
ABSTRACT

Title of dissertation: Evolutionary Design of Artificial Neural Networks
Using a Descriptive Encoding Language

Jae-Yoon Jung, Doctor of Philosophy, 2007

Dissertation directed by: Dr. James A. Reggia
Department of Computer Science

Automated design of artificial neural networks by evolutionary algorithms

(neuroevolution) has generated much recent research both because successful ap-

proaches will facilitate wide-spread use of intelligent systems based on neural net-

works, and because it will shed light on our understanding of how “real” neural

networks may have evolved. The main challenge in neuroevolution is that the search

space of neural network architectures and their corresponding optimal weights can

be high-dimensional and disparate, and therefore evolution may not discover an

optimal network even if it exists.

In this dissertation, I present a high-level encoding language that can be used

to restrict the general search space of neural networks, and implement a problem-

independent design system based on this encoding language. I show that this en-

coding scheme works effectively in 1) describing the search space in which evolution

occurs; 2) specifying the initial configuration and evolutionary parameters; and 3)

generating the final neural networks resulting from the evolutionary process in a

human-readable manner. Evolved networks for “n-partition problems” demonstrate

that this approach can evolve high-performance network architectures, and show

by example that a small parsimony factor in the fitness measure can lead to the

emergence of modular networks. Further, this approach is shown to work for encod-

ing recurrent neural networks for a temporal sequence generation problem, and the

tradeoffs between various recurrent network architectures are systematically com-

pared via multi-objective optimization. Finally, it is shown that this system can

be extended to address reinforcement learning problems by evolving architectures

and connection weights in a hierarchical manner. Experimental results support the

conclusion that hierarchical evolutionary approaches integrated in a system hav-

ing a high-level descriptive encoding language can be useful in designing modular

networks, including those that have recurrent connectivity.

Evolutionary Design of Artificial Neural Networks

Using a Descriptive Encoding Language

by

Jae-Yoon Jung

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Professor James A. Reggia, Chair/Advisor
Professor Amy Weinberg
Professor Aravind Srinivasan
Professor Lise Getoor
Professor Kyu Yong Choi, Dean’s Representative

c© Copyright by

Jae-Yoon Jung

2007

Acknowledgments

Most of all, I deeply thank my advisor, James A. Reggia, for his constant

support, encouragement and guidance. He has been a great source of inspiration

and a role model to me, and none of my work would have been possible without

his years of painstaking efforts to teach me how to set up, examine, and present

research ideas.

I am also grateful to professor Amy Weinberg, Aravind Srinivasan, Lise Getoor,

and Kyu Yong Choi for serving on my thesis committee and for suggesting thoughtful

comments and future directions.

Working within my research group has been a fortunate experience. I would

like to thank all my group members, especially Dr. Shaun Gittens, Dr. Reiner

Schulz, Matt Radio, Dr. Scott Weems, Dr. Alejandro Rodriguez, Dr. Alexan-

der Grushin, Ransom Winder, Grecia Lapizco-Encinas, Tim Chabuk, and Charles

Martin for giving their valuable comments and interesting ideas on my work.

I am also thankful to my Korean colleagues in the department. In particular,

I am grateful to Dr. Hyun-Mo Kang, Il-Chul Yoon, Min-Kyoung Cho, Suk-Hyun

Song, Sung-Woo Park, and In-Seok Choi for their help and support.

Finally, I would like to thank my parents for their everlasting encouragement

and support. My wife, Phil-Hyoun and my son, Hyun-Woo have always been my

greatest supporters and a source of wonderful joy. This work is dedicated to them.

ii

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Motivations . 1
1.2 Research Goals . 5
1.3 Contributions and Thesis Organization 7

2 Background and Related Work 10
2.1 Evolutionary Computation . 10

2.1.1 Genetic Algorithms . 12
2.1.2 Genetic Programming . 12
2.1.3 Evolution Strategies . 13
2.1.4 Evolutionary Programming 14

2.2 Neuroevolution . 14
2.3 Developmental Encoding Methods . 15
2.4 Modularity in Neural Networks . 17

3 Descriptive Encoding 19
3.1 Modular Design Principle . 19
3.2 Explicitly Incorporating Domain Knowledge 26
3.3 Description File Examples . 26

3.3.1 Simple Error-Backpropagation Model 29
3.3.2 Self-Organizing Map (SOM) Model 31
3.3.3 Asymmetric Multi-Modular Model 34

3.4 Language Specification . 34
3.4.1 Layer . 35
3.4.2 Network . 39

3.5 Encoding Properties . 40
3.6 Neuroevolutionary Process . 42

3.6.1 Development and Learning Stage 42
3.6.2 Evolutionary Process . 45

3.6.2.1 Fitness Evaluation 45
3.6.2.2 Selection Process . 45
3.6.2.3 Mutation . 46
3.6.2.4 Topology Preserving Crossover 48

4 Module Formation in a Feedforward Network 49
4.1 Introduction . 49
4.2 Encoding Details . 51
4.3 The Evolutionary Procedure . 53
4.4 Results of the Evolutionary Process 56

iii

4.5 Discussion . 61

5 Learning Word Pronunciations Using Recurrent Networks 63
5.1 Introduction . 63
5.2 Encoding Details . 66
5.3 Multi-objective Optimization . 68
5.4 Experimental Results . 69
5.5 Discussion . 74

6 Evolving an Autonomous Agent 76
6.1 Introduction . 76
6.2 Simulation Environment . 80
6.3 Encoding Details . 87
6.4 Experimental Results . 91

6.4.1 Nested Evolution Strategy vs. Gaussian Mutation 95
6.4.2 Island Model vs. Single Population 96
6.4.3 Crossover vs. Mutation . 97

6.5 Discussion . 98

7 Disscussion 99
7.1 Contributions Revisited . 99
7.2 Future Directions . 101
References . 104

iv

List of Tables

2.1 Comparison of Typical Properties of Some Well-Known Evolutionary
Algorithms.∗ . 12

3.1 Example Module/Layer Properties 21

3.2 Default Values of Properties . 36

4.1 Training Data for a 2-Partition Problem 50

4.2 Parallel n-Partition Problem Results 60

5.1 Representative Results for the Phoneme Sequence Generation Problem 73

6.1 Predetermined Properties for Predators and Agent. 82

6.2 Summarized Results with Compared Systems 95

v

List of Figures

3.1 (a) The first part of a description file specifies the network structure
in a top-down hierarchical fashion (other information in the descrip-
tion file, such as details of the evolutionary process, is not shown in
this example). (b) A schematic illustration of the corresponding class
of recurrent networks that are described in (a). Question marks in-
dicate architecture aspects that are considered evolvable. (c) Part of
the tree-like structure corresponding to the genotype depicted in (a).
Each rectangle, oval, and hexagon designates a network, layer, and
property, respectively. This latter data structure provides the genetic
material that is operated on by genetic programming algorithms. . . 23

3.2 A simple asymmetric neural network. (a) Initial description of the
network, illustrating the language being developed in this research.
(b) Each circle represents a network node, and each directed line
shows a connection and its direction. Lateral connections are in-
dicated by dotted lines. (c) Conceptual, hierarchical view of this
network as a tree structure. Sequence and parallel structure of the
different layers is indicated by the shaded blocks. 27

3.3 Error back propagation network with a hidden layer whose size is
evolvable. (a) Initial network description. Some properties are not
specified to keep the description small for illustrative purposes. The
SIZE property of the hidden layer is evolvable. Indispensable parts
are in bold type. (b) One possible realization or instantiation of this
description in (a). The number of nodes in the hidden layer (here it
is three) is randomly selected during the interpretation step. 30

3.4 A self-organizing map (SOM) example, adapted from [Levitan and
Reggia, 2000], illustrating how even asymmetric unsupervised learn-
ing models can readily be represented by descriptive encoding lan-
guage. (a) Two-dimensional layers with the unsupervised activation
rule (SOM) is specified. (b) One possible realization or instantiation
of the description. Each vertex in the grids denotes a network node.
Example connections between input layers are illustrated by arrows.
Note that the two map (upper) layers are asymmetric. 32

3.5 A complex multi-modular model, adapted from [Reggia et al., 2001a].
(a) Two blocks (left brain, right brain) in the middle structure may
have different sizes. The INIT statements declare that these bilateral
connections are fixed. (b) Conceptual organization of the network.
Each arrow illustrates (a group of) connections forming a pathway,
and the bilateral connections are represented by a shaded arrow. . . . 33

vi

3.6 The iterative three-step development, learning, and evolution proce-
dure used in this research. The input description file (upper left) is
a human-written specification of the class of neural networks to be
evolved (the space to be searched) by the evolutionary process, as out-
lined in the preceding sections of this chapter. The output file (lower
right) is a human-readable specification of the best specific networks
obtained that is described using the same encoding language. 43

4.1 (a) The initial network description and (b) a sketch of the space of
networks to be searched for the 2-partition problem of Table 4.1. . . . 52

4.2 (a),(b) Examples of neural network architectures randomly created
from the description in Figure 4.1a during initialization. Input and
output layers are the same, but the number of hidden layers and
their connections are quite different and specific now. Arrows indi-
cate pathways that are sets of connections between layers (i.e., not
individual node-to-node connections). (c) The chromosome descrip-
tion of the network illustrated in (a), as it would be written in our
descriptive language. This is not a description file written by the user,
but is automatically generated from that description file. Note that
no EVOLVE attributes are present, for example. (d) Top part of the
tree-like structure of the genotype in (c), making it directly usable by
GP operators. Each rectangle designates a layer. 54

4.3 Typical network architectures found during evolution for the 2-partition
problem are depicted. Dotted lines show connectivity with near-zero
weights. (a) Final output description file having two independent
pathways. (b) Conceptual network architecture described by (a). (c)
Dual pathway network without direct input-to-output connections.
Implicit hidden sub-layers are indicated by dotted ovals. 57

4.4 A typical example of a final evolved network for the 5 XOR partition
problem. (a) Initial network description. Properties to be EVOLVEd
are in bold font. (b) Final description file produced as output by
the system. All EVOLVE properties have been replaced by the spe-
cific choices in bold font. Only SIZE and CONNECT properties are
shown. (c) Depicted network architecture. Connections that have
near-zero weights are pruned. 59

vii

5.1 The Elman (a) and Jordan (b) network architectures shown here
are widely used in neural network applications because of their sim-
plicity, effectiveness, and efficiency. Dotted lines show the back-
ward/recurrent one-to-one connections that essentially represent a
copying of the output at one time step to a delay layer that serves as
input at the next time step. 64

5.2 (a) The network description file for the phoneme sequence generation
task. FWD, delayH:1, and delayO:1 mean to make a connection to
the next layer in the same network block, to the first layer in the
delayH network block, and to the first layer in the delayO network
block, respectively. If such a block does not exist, the corresponding
connectivity properties are ignored. The evolvable properties are in
bold font. (b) A schematic illustration of the space of neural network
architectures corresponding to the description file in (a) that are to be
searched for the phoneme sequence generation problem. Dotted lines
designate non-trainable, one-to-one feedback connections; solid lines
indicate weighted, fully connected pathways trained by error back-
propagation. Note that the Elman and Jordan networks of Figure
5.1 are included within this space as special cases. 67

5.3 (a) The performance/weights result of networks from all final genera-
tions are depicted. Each point represents one network architecture’s
values averaged over all evolutionary runs (most points are not la-
beled). The points on the solid line represent the Pareto-optimal
set, and the labels on some of these latter points designate the type
of network that they represent. For example, label Hh3Oh1 means
that the network represented by that node has both hidden (H) and
output (O) delay layers, while there are three hidden and one out-
put delay layers, in both cases connected to the hidden (h) layer (see
text). (b)-(d) Example of evolved network architectures and their
corresponding labels. Evolved layers are shown in bold ovals. 70

5.4 The final network description of (a) an Elman network with single de-
lay (labeled “Hh1” in Figure 5.3a) and (b) a Jordan-like network with
double delays (labeled “Oh2”). Only SIZE and CONNECT properties
are shown. The evolved properties (including the number of layers)
are in bold font. (c) An illustration of the Jordan network specified
in (b). Dotted lines designate fixed, one-to-one connections. 72

6.1 The iterative procedures used in this problem. The simulation en-
vironment is not considered as a part of the evolutionary system
because the environment is problem-dependent. 78

viii

6.2 An initial configuration of the simulation environment with 10 preda-
tors and 50 food sites. Each circle around a predator approximately
indicates the distance that the predator can “see” (radius 7.0). The
agent is located in the center of the environment when the simula-
tion begins, but is not depicted in this figure. In order to get a food
resource, the agent should reduce its velocity (to < 0.5) and collide
against the food, which is shown as dots each with a radius of 0.5. . . 81

6.3 An agent’s energy consumption model for each gait type and velocity.
A fixed energy unit per time step (basal metabolic rate) is added when
calculating the exact amount of energy consumption. 84

6.4 (a) the network description file used for evolving the network con-
troller; (b) a sketch of the space of neural network architectures cor-
responding to the description file in (a). See text for details 87

6.5 The evolutionary parameter portion of the description file for this
problem. 89

6.6 Average fitness of the best evolved agents compared with a non-
adaptive, rule-based “control” agent as described earlier in the text.
For each simulation configuration, the fitness value of the best net-
work was average over ten independent runs. Part (a) shows the
results with varying numbers of food sites while the number of preda-
tors was hold fixed at ten. In (b) the number of predators varied from
zero to 30 while the number of food site was hold fixed at 100. . . . 92

6.7 (a) An example of a resultant network description file when the simu-
lation configuration consisted of 10 predators and 100 food sites. The
evolved properties are in bold font. (b) Depicted network architecture. 93

6.8 Fitness of best network controllers over varying number of food sites.
The number of predators is fixed at 10. 94

6.9 Fitness of best network controllers over varying number of predators.
The number of food sites is fixed at 100. 94

6.10 Average network size in terms of the number of connection weights,
plotted versus the generation of an evolutionary process 96

ix

Chapter 1

Introduction

1.1 Motivations

Most development of neural networks today is based upon manual design. A

person knowlegeable about the specific application area specifies a network archi-

tecture and activation dynamics, and then selects a learning method to train the

network via connection weight changes. While there non-evolutionary methods exist

for automatic incremental network construction [Mehrotra et al., 1997], these gener-

ally presume a specific architecture, do not automatically discover network modules

appropriate for specific training data, and have not enjoyed widespread use. This

state of affairs is perhaps not surprising, given that the general space of possible

neural networks is so large and complex that automatically searching it for an opti-

mal network architecture may in general be computationally intractable, or at least

impractical for complex applications [Blum and Rivest, 1992; Miller et al., 1989].

Neuroevolution refers to the design of artificial neural networks using evolu-

tionary algorithms, and it has attracted much recent research both because suc-

cessful approaches will facilitate wide-spread use of intelligent systems based on

artificial neural networks, and because it will shed light on our understanding of

how “real” neural networks may have evolved [Grushin and Reggia, 2005; Shkuro

and Reggia, 2003]. Recent successes using evolutionary computation methods as

1

design/creativity tools in electronics, architecture, music, robotics, and other fields

[Banzhf et al., 1997; Bentely and Corne, 2001; Koza et al., 1999] suggest that creative

evolutionary systems could have a major impact on the effectiveness and efficiency

of designing neural networks. This hypothesis is supported by an increasing num-

ber of neuroevolutionary methods that search through a space of weights and/or

architectures without substantial human intervention, trying to obtain an optimal

network for a given task (reviewed in [Balakrishnan and Honavar, 2001; Ruppin,

2002; Saravanan and Fogel, 1995; Yao, 1999]).

The main challenge in neuroevolution is that each problem may require evolv-

ing a unique neural network architecture and corresponding weight values, and

the search spaces of architectures and weights are disparate and may be high-

dimensional. In the earliest stages of neuroevolution research, a fixed network

architecture was pre-selected and the evolutionary process searches the space of

connection weights for this fixed network architecture (e.g., [Dill and Deer, 1991; De

Garis, 1991; Montana and Davis, 1990; Srinivas and Patnaik, 1991]). This approach

is partially supported by [Cybenko, 1989], claiming that a fully connected neural

network with enough hidden nodes can approximate any continuous function in

theory. However, evolving neural network architectures (structures) is still required

because a small modification in a network architecture, deleting a node for example,

may cause drastic changes in the search space of weight values, and choosing an

optimal architecture for a given problem a priori is not possible in general.

The most important issue in evolving architectures is how to encode network

structures efficiently. In a direct encoding scheme, all connection information is ex-

2

plicitly specified in a matrix format [Miller et al., 1989; Mitchell, 1996]. It is simple

and all possible network architectures within a fixed matrix size can be represented.

However, for large scale neural networks, searching for the optimal architecture with

a direct encoding scheme can be impractical since the size of the space increases ex-

ponentially with the network size. On the other hand, developmental approaches

are based on a genotype that specifies how to “grow” the neural network (the pheno-

type) rather than a direct encoding of its structure. In effect, the genome represents

a “grammar” or set of rules that is used in a generative fashion. Example de-

velopmental methods include graph generation grammars [Kitano, 1994], cellular

encoding [Gruau, 1995; Gruau et al., 1996], edge encoding [Luke and Spector, 1996],

and attribute grammars [Hussain and Browse, 1998]. Developmental approaches are

especially desirable for large neural networks where directly encoding a network’s

architecture is difficult. A grammatical representation can address this issue by effi-

ciently capturing regularities or patterns in a network’s structure, thereby providing

a compact genome that is more effectively manipulated by an evolutionary process.

Modular architectures have also been the focus of a few successful neuroevo-

lutionary models. Work in this area has been inspired in part by recognition that

biological nervous systems are modular. For example, the vertebrate cerebral cor-

tex is composed of cortical columns (small modules) that are in turn components of

functional regions/areas (large modules) that collectively form the cerebral cortex

[Mountcastle, 1998]. While many aspects of the evolution of biological modularity

are not well understood, it is believed that, at a minimum, modularity contributes to

adaptability [Schlosser and Wagner, 2004; Wagner, 1995]. Designing artificial neural

3

networks using a modular approach means that the designer works primarily with

high-level multi-neuron modules/layers and their interconnections rather than with

individual neurons/nodes and their connections. Combining modular design with

developmental encodings is potentially valuable because it provides for compact,

efficient specification of large networks, breaks the design process into manageable

parts, allows the emergence of functionally-specialized components that do not in-

terfere with each other, and supports scalability [Caelli et al., 1999]. Some recent

studies have also provided evidence that modularity can improve neural network

performance for specific tasks [Calabretta et al., 2000; Franco and Cannas, 2001;

Schlessinger et al., 2006]. These results are encouraging, but much past work evolv-

ing modular neural networks has significantly restricted the range of architectures

involved, typically by evolving networks composed of preset modules. For example,

a common approach has been to use fixed, pre-designed modules representing cor-

tical columns whose inter-modular connections are trained using Hebbian learning

(e.g., [Cho and Shimohara, 1998; Happel and Murre, 1994]).

To summarize, neuroevolution requires a compact encoding scheme that helps

to reduce the search space, enables the design of large scale neural networks, and

incorporates biologically plausible modular network specification. This dissertation

introduces such an encoding scheme and an application-independent neuroevolution

system based on this encoding.

4

1.2 Research Goals

The central goal of the research described here was to develop and study a

new neuro-evolutionary encoding scheme based on a human-readable descriptive lan-

guage. Its hierarchical network description helps choose the level of sophistication

in design of the network architecture and parameters, and explicitly indicates con-

straints on the desired neural networks that restrict the search space and thus make

the evolutionary process more efficient. The use of a grammar-based, top-down

description in this scheme increases the readability of represented neural networks.

Further, encoded features span almost all aspects of recurrent neural networks in-

cluding learning rules and activation dynamics, so that this system can be used as

a general framework for neuroevolution. Within this context, the specific research

objectives were as follows:

• Create an application-independent high-level descriptive language that is both

human-readable and can serve as a genome for evolving neural networks.

• Implement a software environment based on this language and demonstrate

that it is effective in evolving a range of neural network architectures and their

connection weights.

• Examine the combination of evolutionary methods as a global search operator,

and local tuning algorithms based on weight changes, extending past work in

this area to contexts where genetic operations act on activation/learning rules

and parameters as well as network architecture.

