ABSTRACT

Title of Thesis: UNCERTAINTY ANALYSIS AND QUALITY ASSURANCE FOR COORDINATE MEASURING SYSTEM SOFTWARE

Bonnie Lawford, Master of Science, 2003

Thesis Directed by: Professor Linda Schmidt
Department of Mechanical Engineering

Coordinate measuring systems are installed worldwide in factories, research and medical labs, and other industrial facilities. The purpose of the machines is to estimate how much a measured part deviates from the corresponding perfect geometry. The accuracy of the results is limited by, among other things, faulty CMS software with unknown measurement uncertainty. A record and understanding of this information is vital to industry for good results. This thesis serves as a repository and comprehensive overview of the problems with CMS software and approaches taken to solving those problems. The paper also covers new work done by the author in the areas of reference algorithm testing and verification, industry software testing via inter-comparisons with the reference algorithms, and solutions to problems similar but not identical to the fitting problems encountered in the past.
UNCERTAINTY ANALYSIS AND QUALITY ASSURANCE FOR
COORDINATE MEASURING SYSTEM SOFTWARE

by

Bonnie Lawford

Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Master of Science 2003

Advisory Committee:

Professor Linda Schmidt, Chair
Dr. Craig Shakarji
Professor Guangming Zhang
ACKNOWLEDGEMENTS

The guidance and support of Dr. Craig Shakarji and Dr. Linda Schmidt have been invaluable throughout my research and study. This work would not be possible without their efforts and insights.
TABLE OF CONTENTS

1. INTRODUCTION 1
 1.1 Coordinate Measuring Systems .. 1
 1.2 The Problem of Uncertainty ... 4
 1.3 The Problem of Software Uncertainty ... 6
 1.4 The NIST ATEP-CMS software testing program ... 11
2. BACKGROUND INFORMATION AND LITERATURE SURVEY 14
 2.1 NIST work .. 14
 2.2 NIST Algorithm Information ... 17
 2.3 NPL work .. 21
 2.4 Other documentation ... 24
3. LEAST SQUARES FITTING .. 26
 3.1 The Problem of Least Squares Fitting .. 26
 3.2 The Need for Least Squares Fitting ... 27
 3.3 Issues involved in solving Least Squares Fitting Problems 27
 3.4 An Approach to Least Squares Fitting ... 28
 3.5 Implementation of the Approach .. 28
 3.6 Results of the Implementation ... 29
 3.7 An Application of Least Squares Fitting ... 29
4. MINIMUM ZONE FITTING ... 39
 4.1 The Problem of Minimum Zone Fitting .. 39
 4.2 The Need for Minimum Zone Fitting ... 40
 4.3 Issues involved in solving Minimum Zone Fitting Problems 42
 4.4 An Approach to Solving Minimum Zone Fitting .. 43
 4.5 Implementation of the Approach .. 44
 4.6 Reference vs. Commercial Algorithm Performance 46
 4.7 Results of the Implementation ... 48
5. MAXIMUM INSCRIBED AND MINIMUM CIRCUMSCRIBED FITTING 49
 5.1 The Problem of Maximum Inscribed and Minimum Circumscribed Fitting 49
 5.2 The Need for Maximum Inscribed and Minimum Circumscribed Fitting 51
 5.3 Issues involved in solving Maximum Inscribed and Minimum Circumscribed
 Fitting Problems ... 52
 5.4 An approach to Maximum Inscribed and Minimum Circumscribed Fitting 53
 5.5 Implementation of the Approach .. 59
 5.6 Reference vs. Commercial Algorithms for Maximum Inscribed and Minimum
 Circumscribed Fitting ... 59
 5.7 Results of the Implementation ... 61
6. LEAST SQUARES FITTING OF COMPLEX SURFACES 62
 6.1 The Problem of Least Squares Fitting of Complex Surfaces 62
 6.2 The Need for Fitting of Complex Surfaces .. 63
 6.3 Issues involved in solving Least Squares Fitting of Complex Surfaces Problems
 .. 64
 6.4 An Approach to Solving Least Squares Fitting of Complex Surfaces Problems
 .. 68
 6.5 Implementation of the Approach ... 69
 6.6 Results of the Implementation ... 77
7. OTHER ISSUES AND FUTURE WORK ... 78
 7.1 Other Issues Involved in CMS Fitting Software 78
 7.2 Future Work ... 79
8. Conclusions ... 81
REFERENCES .. 87
LIST OF TABLES

Table 2.1. Geometries for which the new NIST reference algorithms can be utilized. ... 20
Table 4.1. Results of Minimum Zone Fit Testing... 47
Table 5.1a. Results from exhaustive search engine .. 55
Table 5.1. Results for simulated annealing/exhaustive search validation test. 55
Table 5.3. Minimum Circumscribed Fit Results.. 60
Table 5.2. Maximum Inscribed Fit Results.. 60
LIST OF FIGURES

Figure 1.1. Examples of different types of CMSs: 1) CMM, 2) theodolite, and 3) photogrammetry. ... 3
Figure 1.2. The various fit types for (a) circular data with 3-lobed form error and (b) data for a plane ... 7
Figure 2.1. The Architecture of the NIST Algorithm Testing Service [18] 16
Figure 3.1 A picture of the matrix transducer used in the non-destructive spot weld detector application ... 30
Figure 3.2. Building the image of the welded area: the software uses the transducer output and creates a grid, shown on the right, that is translated into numerical values representing the amount of weld material present in each grid space. 31
Figure 3.3. An example of an output grid where the number in each grid space represents the amount of spot-weld present in that cell. 31
Figure 3.4. An illustration of the division of the problem space into four regions. 33
Figure 3.5. Four examples of the third case scenario where $R < y_{\text{max}}$ and $R > y_{\min}$. ... 34
Figure 3.6. Two pictures illustrating the fourth case scenario, where $y_{\min} > R < y_{\text{max}}$. ... 35
Figure 3.7. Another example of case four ($y_{\min} > R < y_{\text{max}}$). 35
Figure 4.1. Minimum Zone fit for circle data. Note that the dimensions of the resulting circle will be similar, but generally not identical to the least squares fit circle ... 40
Figure 4.2. Minimum zone circles: the figure on the left shows the minimum circumscribed and maximum inscribed fits for the circle data, the figure on the right is the minimum zone fit. The fits form concentric circles. 41
Figure 4.3. Function with local minima that may pose problems for a “downhill only” minimization function ... 42
Figure 5.1. Chebyshev fits for a set of circle data. The circle on the left illustrates the minimum circumscribed fit while the circle on the left illustrates the maximum inscribed fit. ... 50
Figure 5.2. (a) Maximum inscribed and (b) minimum circumscribed fits for cylinder data. ... 51
Figure 5.3. Two problematic geometries: (a) a surfaces with 2 equal solutions and (b) a surface with two local minimum solutions but only one true global minimum. ... 53
Figure 6.1. Two examples of complex surfaces displayed using computer graphics. 62
Figure 6.2. An application of geometric fitting of complex surfaces. 64
Figure 6.3. A problematic complex surface; the corner points may be mapped to either planar surface, not necessarily the correct corresponding plane. 65
1. INTRODUCTION

1.1 Coordinate Measuring Systems

Coordinate measuring systems (CMSs) are installed in factories, research and medical labs, as well as many other industrial and scientific facilities. The definition of a CMS is, "...any piece of equipment which collects coordinates (points) and calculates and displays additional information using the measured points," [8]. To find the dimensions of a part, a CMS measures point locations on the object’s surface. This coordinate data is then processed to determine the part’s dimensions and the types and locations of variations in the surface. Note that the raw coordinate data generally must be interpreted before the information gathered is of any real use. Specifically, once the coordinate data points are collected from the surface of the part by the CMS hardware, the information is processed by software, which usually performs a geometric fit to the gathered data. This fitting software, which is usually integrated as part of the CMS, uses the coordinate data to, for instance, determine a part’s location, orientation, concentricity, or deviation of the part from the corresponding perfect geometry. The software can apply appropriate processing of the data to determine if a part is within tolerances defined in specifications. Since a part is measured through only a sampling of points, its true surface can never be known exactly; instead, an approximation of the surface is known based on a finite sampling of coordinate points. The software will often be required to compute a “substitute geometry” based on the imperfect data. This substitute geometry is a perfect, theoretical, mathematical shape fit to the points. For example if a CMS samples points on a surface that is
nominally cylindrical, then the software can compute a fit to find the “best” perfect
cylinder that is represented by the imperfectly measured points on the imperfect
physical surface. Just how this substitute feature is determined can be complicated
and is discussed in this paper.

CMSs are used to measure everything from pistons and cylinders to gears and screw
threads to airplane wings and car doors. Sometimes their uses go beyond
manufactured parts to include, for example, bones and vertebrae alignment in the
medical field. Many different types of coordinate measuring systems are in use today
including theodolites, photogrammetry, optical systems, and coordinate measuring
machines. Though such variation exists among CMSs, the software packages that
they normally come equipped with are similar and share some basic problems and
issues. Examples of several different types of systems are given\(^1\) in figure 1.1. Shown
in the pictures are: 1) CMM: a measuring system with the means to move a probing
system and capable of determining spatial coordinates on a workpiece surface, 2)
theodolite: a small telescope mounted and moving on two graduated circles, one
horizontal, the other vertical, while its axes pass through the center of the circles. The
data points are found using triangulation, and 3) photogrammetry: this system works
by taking pictures of the object being measured with a digital camera then inputting
the image into the software to determine its part information.

\(^1\) Disclaimer: Certain work described in this paper was done in conjunction with NIST. Certain
commercial equipment, instruments, or materials are identified in this paper to foster understanding.
Such identification does not imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or equipment identified are necessarily
the best available for the purpose.
Since their invention, much research and development has been done to enhance the measurement accuracy of CMSs. Much of that work has been to make the individual point measurements more accurate. Today, CMS hardware can perform to a high degree of precision to meet increasingly high tolerances used in manufacturing. For instance, many CMMs can compute a point-to-point length measurement that is nominally a meter in length (under ideal conditions) with an uncertainty (giving 95% confidence) of less than a micrometer.

Yet there still remains a major source of uncertainty that often goes unchecked, that source being the fitting software that analyzes the collected data points and interprets the data in a manner needed by the CMS user. This software is often problematic and thus it can often lead to erroneous results [44, 22, 23]. Companies write software for installation in CMSs, the inner workings of which are proprietary and therefore hidden from the user. Some black box testing of this fitting software is therefore
necessary to determine their performance characteristics, which testing is discussed in this paper.

1.2 The Problem of Uncertainty

1.2.1 Theoretical versus Actual Geometries

Once the part has been designed and modeled mathematically it can then be manufactured. Machine tools are used to transform a piece of raw material into the desired geometry with the specified dimensions. Some computer aided tools might be used, or the part may be hand-made using machining hardware. The mathematical model is used as a guide to manufacturing the part.

In the process of manufacturing, however, imperfections in the machine tools, the raw material, and the machining environment cause geometric deviation from that ideal, mathematically defined geometry. Both random and systematic (i.e., consistently recurring) effects cause the variations resulting from the various manufacturing systems. The types, amounts, and locations of the errors vary for each part created on each machine. The purpose of coordinate measuring systems is to determine the final dimensions of the manufactured part and to provide information about the errors that are present.

1.2.2 Types of Errors
We live in an imperfect world. In the material realm there is no such thing as a perfectly flat plane or a perfectly spherical ball. Some degree of imperfection exists in all manufactured objects. For our purposes, the discussion of such imperfection, or error, will cover two particular error types.

The first type of error, called *form error*, conveys the idea that parts are not perfectly the shape of their nominal geometry. Even if the measuring equipment were somehow perfect, the point measurements would generally still deviate from the nominally perfect shape. While the design engineers might have called for a perfectly round part, the manufacturing process (e.g. casting, milling, etc.) does not result in a perfect object. Some form error can be expected in any manufactured part.

The second type of error, called *measurement error*, arises when data points are collected on the surface of an object. Sources of error in the measurement equipment (axial bends in some hardware, probe system imperfections, fixturing, etc.) and the measurement environment (temperature, vibration, etc.) lead to inaccuracies in the measured points.

