ABSTRACT

Title of dissertation: Symbiotic Subordinate Threading (SST)
Rania Mameesh,Doctor of Philosophy, 2007

Dissertation directed by: Dr Manoj Franklin
Electrical and Computer EngineeringDepartmert

Integration of multiple processorcoreson a single die, relatively constart die
sizes,increasingmemory latencies,and emergingnew applications create new chal-
lengesand opportunities for processorarchitects. How to build a multi-core pro-
cessorthat provides high single-thread performancewhile enabling high through-
put through multi-programming? Convertional approades for high single-thread
performanceuse a large instruction window for memory latency tolerance, which
requireslarge and complex cores. Howewer, to be able to integrate more coreson
the samedie for high throughput, coresmust be simpler and smaller.

We presen an architecture that obtains high performancefor single-threaded
applications in a multi-core ervironmert, while using simpler coresto meet the
high throughput requiremen. Our scheme,called Symbiotic Subordinate Threading
(SST), achievesthe bene ts of a large instruction window by utilizing otherwiseidle
coresto run dynamically constructedsubordinate threads (a.k.a. helger threadg for
the individual threads running on the active cores.

In our proposedexecutionparadigm, the subordinate thread fetchesand pre-

processenstruction streamsand retires processednstructions into a bu er for the

main thread to consume.The subordinate thread executesa smaller version of the

program executedby the main thread. As a result, it runs far aheadto warm up

the data cachesand x branch miss-predictionsfor the main thread. In-ight in-

structions are presen in the subordinate thread, the bu er, and the main thread,

forming a very large e ectiv e instruction window for single-threadout-of-order ex-

ecution. Moreover, using a simple technique of identifying the subordinate thread

non-speculative results, the main thread canintegrate the subordinate thread's non-

speculative resultsdirectly into its state without having to executetheir correspnd-

ing instructions. In this way, the main thread is sped up becauseit also executes
a smaller version of the program, and the total number of instructions executed
is minimized, thereby achieving an e cient utilization of the hardware resources.
The proposed SST architecture does not require large register les, issuequeues,
load/store queues,or reorderbu ers. In addition, it incurs only minor hardware ad-

ditions/changes. Experimertal results shav remarkable latency-hiding capabilities
of the proposedSST architecture, outperforming existing architectures that share
similar high-level microardhitecture.

We performedtwo extensionsof our SST stheme,and cameup with two ad-
ditional microardhitectures. In the rst extension,we deweloped a simple way to
allow the subordinate thread be aware of its own speculation. A speculative-avare
subordinate thread is capableof idertifying instructions that are morelikely to pro-
duceinvalid values,and so may skip their execution. In the secondextension, we

allow a subordinate thread to have its own subordinate thread. The main thread

and multiple subordinate threads are arrangedin a hierarchy basedon the degree
of their speculation, with the most speculative subordinate thread at the bottom
of the hierarchy and the least speculative thread (the main thread) at the top of
the hierarchy. This new microarchitecture, named Hierarchical Symbiotic Subordi-
nate Threading, combinesthe bene t of the speedof highly speculative subordinate

threads with the accuracyof not-to o-speculative subordinate threads.

Symbiotic Subordinate Threading (SST)

by

Rania Mameesh

Dissertation submitted to the Faculty of the Graduate Scool of the
University of Maryland, CollegePark in partial ful llment
of the requiremerts for the degreeof
Doctor of Philosophy
2007

Advisory Commmittee:

Dr Manoj Franklin, Chair/Advisor
Dr Amr Baz

Dr CharlesSilio

Dr Donald Yeung

Dr Peter Petrov

c Copyright by
Rania Mameesh

2007

ACKNOWLEDGMENTS

| owe my gratitude to all the peoplewho have made this thesis possibleand
becauseof whom my graduate experiencehasbeenonethat | will cherish forever.

First and foremostl'd like to thank my advisor, ProfessorManoj Franklin for
giving me an invaluable opportunity to work on challengingand extremely interest-
ing projects over the past v e years.

| would alsolike to thank my committee members, Dr Amr Baz, Dr Charles
Silio, Dr Donald Yeung, and Dr Peter Petrov for agreeingto serne on my thesis
committee and for sparing their invaluable time reviewing the manuscript.

| owe my deepest thanks to my family - my parerts and brother who have
always stood by me and guided me through my career,and have pulled me through
againstimpossibleodds at times. Words cannot expressthe gratitude | owe them.

It is impossibleto remenber all, and | apologizeto those I've inadvertently
left out.

Lastly, thank you all and thank God!

TABLE OF CONTENTS

List of Tables Vi
List of Figures Vil
1 Intro duction 1
1.1 Motivation 1
1.2 Cortributions 4
1.3 Roadmap e 7
2 Background 8
2.1 Single-ChipMulti-core Processors. 8
2.1.1 Motivation for Building Single-ChipMultipro cessors 9
2.1.2 Single-ChipMulti-core Architecture Models 11
2.2 Multithreading 14
2.2.1 Multiprogramming 14
2.2.2 ParallelProcessing. o 15
2.3 Subordinate Threading 16
2.3.1 Usesof Subordinate Threading 17
2.3.2 Subordinate Thread Construction Tedniques 19
3 Symbiotic Subordinate Threading (SST) | The Concepts and Im-
plemen tation Details 25
3.1 A Simple Methodology for Distilling The Subordinate Thread 25
3.2 A Simpleand E cien t Way of Pruning The Main Thread 29
3.21 Basicldea 29
3.2.2 Skipping Non-Memory Instructions 30
3.2.3 Skipping Memory AccessegOnly LOAD Instructions) 32
3.24 AnExample. 34
3.3 Comnunicating Subordinate Thread Results and Decaded Informa-
tion to the Main Thread 37
3.4 Putting it All Together: The SST Microarchitecture 41
3.4.1 BasicOperation. 43
3.4.2 Memory System. 44
3.4.3 Recwery of the Subordinate Thread from Miss-speculation . . 45
4 Experimental Results of SST 47
4.1 PerformanceEvaluation of SST Against SlipstreamProcessor 49
4.1.1 AveragelPC Improvemert of SST. 50
4.1.2 Instruction Distribution in The Main Thread. 52

4.1.3 LessWork Done by the Subordinate Thread on Wrong Paths . 54
4.1.4 Performancelmprovemen with a Highly Speculative Subordi-

nate Thread Versusa Not-Too-Speculative Subordinate Thread 56
4.1.5 Improvemer in the Subordinate Thread L2 Cache Miss Rate 57

4.1.6 Improvemer in the Main Thread L1 DCace Miss Rate
4.1.7 Reductionin the Main Thread Branch Miss-predictions. . . .
4.2 PerformanceEvaluation of SSTAgainstDCE
4.2.1 IPC Improvemen of SST without Memory Symbiosis (100
Cyclesfor Main Memory Access) o v oo oo
4.2.2 1PC Improvemert of SSTwith Memory Symbiosis(100Cycles
for Main Memory Access)o e
4.2.3 IPC Improvemert of SSTwith Memory Symbiosis(300Cycles
for Main Memory AcCess) oo e
4.2.4 Reductionin the Subordinate Thread L2 Cade Miss Rate . .

An Optimized Implemen tation of SST

5.1 A Partially Speculative-Aware Subordinate Thread

5.2 The Subordinate Thread Recwersfrom Miss-Speculation By Switch-
ing Roleswith the Main Thread

5.3 New SST Microarchitecture

5.4 Experimertal Results.
541 IPC Improvemen
5.4.2 Branch Miss-predictionsin The Main Thread
5.4.3 Branch Miss-predictionsin the Subordinate Thread
544 L2CacheMissRate,
5.4.5 Reductionin the Total Number of ExecutedInstructions . . .

HSST: Hierarc hical Symbiotic Subordinate Threading

6.1 A Motivating Example o o

6.2 Implemenation Detailsof HSST.
6.2.1 Spawning Subordinate Threads
6.2.2 Distilling the Subordinate Thread
6.2.3 Resultintegration.
6.2.4 Recwering the Subordinate Thread Corrupted State

6.3 Experimental Results
6.3.1 Performancelmprovement
6.3.2 Advantagesof Result Integration
6.3.3 Improvemer in L2 CacheMissRatio
6.3.4 Experimerting with More than Two Subordinate Threads . .

Related Work

7.1 SSTand Run-aheadexecution.
7.2 SSTand Leader/Follower Architectures.
7.3 SSTandResultReuse,
7.4 SSTand Clustered Architecutures.

Future Work
8.1 Making the FastestThreadthe Leader
8.2 Hybrid HSSTProcessor

59
60
63
64
65

66
68

8.3 Exploiting Program Behavior ChangesUsing Dual Thread Execution

Models. 129

8.4 Divisionof Work 130
8.5 PowerStudies. e e 131
8.6 Simulation Work 132
9 Summary and Conclusions 133
Bibliography 137

4.1

4.2

5.1

6.1

6.2

LIST OF TABLES

Microarchitectural Simulation ParametersFor SmallerCores 48
Microarchitectural Parameterswith LargerCores 63
Microarchitectural Simulation Parametersfor Old & New SST 81
HSST Microarchitectural Parameters 104
SuperscalarMicroarchitectural Parameters 105

Vi

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

4.5

LIST OF FIGURES

SSTtop leveldesign.
Identifying the badkward slice of a branch instruction.
RSBupdatescenarios.
MSB addressing. e

(a) Loop examplefrom bendimark perl; (b) Example of reducingthe
number of executedinstructions by the main thread.

FIFOqueue..
SST microardhitecture. e

Fast recovery of the subordinate thread state.

% IPC improvemen adieved with symbiotic subordinate threading
(SST) over the slipstream processor(main thread does not skip in-
structions). (a) SST with low speculation subordinate thread, and
main thread doesnot skip load instructions; (b) SST with low spec-
ulation subordinate thread, and main thread skips load instructions;
(c) SST with high speculation subordinate thread, and main thread
doesnot skip load instructions; (d) SST with high speculation sub-
ordinate thread, and main thread skipsload instructions

Instruction distribution in main thread for two schemes:(a) SST with
high speculative subordinate thread; (b) SSTwith not too speculative
subordinate thread o

Work doneby the subordinate thread on wrong paths for four sthemes:
(a) Slipstreamwith a highly speculative subordinate thread; (b) SST
with a highly speculative subordinate thread; (c) Slipstreamwith a
not too speculative subordinate thread; (d) SSTwith a not too spec-
ulative subordinate thread.

Distribution of averagelL2 cade missesobtained with: (a) Single
thread; (b) Slipstreamprocessorand(c) SST.

