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Abstract

Overlapping memory accesses with computations is a standard technique for improving
performance on modern architectures, which have deep memory hierarchies. In this paper,
we present a compiler technique for overlapping accesses to secondary memory (disks) with
computation. We have developed an Interprocedural Balanced Code Placement (IBCP)
framework, which performs analysis on arbitrary recursive procedures and arbitrary control
flow and replaces synchronous 1/O operations with a balanced pair of asynchronous opera-
tions. We demonstrate how this analysis 1s useful for applications which perform frequent
and large accesses to secondary memory, including applications which snapshot or checkpoint
their computations or out-of-core applications.

1 Introduction

Modern architectures have large number of memory hierarchies. Processors have one or two levels
of cache, followed by primary memory (RAM), secondary memory (disks) and tertiary memory.
The cost of data access increases rapidly with the depth of access. Achieving and sustaining
good performance in presence of deep memory hierarchies is a very important problem and has
received significant attention in the last few years.

Several research projects have worked on code transformations to improve locality [6, 31, 32].
Most of the programs still spend considerable amount of their time in accessing data from
memory at a deeper level in the hierarchy. The overhead of deep memory accesses can be
reduced by using asynchronous operations overlapped with computations. Substantial work has
been done on compiler analysis for overlapping memory accesses with computations, mostly in
the context of reducing overheads of cache stalls [8, 23].

Several classes of applications involve large and frequent accesses to data stored in the

secondary memory. The need for reading or writing data in secondary memory can arise for
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several reasons: 1) the program may operate on data structures which do not fit into the primary
memory of the processor (out-of-core programs), 2) the state of the computation may be output
(for future analysis) several times during the execution of the program, or 3) the main data
structures may be frequently checkpointed so as to be able to restart in presence of failures. For
programs that use a large fraction of the primary memory, large write requests would overflow
the file cache and would cause the program to be stalled till the data is written into the disks.
Because of the relatively low disk bandwidth, writing into disks can take a large amount of time.
If such I/O requests are frequent, the performance of the program will be severely degraded.
This degradation can be avoided if the disk accesses can be overlapped with the computation.
Several current operating systems provide asynchronous I/O operations for this reason. We
believe that compiler analysis can automate the usage of asynchronous I/O operations, thus
hiding the architectural complexities from the application programmers.

To be able to overlap disk accesses with computation, it is important for the compiler to
analyze code across procedure boundaries. In contrast, the existing compiler analysis for over-
lapping cache stalls or communication has considered analysis within a single procedure and
usually does not consider moving operations outside conditionals or in presence of arbitrary flow
of control.

In this paper, we present an Interprocedural Balanced Code Placement (IBCP) framework
for overlapping large latency operations with computation. This framework is able to deal
with arbitrary control flow as well as arbitrary recursive procedures. Each synchronous large
latency operation is replaced by a balanced pair of asynchronous operations. The asynchronous
operations are placed to achieve overlap with the computation, while maintaining correctness
and safety. In general, our analysis can be used for any large latency operation, including disk
accesses, frame buffer writes, network 1/0, co-processor operations and remote memory accesses.

In this paper, we have focussed on the use of this analysis for the placement of disk accesses.
We have implemented a Fortran source to source transformation tool, which performs the IBCP
analysis. This tool is based upon the Parascope/D System Fortran front end.

We have used two applications for demonstrating the efficacy of our scheme: dsmc-3d, a
particle simulation code which periodically outputs its state and satellite, a satellite data
processing template which repeatedly modifies an out-of-core image. Our results show that use of
compiler placed asynchronous operations can reduce the I/O overhead by 30%-70% and improve
the overall performance by 15% - 20%. Performing interprocedural analysis for placement was
critical for getting better performance in both these applications, almost no overlap would have
been possible if the analysis was restricted intraprocedurally.

The rest of the paper is organized as follows. In Section 2, we further examine the classes
of applications which have large I/O requirements. In Section 3, we state the requirements
for our code placement framework and motivate our analysis. In Section 4, we present our
interprocedural analysis. We present experimental results in Section 5. We briefly compare our
work with related work in Section 6 and conclude in Section 7.



2 1I/0 Intensive Applications

In this section, we discuss how the need for large and frequent I/O accesses arises in several classes
of scientific applications. There are at least three different scenarios in which the application
may need to access secondary memory frequently and therefore, can potentially become 1/0

bound.

Snapshoting. By snapshoting, we mean the frequent copying of the state of the computation
to disks. There are two main reasons for snapshoting: the computation has a time-dependent
solution (as opposed to a steady state solution) or the user may want to visualize the progress
of the computation. In the former case, a series of program states are written to disks for
post-processing. In the latter case, the state of the computation is periodically piped into an
appropriate visualization tool. Examples of applications that require snapshoting include Direct
Simulation Monte Carlo (DSMC) [5], simulation of a flame sweeping through a volume [27],
airplane wake simulations [19], etc. The amount of data generated per time-step is often large,
e.g., if one million particle are simulated in a particular run of the three-dimensional dsmc-3d
code, then each snapshot is 24 MB (3 double precision numbers per particle).

Checkpointing. Checkpointing is often required for long running applications which can get
interrupted for a variety of reasons [12]. Checkpointing is also used for parametric studies, i.e.,
modifying some of the checkpointed values and restarting the computation [11].

Out-of-Core Computations. Several scientific and engineering computations operate on
large data structures which do not fit into the main memory. Such codes need to access the
secondary memory very frequently. Examples include several sensor data processing codes which
perform out-of-core reductions on images which are several hundred MB in size. Restructur-
ing the computation can often reduce the frequency and increase the granularity of secondary
memory access [1, 6], however, such codes can still spend significant amount of their time in 1/0
operations.

3 Problem Definition

In this section, we define the interprocedural balanced code placement problem and motivate
our analysis framework.

As we stated in Section 2, scientific applications may make frequent and large I/O requests
for a variety of reasons. In the applications which checkpoint or snapshot the progress of the
computation, the programmer may explicitly insert synchronous write operations. In the out-
of-core applications, an initial phase of the compilation may determine when disk operations
need to be made and correspondingly may insert synchronous read or write operations [6, 26].

For our purpose, we consider original program text (or a compiler processed representation)
which has explicit calls to read or write operations. We denote by OP, any such synchronous



operation, which the compiler may want to replace by a corresponding asynchronous or split-
phase operation. In general, this operation OP has a number of parameters (usually specifying
the buffer which is to be written out or filled in and their dimensions). The operation can result
in a modification to some of these parameters (e.g., the contents of the array may be read in)
and/or modification to the contents of a disk. We assume that this operation does not result in
any other change of state.