These two types of error exist in all real-world measurement scenarios. Even if one had a ‘golden mill’ on which to create a perfect planar surface, the measuring of it would produce planar data that was close to a perfect plane but had some measurement error present. Similarly, if one had a ‘golden CMS’ rather than a golden mill, and therefore could eliminate all measurement error and know some exact,
actual coordinate data points located on the surface, we would not expect it to measure points exactly on a mathematically perfect geometry, as there would be form errors in the part. Actually, in illustrating both of the above cases, a ‘golden engineer’ is also needed to operate the machines since human interaction is yet another source (sometimes even the largest source) of error.

1.3 The Problem of Software Uncertainty

A possibly significant component of the overall measurement uncertainty is the contribution due to the embedded software algorithms that fit mathematical definitions of surfaces to the coordinate data [44, 40]. Before the software processing, data points measured by the CMS are more or less unintelligible, as they are simply a long list of (x, y, z) coordinate points. It is the job of the CMS fitting software to process the data in such a way that it will be useful to the user. It does this by finding the geometric model that most closely fits the given data set based on the criterion defined by the CMS user. This fit objective may be least squares, minimum zone (also referred to as mini-max or the Chebyshev best fit), minimum circumscribed, or maximum inscribed. (These fitting criteria are discussed in detail in following chapters).
To illustrate these different fit objectives, an example of some CMS coordinate data for a circular part is shown in figure 1.2(a), the data can be interpreted or ‘fit’ in a least squares sense, a minimum zone sense, a maximum inscribed sense, or a minimum circumscribed sense. The same can be true for a horizontal plane, shown in figure 1.2(b). (Technically, maximum inscribed and minimum circumscribed criteria do not apply to the fitting of planes, but these are included in the figure to highlight the conceptual differences in the objectives). Fitting the data in different ways yields drastically different resulting geometries. The software will normally include information about the location, orientation, size, and form of the part, as well as any other parameters needed to define the calculated fit (i.e., the substitute geometry). The (signed) distances from the data points to the substitute geometry are called residuals.

Figure 1.2. The various fit types for (a) circular data with 3-lobed form error and (b) data for a plane.

In addition to the above information, the CMS software will usually provide the
maximum and minimum residuals. The processed results are then analyzed to determine part quality, specifically in relation to specified part tolerances (size, form, orientation with respect to other geometric features, location, etc.)

Finding the optimum solution based on any of these mentioned criteria is equivalent to minimizing an appropriate objective function. Geometric fitting is really an optimization problem in its purest form, where the problem is to find the parameters of the substitute geometry that optimize the appropriate objective function [11].

Which fit objective to use in what situations is by no means an easy question to answer. If the fit objective is not specified, the user must take into account the properties of the choice of objective function in relation to the requirements of the part. Table 1.1 summarizes four common fit objectives, along with their characteristics. The table is a guideline—it is not intended to definitively answer what fit objective is appropriate in any given situation. Expanded descriptions of these four fit types are given in following chapters.
Table 1.1. Some of the Pros and cons of the different fit types and when to use them.

<table>
<thead>
<tr>
<th>Pros/Cons/Other Issues</th>
<th>Least Squares</th>
<th>Minimum Zone</th>
<th>Minimum Circumscribed</th>
<th>Maximum Inscribed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Most Stable Random noise is filtered out</td>
<td>- Minimizes the maximum residual</td>
<td>- Finds smallest diameter that envelopes all the data points.</td>
<td>- Finds largest diameter that is inside all data points.</td>
</tr>
<tr>
<td></td>
<td>- Easy & Fast</td>
<td>- Highly influenced by outliers and random noise</td>
<td>- Highly influenced by outliers and random noise</td>
<td>- Highly influenced by outliers and random noise</td>
</tr>
<tr>
<td></td>
<td>- Most CMSs come equipped with it.</td>
<td>- Well-researched/well understood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When to use</td>
<td>- Creating local coordinate systems</td>
<td>- Determining tolerances</td>
<td>- Pistons</td>
<td>- Cylinder bores</td>
</tr>
<tr>
<td></td>
<td>- When the measurement error is large relative to the form error</td>
<td>- When the form error is large relative to the measurement error.</td>
<td>- Clearance fits</td>
<td>- Clearance fits</td>
</tr>
</tbody>
</table>

Assuming the user has chosen the appropriate fit objective, the problem of evaluating the uncertainty due to software still looms. One of the main topics of this thesis deals with the problem of significant uncertainty due to fitting software (even when using the correct fit type for the problem at hand). Even when the mathematical problem is well-defined optimization, and even when the errors in the measured data points are not considered, the threat of significant uncertainty due to incorrect optimizations is real [44, 40].
The algorithm to optimize the objective function may be problematic due to poor optimization procedures, a challenging computing environment, poor handling of extreme cases, and mistakes in the program code. The problem clearly evidences itself if two software packages are given the same coordinate data set and produce different fit results; if this is the case one, or both software packages must be giving incorrect solutions. Some other problems preventing algorithms from reporting optimal solutions include:

1. Failing to scale, translate, normalize or otherwise transform the input data correctly before attempting to solve for the fit solution,
2. Using an unstable parameterization for the problem,
3. Employing a solution process that exacerbates natural ill-conditioning of the problem,
4. Replacing the true objective function with an easier approximation,
5. Failing to continue an iteration procedure sufficiently in order to arrive close to the optimal solution, and
6. Starting an iteration procedure with a poor initial guess, making refinement to the solution impossible.

The choice of algorithm, the quality of the software implementation, and characteristics of the specific measurement task all affect the performance of the data analysis. Until recently there were no standards for evaluating these and other effects of software on the uncertainty of measurement [3,4, 22, 23]. It has become quite
apparent over the past decade that the need exists for a formal mechanism to test and evaluate data analysis software embedded in CMSs [44].

The lack of comprehensive software testing leads to problematic software used in industry. Without some standard certification, CMS operators are at the mercy of the software producers, having to base the uncertainty values (due to software) on what the software developers tell them or simply not include any uncertainty, assuming the numbers a computer provides must always be right [40]. A method of ensuring the reliability of the fit results is needed; otherwise the high level of hardware reliability is significantly diminished, as dominant errors due to software might exist. Lack of software testing can lead to the rejection of good parts (a costly mistake) or acceptance of bad parts (a dangerous mistake). In response to this problem, NIST has implemented and continues to develop a test service to help industry deal with the software uncertainty issue. The Algorithm Testing and Evaluation Program for Coordinate Measuring Systems (ATEP-CMS) has been in existence since 1993, testing least squares fitting algorithms against a reference algorithm. Since then, the program has been updated and expanded to include a more extensive test program. Information on the test program follows.

1.4 The NIST ATEP-CMS software testing program

CMS software testing programs must include three basic components, namely: a data generator, reference algorithms, and a comparator to analyze and interpret the results. NIST’s ATEP-CMS is comprised of these three features. The data generator is part of
NIST’s Algorithm Testing System (ATS) software. When NIST receives a request to have data analysis software tested, a group of data sets are generated using the ATS. These data sets are generated with a varying range of input parameters that mimic the coordinate data that would be collected by a common CMS. The ATS currently generates data sets based on input ranges of various criteria for lines, planes, circles, spheres, cylinders, cones, and tori. These criteria include the nominal geometry (including type, size, location, and orientation), the type of form error (e.g., lobing effects), the sampling plan, and measurement error type and range. The data sets are then randomly generated to meet the given criteria. The data sets are copied and sent to the industrial customer to be run through their data analysis software. A copy of the data is also run through the reference algorithms and NIST personnel record the corresponding reference fit results. Once the customer’s fit results have been received by NIST, the test results are compared with the reference results using the ATS data comparison tool. In short, the ATS is a software tool that will generate test data, import test data, generate fit results using the NIST reference algorithms, and compare those generated fit results to the test fit results that are produced by industry software. After the analysis of the CMS software is complete, NIST sends the required evaluation documentation to the customer. Currently the ATEP includes reference algorithms for least squares fitting of standard surfaces. Work is currently being done to integrate reference algorithms for Chebyshev fits including minimum circumscribed, maximum inscribed, and minimum zone fitting. Research is also being done regarding least squares fits for complex surfaces.
NIST personnel are involved in standards activities, and these influence the ATEP-CMS. Some of these standards are ANSI/ASME Y14.5 (Mathematical Definition of Dimensioning and Tolerancing Methods), ANSI/ASME B89.4.10 (Methods for Performance Evaluation of Coordinate Measuring System Software), ASME B89.3.2 (Dimensional Measurement Methods), ISO 10360 series (Coordinate Measuring Machines), and ISO 15530 series (Measurement Uncertainty Evaluation Using Coordinate Measuring Machines).

In general, the purposes of ATEP-CMS are to

- give industrial bodies some means of evaluating the CMS software used in all forms of CMSs
- reduce the amount of measurement uncertainty associated with the CMS software, and
- take action in response to industry's need for evaluation and performance testing of CMS data analysis software [11].

In the following pages the approach that NIST takes to each fitting problem is described. For each of the fit types the discussion covers the numerical optimization techniques used and the choice of the appropriate objective function. The reasons for using those chosen by NIST are defended and the results of the approach taken are described.
2. BACKGROUND INFORMATION AND LITERATURE SURVEY

Much of the information regarding coordinate measuring machine software algorithms has come from three main sources; the first and primary source is the National Institute of Standards and Technology. The second is from other standards bodies in Europe, and the third is from research institutes around the globe. This is not to say that private industry has not done tremendous research in these areas, but the available published literature from them is relatively limited. The problem of CMS software uncertainty was first acknowledged when a Government-Industry Data Exchange Program (GIDEP) alert went out in 1988 [44]. This alert warned that during a round robin, several commercial CMS fitting software packages returned differing results for fits to identical data sets shared among them. In response to the alert NIST began to research the problem, and in 1994 the algorithm testing system (ATS) was launched. This gave industry a convenient and neutral source for analyzing the performance of CMS software. A review of the literature follows, then some background information on different fit types, which are expanded on in the rest of the thesis, then information from the European CMS software program developed by the National Physics Lab (NPL), and finally other background information relating to the issues of coordinate measuring machine software is documented.

2.1 NIST work
In order to determine the task specific uncertainty for a CMS measurement, quantitative evaluations are needed that include all relevant sources of uncertainty in the machine. This is the underlying reason that NIST began developing the Special Test Service, ATEP-CMS. The purpose of the program is to determine how close the fits computed by the CMS software come to reference results (which can be though of simply as the “right answer”). In the 1980s, the PTB (the national Laboratory in Germany) began some testing of CMS algorithms embedded in CMS machines. In the United States, work began soon after the GIDEP alert. In the US, the American Society of Mechanical Engineers formed a committee to create a national standard for evaluating the performance of CMS software, which is designated ASME B89.4.10.

Soon after the alert went out, NIST began developing the ATEP-CMS. The approach taken was to limit that analysis to black box testing, meaning that the software itself (i.e., the code) would not be analyzed, but rather only the results the software reports. Thus the actual behavior of the software is compared to the intended behavior without consideration of performance characteristics such as memory requirements, computing time, ease of use, etc. The ATEP-CMS does not take into account the appropriateness of the intended behavior of the software for a given measurement task. It is strictly a measurement of the accuracy of the fit result reported by the software.

The ATEP-CMS was created in such a way that performance is quantified numerically, as opposed to a pass/fail rating. Further, the data sets (i.e., the test scope)
were custom generated to reflect the customer’s specific applications. (Since then, US and international standards have provided a greater commonality among tests [5, 23]).

The overall architecture of the NIST test service is given in figure 2.1. The criteria for developing performance measures for the ATEP-CMS are [14]:

- “each measure should be directly related to inspection tasks;
- each measure should combine like a standard deviation with other sources of uncertainty in a CMS;
- each measure should have reasonable probability and coverage interpretations;
- an estimate of uncertainty should be derivable for each measure.”

These performance measures were created in accordance with NIST [43] and international [22] guidelines.