5

• Identify conditions under which modular neural networks are favored during

evolution. The initial hypothesis was that when a problem size is large, has

localized correlations in input data (or between input and output data), and

there is a cost associated with larger networks and/or more connections, then

multi-modular networks induced by minimizing costs while maximizing per-

formance will prove to be more effective and fit than monolithic networks.

• Examine which types of recurrent neural network architectures are beneficial

under which circumstances.

• Incorporate evolution of weight values in order to use this software environ-

ment as a framework for addressing machine learning problems in general.

If these objectives are achieved, this should not only make the evolutionary pro-

cess more efficient for existing researchers in evolutionary computation, but should

also broaden the range of people who can conveniently evolve neural networks to

neural modelers in general, and to even neuroscientists whose primary interest is

to use evolutionary methods to solve their specific application problems. Further,

the same language is used to describe the initial specification, the chromosomes,

and the final resultant networks, making all network descriptions human-readable.

The top-down, hierarchical representation makes it easier to understand the details

of the networks, overcoming one of the drawbacks in the low-level approaches (e.g.,

[Gruau et al., 1996; Luke and Spector, 1996; Hornby, 2004]) that the representations

are very hard to follow and analyze since they are organized in a bottom-up fash-

ion. This approach is analogous to the abstraction process used in contemporary

6

software engineering, in the sense that users write a text file specifying the problem

to solve using a high-level language. The system then parses this file and searches

for a solution within the designated search space, and finally produces the results

as another human readable text file. The claim is that this approach has the po-

tential to facilitate automated design of large scale neural networks covering a wide

range of problem domains, not only because of its encoding efficiency, but also be-

cause it increases human readability and understandability of the initial search space

specification and the final evolved networks (i.e., just as a contemporary high-level

programming language such as C or Java increases software development produc-

tivity relative to using assembly language, I believe that this high-level language

could increase neural network design productivity relative to low-level approaches).

Finally, this approach smoothly integrates weight learning / evolution with the evo-

lutionary process of architectures, permitting adaptation to occur prior to network

fitness assessment. Separating evolution of the architecture from subsequent adapta-

tion of connection weights (either via traditional neural network learning algorithms

or another evolutionary process) is consistent with both biological events and with

evidence that such separation can produce better artificial neural networks than try-

ing to evolve both architectures and weights together [Yao, 1999; Ferdinando et al.,

2001].

1.3 Contributions and Thesis Organization

In this dissertation, I make a number of contributions in neuroevolution.

7

• I introduce a novel encoding scheme using a high-level description language.

The tree structured encoding scheme is designed to be both amenable to ge-

netic programming operators, and simultaneously to be human readable. I

show that this approach is scalable and can be mapped into a valid set of

recurrent phenotype networks (Chapter 3).

• I implement a problem-independent system that evolves neural network archi-

tectures as well as adapting their connection weights, based on the descriptive

encoding scheme. The use of a description file provides a systematic, non-

procedural methodology for specifying the search space and evolution param-

eters, and the same language that is used for the network description is used

to produce a human readable final network description.

• With n-partition problems (Chapter 4), I demonstrate that the descriptive

encoding can be effectively applied to problems with increasing complexity.

The evolved networks support the hypothesis that modular design would be

beneficial in terms of network performance, and shows how balancing high per-

formance vs. low cost trade-offs encourages evolution of modular networks.

The evolved results also justify why we need to search the space of architec-

tures, by comparing with fixed structure networks.

• In Chapter 5, I apply the descriptive encoding to a problem of temporal se-

quence generation, which requires the evolution of recurrent neural network ar-

chitectures. Various recurrent neural network architectures are systematically

compared via a multi-objective optimization method [Coello Coello, 2002],

8

including two well-known recurrent architectures.

• I show that the descriptive encoding system can be effectively applied to ad-

dressing reinforcement learning problems where gradient-descent information

is not available (Chapter 6). A separate evolutionary process based on an

evolution strategy is adopted for evolution of connection weights. The results

show that evolution can discover efficient solutions for real-valued reinforce-

ment learning problems, which can be very difficult for typical reinforcement

learning algorithms. The hierarchical evolution of architectures and weights

in the descriptive encoding system is a first step towards a general framework

for evolving neural networks, and for solving machine learning problems in

general.

The contributions of this study and some future research directions are sum-

marized in Chapter 7. I first explain the background of this research and related

work in the next chapter.

9

Chapter 2

Background and Related Work

In this chapter, common features of several evolutionary computation algo-

rithms as well as their differences are briefly discussed first. The evolution of neural

networks using evolutionary computation algorithms are reviewed next, and then

developmental encoding schemes that describe ways of growing target networks are

explained, followed by a short review of modularity in neural networks.

2.1 Evolutionary Computation

Evolutionary computation refers to a set of general-purpose search algorithms

inspired by natural selection and evolution in the real world [Ashlock, 2006; Bäck

and Schwefel, 1993; Fogel, 1995; Jong, 2006]. These algorithms use a population of

individuals that represent potential solutions for a given problem. For each genera-

tion, the environment (via a fitness function) indicates which individuals are more

fit than others, and the next population is produced from these selected individuals

via mutation, recombination, and/or other genetic operations. An outline of an

example evolutionary algorithm is as follows (adapted from [Bäck, 1994]):

1. Set generation t = 0.

2. Create the initial population, P (t).

10

3. Evaluate the fitness of each individual in P (t).

4. While ending condition end(P (t), t) is not satisfied, do

a. Calculate P ′(t) = recombination(P (t)), and P ′′(t) = mutation(P ′(t)).

b. Evaluate P ′′(t).

c. Q = set of individuals chosen from the original population, P (t).

d. Reproduce next population, P (t + 1) = selection(P ′′(t) ∪ Q),

e. Set t = t + 1.

Genetic algorithms [Goldberg, 1989b; Holland, 1975; Yuen and Chenung, 2006],

genetic programming [Koza, 1992] evolution strategies [Schwefel, 1981], and evolu-

tionary programming [Fogel et al., 1966; Fogel, 1991] are prominent instances of

this approach. Each algorithm, in its canonical form, has its own representation

schemes and genetic operators. For example, genetic algorithms use binary strings

for a chromosome, while others use tree-structured programs (genetic programming),

real vectors (evolution strategies), or finite state machines (evolutionary program-

ming). However, these different approaches to evolutionary computation now share

many features as the application of evolutionary computation has become more wide

spread, and the research groups associated with each evolutionary approach have

communicated with each other more effectively since the early 1990’s. A comparison

of these algorithms is summarized in Table 2.1.

11

Table 2.1: Comparison of Typical Properties of Some Well-Known Evolutionary
Algorithms.∗

GA GP ES EP
Chromosome binary string tree-structured real vector + finite state

program strategy parameters machine
Mutation reverse 1-bit replace random perturb strategy param. node, link

subtree then mutate target vector operators
crossover subtree separate recombination

Recombination (primary) crossover on target vector not used
(primary) and parameters

Selection probabilistic varies deterministic deterministic

∗ GA = genetic algorithm, GP = genetic programming, ES = evolution strategies,
EP = evolutionary programming

2.1.1 Genetic Algorithms

In the canonical genetic algorithm, potential solutions are represented by fixed-

length binary strings. Crossover is the primary operator for producing variations

among chromosomes, while mutation is just inverting bits with a small probability

(≈ 10−3 per bit) and is often considered as a background operator. The selection

method of the canonical genetic algorithm is fitness proportionate; the relative fit-

ness value of each individual defines the probability of selecting that individual for

the next generation. However, many implementations of current genetic algorithms

have adopted various alternatives, including tournament selection.

2.1.2 Genetic Programming

Genetic programming is an important approach to evolutionary computation,

and is most directly related to this work. The main objective of genetic program-

ming is to evolve an optimal computer program that can solve a given problem,

so the population consists of programs written in lisp or other languages, instead

12

of binary strings. Note that programs are often represented as tree structures, on

which evolution operators are performed. A problem-specific set of functions and

terminals are selected by the designer, and then the initial population is created by

random composition of trees of these functions and terminals. The fitness measure

is usually the correctness of the solution produced by each program individual, and

tree crossover is favored as the major reproduction method over mutation (e.g., in

early work [Koza, 1994], Koza didn’t use mutation at all), although this has been

a controversial subject. While genetic programming has been applied successfully

to many application areas like pattern recognition, signal processing, and natural

language processing (see [Banzhf et al., 1997, Chap. 12]), only a relatively limited

number of results related to neuroevolution have been proposed.

2.1.3 Evolution Strategies

Real vector optimization is the general goal of evolution strategies. Each in-

dividual consists of a target vector and strategy parameters (i.e., variances and/or

covariances) to perturb the target. Only the target vector is involved in the fit-

ness calculation, but both of the target vector and strategy parameters may evolve

throughout the evolutionary process, which enables self-adaptation to complex fit-

ness surfaces. In this research, a variant of an evolution strategy algorithm has been

adopted in order to evolve connection weights, which will be explained in detail in

Chapter 6.

13

2.1.4 Evolutionary Programming

Although the original intention of evolutionary programming was to evolve

finite state machines to predict future events, contemporary extended evolutionary

programming has become similar to evolution strategies in that it adopts a real

vector representation as well as mutation (strategy) parameters. Recombination

operators are not used in typical evolutionary programming implementations since

mutation operators are considered to be enough to create possible changes between

generations [Porto, 1997], which would be an opposite perspective of the building

block hypothesis in genetic algorithms. As with evolution strategies, the original

selection method was deterministic; only the best fit individuals are carried forward

into the next population (i.e., elitism).

2.2 Neuroevolution

There have been several different motivations for evolving neural networks.

Often, designing a neural network requires knowledge of the problem domain. But

in many real applications such knowledge is noisy or even unavailable, which usually

leads to a repetitious trial-and-error approach. Back-propagation [Rumelhart et al.,

1986] and other gradient descent algorithms (e.g., [Møller, 1993]) are used to find a

global minimum in an error space, but they may get stuck in a local minimum, and

require the error space to be differentiable [Sutton, 1986]. However, evolutionary

algorithms do not require gradient information so that they can search virtually any

kind of error space. Finally, neuroevolution can adapt to a dynamic environment

14

(i.e., changes in the environment) as well as the environment itself. This property

is similar to evolution in the real world, so various issues in neural science can be

computationally simulated and verified with neuroevolution.

2.3 Developmental Encoding Methods

Developmental encoding methods are a variant of indirect encoding schemes

which use a predefined grammar. They are called developmental because the infor-

mation (e.g., a set of ordered rules and parameters) stored in the genotype describes

a way of “growing” the phenotype; the actual neural network is developed, starting

from a basic unit, according to the given grammar. The virtue of this method is

that a large network can be encoded in a compact and structured genotype.

In the seminal work in this field [Kitano, 1990, 1994], Kitano encoded a devel-

opmental rule as a graph generation grammar taking the form of a matrix, rather

than specifying the whole network architecture. Constructing a network connec-

tivity matrix starts from the initial start symbol in a chromosome. Rules are then

applied to replace each non-terminal symbol in the chromosome with a 2x2 matrix

of symbols, until there are all terminal symbols. Therefore the evolutionary process

searches for the best set of rules that would generate an optimal network architecture

for a given task. Kitano claimed that this approach is more compact and efficient

than a direct encoding scheme, but this has been controversial as some subsequent

results contradicted his claim [Siddiqi and Lucas, 1998].

Gruau also proposed a grammatical encoding approach, cellular encoding,

15

where each rule defines transformation or modification of a cell, and rules con-

stitute a tree structure such that the order of execution for each rule is specified

[Gruau, 1994, 1995]. It is a compact encoding scheme in the sense that all rules

in the chromosome participate in the development of a network, and any kind of

network architecture can be represented with this approach. While a variant of

this approach has been successful with some real weight applications [Gruau et al.,

1996; Whitley et al., 1995], weight assignment seems to be inefficient since rules are

applied to each cell in general, not to a group of cells or to the whole network.

Hussain and Browse suggested another grammar-based representation scheme,

network generating attribute grammar encoding, or NGAGE [Hussain and Browse,

1998, 2000]. While Kitano’s approach keeps the complete grammar itself in a chro-

mosome and makes it evolve, this method uses a fixed set of grammar rules but

maintains a possible subset of this grammar in each chromosome. Since all legal

productions can be represented as a parse tree, genetic operations in genetic pro-

gramming (e.g., tree-crossover, and subtree mutation) can be directly applied to

this model. Although this is somewhat similar to my approach in that it has top-

down specification of network architecture, this approach can only represent network

topologies with a limited range (e.g., all layer-to-layer connectivity is assumed to be

fully-connected), and there is no way to specify other various network aspects like

learning parameters.

16

2.4 Modularity in Neural Networks

A neural network is said to be modular if the whole system can be divided into

several modules that can be distinguished from each other, from either an architec-

tural or functional perspective. Typical modular network implementations require

problem domain knowledge to establish the architecture of the network. Neural

network designers typically set and fix the number of modules, connectivity and/or

activation functions according to the application domain before the training process

begins. Some modules may have a specific, predefined function upon the whole

network (e.g., in [Jacobs et al., 1991], the gate module controls the probability dis-

tribution to select which expert module is the winner for the current input pattern),

while the role of other modules may be identified later during the training stage.

Model-based neural networks [Caelli et al., 1993], adaptive mixture of experts [Ja-

cobs et al., 1991], decision-based neural networks [Kung and Taur, 1995], and some

models of large scale brain structure [Levitan and Reggia, 2000] are included in

this group. Other researchers have adopted various search algorithms, including

evolutionary programming (e.g., [Cho, 1997]), to generate the architecture and con-

straints of the network, avoiding the user-defined network topology. The input data

set is analyzed and partitioned into an appropriate number of clusters, then mod-

ules and the topology are created and modified accordingly during training. The

structure and function of modules are typically identical or self-similar, while each

module operates on different patterns or clusters of the input data. Examples of

this approach include networks of networks [Guan et al., 1997] and self-partitioning

17

neural networks [Ranganath et al., 1995].

Since the network structure and parameters of the above approaches are tightly

coupled with domain knowledge and the input data (e.g., [Bonissone et al., 2006]),

they may not generalize well even though they are fast and efficient in the given

domain with the specific data set. On the other hand, blind search without any

domain information could easily turn out to be intractable, especially in the design

of large-scale networks. To balance between these two extreme cases, an application-

independent, hierarchical network description language is introduced in Chapter 3.

Users can describe restrictions on the modular structure of the networks based on

the domain knowledge of their own problem, and also specify which parts of the

network will evolve during the evolution process.

18

Chapter 3

Descriptive Encoding

The encoding scheme introduced here is an extension of developmental en-

coding and module-based methods proposed in the past, and now formalized in a

high-level language. I refer to this approach as a descriptive encoding since it en-

ables users to describe the target space of neural networks that are to be considered

in a natural, non-procedural and human-readable format. A user writes a text file

like the ones shown later in this chapter to specify sets of modules (layers) with

appropriate properties, their range of legal evolvable property values, and allowable

inter-module connectivity (“pathways”). This input description does not specify in-

dividual neurons, connections, nor their weights.1 The specification of legal property

values affects the range of valid genetic operations. In other words, a description

file specifies the configuration of the initial population and environment variables,

and restricts the space to be searched by genetic operators during evolution.

3.1 Modular Design Principle

The basic unit of descriptive encoding is a module that is called a layer, which

is defined as an array (currently either one-dimensional or two-dimensional) of net-

1Individual neurons, connections and weights can be specified by creating layers/modules con-

taining single neurons, but this does not take advantage of the language’s ability to compactly

describe large scale networks.

19

work nodes that share common properties. In other words, individual neurons are

not the atomic unit of evolution, but sets of neurons are. Modular, hierarchical

structure is essential when the size of the resultant neural network is expected to be

large, since monolithic networks can behave irregularly as the network size becomes

larger. Moreover, there is substantial evidence that a basic underlying neurobiologi-

cal unit of cognitive function is a region (layer), e.g., in cerebral cortex [Mountcastle,

1998], which strengthens the argument that hierarchical structure of layers should

be the base architecture of any functional unit. Parametric encoding can also re-

duce the complexity of a genotype when there is a regular pattern in the network

features, and opens the possibility for users to specify a set of appropriate network

features according to given problem requirements (see [Jung and Reggia, 2004b] for

discussion).

The description of a layer/module starts with an identifier LAYER, which is

followed by an optional layer name and a list of properties. Properties of a layer

can be categorized into three groups: structure (e.g., BIAS, SIZE, NUM LAYER),

dynamics (e.g., ACT RULE, ACT INIT, ACT MIN, ACT MAX), and connectivity

(e.g., CONNECT, CONNECT RADIUS, CONNECT INIT, LEARN RULE). The

order of declared properties in a layer description does not matter in general. In-

dividual properties can be designated to be evolvable within some range, or to be

fixed. Each property has its own default value for simplicity: if some properties

are missing in the description file, they will be replaced with the default values

during the initialization stage and considered as being constant throughout the evo-

lutionary process (i.e., the chromosome is in fact more strict than the description;

20

Table 3.1: Example Module/Layer Properties

Property What it Specifies About a Module/Layer
BIAS whether to use bias units and their initial value ranges if so
SIZE number of nodes in the current layer
NUM LAYER number of layers of this type

ACT RULE activation rule for nodes in the layer
ACT INIT initial activation value for nodes
ACT MIN minimum activation value
ACT MAX maximum activation value

CONNECT direction (or target layer name) of connections starting from this layer
CONNECT RADIUS range of connectivity from 0.0 (one-to-one) to 1.0 (full connectivity)
CONNECT INIT initial (range of) weights in the current connections
LEARN RULE learning rule for the current connections

it requires all default, fixed, and evolvable properties to be present in some form).

Layer properties used in this dissertation are illustrated in Table 3.1. The meaning

of each property is fairly straightforward, but the [CONNECT RADIUS r] property

with 0.0 ≤ r ≤ 1.0 needs more explanation. It defines the range of the connectivity

from each node in a source layer to the nodes in a target layer. For example, if

r = 0.0, each node in the source layer is connected to just a single node in the

matching position of the target layer. If r is a positive fraction less than one, each

source node connects to the matching destination layer node and its neighbor nodes

out to a fraction r of the radius of the target layer; thus, if r = 1.0, the source

and target layers are fully connected. While these connectivity properties are ba-

sically intended to specify connections between two layers (i.e., an inter-modular

connection), intra-modular connections such as self-connectivity can also be desig-

nated using the same properties. For example, one can specify that each node in a

layer named layer1 connects to itself by using a combination of [CONNECT layer1]

21

and [CONNECT RADIUS 0.0]. The user can also change the default value of each

property for a specific problem domain by declaring and modifying property values

in the evolutionary part of a description file, which will be explained later.

Figure 3.1a illustrates part of an input description file written using descriptive

encoding language for evolving a recurrent network (a full syntax for descriptive

encoding language is given in the Appendix). Each semantic block, enclosed in

brackets [· · ·], starts with a type identifier followed by an optional name and a list

of properties about which the user is concerned in the given problem. A network

may contain other (sub)networks and/or layers recursively, and a network type

identifier (SEQUENCE, PARALLEL, or COLLECTION) indicates the conceptual

arrangement of the subnetworks contained in this network. If a network module

starts with the SEQUENCE identifier, the sub-networks contained in this module

are considered to be arranged in a sequential manner (e.g., like a typical feed-forward

neural network). Using the PARALLEL identifier declares that the sub-networks

are to be arranged in parallel, and the COLLECTION identifier indicates that an

arbitrary mixture of sequential and parallel layers may be used and evolved. The

COLLECTION identifier is especially useful when there is little knowledge about

the appropriate relationships between the layers being evolved. As described earlier,

a layer is defined as a set (sometimes one or two dimensional, depending on the

problem) of nodes that share similar properties, and it is the basic module of the

network representation scheme. For example, the description in Figure 3.1a indicates

that a sequence of four types of layers are to be used: input, hidden, output, and

context layers, as pictured in Figure 3.1b. Properties fill in the details of the network

22

[SEQUENCE Net
 [LAYER Input [SIZE 20] [CONNECT Hidden]
 [LEARN_RULE [EVOLVE bp rprop]]
 [LAYER Hidden [SIZE [EVOLVE 1 20]]
 [CONNECT Output]
 [LEARN_RULE [EVOLVE bp rprop]]
 [LAYER Output [SIZE 5]
 [CONNECT [EVOLVE Context]]
 [CONNECT_RADIUS 0.0]]
 [COLLECTION Contexts
 [LAYER Context
 [NUM_LAYER [EVOLVE 1 5]] [SIZE 5]
 [CONNECT [EVOLVE Context Hidden]]]]
]

(a) (b)

Input

Output

Hidden ?
Context

?