Main thread L1 dcade: (a) missesincurred and saved with SST
when memory symbiosis is applied; and (b) accessesncurred and
saved with SST when memory synbiosisis applied.

Vil

60

4.6 Main thread % of branch miss-predictionsincurred when using: (a)
The branch predictionsobtainedfrom a branch predictor for all branch
instructions (singlethread); (b) The branch predictionsobtainedfrom
the subordinate thread for all branch instructions (slipstream); (c)
The non-data-speculative branch outcomesof the subordinate thread,
and the predictions obtained from the branch predictor for all other
branch instructions (SST).

4.7 IPC obtained with memory latency 100 cyclesfor: (a) Singlethread
stheme; (b) DCE sdieme; and (c) SST sheme (main thread con-
sumesthe results of the subordinate thread for only non-memory
INStrUCtioNS. e

4.8 IPC obtained with memory latency 100 cyclesfor: (a) Singlethread
sdeme;(b) DCE scheme;and (c) SSTsdeme(main thread consumes
the results of the subordinate thread for all typesof instructions).

4.9 IPC obtained with memory latency 300 cyclesfor: (a) Singlethread
stheme; (b) DCE sdieme; and (c) SST sheme (main thread con-
sumesthe results of the subordinate thread for only non-memory
INStrUCtions. e

4.10 Distribution of averagelL2 cate missesobtained with memory la-
tency 300cyclesfor: (a) Singlethread stheme;(b) DCE sdheme;and
(c) SSTstheme(main thread consumesghe results of the subordinate
thread for only non-memoryinstructions).

5.1 Subordinate thread and main thread switch roles after recovery of
the subordinate thread from miss-sgeculation.

5.2 New SST Microarchitecture.

5.3 IPC for 5 sdhemes:(a) Singlethread (a superscalarthat combinestwo
coresin one); (b) DCE with speculative unaware subordinate thread;
(c) SST with speculative unaware subordinate thread; (d) DCE with
speculative-avare subordinate thread; (e) SSTwith speculative-avare
subordinate thread.

5.4 Percenage IPC improvemen over a singlethread (a superscalarthat
conbines two coresin one) for four shemes: (a) DCE with spec-
ulative unaware subordinate thread; (b) SST with speculative un-
aware subordinate thread; (c) DCE with speculative-avare subordi-
nate thread; (d) SST with speculative-avare subordinate thread. . . .

viii

66

84

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

Percertage branch miss-predictionsincurred by the main thread for
v e sthemes: (a) Single thread (a superscalarthat combines two
coresin one); (b) DCE with speculative-unavare subordinate thread;
(c) SSTwith speculative-unavare subordinate thread; (d) DCE with
speculative-avare subordinate thread; (e) SSTwith speculative-avare
subordinate thread.

Percerage of incorrect branch outcomesof the subordinate thread for
four sthemes:(a) DCE with speculative-unawvare subordinate thread;
(b) SST with speculative-unavare subordinate thread; (c) DCE with
speculative-avare subordinate thread; (d) SSTwith speculative-avare
subordinate thread.

L2 cade miss rate (only complete misses)in the main thread for
v e schemes: (a) Single thread (a superscalarthat combines two
coresin one); (b) DCE with speculative-unavare subordinate thread;
(c) SST with speculative-unavare subordinate thread; (d) DCE with
speculative-avare subordinate thread; (e) SSTwith speculative-avare
subordinatethread. o Lo

Distribution of skipped and executedinstructions in the main thread
andthe subordinate thread for two sthemes:(a) SSTwith speculative-
unaware subordinate thread; (b) SST with speculative-avare subor-
dinatethread.

Examplefrom bendimark perl shaving the code snippet for: (a) Main
thread; (b) Subordinate thread of main-subA model; and (c) Subor-
dinate thread of main-subBmodel.

Pros and consof high and low speculation subordinate threads.

HSST High Level Microarchitecture: (a) HSST similar to a cade
hierarchy; (b) HSST block diagram; and (c) Componerts of Thread
Controller (TC). e e e

HSST detailed microarchitecture design.

IPC obtained for four schemes: (a) Singlethread (superscalar); (b)
SST with subA (main-subA); (c) SST with subB (main-subB); and

(d) HSST with both subAandsubB. 107

IPC obtained for four sdhemes: (a) Single thread (superscalar); (b)
SST with subA (main-subA); (c) SST with subB (main-subB); and

(d) HSST with both subAandsubB. 107

6.7 Distribution of instruction outcomesn main thread for three schemes:
(@) SST with subA (main-subA); (b) SST with subB (main-subB);
and (c) HSST with subAandsubB.

6.8 Averagebrandh miss-predictionsin main thread for four schemes:(a)
Singlethread (superscalar);(b) SSTwith subA (main-subA); (c) SST
with subB (main-subB); and (d) HSST with both subA and subB. .

6.9 Percenage of brand instructions that werea miss-predictionand the
main thread obtained their correct outcomesfrom the subordinate
thread, for three sthemes:(a) SST with subA (main-subA); (b) SST
with subB (main-subB); and (c) HSST with both subA and subB.

6.10 L2 cadhe missratio in main thread for four schemes:(a) Singlethread;
(b) SST with subA (main-subA); (c) SST with subB (main-subB);
and (d) HSST with both subAandsubB..

6.11 IPC obtained for four schemes: (a) SST with a single subordinate
thread; (b) HSST with two subordinate threads; (c) HSST with three
subordinate threads; and (d) HSST with four subordinate threads. . .

6.12 Averagebranch miss-predictionsin main thread for four schemes:(a)
SSTwith asinglesubordinate thread; (b) HSSTwith two subordinate
threads;(c) HSSTwith three subordinate threads;and (d) HSST with
four subordinate threads.., .

6.13 Average incorrect branch results of four subordinate threads with
di erent levels of speculation: (a) Subordinate thread at speculation
level 1 (subA); (b) Subordinate thread at speculation level 2 (subB);
(c) Subordinate thread at speculation level 3 (subC); and (d) Subor-

dinate thread at speculationlevel 4 (subD).

6.14 L2 cade missratio in main thread for four schemes:(a) SST with a
single subordinate thread; (b) HSST with two subordinate threads;
(c) HSST with three subordinate threads; and (d) HSST with four

subordinate threads.

. 110

. 110

113

114

Chapter 1
Intro duction

1.1 Motivation

Recen trends in microarditecture reveal a move towards multi-core archi-
tecturesthat cane ciently leveragethe billion transistor chips promisedby future
technologies. All major high-performancemicroprocessorvendorshave announced
or are already selling chips with two to nine cores. Future generationsof thesepro-
cessorswill undoubtedly include more coreson a single chip multipro cessor(CMP)
[1,2]. In 2001,IBM introducedthe dual-corePOWER-4 [47] processorand in 2004
it introduced the POWER-5 processor,in which ead core supports 2-way simul-
taneousmultithreading (SMT) [48]. In 2005IBM introducedthe Cell Broadband
Engine Architecture known as Cell processor[72], which combined eight synergis-
tic processorelemens with a dual-issuePOWER processorelemen. In 2004 Sun
announcedthe Niagara processor49], which included eight cores,ead of which is
a four-way SMT. AMD, Fuijitsu, and Intel have also releasedtheir dual-core chip
multipro cessorg50, 51, 52].

Multiprogrammed ernvironments as well as parallel applications benet the
most out of multiple cores.Howewer, the performanceof individual serial programs
doesnot improve and may evensu er a penalty becauseof increasedcortention for

sharedresourcesud ascadesin a multi-core ervironmert. Moreover, the costand

complexity of software increasesf applications are manually parallelizedto obtain
a benet from multiple cores.Finally, many generalpurposeapplications, that are
easyto parallelize, exhibit limited scalability. Therefore,they may not be able to
take advantage of additional coresbeyond a certain point.

Improving the performanceof singlethreadsin a multi-core ervironment has
provento bedicult for seweralreasons.First, multi-core architecturesfavor simpler
and smaller coresto addressthe application needsfor parallelization and the power
budget, which limits the opportunity to exploit the available ILP with wide-issue
cores. Also, adiieving high single-threadperformancein the presenceof relatively
increasingmemory latencieshas traditionally required large and complex coresto
sustain a large number of instructions in ight while waiting for memory On the
other hand, special-purposehardware acceleratorsthat are located outside the core
canimprove a thread's performanceby eliminating cortrol and memory bottlenedks
(e.g. advancedbranch predictors and data prefetdhers), but they often result in
signi cant chip areaadditions and additional complexity. In light of thesetrends,
architectural techniquesthat allow the use of additional coresto speedup single
threads are becomingan attractiv e alternative [31].

Subordinate threading is one sud technique that utilizes multi-core architec-
tures for single-thread performancebecauseof its ability to overcomethe hurdles
imposedby unpredictable branches and long-latency memory accesses.The basic
ideais to spavn sulmrdinate threads (also called helper threads, which are shorter
versionsof the main thread that executein parallel with the main thread. Because
they are shorter, they advancefasterthan the main thread, and perform many useful

2

actions on behalf of the main thread, thereby speedingup the main thread com-
putation. Useful actions performed by the subordinate thread include instruction
and data pre-fetching to reduce cade misses[3, 4, 6, 7, 32, 8, 9, 10, 11, 17, and
precomputing the outcome of hard-to-predict branches [27, 28, 29]. Moreover, it
has been shonvn that the main thread can also bene t signi cantly from directly
consumingsubordinate thread results that are guararteedto be correct [4, 35].
This dissertation descrikesand evaluates a new hardware-basedarchitectural

framework, named Symbiotic Subordinate Threading (SST), that allows otherwise
idle coresin a CMP to function ashelper enginesfor the individual threadsrunning
on the active cores. Our model exploits various sourcesof subordinate threading
bene ts: cade pre-fetching, branch pre-computation, and result reuse. The sub-
ordinate thread runs ahead of the main thread, performing cahe pre-fetches and
resolving branch miss-predictionsaheadof the main thread demand and forward-
ing all of its results to the main thread. The main thread consumesthe subordi-
nate thread resultsthat are guararteedto be correctly executedby the subordinate
thread without executingtheir correspnding instructions. Speedingup the main
thread in this mannerhasse\eral advantages. First, the overall speedof the proces-
sor increasespecauset is dependert on how fast the main thread moves forward.
Seconda faster main thread detectsthe subordinate thread's miss-sgeculationsear-
lier, therehy cutting down the amourt of time spert by the subordinate thread on
wrong-path or wrong-datainstructions. Third, both threadsare makinge cient use
of the resourceshy executinga relatively lessoverlapping portions of the program
in parallel. Finally, becauseof the provision for early detection of violations, the

3

subordinate thread is now free to do more aggressie speculations. This symbiotic
relationship betweenthe two threads speedsup both of them, resulting in signi cant

improvemers in performance.