To overlap this operation with computation, the compiler will have to place correspond-
ing START_OP and END_OP operations in the program text. A START_OP operation starts an
asynchronous I/0O operation and the corresponding END_OP ensures that the operation has
completed.

The goal of the analysis is to place START_OP as early as possible and END_OP as late as
possible, i.e., allow as much overlap of the computation with disk operations as possible without
violating the following guarantees: as follows:

o Balance and Safety. Consider any control flow path from the beginning of the program to
the end of the program. Suppose this path contains n (n > 0) occurrences of particular
operation OP (which reads or writes a buffer). After the compiler inserts asynchronous
operations, this path will include exactly n occurrences of START_OP and exactly n occur-
rences of END_0OP.

o Correctness. The effect of the asynchronous operation will the same as the effect of the
corresponding synchronous operation i.e., the modifications to the parameters of the op-
eration and the contents of the disks will be the same as the synchronous operation would
have resulted in. Further, any access to any variable in the program, will have the same

result as it would have with synchronous operations.
Note that the first requirement mentioned above has two implications:

e The occurrences of START_OP and END_0OP will match each other irrespective of the control
flow paths taken during the execution of the program. This is also known as the balanced
code placement property [16].

¢ In any execution of the program, there will exactly be the same number of asynchronous
operations as there were synchronous operations, i.e., under no circumstances, the new
placement will increase the number of I/O operations on any path. This is known as the
safety property [22].

Note that we do not consider redundancy elimination as part of our analysis i.e., there is
always exactly one asynchronous operation placed for each synchronous operation in the original
program text. In case of checkpointing or snapshoting, the application programmer expects to
see the same number of outputs as he/she had inserted initially. In the case of out-of-core
programs, the initial phase of the compilation can possibly generate redundant requests. In this
case, some redundancy elimination analysis like Interprocedural Partial Redundancy Elimination
(IPRE) [4] can be applied before applying the analysis we present in this paper.



4 Interprocedural Balanced Code Placement Framework

In the previous section, we described the requirements of our interprocedural code placement
framework. In this section, we present Interprocedural Balanced Code Placement (IBCP) frame-
work, which performs such placement. We first describe the full program representation we use,
then we present the interprocedural analysis on our full program representation. Finally, we
present the intraprocedural phase of our analysis.

Data flow analysis has been a key method for performing various optimization in the pro-
gram text, without imposing any restrictions on control-flow [20]. Various intraprocedural code
placement frameworks like Partial Redundancy Elimination [22] and Give-N-Take [16] perform
data flow analysis on Control Flow Graph (CFG) of a single procedure.

A number of different program representations have been used for various interprocedural
data flow problems. The most commonly used program representation is a Call Graph [14]. A
call graph is a directed multi graph, which has a single node for each procedure in the program.
A directed edge from node ¢ to node j means that procedure ¢ calls procedure j. Call Graph
is a very concise representation and no information is available in a call graph about flow of
control between different call sites within a single procedure. On the other extreme, Myer’s
SuperGraph [24] is a very detailed representation. SuperGraph is constructed by linking control
flow graphs of procedures by inserting edges from call site in the caller to start node in callee.
The total number of nodes in SuperGraph can get very large and consequently the solution
may take a long time to converge. We have developed a new full program representation which

preserves information about the call sites but is more concise than a SuperGraph.

4.1 Program Representation

We now define the full program representation we use for the purpose of our analysis. We assume
that a variable is either global to the entire program or is local to a single procedure. We further
assume that all parameters are passed by reference. We do not consider the possibility of aliasing
in our discussion.

We define a basic block to consist of consecutive statements in the program text without
any intervening procedure calls or return statements, and no branching except at the beginning
and at the end. A procedure can then be partitioned into a set of basic blocks, a set of call
statements and a set of return statements. Each call statement is a call site of the procedure
invoked there.

In our program presentation, the main idea is to construct blocks of code within each proce-
dure. A block of code comprises of basic blocks which do not have any call statement between
them. In the directed graph we define below, each edge e corresponds to a block of code B(e).
The nodes of the graph specify the control-flow relationships between the blocks of code.



Program Foo
Arrays A, B
d=..

Call Q(c)
Doi=1, 100
if cond then
Call R(A,d)
Call Q(c)
else
A=
endif
Call S(B,d)
Call P(A.,d)
Call P(B,d)
Enddo
End

Procedure P(x,y)
WRITE_OP(X,y)

End

. cs 1

. cs 2
. ¢cs 3

. ¢5 4

. csH
. cs 6

..other computations ..

End
Procedure Q(z)
7= ...
End
Procedure R(x,y)
X = . X...
..other computations ..
End
Procedure S(x,y)
X = . X...

..other computations ..

Figure 1: An example program:

labelled

call sites are

cs1 cs3

cs?2

cs4

Procedure Entry Node

Procedure Return Node

Figure 2: FPR for program in the left. Ldge
numbers and call sites at which edges start/end
(whenever applicable) are marked in the Fig-
ure.



Full Program Representation: (FPR) is a directed multigraph G' = (V, £), where the
set of nodes V' consists of an entry node and a return node for each procedure in the program.
For procedure ¢, the entry node is denoted by s; and the return node is denoted by r;. Edges
are inserted in the following cases:

1. Procedures ¢ and j are invoked by procedure k at call sites ¢s; and cs; respectively and
there is a path in the CFG of k from ¢sy to ¢sy which does not include any other call statements.
Edge (r;,s;) exists in this case. The call site ¢sq is associated with the start of this edge and
the call site csy is associated with its end. The block of code B(e) consists of basic blocks of
procedure k& which may be visited in any control flow path p from ¢sq to sy, such that the path
p does not include any other call statements.

2. Procedure ¢ invokes procedure j at call site ¢s and there is a path in the CFG of ¢ from
the entry node of procedure ¢ to ¢s which does not include any other call statements. In this
case, edge (s;,s;) exists. The call site cs is associated with the end of this edge. The block of
code B(e) consists of basic blocks of procedure 7 which may be visited in any control flow path
p from start of 7 to ¢s, such that the path p does not include any other call statement.

3. Procedure j invokes procedure ¢ at call site ¢s and there is a path in the CFG of 5 from
call site ¢s to a return statement within procedure j which does not include any other call
statements. In this case, edge (7;,7;) exists. The call site ¢s is associated with the start of the
this edge. The block of code B(e) consists of basic blocks of procedure j which may be visited
in any control flow path p from ¢s to a return statement of j, such that the path p does not
include any call statements.

