginning of the procedure in which the block of code e exists. Nofurther analysis is required for determining the placement.Next, consider the case when the source of the edge e is a procedure return node i.e. So(e) 2R. Consider an edge p such that p 2 pred(e). Even if ANTIN(e) is true and ANTOUT(p)is ?, no placement may be required. This is because, ANTOUT(p0) may be true for p0 2pred0(e). It can be easily shown that ANTOUT(p0) will be identical for all the edges p0, forp0 2 pred0(e), and further, if ANTOUT(p) is ? for a p 2 pred(e), then ANTOUT(p) is ? forall p 2 pred(e). To determine the placement at the beginning of this edge e, we check if both(Vp2pred(e):ANTOUTC(p)) and (Vp02pred0(e):ANTOUTC(p0)) return >. If the condition ismet, the candidate is placed just after the call statement at So0(e). Again, no further analysisis required.For the example program shown in Figure 1, the solution of data
ow properties for deter-mining placement of Start op is shown in Figure 7.4.5 Placement of End opThe analysis done for determining placement of End op is analogous to the analysis done fordetermining Start op. Instead of using the anticipability terms, we use availability terms. Theequations for propagating availability and for determining the placement is given in Figure 8.Initially, the local data
ow property COMP(i) of the edges in the graph is determined. (Fora block of code, COMP means that there is an occurrence of this candidate inside the blockwhich can be moved to the end of the block.) Let C be the candidate for placement. Consider14

Edge ANTOUT ANTIN INS IN INS BEGC C cs5 C cs6 C C cs5 C cs6 C C cs5 C cs6 C C cs5 C cs61 - ? ? - ? ? - ? ? - ? ?2 - < A; d > ? - < A; d > ? - ? ? - ? ?3 - ? ? - ? ? - ? ? - ? ?4 - < x; y > ? - ? ? - < x; y > ? - ? ?5 - ? ? - ? ? - ? ? - ? ?6 - - - -7 - < A; d > ? - ? ? - < A; d > ? - ? ?8 - ? ? - ? ? - ? ? - ? ?9 - ? ? - ? ? - ? ? - ? ?10 - ? < x; y > - ? ? - ? < x; y > - ? ?11 - < A; d > < B; d > - < A; d > < A; d > - ? ? - ? ?12 ? - - < x; y > - - ? - - ? - -13 - ? < B; d > - ? < B; d > - ? ? - ? ?14 - ? ? - ? ? - ? ? - ? ?Figure 7: Solution of Data Flow Properties for the Graph (for placement of Start op)any block of code (edge) i in which the original occurrence of the operation is placed. If thecandidate is not enclosed in any conditional or loop, and none of its in
uencers are modi�ed orreferred to from its occurrence to the end of the block of code, then we markCOMPC(i) = InflcHere, Inflc is the list of parameters of the call to the operation. Only if COMPC(i) isInflc for all blocks of code i in which the original occurrence of this operation occurred, we canconsider moving the end op after the existing location.Two sets of functions FTRANS2 and FSUM2 summarize the mod/ref information, and areused for propagating data
ow information. If we are considering placement of a write operation,FTRANS2e[< Arrayname; s1; s2; :: >], for an edge e, returns the same list if Arrayname is notmodi�ed in the block of code associated with this edge. Otherwise, this function returns ?. Ifwe are considering placement of a read operation, FTRANS2e[< Arrayname; s1; s2; :: >] of anedge e returns the same list if Arrayname is not referred to nor modi�ed. FTRANS2e[>] andFTRANS2e[?] are de�ned to be > and ? respectively.For a call site cs which invokes procedure p, FSUM2cs[< Arrayname; s1; s2; :: >] returnsthe same list if Arrayname is not modi�ed by the procedure p (or by a procedure invokedby p) (for a write operation). Otherwise ? is returned. For a read operation, FSUM2cs[<Arrayname; s1; s2; :: >] checks if Arrayname is not referred to or modi�ed. FSUM2cs[>] returns> and FSUM2cs[?] returns ?.Equations 8, 9 and 10 determine availability at the beginning and end of each block ofcode. Equations 11 and 12 determine �nal placement using the availability information. Theseequations are analogous to the equations for determining anticipability and computing placementof Start op, and we do not explain them here.15

AVINC(e) = 8><>: ? if So(e) is begin nodeVp2pred(e) (RNM1Si0(p) [AVOUTC(p)]) if So(e) 2 EFSUM2So0(e)[Vp02pred0(e) AVOUTC(p0)] if (So(e) 2 R) ^ (:OCRC(So0(e)))(8)AVINC So0(e)(e) = RNM2So0(e)[Vp2pred(e)AVOUTC(p)] if (So(e) 2 R) ^ (OCRC (So0(e))) (9)AVOUTC(e) = 8><>: ? if Si(e) is end nodeCOMPC(e) _(Vb2coend(e) FTRANS2b[AVINC(b)]) otherwise (10)INS INC(e) = AVINC(e) ^ (:AVOUTC(e)) (11)INS ENDC(e) = 8>>>><>>>>: AVOUTC(e) ^(Vs2succ(e):AVINC So0(s)(s)) if (Si(e) 2 R) ^ (OCRC(So0(s)))AVOUTC(e) ^ (Vs2succ(e):AVINC(s))^ (Vs02succ0(e):AVINC(s0)) if Si(e) 2 E (12)Figure 8: Data Flow Equations for Placement of End opFor the example program shown in Figure 1, the solution of data