1.2 Contributions

This dissertation makes v e major cortributions, outlined below:

1. Symbiotic Subordinate Threading (SST): A keycortribution of this dis-
sertation is the dewelopmer of a minimal dual-coreSST model on a CMP platform
that acdhieves signi cant performancebenets. The model usessimple hardware
structures to facilitate forwarding of results from the subordinate thread to the
main thread as well as determining if those results can be consumedby the main
thread without executingtheir correspnding instructions. At the heart of our SST
model is the formation of the subordinate thread dynamically. We provide a simple
and e cient way of distilling the subordinate thread dynamically with minimum
hardware requiremerts. Recovering the subordinate thread from the wrong path
is another major concernand is addressedwith minimum overhead. Our stheme
is purely at the hardware level so it does not require any compiler intervertion.

(Chapters 3,4 and 5).

2. Understanding SST: Insight is provided regarding the sourcesof synmbiotic
subordinate threading performance. This focusesexploration of the architecture

and leadsto the following key results: (a) Signi cant performanceimprovemer is

achieved with symbiotic subordinate threading, up to 27% improvemen in speed.
(b) A signicant improvemen in L2 cathe missesis adiieved in the subordinate
thread. Also, a signi cant improvemert in L1 dcade missess achieved in the main
thread. (c) The number of branch miss-predictionsincurred by the main thread are
reducedwith SST.(d) Increasedcooperation of the main thread and the subordinate
thread is evident. First, the number of instructions executedby the main thread is
reduced, up to 40%. Second,the subordinate thread wrong-path work is reduced

signi cantly (Chapter 4).

4. Comparison between SST and other schemes: We perform comparisons
between SST schemeand other already existing schemesthat sharethe samehigh
level implemertation asSST. Thosesdhemesare the slipstreamprocessorand dual-
core executionmodel (DCE) [18, 36]. Both the slipstream processorand the DCE
stheme are pure hardware medanismsfor speedingup single thread performance
just like SST. They provide the samemeansas SST for forwarding results of the
subordinate thread to the main thread but do not provide the meansto identify the
correct results of the subordinate thread as SST does. Hence,the main thread in
slipstreamand in DCE consumeghe subordinate thread resultsasvalue and cortrol
predictions and so must validate them by executing all instructions. Howewer, in
SSTthe main thread consumesghe correctresults of the subordinate thread without
executingtheir correspnding instructions. We shav that SST, outperforms those
techniqueswith a relatively simpler hardware additions. The averageperformance

improvemen of SST is 27% and 14% over the Slipstream processorand the DCE

stheme,respectively (Chapter 4).

3. An optimized implemen tation of SST: We provide anotherimplemena-
tion of SST in which the subordinate thread is aware of its own speculation. By
letting the subordinate thread know which registersand memorylocationsare spec-
ulative, it can avoid executinginstructions that usesdata-speculative input values.
In that sensethe subordinate thread distills itself and only executesinstructions
that will yield correct results. This is especially useful in reducing the number of
times the subordinate thread miss-sgeculatesand goeson the wrong path. It also
providesthe bene t of reducingthe total number of instructions executedby both

the main thread and the subordinate thread (Chapter 5).

5. Hierarc hical Symbiotic Subordinate Threading (HSST): This is an-
other key cortribution of this dissertation, extending the SST sdheme to include
more than one subordinate thread. Our HSST execution paradigm allows a subor-
dinate thread to have its own subordinate thread. Collectively, the main thread and
the subordinate threads form a hierardy, with the main thread at the top of the
hierarchy. As we traversethe hierarchy downwards the subordinate thread speed
and speculation increasebecauseit executesfewer instructions, and so, its ability
to explore more instructions than its instruction window allows, increases.Results
generatedby a thread are consumedby its parert thread just like in SST with a
single subordinate thread. We exploredHSST with two subordinate threads, three

subordinate threads and four subordinate threads. Our results yield that as we

add more subordinate threads, the penalties assaiated with squashingand recov-
ering the subordinate threads increasesud that they o set the bene ts when we
go beyond two subordinate threads. With two subordinate threads we achieved an
average performanceimprovemen of 15% over an SST sdhemethat usesa single

subordinate thread (best of the two) (Chapter 6).

1.3 Roadmap

Badkground material is coveredin Chapter 2. In Chapter 3, we descrite how
the main thread is pruned in order to be faster. This introductory Chapter provide
insight into the implemertation details of symbiotic subordinate threading (rst
and secondcortributions respectively). The sourcesof performanceimprovemern
achieved with symbiotic subordinate threading are discussedin Chapter 4 as well
as comparing its performanceagainst already existing shemes(secondand third
cortributions). An optimized implemertation of synmbiotic subordinate threading
is presered in Chapter 5 (fourth cortribution) in which the subordinate thread
is speculative aware. Hierarchical synbiotic subordinate threading is discussedin
Chapter 6 (fth cortribution). Chapter 7 describesthe related work. We propose

the future work in Chapter 8. Chapter 9 concludesthe dissertation.

Chapter 2

Background

This chapter providesthe necessarpadkground to better understandthis dis-
sertation. First we discusssingle-dip multi-core processorswhich is the current
trend for maintaining microprocessorperformancegrowth by providing signi cant
bene ts for both parallel and throughput oriented computing. We then discuss
multithreading as a way to boost processorthroughput by dividing the program
workload into multiple threadsthat run simultaneously on the multiple coresavail-
able on the chip, thereby making e cient use of processorresourcesand boosting
performancethrough exploiting thread level parallelism (TLP). Finally, we discuss
subordinate threading and their bene ts towards improving single-thread perfor-
mance. Subordinate threading techniques utilize otherwiseidle coreson a single-
chip to run subordinate threads that perform someuseful actions on behalf of the

main thread.

2.1 Single-ChipMulti-core Processors

Execution modelsthat can support multiple threads on a single-dip sud as
simultaneous multithreading (SMT), chip multipro cessing(CMP), and chip multi-
threading (CMT) [30, 1, 2], have received much attention from the researb comnu-

nity in the computerarchitecture eld. On the multiple processingelemerts (cores)

available in a modern processor,one canrun multiple programsin parallel, or mul-
tiple threads from the sameprogram in parallel to overlap useful computations, or
subordinate threadsto assistthe executionof the main computation thread. In this
section we discussthe technological constraints that lead to single-&ip multi-core
processorsmainly, the superscalar'sdiminishing returns and the demandfor a de-
certralized microarditecture, in addition to the low power budget constraint, and
the demand for low inter-processorcommnunication latency. We then discussthe

existing single-tip multi-core processorarchitectures.

2.1.1 Motivation for Building Single-ChipMultipro cessors

Earlier in 1996,0lukotun et. al [1] shaved that a better useof silicon areais
a multipro cessorconstructed from simpler processorsand that building a complex
wide issuesuperscalarCPU is not the best useof silicon resources.We list someof

the motivating reasonsfor building a single-hip multi-core processor.

Diminishing Performance of the Wide-Issue Superscalar Mo del: The su-
perscalar processoryields diminishing returns in performanceas the issue width
increasesdue to the increasedcomplexity of the issuequeueand limitations in in-
struction level parallelism. The net e ect of all the comparisonlogic and encaling
asseiated with a wide instruction issuequeueis that it takes a large amourt of
die areato implemert. Moving to the circuit level, a wide instruction issuequeue
requireslongerwiresthat spanthe length of the structure, resulting in longerdelays.

Farkas et. al. found that an eigh-issue madine only performs 20% better than a

four-issuemadine whenthe e ect of cycle-timeis included in the performanceesti-
mates[53. This leadsto the needfor a microarditecture constructedfrom simpler

processordo maintain the performancegrowth of microprocessors.

Application Demand: From the applications perspective, the microarchitecture
that works bestdependson the amourt and characteristicsof parallelism presen in
the applications. Applications fall into two categories. The rst category consists
of applicationswith low to moderate amourts of parallelism (under 40 instructions
per cycle), most of which are integer applications. The secondcategory consists
of applications with large amourts of parallelism, greater than 40 instructions per
cycle. The oating point applications fall into the secondcategory and most of
the parallelism is in the form of loop-lewel parallelism. Thesetwo categoriesre-
quire di erent execution models. Integer applications work best on a moderately
superscalarprocessomwith very high clock ratesbecausehere s little parallelismto
exploit. On the other hand, a decettralized multipro cessormaradigm best suitesthe
oating point programsbecausét exploits the vast amourt of parallelismpresen in
those programs. Multi-core microarditectures will work well on integer programs
becauseead individual processoris a simple superscalarprocessorwith very high
clock rates. Also, multi-core microarchitectures can exploit the parallelism of the
oating point applications by running multiple threads in parallel from the same

program on the available cores.

10

Low Power Budget Requiremen t: Finally, power considerationsalsofavor sim-
pler processorsbut with low frequency For workloadswith adequatethread level
parallelism (TLP), doubling the number of coresand halving the frequencydeliv-
ersroughly equivalert performance,while reducing power consumptionby a factor
of four [2]. Howewer, for applications with limited TLP, speculative parallelism or
subordinate threading have to be exploited for obtaining good single-thread per-
formance under a low-power budget; otherwise single-thread performancewill be

negatively a ected dueto low frequency

Low Comm unication Latencies Requiremen t: In multiprogramming andcon-
vertional parallel processingernvironmens, comnunication betweenthreadsis through
sharedmemory and has latenciestypically in the hundreds of CPU cycles[1]. Be-
causeof the high inter-thread comrmunication latencies,threadsare constructedsud
that they rarely have to commnunicate, and this implies that ne-grain parallelism
cannotbe exploited. The addition of low-latency inter-processorcommunication be-
tweenprocessorson the samechip allows the multi-core processorto better exploit

the available parallelism in applications.

2.1.2 Single-Chip Multi-core Architecture Models

The most commonusefor CMP and CMT is to executemultiple threadsin
parallel to increasethroughput. The widespreaduseof visualization and multimedia
applicationstend to increasethe number of active processe®r independern threads

onadesktopor asenerin aparticular point oftime. Oneway to increasethroughput

11

is to executethreads simultaneously from multiple applications. Another way is to
executemultiple threads in parallel that come from a single application, sud as
transaction processing. Multi-core processorscan also be usedto acceleratethe
execution of a single thread of cortrol. We next discussthe trade-o s between
CMP and CMT in what they can o er regarding throughput and single-thread

performance.