4. In a procedure 7, there is a possible flow of control from entry node to a return statement,
without any call statements. In this case, edge (s;, ;) exists. The block of code B(e) consists
of basic blocks of procedure ¢ which may be visited in any control flow path p from start of 7 to
a return statement in ¢, such that the path p does not include any call statements.

An example program and its FPR are shown in Figures 1 and 2 respectively.

A block of code is the primary unit of placement in our analysis, i.e. we initially consider
placement only at the beginning and end of a block of code. Note that a basic block in a block
of code may or may not be visited along a given control flow path from source to sink of the
edge. Also, a basic block may belong to several blocks of code. This is taken into account
during intraprocedural analysis done for determining final local placement, which we discuss in
Section 4.6.

The following information is pre-computed and assumed to be available during our analysis
phase. For each edge in FPR, we compute the list of variables modified in the corresponding
block of code. Similarly, we also compute the list of variables referred to in each block of code.
These sets are used by the TRANS, functions defined later. For each procedure, we also compute

the list of variables modified and referred to by the procedure or any of the procedures invoked



by this procedure. In the absence of aliasing, this information can easily be computed by flow-
insensitive interprocedural analysis in time linear to the size of call graph of the program [10].
This information is used by the FSUM,, functions defined later.

4.2 Candidates for Placement

We now introduce the format of the read and write operations that we assume. We are only
interested in the parameters which can effect the placement of the operation and not in the
architecture dependent parameters which come in the exact format of the statements. A read
or write operation, for our purposes, has the format

Op(Arrayname,sl, s2....)

where, Arrayname is the name of the array which is to be read in or written out. sl,s2,..., are
various size specifiers, they specify the size of the array being input/output or the section of the
array which is to be input/output.

The operation OP results in either a modification to the contents of the array Arrayname
(in case of reads) or a modification of the contents of an attached disk (in case of writes). The
parameters sl, s2, ..., or any other program variables are not modified.

For the purpose of our discussion, we refer to any synchronous operation, which the compiler
may want to replace by asynchronous operation, as a candidate for placement. We refer to the
parameters of a candidate as its influencers.

4.3 Interprocedural Analysis

We now present the IBCP scheme we have developed. We use the terms edge and block of code
interchangeably in this section.

Our method is based upon the notions of availability and anticipability. Availability of a
candidate C' at any point p in the program means that C' is currently placed on all of the paths
leading to p and if C' were to be placed at this point, C' will have the same result as the result
of the last occurrence on any of the paths. Anticipability of a candidate C' at a point p in the
program means that C' is currently placed on all the paths leading from p, and if ' were to be
placed at p, C' will have the same result as the result of the first occurrence on any of the paths.
We use anticipability for determining placement of START_OP and availability for determining
placement of END_oP. Both anticipability and availability are computed for the beginning and
the end of each block of code (edge) in the FPR. For a candidate C, anticipability at the
beginning of a block of code e is denoted by ANTIN¢(e) and anticipability at the end of the
block of code is denoted by ANTOUT¢(e). Similarly, availability at the beginning of the block
of code is denoted by AVIN¢(e) and availability at the end of the block of code is denoted by
AVOUT¢(e).

We now list the major problems that need to be addressed in our analysis:

1. A procedure containing a candidate (or a procedure invoking such a procedure) may be
invoked at multiple call sites, possibly with different sets of actual parameters. (e.g. in the
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Figure 3: Lattice used in the data flow problems

code shown in Figure 1, procedure P is invoked at two call sites with different parameters).
While considering placement of the candidate outside the procedure it is originally placed,
asynchronous operations must be placed corresponding to each invocation of the procedure in
which the candidate was originally placed.

2. For placement of a candidate in a procedure, all influencers of the candidate must be visible
inside that procedure, i.e. each of them is either a global variable, a formal parameter or a local

variable. (e.g. in the code shown in Figure 1, no placement will be possible inside procedure Q).

3. If a procedure is invoked at several call sites in the program, our program representation
shows paths from edges ending at a call site calling this procedure to the edges starting at other
call sites for this procedure. (e.g. in Figure 2, there is a path from edge 1 to edge 3 to edge 7.
Edge 1 ends at call site e¢s1 whereas edge 7 starts at callsite ¢s3.) These paths are never taken
and the data flow analysis must not lose accuracy because of such paths in the graph.

Consider again the example given in Figure 2. We denote the synchronous write operation
in Procedure P as candidate C. If we decide to do a placement outside procedure P, we really
need to consider two different candidates, one each corresponding to the calls to the procedure
P at call sites ¢sh and ¢s6. We will refer to these two candidates as C_csb and C_cs6 respectively.
Note that if the original occurrence of a candidate is in a nested sequence of procedure calls, and
if each of these procedures is called at several call sites, we can potentially have an exponential
number of candidates to consider.



4.3.1 Lattice for Data Flow Problems

If a candidate is available or anticipable at a certain point in the program, it is always with a
certain set of influencers, which will be used in placing it (i.e. if it is decided that the candidate
is to be placed at this location). For this reason, we use a three-level lattice for the data flow
problems. The lattice is shown in Figure 3. Each middle element in the lattice refers to a list
of influencers, i.e. Infl; = < vy,vq,...,v, >. We define the following functions on this lattice:
V and A are standard binary join and meet operators. For ease in presenting our data flow
equations, we use \/ and A as confluence join and meet operators i.e. for computing join and
meet respectively over a set of elements. — is a unary operator which returns L when applied
to a list of influencers or to T and returns T when applied to L.

4.3.2 Terminology

We use the following terms to specify the data flow equations in this paper. We had defined our
program representation earlier in Section 4.1. In our Full Program Representation (FPR), the
entry node corresponding to the main procedure is referred to as BEGIN node and the return
node corresponding to the main is referred to as the END node.

The set of procedure entry nodes is represented by £ and the set of procedure return nodes
is represented by R. Consider an edge e = (v, w). The source of e (i.e. the node v) is referred
to as So(e) and the sink of e (i.e. the node w) is referred to as Si(e). We use pred(e) to refer
to the set of edges whose sink is v. We denote by succ(e) the set of edges whose source is w.

If the sink of the edge e is a procedure entry node, then the call site associated with the
end of edge e is denoted by 5i'(e). We use succ’(e) to refer to the set of edges which have the
call site S(e) associated at their start. Alternatively, if the source of the edge e is a procedure
return node, then the call site associated with the start of edge e is denoted by So'(e). We refer
by pred'(e) the set of edges which are associated with the call site S0'(e) at their end.