ow properties for deter-mining placement of End op is shown in Figure 9.4.6 Final Intraprocedural AnalysisAs we stated earlier, intraprocedural analysis is required in the blocks of code where INS INC ismarked to be true. We brie
y sketch this analysis in this subsection. We describe our analysisin the context of placement of Start op only; the analysis for the placement of End op isanalogous.Consider a procedure P , which has at least one block of code e, such that INS IN(e) is setto a list of in
uencers, Infl. Data
ow analysis is done on the CFG of the procedure P . At theend of the procedure and at all the call sites, initialization of properties is done using the valuescomputed during the interprocedural analysis on the FPR of the full program.For determining the �nal placement of Start op, we compute anticipability at the beginningand end of each basic block in P . For a basic block b, ANTICIN(b) denotes the anticipabilityof the candidate at the beginning of the basic block and ANTICOUT(b) denotes anticipabilityat the end of the basic block. If a block of code e ends at a call site cs, then and if b is thebasic block just before this call site, then ANTICOUT(b) is set to be the same as ANTOUT(e).Similarly, if a block of code e ends at the return of procedure P , then ANTICOUT(b) is set asANTOUT(e), where b is the last basic block in the CFG of procedure P .After these initializations, the anticipability is propagated upwards in a simple fashion. Fora basic block b, then ANTICOUT(b) is the meet of ANTICOUT(s), where s is any successor ofb in the CFG. ANTICIN(b) is set to a list of in
uencers, only if ANTICIN(b) is the same list of16

Edge AVIN AVOUT INS IN INS ENDC C cs5 C cs6 C C cs5 C cs6 C C cs5 C cs6 C C cs5 C cs61 - ? ? - ? ? - ? ? - ? ?2 - ? ? - ? ? - ? ? - ? ?3 - ? ? - ? ? - ? ? - ? ?4 - ? ? - ? ? - ? ? - ? ?5 - ? ? - ? ? - ? ? - ? ?6 - ? ? - ? ? - ? ? - ? ?7 - ? ? - ? ? - ? ? - ? ?8 - < A; d > < B; d > - ? ? - < A; d > < B; d > - ? ?9 - < A; d > < B; d > - ? ? - < A; d > < B; d > - ? ?10 - ? ? - ? ? - ? ? - ? ?11 - ? ? - ? ? - ? ? - ? ?12 ? - - < x; y > - - ? - - ? - -13 - < A; d > ? - < A; d > ? - ? ? - ? ?14 - < A; d > < B; d > - < A; d > < B; d > - < A; d > < B; d > - ? ?Figure 9: Solution of Data Flow Properties for the Graph (for placement of End op)in
uencers and if the basic block is transparent with respect to this list of in
uencers. We donot give formal equations for intraprocedural analysis here.The �nal placement inside procedure is decided as follows: If ANTICOUT(b) is a list ofin
uencers and if ANTICIN(b) is ?, then placement of the candidate is done after the laststatement in the basic block b. Alternatively, let s be a successor of b in the CFG. If ANTICIN(s)is a list of in
uencers and if ANTICOUT(b) is ?, then the �nal placement is done in a new basicblock, inserted between b and s.For the example program shown in Figure 1, the optimized program is shown in Figure 10.5 Experimental ResultsWe have implemented a source to source Fortran translation tool based on our interproceduralbalanced code placement technique. This tool is based upon the Parascope/D System front end.We have evaluated the e�cacy of our technique by determining the performance improvementachieved by using this tool on two I/O intensive applications. The �rst application simulates aphysical process and generates a snapshot to capture the evolution of the process. The secondapplication is a template for satellite sensor data processing programs. These programs processlarge images that do not �t into the physical memory of a processor.All our experiments were done on an IBM RS/6000 running AIX 3.2.5, with 64 MB ofprimary memory and one 2.2 GB IBM Star�re 7200 SCSI disk. The Star�re 7200 is rated at amaximum bandwidth of 8 MB/s; the maximum measured application-level �le I/O bandwidthis 7.5 MB/s [1]. For all our experiments, we measured end-to-end execution time including a�nal fsync() to ensure that all data has been written to disk. This allowed us to include thecost of operating system operations. It also allowed us to measure end-to-end improvements inthe execution time. 17