?

?

SEQUENCE Net

Input ContextsHidden Output

Context

LEARN_RULESIZE CONNECT

... ...
...

...

(c)

...

Figure 3.1: (a) The first part of a description file specifies the network structure in

a top-down hierarchical fashion (other information in the description file, such as

details of the evolutionary process, is not shown in this example). (b) A schematic

illustration of the corresponding class of recurrent networks that are described in

(a). Question marks indicate architecture aspects that are considered evolvable. (c)

Part of the tree-like structure corresponding to the genotype depicted in (a). Each

rectangle, oval, and hexagon designates a network, layer, and property, respectively.

This latter data structure provides the genetic material that is operated on by

genetic programming algorithms.

23

architecture (e.g., layer size and connectivity) and in general specify other network

features including learning rules and activation dynamics.

Most previous neuroevolution research has focused a priori on some limited

number of network features (e.g., network weights, number of nodes in the hidden

layer) assuming that the other features are fixed. This situation plus the need

to hand-code the evolutionary process of each specific application has impeded past

neuroevolutionary models from being used more widely in different environments. In

order to overcome this limitation, descriptive encoding allows users to decide which

fixed properties are necessary to solve their problems, and which other factors should

be evolved, from a set of supported properties that span many aspects of neural

networks. Unspecified properties are replaced with default values and are treated

as being fixed after initialization. So, for example, in the description of Figure 3.1a,

the input layer has a fixed, user-assigned number of 20 nodes and is connected to the

hidden layer, while the single hidden layer has an evolvable SIZE within the range

1 to 20 nodes. The EVOLVE attribute indicates that the hidden layer’s size will be

randomly selected initially and is to be modified within the specified range during the

evolution process. Note that the learning rules to be used for connections originating

from both input and hidden layers are also declared as an evolvable property (in this

case, a choice between two variants of backpropagation). The description in Figure

3.1a also indicates that one to five context layers are to be included in the network;

this is the main architectural aspect that is to be evolved in this example. These

context layers are to be ordered arbitrarily, all contain five neurons, and they evolve

to have zero or more inter-layer output connections to either other context layers

24

or to the hidden layer (Figure 3.1b). Finally, the output layer evolves to propagate

its output to one or more of the context layers, where the CONNECT RADIUS

property defines one-to-one connectivity in this case. Since the number of layers

in the context network may vary from one to five (i.e., LAYER context has an

evolvable NUM LAYER property), this output connectivity can be linked to any of

these layers that were selected in a random manner during the evolution process.

Figure 3.1b depicts the corresponding search space schematically for the description

file of Figure 3.1a, and the details of each individual genotype (shown as question

marks in the picture) will be assigned within this space at the initialization step

and forced to remain within this space during the evolution process. Note that

since the genotype structure is a tree, as shown in Figure 3.1c, fairly standard tree-

manipulation genetic operators as used in genetic programming [Banzhf et al., 1997;

Koza et al., 1999] can be easily applied to them with this approach.

The remainder of the description file consists of information about training and

evolution processes (not shown in Figure 3.1a). A training block specifies the file

name where training data is located and the maximum number of training epochs,

when supervised learning methods are used for training connection weights. Default

property values may also be designated here, like the learning rule (LEARN RULE

property) to be used. In other words, when a property value is specified in this block,

the default value of that property is changed accordingly and affects all layers which

have that property. An evolution block can also be present and specifies parameters

affecting fitness criteria, selection method, type and rate of genetic operations, and

other population information that will be illustrated later.

25

3.2 Explicitly Incorporating Domain Knowledge

When searching for an optimal neural network using evolutionary computation

methods, a network designer usually wants to restrict the architecture, learning

rules, etc. to some proper subset of all possible models. Thus, many problem specific

constraints need to be applied in creating the initial population and maintaining

it within a restricted subspace of the space of all neural networks. For example,

the range of architectures and valid property values for each individual network

in the initial population will depend upon the specific problem being addressed.

While such constraints and initialization procedures have been treated implicitly in

previous approaches, descriptive encoding scheme permits them to be described in

a compact and explicit manner.

3.3 Description File Examples

Before considering the detailed evolution of neural networks, it is useful to

examine an example of using the high-level descriptive encoding language to describe

just a single, simple, fixed neural network architecture. This example has nothing

to do with evolution; it is just intended to illustrate the language.

Figure 3.2b shows a simple example of a neural network in schematic form

for which a description is sought. The network here is a typical feed-forward three

layer, fully-connected neural network like those often used in error backpropagation,

except two parallel subsets of hidden nodes occur (a left layer with one node, and

a right layer with two nodes). There are asymmetric, lateral connections from

26

[SEQUENCE network
 [LAYER in [SIZE 4]]
 [PARALLEL hidden
 [LAYER left [SIZE 1]
 [CONNECT right]
 [CONNECT output]]
 [LAYER right [SIZE 2]
 [CONNECT output]]
]
 [LAYER out [SIZE 2]]
]

SEQUENCE network

PARALLEL hidden LAYER outLAYER in

LAYER left LAYER right

(a) (b) (c)

Figure 3.2: A simple asymmetric neural network. (a) Initial description of the net-

work, illustrating the language being developed in this research. (b) Each circle

represents a network node, and each directed line shows a connection and its direc-

tion. Lateral connections are indicated by dotted lines. (c) Conceptual, hierarchical

view of this network as a tree structure. Sequence and parallel structure of the

different layers is indicated by the shaded blocks.

27

the left layer to the right one (dotted arrows). This type of irregularly-structured,

asymmetric networks is very hard to represent with other previous encoding schemes.

However, as shown in Figure 3.2a, descriptive encoding scheme specifies this network

architecture in a clear and succinct manner. The human-readable description here

is written in a top-down fashion, and consists of nested statements of the form

[KEYWORD ... details ...].

Thus, at the top level, Figure 3.2a indicates that this network is a SEQUENCE

of modules. Inside the SEQUENCE statement, it is indicated that the sequence

of modules involved is a LAYER named in with four nodes, then two PARALLEL

hidden layers, and finally a LAYER named out with two nodes. The two hidden

LAYER’s are named left (with one node) and right (two nodes). In the absence of

other information, the SEQUENCE of modules is fully connected in only a forward

direction by default (hence the forward connections in Figure 3.2b). The connections

between the parallel hidden layers are indicated explicitly in Figure 3.2a by a CON-

NECT statement. Figure 3.2c depicts the conceptual, tree-structured hierarchy

of this network. Although only the essential properties are shown for illustrative

purposes in this example, the language can actually specify activation dynamics,

learning rules, initialization methods, and temporal/spatial parameters as well as

evolution parameters (e.g., which property of the network will be evolvable, popu-

lation size, number of generation, and so on).

We now turn to considering a more detailed explanation of the encoding scheme

and descriptive language in the following sections, first considering three examples.

28

In the first example of a typical error backpropagation model, the basic grammar and

its properties will be explained. The second example is a simplified self-organizing

map, which can illustrate another unique feature of the descriptive encoding scheme,

its ability to incorporate different network models and learning paradigms (e.g., su-

pervised and unsupervised) into one unified system. The third example is a more

complicated bilateral connection model that is used to show evolvable layer proper-

ties and scalability.

3.3.1 Simple Error-Backpropagation Model

This example shows how to specify the evolvable properties and set the range

of legal values. A typical error backpropagation model is a fully connected, feed-

forward network that has a fixed input and output layer, and a hidden layer with

variable size, as specified in Figure 3.3a. The number of nodes in the hidden layer

is specified as

[SIZE [EVOLVE 2 10]]

in which the inner block means that this property is evolvable, and the two values

inside of the brackets define legal boundary values for this property. Figure 3.3b

depicts one possible realization (with three hidden nodes) of this description. When

the initial population is generated based on the description file, all range-valued

properties are filled with a random value within the legal range. Thus each indi-

vidual in the population will generally have different property values although the

population is created from a single description. Note that only the size property of

29

[SEQUENCE simple_ebp
[LAYER input [SIZE 5]

 [ACT_RULE linear]
 [CONNECT FWD]]

[LAYER hidden [SIZE [EVOLVE 2 10]]
 [ACT_RULE logistic]
 [CONNECT FWD]
 [LEARN_RULE ebp]]

[LAYER output [SIZE 2]
 [ACT_RULE logistic]
 [MIN_ACT 0.0]
 [MAX_ACT 1.0]]]

(a) (b)

Figure 3.3: Error back propagation network with a hidden layer whose size is evolv-

able. (a) Initial network description. Some properties are not specified to keep the

description small for illustrative purposes. The SIZE property of the hidden layer

is evolvable. Indispensable parts are in bold type. (b) One possible realization or

instantiation of this description in (a). The number of nodes in the hidden layer

(here it is three) is randomly selected during the interpretation step.

30

hidden layer has a range which is evolvable in this example, and all other properties

are fixed or missing (the latter will be replaced with default values). Therefore this

initial description indicates a relatively small search space.

3.3.2 Self-Organizing Map (SOM) Model

The next example illustrates the description of a spatial structure and the cor-

responding activation/learning dynamics. A self-organizing map [Kohonen, 1982],

depicted in Figure 3.4a, is a neural network method for unsupervised learning that

creates a mapping from high dimensional input vectors to a lower dimension, typi-

cally a two-dimensional, lattice network.

The whole network is sequential, with one input layer of fixed size 5x5, and

two map layers in parallel. The SIZE property in the left map layer is defined

as [SIZE [EVOLVE [5 10][5 10]]], which means that the left map network is two-

dimensional and evolvable, and all individuals in the initial population start with

arbitrary size between 5x5 and 10x10, e.g., a 7x8 left map layer. The right map

layer may have a larger size, between 10x10 and 20x20, e.g., 12x17. Note that

there are bilateral (recurrent) connections between two map layers that are defined

as inhibitory connections by the INIT property. Figure 3.4b illustrates a possible

realization (with 5x6 left cortex and 10x10 right cortex) of this description. In this

example, the only evolvable network aspects are the dimensions of the two cortical

map layers, and the connections between left and right map layers make this a

recurrent network.

31

[SEQUENCE som_example

[LAYER input [SIZE 5 5]]

[PARALLEL cortex

[LAYER left_cortex

[SIZE [EVOLVE [5 10] [5 10]]]

[ACT_RULE som]

[CONNECT right_cortex]

[INIT [RANDOM -1.0 0.0]]]

[LAYER right_cortex

[SIZE [EVOLVE [10 20] [10 20]]]

[ACT_RULE som]

[CONNECT left_cortex]

[INIT [RANDOM -1.0 0.0]]]

]

]

input

left_cortex right_cortex

(a) (b)

Figure 3.4: A self-organizing map (SOM) example, adapted from [Levitan and Reg-

gia, 2000], illustrating how even asymmetric unsupervised learning models can read-

ily be represented by descriptive encoding language. (a) Two-dimensional layers

with the unsupervised activation rule (SOM) is specified. (b) One possible realiza-

tion or instantiation of the description. Each vertex in the grids denotes a network

node. Example connections between input layers are illustrated by arrows. Note

that the two map (upper) layers are asymmetric.

32

[SEQUENCE asymmetric_network

[LAYER input [SIZE 8]]

[PARALLEL brain

[SEQUENCE left_brain

[LAYER lsc [SIZE [EVOLVE 5 20]]

[CONNECT rsc][INIT [-1.0 1.0]]]

[LAYER lcr [SIZE [EVOLVE 5 20]]

[CONNECT rcr][INIT [-1.0 1.0]]]]

[SEQUENCE right_brain

[LAYER rsc [SIZE [EVOLVE 2 10]]

[CONNECT lsc][INIT [-1.0 1.0]]]

[LAYER rcr [SIZE [EVOLVE 2 10]]

[CONNECT lcr][INIT [-1.0 1.0]]]]

]

[LAYER output [SIZE 6]]

]

(a) (b)

input

output

lsc

lcr

rsc

rcr

brain

left_brain right_brain

Figure 3.5: A complex multi-modular model, adapted from [Reggia et al., 2001a].

(a) Two blocks (left brain, right brain) in the middle structure may have different

sizes. The INIT statements declare that these bilateral connections are fixed. (b)

Conceptual organization of the network. Each arrow illustrates (a group of) connec-

tions forming a pathway, and the bilateral connections are represented by a shaded

arrow.

33

3.3.3 Asymmetric Multi-Modular Model

Figure 3.5b illustrates an example of a parallel, asymmetric network architec-

ture with bilateral connections, which is motivated by and modified from [Shkuro

and Reggia, 2003]. Although the size of the input and output are fixed, the other

four layers may have different sizes during either initial random creation or the evolu-

tion process. This description requires search of a larger and more rugged landscape

(with multiple local minima) than previous examples. Bilateral connections between

hidden layers can have different connection strengths among individuals, but actual

weight values are fixed and are not involved in learning or evolution. The description

for this network is depicted in Figure 3.5a.

The topmost network module has three sub-network modules; input, brain,

and output. And the brain network module has two parallel sub-network modules

with two bilateral connections, linking upper left/right layers and lower left/right

layers, respectively. Note that the INIT statements explicitly specify that these

lateral connections are fixed, and are initialized between -1.0 and 1.0. Modules that

have the same properties are condensed here, but their actual property values will

never be the same in general because of the random initialization process.

3.4 Language Specification

With the above examples in hand, we can now turn to examining in detail the

language for describing layer/network modules, their properties, the default values

of properties, and what aspects of a neural network are evolvable. The grammar

34

defining descriptive language is specified in Appendix.

3.4.1 Layer

A layer module is an array (either one-dimensional or two-dimensional) of

network nodes that share common properties, and it is the basic unit of network

composition. The description of a layer starts with an identifier LAYER, which is

followed by an optional layer name and a list of properties. As explained earlier, each

property has its own default value for simplicity. Therefore if some properties are

missing in the description file, they will be replaced with the default values during

the initialization stage and considered as being constant throughout the evolutionary

process (i.e., the chromosome is in fact more strict than the description; it requires

all default, fixed, and evolvable properties to be present). All default values are listed

in Table 3.2. Detailed explanations for structure (BIAS, NEIGHBOR, NUMBER,

SIZE, TOPOLOGY) and dynamics (ACT RULE, INITACT, MINACT, MAXACT)

properties are as follows:

• BIAS : There is one bias input per each node, except for the input layer(s).

The input layer(s) and output layer(s) are identified during the interpretation

step. If not set to a specific value, the bias is usually a random real number

between -1.0 and 1.0.

• NEIGHBOR : In a competitive network, this property confines the range (ra-

dius) of lateral competition. For example, if this property is set at 1, each node

will compete with only the adjacent nodes in the same layer. The application of

35

Table 3.2: Default Values of Properties

Category Property Default Notes
BIAS Random [-1.0, 1.0]

NEIGHBOR 0 Only effective with competitive networks.
Structure NUMBER 1

SIZE 1
TOPOLOGY GRID Only effective when SIZE is two-dimensional.
ACT RULE LOGISTIC LINEAR for the input layers

Dynamics INIT ACT 0.0
MIN ACT 0.0
MAX ACT 1.0
CONNECT FWD

INIT Random [-1.0, 1.0]
Connection LEARN RATE 0.1 Dependent on LEARN RULE

LEARN RULE EBP
RADIUS FULL Fully connected.

this property is also affected by SIZE (one-dimensional or two-dimensional),

TOPOLOGY (grid or hexagonal shape), and ACT RULE (WTA or SOM)

properties.

• NUMBER : Total number of duplicate layers to be created with current layer

information in this network. A typical usage of this property is to make differ-

ent number of layers in each individual. For example, [LAYER ... [NUMBER

[1 10] ...] designates that this layer will be randomly copied from one to ten

times into each chromosome.

• SIZE : This is the number of nodes in this layer. If it is two-dimensional, two

numbers specify the number of rows (vertical length) and columns (horizontal

length).

• TOPOLOGY : Significant only if the SIZE property specifies a two-dimensional

structure. Currently square grid (GRID) and hexagonal (HEX) structure are

36

available. In the grid structure, each node is a vertex of the grids surrounded

by four adjacent nodes, while each node (vertex) has three adjacent nodes in

the hexagonal structure.

• ACT RULE : An activation rule (transfer function) for each node in this layer

is selected from a set of rules. This set currently includes linear (LINEAR), sig-

moid (LOGISTIC), winner-take-all (WTA), and multi winner self-organizing

map (SOM) rules.

• INIT ACT : This is the initial activation level (output value) of network nodes

before any input pattern is given into this layer. This property is useful in re-

current networks because when the first input pattern is given to the network,

all the recurrent output values may be decided by this property.

• MIN ACT, MAX ACT : The minimum and maximal values permitted for the

activation level.

Connection statements specify the connection topology between two layer (or

network) modules, and all learning properties for this connection. This implies that

each connection may have its own learning rules and parameters, while most other

approaches use just a global set of learning parameters. Although the descriptive

encoding does not maintain whole weight vectors in a chromosome, it does keep

a random seed value and the range of initial weights per each connection. This

approach can be considered as a variant of hybrid methods that use evolution-

ary algorithms for the global, initial weight searching, combined with other local

37

search algorithms (e.g., back-propagation) for fine tuning during training. Detailed

explanations for connection properties (CONNECT, INIT, LEARN RATE/RULE,

RADIUS) are as follows:

• CONNECT : Specifies the destination layer(s) of this connection, starting from

the current layer. This can be done by listing names of target layer/networks.

If a name of a network (e.g., brain, left brain or right brain in Figure 3.5) is

specified, all layers contained in that network will be connected. If the list of

the destinations is declared as evolvable (i.e., in parentheses), the number of

connections and the destination layers will be selected randomly among them.

Predefined symbolic values currently include FWD and BOTH; ’FWD’ denotes

a feedforward linkage between two adjacent layers in a sequential network, and

’BOTH’ means a mutual connection between two neighbor layers, in either a

sequential or parallel network.

• INIT : This property describes how to initialize the connection weights. When

a symbolic value RANDOM is declared, connection weights are randomly cho-

sen between -1.0 and 1.0, unless the legal range is explicitly specified in the

description. If a real value is specified, all weights are set to that value and

considered fixed during training; all learning rule related properties for this

connection are ignored.

• LEARN RATE, LEARN RULE : Define how to train this connection. Stan-

dard error-backpropagation (EBP), resilient backpropagation (RPROP), and

Hebbian (HEBB) are currently the possible learning rules. Note that these

38

properties should match up with activation rules (ACT RULE). Such restric-

tions on matching values among properties are checked in the interpretation

step.

• RADIUS : A full connection (i.e, each node in the source layer is connected to

all nodes in the target layer) may be specified by a symbolic value, ’FULL’.

Otherwise, a positive real value/range specifies the range of connectivity neigh-

borhood.

• SEED : Stores the random seed value and the range of initial weight values.

3.4.2 Network

A network module (i.e., a SEQUENCE, PARALLEL, or COLLECTION de-

scription) functions as a container to build a top-down, and hierarchical represen-

tation. There are three identifiers for discerning the type of the network module.

If a network module starts with the SEQUENCE identifier, the sub-network chain

contained in this module is considered to be arranged in a sequential manner, e.g.,

like a typical feed-forward neural network. Using the PARALLEL identifier declares

that the sub-network chain to be arranged in parallel.

A COLLECTION module is also a network module in which the architecture

of the network will be created arbitrarily. It may contain layer descriptions only.

After identifying the total number of layers in this network, the type of the topmost

network (either SEQUENTIAL or PARALLEL) and the number of sub-networks are

randomly selected. Then layers are again randomly assigned to each sub-network,

39

and this hierarchical creation of the network structure will continue in a recursive

manner, until no layer remains. This type of network description is useful when there

is little knowledge about appropriate structure between input and output layer.