Consider any edge e whose source is a procedure entry node. The set cobeg(e) comprises of
edges whose source is the same as the source of edge e. If an edge e has a procedure return
node as the source and if ¢s is the call site associated with the start of the edge e, then the set
cobeg(e) comprises of the edges which have the call site ¢s associated at their start.

Next, consider any edge e whose sink is a procedure return node. The set coend(e) comprises
of the edges whose sink is the same as the sink of the edge e. If an edge e has a procedure entry
node as the source and if ¢s is the call site associated with the end of the edge e, then the set
coend(e) comprises of edges which have the call site ¢s associated at their end.

The sets pred(e), pred'(e), succ(e), succ'(e), cobeg(e) and coend(e) for edges in the Graph
shown in Figure 1 are shown in Figure 4.

At any call site es, the set of actual parameters passed is ap.s and the j actual parameter
is apes(7). The set of formal parameters of the procedure invoked at the call site ¢s is fpes.
(Clearly, this set is the same for all call sites which invoke this procedure). The j** formal

parameter is denoted by fp.s(j). The set of global variables in the program is gv.

10



e | pred(e) | pred'(e) | succ(e) | succ'(e) | cobeg(e) | coend(e)
1 - - 3 5.6 1 1

2 4 5,8 3 7 2 2

3| 12 i 56,7 : 3 3

4] 58 : 2 : 4 4

5 3 1 4 2 5,6 5.8
6 3 1 10 11 5,6 6,7.9
7 3 2 10 11 7 6,7,9
8| 12 13 4 p 8,9,14 5.8
9 | 12 13 10 11 89,14 | 6,7,9
10| 6,79 : 11 : 10 10
11 10 6,7,9 12 13 11 11
12 11,13 ; 8,9,13,14 | - 12 12
13 12 11 12 8,9,14 13 13
4l 12 13 ; ] 8,9,14 14

Figure 4: pred(e), pred'(e), succ(e) and succ’(e) sets for Graph in Figure 2

4.4 Placement of START_OP

We determine the placement of START_OP by computing anticipability of the candidates. The
key idea is to place the candidates at the earliest points where they are still anticipable. This
allows for maximum overlap of the operation with the computation without violating the safety,
correctness or balance guarantees.

The equations for computing anticapability and determining placement are shown in in the
Figure 6. All unknowns are initialized with T. This state means that the candidate may be
anticipable, but we do not yet know what the list of influencers will be, if it is anticipable. The
bottom element in the lattice means that the candidate is not anticipable.

Initially, the local data flow property ANTLOC(%) of the edges in the graph is determined.
(For a block of code, ANTLOC means that there is an occurrence of this candidate inside the
block which can be moved to the beginning of the block.) Let C be the candidate for placement.
Consider any block of code (edge) ¢ in which the original occurrence of the operation is placed.
From the beginning of this block of code, if the occurrence of the candidate is not enclosed in
any conditional or loop, and none of its influencers are modified or referred to then, we mark

ANTLOC(i) = Infl,

Here, Infl. is the list of parameters of the call to the operation. Only if ANTLOC¢(¢) is
Infl. for all blocks of code ¢ in which the original occurrence of this operation occurs, we can
consider moving the START_OP earlier than the original location.

Two sets of functions FTRANS1 and FSUM1 summarize the mod/ref information, and are
used for propagating data flow information. If we are considering early placement of a write
operation, FTRANS1.[< Arrayname,sl,s2,.. >], for an edge e, returns the same list if none
of the influencers in the list is modified in the block of code associated with this edge. If any

11



v if v; € gv
cs(j) if v, = apcs(j)

f
1 if 3¢, (v; ¢ gv) A (Vj, 0 # apcs(j))(l)
< T1(v1),...,T1(v,) > otherwise

Tl(vi) =
RNM1[< v1,...,0, >] =

T200) =\ apaG) i o = Fpuly)

RNM2s[< v1,...,0, >] =

{
{
{ v; if o; € go
{

< T2(v1),...,T2(v,) > otherwise

Figure 5: Renaming functions

of these influencers is modified, this function returns L. If we are considering early placement
of a read operation, FTRANSI1 [< Arrayname,sl,s2,..] for an edge e, returns the same list if
Arrayname is not referred to and the other influencers s1,s2,.. are not modified. FTRANS1.[T]
and FTRANS1.[L] are defined to be T and L respectively.

For a call site ¢s which invokes procedure p, FSUM1.4[< Arrayname, sl,s2,..>] returns the
same list if none of the influencers in the list is modified by the procedure p (or by a procedure in-
voked by p). Otherwise L is returned. For a read operation, FSUM1.,[< Arrayname,sl,s2,..>]
checks if Arrayname is not referred to and the other influencers sl,s2,.. are not modified.
FSUM1,,[T] always returns T and FSUM1.,[ L] always returns L.

OCR¢(cs) determine if the procedure p (or any procedure invoked by p) includes any occur-
rence of the candidate C. (Clearly, this will be the same for all call sites which call procedure p).
Whenever there is no scope for ambiguity, we drop the subscript C. OCR(cs) returns T or true
when there is an occurrence of the candidate in the procedure p and L (or false) when there is
no occurrence of the candidate at procedure p.

For renaming of formal parameters at call sites, we define two functions RNM1,., and RNM2,
(see Figure 5). Suppose a candidate is anticipable at a call site ¢s with a list of influencers
Infl;. The function RNM1., determines if this candidate can be anticipable inside the procedure
invoked at es, and if so, with what list of influencers. If any of influencers is neither a global
variable nor an actual parameter at c¢s, RNM1.,; returns L, otherwise, each actual parameter in
the list is replaced by corresponding formal parameter. RNM1.,[T] and RNM1.,[L] are defined to
be T and L respectively. Suppose a candidate is anticipable at the beginning of a procedure and
let ¢s be one of the call sites which invoke this procedure. RNM2., determines if this candidate
will be anticipable at the entry of the edges which end at call site ¢s. If any of the influencers
of the candidate inside the procedure is neither a global variable, nor a formal parameter, then
RNM2.s returns L. Otherwise, each formal parameter is replaced by the actual parameter at
call site ¢s.