Figure 2.1. The Architecture of the NIST Algorithm Testing Service [18]

Important terminology used in the ATEP-CMS includes the ‘reference fit’. This is the fit for a given data set generated using the NIST reference algorithms. The ‘test fit’ is
the fit for a given data set generated by the software under test. And the ‘difference parameters’ are the differences between each corresponding pair, (generated using the same data set) that is the test fit and the corresponding reference fit.

2.2 NIST Algorithm Information

The underlying approach for fitting data sets is basically the same for different geometries, however there are some differences. The most common applications for each geometry type are listed below. The applications are, in many cases, based on tolerance analyses. The language used in the following paragraphs is based on the language found in geometric dimensioning and tolerancing (GD&T) documentation. For more information regarding the definitions used and other GD&T background information, the reader is directed to [3, 4, 22, 23]. The categorization of applications based on geometry type is different than categorization of common applications and uses based on objective functions. The latter will be covered in the following chapters. A more general overview is given here covering the geometry types, uses, and ‘difference parameters’ associated with each of the general surface types dealt with in the ATEP. The difference parameters are the parameters used by ATEP to represent the differences in geometry between the reference fit and the test fit.

Lines

The line geometry is most commonly used for straightness estimates as well as being used to find an axis based on the centers of circular cross sections. The two difference parameters that are used for line fitting are the angle between the test and reference line directions and the maximum orthogonal
distance from the test line segment end points to the reference line. The test line segment endpoints are the extreme points obtained by projecting the data points onto the test line.

Planes

The plane geometry is most often used to establish datums and to check flatness, position, and orientation of parts under inspection. There are two difference parameters used in the fit analysis. The first is a measure of the angle between the normal directions of the test plane and the corresponding reference plane. The second is the maximum separation of the planar patch (of projected data points) from the reference plane when measured orthogonally with respect to the reference plane.

Circles

The circle geometry is most often used to check roundness, runout, and cross-section size for circular geometries. It is also used to determine the straightness and position of the median line of a hole or shaft. The ATEP-CMS uses three difference parameters to analyze circles. The first parameter is the angle between the normal directions of the plane of the test circle and the plane of the reference circle. The second parameter is the Euclidean distance between the test and reference circle centers. The last parameter is the difference between the radii.
Spheres

The sphere geometry is often used to check the form, size, and location of a spherical surface. It is also used to determine points that can be used to define a local coordinate system. The two difference parameters used for spheres are the Euclidean distance between the test and reference sphere centers and the difference in their radii.

Cylinders

The cylinder geometry is commonly used to check the cylindricity and size of cylindrical features, and to establish an axis that can then be used to check position and orientation or to establish a coordinate datum. The ATEP-CMS uses three difference parameters for analysis of cylindrical surfaces. The first parameter is the angle between the directions of the test and reference cylinder axes. The second is the maximum perpendicular distance separating the segment endpoints from the reference cylinder’s axis. (The segment endpoints are determined in a similar way as in the case of lines). The third is the difference between the radii of the test and reference cylinders.

Cones

The cone geometry is most often used to check cone profile and conical taper. Four difference parameters are used in the case of a cone. The first parameter is the angle between the directions of the test and reference cone axes. The second is the maximum perpendicular distance from test cone segment
endpoints to the reference cone axis (the segment being defined in a similar way to the case of lines). The third is the difference between the location of the test fit cone and the location of the reference fit cone along their respective axis. The fourth is the difference between the test cone and reference cone apex angles.

Tori

The torus geometry is used to check major and minor radii and a torus profile. There are four difference parameters used in this case. The first parameter is the angle between the directions of the axes of the tori. The second is the Euclidean distance between the torus centers. The third and fourth parameters are the differences between the corresponding test and reference major radii and minor radii.

These are the geometries that can currently be tested using the ATEP-CMS reference algorithms for least squares fitting. In later chapters the various other fit types are described. NIST references fits have been generated for the fit types and corresponding geometries shown in Table 2.1.

<table>
<thead>
<tr>
<th></th>
<th>Lines</th>
<th>Planes</th>
<th>Circles</th>
<th>Spheres</th>
<th>Cylinders</th>
<th>Cones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum-zone</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Minimum-circumscribed</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum-inscribed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1. Geometries for which the new NIST reference algorithms can be utilized. The “X” in the table indicates the geometries that can be tested with respect to the given fit types using the reference algorithms developed at NIST. The least squares
reference algorithms are already in use in the ATEP-CMS for all the geometries listed in the table.

The new work done on testing these non-least squares reference algorithms, as well as those for least squares fitting of complex surfaces, is covered in this paper. Also covered is an overview of a number of inter-comparisons that led to the conclusion that current industrial fitting software for these fit types can be performing very poorly. Thus, there is a need for these reference algorithms to act as a basis for performance evaluation.

2.3 NPL work

While NIST has been working on the problem of CMS software uncertainty, a similar national laboratory, the National Physical Laboratory (NPL) based in the United Kingdom has sought to address some related issues. In 1998 NPL began implementation of the Software Support for Metrology (SSFM) Program with a strong government backing. The program’s themes consisted of modeling techniques, validation and testing, metrology software and algorithm development techniques, standards support and development, and support for NMS (National Measurement System) infrastructure, as well as generic technology transfer, and program management and formulation. The overall program goals were to identify relevant metrology problems, to identify areas in which guidance and training were needed within the field of metrology in the UK, and to identify work that needed to be done to meet the needs of UK private and public enterprises. While the program addresses a wide range of activities and applications, much of their work does not overlap that which is currently being done in the ATEP-CMS program. The major area of interest
relating to this paper is validation and testing, and in particular, numerical software
testing. Another relevant area of their work is in metrological software and algorithm
development techniques, as this deals with numerical analysis for algorithm design.
Within the theme of validation and testing, one notable project dealt with the issue of
measurement-system validation. The purpose of this project was to deal with the
problem of testing software for measuring instruments. One of the major outcomes of
this project was the Software Support for Metrology Best Practice Guide No. 1:
Measurement system validation: Validation of measurement software [45]. The Guide
includes a risk assessment of the software validation issue and, based on that, gives a
general overview of the most appropriate validation techniques for measuring
instrument software. The guide also includes technical details for the validation
techniques recommended. A listing of software integrity requirements is given, as is a
list of software validation techniques. The Guide is meant to cover a wide range of
applications, not just CMS software, but also compilers, communication software,
and electronic sensor output. The validation techniques include such categories as
‘code review’, ‘numerical stability’, ‘independent audit’, and ‘accredited software
testing using a validation suite’. While many of the approaches described could be
useful for the CMS software user, some of the methods of validation are not possible
for the average user, or for the metrologist, since the software code, and the
approaches taken to solve the fitting problems are often proprietary and not available
to company outsiders. While the Guide could be of some use in analyzing CMS
software performance, it is not specific enough to be of real value to the average CMS
software user that has little knowledge of validation issues.
The SSFM program terminated in 2001 with a broad range of results meant to support software applications production and use on a general level. At the close of the program, a new program was created, which began in April 2001 called the SSFM2. The SSFM2 is a three-year program set to reach completion in March 2004. The goal of the SSFM2 is to maintain and develop an infrastructure in the UK that ensures valid measurements. A relevant project within the SSFM2 validation and testing theme deals with the generation of reference data sets and corresponding reference results for testing scientific software. One of the applications of such reference tests is for CMS software evaluation. One of the project goals is to develop a set of reference data sets with corresponding reference fit solutions. The project covers techniques for data generation for Gaussian (using a circle example) and Chebyshev (using circle and cylinder examples) best-fit features. According to one of the SSFM2 publications, “The method of data generation advocated in this work is based on examining the (sufficiency) conditions for a solution to the problem considered, and determining data to satisfy the conditions for a solution specified a priori” [10]. This means that instead of using reference software to find the correct fit given a data set, they do the reverse. That is, they start with the fit they want and cleverly create a data set such that its fit is in fact the very one specified.

This reverse approach consists of solving the set of linear equations corresponding to the geometry in question, then determining the set of critical ‘contact points,’ then adding other data points whose position is dependent on the type of fit under analysis.
The data set is then translated and rotated to generate a test data set in a non-standard position (e.g. a cylinder will not just be located at the origin with the axis pointing along the z axis) [10]. Thus some reference fit is created then the mathematicians work backwards to come up with a data set that has that fit result as a solution, based on a particular objective function. NPL hopes to establish a testing service in the future where software users can submit test results for the reference data sets and have NPL analyze those results, based on the reference fit results, and give performance measures for the software in question. More information on the NPL approach can be found in [9, 10, 36, 42].

One other point worth mentioning is the fact that many of the project deliverables in the above-mentioned SSFM and SSFM2 are critically dependent on the SSFM web site. The importance of such an Internet presence is highlighted through the NPL publications.

2.4 Other documentation

Orthogonal least squares problems have been popular for at least half a century. Least squares curve fitting is used in a wide range of applications besides issues of part inspection. Some examples of other applications include pattern recognition and computer vision, signal processing, text information retrieval, as well as in many chemistry, medicine, and statistics applications. The approaches taken and literature on the subject of least squares fitting are far too voluminous for the purposes of this
thesis. A sampling of publications on the subject, dating from the early 1960’s to the
near present is given [1, 2, 7, 8, 17, 25, 26, 27, 28, 30, 31, 33, 34, 37, 38, 41, 46].
3. LEAST SQUARES FITTING

3.1 The Problem of Least Squares Fitting

The least squares fit objective is the most commonly used fit type. It is also the most heavily researched and well-understood fitting routine. Currently there exists a plethora of literature on the methods and applications of least squares fitting (see the previous chapter). The aforementioned GIDEP report found that, “Certain algorithms . . . are capable of stating that the measurement is worse than the actual data gathered up to an error of 37% and that the measurement is better than the actual data gathered up to an error of 50%” [44]. Finding significant differences among software packages is alarming, but in order to further understand the problems and provide for their solutions, reliable reference results are essential. NIST developed reference algorithms that have been extensively tested and critically examined for accuracy [39]. These are extremely valuable in the field of coordinate metrology, as they serve as a reference against which to test CMS software. The resulting algorithms have been in use for several years now and have benefited industry in many ways.

Least squares fitting has many applications outside of curve and surface fitting. All CMS fitting algorithms take the data points collected from the surface of the part as input. The statistical or geometric model is then found that will best approximate the physical system or data. In the case of the least squares fit, the best model is the function or the geometry that minimizes the sum of the squares of the residuals, that
is, the distance of every point to its closest point on the model. This is the objective function that must be minimized using an optimization algorithm.

3.2 The Need for Least Squares Fitting

Most CMSs come standard with least squares fitting software. These fits are robust, in that they are not very sensitive to outliers, at least when compared to, say, minimum zone fits. There is also a tendency of least squares fitting to use all the data to somewhat average out the measurement noise. As a result of all these factors, least squares fitting has become without question the most popular choice among CMS users. (The author notes that this popularity exists even in some of the situations when other fit types are more appropriate.)

3.3 Issues involved in solving Least Squares Fitting Problems

CMS software users and developers are not always trained in numerical analysis, so the algorithms that they develop may be theoretically correct but practically unreliable. For instance, the algorithms may work correctly when studied mathematically (i.e., with infinite precision) but fail to work well in a computational environment (with limited precision). The uncertainty in the output result is dependent on the type of optimization function used. According to Diaz and Hopp [11], “In particular, the effects of rounding due to machine precision can be much greater for some optimization methods than for others, even for the same objective function.” Most optimization routines take nonlinear objective functions and
linearize them in order to solve for the global minimum. The most widely used approaches are singular value decomposition, forward error analysis, and inverse error analysis. The next section gives an overview of the approach taken by NIST to the least squares fitting problem.

3.4 An Approach to Least Squares Fitting

The NIST algorithms for least squares fitting of standard surfaces utilize the Gauss-Newton method with the Levenberg-Marquardt correction a.k.a. the Levenberg-Marquardt algorithm. This algorithm is stable and reliable as well as efficient (convergence is nearly quadratic for data points close to the surface solution). This requires an initial guess along with first derivative information for the distance function [39].