3.5 Encoding Properties

The descriptive encoding approach describe above has some important en-

coding properties. It can represent recurrent network architectures, and is scalable

with respect to node/connectivity changes. More specifically, the encoding approach

being used here has:

• Closure : A representation scheme can be said to be closed if all genotypes

produced are mapped into a valid set of phenotype networks [Balakrishnan

and Honavar, 1995]. First, every genotype at the initial step is decoded into

a valid phenotype since the initial population of genotypes is based on the

user-defined description. Next, descriptive encoding is closed with respect

to mutation operators that change property values in a layer, since property

values are only allowed to be mutated within the legal ranges defined by users

or the system. This is checked at runtime and any illegal mutation result is

discarded. Although descriptive encoding scheme is not closed with crossover

operators on a grammar level, it can be constrained to be closed on a system

level by adjusting invalid property values, according to the description file.

For example, if the number of layers in a network becomes too large after a

crossover operation, such a network may be deleted (or the whole network

40

structure could be adjusted to maintain legal genotypes).

• Completeness : The descriptive encoding scheme can be used to represent

any recurrent neural network architecture. This can be easily seen from the

fact that if one confines the size of each and every layer to be one node, the

descriptive encoding scheme is equivalent to a direct encoding which specifies

full connectivity on a node-to-node basis.

• Scalability : This property can be defined by how decoding time and geno-

type space complexity are affected by a single change in a phenotype [Bal-

akrishnan and Honavar, 1995; Gordon and Bentley, 2005]. The descriptive

encoding scheme described above takes O(1) time and space in a node ad-

dition/deletion, since changing the number of nodes means just changing a

parameter value in a property in the corresponding genotype, and node ad-

dition/deletion does not make substantial changes in time and space require-

ments during the genotype-phenotype mapping. In a similar way, a node-

to-node connection addition/deletion in a phenotype will cost O(1) space in

genotype and O(N + C) decoding time, as N denotes the total number of

nodes in a network, and C denotes the total number of layer-to-layer connec-

tions. If a connection is deleted in a phenotype, it will split the corresponding

source and target layers since nodes in these layers do not share connectivity

anymore, but this split is equivalent to deleting a node in both layers plus cre-

ating two single-node layers, which will cost O(1) space (assuming a constant

layer size) and O(N +C) additional decoding time. In general, the descriptive

41

encoding scheme is O(1) scalable with respect to nodes and O(N +C) scalable

with respect to connectivity.

3.6 Neuroevolutionary Process

3.6.1 Development and Learning Stage

The evolutionary process that is built upon the descriptive encoding intro-

duced above involves an initialization step plus a repeated cycle of three stages, as

shown in Figure 3.6. First, the text description file prepared by the user is parsed

and an initial random population of chromosomes (genotypes) is created within the

search space represented by the description (leftmost part of Figure 3.6). During

the development stage, a new population of realized networks (phenotypes) is cre-

ated or “grown” from the genotype population. Each phenotype network has actual

and specific individual nodes, connection weights, and biases (see [Jung and Reg-

gia, 2004a, 2006] for details). The learning stage involves training each phenotype

network, assuming that the user specifies one or more learning rules in the descrip-

tion file, making use of an input/output pattern file that contains training data.

As evolutionary computation is often considered to be less effective for local, fine

tuning tasks [Yao, 1999; Ferdinando et al., 2001], neural network learning methods

are adopted to train connection weights. In Chapter 6, this approach is expanded

to adjust weights by evolution strategy in order to address reinforcement learning

problems where gradient information is not available. After the adaptation stage,

each individual network is evaluated according to user-defined fitness criteria and

42

Input
Description

File

Population
of

Genotypes

Population
of

Phenotypes

Development Learning

Fitness
Measurement

Selection Genetic
Operations Population of

Trained
Networks

Output Description File
Weight Tables

Figure 3.6: The iterative three-step development, learning, and evolution procedure

used in this research. The input description file (upper left) is a human-written

specification of the class of neural networks to be evolved (the space to be searched)

by the evolutionary process, as outlined in the preceding sections of this chapter.

The output file (lower right) is a human-readable specification of the best specific

networks obtained that is described using the same encoding language.

43

genetic operators are applied to the genotypes. Fitness criteria may reflect both

network performance (e.g., mean squared error) and a penalty for a large network

(e.g., total number of nodes), or other measures. The end result of an evolutionary

run consists of two things. First, an output description is produced (see Figure 3.6,

bottom right). This file uses the same syntax as the input description file to specify

the most fit specific network architectures discovered by the evolutionary process.

Second, another file gives a table of all the weights found by the final learning pro-

cess using these specific network architectures, so that a complete specification of

the best neural networks is produced.

As explained above, a new aspect of the approach taken in this evolution sys-

tem relative to past related work is the explicit use of an initial network description.

This text file, which is written by the user, specifies the legal search space of neural

networks that can be evolved. It permits a user to specify restrictions or constraints

on what legal architectures are possible in a broad or narrow sense, including on

network architecture, activation dynamics, range and initialization methods of net-

work parameters, evolvability of each parameter, and learning rules. Further, the

high-level modular structure of a network can be defined, indicating in a human

readable form any constraints on evolution (e.g., whether feed-forward networks or

recurrent networks are allowed, or limits on the number of parallel or serial hidden

layers). To my knowledge no past developmental system has allowed this.

44

3.6.2 Evolutionary Process

3.6.2.1 Fitness Evaluation

Fitness measure can be defined in two ways: by explicitly specifying fitness

using properties of neural networks, or by a user-defined fitness function. The default

fitness measure is normalized, mean squared error (MSE). Other measures available

for parsimony include the total number of network nodes (TOT NODE), the total

number of layer-to-layer connections (TOT CONN), the total number of node-to-

node connections (TOT WEIGHT), and the total sum of absolute weight values

(TOT WEIGHT SUM). These measures can be used together in various formats

including weighted sum (WEIGHTED SUM), product (MULTIPLY), and multi-

objective optimization (SPEA), which will be explained in detail in Chapter 4 and

5. When the fitness property is declared as external, it means that a user-defined

fitness function is provided outside of the descriptive encoding system. This user-

defined fitness function is useful when the fitness of networks does not depend on

networks’ own properties. An example of this case will be explained in Chapter 6.

3.6.2.2 Selection Process

A tournament selection process is used in this research. A tournament pool size

(TOURNAMENT POOL) means the number of individuals compared in a single

selection process. Fitness value of each network is compared with that of other

randomly selected networks. Then one fittest chromosome among them is selected

and copied to the next generation. No individuals other than the winners in the

45

tournament are inserted into the new population (no elitism).

3.6.2.3 Mutation

The seven existing operators are listed below, each of which is selected for

use with equal probability. Note that all operations are conducted on evolvable

properties in a chromosome only, within a range specified in the description file,

if available. The initial description file is implicitly used in this step, since each

chromosome has only specific property values and does not keep meta-information

such as which property is declared as evolvable. The existing mutation operators

are:

• Change Size: This operator starts with finding a list of layers in which the

SIZE property is declared as evolvable. After randomly selecting a layer in

the list, the new layer size will be chosen within the specified range. Note that

a change of the layer size will implicitly affect the connectivity from/to this

layer.

• Add Layer: Adding and deleting layer operators will only work under a

random-structured network, specified as a COLLECTION network in the ini-

tial description, in order to avoid demolishing the specific architecture initially

fixed by the designer. A set of connections starting from the newly added layer

will be randomly created, as well as another set of connections targeting this

layer.

46

• Delete Layer: This operator randomly deletes a layer and corresponding in-

coming/outgoing connections.

• Add Connection: This operator requires two random selections: a layer with

evolvable outgoing connection (i.e., the CONNECT property is declared as

evolvable), and a target layer to connect with. Note that adding/deleting

connection operators act on a single layer-to-layer connection (i.e., they do

not add a node-to-node connection, nor delete all connections from a layer).

• Delete Connection: This operator picks a layer then randomly deletes a con-

nection from that layer. All the requirements for deletion are the same as

those of the addition operator.

• Swap Connection: Like the add/delete connection operators, a list of layers

with evolvable connections will be made. Then two randomly-picked layers

will swap all their connections, and deleting illegal connections (i.e., the initial

description does not allow such connections) will follow.

• Swap Layer: This operator will also work under a random-structured network.

It selects two layers contained in the same network and swaps their topological

order. All incoming and outgoing connections in both layers are not affected

by this change, if they remain legal. However, this change will affect the

order of (back)propagating output signals and errors, giving variations in the

network performance.

47

3.6.2.4 Topology Preserving Crossover

The typical tree structured crossover operator in genetic programming is used

in the evolutionary system, with two restriction rules. The first rule is that both

of the roots of the subtrees that will be exchanged by a crossover operation should

have a COLLECTION network as their common ancestor. This rule is required in

order to build legal resultant networks in the search space that is specified by the

description file. The second restriction rule is that all connections that are cut from

a crossover operation should be re-connected to a topologically closest position of the

original target layer. The topology of a layer is defined as the unique, directed path

from the root network (the outmost network) to the layer, which can be specified

as a string. In a similar manner, the topology of a connection can be defined as the

shortest, directed path from a source layer to a target layer. When a layer is put

in another network by a crossover operation, all outgoing connections originating

from this layer are connected to the topologically closest layers of the new network,

and incoming connections from the new network are linked to this layer only if the

topology of a connection matches with the current position of the layer.

48

Chapter 4

Module Formation in a Feedforward Network

4.1 Introduction

Many animal nervous systems have parallel, almost structurally independent

sensory, reflex, and even cognitive systems, a fact that is sometimes cited as con-

tributing to their information processing abilities. For example, biological auditory

and visual systems run in parallel and are largely independent during their early

stages [Kandel et al., 1991]; the same is true for segmental monosynaptic reflexes in

different regions of the spinal cord [Kandel et al., 1991], and the cerebral cortex is

composed of regional modules with interconnecting pathways [Mountcastle, 1998].

Presumably evolution has discovered that such partitioning of neural networks into

parallel multi-modular pathways is both an effective and an efficient way to support

parallel processing when interactions between modules are not necessary. However,

the factors driving the evolution of modular brain architectures having components

interconnected by distinct pathways have long been uncertain and currently remain

a very active area of discussion and investigation in the neurosciences [Dimond and

Blizard, 1977; Brown et al., 2001; Killackey, 1996; Tooby and Cosmides, 2000].

Inspired by such modular neurobiological organization, and as a first test prob-

lem for the descriptive encoding system described in the preceding chapter, I ex-

amined whether an evolutionary process could discover the existence and details

49

Table 4.1: Training Data for a 2-Partition Problem

Input Output Input Output Input Output Input Output

0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0
0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1
0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1
0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0

of n independent neural pathways between subsets of input and output units that

are implied by training data. In the rest of the dissertation such problems will be

called n-partition problems. Table 4.1 gives an example when n = 2 of a 2-partition

problem. The goal is to evolve a minimal neural network architecture that can learn

the given mapping from four input units to two output units, all of which are as-

sumed to be standard logistic neurons in this case. The data in Table 4.1 implicitly

represent a 2-partition problem in that the correct value of the first output depends

only on the values of the first two input units (leftmost columns in the table), while

the correct value of the second output depends only on the values of the remaining

two input units. In other words, for example, the last two input nodes provide no

information about the target value of the first output node. Thus, two parallel inde-

pendent pathways from inputs to outputs are implied, and in this specific example

each output is arranged to be the exclusive-or function of its corresponding inputs.

A human designer would recognize from this information both that hidden units are

necessary to solve the problem (since exclusive-or is not linearly separable), and that

two separate parallel hidden layers are a natural minimal architecture. Of course,

given just the training data in Table 4.1 and not knowing a priori the input/output

relationships, such a design would not be evident in advance to an evolutionary algo-

50

rithm, nor most likely to a person, and the question being asked here is whether an

evolutionary process would discover it when given a suitable descriptive encoding.

4.2 Encoding Details

Figure 4.1a shows the description file used to evolve a neural network that

solves the 2-partition problem of Table 4.1. First, it specifies the initial network ar-

chitecture for the 2-partition problem, in which only the number of input and output

nodes are fixed while other aspects, such as inter-layer connectivity and hidden lay-

ers’ structure as shown in Figure 4.1b, are randomly created during initialization

and evolve. In this example the input neurons are separated into groups that form

the basis for the distinct pathways, but note that the learning algorithm makes no

use of this fact. The NUMBER statements assign the range of how many layers of

each type may be created with the same properties in the network. So the descrip-

tion for the input layer is equivalent (except for optional layer names) to specifying

this:

[LAYER in1 [SIZE 2] [CONNECT [EVOLVE hidden output]]]

[LAYER in2 [SIZE 2] [CONNECT [EVOLVE hidden output]]]

The CONNECT property in the input layers descriptor indicates that nodes in each

input layer may evolve to connect to hidden layers, output layers, neither or both.

Second, this file also specifies the boundaries of the search space. The COLLEC-

TION description indicates that networks can evolve to have zero to ten hidden

layers, each with 1 to 5 nodes, and that they can be connected arbitrarily to them-

51

[SEQUENCE 2_partition
 [PARALLEL input
 [LAYER in [NUM_LAYER 2][SIZE 2]
 [CONNECT [EVOLVE hidden output]]]]
 [COLLECTION hidden
 [LAYER hid [NUM_LAYER [EVOLVE 0 10]]
 [SIZE [EVOLVE 1 5]]
 [CONNECT [EVOLVE hidden output]]]]
 [PARALLEL output
 [LAYER out [NUM_LAYER 2][SIZE 1]]]]
[TRAINING
 [TRAIN_DATA “./inout_pattern.txt”] [MAX_TRAIN 100]
 [LEARN_RULE rprop]]
[EVOLUTION
 [FITNESS WEIGHTED_SUM
 [MSE:0.5 TOT_NODE:0.2 TOT_CONN:0.2]]
 [SELECTION TOURNAMENT] [TOURNAMENT_POOL 3] [ELITISM 0]
 [MUTATION_PROB 0.7] [CROSSOVER_PROB 0.0]
 [MAX_GENERATION 50] [MAX_POPULATION 50]]

in1

in2

out1

out2

?

?

??

?

?

??

?

hidden

?

(a) (b)

Figure 4.1: (a) The initial network description and (b) a sketch of the space of

networks to be searched for the 2-partition problem of Table 4.1.

selves and to the output layers. The EVOLVE attributes listed here indicate that

the connections from input layers to hidden and/or output layers, the number and

size of hidden layers, and the connections from hidden layers to other hidden layers

and output layers, are all evolvable. These combinations are automatically, ran-

domly and independently decided at the initialization step and enforced by genetic

operators throughout the evolution process.

Each chromosome created from this description stores a representation of an

architecture in the form of a tree, as well as other network features as embedded

parameters (properties) in the tree. This hierarchical description of the network

architecture has some benefits over a linear list of layers in previous layer-based

encoding schemes, since it directly maps the topology of a network into the repre-

sentation. These benefits are: 1) it enables crossover operations on a set of topolog-

ically neighboring layers, which was not possible with point crossover operators; 2)

52

functionally separated blocks can be easily specified and identified in a large scale,

multi modular network; and 3) reusable subnetworks can be defined to address the

scalability problem (e.g., like ADFs in GP [Koza, 1994]).

Figure 4.2a and b illustrate two example networks automatically generated

from the description file of Figure 4.1a; they show different numbers of layers and

topologies. Figure 4.2c shows the corresponding chromosome or genotype structure

of one of these, the network in Figure 4.2a. Note that the overall structure is the

same as the initial description in Figure 4.1a, but the COLLECTION hidden network

has been replaced with a PARALLEL network with three layers and each property

has a fixed value (i.e., the EVOLVE attributes are gone). Figure 4.2d shows the tree

like structure of this genotype, making it amenable to standard genetic programming

operators.

4.3 The Evolutionary Procedure

As explained earlier, a descriptive encoding generally provides additional in-

formation about the training and evolutionary processes to be used, which is illus-

trated here. This user-defined information follows the network part of the descrip-

tion (Figure 4.1a, top), setting various parameter values to control the training and

evolutionary procedure. In this case, as specified in the training block in Figure

4.1a, each phenotype network is to be trained for 100 epochs with the designated

input/output pattern file that encodes the information from Table 4.1. The default

learning rule is defined as a variant of backpropagation (RPROP [Riedmiller and

53

in
1

in
2

out
1

out
2

in
1

in
2

out
1

out
2

(a) (b)

[SEQUENCE 2_partition

[PARALLEL input

[LAYER in1 [SIZE 2][CONNECT h1 h2]]

[LAYER in2 [SIZE 2][CONNECT h1 h3]]]

[PARALLEL hidden

[LAYER h1 [SIZE 2][CONNECT h3 out1]]

[LAYER h2 [SIZE 4][CONNECT out1 out2]]

[LAYER h3 [SIZE 3][CONNECT out2]]]

[PARALLEL output

[LAYER out1 [SIZE 1]]

[LAYER out2 [SIZE 1]]]

]

(c)

in
1

in
2

out
1

out
2

h1

h2

h
3

in
1

in
2

out
1

out
2

h1

h2

h
3

SEQUENCE 2_partition

PARALLEL input PARALLEL hidden PARALLEL output

in1 in2 h1 h2 h3 out1 out2

(d)

Figure 4.2: (a),(b) Examples of neural network architectures randomly created from

the description in Figure 4.1a during initialization. Input and output layers are the

same, but the number of hidden layers and their connections are quite different and

specific now. Arrows indicate pathways that are sets of connections between layers

(i.e., not individual node-to-node connections). (c) The chromosome description of

the network illustrated in (a), as it would be written in our descriptive language.

This is not a description file written by the user, but is automatically generated from

that description file. Note that no EVOLVE attributes are present, for example. (d)

Top part of the tree-like structure of the genotype in (c), making it directly usable

by GP operators. Each rectangle designates a layer.

54

Braun, 1993]). Note that there is no issue of generalization in learning the boolean

function here since all inputs and the correct outputs for them are given a priori.

The EVOLUTION part of the description (Figure 4.1a, bottom) indicates that a

weighted sum method of three criteria are to be used: mean squared error (MSE, e),

total number of network nodes (n), and total number of layer-to-layer connections

(c). MSE reflects the output performance of the network, and the other two criteria

are adopted as penalties for larger networks. These three criteria are reciprocally

normalized and then weighted with coefficients assigned in the description file. More

specifically, the fitness value of the ith network, Fitnessi that is described here is

Fitnessi = w1 ·
(

emax − ei

emax − emin

)
+ w2 ·

(
nmax − ni

nmax − nmin

)
+ w3 ·

(
cmax − ci

cmax − cmin

)
(4.1)

where xmin(xmax) denotes the minimum (maximum) value of criterion x among the

population, and the coefficients w1, w2, and w3 are empirically defined as 0.5, 0.2,

and 0.2, respectively. In words, the fitness of an individual neural network is in-

creased by lower error (a behavioral criterion), or by fewer nodes and/or connections

(structural criteria). An implicit hypothesis represented in the fitness function is

that minimizing the latter two structural costs may lead to fewer modules and inde-

pendent pathways between them in evolved networks. Note that the EVOLUTION

part of the description (Figure 4.1a) specifies the coefficients in the fitness function

above, and it also specifies tournament selection with a pool size of 3 as the selection

method, a mutation rate of 0.7, and that no crossover and no elitism are to be used.

Operators in this case can mutate layer size and direction of an existing inter-layer

connection, and can add or delete a new layer or connection.