Program Foo Procedure P(x,y)Arrays A, B ..other computations ..d = EndCall Q(c) Procedure Q(z)Do i = 1, 100 z = ...z...if cond then EndCall R(A,d) Procedure R(x,y)Call Q(c) x = ...x...else Start op(x,y)A =other computations ..Start op(A,d) EndendifCall S(B,d) Procedure S(x,y)Call P(A,d) x = ...x...Call P(B,d) Start op(x,y)End op(A,d) ..other computations ..End op(B,d) EndEnddoEnd Figure 10: Optimized Version of Program5.1 Direct Simulation Monte CarloDirection Simulation Monte Carlo is a well known technique for studying the interaction of par-ticles in cells [5]. The program we used in our experiments, dsmc-3d was originally developed byRichard Wilmoth at NASA Langley [21]. To study the evolution of the process being simulated,it is useful to snapshot the position of all the particles after every time-step. This program isparameterized by the number of particles which governs the memory and I/O requirements ofthe program. It is a useful benchmark for our experiments as it allows us to study its behavioras the memory and I/O requirements varied.The code input to the compiler used a synchronous write operation to generate a snapshot atthe end of every time-step. Our compiler replaced this operation with appropriate asynchronouswrite operations. To determine the overall cost of I/O (both synchronous and asynchronous),we used a version of the program which did not generate snapshots.Figure 11 presents results for four dsmc-3d data sets { with 388K, 486K, 584K and 682Kparticles (the output per iteration being 9.3 MB, 11.7 MB, 14.0 MB and 16.4 MB respectively).The memory requirements of the code (without I/O) were 34.5 MB, 40 MB, 45.5 MB and 51 MBrespectively at these con�gurations.Results are presented for the �rst �ve iterations. The third column shows the executiontime of the code input to the compiler (with synchronous writes); the fourth column shows theexecution time of the code generated by the compiler (with asynchronous writes). The �fthcolumn shows the execution time of the version of the program that generates no snapshots.18

No. of Output/Iter. With sync. With async. No output Reduction ReductionParticles. (MB) output (sec) output (sec) (sec) I/O time overall time388K 9.3 33.78 31.35 30.19 67.7% 7.2%486K 11.7 49.49 42.24 38.68 67.1% 15.6%584K 14.0 85.28 68.36 49.62 47.5% 19.5%682K 16.4 108.51 90.87 70.53 46.4% 16.8%Figure 11: Performance of Compiler Placed Asynchronous I/O, Five iterations of dsmc-3dThe sixth and seventh columns show the percentage reduction in the total time ascribed to I/Oand end-to-end execution time. The total time ascribed to I/O for either version of the programwas computed by a di�erence of its execution time and the execution time of the no-snapshotsversion running on the same con�guration.For small con�gurations, both the memory requirements of the application and the size ofoutput are small and �t together into the physical memory. In these cases, the write-behindfacility provided by the operating system �le cache works well and a synchronous write waitsonly as long as it takes to copy the data into the �le cache. Use of asynchronous writes canreduce the I/O overhead by up to 60%, but the di�erence in the overall performance of theapplication is small.For larger con�gurations, both the memory and I/O requirements higher. In these cases, asynchronous write operation has to wait till some pages are written to disk. In such cases, I/Ocan take up to 40% of the execution time of the program. As the results in Figure 11 show, theuse of compiler placed asynchronous I/O can reduce the I/O waiting time by up to 67% and theend-to-end execution time of the program by up to nearly 20%.Note that the percent reduction in the time ascribed to I/O drops as the number of particlessimulated increases. We believe that this is because of the contention for the memory betweenthe data pages and the �le pages. If the data pages which are likely to be used in subsequentiterations are written back to the disk, the number of page faults increases. For the 682K dataset (with synchronous I/O), the number of page faults resulting in I/O was 1401, whereas, forthe 486K data set, this number was only 60. The contention for the main memory was, in ouropinion, the main reason for the relatively low I/O rate observed for large con�gurations. Forvery large con�gurations, the competition between the data pages and the �le pages leads tothrashing. For example, when the number of particles was increased to 731K, the executiontime for the version with synchronous writes was 163 seconds, the time ascribed to I/O was89 seconds. The use of asynchronous operation did not improve the performance as the timeascribed to I/O was dominated by paging activity.Because of the structure of the code, no overlap in the I/O and computation would havebeen possible without interprocedural analysis. By hand analysis of the code, we determinedthat placement of the asynchronous operations could not have been any better that what was19