The equations for propagation of anticipability (Figure 6) can be explained as follows. Con-

12



1 if Si(e) is END node
ANTOUTc(e) = { Asesuce(e) (BNM2s05) [ANTINe(5)]) i Si(e) €
/

FSUMLsir(e)[ Ay suce/(e)
ANTOUT¢_gir(y(€) = RNMlSZ»/(e)[/\Sesucc(e) ANTINg(s)] if (Si(e) € &) A (OCRe(S%(e)))
1 if So(e) is BEGIN node
ANTIN¢(e) = { ANTLOCc(e) Vv

(/\becobeg(e) FTRANSlb[ANTOUTc(b)] ) otherwise

INSIN¢(e) =  ANTOUTe(e) A (-ANTINg(e))

ANTIN¢(€) A

INS-BEGe(€) = ) ANTING(e) A (Apepred(e)"ANTOUTc(p))

A (/\p'epred’(e)_'ANTOUTC(P/)) if So(e) € R

Figure 6: Data Flow Equations for Placement of START_OP

sider an edge e whose sink is a procedure return node. A candidate will be anticipable at the
end of this edge e if the following holds: This candidate should be anticipable at the beginning
of any edge s which starts at this procedure return node (i.e. s € succ(e)), and furthermore,
after renaming (i.e. applying RNMlSO/(S)), the list of influencers with which the candidate is
anticipable should be the same for all such edges (see equation 3).

If an edge e has a procedure entry node Si(e) as the sink, e is associated with call site 5¢'(e)
at its end. The set succ(e) comprises of edges whose source is node Si(e) and the set succ/(e)
comprises of edges which are associated with the call site Si’(e) at their start. Note that even
if the candidate is anticipable at the beginning of all the edges s’ (s’ € succ’(e)) and none of
the influencers is modified inside the procedure, the candidate may not be anticipable inside the
procedure. This can happen for two reasons, all influencers of the candidate may not be visible
inside the procedure, or the procedure may be invoked at multiple call sites and the candidate
may not be anticipable at other call sites.

For maintaining the accuracy of our analysis, we consider two different cases. Let the call
site S4'(e) call procedure p. If the candidate’s original occurrence is inside the invocation of the
procedure p (or any procedure invoked by the procedure p), then the value of ANTOUT(e) is
determined by ANTOUT(s), for s € succ(e). Also, note that if the procedure p is called at more
than one call site (i.e. it is called at call site(s) besides Si'(e)), we need to consider different
candidates corresponding to the different call sites at which p is called. So, if the candidate C
can be moved outside procedure p, we denote it as the candidate C_S4'(e)(equation 4).

If the procedure p does not include the original occurrence of the candidate C, then the value

of ANTOUT(e) is determined by ANTOUT(s'), for s’ € succ/(e)(equation 3). The function
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(3)
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FSUM1 checks the required mod/ref condition on the procedure invoked at call site 5i'(e).

Equation 5 determines anticipability of a candidate at the beginning of an edge or block of
code. For solving the equations 3 through b5, all unknowns are initialized with T and largest
solution satisfying the equations is chosen.

Equations 6 and 7 determine how placement decisions are made using the anticipability
terms. For an edge e, the term INS_BEG(e) means that placement of a candidate needs to be
done at the beginning of the edge e. The term INS_IN means that placement is to be done
inside edge e, and further intraprocedural analysis will be required for determining the exact
placement. The equations can be explained as follows: Consider an block of code (edge) e, such
that, for a particular candidate, ANTOUT(e) is true but ANTIN(e) is L. i.e. the candidate
is anticipable at the end of this block of code but is not anticipable at the beginning of this
block of code. Note that this can happen for two reasons: First, the block of code e may not
be transparent with respect to this candidate or the candidate is not anticipable at the end of
a block of code b, for b € cobeg(e). In either of these two cases, INS_IN(e) is marked true (see
equation 6). If INS_IN(e) is true, this means that candidate will be placed inside the block of
code e, however, further analysis (described in Section 4.6) will be required for determining the
final placement.

Now, consider an edge e whose source is a procedure entry node, i.e. So(e) € £. Suppose
that ANTIN(e) is not L. Consider any edge p, p € pred(e) and let ANTIN(p) be L. It can
then be shown that ANTIN(p) will be L for all the edges p, where p € pred(e). In this case,
candidate is placed at the beginning of the procedure in which the block of code e exists. No
further analysis is required for determining the placement.

Next, consider the case when the source of the edge e is a procedure return node i.e. So(e) €
R. Consider an edge p such that p € pred(e). Even if ANTIN(e) is true and ANTOUT(p)
is L, no placement may be required. This is because, ANTOUT(p') may be true for p’ €
pred'(e). It can be easily shown that ANTOUT(p') will be identical for all the edges p’, for
p' € pred'(e), and further, if ANTOUT(p)is L for a p € pred(e), then ANTOUT(p) is L for
all p € pred(e). To determine the placement at the beginning of this edge e, we check if both
(/\pepred(e)_'ANTOUTC(p)) and (/\p'epred’(e)_'ANTOUTC(Z?/)) return T. If the condition is
met, the candidate is placed just after the call statement at So'(e). Again, no further analysis
is required.

For the example program shown in Figure 1, the solution of data flow properties for deter-
mining placement of START_OP is shown in Figure 7.

4.5 Placement of END_OP

The analysis done for determining placement of END_OP is analogous to the analysis done for
determining START_OP. Instead of using the anticipability terms, we use availability terms. The
equations for propagating availability and for determining the placement is given in Figure 8.
Initially, the local data flow property COMP(7) of the edges in the graph is determined. (For
a block of code, COMP means that there is an occurrence of this candidate inside the block
which can be moved to the end of the block.) Let C be the candidate for placement. Consider
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Edge ANTOUT ANTIN INS_IN INS_BEG
C_csb C_csb C C_csb C_csb C_csb C_csb C_csb | C_es6

1 L L - L L L L L L
2 <A d> 1L - <A d> 1L 1L 1L 4 4
3 L L - L L L L L L
4 <z, y> L - L L <z, y> L L 1
5 L L - L L L L L L
6 -

7 <A, d> L - L L <A, d> L L il
8 L L - L L L L L L
9 L L - L L L L L L
10 L <z,y> - L L L <z,y> L il
11 <Ad> | <B,d> - <A d> | <Ad> L L L L
12 - - <z,y> - - - - - -
13 L < B,d> - L < B,d> L L L L
14 L L - L L L L L L

Figure 7: Solution of Data Flow Properties for the Graph (for placement of START_OP)

any block of code (edge) ¢ in which the original occurrence of the operation is placed. If the
candidate is not enclosed in any conditional or loop, and none of its influencers are modified or

referred to from its occurrence to the end of the block of code, then we mark
COMP¢(2) = Infl.