55

4.4 Results of the Evolutionary Process

A total of 50 simulations were run with a fixed population size (50) and a fixed

number of generations of 50. Between simulations, the only changes are the random

initial architectures plus the initial value of connection weights that are assigned

randomly in the range -1.0 to 1.0. For all runs, each final generation contained

near-optimal networks that both solved the 2-partition problem (i.e., MSE ∼ 0.0)

and had a small number of nodes and connections. Converged networks can be

categorized into two groups identified by their connectivity pattern as depicted in

Figure 4.3. The first group of networks, found during 44% of the runs, showed a dual

independent pathway where each input pair has their own hidden layer and a direct

connection to the corresponding output node (Figure 4.3a and 4.3b). Ignoring the

dotted line connections which have near zero weight values shown in Figure 4.3a,

this is an optimal network for the 2-partition problem in terms of the total number

of network nodes and connections. In the second group of networks, found during

52% of the runs, input layers share a single hidden layer, without having direct

connections to the corresponding output nodes. Such solutions require four hidden

nodes, rather than two, to be an optimal network. Inspection of the connection

weights shows that this model implicitly captures/discovers two distinct pathways

embedded in the explicit hidden layer, if one ignores or prunes connections with

near zero weights, as illustrated in Figure 4.3c. This type of network is also an

acceptable near-optimal solution in terms of the number of connections needed for

XOR problems and is sometimes used to illustrate layered solutions to single XOR

56

in1

in2

out1

out2

(a) (b)

[SEQUENCE 2_partition
 [PARALLEL input
 [LAYER in1 [SIZE 2]
 [CONNECT h1 out1 out2]]
 [LAYER in2 [SIZE 2]
 [CONNECT h2 out2]]]
 [PARALLEL hidden
 [LAYER h1 [SIZE 1][CONNECT out1]]
 [LAYER h2 [SIZE 1][CONNECT out2]]
]
 [PARALLEL Output
 [LAYER out1 [SIZE 1]]
 [LAYER out2 [SIZE 2]]]]

(c)

in1

in2

out1

out2

Figure 4.3: Typical network architectures found during evolution for the 2-partition

problem are depicted. Dotted lines show connectivity with near-zero weights. (a)

Final output description file having two independent pathways. (b) Conceptual

network architecture described by (a). (c) Dual pathway network without direct

input-to-output connections. Implicit hidden sub-layers are indicated by dotted

ovals.

57

problems in textbooks (e.g., [Haykin, 1999]). The remaining 4% of the runs did not

converge on just one type of network as described above, but both types are found

in the final population. Thus, the evolutionary process generally discovered that

“minimal cost” solutions to this problem involve independent pathways. While the

networks considered here are very simple relative to real neurobiological systems,

the frequent emergence of distinct and largely independent pathways rather than

more amorphous connectivity during simulated evolution raises the issue of whether

parsimony pressures may be an underrecognized factor in evolutionary morphogen-

esis, as outlined at the beginning of this section (see [Shkuro and Reggia, 2003] for

further discussion).

Without changing the evolutionary part of the description file, n-partition

problems were tested for n = 2, 3, 4, or 5 (the latter case requires 22n = 1024

patterns for training). A typical input/output description file and network structure

for n = 5 are illustrated in Figure 4.4. Table 4.2 summarizes the experimental

results. The Minimum Hidden Nodes Found column shows the smallest number

of hidden nodes found during the experiment, and the numbers in the parentheses

are the theoretically possible minimum number of nodes. In an n-partition problem

involving exclusive-OR relations, at least n hidden nodes are necessary even if direct

connections from input to output are allowed. The Minimum Connections Found

column shows the minimum number of layer-to-layer connections found in the best

individual. Again assuming direct connectivity from input to output and without

increasing the number of hidden nodes, the best possible number of connections

in an n-partition problem is 3n (e.g., input to output, input to the corresponding

58

[SEQUENCE 5_partition
 [PARALLEL input
 [LAYER in1 [SIZE 2][CONNECT hid1 out1]]
 [LAYER in2 [SIZE 2][CONNECT hid1]]
 [LAYER in3 [SIZE 2][CONNECT hid2]]
 [LAYER in4 [SIZE 2][CONNECT hid3 out4]]
 [LAYER in5 [SIZE 2][CONNECT hid4 out5]]]
[PARALLEL hidden1

 [LAYER hid1 [SIZE 5][CONNECT out1 out2]]
 [PARALLEL hidden2
 [LAYER hid2 [SIZE 2][CONNECT out3]]
 [LAYER hid3 [SIZE 1][CONNECT out4]]
 [LAYER hid4 [SIZE 1][CONNECT out5]]]]
 [PARALLEL Output
 [LAYER out1 [SIZE 1]]
 [LAYER out2 [SIZE 1]]
 [LAYER out3 [SIZE 1]]
 [LAYER out4 [SIZE 1]]
 [LAYER out5 [SIZE 1]]]]

(a)

in1

in2

in3

in4

in5

out1

out2

out3

out4

out5

(c)

[SEQUENCE 5_partition
 [PARALLEL input
 [LAYER in
 [NUM_LAYER 5]
 [SIZE 2]
 [CONNECT
 [EVOLVE hidden output]]]
 [COLLECTION hidden
 [LAYER hid
 [NUM_LAYER [EVOLVE 0 10]]
 [SIZE [EVOLVE 1 5]]
 [CONNECT

[EVOLVE hidden output]]]]
 [PARALLEL output
 [LAYER out
 [NUM_LAYER 5]
 [SIZE 1]]]
]

(b)

Figure 4.4: A typical example of a final evolved network for the 5 XOR partition

problem. (a) Initial network description. Properties to be EVOLVEd are in bold

font. (b) Final description file produced as output by the system. All EVOLVE

properties have been replaced by the specific choices in bold font. Only SIZE and

CONNECT properties are shown. (c) Depicted network architecture. Connections

that have near-zero weights are pruned.

59

Table 4.2: Parallel n-Partition Problem Results

N # of Min. Hidden Min. Connnections Min. Fully Connected Average
Patterns Nodes Found Found MSE MSE Time

2 16 2 (2) 7 (6) 0.00000 0.20823 2250
3 64 4 (3) 9 (9) 0.00021 0.20710 2848
4 256 5 (4) 14 (12) 0.00073 0.22224 3471
5 1024 9 (5) 19 (15) 0.00236 0.20821 6273

hidden layer, hidden to output), that are specified in the parentheses.

For each n partition problem, the best MSE results gathered from each evo-

lutionary simulation were compared with that of standard fully connected, single

hidden layer backpropagation networks. These latter networks have a single fixed

hidden layer size of n, which is the theoretically minimal (optimal) number for each

partition problem, initial weights randomly chosen from -1.0 to 1.0 (same as in the

evolutionary simulations), and the MSE results averaged over 50 runs. With all

other conditions set to be the same, post-training errors with the evolved networks

are significantly less for each problem than with the standard fully connected back-

propagation networks (p values on t-test were less than 10−5 for each of the four

comparisons). More importantly, the fully connected networks sometimes produced

totally wrong answers (i.e., absolute errors in output node values were more than

0.5), while this problem did not occur with the evolved networks. This shows the

value of searching the architectural space even if it is believed that a fully connected

network can theoretically approximate any function [Cybenko, 1989] ([Wolpert and

Macready, 1997, 2005] for general discussion). The Average Time column in Table

4.2 shows the mean time (seconds) needed for a single evolutionary run. This result

shows that the descriptive encoding system can identify the partial relationships be-

60

tween input and output patterns and represent them within an appropriate modular

architecture.

4.5 Discussion

In this chapter it is shown that the descriptive encoding can efficiently rep-

resent the hierarchical structure of multi-layer neural networks, which is a desired

property for designing large scale networks. The need for searching the space of net-

work architectures is justified here by comparing the performance of evolutionary

networks with networks that have predefined, fixed architectures. The evolutionary

networks constantly outperform fixed architecture networks , and this comparison

results also demonstrate the benefits of the hybrid approach combining evolutionary

global search for the architectural space with gradient-descent based local tuning

for the corresponding optimal weight values. Second, the n-partition problem in-

troduced here shows an example of how the descriptive encoding can be used in

problems with increasing complexity. Although the complexity of the problem in

terms of the number of training patterns increases exponentially, the descriptive

encoding requires no fundamental changes in order to encode and to address the

problem, even for the evolutionary parameters in this case. Third, (near) optimal

networks evolved for this problem typically have parallel, independent pathways,

and the only factor that might be related to this result is a parsimony in the fitness

measure that penalizes for larger networks. This emergence of modular architectures

is interesting because it supports the hypothesis that modular design principle, on

61

which the descriptive encoding is based, will be of benefit in terms of performance,

and because it can partly explain how natural evolution discovers modular struc-

tures.

62

Chapter 5

Learning Word Pronunciations Using Recurrent Networks

5.1 Introduction

Recurrent neural networks have long been of interest for many reasons. For

example, they can learn temporal patterns and produce a sequence of outputs, and

are widely found in biological nervous systems [Kandel et al., 1991]. They have been

applied in many different areas (e.g., word pronunciation [Radio et al., 2001], and

learning formal grammars [Giles et al., 1992]) and several models of recurrent neural

networks have been proposed (see [Haykin, 1999; Kumar, 2004]). The previous

chapter showed that the description-based encoding scheme was powerful enough

to study research issues related to feedforward-only neural networks (i.e., inducing

modular feedforward architectures by combining performance and parsimony in a

single fitness function). Here I establish that the high-level descriptive language

developed in this research is also sufficiently powerful to support the evolution of

recurrent networks in situations involving multi-objective optimization. In other

words, this current chapter shows that the neuroevolutionary approach introduced in

this dissertation can be successfully applied to study research questions in situations

involving two generalizations relative to the preceding chapter: recurrent networks,

and multi-objective optimization.

To understand the results below, it is important to know some basic infor-

63

Input

Hidden

Output

Delay Input

Hidden

Output

Delay

(a) (b)

Figure 5.1: The Elman (a) and Jordan (b) network architectures shown here are

widely used in neural network applications because of their simplicity, effectiveness,

and efficiency. Dotted lines show the backward/recurrent one-to-one connections

that essentially represent a copying of the output at one time step to a delay layer

that serves as input at the next time step.

mation about recurrent networks, as follows. Two well-known, partially recurrent

architectures that let one use basic error backpropagation from feed-forward nets

essentially unchanged (because the feedback connection weights are fixed and un-

learnable) are often referred to as Elman networks and Jordan networks. Elman

[Elman, 1990] suggested a recurrent network architecture in which a copy of the

contents of the hidden layer (saved in the delay layer) acts as a part of the input

data in the next time step, as shown in Figure 5.1a. Jordan [Jordan, 1986] proposed

a similar architecture except that the content of the output layer is fed back to the

delay layer where nodes possibly also have a “decaying” self-connection, as shown in

Figure 5.1b. These networks were originally proposed for different purposes: the El-

man architecture for predicting the next element in a temporal sequence of inputs,

and the Jordan architecture for generating a temporal sequence of outputs when

64

given a single fixed input pattern. However, little is known about how to select

the best recurrent network architecture for a given sequence processing task and,

to my knowledge, no systematic experimental comparison between these different

recurrent neural network architectures has ever been undertaken, except for some

specific application comparisons (e.g., [Pérez-Ortiz et al., 2001]). In other words,

it is not currently established as to which of either of these two architectures is

advantageous to use in applications, or what application features might guide such

a choice.

In this context, the essence of the problem considered in this chapter is to find

appropriate recurrent networks to produce a sequence of phoneme outputs, given

a fixed input representing the corresponding input word pattern. For example, for

the word apple, a fixed pattern of the five letters A P P L E is the input, and

the correct output temporal sequence of phonemes would be /ae/, /p/, and /l/,

followed by an end of word signal. This challenging task was originally tackled in

[Radio et al., 2001] using Jordan networks. Here, the same task is examined using

an expanded set of input data (total of 230, two to six phoneme words selected

randomly from the NetTalk corpus [Sejnowski and Rosenberg, 1987]). The focus

is on finding the optimal architecture of delay layers and their connectivity. The

question being asked is whether the high-level, modular developmental approach

supported by the descriptive encoding language can identify the “best” recurrent

architecture to use, or at least clarify the tradeoffs.

65

5.2 Encoding Details

Figure 5.2 gives the descriptive encoding and a corresponding schematic rep-

resentation of the space of networks that for this problem. The fixed part of the

structure is a feed-forward, three layer network consisting of input, hidden, and

output layers (depicted on the right side of Figure 5.2b). The size of the input layer

is decided by the maximum length of a word in the training data and the encoding

representation, and the output layer size is 52 since a set of 52 output phonemes are

used, including the end of a word signal. The number of hidden nodes is arbitrarily

set to be the same as the output layer size. Note that hidden and delay layers

may have connections to different destination layers with different configurations

(e.g., CONNECT RADIUS and LEARN RULE), such that each set of properties

for connections has been separated from the other by using double brackets in the

description of Figure 5.2a. As shown here, the space of architectures to be searched

by the evolutionary process consists of varying numbers of delay layers that receive

recurrent one-to-one feedback connections (dotted arrows) from either the hidden

layer (delayH) or the output layers (delayO). In either case, 0 to 4 delay layers may

be evolved, but however many are evolved in each feedback pathway, they must be

organized in a serial fashion, thus representing feedback delays of 0 to 4 time steps.

Both feedback pathways from output and hidden layers may have zero layers, which

means there are four possible architectures being considered during evolution: 1)

feed-forward network only without delays; 2) hidden layer feedback only; 3) output

layer feedback only; and 4) both types of feedback. In addition, for each class where

66

[SEQUENCE Psg_problem
 [LAYER Input [SIZE 156] [CONNECT Hidden]]
 [LAYER Hidden [SIZE 52]
 [[CONNECT DelayH:1] [CONNECT_RADIUS 0.0]
 [LEARN_RULE NONE]]
 [[CONNECT Output]]]
 [SEQUENCE DelayH
 [LAYER [NUM_LAYER [EVOLVE 0 4]] [SIZE 52]
 [[CONNECT FWD] [CONNECT_RADIUS 0.0]
 [LEARN_RULE NONE]]
 [[CONNECT [EVOLVE Hidden Output]]]]]
 [LAYER Output [SIZE 52]
 [[CONNECT DelayO:1] [CONNECT_RADIUS 0.0]
 [LEARN_RULE NONE]]]
 [SEQUENCE DelayO
 [LAYER [NUM_LAYER [EVOLVE 0 4]] [SIZE 52]
 [[CONNECT FWD] [CONNECT_RADIUS 0.0]
 [LEARN_RULE NONE]]
 [[CONNECT [EVOLVE Hidden Output]]]]]
]

(a) (b)

Input

Hidden

OutputDelayO

DelayH

?

?

?

?

?

? ?

?

?

?

Figure 5.2: (a) The network description file for the phoneme sequence generation

task. FWD, delayH:1, and delayO:1 mean to make a connection to the next layer

in the same network block, to the first layer in the delayH network block, and

to the first layer in the delayO network block, respectively. If such a block does

not exist, the corresponding connectivity properties are ignored. The evolvable

properties are in bold font. (b) A schematic illustration of the space of neural

network architectures corresponding to the description file in (a) that are to be

searched for the phoneme sequence generation problem. Dotted lines designate

non-trainable, one-to-one feedback connections; solid lines indicate weighted, fully

connected pathways trained by error backpropagation. Note that the Elman and

Jordan networks of Figure 5.1 are included within this space as special cases.

67

a feedback pathway exists, it may have a varying amount of delay (1 to 4 time steps)

and may provide feedback to the output layer, the hidden layer, or both. Each de-

lay layer is sequentially connected to the adjacent delay layer by a one-to-one, fixed

connection of weight 0.5, which acts as a decaying self-connection. Thus a total of

169 architectures are considered by the evolutionary process.1

5.3 Multi-objective Optimization

Fitness criteria based on two cost measures or objectives is used in this study:

root mean squared error (RMSE) for performance, which was adjusted to be com-

parable with previous results [Radio et al., 2001], and the total sum of absolute

weight values to penalize larger networks. The latter unbounded measure simply

adds together the absolute values of all weights in the network after training. This

is used rather than the number of nodes and connections as in n-partition problems,

since the latter vary stepwise in this experiment while the summed weights are a

continuous measure. This summed absolute weights measure is especially useful

here as it can potentially discriminate between two different architectures having

the same numbers of node and connections (e.g., Jordan vs. Elman networks). Sim-

ilar weight minimization fitness criteria have been used previously when evolving

neural networks and can be viewed as a “regularization term” that acts indirectly

on an evolutionary time scale rather than directly during the learning process (see

[Shkuro and Reggia, 2003] for discussion).

1No delay: 1, delayH only: 4 delays x 3 directions, delayO only: 4x3, both delays: (4x3)x(4x3)

= 169 total.

68

A multi-objective evolutionary algorithm (SPEA [Zitzler and Thiele, 1999; Li

et al., 2005; Knowles and Corne, 2003]) was adopted based on these two fitness

criteria, which enables one to get a sense of the tradeoffs in performance and par-

simony among the different good architectures found during evolution. This also

illustrates that the evolutionary system studied here consists of components that

can be expanded or plugged in depending on the specific problem. The population

size was decreased to 25 compared to the configuration in n-partition problem be-

cause of the large computational expense of doing both learning and evolution in

the same simulation, and the archive in which non-dominated individuals are stored

externally in SPEA was set to be the same size as the population. The maximum

number of generations was fixed at 50, and all networks trained for 200 epochs with

RPROP, a variant of error backpropagation which has been shown to be very effec-

tive in previous research [Radio et al., 2001]. For genetic operations, only mutating

the number of layers and their connectivity are allowed, specified by default and

applied within the range of property values designated in the network description

file.

5.4 Experimental Results

A total of 100 runs of the neuroevolutionary process were examined, randomly

changing the initial network architectures and their weights in each run. The results

are shown in Figure 5.3, averaged over the same architectures. In other words,

each point in Figure 5.3 represents a network having a specific number of hidden

69

1 1.5 2 2.5 3 3.5 4 4. 5 5 5.5 6

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sum of Absolut e Weight s

R
oo

t
M

ea
n

S
qu

ar
ed

 E
rro

r (
R

M
S

E
)

No delay

Ho
1

b) Ho2

Hh1

Hh
1
O h

1

O h1

c) Hh1O o1

Hh
2
Oo

1

Hh
3
Oo

2
d) Hh2 Ob2

Hh2Ob3

Hh
3
O o

4

Hh3Ob3

b) Ho2

c) Hh1Oo1

d) Hh2Ob2

a)

Figure 5.3: (a) The performance/weights result of networks from all final generations

are depicted. Each point represents one network architecture’s values averaged

over all evolutionary runs (most points are not labeled). The points on the solid

line represent the Pareto-optimal set, and the labels on some of these latter points

designate the type of network that they represent. For example, label Hh3Oh1

means that the network represented by that node has both hidden (H) and output

(O) delay layers, while there are three hidden and one output delay layers, in both

cases connected to the hidden (h) layer (see text). (b)-(d) Example of evolved

network architectures and their corresponding labels. Evolved layers are shown in

bold ovals.

70

and output delays, and a specific layer-to-layer connectivity, with the RMSE and

weight sum averaged over all runs. A total of 121 network architectures (over 169

theoretically possible architectures) were found in the final generations of all runs,

and all of them are depicted in Figure 5.3. The labels “Hc#Oc#” in Figure 5.3

encode the network architecture evolved. More specifically, # indicates the number

of hidden (H) or output (O) delays, and c designates the destination of delay outputs,

either to the hidden (h), output (o), or both (b) layers. For example, “Hh1Ob2”

means that there is one hidden delay layer (connected back to the hidden layer) and

two output delay layers connected back to both hidden and output layer. Figure

5.3b-d shows some other examples of evolved network architectures. An example

of the final network descriptions for Elman and Jordan networks is illustrated in

Figure 5.4.

Several observations can be made from Figure 5.3. First, feed-forward only

networks without delays still remain in the final Pareto-optimal set (upper left).