CMP: Ead core on a CMP processorruns only a single-thread. To increase
throughput, coresare made simpler and smaller to accommalate more threads.
Hence,layout e ciency increasesresultingin more functional units within the same
silicon area plus faster clock rates. The problem with CMP is that the hardware
partitioning of on-chip processorsrestricts performance. The hardware partition

results in smaller resourcessincethe level-1 cades, TLBs, branch predictors, and
functional units are divided amongthe multiple processorsHence,single-threaded
programscannot useresourcegrom the other processoicoresand the smallerlevel-1

resourcegoer core causeincreasedmissrates [54].

CMT: CMT processorgrovide support for many simultaneoushardware threads
of execution in various ways, including SMT and CMP. Recall that, in an SMT
processor,the physical processorcore appearsto the operating systemasif it is a
symmetric multipro cessorcortaining se\eral logical processors.Hence,the physical
processoicoreexecutednstructions from morethan oneinstruction stream (thread).

This increaseghroughput through thread-lewel parallelism and tolerates processor

12

and memorylatenciesto increaseprocessote ciency. The problemwith SMT is that
complexity and circuit delays grow faster with issuewidth. In addition, multiple
threads on a single core sharethe samelevel-1 cade, TLB, and branch predictor
units, which causescortention. The resulting increasein cathe missesand branch
miss-prediction rates limits performance. Merging CMP and SMT conbines the
advantages of both the individual techniques. CMT hasthe CMP advantages of
more functional units and a faster clock than a wide-issueprocessor. Also, the
addition of SMT increaseghe e ciency of the underlying CMT, becauseéhereis no
hardware partitioning of processoresourceswhich allows a number of instructions
from multiple threadsto accesghe functional units, henceincreasingthe functional

unit utilization.

Trade-os: More smallercoresmakesthe throughput of CMPs higherthan that of
SMTs; howewer, a wide-issueSMT delivers higher single-threadperformance.Given
the signi cant areacostassaiated with high-performancecores,for a xed areaand
power budget, the CMT designchoiceis betweensmall number of high performance
(high frequency aggressie out-of-order, large issuewidth) coresor multiple simple
(low frequency inorder, limited issuewidth) cores. For workloads with su cien't

TLP, the simpler core solution may deliver superior chip-wide performanceat the
fraction of the power. Howewer, the simpler core solution will not work well for ap-
plications with limited TLP, unlessother meansfor parallelization are used. In this

dissertation, we realizethe low areaand low power budget, sowe beliewe that future

CMTs will use simpler cores. Hence,we focusin this dissertation on subordinate

13

threading to speedup the performanceof a singlethread that lacks su cient TLP.

2.2 Multithreading

Multithreading booststhe processorthroughput and improvessingle-program
performance,through exploiting thread-lewel parallelism that residesin programs.
It hasbeenstudied extensiwely in both academiaand industry [63,42,64]. To make
useof the available transistor budget, processomanufacturers sud as IBM, Intel,
and AMD started integrating more coresand/or threads on a single chip to sup-
port multithreading. Many studiesin academiahave beencarried out to examine
the potential of using multithreading processorsud asSMT and CMP. We expect
that multithreading will cortinue to bene t single-programperformanceas well as
processorthroughput, aslong asthe transistor court on a chip cortinuesto grow.
Below, we discusssomeof the multithreading execution paradigms mainly multi-
programming and parallel processing. We also, discusshow eat of them exploits

the available thread-lewel parallelism in programs.

2.2.1 Multiprogramming

Multiprogramming utilizes multipro cessorsystemsand increasesthe overall
processorthroughput by running multiple independent programs simultaneously
Also, in a multiprogramming ervironment, comrmunication or syndronization be-
tween threads is not frequen, thereby, thread-lewel parallelism can be easily ex-

tracted from programs. The parallelism exploited by multiprogramming is from

14

di erent programs. Howewer, becausemultipro cessorsystemssene a large num-
ber of threads that often sharecritical hardware resourcesthose critical hardware
resourcesare often saturated with so marny threads. This results in diminishing
throughput as more threads are fed into the system. Moreover, sometimes, we are
interestedin speedingup a single program and not only adieving high throughput.
Howewer, multiprogramming often sacri ces single-programperformancein order to

achieve higher throughput.

2.2.2 Parallel Processing

In parallel processingthe programis divided into subprograms,which all run
in parallel on a multipro cessorsystem. In this way, single-programperformanceis
boosted. One way to improve the performanceof a single program is We discuss
two di erent parallel processingparadigms. The rst oneis corvertional parallel
processingand the other is thread-level data speculation technique.

In corventional multipro cessorsystems,when a program is partitioned into
multiple subprograms,ead subprogramusually runs almostindependerly, thereby
exploiting thread-lewel parallelismin a singleprogram. In sud a system,the threads
are completelynon-speculative and overlap usefulcomputations, which improvesthe
processotthroughput. The partitioning is doneby a compileror a programmersud
that the threads are independen. The programmeror compiler, also takes care of
handling the syndironization amongthe di erent threads.

In thread-lewel speculation, the program is partitioned into multiple threads

15

speculatively. Thread-lewel speculation exploits thread-lewel parallelism by running
the multiple threadsin parallel. When, partitioning the threads, it is assumedhat
there are no memory dependencedetweenthreads. Each thread commitsits results
sequetially in the original program order, and this ensurescorrect program execu-
tion. Dependenceviolations are detectedby a special hardware, which recoversthe
threads from any memory dependenceviolations. This hardware, also holds inter-
mediate results until a thread commits. True dependenciesbetweenstore and load
operationsprevert the threadsfrom running and exploiting thread-lewel parallelism.
In thread-lewel speculation a nder-grain thread syndronization is neededand is
supported by the hardware, asin a chip multipro cessor.

In thread-lewel speculation, complicateddependencestructures often limit suc-
cessfulexploitation of thread-lewel parallelism. This leadsto subordinate threading,
as a meansof boosting single-thread performancewhen thread-lewel parallelism is
scarceand partitioning a program into speculative threadsis di cult due to com-

plicated dependencestructures presert in the program.

2.3 Subordinate Threading

With integrating more processorcoreson a single-dip multipro cessor,com-
munication delays have beenreducedconsiderably In subordinate threading, oneor
more subordinate (helper) threadsrun in parallel with the main thread to help its
execution. We identify two unique characteristics of subordinate threading. First,

subordinate threads help speedup the execution of the main computation thread.

16

Howe\er, they do not a ect the processothroughput. Subordinate threadshelp the
main thread executionby running far aheadof the main thread, sud that they do
work onits behalf. Secondthe executionof subordinate threadsare decoupledfrom
that of the main thread and their code doesnot have to be extracted from the origi-
nal program code. Subordinate threadsopen up a lot of opportunities for exploiting
otherwiseidle coreson a chip-multipro cessorfor single-programperformanceas we
will show in this dissertation. Below, we presemn someof the previously proposed
usesof subordinate threading to assistthe executionof a single program. We then

descrike someof the tradeo s of constructing e ectiv e subordinate threads.

2.3.1 Usesof Subordinate Threading

Tolerating Long-Latencies on Behalf of the Main Thread: Subordinate
threads improve the performanceof the main computation thread by hiding the
latenciesof critical instructions sud as load instructions that missin the cade or
miss-predictedbranch instructions. Subordinate threadshelp the main computation
thread by executinga slice of the main computation thread. Becausethey execute
fewer instructions than the main thread, they are ableto run aheadof it and trigger
long-latency everts much earlier. They also overlap those latencies with useful
computations. Someexamplesnclude data pre-fetcing [7, 32,33,34,8, 3,4, 10,12],
instruction pre-fetching [6, 14], branch outcome pre-computation [27], and virtual

function call target prediction [5]. Somesubordinate threads only trigger cade-

missesbut they newer completely serviceit, instead they run aheadto nd other

17

independen cade-missesand trigger them [59, 19, 11]. For the subordinate threads
to be e ective they have to accomplishtheir task in a timely fashion. If they are
too slow, the main thread will not bene t and if they are too fast, they may throw

pagesout of the cade that are neededby the main thread.

Executing the Exception Handler Code in Parallel with the Main Thread:

Subordinate threads can alsobe usedto run the exceptionhandler code of faulting
instructions. This relievesthe main thread from executingthis code, and soit can
cortinue to executein parallel other instructions that are independert from the one
that causedthe exception[65]. If the code being executeddoesnot cortain many
exceptions, or if there is not enoughindependen instructions from the faulting
instruction to overlap with the exceptionhandler code, then performancemay not

improve much.

Used as an Accurate Value and Branc h Predictor to the Main Thread:

Subordinate threadsthat aredistilled sud that they executehard-to-predict branch
instructions and their badward slices,or critical load instructions that missin the
cade and their backward slices, produce near accurate results. Those results can
sene as near perfect predictions in the main thread, thereby allowing the main
thread to do progressn the ewvert of a cadhe missand reducingthe number of branch
miss-predictionsin the main thread [36, 18, 45. Howeer, becausethe subordinate
thread may executeinstructions speculatively, it may introduce incorrect branch

predictionsthat otherwisewould not occur if the main thread followedthe prediction

18

obtained from the branch predictor.

Incorp orating Fault Tolerance: Subordinate threads can also be usedto im-
prove fault tolerance. They are a redundart copy of the main computation thread
that runs on another core, thereby helping in detection and recovery from faults
that occur during the program execution[66, 67]. This type of subordinate thread
executeghe samecode asthe main thread, and soit is totally redundart, and there-
foreit doesnot cortribute to the processomperformance.Howewer, in the slipstream
processorthe subordinate thread, called A-stream in slipstreamterms, is usedfor

both performanceimprovemen aswell asfault tolerance[15].

Implemen ting Hardw are Structures and Algorithms in Software: Using
subordinate threading, one can implemert complicated hardware structures or al-
gorithms in software, sud as a cade pre-fetcher algorithm [46], and run them as
helper threadson sparecores. In this way, the hardware complexity of the processor
for supporting those new complicatedstructuresis vastly reduced. Hence,reducing
the testing and validation cost of the processorhardware. In this case,the sub-
ordinate thread code is not derived from the original program, rather it is general

purposeand senesany of the individual threadsrunning on the active cores.

2.3.2 Subordinate Thread Construction Tedniques

Oneof the important issuedn subordinate threading is generatingsubordinate

threads that perform their required task e ectively. In this dissertation we focus

19

on thosesubordinate threadsthat enhancesingle-threadperformance.That means,
constructing subordinate threads must take into considerationthat the subordinate
thread hasto produce accurateresults at the right time. There are se\eral ways
for constructing subordinate threads. One way, is constructing subordinate threads
manually by the programmer[3]. The disadvantage of manual construction, is that
it is labor intensive and is error-prone. Hence,automating the construction is more
fruitful.