Here, Infl. is the list of parameters of the call to the operation. Only if COMPe¢(7) is
Infl. for all blocks of code ¢ in which the original occurrence of this operation occurred, we can
consider moving the END_OP after the existing location.

Two sets of functions FTRANS2 and FSUM2 summarize the mod/ref information, and are
used for propagating data flow information. If we are considering placement of a write operation,
FTRANS2.[< Arrayname,sl,s2,.. >], for an edge e, returns the same list if Arrayname is not
modified in the block of code associated with this edge. Otherwise, this function returns L. If
we are considering placement of a read operation, FTRANS2.[< Arrayname,sl,s2,..>] of an
edge e returns the same list if Arrayname is not referred to nor modified. FTRANS2.[T] and
FTRANS2.[L] are defined to be T and L respectively.

For a call site ¢s which invokes procedure p, FSUM2.,[< Arrayname,sl,s2,.. >] returns
the same list if Arrayname is not modified by the procedure p (or by a procedure invoked
by p) (for a write operation). Otherwise L is returned. For a read operation, FSUM2.[<
Arrayname, sl, s2, .. >] checks if Arrayname is not referred to or modified. FSUM2.,[T] returns
T and FSUM2.s[L] returns L.

Equations 8, 9 and 10 determine availability at the beginning and end of each block of
code. Equations 11 and 12 determine final placement using the availability information. These
equations are analogous to the equations for determining anticipability and computing placement
of START_OP, and we do not explain them here.
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1 if So(e) is BEGIN node

(8)

AVINc(e) = ¢ Apepred(e) (BNMlgi(,) [AVOUTe(p)])  if So(e) € &
FSUM?SO'(B)[/\p’Epred/( AVOUTc(p/)] if (SO(@) S R) A ( - OCRc(SO/(e) ) )
AVINC_SO’(e)(e) = RNM?SO/(S)[/\pepred( )AVOUTC( )] lf (SO(@) € R) N (OCRC (SO’(@) )) (9)
1 if Si(e) is END node
AVOUTc(e) = COMPc(e) V

( Avecoend(e) FTRANS2[AVINe(b)])  otherwise

INSINc(e) =  AVINg(e) A (SAVOUTe(e))

AVOUT(e) A

INS-ENDe() = 9 AVOUTe(e) A (Ayeguer(e)AVING(s))

A (/\s’esucc/(e)_'AVINC(s )) if Sl(@) €&

Figure 8: Data Flow Equations for Placement of END_OP

For the example program shown in Figure 1, the solution of data flow properties for deter-
mining placement of END_OP is shown in Figure 9.

4.6 Final Intraprocedural Analysis

As we stated earlier, intraprocedural analysis is required in the blocks of code where INS_IN¢ is
marked to be true. We briefly sketch this analysis in this subsection. We describe our analysis
in the context of placement of START_OP only; the analysis for the placement of END_OP is
analogous.

Consider a procedure P, which has at least one block of code e, such that INS_IN(e) is set
to a list of influencers, Infl. Data flow analysis is done on the CFG of the procedure P. At the
end of the procedure and at all the call sites, initialization of properties is done using the values
computed during the interprocedural analysis on the FFPR of the full program.

For determining the final placement of START_OP, we compute anticipability at the beginning
and end of each basic block in P. For a basic block b, ANTICIN(b) denotes the anticipability
of the candidate at the beginning of the basic block and ANTICOUT(b) denotes anticipability
at the end of the basic block. If a block of code e ends at a call site ¢s, then and if b is the
basic block just before this call site, then ANTICOUT(b) is set to be the same as ANTOUT(e).
Similarly, if a block of code e ends at the return of procedure P, then ANTICOUT(b) is set as
ANTOUT(e), where b is the last basic block in the CFG of procedure P.

After these initializations, the anticipability is propagated upwards in a simple fashion. For
a basic block b, then ANTICOUT(b) is the meet of ANTICOUT(s), where s is any successor of
b in the CFG. ANTICIN(b) is set to a list of influencers, only if ANTICIN(b) is the same list of
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Edge AVIN AVOUT INS_IN INS_END
C C_csh C_csb C C_csh C_csb C C_csh C_csb C | Ceshb | Cesb
1 - L L - L L - L L - L L
2 - L L - L L - L L - L L
3 - L L - L L - L L - L L
4 - L L - L L - L L - L L
5 - L L - L L - L L - L L
6 - L L - L L - L L - L L
7 - L L - L L - L L - L L
8 - | <Ad> | <B,d> - L L - | <Ad> | <B,d> | - L L
9 - | <Ad> | <B,d> - L L - | <Ad> | <B,d> | - L L
10 - L L - L L - L L - L L
11 - L L - L L - L L - L L
12 1 - - <z, y> - - L - - 1 - -
13 - | <A d> L - <A, d> L - L L - il il
14 - | <Ad> | <B,d> - <Ad>|<Bd>| - |<Ad>|<Bd>| - L L

Figure 9: Solution of Data Flow Properties for the Graph (for placement of END_OP)

influencers and if the basic block is transparent with respect to this list of influencers. We do
not give formal equations for intraprocedural analysis here.

The final placement inside procedure is decided as follows: If ANTICOUT(b) is a list of
influencers and if ANTICIN(b) is L, then placement of the candidate is done after the last
statement in the basic block b. Alternatively, let s be a successor of b in the CFG. If ANTICIN(s)
is a list of influencers and if ANTICOUT(b) is L, then the final placement is done in a new basic
block, inserted between b and s.

For the example program shown in Figure 1, the optimized program is shown in Figure 10.

5 Experimental Results

We have implemented a source to source Fortran translation tool based on our interprocedural
balanced code placement technique. This tool is based upon the Parascope/D System front end.
We have evaluated the efficacy of our technique by determining the performance improvement
achieved by using this tool on two I/O intensive applications. The first application simulates a
physical process and generates a snapshot to capture the evolution of the process. The second
application is a template for satellite sensor data processing programs. These programs process
large images that do not fit into the physical memory of a processor.