Output/Iter. With synch. With async. Reduction Reduction(MB) write (sec) write (sec) I/O time overall time6 114.8 98.9 40.8% 13.3%8 123.9 106.1 37.1% 14.4%10 130.2 111.0 35.3% 14.7%12 147.9 128.2 27.4% 13.3%14 173.5 148.6 25.2% 14.3%Figure 12: Performance of Compiler Placed Asynchronous I/O, satellite templateachieved by our compiler. In all experiments with the compiler generated code, the time spentin aio complete()1 was close to zero. This indicates that the analysis was able to completelyoverlap the write with computation and the performance of snapshot generation for dsmc-3dcannot be further improved.5.2 Template for Satellite Data Processing ProgramsThis Fortran template, which we shall refer to as satellite, was constructed to emulate thecomputational and I/O characteristics of a large number of satellite data processing programs.These programs take sensor data from a sequence of days and generate a single composite multi-band image of world. The sensor data is processed in chunks of about 500 KB. For composition,these programs maintain an out-of-core intermediate version of the image. After the data in eachchunk is processed, each data value is mapped into the intermediate image and is compared withthe corresponding pixel. If the new value is \better", it is copied into the pixel. To implementthis out-of-core max-reduction e�ciently, a bounding region of the image containing the pixelsto be updated, is read, modi�ed in-core and written back to disk.This template was loosely based on pathfinder, the AVHRR program from the NASAGoddard Distributed Active Archive Center [1]. It has a similar organization, the same memoryrequirement and processes its input in same size (500 KB) chunks. In the template, the compu-tation for every chunk is �xed at 7.6 seconds 2; the size of the image region to updated by theread-modify-write operation is assumed to be the same for all chunks and is a parameter of thetemplate.The code input to the compiler used synchronous operations for all I/O { an input readat the beginning of the process-a-chunk loop as well as the read and write for the out-of-coremax-reduction at the end of this loop. Our compiler replaced the synchronous write for the out-of-core computation with appropriate asynchronous write operations. The synchronous readswere not changed.1The POSIX routine used to wait for completion of an asynchronous I/O operation.2This number is derived from a set of pathfinder runs.20

Figure 12 presents results for �ve satellite con�gurations with the region sizes of 6MB,8MB, 10MB, 12MB and 14MB. Results are presented for the �rst ten chunks. The second columnshows the execution time of the code input to the compiler (with synchronous writes); the thirdcolumn shows the execution time of the code generated by the compiler (with asynchronouswrites). The fourth and �fth columns show the percentage reduction in total time ascribed toI/O and the end to end execution time respectively. The total time ascribed to I/O for eitherversion of the program was computed by subtracting 75.9 seconds (the execution time for theno-intermediate-IO version of the program) from its end-to-end execution time. The memoryrequirement of the program (without I/O) remained constant at nearly 45 MB for di�erentcon�guration.The improvement in end-to-end execution time is consistently around 14% for all con�gu-rations. The time ascribed to I/O grows roughly proportionally with the size of region to beupdated. For the synchronous version, from 38.9 seconds for the 6 MB case to 97.6 seconds forthe 14 MB case. On the other hand, the percentage reduction in the time ascribed to I/O dropsas the size of region to be updated is increased.Again, for this code, no overlap in the I/O and computation would have been possible withoutinterprocedural analysis. Also, by hand analysis of the code, we determined that placement ofthe asynchronous operations could not have been any better that what was achieved by ourcompiler.6 Discussion and Related WorkWe now state the relationship of our work with the existing work in the areas of I/O, cacheperformance improvement, data