Kim [73 classi esthe various approatesof constructing e ectiv e subordinate
threadsautomatically basedon how and whenin the program’slifetime subordinate
threads are constructed. There are four possibleapproatesto extracting subordi-
nate threads. First, in compiler-tasal extraction the compiler analyzesthe program
code and generatessubordinate threads at the source-leel [32]. The secondap-
proad is linker-basal extraction, which generatessubordinate threads using binary
analysis[8, 29. The third approad is dynamic optimizer-basel extraction. In this
approad, binary-level code is analyzedand extracted similar to linker-basedextrac-
tion. Howewer, the extraction of binary-level code occursat runtime using dynamic
optimization techniques. Finally, the fourth approad is hardware-tasal extraction
[7, 10, 18). In this approad, subordinate threads are extracted at runtime from in-
struction traces. This requires,runtime analysisof retired instructions using special
hardware structures.

Ead of the four approatciesmakesuseof di erent analysistechniquesin dif-
ferert phasesof a program's lifetime, to generate e ective subordinate threads.
Therefore,eat approad exhibits very di erent characteristics. Below, we descrile

20

someof the tradeo s betweenthe main two approatesto extracting subordinate
threads, compiler-basedextraction and hardware-basedextraction; a more detailed
treatmert is available in [73]. We alsodiscussthe operating systemintervertion with

compiler-basedsubordinate threads versushardware-basedsubordinate threads.

Run-time Versus Compile-time Information: In hardware-basedextraction,
the runtime information is usedto accurately identify long-latency ewerts (cace
missesand hard-to-predict branches)in a program. Howewer, the sizeof the hard-
ware structure responsiblefor detecting dependencesamonginstructions to help in
extracting independent subordinate thread code is not su ciently large, resulting
in a limited scope of analysis. The runtime information, howewer, cannot be uti-
lized in compiler-basedapproates. They needto collecto -line pro les insteadfor
identifying long-latency events. Compiler-basedapproades operate in the earlier
phasesof the program lifetime, and sothey utilize the high-lewvel information of the

program.

Dep endence on the Mac hine Platform: When the subordinate thread is gen-
erated at runtime (hardware-basedextraction), it becomesdependert on the hard-
ware platform, i.e., the madine implemertation. This is because hardware-based
extraction requires a special hardware structure for analyzing retired instruction
traces. Therefore, this special hardware structure must be redesignedor every new
processordesign. On the other hand, compiler-basedapproadhesgeneratea source

code that can be compiledfor any processordesign. Therefore, compiler-basedex-

21

traction is completelyindependen of the platform, thereby generatingcode that is

portable.

Eect on Transparency to the User: Runtime extraction is transparert to
the user, hence,hardware-basedapproadhesare completelytransparen to the user.
In hardware-basedapproadies,all the necessaryhardware for runtime analysisand
generationof subordinate threadsis implemerted within the processor.On the other
hand, the compiler-basedapproad is lesstransparert for seeral reasons. First,
it requiresadditional compilation stepssud as code analysisand o -line pro ling.

Second,t requiresthe program sourcecode, which is sometimesunavailable. Third,

it requireschangesto the instruction set architecture (ISA).

E ect on Hardw are Complexit y: In compiler-basedextraction, the subordi-
nate threads are generatedusing software, thereby reducingthe hardware complex-
ity. Compiler-basedapproatesrequire somehardware support though for support-
ing multithreading. On the other hand, hardware-basedapproadhesgeneratesubor-
dinate threads using hardware, henceincreasingthe hardware complexity. Adding
new hardware, hasthe disadwantage of increasingthe the testing and validation cost
of the hardware. Howewer, this dependson how much special hardware is required

for hardware-basedextraction.

Operating System Indep endence: The operating systemis the onethat sched-
ulesthe compiler-basedsubordinate threadsto begin executingon the hardware. It

may take a thread up to 50 thousand cyclesto begin executingon hardware since

22

the time it got scheduledby the operating systemdue to cortext switching. Recall
that, subordinate threads must accomplishtheir task at a time suitable to the main
thread. If they aretoo slow, they will not be ableto hide the latency assaiated with
memory or branch miss-predictions.If they are too fast, they may throw out of the
cadeblocks that are neededby the main thread. Becausesubordinate threads must
be timely, the operating systemmust sthedulethem at the sametime asthe main
thread. On the other hand, pure hardware-basedsubordinate threads are launched
independent from the operating system. They are triggered on spareidle coresby
the hardware, and begin execution with no delay oncethey are triggered. That
makes hardware-basedsubordinate threads more exible and more evert-driv en, so
they are launched only when needed.

From the above discussion,we can concludethat eat approad (compiler-
basedand hardware-based)exhibits its own advantagesand disadwantages. In this
dissertation, howewer, we focus on the hardware-basedgeneration of subordinate
threads due to the following reasons.First of all, while compiler-basedapproates
have been ewaluated previously in marny researb proposals, hardware-basedcon-
struction of subordinate threadsis relatively newand hasnot beenfully investigated.
Also, we beliewe that it is possibleto support hardware-basedextraction of subor-
dinate threads with moderate additions/changesto the hardware of existing mul-
tithreading processorsas we will show in this dissertation. Third, while compiler-
basedextraction utilizes high-level program information of the earlier phasesof the
program lifetime, by supporting hardware-basedextraction we are alsoutilizing the

runtime information to construct subordinate threads for improving single-thread

23

performance.Fourth, with somany coresintegrated on a single chip, there is more
opportunity to use otherwise idle coresto improve the performanceof the active
cores. Finally, it is much faster to switch the mode of a core to act as a subor-
dinate enginefor another active core than to make the operating systemlaunch a
subordinate thread.

Wediscussn the following chaptersour proposedsubordinate threading model,
named, Symbiotic Subordinate Threading, which is a hardware-basedapproad of

subordinate threading.

24

Chapter 3
Symbiotic Subordinate Threading (SST) | The Concepts

and Implemen tation Details

In this chapter we descrite our proposed SST stheme. The basic SST is a
dual-core subordinate threading schemein which one coreis the main thread and
the other core acts as the helper engine(subordinate thread) for the main thread.
The high level view of SSTis shavn in Figure 3.1. Each thread, main or subordinate,
runs on a separatecore on a chip multipro cessingplatform (CMP) [1]. Each core
hasits own data cade (dcade), instruction cade (icache), functional units (FUs),
issuequeue, reorder bu er (ROB), branch predictor, and register le (RF). Both
threads sharea uni ed L2 cade, which is updated only by the main thread. The
subordinate thread forwards all of its outcomesto the main thread via a rst-in-
rst-out (FIFO) queue. The medanismsfor distilling the subordinate thread and
the main thread as well as the meansfor commnunicating the subordinate thread
outcomesto the main thread will be descriked shortly, followed by the detailed

designof SST.

3.1 A Simple Methodology for Distilling The Subordinate Thread

In order for the subordinate thread to run aheadof the main thread, it must

speculate more often and skip instructions. There have been seeral techniques

25

| RF || Fus || ROB|

Branch

IssueQ Pred.

icache dcache

Core 2
Subordinate

| RF |[FUs || ROB|

Branch

IssueQ Pred.

icache dcache

SST High Level View on A Single Chip Platform

read/write read only

CMP

L2 Cache

Figure 3.1: SST top level design.

for distilling the subordinate thread, and they can be divided into dynamic (at run
time) and static (by the compiler). In our implemertation of the subordinate thread
we distill it dynamically using the hardware, to utilize the runtime information
about the program and the data. Also, our hardware medanism doesnot require
cading recurring code regionsof the subordinate thread as corvertional hardware
medanismsrequire.

The subordinate thread we use skips highly predictable branches and their
badkward slices. This allows it to conceftrate on the hard-to-predict branch in-
structions. It alsoiderti es critical memory instructions and retires them early
from the pipeline similar to runaheadexecution[19], sothat they do not block the

pipeline. The criticality of a memory instruction is determined by the number of

cyclesit spendsat the head of the ROB, waiting for main memory,

26

Backward Slice of Branch Instruction

= mem [r7 + offset]

= mem [r2 + offset]

producers
' by recursion

\ .
-

2]
1
-
[y
+
-
w

| producers

-
3
Il
-
ol
+
-
w

\ r--="=>=-=-"=-"=~"=-"=-"=-"=-"=-=°= |

-

\ \ /

~ \ ’
“-A jtotop if r4 ==r2~

top:

Figure 3.2: Identifying the badckward slice of a branch instruction.

Identifying highly predictable branc hes: We usea simple methodology for
identifying highly predictable (non-critical) branch instructions and distill them out
of the subordinate thread along with their badkward slices. We usea brandch pre-
dictor to identify highly predictable branches. Branch instructions that are critical
usually have low prediction con dencein the branch predictor, and the highly pre-
dictable onesusually have high prediction con dencein the branch predictor. When
the subordinate thread skips a highly predictable branch instruction, it follows the
predicted outcomeand direction of the highly predictable branch at the fetch stage
and marks all pipeline instructions in front of the highly predictable brandh in-
struction if they belongto its backward slice. Figure 3.2 shows a branch and its

badkward slice. The algorithm for identifying the badkward slice of a branch in-

27

struction beginsby identifying the producer instructions of ead input operand of
the brand instruction (those producerinstructions are shavn with a squareat their
output operandin Figure 3.2). Next, by recursion,the algorithm is applied on the
producerinstructions to identify the instructions that producetheir input operands

(shown with a circle at their output operandin Figure 3.2), and soon.

Identifying long latency memory instructions: Our subordinate thread also
doesnot wait for long latency memory instructions to complete. When a memory
instruction readesthe headof the ROB, a courter is resetand is incremened every
cycle the memory instruction spendsat the head of the ROB. When that courter
reaesa speci ¢ maximum value, the subordinate thread concludegthat this mem-
ory instruction is critical (long latency). It marks all subsequeninstructions in the
pipeline that are dependen on its outcome. It then suppliesa speculative value
(most likely an invalid value) for the output operand of the memory instruction and

retires it.

Handling Instructions Mark ed to Be Skipp ed: The badkward slicesof highly
predictable branches,aswell aslong latency memory instructions and their depen-
dency chains free all the resourcesthey hold. Hencethey do not nish executing
and passinto the pipeline as no-ops. Oncethey reat the head of the ROB, their
ROB enry is reclaimed and their decaled information is written onto the FIFO
gueue. Becausethey passinto the pipeline as no-ops,they leave the pipeline much

earlier, and so, more instructions can be brought into the pipeline, resulting in a

28

wider instruction window for the subordinate thread.