3.5 Implementation of the Approach

The least squares reference fitting algorithms were developed at NIST in 1992 [11] and revised in 1996 [39]. They were evaluated and tested using various testing procedures and proved reliable. These algorithms were installed in the ATS and are currently used as part of the ATEP-CMS. According to [39] “The ATS algorithms have an extremely broad range of convergence. Failure to converge has only been observed for pathological fitting problems (e.g., fitting a circle to collinear points)… …The ATS algorithms are generally robust. For most fits, a good starting guess is not required to reach the global minimum. This is due, in part, to the careful choice of
fitting parameters, the use of certain constraints, and, for cylinders and cones, the technique of restarting a search after an initial solution is found.” A great deal of work has been done on this, the most basic and common, fitting type. An application is presented in section 3.7.

3.6 Results of the Implementation

The original reference algorithms for least squares fitting were distributed and evaluated and were shown to perform well. They have been used at NIST in the algorithm testing and evaluation program since with excellent results.

The quality of CMS least squares fitting software has seen a dramatic improvement over the last decade. It is reasonable to attribute much of the change to the testing service provided by NIST. Several software providers have been tested, often with improvements made to their software directly as a result of information revealed during testing.

3.7 An Application of Least Squares Fitting

A recent application of least squares fitting is in reference algorithms this author created to test the software created for use in an ultrasonic non-destructive spot-weld detector software package. The algorithms were created to serve as a reference in work NIST was doing with an industrial partner to test the performance of fitting algorithms integrated in the transducer. A picture of the transducer is given in figure
3.1. The detector included an array that could take ultrasonic data to determine weld presence based on the depth in the metal part at which the ultrasonic ray is reflected. The images that the user sees when using the detector is shown in figure 3.2. The output from the hardware is an 8 x 8 grid of numbers that represent the amount of weld in each given grid space. The size of the spot-weld (which is sufficiently represented by a circle) is then determined based on this data and the results of the least squares fitting software. Since the hardware does not give exact results, each grid square value has some inherent error. For this reason, the software will find the circle center and radius that best fits the data. While the software used in the detector is very fast, a reference algorithm need not be so, but should primarily concentrate on being accurate.

Figure 3.1 A picture of the matrix transducer used in the non-destructive spot weld detector application.
Figure 3.2. Building the image of the welded area: the software uses the transducer output and creates a grid, shown on the right, that is translated into numerical values representing the amount of weld material present in each grid space.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0.235</th>
<th>0.497</th>
<th>0.517</th>
<th>0.272</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.377</td>
<td>0.978</td>
<td>1</td>
<td>1</td>
<td>0.999</td>
<td>0.386</td>
<td>0</td>
</tr>
<tr>
<td>0.112</td>
<td>0.906</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.996</td>
<td>0.218</td>
<td></td>
</tr>
<tr>
<td>0.309</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.499</td>
<td></td>
</tr>
<tr>
<td>0.311</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.507</td>
<td></td>
</tr>
<tr>
<td>0.116</td>
<td>0.756</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.228</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.437</td>
<td>0.998</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.637</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.216</td>
<td>0.609</td>
<td>0.737</td>
<td>0.305</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.3. An example of an output grid where the number in each grid space represents the amount of spot-weld present in that cell.

3.7.1 The NIST Reference Algorithm

The NIST reference software uses a square array of data, and an initial guess for the circle center and radius. The program will then determine the covering circle (center and radius) that best fits (in a least squares sense) the given grid data. The hardware does not give perfect results, each grid square value has some inherent error. For this
reason, the software will find the circle center and radius that best fits the data based on the assumption that it is given good output data.

The first step is to create a square the size of the transducer element and divide that into an 8 x 8 grid. Each grid space covers all, some, or none, of the same area that the nominal circle covers. The approach used involves integration over each grid space to find the area of the circle that lies inside each particular grid square. All integrals involved can be solved in closed form, thus improving the speed and accuracy of each evaluation.

3.7.2 Area Function

The problem domain is divided into quadrants, as shown in figure 3.4. The grid squares in the 2nd, 3rd and 4th quadrants are moved to the 1st quadrant in the following manner:

\[
\text{if} \left(\pi / 4.0 \leq \theta < 3\pi / 4 \right); \text{ Region I;}
\]
\[
x \text{ min} = x \text{ min}, x \text{ max} = x \text{ max}, y \text{ min} = y \text{ min}, y \text{ max} = y \text{ max}
\]

\[
\text{elseif} \left(- \pi / 4.0 \leq \theta < \pi / 4.0 \right); \text{Region II;}
\]
\[
x \text{ min} = y \text{ min}, x \text{ max} = y \text{ max}, y \text{ min} = x \text{ min}, y \text{ max} = x \text{ max}
\]

\[
\text{elseif} \left(-3\pi / 4 \leq \theta < -\pi / 4.0 \right); \text{Region III;}
\]
\[
x \text{ min} = -x \text{ max}, x \text{ max} = -x \text{ min}, y \text{ min} = -y \text{ max}, y \text{ max} = -y \text{ min}
\]

\[
\text{else} \text{ Region IV;}
\]
\[x \text{ min} = y \text{ min}, \ x \text{ max} = y \text{ max}, \ y \text{ min} = -x \text{ max}, \ y \text{ max} = -x \text{ min} \]

Where \(\theta = \text{atan2}(ym/\text{xm}); \ xm = (x \text{ min} + x \text{ max})/2; \ ym = (y \text{ min} + y \text{ max})/2; \)

All the grid squares and their corresponding covering circle are rotated in this way before the percent covering area is calculated.

![Figure 3.4](image)

Figure 3.4. An illustration of the division of the problem space into four regions.

The center of the circle is then shifted by the input \(x\)-center and \(y\)-center values so that it is centered at (0,0) with respect to the block dimensions.

The bounds for integration are then established based on where the covering circle crosses the sides of the grid square. All the possible cases are given below, assuming that the square has been rotated to region I, where the bounds of the area integrals are \(a \) to \(c \) and \(d \) to \(b \) and \(R \) is the radius of the circle.

For the case of the square that lies completely outside the circle:
\[R < y_{\text{min}}; a = b = c = d = 0; \text{ percentage of area covered } = 0 \]

For the case of the square that lies completely inside the circle:

\[y_{\text{min}} = 0; y_{\text{max}} > 0; x_{\text{min}} = 0; x_{\text{max}} > 0; a = b, c = d; \text{ percentage of area covered } = 1 \]

For the cases where \(R < y_{\text{max}} \) and \(R > y_{\text{min}} \), like the ones shown in figure 3.5,

the equation becomes:

\[y_{\text{min}} > R < y_{\text{max}}; a = \min\left(-\sqrt{R^2 - (y_{\text{min}})^2}, x_{\text{max}}\right); b = \max\left(-\sqrt{R^2 - (y_{\text{min}})^2}, x_{\text{min}}\right); \]

Figure 3.5. Four examples of the third case scenario where \(R < y_{\text{max}} \) and \(R > y_{\text{min}} \).
The circle covering area is found by integrating from a to b (the integral from d to b yields 0).

For the case where $R > y_{\text{max}}$, shown in figure 3.6 and figure 3.7:

![Figure 3.6](image)

Figure 3.6. Two pictures illustrating the fourth case scenario, where $y_{\text{min}} > R < y_{\text{max}}$.

In this case:

$$R > y_{\text{max}}; x_{\text{min}} = a! = c; x_{\text{max}} = b! = d$$

The circle function is integrated from a to c and from d to b then added to the area of

![Figure 3.7](image)

Figure 3.7. Another example of case four ($y_{\text{min}} > R < y_{\text{max}}$).
the rectangle bounded by y min, y max, c, and d as shown in figure 3.7. The percent area covered is then the area covered divided by the total grid space area.

The fraction of the area of the circle that lies within the grid square area is found for each square [i][j] and an array is formed using these values. This new grid of values describes the circle (center and radius) being run through the minimization function. The sum of squares of the differences between each value of this array and the corresponding grid array (from the input number grid taken from the spot welder spotter hardware) is then computed in the following way:

\[
\text{dists}[i][j] = pts[i][j] - V[i][j] \\
\text{sumsq} = \text{sumsq} + \text{dists}[i][j] \times \text{dists}[i][j]
\]

where \(pts[i][j] \) is the array of input grid numbers and \(V[i][j] \) is the array of grid numbers output by the area function. The sum of squares of the differences (\(\text{dists}[i][j] \)) between the points (\(pts[i][j] \)) and the corresponding grid number values (\(V[i][j] \)) is then used in the minimization function.

3.7.3 Minimization Function

The minimization function will minimize the sum of squares of the differences between the input grid values and the nominal circle grid values to find the best radius, x-center, and y-center. This is done by giving an initial x-center, y-center, and
radius, along with a range for the center location and radius. The area function is then run for the initial guess, the initial guess ± the range, and the initial guess ± the initial range/2. The x center, y center, and radius combination that gives the smallest sum of squares is then stored and used as the new input to the function where the range is the old range valued multiplied by some value < 1. This iterative process continues until the range value falls below a certain threshold.

3.7.4 Testing of the Reference Software

The time needed for the algorithm to converge to a solution is dependent upon the threshold for the minimum range and the factor by which the range is multiplied after each iteration of the minimization function. The function will find the correct center and radius with 12 decimal place precision in approximately 45 seconds (with a Pentium 4, 2.4GHz processor). This algorithm was not designed for speed, but accuracy; the accuracy can easily be increased at the cost of more computing time.

The reference algorithm was tested a second way. An independent algorithm was created based on a simulated annealing optimization method. The details are not discussed here, as the method is explained further in chapter 4. However, the two independent methods were found to give identical results (up to the tolerance threshold used) for every one of the data sets used in the test. This significantly added confidence to the reference results.
3.7.5 Testing of the Industrial Software

After the reference algorithms were shown to work well using data sets with known solutions, a battery of reference test cases were created. The test cases included a range of spot-weld scenarios. There were also a wide range of circles with diameters between 1.5 and 8 mm, and centered at various regions inside the grid. Some cases also represented spot-welds for which some area lay outside the grid space (the center being inside the grid space). With the exception of a number of ‘perfect’ spot-weld circle test cases, the test cases had simulated errors added that ranged from one to ten percent of the circle’s radius. These cases were sent to the industrial partner to be run through their software. In the meantime, reference results were found using the NIST reference algorithm. When compared, a performance evaluation of the industrial software could be assessed and reported. The two results were sufficiently close to be acceptable in the context of the industrial application.
4. MINIMUM ZONE FITTING

4.1 The Problem of Minimum Zone Fitting

The minimum zone problem involves minimizing the most extreme residual. Using a circle as an example, in the language of the ASME Y14.5 standard, the minimum zone center is that for which the radial difference between two concentric circles that just contain the measured polar profile is a minimum [3]. Mathematically speaking, by definition, the minimum zone circle for a set of data points \(X = \{x_i : i = 1, \ldots, n\} \), is defined as the solution of the function

\[
\min \max_{i = 1, \ldots, n} |d(x_i, a)|.
\]

Or, by introducing the variable \(s = \max_{i} |d(x_i, a)| \),

\[
\min_{a} s \text{ subject to } -s \leq d(x_i, a) \leq s, i = 1, \ldots, n.
\]

While the solution often appears similar to the least squares fit, the resulting geometry is usually significantly different. The applications are vastly different and caution must be taken to avoid using a fit type that is not suitable for the given problem.

Figure 4.1 is a graphical example of the minimum-zone fit of a circle.
For example, in this case of the above circle, the maximum residual is 0.04358947877, the minimum residual is –0.04358947877, and the radius is 2.5957370242. (The difference between the positive and negative signs in these residuals is based on whether the data point lies inside of the circle or outside of it). The least squares fit for the same circle data results in a maximum residual of 0.04082301185, a minimum residual of –0.0512070655, and a radius of 2.5982220142. The error inherent in this data set is on the order of .1%. The differences in the resulting radius are far from negligible. Note in the minimum-zone fit, the maximum and minimum residuals were of equal magnitude but different sign. This will always be the case in a true minimum-zone circle fit.