ow analysis and interprocedural analysis. We also mentionlimitations of our current approach and the future directions we plan to take.Several researchers have developed compiler techniques for overlapping cache stalls withcomputation (also known as software prefetching). This includes the work of Mowry et al. aspart of the SUIF system [23] and Callahan et al. at Rice University [8]. The amount of timerequired for cache misses is usually of the order of 10 cycles; much smaller than the disk latency,which of the order of 100,000 cycles. Therefore, for cache prefetching one only needs to consideroverlap within a single loop, as they do. In our case, we need to look at computation acrossprocedure boundaries to allow for signi�cant overlap.Future architecture trends show that micro-processors will have large Level 2 (L2) caches,and the miss penalty for L2 caches will of the order of 500 cycles [28]. In such scenarios, itwill be pro�table to perform analysis across procedure boundaries to prefetch data into the L2cache. We believe that our analysis can be extended to perform prefetches for L2 caches as well.In separate work, we have worked on Interprocedural Partial Redundancy Elimination (IPRE) [2,4] and other placement optimizations for distributed memory compilation [3]. The analysis re-quired for balanced code placement is signi�cantly di�erent from the analysis in IPRE for atleast two reasons: First, IBCP analysis needs to ensure that there is exactly one occurrence ofasynchronous operation corresponding to each occurrence of the synchronous operation. IPRE,21

on the other hand, tries to reduce the number of occurrences of the candidates in the optimizedcode. Secondly, IPRE analysis does not need to consider placement of Start op and End opseparately. The program representation used in this paper was �rst introduced in the context ofIPRE. Use of the same representation for IBCP framework establishes that this representationhas wide applicability.Hanxleden and Kennedy have developed a general framework for communication placement,which includes performing early placement of sends and late placement of receives [16]. Thisframework can also be used for placement of read and write operations, however, it is restricted toanalysis and placement within a single procedure. Gornish et al. present methods for prefetchingin shared memory multiprocessors [13]. Their techniques are also applicable for placing readoperations early within a single procedure. However, their techniques apply only when theprocedure has a simple loop structure. In contrast, our method does not impose any restrictionson the shapes of call graph and CFGs of the procedures. Several other projects have performedinterprocedural optimizations for parallelism and for dealing with memory hierarchies. FIAThas been proposed as a general framework for interprocedural analysis [15], but largely targets
ow-insensitive problems.Compiler optimizations for improving I/O accesses have been addressed by at least twoprojects. The PASSION compiler (based upon Syracuse F90D system) performs loop transfor-mations for improving locality in out-of-core applications [29]. Similar optimizations have alsobeen performed as part of the Fortran D compilation system's support for out-of-core appli-cations [26]. Neither of these groups have proposed any general techniques for placement ofasynchronous operations or any interprocedural optimizations. Hand-compilation experimentshave been presented to show performance gains from using asynchronous I/O [6].Signi�cant amount of work has been done on runtime libraries for optimizing Parallel I/O.PASSION library at Syracuse University is one such library for optimizing I/O accesses and usesthe two phase I/O technique [7, 9]. Kotz has developed a similar technique, disk-directed I/Ofor performing collective I/O operations [18]. Other projects have focussed on benchmarkingI/O intensive applications, including Crandall et. al at Illinois [11] and Acharya et. al atMaryland [1].An important limitation of our current work has been to consider each array as a singleentity, i.e., modi�cation or reference to any element of an array is considered as mod/ref to theentire array. We plan to augment our analysis with array section analysis [17] to improve itsaccuracy. Consider, for example, a loop iterating over the elements of an array, which is to besnapshot later. In such a case, array section analysis will allow us to output the parts of thearray which have been modi�ed, without waiting for the other elements to be modi�ed. Onepotential advantage of this kind of analysis will be to break up a large I/O operation into severalsmaller I/O operations, presumably of the size which will �t into the �le caches. This can allowbetter performance even if the operating system or the I/O library does not allow asynchronousoperations. 22