Note that the subordinate thread passesewery instruction onto the FIFO
gueue, ewven if it did not executeit. In caseof skipped branches, it also passes
the predicted branch outcomethat it followed. This is essetial information that is
passedto the main thread to help it monitor the subordinate thread path, as will

be discussedater.

3.2 A Simpleand E cien t Way of Pruning The Main Thread

In this sectionwe intro ducean algorithm that helpsthe main thread consume
the resultsthat werecorrectly producedby the subordinate thread without having to
executetheir correspnding instructions. This involves recording the subordinate
thread speculative state (registers or memory addresseghat contain speculative
valuesin the subordinate thread), to aid in identifying outcomesof the subordinate
thread that were computed using speculative input valuesfrom thosethat did not
involve any speculative input values. We will shav that our techniquefor pruning the
main thread is independern from the subordinate thread type. A working example

is presetied at the end of this sectionfor clari cation.

3.2.1 Basicldea

In order for the subordinate thread to run ahead of the main thread, it
skipsinstructions. The output registersof those skipped instructions cortain data-

speculative values. Someof the instructions the subordinate thread executesare

29

dependert on the onesit skipped. The outcomesof those dependen instructions
are speculative in nature (which could be correct or incorrect). We categorizethe
instructions executedby the subordinate thread into two classes:those producing
data-speculative outcomesand those producing non-data-sgculative outcomes.
Data-sp eculativ e outcomesare those that are obtained when the subordinate
thread usesat leastoneinput registerthat is data-speculative. An input registeris
data-speculative in the subordinate thread if it is producedby an instruction that
was skipped by the subordinate thread, or if it was producedby a data-speculative
instruction in the subordinate thread. Data-speculative outcomescould be incorrect
and sothe main thread doesnot consumethem.

Non-data-sp eculativ e outcomesarethosethat are obtainedwhenthe subordinate
thread usesnon-data-speculative input registers. In other words, the valuesof their
input registersmatch those of the main thread, and the outcomeswill match those
produced by the main thread. Therefore,they are correct outcomesand the main

thread can consumethem without executingtheir correspnding instructions.

3.2.2 Skipping Non-Memory Instructions

We proposean algorithm for keepingtrack of the architected registersof the
subordinate thread that cortain data-speculative valuesand thosethat cortain non-
data-speculative values. We introduce a bitmap called the Register Speculation
Bitmap (RSB) with asmarny bits asthe number of architected registers. This bitmap

speci es whetheread architected registerin the subordinate thread cortains a data-

30

speculative value or not. It is kept and updated by the main thread during dispatch
and writeback. A "1'in abit position indicatesthat the correspnding registerhasa
data-speculative value. Initially , all registersin the subordinate thread cortain non-
data-speculative values,and soall the bits of the RSB are initialized to zerces(non-
data-speculative). Also, every time the subordinate thread re-starts, after a cortrol
or data miss-prediction,it is given a fresh copy of the register le that cortains no

data-speculative values,and so all the bits of the RSB are reset(cleared).

Scenarios for Up dating the RSB: There are three scenariosor updating the
bits of the RSB by the main thread. First, when the subordinate thread skips
an instruction, the bit correspnding to its output registeris marked by the main
thread at dispatdh stage as data-speculative in the RSB. When the subordinate
thread executesan instruction, if any of its input registershas beenmarked in the
RSB, then alsothe output registeris marked by the main thread at dispatch stageas
data-speculative in the RSB. Finally, if noneof the input registersof the instruction
have been marked in the RSB and the subordinate thread has not skipped the
instruction, then the bit correspnding to the output register of the instruction
is resetto "0' (non-data-speculative) by the main thread at dispatch stage. Only
in this nal case,the main thread can consumethe result of the instruction from
the subordinate thread without re-executingit. In the other two cases,the main
thread must executethe instruction, and validate its outcomeagainstthe result it
obtained from the subordinate thread. If they match, the main thread unmarksthe

bit correspnding to the output register of the instruction in the RSB, otherwise

31

Updating RSB

0 rl r2 r3 r4 15

o @ - LTI o
data-speculative +r3 — ‘ N ‘ N ‘ ‘ r4 marked

non-data-speculative 4 = r5+13 — ‘ N ‘ ‘ ‘ ‘ ‘ r4 unmarked
‘ 0 rl 12 1314 15

Figure 3.3: RSB update scenarios.

it remainsmarked. This validation and unmarking of the RSB bits is done by the
main thread at writeback.

Figure 3.3 shawvs a code snippet in which the rst instruction is skipped by
the subordinate thread. Its output register (rl) is marked in the RSB as data-
speculative. Later on, another instruction that usesrl as input operand is also
data-speculative, and so its output register (r4) is marked as data-speculative in
the RSB. The last instruction shown in the code snippet is not data-speculative
becauseboth its input operands(registersr3 and r5) are not marked in the RSB
and thereforethey are non-data-speculative. Therefore,the output operand (r4) is

not data-speculative and sois unmarked in the RSB.

3.2.3 Skipping Memory AccessegOnly LOAD Instructions)

We proposea similar medanism to the one mertioned in the previous sub-
sectionfor keepingtrack of the subordinate thread memoryaddressesvhosememory

valuesare data-speculative and thosewhosememoryvaluesare non-data-sgeculative.

32

Address Translation to an MSB Bit

X MSB

Mem. Addr. HASH e

Figure 3.4: MSB addressing.

We introduce another bitmap, the Memory Speculation Bitmap (MSB), similar to
the RSB. A perfect MSB would cortain as many bits as the number of unique
memory addresses.That would be a huge bitmap howewer, and so we compromise
that with a much smaller bitmap that is indexed by hashingthe memory address
as showvn in Figure 3.4. It is kept and updated by the main thread in the dis-
patch stage. Initially , the subordinate thread beginswith a memory state that is
non-data-speculative, and so all the bits of the MSB are initialized to zerces(non-
data-speculative). All of the bits of the MSB are also reset (cleared) every time
the subordinate thread re-starts (from cortrol or data miss-prediction), becauseits
dcade s all invalidated upon re-starting.

A bit in the MSB is marked by the main thread as data-speculative if the
memory addressof a store instruction mapsto that bit. We considerall store in-
structions to be data-speculative in the subordinate thread, becausehe subordinate
thread is not allowed to update the memory hierarchy exceptits L1 dcade, and so
all writes it doesto its L1 dcade are lost when blocks are thrown out of it. As

a result, a load that follows a store in the subordinate thread may read from the

33

same store addressbefore the main thread makes the update and therefore may
read a stale value. Hence,any load in the subordinate thread with the samead-
dressas a previousstore is consideredto be reading a data-speculative value. The
main thread must therefore executeall store instructions. It alsomust executeload
instructions whosememory addressesnap to a marked bit in the MSB. Howe\er,
it may consumeresults produced by the subordinate thread for load instructions
whoseMSB bits correspnding to their hashedmemory addressesare not marked
as data-speculative.

The main thread doesnot unmark bits in the MSB (exceptwhena subordinate
thread recovers from a data or cortrol miss-prediction,in which caseall the bits of
the MSB are unmarked), becausemore than one addressmay map to the same
bit in the MSB; soif one of them is speculative, the correspnding bit is marked.
Future referencego the samebit by di erent addressesvill resultin the main thread
executing those instructions, as it cannot determine which of these addressesad

marked the bit.

3.2.4 An Example

Considerthe loop examplefrom bendmark perl shovn in Figure 3.5a. The
subordinate thread and the main thread are spavnedat the sametime and they both
beginexecutionfrom instruction 1. The subordinate thread skipshighly predictable
branchesand their badkward slices.

After a few iterations of the loop, the jump instruction (instruction 7) settles

34

a. Example from Perl Benchmark: b. Pruning the Main Thread: r6 marked as data-speculative
oob: 15 =) Register Speculation Bitmap (RSB) Main Thread Subordinate Thread
L.loop: 15 =15 +imm0 TTTT T - D 1.loop: skip 1loop: 15 = 15 + imm0
2. 14 =r4 +imml ; 2. skip 2. 14 =14 +imml
_ 0rl 1213141516 ...
3. r2=memr4 + offset0] prreror r 3. r2=memiskip] 3. r2=mem[r4 + offset0]
4. 16=r6+imm2 Memory Speculation Bitmap (MSB) 4. 16=16+imm2 4. skip
5 e (T | 5 s=6ro 5 skp
6. 5 + offsetl] = r2 -
7 meT[f :03% 0] r 0123456 ..m 6. mem[skip] = r2 6. mem[r5+ offsetl] = r2
- Jtoloopifr3!=r Index 7. jtoloopifr3!=r0 7. skip
: Memory : :
- %“H h :)
20. 13=r5+r0 address 20. 13=15+10 20. 3=r5+r0

Figure 3.5: (a) Loop examplefrom bendimark perl; (b) Example of reducing the

number of executedinstructions by the main thread.

its prediction to be taken and is determinedto be highly predictable by the branch
predictor. At this point the subordinate thread beginsto skip the jump instruction
along with its backward slice (instructions 4 and 5). This makesthe subordinate
thread run faster than the main thread. Registersr3 and r6 are marked in the
RSB by the main thread as data-speculative, becausetheir producer instructions
were skipped by the subordinate thread. Howeer, after the loop code, registerr3 is
updated by instruction 20 which usesnon-data-speculative input registers(r5 and
r0). As a result, its outcome is non-data-speculative and register r3 is unmarked
in the RSB. Only during the loop iterations, r3 is marked in the RSB as data-
speculative.

Registersr3 and r6 do not sere asinput registersto any subsequeninstruc-
tions executedby the subordinate thread. Therefore,the subordinate thread's out-
comesof instructions 1 and 2 are non-data-speculative, and the main thread may

consumethem without executingtheir correspnding instructions. This is shown in

35

Figure 3.5b; note that the main thread skipsinstruction 1 and 2.