All our experiments were done on an IBM RS/6000 running AIX 3.2.5, with 64 MB of
primary memory and one 2.2 GB IBM Starfire 7200 SCSI disk. The Starfire 7200 is rated at a
maximum bandwidth of 8 MB/s; the maximum measured application-level file I/O bandwidth
is 7.5 MB/s [1]. For all our experiments, we measured end-to-end execution time including a
final £sync() to ensure that all data has been written to disk. This allowed us to include the
cost of operating system operations. It also allowed us to measure end-to-end improvements in
the execution time.
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Program Foo Procedure P(x,y)
Arrays A, B ..other computations ..
d=... End
Call Q(c) Procedure Q(z)
Doi=1, 100 7z = ..Z..

if cond then End
Call R(A,d) Procedure R(x,y)
Call Q(c) X = ..X..

else START_OP(X,y)
A=.. ..other computations ..
START_OP(A,d) End

endif

Call S(B,d) Procedure S(x,y)

Call P(A,d) X = ..X...

Call P(B.d) START_OP(X,y)

END_oP(A,d) ..other computations ..

Enp_op(B,d) End

Enddo
End

Figure 10: Optimized Version of Program

5.1 Direct Simulation Monte Carlo

Direction Simulation Monte Carlo is a well known technique for studying the interaction of par-
ticles in cells [5]. The program we used in our experiments, dsmc-3d was originally developed by
Richard Wilmoth at NASA Langley [21]. To study the evolution of the process being simulated,
it is useful to snapshot the position of all the particles after every time-step. This program is
parameterized by the number of particles which governs the memory and 1/O requirements of
the program. It is a useful benchmark for our experiments as it allows us to study its behavior
as the memory and I/O requirements varied.

The code input to the compiler used a synchronous write operation to generate a snapshot at
the end of every time-step. Our compiler replaced this operation with appropriate asynchronous
write operations. To determine the overall cost of I/O (both synchronous and asynchronous),
we used a version of the program which did not generate snapshots.

Figure 11 presents results for four dsmc-3d data sets — with 388K, 486K, 584K and 682K
particles (the output per iteration being 9.3 MB, 11.7 MB, 14.0 MB and 16.4 MB respectively).
The memory requirements of the code (without I/O) were 34.5 MB, 40 MB, 45.5 MB and 51 MB
respectively at these configurations.

Results are presented for the first five iterations. The third column shows the execution
time of the code input to the compiler (with synchronous writes); the fourth column shows the
execution time of the code generated by the compiler (with asynchronous writes). The fifth
column shows the execution time of the version of the program that generates no snapshots.
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No. of | Output/Iter. With sync. | With async. | No output | Reduction Reduction
Particles. (MB) | output (sec) | output (sec) (sec) | TI/O time | overall time
388K 9.3 33.78 31.35 30.19 67.7% 7.2%
486K 11.7 49.49 42.24 38.68 67.1% 15.6%
584K 14.0 85.28 68.36 49.62 47.5% 19.5%
682K 16.4 108.51 90.87 70.53 46.4% 16.8%

Figure 11: Performance of Compiler Placed Asynchronous I/0, Five iterations of dsmc-3d

The sixth and seventh columns show the percentage reduction in the total time ascribed to 1/0
and end-to-end execution time. The total time ascribed to I/0 for either version of the program
was computed by a difference of its execution time and the execution time of the no-snapshots
version running on the same configuration.

For small configurations, both the memory requirements of the application and the size of
output are small and fit together into the physical memory. In these cases, the write-behind
facility provided by the operating system file cache works well and a synchronous write waits
only as long as it takes to copy the data into the file cache. Use of asynchronous writes can
reduce the I/O overhead by up to 60%, but the difference in the overall performance of the
application is small.

For larger configurations, both the memory and I/O requirements higher. In these cases, a
synchronous write operation has to wait till some pages are written to disk. In such cases, I/O
can take up to 40% of the execution time of the program. As the results in Figure 11 show, the
use of compiler placed asynchronous I/O can reduce the I/O waiting time by up to 67% and the
end-to-end execution time of the program by up to nearly 20%.

Note that the percent reduction in the time ascribed to I/O drops as the number of particles
simulated increases. We believe that this is because of the contention for the memory between
the data pages and the file pages. If the data pages which are likely to be used in subsequent
iterations are written back to the disk, the number of page faults increases. For the 682K data
set (with synchronous I/0), the number of page faults resulting in I/O was 1401, whereas, for
the 486K data set, this number was only 60. The contention for the main memory was, in our
opinion, the main reason for the relatively low I/O rate observed for large configurations. For
very large configurations, the competition between the data pages and the file pages leads to
thrashing. For example, when the number of particles was increased to 731K, the execution
time for the version with synchronous writes was 163 seconds, the time ascribed to 1/O was
89 seconds. The use of asynchronous operation did not improve the performance as the time
ascribed to I/O was dominated by paging activity.

Because of the structure of the code, no overlap in the I/O and computation would have
been possible without interprocedural analysis. By hand analysis of the code, we determined

that placement of the asynchronous operations could not have been any better that what was
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Output/Tter. | With synch. | With async. | Reduction Reduction
(MB) write (sec) write (sec) | I/0 time | overall time

6 114.8 98.9 40.8% 13.3%

8 123.9 106.1 37.1% 14.4%

10 130.2 111.0 35.3% 14.7%

12 147.9 128.2 27.4% 13.3%

14 173.5 148.6 25.2% 14.3%

Figure 12: Performance of Compiler Placed Asynchronous 1/0, satellite template

achieved by our compiler. In all experiments with the compiler generated code, the time spent
in aio_complete()! was close to zero. This indicates that the analysis was able to completely
overlap the write with computation and the performance of snapshot generation for dsmc-3d

cannot be further improved.

5.2 Template for Satellite Data Processing Programs

This Fortran template, which we shall refer to as satellite, was constructed to emulate the
computational and I/O characteristics of a large number of satellite data processing programs.
These programs take sensor data from a sequence of days and generate a single composite multi-
band image of world. The sensor data is processed in chunks of about 500 KB. For composition,
these programs maintain an out-of-core intermediate version of the image. After the data in each
chunk is processed, each data value is mapped into the intermediate image and is compared with
the corresponding pixel. If the new value is “better”, it is copied into the pixel. To implement
this out-of-core maz-reduction efficiently, a bounding region of the image containing the pixels
to be updated, is read, modified in-core and written back to disk.

This template was loosely based on pathfinder, the AVHRR program from the NASA
Goddard Distributed Active Archive Center [1]. It has a similar organization, the same memory
requirement and processes its input in same size (500 KB) chunks. In the template, the compu-
tation for every chunk is fixed at 7.6 seconds ?; the size of the image region to updated by the
read-modify-write operation is assumed to be the same for all chunks and is a parameter of the
template.