7 ConclusionsThis paper has two main contributions. The �rst is a general interprocedural framework for re-placing large latency synchronous applications with split-phase operations and overlapping themwith computation. This scheme is applicable to arbitrary recursive procedures and arbitrarycontrol
ow within each procedure.The second contribution of this paper is to evaluate the e�cacy of this scheme for scienti�capplications which perform large and frequent write operations. We have implemented a Fortransource to source transformation tool which performs the analysis. Experiments with our tool ontwo applications has shown that large overlap of the write operations could be achieved through
ow-sensitive interprocedural analysis. In both these applications, almost no overlap would havebeen possible if the analysis was restricted within single procedures.We compared the performance of the version of the code performing synchronous write op-erations with the version performing compiler placed asynchronous operations. Use of compilerplaced asynchronous operations could reduce the I/O overhead of these applications by 30%-70%and the overall performance of the code by up to 20%. Performance gains are most signi�cantwhen large write operations are made by codes which are using a large fraction of the primarymemory of the program.AcknowledgementsWe have implemented our source to source compiler using the Parascope/ D System Fortranfront end. We gratefully acknowledge our debt to its implementers. We would like thank BongkiMoon for the dsmc-3d program. We would also like to thank Tonjua Hines and Steve Kemplerfrom the Earth Science Data & Information Systems Project (ESDIS) at NASA Goddard SpaceFlight Center for invaluable discussions about NASA's satellite data processing requirements,and for helping us gain access to NASA programs.References[1] Anurag Acharya, Mustafa Uysal, Robert Bennett, Assaf Mendelson, Mike Beynon, Je�Hollingsworth, Joel Saltz, and Alan Sussman. Tuning the Performance of I/O Intensive ParallelApplications. Submitted to IOPADS'96, October 1995.[2] Gagan Agrawal and Joel Saltz. Interprocedural communication optimizations for distributed mem-ory compilation. In Proceedings of the 7th Workshop on Languages and Compilers for ParallelComputing, pages 283{299, August 1994. Also available as University of Maryland Technical ReportCS-TR-3264.[3] Gagan Agrawal and Joel Saltz. Interprocedural compilation of irregular applications for distributedmemory machines. In Proceedings Supercomputing '95. IEEE Computer Society Press, December1995. To appear. Also available as University of Maryland Technical Report CS-TR-3447.[4] Gagan Agrawal, Joel Saltz, and Raja Das. Interprocedural partial redundancy elimination and itsapplication to distributed memory compilation. In Proceedings of the SIGPLAN '95 Conferenceon Programming Language Design and Implementation, pages 258{269. ACM Press, June 1995.ACM SIGPLAN Notices, Vol. 30, No. 6. Also available as University of Maryland Technical ReportCS-TR-3446 and UMIACS-TR-95-42. 23

[5] Graeme A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. ClarendonPress, Oxford, 1994.[6] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and M. Paleczny. A model and compilationstrategy for out-of-core data parallel programs. In Proceedings of the Fifth ACM SIGPLAN Sym-posium on Principles & Practice of Parallel Programming (PPOPP), pages 1{10. ACM Press, July1995. ACM SIGPLAN Notices, Vol. 30, No. 8.[7] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and evaluation ofprimitives for parallel I/O. In Proceedings Supercomputing '93, pages 452{461. IEEE ComputerSociety Press, November 1993.[8] D. Callahan, Ken Kennedy, and A. Porter�eld. Software prefetching. In 4th International Conferenceon Architectural Support for Programming Languages and Operating Systems, pages 40{52, SantaClara, CA, April 1991.[9] Alok Choudhary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer, Ravi Ponnusamy, Tarvin-der Singh, and Rajeev Thakur. PASSION: Parallel and scalable software for input-output. TechnicalReport SCCS-636, NPAC, September 1994. Also available as CRPC Report CRPC-TR94483.