Note that the main thread does not skip store instructions becauseit has
to maintain a correct L2 cate. The subordinate thread's dcache may become
corrupted, becausethe subordinate thread may skip store instructions, and dirty
blocks in its dcade canbe displacedby old blocks from lower levels of memory that
werenot yet updated by the main thread. To ensurea correct L2 cade, all memory
stores are executedby the main thread; howewer, the main thread can skip the
addressgenerationpart. So,the memory addresscalculation part of instructions 3
and 6 is skipped by the main thread. When the main thread dispatchesinstruction
3 to the dynamic scheduler, it marksregisterr2 asdata-speculative in the RSB. The
main thread later unmarksit in the RSB if the value it read from memory matches
the value it obtained from the subordinate thread. In this example,it is shovn as
unmarked. The memory accesgart of instruction 3 can be skipped aswell by the
main thread if the MSB bit at the hashedindex of its addressis not marked (it
is not skipped in this example). Instruction 6 is a store instruction so it will be
executedby the main thread and will mark the correspnding bit in the MSB.

A miss-sgeculation in the subordinate thread will occur in the last iteration
of the loop of Figure 3.5. The subordinate thread will follow the same branch
direction (taken). The main thread will follow the samedirection asthe subordinate
thread and will executethe brandh instruction, which will result in a branch miss-
prediction. Beforethe main thread fully resohesthat brandh, it might have fetched
and decaded from the wrong path. Any marking or unmarking in the RSB or MSB

does not matter, as both bitmaps will be clearedwhen the subordinate thread is

36

re-started.

Pruning the Main Thread is not Aected by the Subordinate Thread

Type: Wepresertied asimplemethodologywith very little hardware addedto help
in pruning the main thread. Weliketo point out herethat this is independen of the
type of subordinate thread running. The subordinate thread maybe very speculative
or moderately speculative. It can be formed dynamically or formed statically. If
the subordinate thread doesnot useany form of speculation then the bitmaps are
not needed,as all outcomesof the subordinate thread will be non-data-sgeculative;

otherwisethey are needed.

3.3 Communicating Subordinate Thread Resultsand Decaded Infor-

mation to the Main Thread

In SST the subordinate thread forwards its resultsto the main thread as part
of the increasedcooperation betweenthe main thread and the subordinate thread.
Also, in SST the subordinate thread fetchesall instructions and then decalesthem.
We let the subordinate thread forward the decaded information of all instructions
it fetchesto the main thread, ewen if it did not executethem. This saves the
main thread from having to fetch and decale again what was already fetched and
decaled by the subordinate thread. We useda rst-in- rst-out (FIF O) queueasthe
communication meansbetweenthe subordinate thread and the main thread. The

subordinate thread writes ead instruction onto the FIFO queuewhen it commits

37

Main Thread . ,* Subordinate Thread

Receive Buffer tail
Decode Unit

I
|
!
Read FIFO Q erite ! ROB c -

| ' commit

[

Select

’
Rename Unit)/ S
, —

head L

Tag (skipped/executed)
Input Operands

Input Values

Output Operands

Output Values

Figure 3.6: FIFO queue.

it. The main thread readsthe enries of the FIFO queueduring dispatc stage.

Operation of the FIF O Queue: As shavn in Figure 3.6, the FIFO queuecon-
nects the main thread and the subordinate thread. When the subordinate thread
commits an instruction, it writes its results (if it executedit) and its decaled infor-
mation on oneend of the FIF O queue,the tail. The main thread readsthe ertries of
the FIFO queuefrom the other end, the head, and placesthe ertries onto a receiwe
buer. Ead ertry in the FIFO queuecortains a tag that indicates whether the
subordinate thread executedthe instruction or not. Also, eat erntry in the FIFO
gueuecontains elds to store the decaded information (opcode, input and output

operands)of the instruction aswell astheir values.

Main Thread Benets from the FIF O Queue: The FIFO queuerepresets

the medium in which all of the subordinate thread's work is stored for the main

38

thread consumption. Becauseof the simplicity of the FIFO queue,the instructions
are placed by the subordinate thread in order and the main thread readsthem in
order, requiring no extra work for chedking the order of the instructions, hencethe
main thread may not loosesyndronization with the subordinate thread. Also, the
main thread canread at its own pace(which is usually slowver than the subordinate
thread) from the FIFO queue. The main thread also usesthe FIFO queueinstead
of its icadhe, for readingfrom it the decaledinformation of every instruction placed
by the subordinate thread, and this sares a lot of fetch and decale cyclesin the
main thread. As shawvn in Figure 3.6, there is a multiplexer with a selectsignalthat
selectsbetweenthe decaled instructions coming from the decale unit of the main
thread versusthe decaled instructions comingfrom the receiwe bu er. If the receiwe
bu er is empty, then the selectline is setto 0, and the decaled instructions coming
from the decale unit passthrough the multiplexer; otherwisethe onescomingfrom
the FIFO queuepassthrough the multiplexer. In the casewhenthere is no running
subordinate thread, then the receiwe bu er will be always empty and the decaled
information will always be comingfrom the decale unit. The main thread may also
bene t from the subordinate thread resultsthat are non-data-speculative becauset
canreadthem from the FIF O queue,and consumethem without having to execute
their correspnding instructions. Finally, it requiresno sophisticated comparisons
for the main thread to integrate the subordinate thread resultsfrom the FIF O queue

into its state (register le and memory).

39

Subordinate Thread Benets from FIF O Queue: The subordinate thread
alsobene ts from placingits resultsand decaled information onto the FIFO queue.
In this way the main thread can monitor its cortrol path, and can detect when
it goeson a wrong path. Also, the FIFO queueincreasesthe e ectiv e size of the
subordinate thread instruction window, by allowing it to placeall its outcomeson
the FIFO queueoncethey are committed. This freesthe subordinate thread ROB

ertries faster, allowing more in- igh t instructions to be fetched into its ROB.

Drawbacks of Using a FIF O Queue: The FIFO queueis extra hardware that
is placed outside the cores. Hence, it adds more complexity and comnunication
latency betweenthe threads. It takesseeral cyclesfor the subordinate thread to
placeits outcomeson the FIFO queue,and it takesadditional cyclesfor the main

thread to read those outcomes.

Alternativ esto Using A FIF O Queue: There arealternativesto usinga FIFO
gueuefor comnunication betweenthe main thread and the subordinate thread. One
sud alternative is using shared memory. In this sdheme, the subordinate thread
writes its resultsto sharedmemory and the main thread readsfrom sharedmemory
This requiresthe programmerto program the communication betweenthe main
thread and the subordinate thread via sharedmemory, which doesnot apply to our
model becausdhe SST subordinate thread is spavnedand formed dynamically. An-
other alternative is to usemessage-@ssingvia the on-cip interconnectionnetwork.

It requiressendingand receivingmessagebetweenthe cores,which is not practical

40

becausen the caseof SST, there will be a cortinuous ow of messagegoing from
the subordinate thread to the main thread and that may overload the interconnect.
Also, if one messagearrivesbeforeanother, that may causelossof syndironization
betweenthe main thread and the subordinate thread. For thosereasonswe nd the
useof a FIFO queueto be more attractiv e, especially that it is a dedicatedhardware

bu er just to sere the main thread and the subordinate thread.

3.4 Putting it All Together: The SST Microarchitecture

We next presen a hardware implemertation of the SST schemethat we have
proposed. It usestwo corespresen in a chip-multipro cessing(CMP) platform [1].
In addition to multiple sequencersa CMP processorhas multiple pipelines for
processingmultiple threadsin parallel. Figure 3.7 shovs a 2-coreCMP enhancedo
support our SST sdheme. Each thread runs on a separatecore cortaining a register
le, an issuequeue,a branch predictor, an ROB, an L1 dcade, and an icache. A
secondevel cathe (L2 cade) is sharedamongboth threads,and canbe updated only
by the main thread. We addedextra hardware for pruning both the main thread and
the subordinate thread. The extra hardware included is the Register Speculation
Bitmap (RSB) for the purposeof identifying non-data-speculative register valuesof
the subordinate thread. Also, the Memory Speculation Bitmap (MSB) is included
to help identify memory addresseghat cortain non-data-sgeculative valuesin the
subordinate thread. The FIF O queueis included for commnunicating the subordinate

thread results and decaled instructions to the main thread.

41

A4

*2IN193)ILPJeoIdIW | SS (/€ aInbi4

| 2UoED alm/peay
peod 7 2z
\\\\\\\\\\\\\\\\\\\ 4
S 4 o=
| | | _
| | | m
| D | | z
” < 8 | ! = &
| — C | ” Q
| A | |
| , |
, |
|] , |
| , 5 —
I [e I ” 3 2 E
| o & = | | S < 5
I (S % D I | E g =
| c = ! 5 :
, E m £ , ” 3 = m
| > ..nl..u IS | | m W 5
| % = S | | g
| = = O | , -~
| nj ! , \7 -
| \7 - ! , =
| m | | =
| || | e 5
” 3 [a1] m ” | w% o)
, A e , ” o2& x
| e 7 x | |
|
| | ! =1 ...
| , =
| ..m | ” o £ %
| ! s 5
, ® S , ” 53 3
| gk | | - f
| g 5 , e JoEIE , 388 =
” o ” S1UM pesay | 4
| ! ” \ﬁ ““““““
, |
| \ﬁ | ”
, |
| | ” W
, LL | -
| — [a'd | ” m m
, 2 5 | | Q = =
| = D | | S -
| m = m ! , m m
| S \
| © 5 | |
| LL | |
” ” | peay \ﬁ
ray \ﬁ |
” _u ” ” arepdn
” erepdn | ! J0101pald
| J0101pald | | youelq
! youeig | |
| , |
| | |
, |
|

210D pealyl urenw

arempreH 1SS

Fast Register File Copy
Before Register File Copy After Register File Copy
Subordinate Thread Subordinate Thread
Read/ ® L Switch Switcht ® Read/
Write Open Open Write
Working Extra Extra Working
RF RF RF RF
Switch ; ; Switch
Ovr\)lrleg k o Write Write ¢ t Ov;;"eﬁ
Main Thread Main Thread
$ Read/Write Read/Write $
Main Main
Thread Thread
RF RF

Figure 3.8: Fast recovery of the subordinate thread state.

3.4.1 BasicOperation

The subordinate thread starts with a full copy of the program, and is then
distilled. It is spavned when the main thread is spavned and cortinuesto run
as long as the main thread runs. In our implemertation of SST, the subordinate
thread is the leaderand the main thread follows. It is possiblethat the main thread
may go ahead of the subordinate thread, sud as when the subordinate thread
recovers from miss-sgculation. However, in our implemertation of SST, we do not
let the main thread advancewith executinginstructions if the FIFO queueis empty.
This ensuresthat it newer goesaheadof the subordinate thread, and hence,does
not loosesyndronization with the subordinate thread. The main thread restarts
the subordinate thread when it goes on a wrong path and when a systemcall is
encourtered. In the caseof a systemcall, the subordinate thread is restarted in

kernelmode and cortinuesto executeasa helper thread to the main thread. It does

43

not executethe 1/0 instructions; theseare executedby the main thread. The RSB
and MSB areread and updated by the main thread in the dispatch stage. The RSB
can also be updated by the main thread in the writebadk stage. The subordinate
thread writes its outcomesinto the FIFO queuein the commit stageand the main

thread readsthem in the decale (dispatch) stage.