![Figure 4.1. Minimum Zone fit for circle data. Note that the dimensions of the resulting circle will be similar, but generally not identical to the least squares fit circle.](image)

4.2 The Need for Minimum Zone Fitting
Many practical manufacturing problems involve minimum zone fitting. Certain form errors, such as flatness as defined by ASME standard Y14.5 and Y14.5.1 [3, 4], are defined in language that mirrors a minimum zone fit. Another case is seen when one is trying to determine the concentricity of circles, or cylinders in three dimensions. The concentricity case for a circular part is shown in figure 4.2.

![Minimum zone circles](image)

Figure 4.2. Minimum zone circles: the figure on the left shows the minimum circumscribed and maximum inscribed fits for the circle data, the figure on the right is the minimum zone fit. The fits form concentric circles.

Further, this fit type is often the best choice to determine product functionality. In such cases, the use of a least-squares fit may result in the parts not fitting together correctly (e.g. the max residual on one side may be too large) or the least squares fit may result in the incorrect rejection of parts that do fit together. This is particularly true when flatness or parallelism is at issue.

Based on the need for this fit type, NIST has developed reference algorithms for minimum zone fitting of lines, planes, circles, cylinders, cones, and tori. NIST is
making available to industry data sets along with corresponding minimum zone reference fits.

4.3 Issues involved in solving Minimum Zone Fitting Problems

There are three times when conventional iterative algorithms fail to find the minimum of the objective function. These are when:

(a) they converge to a local (but not the global) minimum;

(b) they slow down and stall on a nearly planar plateau or in a valley; and when

(c) they diverge to infinity.

The first problem listed is the most common. The global minimum may be hidden among a number of local minima; in this case the optimization function must be clever enough to avoid stopping when a local minimum is found. An example of one such problematic data set is shown in Figure 4.3. The problem is much more complex and requires a well-designed algorithm that is clever enough to find it’s way out of

![Figure 4.3. Function with local minima that may pose problems for a “downhill only” minimization function.](image.png)
local optima.

Unlike the least squares fitting problem, only a few extreme points from the set of coordinate points determine the minimum zone fit. The result of this is that the minimum zone fit is very sensitive to outliers, or the extreme coordinates in the set of measured points. Since the data set is only a sampling of the whole surface there is a strong possibility that the true extreme points on the surface have not been measured. The fit result varies based on the sample size and strategy used. This problem of outliers adds uncertainty to the final fit result. The sampling strategy issue is not covered in great detail in this paper; the reader is referred to [4] for more information. In brief, the extreme fit result will always be only an estimation of the true surface geometry dimensions since the data set is a finite, non-continuous sampling of the part’s surface. These issues must be dealt with, in some way, when implementing a search strategy for the fitting algorithm.

4.4 An Approach to Solving Minimum Zone Fitting

The NIST reference algorithm for minimum zone fits uses simulated annealing (SA). Simulated annealing mimics the natural phenomenon of super-heated metal/glass hardening through a gradual cooling and freezing. The method avoids the problem of the search function getting ‘trapped’ in a local minimum that is not the global minimum. The way this is achieved is through a stochastic search. The function usually searches for a smaller valued solution (a downhill search) but sometimes reverses direction and accepts a larger function value (moving uphill) instead. The
analogy is to the energy levels in the glass/metal. As the temperature decreases, the energy levels lower in this way so that the structure has the lowest energy level. As the temperature is lowered, the probability of a higher energy level being accepted is reduced. The speed at which cooling takes place, in the application, is the cooling schedule, which is dictated by the programmer. A slower cooling schedule will take more time but could result in a more precise solution. The algorithm is very efficient and avoids many of the pitfalls that other conventional algorithms fall into. For more information on simulated annealing and the use of the principles of SA in computer science the reader is referred to [29], [33], and [35].

4.5 Implementation of the Approach

The simulated annealing algorithm, together with the minimum zone objective function is used to determine the geometry that minimizes the absolute maximum magnitude of the residuals.

Testing of the algorithms for minimum zone fits involved creating data sets with known solutions then running them through the reference algorithms as a test to bolster confidence in the algorithm performance. The data sets for circles are used as an example of how the minimum zone data sets were created for testing. First, a set of coordinate data was created for a circle with some given dimensions and location. Four of the points in the data set, chosen in a clever way, are moved an equal amount away from the circle surface. Two are moved to a location outside of the circle while
the other data points are moved the same amount to a location inside the circle. These four extreme points then determine the correct fit result since the minimum zone circle will be established based on the minimum of the maximum two distances (one on either side of the geometry) from the surface. If the algorithms work correctly, the maximum residual output will be equal to the distance that each of these four fixed points was moved away from the original circle. To simulate the CMS software fitting problems, a small amount of random error was then added to and subtracted from all the other data points (but not from the four previously fixed points). This random error was set to be no more than 1% of the circle radius, and significantly less than the amount that the fixed points were moved, to ensure that the correct, known solution did not change unintentionally.

Data sets were created in this way and tested standard surfaces including lines, planes, circles, cylinders, spheres, and cones. The sizes of the data sets, as well as the dimensions, locations, and orientations of the geometries were varied in order to test a broad range of possible fitting scenarios. In all the test cases, the reference algorithms were found to give the correct fit result up to 15 decimal places. In fact, even higher precision was possible if the minimization function was set to have a more rigid convergence criterion. Using such a high level of precision could be classified as overkill, however doing so further bolsters our confidence that these algorithms are working since the significant figures used in the calculations all agree. This verified that the reference algorithms for minimum zone fits are accurate and reliable.
The algorithms were tested and found to work very well. The time it takes for the program to find the correct solution is not an issue for the reference algorithms so the program can be run with a very high convergence criterion and a very slow cooling schedule. This is one of the luxuries of being a reference algorithm!

4.6 Reference vs. Commercial Algorithm Performance

Two important inter-comparisons were run by this author. The NIST algorithms were used as a reference. The two industrial software packages processed the test data sets for lines, planes, circles, spheres, cylinders and, for the first software package, cones as well. While only two packages were used, the results indicate that substantial problems exist in both packages. Even this small number is cause for alarm. If more comparisons were done, say five, and these two of the five software packages proved to be unreliable there would still be cause for concern. Thus even this limited study is sufficient to raise concerns about Chebyshev fitting software being used in current measurement systems.

Reference data sets were created with sizes ranging from 50 to 200 coordinate points, and form errors ranging from .1 to 1% of the size of the nominal feature. For each feature, about ten reference data sets were produced. The results for the minimum zone fitting routines are given in table 4.1. In cases where the reported solution agreed with the NIST reference result within an amount equal to 10% of the size of the form errors introduced into the data set, the reported solution was deemed “good.” If the deviation was between 10 and 50% (of the amount of form error added to the
data set in question) the solution was reported to be “bad,” and when the deviation was more than 50% or when no solution was reported the solution was categorized as a “failure.”

<table>
<thead>
<tr>
<th></th>
<th>Industrial Software A</th>
<th>Industrial Software B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>●●●●●●●●●</td>
<td>●●●●●</td>
</tr>
<tr>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>XX</td>
<td>XXXXXXX</td>
</tr>
<tr>
<td>Planes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>●●●●●●●●●●</td>
<td>●●●●●●●●●●</td>
</tr>
<tr>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>●●●●●●●●●●</td>
<td>●●●●●●●●●●</td>
</tr>
<tr>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>Spheres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>●●●●●●●●●●</td>
<td>●●●●●●●●●●</td>
</tr>
<tr>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>Cylinders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>●●●●●●●●●●</td>
<td>●</td>
</tr>
<tr>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>XXXXXXXXXXX</td>
<td></td>
</tr>
<tr>
<td>Cones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>XXXXXXXXXXX</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1. Results of Minimum Zone Fit Testing

The magnitude of the errors found in the inter-comparison cylinder output fits are of particular importance. The deviations uncovered in the industrial software fits are large in comparison to the corresponding size of the geometry, particularly in the case of cylinders. This poses a very significant problem for the users of the software. Companies using such software embedded in their CMMs might repeatedly use results such as are shown here to determine which parts do and do not fit within the required tolerancing. If the fits are inaccurate, some parts that are within the tolerance could be needlessly discarded due to false fit information. The cost to industry is hard
to estimate due to the unknown variables (e.g. the number of CMMs using similar software, the kinds of parts made and the fitting criterion used, etc.) but with the amount of information shown here, potential costs even in the millions of dollars cannot be ruled out [3,4].

4.7 Results of the Implementation

The NIST algorithm for minimum zone fitting is currently included in the ATEP test battery. It has been tested and shown to be accurate and reliable. The algorithm will, in the near future, be implemented in the ATEP-CMS and used for testing industrial software.
5. MAXIMUM INSCRIBED AND MINIMUM CIRCUMSCRIBED FITTING

5.1 The Problem of Maximum Inscribed and Minimum Circumscribed Fitting

As well as least squares and minimum zone fitting routines, many CMS software packages include ‘extreme’ fitting routines. Maximum inscribed and minimum circumscribed fit routines are used in many applications. According to ANSI B89.3.1, the maximum inscribed circle is defined as the largest circle which can be inscribed within the measured polar profile, the minimum circumscribed circle is defined as the smallest circle which will just contain the measured profile.

The example of a piston/cylinder assembly, such as is found in engines or automobile fuel injectors, is commonly used to demonstrate the importance of these other fit objectives. In the case of the piston, the maximum dimension of the outer diameter is critical, since the piston must slide, without friction, up and down inside the cylinder. On the other hand, the critical dimension of the cylinder is the minimum inner diameter, since the piston must be able to move smoothly within the cylinder. The corresponding fit objective in the case of the piston is a maximum inscribed fit, whereas, the fit objective used for the cylinder is a minimum circumscribed fit.

The minimum circumscribed (a) and maximum inscribed (b) fits of data points for a two-dimensional circle are shown in figure 5.1. The least squares fit routine produces a radius of 51.411153, the minimum circumscribed fit results in a radius of
52.003324, and the maximum inscribed fit reports a radius of 50.871020. The data points were created with a maximum error of 1% of the radius.

Figure 5.1. Chebyshev fits for a set of circle data. The circle on the left illustrates the minimum circumscribed fit while the circle on the left illustrates the maximum inscribed fit.

An example of points taken from the surface of a cylindrical object fit with a) a maximum inscribed and b) a minimum circumscribed fit objective is given in figure 5.2.
5.2 The Need for Maximum Inscribed and Minimum Circumscribed Fitting

While the ATEP-CMS efforts have been helpful for industry, they have currently been restricted to the problems of least squares fitting. While these are common, these extreme fits are also needed, and they more accurately reflect some the specification language of the American Society of Mechanical Engineers (ASME) Y14.5 and Y14.5.1 geometric dimensioning and tolerancing standards [3], and [4]. In fact these fits are naturally used, as applications often lend themselves to maximum-inscribed and minimum-circumscribed fitting (e.g. cylinders and pistons, respectively.)
5.3 Issues involved in solving Maximum Inscribed and Minimum Circumscribed Fitting Problems

As mentioned earlier, in the case of a circle, the minimum circumscribed and maximum inscribed circles are based on two or three critical, extreme points. For the other geometries (spheres and cylinders) a few more points may be required to determine the fit. This dependence on few critical points causes these fits to be sensitive to outliers. Bad points may drastically change the output results since the best circle is based on only a few extreme points. Sampling patterns are also very important in these cases; if a few extreme points on the surface of the part are not sampled, the part may not fit as expected (say, in the case of a plug or a plug hole).

With the maximum inscribed fit it is possible for there to be more than one solution. Figure 5.3 depicts two problematic cases. In figure 5.3(a), two circles with identical radii are conjoined. The minimization function might choose the maximum inscribed circle that fits either circle; while the radius is identical, the circle centers are different. A similar problem occurs with two circles of similar size, as shown in figure 5.3(b). In fact, the correct solution in that case would actually be the maximum inscribed circle that fits the slightly larger circle. This special case scenario must be dealt with somehow.
In the above case, and in other cases where the search space is not smooth, the global minimum may be hidden among local minima. The minimization function must not get trapped in these local solutions, leading to the reporting of an incorrect fit.