The Pareto-optimal set in this context consists of “non-dominated” neural networks

for which no other neural network has been found during evolution that is better

on all of the objective fitness criteria. Thus, feed-forward networks are included in

the Pareto-optimal set because of their quite small weight values, even though their

performance is poor relative to the other types. Following the Pareto-optimal front

downward, we see that networks with one or two hidden delay layers connected to the

output layer (labeled “Ho1” and “Ho2“) are the next Pareto-front points (upper left

of Figure 5.3). This type of network in which delays are connected to the output layer

does not provide good performance in general. A big increase in performance occurs

71

[SEQUENCE Psg_problem
 [LAYER Input [SIZE 156]
 [CONNECT Hidden]]
 [LAYER Hidden [SIZE 52]
 [[CONNECT DelayH1]]
 [[CONNECT Output]]
]
 [SEQUENCE DelayH

[LAYER DelayH1 [SIZE 52]
[CONNECT Hidden]]

]
 [LAYER Output [SIZE 52]]
]

(b)

[SEQUENCE Psg_problem
 [LAYER Input [SIZE 156]
 [CONNECT Hidden]]
 [LAYER Hidden [SIZE 52]
 [CONNECT Output]]
 [LAYER Output [SIZE 52]
 [CONNECT DelayO1]]
 [SEQUENCE DelayO

[LAYER DelayO1 [SIZE 52]
 [[CONNECT Hidden]]]
 [[CONNECT DelayO2]]]

[LAYER DelayO2 [SIZE 52]
 [CONNECT Hidden]]]]

Input

Hidden

Output

DelayO2 DelayO1

(a) (c)

Figure 5.4: The final network description of (a) an Elman network with single delay

(labeled “Hh1” in Figure 5.3a) and (b) a Jordan-like network with double delays

(labeled “Oh2”). Only SIZE and CONNECT properties are shown. The evolved

properties (including the number of layers) are in bold font. (c) An illustration

of the Jordan network specified in (b). Dotted lines designate fixed, one-to-one

connections.

however with networks having only hidden delay layers connected to the hidden

layer (bottom left): an Elman network (labeled “Hh1” in Figure 5.3 and depicted

in Figure 5.4a) performs much better and is on the Pareto front. A Jordan network

(labeled “Oh1”, lower right of “Hh1” in Figure 5.3) performs even better at the

cost of increased weights. Finally, networks with increasing numbers of delay layers

that combine hidden and output delays generally performed progressively better,

although at the cost of increasing numbers of weights and connections (bottom

right in Figure 5.3). Surprisingly, “Hh1Oh1” on the Pareto-optimal front of Figure

5.3 performs better than the original Elman (Hh1) and Jordan (Oh1) networks with

smaller total weight values than the latter, and would be a very good choice for an

72

Table 5.1: Representative Results for the Phoneme Sequence Generation Problem

Architecture RMSE Absolute Weight Sum PCT∗

No delay 1.239 11410.4 23.3
Ho1 1.066 15711.7 43.2
Ho2 0.869 19892.6 62.3
Oo1 0.768 28909.3 70.5
Ob1 0.599 30502.8 82.1
Hb2 0.531 29421.4 85.9

Ho1Ob1 0.501 29243.5 87.5
Hh1 0.328 23604.5 94.6
Hh2 0.270 27232.6 96.4
Hh3 0.255 29250.4 96.7
Oh1 0.232 27893.6 97.3

Hb3Oo4 0.219 48989.6 97.6
Hh2Oh1 0.210 27540.5 97.8
Hh1Oh1 0.191 27090.4 98.2
Hh1Oo1 0.180 29290.6 98.4
Hh3Oo1 0.152 32109.6 98.9
Hh2Oo1 0.107 30718.3 99.4
Hh3Oo2 0.107 37946.3 99.4
Hh2Ob2 0.088 40383.5 99.6
Hh2Ob3 0.062 45920.2 99.8
Hh3Ob3 0.044 49589.8 99.9

∗PCT = Percentage of phonemes generated completely correctly [Radio et al., 2001].

architecture for this problem (and one that was not evident prior to the evolutionary

process). Summarizing, the Pareto-optimal front in Figure 5.3 and, more generally,

the correlations between architectures and performance given in Table 5.1, explicitly

lay out the tradeoffs for the human designer selecting an architecture. From a

practical point of view, which Pareto-optimal architecture one would adopt depends

on the relative importance one assigns to error minimization vs. network size in a

specific application. A very reasonable choice would be networks such as Hh2Oo1

or Hh2Ob2 (Figure 5.3d) that produce low error by combining features from both

Jordan and Elman networks while still being constrained in size. These results

73

show that the evolutionary approach using a high-level descriptive language can be

applied effectively in generating and evaluating alternative neural networks even for

complex temporal tasks requiring recurrent networks.

5.5 Discussion

In problem domains that involve memorizing temporal states or processing

sequential patterns, recurrent neural network architectures that have feedback con-

nections are typically required in order to solve the problem efficiently. However, for

the two types of recurrent neural network architectures that have been widely used

(Jordan and Elman Nets), no systematic comparison between them has been done

yet. In this chapter, effective recurrent neural network architectures were evolved

for a temporal sequence generation problem, demonstrating that the descriptive en-

coding system can be successfully applied to these problem domains of recurrent

neural networks. Second, a multi-objective optimization method was incorporated

in the descriptive encoding system, and the comparison of results of various recur-

rent architectures indicates the tradeoffs in the costs of architectural features versus

network performance. A mixed network of two known recurrent architectures was

discovered to outperform the two original networks in any fitness measure, which

was not expected before the comparison. Third, this study shows an example of

how descriptive encoding can be used to limit the search space effectively, and how

user’s domain knowledge can be utilized in describing the search space. The net-

work description used here was general enough to include two known architectures as

74

possible phenotypes, as well as being specific enough to restrict the number of legal

network architectures, making this systematic comparison practically available.

75

Chapter 6

Evolving an Autonomous Agent

6.1 Introduction

Reinforcement learning [Sutton and Barto, 1998] refers to a wide class of learn-

ing problems that deal with how an autonomous agent learns to choose the optimal

behavior in its environment, without an explicit teacher. Unlike in supervised learn-

ing, there are no given input / output patterns for training in reinforcement learning

problems, but only reward signals are provided to the agent after it processes one or

more inputs. These signals indicate the desirability of the states of the environment

where the agent reaches by (typically) choosing a sequence of actions, and the goal

of the agent is to maximize the amount of cumulative rewards it receives from the

environment in the long run. With this flexible problem definition, reinforcement

learning has attracted much research and become an important sub-area of machine

learning: many interesting real-world issues including game playing [Samuel, 1959;

Tesauro, 1994], robotics [Asadi and Huber, 2007; Mataric, 1994; Schaal and Atke-

son, 1994], and control problems [Crites and Barto, 1996] fall into this category. In

this chapter I examine how the neuroevolutionary system developed in this research

can be extended to address reinforcement learning problems by evolving recurrent

neural network architectures and connection weights.

Historically there have been two main approaches to solving reinforcement

76

learning problems. One approach is to search in the space of behaviors in order

to discover appropriate actions for the current state of the environment, which is

largely done with evolutionary computation methods (e.g., [Paine and Tani, 2004]).

The other approach focuses instead on estimating the usefulness of states of the

environment, as the agent can take an action to reach the best state if it knows

which possible next state would be the most beneficial. This has been largely done

by conventional reinforcement learning algorithms utilizing dynamic programming

and statistical inference [Sutton and Barto, 1998]. Although it is not yet clear which

approach is better than the other under which circumstances [Kaelbling et al., 1996],

there have been reports claiming that evolutionary algorithms are complementary

to conventional reinforcement learning algorithms [Moriarty et al., 1999], or even

found to be better in terms of performance [Stanley and Miikkulainen, 2002a] and

robustness [Whitley et al., 1993].

In this context, the third problem examined in this research focused on build-

ing an agent that forages for food and avoids predators in a simulated artificial

environment. This has been a frequent environment used in artificial life research

[Reggia et al., 2001a; Ruppin, 2002]. For each simulation time step, the agent pro-

cesses internal data and local sensory input coming from the environment, and then

decides what its next movement should be. The movement of the agent is simulated

in the environment and the updated sensory information is provided to the agent at

the next time step. No performance information about the agent’s behavior is fed

back to the agent during the simulation, and the fitness of an agent is calculated

after the simulation ends based on its food acquisition / consumption ratio and

77

Input
Description

File

Population of
Genotypes

Output
Description

File
+

Weight Tables

Development
Simulation

Environment

Population of
Phenotype
Networks

Evolution of
Connection

Weights

Population of
Evolved

Networks

Genetic
Operations

Development Adaptation

Genetic Programming Evolution Strategy

Figure 6.1: The iterative procedures used in this problem. The simulation environ-

ment is not considered as a part of the evolutionary system because the environment

is problem-dependent.

its survival time. This problem shows typical conditions of reinforcement learning

problems in the sense that the environment does not direct the agent as to which

behavior would be optimal for its current situation, and the performance of the

agent is determined by the overall result of its actions. Here, of course, consistent

with the topic of this dissertation, an agent’s behaviors were determined by an evo-

lutionary neural network controller for the agent. This is because the simulated

environment is a real-valued space and only partial sensory information is given to

the agent. The continuous nature of the environment means that the number of

possible states and actions is infinite in this case, and uncertainty in states makes

it hard to apply conventional reinforcement learning algorithms that select among

78

discrete alternative actions at each state.

Figure 6.1 illustrates the overall evolutionary procedure used in this work. In

the previous experiments of Chapters 4 and 5, the focus was on evolving architectures

of neural networks, while finding appropriate weight values for the architecture

has not been the main target of evolution. In previous chapters, initial weights

were assigned and then they were changed during the evolutionary process by using

supervised learning methods derived using gradient-descent in error space for actual

weight training. Although such a hybrid method of evolutionary and local search

/ learning algorithms has been supported by many excellent experimental results

([Yao, 1999] for discussion), here the optimal connection weights are sought by

evolution as the gradient descent information needed for supervised learning is not

available (i.e., target answers are not supplied by a teacher here).

Another issue in evolving connection weights is that most previous research has

employed a direct encoding scheme in which the architecture and connection weights

are evolved concurrently as one genome [Gruau, 1994; Maniezzo, 1994; Pujol and

Poli, 1998; Stanley and Miikkulainen, 2002b; Yao and Liu, 1996], except for some

weight mutation operations. In contrast, here the evolution of connection weights

is separated from the evolution of network architectures by building a population of

possible weights for each architecture. For each phenotype network individual, a set

of candidate weights are randomly generated (the right block in Figure 6.1). The

performance of each network architecture combined with each weight vector in the

corresponding weight population is evaluated through the simulation environment,

and the best weight set is evolved using an evolution strategy [Beyer, 2001], some-

79

thing which will be explained in detail in Section 6.3. Then the evolutionary process

for the network architecture follows, producing the next generation of genotypes.

To summarize, this chapter extends the results presented in previous chap-

ters by showing that a descriptive encoding system can extend to 1) reinforcement

learning; and 2) training the neural network controllers of simulated agents that

operate in an external environment. Further, while network architectures are still

evolved using genetic programming, 3) the learning step is replaced with a separate

evolutionary process that acquires a good set of weights for each evolved archi-

tecture. This second evolutionary process occurs each generation of the genetic

programming procedure (i.e., it is rested inside of each GP cycle), and is based on

evolution strategies. Other changes from the experiments of previous chapters are:

4) the main population of architectures is divided into a group of subpopulations

to maintain diversity of network architectures; and 5) crossover is used during the

reproduction process. These changes are synergistic in terms of evolving highly fit

networks, as will be seen from detailed comparison results in Section 6.4.

6.2 Simulation Environment

The simulation environment shown in Figure 6.2 consists of a two-dimensional,

real-valued rectangular space (100.0 by 100.0) where each side is connected with the

opposite side, implementing “periodic boundary conditions” (i.e., like a torus). At

the beginning of each simulation, a predefined number of predators and food sites are

randomly placed throughout the environment, and a single agent is located in the

80

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Predators
Food sites

Figure 6.2: An initial configuration of the simulation environment with 10 preda-

tors and 50 food sites. Each circle around a predator approximately indicates the

distance that the predator can “see” (radius 7.0). The agent is located in the center

of the environment when the simulation begins, but is not depicted in this figure.

In order to get a food resource, the agent should reduce its velocity (to < 0.5) and

collide against the food, which is shown as dots each with a radius of 0.5.

81

Table 6.1: Predetermined Properties for Predators and Agent.

Max. Visibility Visible Angle Max. Acceleration Max. Velocity Max. Rotation
Predators 7.0 2π 2.0 6.0 π/2
Agent 7.0 π 2.0 7.0 π/2

center of the environment. The agent is initially given a certain amount of “energy”,

and when this runs out, the agent will “die”. The agent should evolve to run from

predators if the predators find and chase the agent, and should forage for food sites

as the initial energy level given to the agent is not sufficient for it to survive the

simulation duration (500 time steps). The fitness of the agent is determined by its

final energy level when the simulation ends and how long it survived. Figure 6.2

shows an initial simulation environment with a typical experimental configuration

(10 predators and 50 food sites).

Predators are non-evolving, non-energy consuming entities whose behavior is

decided by three internal states: resting, searching, and chasing (adapted from

[Reggia et al., 2001b]). In the resting state, predators do not move nor do they

change their orientation even if they find the agent within their visibility range (a

distance of 7.0). All predators initially start with the resting state, in order to

give the agent some chance to find predators and avoid them if they are initially

located very close to the agent. Predators can “see” the agent in any direction if it is

within their visibility range, while the agent can only perceive objects in the forward

direction. After a predefined time step, resting predators enter the searching state in

which they move around with a fixed velocity and random direction. If a searching

82

predator finds the agent, it enters the chasing state. Otherwise, it goes back to the

resting state after a predefined time step. In the chasing state, predators increase

their velocity and move directly towards the agent. The maximum acceleration in

one time step for predators is the same as that of the agent, but the maximum

velocity is set to be slightly lower than the agent’s maximum velocity (predefined

properties of the agent and predators are summarized in Table 6.1). If a chasing

predator fails to catch the agent within five time steps, or if it loses the agent beyond

its range of sight, it goes back to the resting state. The total number of predators

is fixed before a simulation begins, and no predators die or are replaced with new

ones during the simulation.

Food sites are fixed, randomly selected locations that have energy resources

for the agent. Each site starts with a predefined amount of food (10), whose level

is the maximum amount that a food site can store. When an agent moves close to

a food site with a low velocity (< 0.5), it can consume one food unit per time step

and the energy level of the agent will be increased by one. Sites may be temporarily

depleted after all units in the site are consumed, but the food level will be restored

after time (one food unit per ten time steps). No new food sites are generated.

The agent is the only entity that will adapt in this environment, through

the evolution of the neural network controller which determines its behavior. This

controller works as the “brain” of the agent producing motor signals as output, and

the movement of the agent is simulated in the virtual environment according to

these signals. The agent can perceive predators and food sites within its visibility

range, but the range is limited to π degrees in its moving direction (i.e., the agent

83

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

Velocity of the agent (V
max

 = 7.0)

E
ne

rg
y

co
ns

um
pt

io
n

fo
r

ea
ch

 ti
m

e
st

ep

Gait 0
Gait 1
Gait 2
Gait 3

Figure 6.3: An agent’s energy consumption model for each gait type and velocity.

A fixed energy unit per time step (basal metabolic rate) is added when calculating

the exact amount of energy consumption.

can’t see predators chasing it from behind). If there are multiple predators within

the agent’s range of view, sensory information of the closest predator is provided to

the agent, regardless of the internal state of the predator. The overall goal of an

agent is to survive the full simulation time with as high an energy level as possible.

An agent starts with a predefined energy level (100 units), and movement of the

agent costs energy. In order to make this energy consumption model more realistic,

a simplified notion of energy use was adopted, inspired by what occurs with animal

gaits. While the factors that lead an animal to choose a specific gait are not fully

84

understood, the hypothesis that natural gaits are adjusted to require the minimal

energy expenditure has been widely accepted [Hoyt and Taylor, 1981]. Following

this hypothesis, four gait types are defined that have different energy consumption

curves as depicted in Figure 6.3. For each time step t, the agent should choose a

desired gait type (G t
d), velocity (V t

d), and direction (θ t
d). When the agent selects

gait type 0, the motor signal for the desired velocity V t
d is ignored and the agent

stays or rotates (i.e., changes its orientation by θ t
d) in the current location with zero

energy loss per time step due to movement per se. With the other three gait types,

the agent’s movement is simulated as follows:

· G t+1 = G t
d

· Δ V t+1 = MIN(|V t
d − V t|, max acceleration)· SIGN (V t

d − V t)

· Δ θ t+1 = MIN(|θ t
d − θ t|, max rotation) · SIGN (θ t

d − θ t)

· Δ location t+1 = (1 − |Δθ t+1|/π) · (V t+1) · (cos θ t+1, sin θ t+1)

where location t+1 means two-dimensional position of the agent in the environment

at time step t + 1, and (1 − |Δθ t+1|/π) indicates the cost of rotation (i.e., if the

agent turns π, it cannot move at all at this time step). As shown in Figure 6.3,

these quadratic energy consumption curves make only one gait type be reasonably

acceptable in most velocity intervals. For example, when V t
d = 1.0, only gait type

1 would be energy efficient. Therefore choosing the right gait type according to the

desired velocity is essential to minimize the energy consumption level. Of course, the

agent has no a priori knowledge of such information, which must be discovered by

the evolutionary process. Another source adopted for consuming energy is based on

the idea of basal metabolic rate. Specifically, each agent spends some fixed energy

85

units per time step regardless of its movement, and this baseline consumed energy

is taken to be proportional to the size of the neural network controller. As the

fitness of the agent depends on the final energy level, this latter restriction works

as a parsimony factor that favors smaller networks. The simulation may end earlier

than the maximum number of time steps if the agent is caught by a predator, or

the energy level of the agent falls to zero.

In order to compare the performance of the evolved agent (i.e., as a control

measure), a non-evolving agent is implemented whose behavior is predefined as

follows: This rule-based agent starts in a searching state, where it moves randomly

with a fixed, minimal velocity (1.0). When the agent sees a predator, it goes into

an escaping state. In this state, the agent tries to avoid the observed predator with

the maximum velocity and the corresponding gait type for three time steps. This

means that it has a short-term memory of the direction of the predator that was seen

previously, so the agent continues to move in the opposite direction as the predator

even if it can’t see the chasing predator anymore. When the agent observes a food

site and there is no visible predator, it approaches the food site and stays there to

gain energy units. This foraging state holds until the agent sees a predator (change

to the escaping state), or the current food site is depleted (revert to the searching

state).

86

[SEQUENCE agent
 [PARALLEL input
 [LAYER pr_d [SIZE 1]
 [CONNECT [EVOLVE hid out]]]
 [LAYER pr_a [SIZE 1]
 [CONNECT [EVOLVE hid out]]]
 [LAYER fd_d [SIZE 1]
 [CONNECT [EVOLVE hid out]]]
 [LAYER fd_a [SIZE 1]
 [CONNECT [EVOLVE hid out]]]
 [LAYER en [SIZE 1]
 [CONNECT [EVOLVE hid out]]]]
 [COLLECTION hid
 [LAYER hidden [SIZE [EVOLVE 1 5]]
 [NUMBER [EVOLVE 0 10]]
 [CONNECT [EVOLVE hid out]]]]
 [PARALLEL out
 [LAYER vel [SIZE 1] [ACT_RULE logsig]
 [CONNECT [EVOLVE hid out]]]
 [LAYER gait [SIZE 1] [ACT_RULE logsig]
 [CONNECT [EVOLVE hid out]]]
 [LAYER dir [SIZE 1] [ACT_RULE tansig]
 [CONNECT [EVOLVE hid out]]]]]

pr_d

pr_a

fd_d

fd_a

en

Hidden

vel

gait

dir

?

?

?

?

?

(a) (b)

?

?

HiddenHidden

?

Figure 6.4: (a) the network description file used for evolving the network controller;

(b) a sketch of the space of neural network architectures corresponding to the de-

scription file in (a). See text for details

6.3 Encoding Details

Figure 6.4a shows the network part of the description file used for this problem.

The input to the network controller consists of local sensory input and the current

energy level (labeled as en). For each time step, the simulation environment provides

the information of the closest predator and food site visible to the agent, in a format

of the normalized distance (labeled as pr d and fd d) and relative angle (labeled as

pr a and fd a). Each of these five information sources separately takes a layer in the

input network, and these layers can evolve to have connections to any of the hidden

or output layers. As explained earlier, choosing the appropriate velocity based on

the current sensory input and the energy level, and finding the relationship between

87

gait types and velocity, are essential to get higher fitness, but this description file

does not specify such information to the system a priori.

The COLLECTION hidden network is an arbitrary structure of zero to ten

layers that can be connected to themselves as well as to the output, so it might build

a recurrent network like an Elman network, for example. The output subnetwork

determines the desired velocity V t
d , direction θ t

d , and gait type G t
d of the agent.

These output values can also be fed back to the hidden layers or to each other,

making a Jordan type recurrent network. From this network description, all possible

architectures of up to ten hidden layers (and up to five nodes per each hidden layer)

can be generated in theory, from a partial linear network where only some of the

input layers are directly connected to output layers, to a fully recurrent network

between hidden and output layers. Figure 6.4b illustrates the overall search space

of the possible network architectures.