[10] K. Cooper and K. Kennedy. Interprocedural side-e�ect analysis in linear time. In Proceedings ofthe SIGPLAN '88 Conference on Programming Language Design and Implementation, Atlanta, GA,June 1988.[11] P. E. Crandall, R. A. Aydt, A. C. Chien, and D. A. Reed. Input/Output characteristics of ScalableParallel Applications. In Proceedings Supercomputing '95, December 1995. To appear.[12] N. Galbreath, W. Gropp, and D. Levine. Applications-driven Parallel I/O. In Proceedings Super-computing '93, pages 462{471, November 1993.[13] E. H. Gornish, E. D. Granston, and A. V. Veindenbaum. Compiler-directed data prefetching inmultiprocessors with memory hierarchies. In Proceedings of International Conference on SuperCom-puting, pages 354{368, July 1990.[14] Mary Hall. Managing Interprocedural Optimization. PhD thesis, Rice University, October 1990.[15] Mary Hall, John Mellor Crummey, Alan Carle, and Rene G Rodriguez. FIAT: A framework forinterprocedural analysis and transformations. In Proceedings of the 6th Workshop on Languages andCompilers for Parallel Computing, pages 522{545. Springer-Verlag, August 1993.[16] Reinhard von Hanxleden and Ken Kennedy. Give-n-take { a balanced code placement framework. InProceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation,pages 107{120. ACM Press, June 1994. ACM SIGPLAN Notices, Vol. 29, No. 6.[17] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis.IEEE Transactions on Parallel and Distributed Systems, 2(3):350{360, July 1991.[18] David Kotz. Disk-directed I/O for MIMD multiprocessors. Technical Report PCS-TR94-226, De-partment of Computer Science, Dartmouth College, July 1994.[19] Kwan-Liu Ma and Z.C. Zheng. 3D visualization of unsteady 2D airplane wake vortices. In Proceedingsof Visualization'94, pages 124{31, Oct 1994.[20] T.J. Marlowe and B.G. Ryder. Properties of data
ow frameworks. Acta Informatica, 28:121{163,1990.[21] B. Moon and J. Saltz. Adaptive runtime support for direct simulation Monte Carlo methods ondistributed memory architectures. In Proceedings of the Scalable High Performance ComputingConference (SHPCC-94), pages 176{183. IEEE Computer Society Press, May 1994.24

[22] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies. Communi-cations of the ACM, 22(2):96{103, February 1979.[23] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of a compiler algorithmfor prefetching. In Proceedings of the Fifth International Conference on Architectural Support forProgramming Languages and Operating Systems (ASPLOS V), pages 62{73. ACM Press, October1992.[24] E. Myers. A precise interprocedural data
ow algorithm. In Conference Record of the Eighth ACMSymposium on the Principles of Programming Languages, pages 219{230, January 1981.[25] R. Nance, R. Wilmoth, B. Moon, H. Hassan, and J. Saltz. Parallel DSMC solution of three-dimensional
ow over a �nite
at plate. In Proceedings of the 6th AIAA/ASME Joint Thermophysicsand Heat Transfer Conference, Colorado Springs, CO, June 1994.[26] M. Paleczny, K. Kennedy, and C. Koelbel. Compiler support for out-of-core arrays on parallelmachines. In Proceedings of the Fifth Symposium on the Frontiers of Massively Parallel Computation,pages 110{118. IEEE Computer Society Press, February 1995.[27] G. Patnaik, K. Kailasnath, and E.S. Oran. E�ect of gravity on
ame instabilities in premixed gases.AIAA Journal, 29(12):2141{8, Dec 1991.[28] Mendel Rosenblum, Ed Bugnion, Stephen Alan Herrod, Emmett Witchel, and Anoop Gupta. Theimpact of architectural trends on operating system performance. In Proceedings of Symposium onOperating System Principles, 1995. To appear.[29] Rajeev Thakur, Rajesh Bordawekar, and Alok Choudhary. Compilation of out-of-core data parallelprograms for distributed memory machines. In Proceedings of the IPPS'94 Second Annual Workshopon Input/Output in Parallel Computer Systems, pages 54{72, April 1994. Also appears in ACMComputer Architecture News, Vol. 22, No. 4, September 1994.[30] R.G. Wilmoth. Application of a parallel direct simulationmonte carlo method to hypersonic rare�ed
ows. AIAA Journal, 30(10):2447{52, Oct 1992.[31] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Proceedings ofthe SIGPLAN '91 Conference on Programming Language Design and Implementation, pages 30{44.ACM Press, June 1991.[32] Michael Wolfe. Data dependence and program restructuring. Journal of Supercomputing, 4(4):321{344, January 1991.
25