5.4 An approach to Maximum Inscribed and Minimum Circumscribed Fitting

5.4.1 Maximum Inscribed Circles

If time and computational energy is not an issue, a foolproof method of finding a maximum inscribed circle fit is by way of an exhaustive search. The characteristics of such a search are that it gives an exact result that is correct every time, it can, if required, find multiple solutions (if they exist), it will know if a maximum inscribed circle does in fact exist, and it will not get trapped in a local minimum that is not a global minimum, i.e. returning an inscribed circle that is not a maximum inscribed circle. Such a method was developed at NIST. The search is done by processing every

Figure 5.3. Two problematic geometries: (a) a surface with 2 equal solutions and (b) a surface with two local minimum solutions but only one true global minimum.
3-point combination possible in the set of data points, calculating the circle formed by
the set of points, and comparing their radius to determine which one(s) are maximum
inscribed circles. This simple algorithm is effective but is also terribly inefficient. The
search uses a minimum of $O(N^3)$ operations. Analysis of data sets larger than 200
points are impractical. For this reason, the exhaustive search method is only used to
verify results from other reference algorithms produced at NIST.

The reference algorithm created to find maximum inscribed circles in an effective and
efficient manner relies on simulated annealing techniques. This method is described
in the minimum zone fit approach section. This algorithm is of the type that optimizes
a given objective function even when the global minimum is hidden among several
nearby local minima.

5.4.2 Using Simulated Annealing to Find a Maximum Inscribed Circle

The algorithm performs under the assumption that there exists at least one maximum
inscribed circle for the input data set. The program begins the search by creating an
initial guess. This is done by fitting the least squares circle to the data. The resulting
circle center is the initial guess center while the shortest distance from that center pint
to the nearest data point in the set is taken to be the initial radius. In real-life fitting
scenarios there is no problem with this choice of initial guess, while theoretical
situations may result in the odd bad fit, in reality, with CMS data this issue does not
arise.
The algorithm then performs a two-dimensional search to find the center of a maximum inscribed circle (knowing the center is equivalent to knowing the solution). The search is based on the objective function \(J(x) = -\min_{i} |x_i - x| \). Circles with centers not inside the initial guess circle are penalized either through the simulated annealing program or by way of a slightly expanded objective function [39].

The algorithm described above was implemented and tested at NIST against the exhaustive search engine. The results are taken from reference above and are given here in table 5.1.

Table 5.1a. Results from exhaustive search engine

<table>
<thead>
<tr>
<th>Points</th>
<th>Time</th>
<th>x-center</th>
<th>y-center</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2</td>
<td>100.005582854407</td>
<td>100.010672663295</td>
<td>9.90459043593364</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>100.000720293865</td>
<td>100.001376551706</td>
<td>9.90308030604849</td>
</tr>
<tr>
<td>400</td>
<td>169</td>
<td>100.000252864561</td>
<td>100.000167291954</td>
<td>9.90114961336861</td>
</tr>
</tbody>
</table>

Table 5.1b. Results using simulated annealing method

<table>
<thead>
<tr>
<th>Points</th>
<th>Time</th>
<th>x-center</th>
<th>y-center</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>19</td>
<td>100.005582854407</td>
<td>100.010672663295</td>
<td>9.90459043593364</td>
</tr>
<tr>
<td>200</td>
<td>35</td>
<td>100.000720293865</td>
<td>100.001376551706</td>
<td>9.90308030604849</td>
</tr>
<tr>
<td>400</td>
<td>65</td>
<td>100.000252864561</td>
<td>100.000167291954</td>
<td>9.90114961336861</td>
</tr>
</tbody>
</table>

Table 5.1. Results for simulated annealing/exhaustive search validation test.
While the exhaustive search was completed the search on the smaller data sets in less time, the execution time is $O(N^3)$ compared to $O(N)$ for the simulated annealing method. The simulated annealed method quickly outperforms the exhaustive search for data sets with more than 200 points (as most real-world data sets collected on CMSs do).

The results for the two methods were identical for all 15 digits shown. Again, such a high level of agreement with the exhaustive search solution helps validate the simulated annealing method.

The case of a data set created with two superimposed lobed form errors (as was the example in figure 5.3(a)) was also tested and the results further validated the algorithm. In this case each search method found a different circle (different centers) while the radii were identical. Further, when the radii were slightly changed, the simulated annealing method consistently found the circle having the slightly larger radius. This also helps to validate the simulated annealing algorithm even for these special cases.

5.4.3 Maximum Inscribed Spheres

The case of the maximum inscribed sphere is very similar to the maximum inscribed circle case. Though it is less often needed in practical applications, there are still cases when it arises. The initial guess is the least squares fit sphere center with the radius equal to the shortest distance from that center to a point in the data set.
The objective function for the NIST algorithms is then defined as:

\[R = -J(x) \]

Given \(x \),

If \(x \) is inside initial guess sphere

\[J(x) = -\min_i |x_i - x| \]

else \[J(x) = 2D - \min_i |x_i - x| \]

where \(D \) = distance to initial guess sphere.

5.4.4 Other Cases of Minimum Circumscribed Fits

For minimum circumscribed circles and spheres, efficient algorithms were already in existence. The methods already in use are both very good and any improvements that could be made would be negligible. This method was used in the reference algorithms for minimum circumscribed circles and spheres. More information on the method can be found in Hopp and Reeve’s “An Algorithm for Computing the Minimum Covering Sphere in Any Dimension” [21].

5.4.5 Maximum Inscribed and Minimum Circumscribed Fitting of Cylinders

Unlike circles and spheres, cylinders have an orientation, or direction, that must be considered. To fit cylinders, the representation of the axis orientation must first be dictated. For the NIST algorithms, this was done by defining a point on the axis line
x=(x,y,z), and by defining the direction numbers (cosines) of the axis, a=(a,b,c).

These 6 terms define the cylinder’s direction. This representation was chosen for its straight-forwardness and simplicity. The representation could be reduced to five numbers (using spherical coordinates) or four numbers (see [29]). However, since speed is not a major issue in the reference algorithm creation, we are content to stick with the 6-parameter set. A cylinder is thus defined by those 6 direction parameters and the radius, r. This leads to the calculation of the distance of a point $x_i=(x_i,y_i,z_i)$ to the cylinder as $d_i=|ax(x_i-x)|$, where a is $A/|A|$. The objective function is then created based on these definitions. As with the previous cases, it is assumed that at least one maximum inscribed cylinder exists and that a point on the maximum inscribed cylinder axis lies inside the initial guess cylinder. That initial guess is again determined using the least squares fit criteria. The best-fit cylinder direction is found then the radius is selected in such a way that all points lie outside the resulting cylinder.

The next step is to decide on an objective function. This was chosen to be:

Given x, A

If x is inside the initial guess,

$$J(x, A) = - \min_i |z_i, x, x_i - x|$$

else$$J(x) = 2D \min_i |x_i - x|$$

Where $D=$distance to initial guess cylinder
The case of the minimum circumscribed cylinder is almost identical with the exception of the altered objective function, which is:

Given \(x, A \)

If \(x \) is inside the initial guess,

\[
J(x, A) = \max_i |x_i - x|
\]

These are the basic geometries and the approaches used to in the NIST algorithms. More information on the above approaches can be found in [15], [16], [20], and [35].

5.5 Implementation of the Approach

The potential reference algorithms for minimum-circumscribed and maximum-inscribed fitting (i.e. one-sided fitting) for circles, spheres, and cylinders as well as minimum-zone fitting (i.e. two-sided fitting) for lines, planes, circles, spheres, cylinders, and cones were extensively tested by this author. The testing consisted of two parts: 1) testing against data specifically generated to guarantee a known, achievable benchmark, and 2) an inter-comparison with two industrial partners using software embedded in today's production CMSs. While this testing was designed to help verify the NIST algorithms, additionally, alarming observations were made about the industrial software used in the inter-comparison.

5.6 Reference vs. Commercial Algorithms for Maximum Inscribed and Minimum Circumscribed Fitting
As with the minimum zone fits, the maximum inscribed and minimum circumscribed fit routines in the same two industrial software packages were tested against the NIST reference algorithms. Data sets for circles, spheres, and cylinders were created from the same specifications as those for the minimum zone fit routines. The results are given in tables 5.2 and 5.3.

<table>
<thead>
<tr>
<th></th>
<th>Industrial Software A</th>
<th>Industrial Software B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
<td>⬤</td>
</tr>
<tr>
<td>Bad</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Failure</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Spheres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Bad</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Failure</td>
<td>⬤</td>
<td>X</td>
</tr>
<tr>
<td>Cylinders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Bad</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Failure</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 5.2. Maximum Inscribed Fit Results

<table>
<thead>
<tr>
<th></th>
<th>Industrial Software A</th>
<th>Industrial Software B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Bad</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Failure</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Spheres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Bad</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Failure</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cylinders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Bad</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Failure</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 5.3. Minimum Circumscribed Fit Results

For the maximum-inscribed and minimum-circumscribed fits the resulting radius was compared. The results were classified in the same manner as the minimum zone test.
results. With the exception of the Chebyshev fits for circles, the results are very disturbing.

Some of the industry results actually gave erroneous results that were not, in fact, minimum circumscribed or maximum inscribed fits. In several instances, the maximum inscribed fit result circle had a number of data points that were inside the geometry. These results are alarming. It was also found that the same problem existed for a number of minimum circumscribed cases where data points were found to lie outside the resultant minimum circumscribed fit circle. If these results were used by industry, part breakdown and other more serious problems could result.

5.7 Results of the Implementation

The inter-comparison with the NIST reference algorithms brought to light some major problems with the industrial software. Users of that software and other packages that could be behaving similarly should be aware of these erroneous results. While the CMS hardware might be performing well with a high level of certainty, the software for these fit types needs to be improved and, at the least, have performance evaluations so that users are made aware of the problems that exist.
6. LEAST SQUARES FITTING OF COMPLEX SURFACES

6.1 The Problem of Least Squares Fitting of Complex Surfaces

Figure 6.1. Two examples of complex surfaces displayed using computer graphics.

Complex surface fitting algorithms match a given point cloud to a corresponding pre-defined surface, regardless of the surface complexity. Given an airplane wing or a mechanical gear and a corresponding set of CMS data, be it real or virtual, the algorithms should find the least squares fit for the surface.
6.2 The Need for Fitting of Complex Surfaces

Parts such as airplane wings and fuselages, automobile doors, and satellite dishes cannot be fit using the standard CMS software packages. The basic software packages often have a list of basic geometric objects that can be used to model and analyze the data sets. These basic shapes often include lines, planes, circles, spheres, cylinders, cones, tori, and occasionally basic gear or screw shapes. More extensive algorithms are needed to fit data to these complex surfaces.

Currently there are no standards for testing of least squares fitting software of complex surfaces on both the national and international levels. NIST has created reference algorithms for some general shapes to be used as a benchmark test for industry software while, and after a standard is developed.

Some CMS software programs offer modules for measuring non-prismatic parts, such as sheet metal and plastic assemblies, windshields, and exhaust systems, to name a few examples. Other programs perform two- and three-dimensional best-fit routines and contour comparisons. Such software is in the market with the ability to find least squares approximations of complex surfaces. This is an evolving area that is constantly expanding to include more geometries and novel new approaches to finding a general approach to solving such problems.
One application of Chebyshev fitting of complex surfaces is shown in figure 6.2. The picture represents the positioning of a cast steel part for surface machining:

Case 1 demonstrates improper positioning for machining of the part.

Case 2 shows how, by sampling the part and finding the one-sided Chebyshev fit, it can be positioned in the optimal position for machining, so as to limit material waste and ensure the part is machined correctly.

![Figure 6.2. An application of geometric fitting of complex surfaces.](image)

6.3 Issues involved in solving Least Squares Fitting of Complex Surfaces

There are a number of significant problems associated with the fitting of complex surfaces. At issue are: finding the shortest distance from the point to the surface, fitting surfaces that are nearly translation/rotation invariant, obtaining the derivative
information (if needed for the fitting algorithm), and accurately representing arbitrary surfaces.