Figure 6.5 specifies various evolutionary options used in this problem. The

number of neural network controllers tested in a generation is 100, and the max-

imum generation is empirically set as 500. As indicated, I divide this population

into five subpopulations in which individuals compete with others only in the same

group. This idea of separating individuals into groups, called an “island (migration)

model” [Wright, 1932; Eldredge and Gould, 1972], has been applied in neuroevolu-

tion and other application in order to maintain the diversity of the whole population

and to facilitate parallel implementation of the evolutionary process (e.g. [Martin

et al., 1997]). The former is of interest in this experiment. A variation used here is

that individuals are initially put into subgroups based on one of their network prop-

88

[EVOLUTION
 [MAX_POPLUATION 100] [MAX_GENERATION 500]
 [SUB_POPULATION 5] [CLUSTER num_weights]
 [MIGRATION_EPOCH 50] [MIGRATION_MAX 1]
 [WEIGHT_EVOLUTION es] [ES_MAX_GENERATION 1000]
 [ES_TYPE (100 , 200 (1 + 1)^num_weights)]
 [FITNESS external]
 [ELITISM 0] [SELECTION tournament] [TOURNAMENT_POOL 3]
 [CROSSOVER_PROB 0.7] [MUTATION_PROB 0.1]
]

Figure 6.5: The evolutionary parameter portion of the description file for this prob-

lem.

erties, not randomly like in typical island model implementations. When the first

genotypes are generated, individuals are sorted and subgrouped by the total number

of node-to-node connections (shown in CLUSTER property). As I have adopted an

energy consumption model proportional to the network size and the system initially

generates all possible types of architectures allowable under the network description

file with an equal probability, these subpopulations work as “islands” to make each

individual compete against others of similar size, at least for the initial generations.

Note that this size measure is not biased for modular networks, as it only counts

node to node connections, not considering how the nodes are organized as layers.

When a generation reaches the migration epoch (currently set to 50), the best indi-

vidual in each subpopulation moves to another “island” that is randomly selected,

and it participates in the reproduction process of the subpopulation to which it

migrated.

For the evolution of connection weights, a nested evolution strategy algorithm

[Beyer and Schwefel, 2002] is used. As shown in ES TYPE option, this can be

89

described in the following format:

[μ
′
, λ

′
(μ + λ)γ]

where μ
′
parent population of (μ + λ) individual strategies generate λ

′
offspring-

populations, and γ means the number of isolating generations during which the

inner (μ + λ) strategies run without any communication or interruption. For

each phenotype network architecture, 100 candidate weight sets (initially random)

and evolution strategy parameters generates 200 offspring weight sets by mutation,

and these offspring weight sets evolve in parallel for γ (total number of weight

values in this network) generations, following a (1 + 1) evolution strategy. Then

only the 100 best candidate weight sets are selected and this cycle repeats for 1000

generations. Finally, the best weight set is used in the fitness calculation for the

current phenotype.

Fitness is declared as external in the description file (Figure 6.5) because

it is calculated from outside of the system, not utilizing a network’s own proper-

ties as in the previous chapters. For each phenotype network, the system calls a

get fitness external () function which is assumed to be included in the simulation

environment implementation, and this is the only function that the system interacts

with the environment implementation. Although the main evolutionary system and

the simulation environment should be compiled together, this separation of fitness

function keeps the system problem-independent, as the fitness in this experiment

is not directly related to the output of the networks. The fitness function of the

network controllers in the specific application considered here is based on the energy

90

efficiency of the agent and how long it survived. The energy efficiency is defined as

the ratio of the total number of obtained energy units to the total consumed energy

during the simulation. Although this energy measure seems to clearly match with

the aim of this experiment, its value may have a bias in favor of shorter simulation

times (i.e., a relatively high fitness value will be given when simulations stop early

before accumulating reliable statistics). For example, if a predator catches the agent

in a very early stage, the agent may get a higher fitness value because the consumed

energy level of the agent is lower than that of the other agents that survived longer

time steps. In order to compensate for this bias, the ratio of time steps (the max-

imum is currently set as 500 steps) that the current agent survived is included as

another fitness measure. The detailed definition of fitness for the ith neural network

controller is as follows:

Fitnessi = Obtained Energyi

Consumed Energyi · Simulation T imei

Simulation T imeMax

In the reproduction procedures, a tournament based selection method has been

used with a pool size of three. Crossover probability is set as 0.7, and any type of

mutation operations defined in the descriptive encoding system can occur randomly

with a probability of 0.1. No best networks are automatically transferred into the

next generation (i.e., there is no elitism).

6.4 Experimental Results

Ten runs each were done for a varying number of predators and food sites,

as the performance of the agent depends on the configuration of the simulation

91

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Total Number of Food Sites

(a)

F
itn

es
s

Evolved Agent
Rule-Based Agent

0 5 10 15 20 25 30
0

0.5

1

1.5

Total Number of Predators

(b)

F
itn

es
s

Evolved Agent
Rule-Based Agent

Figure 6.6: Average fitness of the best evolved agents compared with a non-adaptive,

rule-based “control” agent as described earlier in the text. For each simulation

configuration, the fitness value of the best network was average over ten independent

runs. Part (a) shows the results with varying numbers of food sites while the number

of predators was hold fixed at ten. In (b) the number of predators varied from zero

to 30 while the number of food site was hold fixed at 100.

environment. The total number of predators was varied from zero to 30 in different

simulations, and the number of food sites was varied from zero to 200 (in increments

of ten). Figure 6.6 shows the averaged fitness of the best networks compared to the

rule-based agent described in section 6.2. The evolved agents perform significantly

better than the predefined agent (p values on t-test were less than 10−7 for all

comparisons).

Figure 6.7 depicts a typical resultant network description which successfully

incorporates required functionalities for the agent, and was the best agent controller

when the number of food sites was 100, and the number of predators was 10. All

92

[SEQUENCE agent
 [PARALLEL input
 [LAYER pr_d [SIZE 1] [CONNECT hid1 hid2]]
 [LAYER pr_a [SIZE 1] [CONNECT hid2 dir]]
 [LAYER fd_d [SIZE 1] [CONNECT hid4 gait]]
 [LAYER fd_a [SIZE 1] [CONNECT hid4 hid5 dir]]
 [LAYER en [SIZE 1] [CONNECT hid6 vel gait]]]
[PARALLEL hid

 [LAYER hid1 [SIZE 1] [CONNECT hid3 vel]]
 [SEQUENCE
 [LAYER hid2 [SIZE 2] [CONNECT hid3 hid4]]
 [LAYER hid3 [SIZE 2] [CONNECT vel gait dir]]]
 [PARALLEL
 [LAYER hid4 [SIZE 1] [CONNECT hid4 vel]]
 [LAYER hid5 [SIZE 1] [CONNECT dir]]
 [LAYER hid6 [SIZE 3] [CONNECT vel gait]]]]
 [PARALLEL out
 [LAYER vel [SIZE 1] [ACT_RULE logsig]

[CONNECT hid1]]
 [LAYER gait [SIZE 1] [ACT_RULE logsig]

[CONNECT hid5 gait]]
 [LAYER dir [SIZE 1] [ACT_RULE tansig]

[CONNECT dir]]]]

pr_d

pr_a

fd_d

fd_a

en

vel

gait

dir

(a) (b)

hid1

hid2 hid3

hid4

hid6

hid5

Figure 6.7: (a) An example of a resultant network description file when the sim-

ulation configuration consisted of 10 predators and 100 food sites. The evolved

properties are in bold font. (b) Depicted network architecture.

output nodes have recurrent connections that work as memory for their output

state. Specifically, in this case the velocity node has a recurrent connection to a

hidden layer (labeled as hid1) that also processes predator input information, and

another hidden layer hid4 with a self-connection passes food site information to the

velocity node. Each of the gait and direction node has a self-connection that stores

the previous output value. Evolution also discovered a way of compensating for the

agent’s restricted visibility range, which was not expected before the experiment.

A recurrent connection from the gait node to hid5 layer triggers firing of this layer

when gait type is either 0 or 1. This means that the agent can change its orientation

constantly when it stays near a food site or moves with a relatively low velocity,

looking in all directions as it rotates for approaching danger (predators).

93

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Food Sites

F
itn

es
s

V
al

ue
 o

f t
he

 B
es

t N
et

w
or

ks

Neuroevolution
No Crossover
Single Population
Gaussian Mutation

Figure 6.8: Fitness of best network controllers over varying number of food sites.

The number of predators is fixed at 10.

0 5 10 15 20 25 30
0

0.5

1

1.5

Total Number of Predators

F
itn

es
s

V
al

ue
 o

f t
he

 B
es

t N
et

w
or

k

Neuroevolution
No Crossover
Single Population
Gaussian Mutation

Figure 6.9: Fitness of best network controllers over varying number of predators.

The number of food sites is fixed at 100.

94

Table 6.2: Summarized Results with Compared Systems

Neuroevolution No Crossover Gaussian Mutation Single Population
Avg. Fitness 0.578 0.473 0.427 0.429

p value - 1.45 x 10−9 1.05 x 10−7 7.64 x 10−8

The above results were based on the use of a nested evolution strategy for

evolving connection weights, an island model for partitioning initial population,

and crossover operations. To examine how each of these components of the system

really contributed to finding the best networks, the comparative performance of the

system was assessed in similar simulations that omitted each component. Table 6.2

summarizes the averaged fitness over varying number of food sites and the corre-

sponding p values from a t-test. Figures 6.8 and 6.9 depict the average fitness value

of best networks under varying number of predators or food sites. The label “neu-

roevolution” means the results from the system with all components present, while

“No Crossover”, “Single Population”, and “Gaussian Mutation” means that the

system lacks crossover operation, the island model, or the nested evolution strategy

component, respectively. Each of these situations will be discussed below.

6.4.1 Nested Evolution Strategy vs. Gaussian Mutation

The nested evolution strategy adopted for weight evolution was compared with

a variation of Gaussian mutation method introduced in [Saunders et al., 1993; Jansen

and Wegener, 2006]. While the strategy parameters (i.e., mutation strength in the

inner strategies) in the nested ES are controlled by the 1/5th rule and outer strategy,

Gaussian mutation selects mutation strength based on the fitness of the current

95

0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

60

70

80

90

100

110

120

Generations (max = 500)

A
ve

ra
ge

 N
et

w
or

k
S

iz
e

in
 a

 P
op

ul
at

io
n

Neuroevolution
No Crossover
Single Population
Minimal Start

Figure 6.10: Average network size in terms of the number of connection weights,

plotted versus the generation of an evolutionary process

network, and it does not adapt to the environmental changes. For all environmental

configurations, the nested evolution strategy shows significantly better results than

the Gaussian mutation version.

6.4.2 Island Model vs. Single Population

As shown in Figure 6.8 and 6.9, no result in the single population case showed

better performance than the system with the Island model. Figure 6.10 illustrates

typical changes in the network size over generations, when there are ten predators

and 100 food sites initially placed in the environment. While the neuroevolution

approach used in this chapter gradually decreases the size of networks while optimiz-

ing their architectures, the single population model without any speciation method

96

is reduced to some minimal networks in the very early stages and slowly adds up

their network size in the later generations. Another possible way of generating the

initial population is to start minimally (i.e., all input nodes are connected directly

to the output nodes without any hidden layers) and sharing fitness among similar

networks, as described in [Stanley and Miikkulainen, 2002b]. But the network size

in this approach (labeled as “Minimal start” in Figure 6.10) also increases very

slowly, and the performance of the most fit network (0.41) was significantly lower

than that found with the Island model. Considering problem domains where only

simple architectures are involved, I believe that this result does not conflict with

their claims and that these two approaches complement each other. However, given

such information is known a priori, one can reduce the initial search space by mod-

ifying the description file, making the model described in this chapter competitive

with the minimal starting model.

6.4.3 Crossover vs. Mutation

The role of crossover has been controversial in neuroevolution as well as among

the evolutionary computation community in general [Spears, 1993]. For example,

Angeline et al. [1994] claimed “the prospect of evolving connectionist networks with

crossover appears limited” due to the deceptive [Goldberg, 1989a] nature of network

representation. However, there have been successful applications using crossover op-

erations to evolve neural networks [Pujol and Poli, 1998; Stanley and Miikkulainen,

2002b], and here another experimental result relating to the value of crossover is

97

considered. Compared with the mutation only system (labeled as “No Crossover”

in Figure 6.8-6.10), the performance of the system using crossover operations is

significantly better and Figure 6.10 illustrates that it also helps to compress the

overall size of search space faster.

6.5 Discussion

In this chapter, the descriptive encoding system is extended to address rein-

forcement learning problems. The main issue in reinforcement learning problems

is that there is no teacher instructing details of beneficial actions, as many of real

world learning problems would be. It becomes even more complicated if the problem

involves a real-valued search space, such that conventional learning algorithms con-

trived for this problem class might not produce efficient solutions. In order to tackle

this real-valued reinforcement learning problem, a separate evolutionary process for

evolving connection weights was added to the main system of evolving architectures

which is based on genetic programming. It was shown that the evolved recurrent

networks outperform a rule-based, predesigned agent under various environmen-

tal configurations, and that evolution can discover behaviors compensating for the

agent’s given limitations and incorporate it into appropriate network architectures.

98

Chapter 7

Disscussion

7.1 Contributions Revisited

Recent advances in neuroevolutionary methods have repeatedly been successful

in creating innovative neural network designs [Alonso et al., 2007; Balakrishnan and

Honavar, 2001; Cho and Shimohara, 1998; Gruau, 1995; Gruau et al., 1996; Lehmann

and Kaufmann, 2005; Ruppin, 2002; Saravanan and Fogel, 1995; Yao, 1999; Liao and

Tsao, 2006; Chong et al., 2005]. However, these successes have had little practical

influence on the field of neural computation. I believe this is partially because of a

dilemma: The general space of neural network architectures and methods is so large

that it is impractical to search efficiently, yet attempting to avoid this problem by

hand-crafting the evolution of neural networks on a case-by-case basis is very labor

intensive and thus also impractical.

In this context, I explored the hypothesis that a high-level descriptive language

can be used effectively to support the evolutionary design of a broad range of task-

specific neural networks. This approach addresses the impracticality of searching the

enormous general space of neural networks by allowing a designer to easily restrict

the search space to architectures and methods that appear a priori to be relevant

to a specific application, greatly reducing the size of the space that an evolutionary

process must search. It also greatly reduces the time needed to create a network’s

99

design by allowing one to describe the class of neural networks of interest at a very

high level in terms of possible modules and inter-module pathways, rather than in

terms of individual neurons and their connections. Filling in the “low level” details of

individual networks in an evolving population is left to an automated developmental

process (the neural networks are “grown” from their genetic encoding) and to well-

established neural learning methods that create connection weights prior to fitness

assessment.

It remains to be established how effective the approach described here will ulti-

mately be in practice. In this dissertation I have presented experimental evaluation

results suggesting that it can be very effective. It was shown that human-readable

description files could guide an evolutionary process to produce near-optimal so-

lutions in n-partition problems. Resultant networks typically showed independent

pathways and minimal number of hidden nodes, supporting the hypothesis that

maximizing network performance while minimizing cost would lead to emergence

of modular neural networks. These results were accomplished without fundamental

changes in the description file while the problem size was increased exponentially.

By comparing the performance of resultant networks with those of fully connected

networks, I demonstrated the need for searching the space of network architectures.

In a temporal sequence generation problem, it was shown that this approach could

not only create effective recurrent architectures, but that it could simultaneously in-

dicate the tradeoffs in the costs of architectural features versus network performance

via multi-objective evolution. This experiment also showed that how users’ domain

knowledge can be incorporated in the description file in order to reduce the search

100

space effectively. Several mixed architectures of two basic recurrent networks were

found to be very efficient in this problem, and some of these networks outperformed

both of Jordan and Elman networks, which was not expectable before this experi-

ment. Finally, It was demonstrated that this evolutionary system can be applied to

address reinforcement learning problems. While conventional reinforcement learn-

ing approaches do not prove to be successful in general when a problem involves

real variables, this problem was solved by searching both of architecture space and

connection weight space.

7.2 Future Directions

Substantial room remains for further research developing evolutionary meth-

ods for neural networks based on high-level descriptive languages. For example, the

approach taken in this dissertation has focused primarily on computational issues

involving artificial neural networks, and has not addressed many of the complexities

related to evolution of biologically-realistic neural networks that are often studied

in neuroscience (spiking neurons, multi-compartment neuron models, realistic time

delays in neural transmission, etc.), leaving this as a fertile area for future work.

The scalability of the descriptive encoding approach to larger problems is also an

important issue that remains to be established. While I have argued in favor of

scalability in terms of decoding time and genotype space complexity in this work

(see Chapter 3), the validity of such arguments remains to be confirmed in practice.

Further, one can envision a number of extensions derived from contemporary evo-

101

lutionary computation methods, such as allowing the co-evolution of subnetworks

that form components of larger networks [Palacios-Durazo and Valenzuela-Rendón,

2004; Potter and de Jong, 2000; Monroy et al., 2006; Popovici and Jong, 2006;

Garcia-Pedrajas et al., 2005]. Also, while I believe that the high-level language

presented here will be intuitively understandable to most neural modelers after a

tutorial explanation, this remains to be established through further use in practice

and experimental validation.

102

Appendix - A Simplified Grammar for the Description File

<description> := <network> <training> <evolution>

<network> := [<net_type> <name> <sub_network>] | <layer>
<net_type> := SEQUENCE | PARALLEL | COLLECTION
<sub_network> := <network> <sub_network> | <network>
<layer> := [LAYER <name> <ly_prop_list>]
<ly_prop_list> := <ly_property> <ly_prop_list> | <ly_property> |

<ly_prop_list><co_prop_list> |
<co_prop_list> := [<conn_list>] <co_prop_list> | [<conn_list>]
<conn_list> := <co_property> <conn_list> | <co_property>
<ly_property> := [NUM_LAYER <value>] | [SIZE <value>] |

[BIAS <value>] | [ACT_RULE <ename>] |
[ACT_INIT <value>] | [ACT_MIN <value>] |
[ACT_MAX <value>] | <co_property> | ...

<co_proerty> := [CONNECT <ename>] |
[CONNECT_INIT <value>] | [LEARN_RULE <ename>] |
[CONNECT_RADIUS <value>] | ...

<training> := [TRAINING <tr_prop_list>]
<evolution> := [EVOLUTION <ev_prop_list>]
<tr_prop_list> := <tr_property> <tr_prop_list> | <tr_property>
<ev_prop_list> := <ev_property> <ev_prop_list> | <ev_property>
<tr_property> := [TRAIN_DATA <path>] | [MAX_TRAIN <value>] |

[TRAIN_METHOD <name>] | ...
<ev_property> := [FITNESS <name> <ratio>] |

[SELECTION <name>] | [TOURNAMENT_POOL <value>] |
[ELITISM <value>] | [MUTATION_PROB <value>] |
[MAX_GENERATION <value>] | [CROSSOVER_PROB <value>] |
[MAX_POPULATION <value>} | [STOP_CRITERIA <name>] | ...

<value> := [EVOLVE <range_value>] | [<range_value>] |
[EVOLVE <fixed_value>] | <fixed_value>

<range_value> := <fixed_value> <range_value> | <fixed_value>
<fixed_value> := <integer> | <float> | <literals>
<ename> := [EVOLVE <names>] | [<names>] | <name>
<names> := <names> <name>
<name> := <literals>
<path> := ‘‘<name>’’
<ratio> := [<ratio_list>]
<ratio_list> := <ratio_list> <ratio_item>
<ratio_item> := <name>: <value>

103

Bibliography

Alonso, J. M., Alvarruiz, F., Desantes, J. M., Hernndez, L., Hernndez, V., and
Molt, G. (2007). Combining neural networks and genetic algorithms to predict and
reduce diesel engine emissions. IEEE Transactions on Evolutionary Computation,
11(1):46–55.

Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1994). An evolutionary algo-
rithm that constructs recurrent neural networks. IEEE Transactions on Neural
Networks, pages 54–65.

Asadi, M. and Huber, M. (2007). Effective control knowledge transfer through
learning skill and representation hierarchies. In Veloso, M. M., editor, Proceedings
of the 20th International Joint Conference on Artificial Intelligence, pages 2054–
2059.

Ashlock, D. (2006). Evolutionary Computation for Modeling and Optimization.
Springer.