The code input to the compiler used synchronous operations for all /O — an input read
at the beginning of the process-a-chunk loop as well as the read and write for the out-of-core
max-reduction at the end of this loop. Our compiler replaced the synchronous write for the out-
of-core computation with appropriate asynchronous write operations. The synchronous reads

were not changed.

!The POSIX routine used to wait for completion of an asynchronous 1/O operation.
?This number is derived from a set of pathfinder runs.
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Figure 12 presents results for five satellite configurations with the region sizes of 6MB,
SMB, 10MB, 12MB and 14MB. Results are presented for the first ten chunks. The second column
shows the execution time of the code input to the compiler (with synchronous writes); the third
column shows the execution time of the code generated by the compiler (with asynchronous
writes). The fourth and fifth columns show the percentage reduction in total time ascribed to
I/O and the end to end execution time respectively. The total time ascribed to I/O for either
version of the program was computed by subtracting 75.9 seconds (the execution time for the
no-intermediate-I0 version of the program) from its end-to-end execution time. The memory
requirement of the program (without 1/O) remained constant at nearly 45 MB for different
configuration.

The improvement in end-to-end execution time is consistently around 14% for all configu-
rations. The time ascribed to I/O grows roughly proportionally with the size of region to be
updated. For the synchronous version, from 38.9 seconds for the 6 MB case to 97.6 seconds for
the 14 MB case. On the other hand, the percentage reduction in the time ascribed to I/O drops
as the size of region to be updated is increased.

Again, for this code, no overlap in the I/O and computation would have been possible without
interprocedural analysis. Also, by hand analysis of the code, we determined that placement of
the asynchronous operations could not have been any better that what was achieved by our

compiler.

6 Discussion and Related Work

We now state the relationship of our work with the existing work in the areas of 1/0, cache
performance improvement, data flow analysis and interprocedural analysis. We also mention
limitations of our current approach and the future directions we plan to take.

Several researchers have developed compiler techniques for overlapping cache stalls with
computation (also known as software prefetching). This includes the work of Mowry et al. as
part of the SUIF system [23] and Callahan et al. at Rice University [8]. The amount of time
required for cache misses is usually of the order of 10 cycles; much smaller than the disk latency,
which of the order of 100,000 cycles. Therefore, for cache prefetching one only needs to consider
overlap within a single loop, as they do. In our case, we need to look at computation across
procedure boundaries to allow for significant overlap.

Future architecture trends show that micro-processors will have large Level 2 (L2) caches,
and the miss penalty for L2 caches will of the order of 500 cycles [28]. In such scenarios, it
will be profitable to perform analysis across procedure boundaries to prefetch data into the L2
cache. We believe that our analysis can be extended to perform prefetches for L2 caches as well.

In separate work, we have worked on Interprocedural Partial Redundancy Elimination (IPRE) [2,
4] and other placement optimizations for distributed memory compilation [3]. The analysis re-
quired for balanced code placement is significantly different from the analysis in IPRE for at
least two reasons: First, IBCP analysis needs to ensure that there is exactly one occurrence of
asynchronous operation corresponding to each occurrence of the synchronous operation. IPRE,
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on the other hand, tries to reduce the number of occurrences of the candidates in the optimized
code. Secondly, IPRE analysis does not need to consider placement of START_OP and END_oP
separately. The program representation used in this paper was first introduced in the context of
IPRE. Use of the same representation for IBCP framework establishes that this representation
has wide applicability.

Hanxleden and Kennedy have developed a general framework for communication placement,
which includes performing early placement of sends and late placement of receives [16]. This
framework can also be used for placement of read and write operations, however, it is restricted to
analysis and placement within a single procedure. Gornish et al. present methods for prefetching
in shared memory multiprocessors [13]. Their techniques are also applicable for placing read
operations early within a single procedure. However, their techniques apply only when the
procedure has a simple loop structure. In contrast, our method does not impose any restrictions
on the shapes of call graph and CFGs of the procedures. Several other projects have performed
interprocedural optimizations for parallelism and for dealing with memory hierarchies. FIAT
has been proposed as a general framework for interprocedural analysis [15], but largely targets
flow-insensitive problems.

Compiler optimizations for improving 1/O accesses have been addressed by at least two
projects. The PASSION compiler (based upon Syracuse F90D system) performs loop transfor-
mations for improving locality in out-of-core applications [29]. Similar optimizations have also
been performed as part of the Fortran D compilation system’s support for out-of-core appli-
cations [26]. Neither of these groups have proposed any general techniques for placement of
asynchronous operations or any interprocedural optimizations. Hand-compilation experiments
have been presented to show performance gains from using asynchronous I/0 [6].

Significant amount of work has been done on runtime libraries for optimizing Parallel 1/0.
PASSION library at Syracuse University is one such library for optimizing 1/0O accesses and uses
the two phase 1/0 technique [7, 9]. Kotz has developed a similar technique, disk-directed 1/0
for performing collective I/O operations [18]. Other projects have focussed on benchmarking
I/O intensive applications, including Crandall et. al at Illinois [11] and Acharya et. al at
Maryland [1].

An important limitation of our current work has been to consider each array as a single
entity, i.e., modification or reference to any element of an array is considered as mod/ref to the
entire array. We plan to augment our analysis with array section analysis [17] to improve its
accuracy. Consider, for example, a loop iterating over the elements of an array, which is to be
snapshot later. In such a case, array section analysis will allow us to output the parts of the
array which have been modified, without waiting for the other elements to be modified. One
potential advantage of this kind of analysis will be to break up a large I/O operation into several
smaller /O operations, presumably of the size which will fit into the file caches. This can allow
better performance even if the operating system or the I/O library does not allow asynchronous
operations.
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7 Conclusions

This paper has two main contributions. The first is a general interprocedural framework for re-
placing large latency synchronous applications with split-phase operations and overlapping them
with computation. This scheme is applicable to arbitrary recursive procedures and arbitrary
control flow within each procedure.

The second contribution of this paper is to evaluate the efficacy of this scheme for scientific
applications which perform large and frequent write operations. We have implemented a Fortran
source to source transformation tool which performs the analysis. Experiments with our tool on
two applications has shown that large overlap of the write operations could be achieved through
flow-sensitive interprocedural analysis. In both these applications, almost no overlap would have
been possible if the analysis was restricted within single procedures.

We compared the performance of the version of the code performing synchronous write op-
erations with the version performing compiler placed asynchronous operations. Use of compiler
placed asynchronous operations could reduce the I/O overhead of these applications by 30%-70%
and the overall performance of the code by up to 20%. Performance gains are most significant
when large write operations are made by codes which are using a large fraction of the primary
memory of the program.
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