The problem of finding the shortest distance from point to the surface is complicated for multiply defined surfaces (it is hard enough for many simply defined surfaces!). When the surface is defined by multiple geometries, it is necessary to determine which part of the surface each point is associated with. In many cases, the shortest distance from the point to the surface is not the correct corresponding point (as in figure 6.3). Similarly, it can also be difficult to find the shortest distance when a point lies near a corner or an edge. In this scenario, the point might be located at the corner or on either side of the corner. Even for surfaces that appear to be smooth, if the edges are segmented, each of those segments, as well as their end points, must be tested to determine in which segment the point belongs. In the example shown in Figure 6.3, the points located around the ‘elbow of the geometry could correspond to either of the two line segments.

Figure 6.3. A problematic complex surface; the corner points may be mapped to either planar surface, not necessarily the correct corresponding plane.
A similar problem arises when there are parallel lines relatively close together. If the collected data points are not close enough to the corresponding ‘perfect’ geometry, confusion as to which part of the surface the point corresponds to could occur. Two examples of this are given in Figure 6.4.

Figure 6.4. Other Problematic Complex Surfaces where the points sampled may not be mapped to the corresponding location on the surface. The shortest distance to the surface may yield an erroneous result.

Another problem with finding the shortest distance from a point to the surface arises in surfaces that where the distance cannot be defined by a compact expression. It is advantageous when the problem of finding the shortest distance is a closed form answer, that is, the solution can be found using a finite number of equations. However, when infinite sums or iterative techniques must be implemented to obtain the shortest distance, a sufficient number of iterations must be decided on and a ‘near
optimal’ solution is used. This could lead to bad results if the convergence criterion is not sufficiently high.

Also at issue are those surfaces that are nearly translation invariant or nearly rotation invariant. Translation invariant geometries include car hood and other surfaces that closely resemble a flat plane in one or two directions.

Part geometries can also be rotation invariant. This leads to similar problems as those for translation invariant surfaces. Objects that vary only slightly from the shape to a sphere, such as an egg or an apple, will rotate around one axis a lot more than the other axes in order to get a better-fit result. In this case, a small degree of rotation may lead to a large improvement in the fit in one-degree of rotation while rotations along other axes may lead to relatively small improvements. It is very hard to get an accurate result for such problems.

Another problem with complex surface least squares fit routines is that for some solutions strategies, derivative information is needed as input to the minimization function. In many complex surface cases, the derivative information cannot easily be obtained. The problem is that when the function is trying to determine the distance from a point to a surface, small changes in the \(x\)-, \(y\)-, or \(z\)- component of the surface will lead to changes in the distance that cannot easily, or quickly, be determined. There are a few methods of overcoming this problem. The first is to use a minimization function that does not use derivative information. The other method is
to make the computer think it has the derivative information using some approximation. This approximation can sometimes be obtained by the shortest distance function. If the shortest distance from a point to a smooth surface is known, the surface at the closest point can be approximated by a plane orthogonal to the distance vector, and the derivative information associated with that plane can be used.

Lastly, it is often hard to represent, and interpret, an arbitrary surface accurately. There are various ways to represent a surface, such as NURBS, Bezier, etc. One must first know how to convert the given representation type to the format used by the algorithm, if necessary. Each representation has benefits and drawbacks. Each one must approximate the curve or surface in some way, thus some information on the geometry is lost in each case. One solution to this problem is to look at only idealized surfaces. One could determine to use only one mathematical formula that is good for all 'smooth' surfaces that are not translation or rotation invariant, that is, that look neither like a plane or a sphere. A saddle shape can be such an example.

6.4 An Approach to Solving Least Squares Fitting of Complex Surfaces Problems

In order to run, the NIST reference algorithms must be given the set of points (data set), an initial ‘guess’ fit, the data that maps a point anywhere in the measuring volume to the closest point on the surface, and the defining metrics for the surface (e.g. radius, axis length, etc.).
Given a set of data points, a mathematically defined surface, and, in some cases, an initial guess for the correct fit, the algorithm will find a set of ‘close points’ on the surface through translating and rotating. These points, located on the geometry surface, are found by determining the shortest distance from each point to the geometry surface and selecting the point where that shortest distant vector hits the surface as the new close point. These new points are then input as the starting points and, again, a new set of close(r) points are found by translating and rotating. This iterative process continues till the distance between the points and the close points falls within the minimum distance, dictated by the input precision guidelines.

6.5 Implementation of the Approach

The testing of the NIST complex surface reference algorithms was two-fold. First, prismatic parts were tested, and then some test cases of non-prismatic parts were used to verify the algorithms.

6.5.1 Prismatic Parts

Prismatic surfaces were tested by comparing the algorithms’ fit solutions with the least squares fit solution obtained from the current ATS. This ATS solution, as previously mentioned, gives a correct fit answer using a slightly different fitting approach. Data sets for prismatic parts, including lines, planes, circles in three
dimensions, spheres, cylinders, and cones were created and run through the ATS and through the new fit algorithms.

Using the ATS, data was created for lines, circles (in two and three dimensions), spheres, cylinders, and cones. The best fit outputs from the two algorithms were then compared against each other, and against the ATS fits. The agreement in all of these significantly added confidence to the results.

6.5.2 Non-Prismatic Parts

To ensure an inclusive testing regime, other surfaces, besides prismatic ones, had to be tested. Since the current ATS does not yet have the capability to fit such surfaces, another method for testing had to be used. The testing therefore consisted of a comparison of the fit solutions obtained by the two independent algorithms, using the same data set, fit file, and close points file. The creation of these ‘test data triples’ is explained in more detail in the following paragraphs.

Data Properties:

Using Mathematica we created data for an elliptic paraboloid, hyperbolic paraboloid, ogives, and saddle shapes. We then compared the best-fit outputs from the two algorithms with each other. These results were used in industry as a few test cases to evaluate software fitting performance.
6.5.3 Creation of Test Cases

The following parameters were used in the creation of data sets for the test cases.

1) The function that defines a rigid surface

2) A set of data points (generated by ATS2.0/mathematica)

 The errors added to the data were between 1 and 2% of the defining metric (e.g. for circle, the errors would be within 2% of the radius).

Standard surfaces (prismatic parts) created using the ATS 2.0 were created in the following way:

The number of points were varied (between 50 and 200) also the size, the orientation angles (azimuth & declination, where applicable), the location of the surface within the measuring volume, and the type of error present (for shapes created using the ATS 2.0) were changed for each data set.

Generalized surfaces (non-prismatic parts) were created using Mathematica in the following way:

First, the surface was defined mathematically by its function, then a set of x, y, and z coordinates was created based on that function where
some random error (again between 1 and 2% of the defining metric) was added to the z component.

3) The set of transformation data that maps each coordinate data point in the data set to the closest point on the mathematical surface or ‘reference fit’.

Two examples follow to demonstrate how the ‘close points’ file was created. This file was needed to determine what point on the surface each data point in the set corresponds to. It is based on the distance of the point to the surface.

6.5.4 The ‘close points’ file for a Paraboloid

To get a fit solution from the algorithms it is necessary to have a fit and a ‘close points’ file. The close points file is created in the following way:

First, the equation for a paraboloid is found to be \(z = x^2 + y^2 \).

It is then necessary to find the minimum distance from a point on this surface \((u, v, u^2 + v^2) \) to a point in space \((p, q, r) \).

This is done by first finding the distance between points, as shown below:

\[
D = (u - p) + (v - q) + ((u^2 + v^2) - r)
\]

then squaring the distance results in

\[
D^2 = (u - p)^2 + (v - q)^2 + ((u^2 + v^2) - r)^2.
\]
Then it is necessary to take the partial derivatives with respect to \(u \) and \(v \) (when the derivative = 0 you have the minimum distance), which yields:

\[
\frac{D}{du} = (u - p) + (2u - r) = 0
\]

and

\[
\frac{D}{dv} = (v - q) + (2v - r) = 0.
\]

Then setting the partial derivatives equal to 0 we get:

\[
2u^3 + (1 - 2r)u - \sqrt{p^2 + q^2} = 0
\]

This equation was minimized in the ‘close points’ file to determine the shortest distance and therefore the corresponding point on the surface.

6.5.5 The ‘close points’ file for a Saddle

Using the same procedure as for the paraboloid:

\[
z = x^2 + y^2
\]

The function will map \((u, v, u^2 + v^2)\) to \((p, q, r)\)

Again the square of the distance is found:

\[
D^2 = (u - p)^2 + (v - q)^2 + (uv - r)^2
\]

then the the partial derivatives are found:

\[
\frac{D}{du} = (u - p) + v(uv - r) = 0
\]
\[\frac{D}{dv} = (v - q) + u(uv - r) = 0 \]

Setting the derivatives equal to zero we obtain:

\[u^5 - pu^4 + 2u^3 + (qr - 2pu^2) + (1 + q^2 - r^2)u - (p + rq) = 0 \]

Again, this equation was used in the ‘close points’ file to determine the close points on the surface.

6.5.6 Generating Test Triples

The data sets used in testing were offset from the surface (located at the origin) by only a slight amount. Many in industry would question the validity of such a test regime in practice since most real-life measurement data sets would be offset a more substantial amount from the surface in question. After the algorithms were proven to work on point clouds located close to the surface, these data sets were translated and rotated out to any given location and orientation within the measuring volume. The data set that was produced with the reverse operation combined with the true fit solution was formed and resulted in a fit solution that was very close to the correct surface. In this way, the algorithms can be applied to any set of data points located anywhere inside the measuring volume. This means versatility for the algorithms and the corresponding testing measures that can be created from these algorithms.

A ‘triple’ consists of a dataset, a rigid, mathematically defined surface, and the correct ‘least-squares fit’ solution. The first step in creating a triple is to run a surface data set through one of the two NIST surface-fitting algorithms, generating an ATS
file with the translation (T2) and rotation matrix (R2) mapping the data set to the surface. Another arbitrary translation vector (T1) and rotation matrix (R1) are created and the original data points are moved out to this new, arbitrary, location and orientation in space. This new set of data points is then translated and rotated by (T3) and (R3) where T3 is the combination of T1 and T2 and R3 is the combination of R1 and R2. That is to say, the latter transformation ‘undoes’ the arbitrary relocation/reorientation and places the data points at the correct location on the surface. This new data set is then run through the NIST algorithm and the fit solution is determined to be a translation of \(\{0, 0, 0\} \pm 10^{-15} \) and a rotation matrix equal to the identity matrix \(\pm 10^{-15} \). The final triple consists of the surface in question, the original set of data points, and the translation vector and rotation matrix that maps the two.

These triples will eventually be made available to the public to be used in comparison testing with their software fit algorithms.

6.5.7 Further Testing the Algorithms

The following three checks were done to validate the algorithm performance.

Check 1: Standard surface fit solution from both the algorithms were compared to the corresponding least squares fit solution determined by the current ATS algorithms (known to be the correct solution).
This testing was done on lines, planes, circles, cylinders, spheres, and cones. In all cases the resulting fit solution had a difference from the current algorithms solution on the order of 10^{-9} to 10^{-15}. In fact, the new algorithms actually generated a better fit (in the least squares sense) than the current ATS.

Check 2: The general surfaces least squares fit solutions were found using the complex and quaternion algorithms. The two solutions were then compared. The complex surfaces tested include paraboloids, saddles, and the surfaces defined by $xx + y$, $xx - yy$, $\sin(x + y)$.

The data sets, the corresponding reference fits and the ‘close points’ files, were run through these two fundamentally different algorithms and then output fit solutions were compared. For each of the surfaces tested the solutions corresponded up to the 10^{-12}.

Check 3:

The generalized surfaces data sets were then run through the algorithms a third time, however this time with a ‘closecheck’ file instead of the ‘close points’ file. The ‘closecheck’ file finds the closest point on the surface using the Mathematica function ‘FindMinimum’ to obtain the close points on the surface. In all cases the results were within 10^{-12} of the previously found fit solutions.
Check 4: The general surface fit solutions (found in ‘check 2’) were then used to create test data triples (as described above) to move the surface to some arbitrary location in space then translate and rotate it back to the surface, using the fit result numbers to ensure that correct translation and rotation matrices are being produced by the algorithms.