Bäck, T. (1994). Evolutionary algorithms: Comparison of approaches. In Computing
with Biological Metaphors, pages 228–243. Champman and Hall.

Bäck, T. and Schwefel, H.-P. (1993). An overview of evolutionary algorithms for
parameter optimization. Evolutionary Computation, 1(1):1–23.

Balakrishnan, K. and Honavar, V. (1995). Properties of genetic representations of
neural architectures. In Proceedings of the World Congress on Neural Networks
(WCNN ’95), pages 807–813.

Balakrishnan, K. and Honavar, V. (2001). Evolving neuro-controllers and sensors for
artificial agents. In Advances in the Evolutionary Synthesis of Intelligent Agents,
pages 109–152. MIT Press.

Banzhf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1997). Genetic Pro-
gramming An Introduction. Morgan Kaufmann.

Bentely, P. J. and Corne, D. W. (2001). Creative Evolutionary Systems. Morgan
Kaufmann.

Beyer, H.-G. (2001). The theory of Evolution Strategies. Springer, Berlin.

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies - a comprehensive
introduction. Natural Computing, 1:3–52.

Blum, A. L. and Rivest, R. L. (1992). Training a 3-node neural network is NP-
complete. Neural Networks, 5(1):117–127.

Bonissone, P. P., Subbu, R., Eklund, N., and Kiehhl, T. R. (2006). Evolutionary
algorithms + domain knowledge = real-world evolutionary computation. IEEE
Transactions on Evolutionary Computation, 10(3):256–280.

104

Brown, M., Keynes, R., and Lumsden, A. (2001). The Developing Brain. Oxford
University Press.

Caelli, T. M., Guan, L., and Wen, W. (1999). Modularity in neural computing.
Proceedings of IEEE, 87:1497–1518.

Caelli, T. M., Squire, D. M., and Wild, T. P. J. (1993). Model-based neural networks.
Neural Networks, 6(5):613–625.

Calabretta, R., Nolfi, S., Parisi, D., and Wagner, G. (2000). Duplication of modules
facilitates the evolution of functional specialization. Artificial Life, 6:69–84.

Cho, S. (1997). Combining modular neural networks developed by evolutionary
algorithm. In Proceedings of 1997 IEEE International Conference on Evolutionary
Computation, pages 647–650.

Cho, S. and Shimohara, K. (1998). Evolutionary learning of modular neural networks
with genetic programming. Applied Intelligence, 9:191–200.

Chong, S. Y., Tan, M. K., and White, J. D. (2005). Observing the evolution of
neural networks learning to play the game of othello. IEEE Transactions on
Evolutionary Computation, 9(3):240– 251.

Coello Coello, C. A. (2002). Evolutionary multi-objective optimization: A critical
review. In Sarker, R., Mohammadian, M., and Yao, X., editors, Evolutionary
Optimization, pages 117–146. Kluwer Academic Publishers, New York.

Crites, R. H. and Barto, A. G. (1996). Improving elevator performance using re-
inforcement learning. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E.,
editors, Advances in Neural Information Processing Systems 8, Cambridge, MA.
The MIT Press.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303–314.

De Garis, H. (1991). GenNETS: Genetically programmed neural nets using the
genetic algorithm to train neural nets whose inputs and/or output vary in time.
In Proceedings of the International Joint Conference on Neural Networks (5th
IJCNN’91), volume 2, pages 1391–1396, Singapore. IEEE.

Dill, F. A. and Deer, B. C. (1991). An exploration of genetic algorithms for the
selection of connection weights in dynamical neural networks. In Proceedings
of the IEEE 1991 National Aerospace and Electronics Conference NAECON 91,
volume 3, pages 1111–1115, Dayton, OH. IEEE, New York, NY.

Dimond, S. J. and Blizard, D. A., editors (1977). Evolution and Lateralization of
the Brain. New York Academy of Sciences.

105

Eldredge, N. and Gould, S. J. (1972). Punctuated equilibria: An alternative to
phyletic gradualism. In Schopf, T., editor, Models in Paleobiology, pages 82–115.
Freeman Cooper.

Elman, J. E. (1990). Finding structure in time. Cognitive Science, 14(2):179–211.

Ferdinando, A. D., Calabretta, R., and Parisi, D. (2001). Evolving modular archi-
tectures for neural networks. In French, R. and Sougné, J., editors, Proceedings
Sixth Neural Computation and Psychology Workshop Evolution, Learning, and
Development.

Fogel, D. B. (1991). System Identification Through Simulated Evolution: A Machine
Learning Approach to Modeling. Ginn Press.

Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence. IEEE.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence Through
Simulated Evolution. John Wiley & Sons.

Franco, L. and Cannas, S. A. (2001). Generalization properties of modular net-
works: implementing the parity function. IEEE Transactions on Evolutionary
Computation, 5:1306–1313.

Garcia-Pedrajas, N., Hervas-Martinez, C., and Ortiz-Boyer, D. (2005). Cooperative
coevolution of artificial neural network ensembles for pattern classification. IEEE
Transactions on Evolutionary Computation, 9(3):271– 302.

Giles, C. L., Miller, C. B., Chen, D., Sun, G. Z., Chen, H. H., and Lee, Y. C. (1992).
Extracting and learning an unknown grammar with recurrent neural networks. In
Moody, J. E., Hanson, S. J., and Lippmann, R. P., editors, Advances in Neural
Information Processing Systems 4, pages 317–324. Morgan Kaufmann, Denver,
CO.

Goldberg, D. E. (1989a). Genetic algorithms and walsh functions: I. a gentle intro-
duction. Complex Systems, 3(2):129–152.

Goldberg, D. E. (1989b). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley.

Gordon, T. G. W. and Bentley, P. J. (2005). Bias and scalability in evolutionary
development. In GECCO ’05: Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 83–90, New York, NY, USA. ACM Press.

Gruau, F. (1994). Neural Network Synthesis using Cellular Encoding and the Ge-
netic Algorithm. PhD thesis, Laboratoire de l’Informatique du Parallilisme, Ecole
Normale Supirieure de Lyon, France.

106

Gruau, F. (1995). Automatic definition of modular neural networks. Adaptive
Behavior, 3:151–183.

Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison between cellular en-
coding and direct encoding for genetic neural networks. In Proceedings of the Sixth
International Conference on Genetic Programming. Stanford University Press.

Grushin, A. and Reggia, J. A. (2005). Evolving processing speed asymmetries and
hemispheric interactions in a neural network model. Neurocomputing, 65:47–53.

Guan, L., Anderson, J. A., and Sutton, J. P. (1997). A network of networks pro-
cessing model for image regularization. IEEE Transactions on Neural Networks,
8(1):169–174.

Happel, B. L. M. and Murre, J. M. J. (1994). Design and evolution of modular
neural network architectures. Neural Networks, 7(6-7):985–1004.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall,
Upper Saddle River, NJ.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press.

Hornby, G. S. (2004). Shortcomings with tree-structured edge encodings for neural
networks. In Genetic and Evolutionary Computation – GECCO-2004, Part II,
volume 3103 of Lecture Notes in Computer Science, pages 495–506. Springer-
Verlag.

Hoyt, D. F. and Taylor, C. R. (1981). Gait and the energetics of locomotion in
horses. Nature, 292:239–240.

Hussain, T. S. and Browse, R. A. (1998). Network generating attribute grammar
encoding. In IEEE International Conference on Neural Networks (IJCNN’98),
volume I, pages 431–436, Anchorage, AK. IEEE.

Hussain, T. S. and Browse, R. A. (2000). Evolving neural networks using attribute
grammars. IEEE Symposium on Combinations of Evolutionary Computation and
Neural Networks, pages 37–42.

Jacobs, R., Jordan, M., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures
of local experts. Neural Computation, 3:79–87.

Jansen, T. and Wegener, I. (2006). On the local performance of simulated annealing
and the (1+1) evolutionary algorithm. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, pages 469–476, New
York, NY, USA. ACM Press.

Jong, K. D. (2006). Evolutionary Computation A Unified Approach. MIT Press.

107

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequen-
tial machine. In Proceedings of the Eighth Conference of the Cognitive Science
Society, pages 531–546. Erlbaum.

Jung, J.-Y. and Reggia, J. A. (2004a). A descriptive encoding language for evolving
modular neural networks. In Genetic and Evolutionary Computation – GECCO-
2004, Part II, volume 3103 of Lecture Notes in Computer Science, pages 519–530.
Springer-Verlag.

Jung, J.-Y. and Reggia, J. A. (2004b). Evolving large-scale modular neural networks.
In Poli, R., editor, GECCO 2004 Workshop Proceedings, Seattle, Washington,
USA.

Jung, J.-Y. and Reggia, J. A. (2006). Evolutionary design of neural network architec-
tures using a descriptive encoding language. IEEE Transactions on Evolutionary
Computation, pages 676–688.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285.

Kandel, E., Schwartz, J., and Jessel, T. (1991). Principles of Neural Science. Ap-
pleton and Lange.

Killackey, H. (1996). Evolution of the human brain: A neuroanatomical perspective.
In Gazzaniga, M., editor, The Cognitive Neurosciences, pages 1243–1253. MIT
Press.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph
generation system. Complex Systems, 4(4):461–476.

Kitano, H. (1994). Neurogenetic learning: An integrated method of designing and
training neural networks using genetic algorithms. Physica D, 75:225–238.

Knowles, J. and Corne, D. (2003). Properties of an adaptive archiving algorithm for
storing nondominated vectors. IEEE Transactions on Evolutionary Computation,
7(2):100– 116.

Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps.
Biological Cybernetics, 43(1):59–69.

Koza, J. R. (1992). Genetic Programming: on the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

Koza, J. R. (1994). Genetic Programming II. MIT Press, Cambridge, MA.

Koza, J. R., Bennett, F., Andre, D., and Keane, M. (1999). Genetic Programming
III: Darwinian Invention and Problem Solving. Morgan Kaufmann.

Kumar, S. (2004). Neural Networks: a classroom approach.

108

Kung, S. Y. and Taur, J. S. (1995). Decision-based neural networks with sig-
nal/image classification applications. IEEE Transactions on Neural Networks,
6(1):170–181.

Lehmann, K. A. and Kaufmann, M. (2005). Evolutionary algorithms for the self-
organized evolution of networks. In GECCO ’05: Proceedings of the 2005 confer-
ence on Genetic and evolutionary computation, pages 563–570, New York, NY,
USA. ACM Press.

Levitan, S. and Reggia, J. A. (2000). A computational model of lateralization and
asymmetries in cortical maps. Neural Computation, 12:2037–2062.

Li, M., Azarm, S., and Aute, V. (2005). A multi-objective genetic algorithm for
robust design optimization. In GECCO ’05: Proceedings of the 2005 conference
on Genetic and evolutionary computation, pages 771–778, New York, NY, USA.
ACM Press.

Liao, G. C. and Tsao, T. P. (2006). Application of a fuzzy neural network com-
bined with a chaos genetic algorithm and simulated annealing to short-term load
forecasting. IEEE Transactions on Evolutionary Computation, 10(3):330–340.

Luke, S. and Spector, L. (1996). Evolving graphs and networks with edge encoding:
Preliminary report. In Koza, J. R., editor, Late Breaking Papers at the Genetic
Programming 1996 Conference Stanford University July 28-31, 1996, pages 117–
124, Stanford University, CA, USA. Stanford Bookstore.

Maniezzo, V. (1994). Genetic evolution of the topology and weight distribution of
neural networks. IEEE Transactions on Neural Networks, 5(1):39–53.

Martin, W. N., Lienig, J., and Cohoon, J. P. (1997). Island (migration) models:
evolutionary algorithms based on punctuated equilibria. In Bäck, T., Fogel, D. B.,
and Michalewicz, Z., editors, Handbook of Evolutionary Computation, pages 101–
124. Institute of Physics Publishing and Oxford University Press, Bristol, New
York.

Mataric, M. J. (1994). Reward functions for accelerated learning. In Proceedings of
the 11th International Conference on Machine Learning, pages 181–189.

Mehrotra, K., Mohan, C. K., and Ranka, S. (1997). Elements of Artificial Neural
Networks. MIT Press, Cambridge, MA.

Miller, G. F., Todd, P. M., and Hegde, S. U. (1989). Designing neural networks using
genetic algorithms. In Proceedings of 3rd International Conference on Genetic
algorithms (ICGA89), pages 379–384.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA.

109

Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised
learning. Neural Networks, 6(4):525–533.

Monroy, G. A., Stanley, K. O., and Miikkulainen, R. (2006). Coevolution of neural
networks using a layered pareto archive. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, pages 329–336, New
York, NY, USA. ACM Press.

Montana, D. and Davis, L. (1990). Training feedforward neural networks using
genetic algorithms. In Proceedings of 11th International Joint Conference on
Artificial Intelligence, pages 370–374. Morgan Kaufmann.

Moriarty, D. E., Schultz, A. C., and Grefenstette, J. J. (1999). Evolutionary al-
gorithms for reinforcement learning. Journal of Artificial Intelligence Research,
11:199–229.

Mountcastle, V. (1998). The Cerebral Cortex. Harvard University Press.

Paine, R. W. and Tani, J. (2004). Evolved motor primitives and sequences in a
hierarchical recurrent neural network. In et al, K. D., editor, GECCO (1), volume
3102 of Lecture Notes in Computer Science, pages 603–614. Springer.

Palacios-Durazo, R. A. and Valenzuela-Rendón, M. (2004). Similarities between
co-evolution and learning classifier systems and their applications. In et al, K. D.,
editor, Genetic and Evolutionary Computation – GECCO-2004, Part I, volume
3102 of Lecture Notes in Computer Science, pages 561–572, Seattle, WA, USA.
Springer-Verlag.

Pérez-Ortiz, J., Calera-Rubio, J., and Forcada, M. (2001). A comparison between
recurrent neural architectures for real-time nonlinear prediction of speech signals.
In Miller, D., Adali, T., Larsen, J., Hulle, M. V., and Douglas, S., editors, Neural
Networks for Signal Processing XI, Proceedings of the 2001 IEEE Neural Net-
works for Signal Processing Workshop (NNSP 2001), pages 73–81. IEEE Signal
Processing Society.

Popovici, E. and Jong, K. D. (2006). The effects of interaction frequency on the
optimization performance of cooperative coevolution. In GECCO ’06: Proceedings
of the 8th annual conference on Genetic and evolutionary computation, pages 353–
360, New York, NY, USA. ACM Press.

Porto, V. W. (1997). Evolutionary programming. In Bäck, T., Fogel, D. B., and
Michalewicz, Z., editors, Handbook of Evolutionary Computation, pages 54–64.
Institute of Physics Publishing and Oxford University Press, Bristol, New York.

Potter, M. and de Jong, K. (2000). Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–29.

Pujol, J. C. F. and Poli, R. (1998). Evolving the topology and the weights of neural
networks using a dual representation. Applied Intelligence, 8(1):73–84.

110

Radio, M. J., Reggia, J. A., and Berndt, R. S. (2001). Learning word pronunciations
using a recurrent neural network. In Proceedings of International Joint Conference
on Neural Networks (IJCNN ‘01), volume 1, pages 11–15.

Ranganath, H. S., Kerstetter, D. E., and Sims, S. R. F. (1995). Self partitioning
neural networks for target recognition. Neural Networks, 8(9):1475–1486.

Reggia, J. A., Goodall, S., Shkuro, Y., and Glezer, M. (2001a). The callosal dilemma:
Explaining diaschisis in the context of hemispheric rivalry via a neural network
model. Neurological Research, 23:465–471.

Reggia, J. A., Schulz, R., Wilkinson, G., and Uriagereka, J. (2001b). Conditions
enabling the evolution of inter-agent signaling in an artificial world. Artificial
Life, 7(1):3–32.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backprop-
agation learning: The rprop algorithm. In Proceedings of 1993 IEEE International
Conference on Neural Networks, volume 1, pages 586–591.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Parallel Distributed
Processing. MIT Press, Cambridge, MA.

Ruppin, E. (2002). Evolutionary autonomous agents: A neuroscience perspective.
Nature Reviews Neuroscience, 3(2):132–141.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):211–229.

Saravanan, N. and Fogel, D. (1995). Evolving neural control systems. IEEE Expert,
10:23–27.

Saunders, G. M., Angeline, P. J., and Pollack, J. B. (1993). Structural and behavioral
evolution of recurrent networks. In Cowan, J. D., Tesauro, G., and Alspector, J.,
editors, Neural Information Processing System, pages 88–95. Morgan Kaufmann.

Schaal, S. and Atkeson, C. (1994). Robot juggling: An implementation of memory-
based learning. IEEE Control Systems, 14:57–71.

Schlessinger, E., Bentley, P. J., and Lotto, R. B. (2006). Modular thinking: evolving
modular neural networks for visual guidance of agents. In GECCO ’06: Proceed-
ings of the 8th annual conference on Genetic and evolutionary computation, pages
215–222, New York, NY, USA. ACM Press.

Schlosser, G. and Wagner, G. (2004). Modularity in Development and Evolution.
University of Chicago Press.

Schwefel, H. (1981). Numerical Optimization of Computer Models. Wiley.

Sejnowski, T. and Rosenberg, C. (1987). Parallel networks that learn to pronounce
english text. Complex Systems, 1:145–168.

111

Shkuro, Y. and Reggia, J. A. (2003). Cost minimization during simulated evolution
of paired neural networks leads to asymmetries and specialization. Cognitive
Systems Research, 4(4):365–383.

Siddiqi, A. A. and Lucas, S. M. (1998). A comparison of matrix rewriting versus
direct encoding for evolving neural networks. In Proceedings of the 1998 IEEE
International Conference on Evolutionary Computation, pages 392–397.

Spears, W. M. (1993). Crossover or mutation? In Whitley, L. D., editor, Foundations
of Genetic Algorithms 2, pages 221–237. Morgan Kaufmann, San Mateo, CA.

Srinivas, M. and Patnaik, L. M. (1991). Learning neural network weights using
genetic algorithms- improving performance by search-space reduction. In 1991
IEEE International Joint Conference on Neural Networks, volume 3, pages 2331–
2336, Singapore. IEEE.

Stanley, K. O. and Miikkulainen, R. (2002a). Efficient reinforcement learning
through evolving neural network topologies. In GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation Conference, New York, USA, 9-13
July 2002, pages 569–577. Morgan Kaufmann.

Stanley, K. O. and Miikkulainen, R. (2002b). Evolving neural network through
augmenting topologies. Evolutionary Computation, 10(2):99–127.

Sutton, R. S. (1986). Two problems with backpropagation and other steepest-
descent learning procedures for networks. In Proceedings of the Eighth Annual
Conference of the Cognitive Science Society, pages 823–831.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning An Introduction.
MIT Press.

Tesauro, G. (1994). Td-gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6(2):215–219.

Tooby, J. and Cosmides, L. (2000). Toward mapping the evolved functional orga-
nization of mind and brain. In Gazzinga, M., editor, The New Cognitive Neuro-
sciences, pages 1167–1178. MIT Press.

Wagner, G. (1995). Adaptation and the modular design of organisms. In Moran,
F., Moreno, A., Merelo, J., and Chacon, P., editors, Advances in Artificial Life,
pages 317–328. Springer.

Whitley, D., Dominic, S., Das, R., and Anderson, C. W. (1993). Genetic reinforce-
ment learning for neurocontrol problems. Machine Learning, 13:259–284.

Whitley, D., Gruau, F., and Pyeatt, L. (1995). Cellular encoding applied to neu-
rocontrol. In Proceedings of the Sixth International Conference on Genetic Algo-
rithms.

112

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82.

Wolpert, D. H. and Macready, W. G. (2005). Coevolutionary free lunches. IEEE
Transactions on Evolutionary Computation, 9(6):721– 735.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in
evolution. In Proceedings of the VI International Congress of Genetics, volume 1,
pages 356–366.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447.

Yao, X. and Liu, Y. (1996). Evolutionary artificial neural networks that learn and
generalise well. In Proceedings of the 1996 IEEE International Conference on
Neural Networks, pages 159–164.

Yuen, S. Y. and Chenung, B. K. S. (2006). Bounds for probability of success of
classical genetic algorithm based on hamming distance. IEEE Transactions on
Evolutionary Computation, 10(1):1–18.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A com-
parative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271.

113