The re-oriented data sets were then run through the algorithms in the same way the original data had been. The solutions were within 10^{-10} of the correct solution of $\{0, 0, 0\}$, I. Where the zero vector is the translation (the new (x, y, z) value) and the rotation is he identity matrix (meaning the data was not moved from its start position in order to obtain the correct fit).

6.6 Results of the Implementation

The result was that, in all cases, the fit solution for the complex least squares algorithm matched the results obtained using the original least squares fitting algorithms for standard shapes.

The algorithms proved reliable for repeated runs with differing data sets. The function written to find the distance from the points to the surface (different for each different geometry) were also varied. Both the original function and a function using the Mathematica function 'FindMinimum' were used and compared against each other. The results, in these cases, were identical. The conclusion was that the algorithms work well.
NIST's algorithms for least squares fitting of complex surfaces were tested under a wide range of test scenarios. The results of the testing showed that the algorithms performed well. A possible source of error is the function that must be created to find the distance from the points to the surface. If this function is written incorrectly the minimization function will give bad results. By checking the results against the same data set run with the ‘FindMinimum’ function any errors should be evident in the differing fit results.

7. OTHER ISSUES AND FUTURE WORK

7.1 Other Issues Involved in CMS Fitting Software

There are some differences between the work going on in other parts of the world and this work. Questions arise as to what basic test generation techniques should be used. One such question involves the generation of reference results. As mentioned in section 2.3, some feel it is better to generate solutions from data sets rather than having an independent reference algorithm to generate the reference solutions. Doing so reduces the work by eliminating the reference algorithm generation. There are however, serious drawbacks to such an approach. Firstly, the amount of time and effort saved is limited. Once the volume of data sets you must find results for gets too big or too complicated it might take more time to go through the process of finding a solution to each data set rather than having the generic solution that you can just run
the data sets through to get your solution. Another problem is that when data sets are too small or have a poor sampling area, there may not be a single unique solution. In this case software might be performing correctly by not agreeing with the reference solution.

The choice of a sampling strategy was touched on briefly, however the issue is much broader than what has been described. According to Bosh, “Some sampling strategies can greatly amplify the error introduced at each measurement point, while other sampling strategies can reduce the error. …Since the CMM user selects the sampling strategy, different measurement results, and these results may have very different uncertainties associated with them.” [6]. Bosh later writes that, “The sampling strategy issue is one of the factors which makes the evaluation of CMM measurement uncertainty difficult. Even if the uncertainty due to the form error of the part is known exactly, the uncertainty of the measurement result, e.g., the diameter of a circle is unknown until a particular sampling strategy is specified for the measurement.” [6].

7.2 Future Work

Currently the ATS is limited to reference algorithms for least-squares fitting of standard parts. Due to interest from the industrial sector, NIST is extending the capabilities of the ATS to allow for other fit types including minimum inscribed, maximum circumscribed, and minimum zone fits for relevant features. Also, the least squares fit routines are being extended to include fits for non-standard features such as those mentioned in the previous pages. These fit routines have been developed in a
way that reflects the standards for CMS software performance currently being
developed on both the national and international levels.

Further expansion of the ATS is already being planned. Future projects include the
creation of reference algorithms for least squares fitting of patchwork surfaces
including geometries generated by CAD software. The test service will also include
reference algorithms for a wide variety of complex surfaces in the least squares fit
category.

Also, the current algorithms that fit data sets to data clouds have been developed as
part of the least squares fitting algorithms for complex surfaces and will be
implemented in the ATEP as needed. As the industry expands so too does the work
done on the same fitting problems at NIST.

A web-based ATEP will be completed in the near future. Features of the web site
include background information on various fit types and common problems
encountered with CMS software and a listing of related references. Reference data
sets will be available for download along with the corresponding reference fits
generated by the NIST reference algorithms. Users will then be able to perform
independent checks of their software. Contact information will also be given for the
times when a more specialized or thorough test service is desired, or if certification is
required. Such a service will be of great benefit to many throughout industry.
8. Conclusions

This thesis is written with two primary goals. The first goal is to be a repository of information related to CMS software uncertainty and fitting algorithms that can be referenced by industry. The second goal is to give an overview of the work the author has contributed on reference algorithm testing done at NIST and the results of that work. Those results point to major problems with CMS software currently in use in industry today. A summary of the application of least squares fitting and the findings of the reference algorithm testing follows.

A least squares fitting application was overviewed in chapter 3. A reference algorithm was generated to test industry software that has been created for use in a non-destructive ultrasonic spot-weld detector. The reference algorithm was created to be extremely precise and reliable, rather than fast and easy-to-use. This application is an example of one of the many uses of least squares fitting routines and the way in which testing may be carried out using a reference algorithm. The result of the reference algorithm testing (the inter-comparison done with against the industry software) was that the industry software was correct to two decimal places (the spot weld detector only displayed results up to a maximum of three decimal places). For the purposes of the spot-weld detector application this is sufficient accuracy. For this reason, the software was determined to be performing well as evidenced by the NIST reference algorithm inter-comparison.
The NIST minimum zone reference algorithms were developed based on the phenomenon of simulated annealing (SA). Testing of the algorithms for minimum zone fits involved creating data sets with known solutions then running the data through the reference algorithms to ensure that they gave the correct (known) answer. For all geometries tested (lines, planes, circles (2- and 3-D), cylinders, spheres, and cones) and for all sizes, location, and orientation of those geometries, the reference algorithms were found to give the correct fit result up to 15 decimal places (more if the minimization function was set to have a more rigid convergence criterion). This verified that the reference algorithms for minimum zone fits are accurate and reliable.

Two inter-comparisons were run using the NIST algorithms for minimum zone fits as a reference. The two industrial software packages processed the reference data sets for lines, planes, circles, spheres, cylinders, and, for the first software package, cones. For first software package, two out of ten data sets for lines failed with deviation from the NIST ‘correct fit result’ at more than 50%. The cones performed even more poorly, with eight of the ten data sets failing to come within 50% agreement with NIST results. For lines, cylinders, and cones, the first industrial software package tested had additional one, one, and two data sets respectively that were only within 10 and 50% agreement with the NIST results. The second inter-comparison partner did not fair much better with five of the ten data sets for lines and one of the ten data sets for planes failing to agree within 50% of the reference results. In these cases, the results did not in any way match the true results. This points to serious problems with
the industrial software packages tested. While only two packages were used for inter-
comparison, the results indicate that substantial problems exist in both packages.

The reference algorithms for one-sided Chebyshev fits (maximum inscribed and
minimum circumscribed) were also developed based on the principle of simulated
annealing. The maximum inscribed and minimum circumscribed reference algorithm
testing consisted of two parts: 1) testing against data specifically generated to
guarantee a known achievable benchmark, and 2) an inter-comparison with two
industrial partners using software embedded in today's production CMSs.

The simulated annealing algorithm, together with the minimum zone objective
function was used to determine the geometry that minimized the maximum
magnitude of the two extreme residuals (one on either ‘side’ of the resulting
geometry). The algorithms were tested and found to work very well.

In the case of the maximum inscribed fit routines, the first inter-comparison partner,
the results for one of the ten data sets for spheres gave failing results, with agreement
with the NIST results less than 50%. And failing results for five of the nine cylinder
data sets, as well as one ‘bad’ cylinder data fit with agreement between 10% and 50%
with the NIST fit results. The second industrial software package yielded one bad
circle fit result, out of ten test data sets, and one bad cylinder fit result, out of ten test
cases. The sphere cases were extremely poor, with all ten data sets tested giving
incorrect results that did not agree within 50% of the NIST reference results.
The minimum circumscribed fit routines did not perform much better. The first software package tested resulted in failure for one of seven sphere data sets and five of nine cylinder data sets. It also gave ‘bad’ results (within 1- and 50% agreement with the NIST reference result) for one of the nine cylinder data sets. The second software package gave good (within 10% agreement with NIST results) fit results for all circle and cylinder data sets tested, however nine of the ten data sets for spheres gave failing results.

Also, some of the industry results actually gave erroneous results that were not, in fact, maximum inscribed or minimum circumscribed fits.

The NIST reference algorithms for least squares fitting of complex surfaces were also tested to ensure a high level of performance. The testing of these algorithms involved testing of both standard (prismatic) and general (non-prismatic) surfaces. Prismatic surfaces were tested by comparing the complex surface reference algorithms’ fit solutions to the corresponding least squares fit solution obtained from the ATS. In this way, data sets for prismatic parts, including lines, planes, circles (3D), spheres, cylinders, and cones were created and run through the ATS and through the least squares fitting algorithms for complex surfaces. This reference testing was done on lines, planes, circles, cylinders, spheres, and cones. In all cases the resulting fit solution found using the complex surface fitting algorithms had differences (from the ATS solution) on the order of 10^{-9} to 10^{-15}. In fact, the new algorithms actually
generated a better fit (in the least squares sense) than the current ATS. This validated the reference algorithms for the cases of these standard surfaces.

Numerous test cases were then created for complex surfaces, including paraboloids, saddles, sine functions, and other non-standard surfaces. These triples consist of the mathematical function that defines the surface, a set of data points corresponding to that surface with random error added between 1 to 2% of the defining metric, and the set of transformation data that maps each coordinate data point in the data set to the closest point on the mathematical surface or ‘reference fit’. The general surfaces least squares fit solutions were found using both the complex and quaternion algorithms (two reference algorithms created to perform the same task in different ways). The two resulting solutions were then compared to each other. The complex surfaces that were tested include paraboloids, saddles, and the surfaces defined by $xx + y$, $xx - yy$, $\sin(x + y)$. For each of the surfaces tested the solutions corresponded up to the 10^{-12}. This validated the performance of the NIST reference algorithms for these complex surfaces.

These test cases, along with the resultant reference solutions will be used to form test triples, consisting of a data set, a rigid, mathematically defined surface, and the correct ‘least-squares fit’ solution as determined by the reference algorithms. These will serve industry as a self-check mechanism available for download at some point in the future.
The testing of the NIST algorithms in the ways described above confirms the validity and high degree of accuracy of the reference algorithms. The test regime demonstrated that the NIST algorithms are reliable and can be used as a reference against which to test industry software. Such a testing tool is very valuable to industry.

The results of the industry inter-comparisons done so far indicate that there are major trouble areas in the industry algorithms for Chebyshev fit objectives. While the least squares fit results for standard surfaces appear to do well, the minimum-zone fit results for lines, as well as the minimum circumscribed and maximum inscribed fits for spheres were proven to be performing poorly. The magnitude of the errors found in the inter-comparison output fits is of particular importance. The inconsistencies found in the industrial partner software fits are very large in relation to the geometric size of the surface. Also, some maximum inscribed fits were not really inscribed at all, and the same with some minimum circumscribed fits. This indicates a significant problem for the users of the software. With the errors evident in these inter-comparison results, millions of dollars of parts may be discarded annually due to these erroneous results. Depending on the number of CMSs currently using these software packages, and others with similar problems, the parts being needless wasted could be on the order of millions, or even tens of millions. These particular fit routines, and others like it, must be improved in order to protect the users from such a large financial loss.
REFERENCES

of Several Variables without Calculating Derivatives”, *Computer Journal*, 7,
(1964), 152-162.

[34] Pratt, V. Direct Least-Squares Fitting of Algebraic Surfaces, *Computer Graphics*

Support for Metrology Programme*. National Physical Laboratory,

[38] Sampson, P.D., Fitting Conic Sections to Very Scattered Data: an Iterative
Refinement of the Bookstein Algorithm, Comp. *Graphics Image Proc.* 18,

[40] Shakarji, Craig, and John Raffaldi, Should You be Concerned With Software
Measurement Uncertainty? *Proceedings of the International Dimensional

[42] Sym, Roger. *An Assessment of the Extent to which Metrology Algorithms are Used in Standards.* (July 19, 2002).