Instructions Executed by the Main Thread: In our SST stheme,we try to
eliminate the redundancy between the main thread and the subordinate thread.
We adiieve that by letting the main thread skip instructions that were correctly
executedby the subordinate thread. The main thread hasto executethough, all
instructions identi ed as data-speculative in the subordinate thread as well as the
onesskipped by the subordinate thread. The main thread must executeall store

instructions, aswell.

3.4.2 Memory System

The main thread and the subordinate thread sharean L2 cade. The main
thread hasto maintain a correct memory system,and soit is allowed to read and
write the L2 cade. A subordinate thread's dcade can be corrupt becauseit is
speculative, and soit is not allowed to write to the sharedL2 cade. Therefore,all
memory writes to the L2 cate are doneby the main thread evenif the subordinate

thread performedthem correctly on its dcade.

44

3.4.3 Recorery of the Subordinate Thread from Miss-speculation

Becausethe subordinate thread is speculative, it often goeson a wrong path,
as well as corrupts its state (register le and L1 dcade). The work done by the
subordinate thread on wrong paths is useless. Also, if its state is mostly corrupt
while it is onthe correctpath, thenit will be doinguselessvork aswell, asmost of its
input operandswill have speculative (invalid) values. When the subordinate thread
miss-speculates,it is better to re-start it with a freshcleancopy of the main thread
correct state. This requires squashingthe subordinate thread, and copying the
program courter and correctregistervaluesfrom the main thread. The subordinate
thread also invalidates all of its L1 dcade lines upon recovery. The main thread

also clearsthe MSB and RSB bitmaps upon recovery of the subordinate thread.

Full versus Partial Recovery: While the subordinate thread is copying the
main thread register le, the main thread cannot advance forward. We minimize
the delays due to register le copy, by letting the subordinate thread copy the
main thread register le only if most of its registersare corrupted (full recovery).
Otherwise the subordinate thread doesnot have to copy the main thread register
le (partial recovery). In partial recovery, the subordinate thread only recovers its
correct path and invalidates the ertries in its dcade. Partial recovery allows both
the main thread and the subordinate thread to start executingmuch faster than in
full recovery. Partial recovery can be applied whenthe subordinate thread wernt on

a wrong path and only slightly corrupted its register le while on the correct path.

45

Fast Register File Copy: Onesimpleway to reducedelays dueto registercopy-
ing is to include an extra register le (in addition to the register les kept by eah
thread). This is showvn in Figure 3.8. The main thread is responsible for updating
its own register le aswell asthe extra register le. When a subordinate thread is
about to start (immediately after its spavning or after a miss-sgeculation recovery),
it switchesto the extra register le, which hasthe correct state. The extra register
le now becomesthe working register le of the subordinate thread. The register
le usedpreviously by the subordinate thread becomeshe extra register le that
will be updated by the main thread in the future. The useof the extra register le
is similar to the use of shadowregisters presetted in [25 for doing compiler-based

speculation (boosting).

Penalty for Re-starting the Subordinate Thread: Whenre-starting the sub-
ordinate thread, it takesa while for the rst instruction result to be producedand
bu ered by the subordinate thread for the main thread consumption. That time is
equalto at leastthe depth of the pipeline. During that time, the main thread must
wait until the subordinate thread beginsto produceresultsand write them onto the

FIFO queue.

46

Chapter 4

Exp erimen tal Results of SST

In this chapter we presen experimenrtal results highlighting the performance
gainsobtained due to increasedcooperation betweenthe main thread and the sub-
ordinate thread in our SST scheme. In order to show the bene ts of our scheme,
we compareits performancewith an already existing subordinate threading sdheme,
the slipstream processorf18], which doesnot let the main thread skip instructions.
We also compareits performanceagainst a secondsubordinate threading scheme,
the Dual-Core Execution stheme (DCE) [36], which employs a similar subordinate
thread to the onewe usein SST, and doesnot let the main thread skip instructions.
Our SST stheme achieves higher performancethan the slipstream processor,with
a much simpler hardware. It alsoadievesmuch higher performancethan the DCE
sthemewith moderate additions of hardware, mainly the MSB and the RSB.

We deweloped our own cycle-accuratesubordinate threading simulator from
the SimpleScalartoolset [26]. Our simulator faithfully modelsan SST systemrun-
ning on a multi-core CMP, with a main thread and a subordinate thread, and their
interconnections, as per the block diagram of Figure 3.7 in the previous chapter.
The microarcditectural parameterswe usedare givenin Table 4.1. The L1 dcade
of a subordinate thread is invalidated on its recovery from the wrong paths. We

useda single branch predictor for all cores,and the predictor is updated only by

47

the main thread.

Single Core Parameters

L1 ICache

sz/assa/repl/Iin/lat=16KB/1w ay/LR U/6 4B/1cycle

L1 DCache

sz/lassa/repl/In/lat=64KB/4w ay/LR U/6 4B/1cycle

L2 Cache (data+instrs.)

sz/assa/repl/in/lat=1024KB/8w ay/LR U/1 28B/6 cycles

Main Memory Latency

50 cycles

Fetch/issue/retire

Bandwidth = 4/4/4

ROB/LASIQ/F etchQ

size= 32/16/8 ertries

Branch Predictor

type = bimodal, size= 32K ertries

Branch Penalty

3 cycles

SST-Speci ¢ Parameters

MSB

64 bits

FIFO Queue

latency/bandwidth/size = 2 cycles/4 instrs./32 instrs.

Branch Threshold

Low speculation = 60, High speculation = 1

Sub. Thread Recorery

7+ cycles

Slipstream-Speci ¢ Parameters

Sub. Thread Distill Unit

512 ertries

Table 4.1: Microarchitectural Simulation ParametersFor Smaller Cores

We usedthe SPEC.INT2000 bendmarksfor this study. We usedthe SimPoint
toolset [38, 39, 4(to idertify represetativ e simulation points. Each bendimark is
simulated for 500 million instructions after fast-forwarding the number of instruc-

tions determinedby SimPoint, which is around 1 billion for most bendymarks.

48

4.1 PerformanceEvaluation of SST Against Slipstream Processor

In this experimert, we evaluated 4 di erent con gurations of our SST sdheme
to shov the bene ts of symbiosis| increasedcooperation betweenthe main thread
andthe subordinatethread | by allowing the main thread to consumethe non-data-
speculative results of the subordinate thread without executingtheir correspnding
instructions.

In the rst con guration of SST, the subordinate thread is not highly specu-
lative and the main thread consumegesults of the subordinate thread that do not
involve any memory access(i.e., it doesnot consumeany results of load instruc-
tions). The subordinate thread in the secondcon guration of SST is not highly
speculative aswell, but the main thread may consumeall of the subordinate thread
results including the onescorrespnding to load instructions. In the third and
fourth con gurations of SST, the subordinate thread is highly speculative. The
main thread in the third con guration consumesall results that are correctly pro-
duced by the subordinate thread exceptthose of the load instructions, and in the
fourth con guration, it consumeshe results of the load instructions aswell. The
brandh and memory thresholdsshavn in Table 4.1 indicate the level of speculation
of the subordinate thread. For a not-too-speculative subordinate thread, a branch
instruction is consideredhighly predictable and can be removed from the pipelineif
its con dence courter reated 60, and for a highly speculative subordinate thread
the brandh instruction can be removed from the pipeline if its con dence courter

readed 1.

49

4.1.1 AveragelPC Improvemen of SST

We rst ewaluated the IPC performancegains of SST against the slipstream
processor[15, 18]. In slipstream processors,the A-stream (subordinate thread)
runs a shorter program basedon the removal of ine ectual instructions (highly pre-
dictable branchesand their badkward slices)while the R-stream (main thread) uses
the A-stream results as predictions to make faster progress. Hencethe R-stream
(main thread) executesewery instruction in order to validate its outcome against
the outcomeobtained from the A-stream (subordinate thread). In this experimert
we distill the subordinate thread of SSTjust like in slipstreamfor a fair comparison.
So, we use a table that storessaturating courters for highly predictable branches
and their backward slicesjust asin slipstream. This table is updated by the main
thread. For ewery fetched instruction, the subordinate thread cheds its correspnd-
ing saturating courter to decidewhether to skip or executethat instruction. The
size of this table is 1024 ertries. We will later show that if the SST subordinate
thread is distilled in the manner we discussedn Section 3.1, then we can adcieve
much higher performancethan the A-stream in slipstream (which usesthe huge
table).

Figure 4.1 presetts the results obtained for the four con gurations of SST
againstthat of a slipstreamprocessor.Each bar represets the averagelPC perfor-
manceimprovemen obtained from skipping instructions in the main thread for the
four con gurations of SST, versusthe correspnding baseslipstream sdheme (the

main thread doesnot skip instructions)?.

1The baseslipstream processorcon gurations we usedhave an averagespeedupof 7% and 14%

50

50

Lo speculation ST, MT consumes non-mem. results
Lo speculation ST, MT consumes all results
Hi speculation ST, MT consumes non-mem. results
Hi speculation ST, MT consumes all results

r

Figure 4.1: % IPC improvemen achieved with synbiotic subordinate threading

ST: Subordinate Thread
MT: Main Thread

45

BONQ

40

35

30

25

%IPC Improvement

ATUNTANANA N NN TR NR RN AR RN NN NN

ANNNANNANNNNNNNNNY
NANNNNNNNNNNNNN

a

I |z|| ol I

f twolf vortex parser perl Vi

[ANRRNNNNANY
ANNNNNRNRNN

Q
N
B
Q

Q

)
o
N
S
3
9
kel

<
Q

(SST) over the slipstream processor(main thread doesnot skip instructions). (a)
SST with low speculation subordinate thread, and main thread doesnot skip load
instructions; (b) SST with low speculation subordinate thread, and main thread
skipsload instructions; (c) SSTwith high speculation subordinate thread, and main
thread doesnot skip load instructions; (d) SST with high speculation subordinate

thread, and main thread skips load instructions

It is clearfrom Figure 4.1that our SST performswell for all the bendimarks.
The average performanceimprovemen is 10%, 11%, 21%, and 27% for the four
shemes. All bendimarks exceptga, vortex, and perl perform very well, esgecially
with a highly speculative subordinate thread (bar 3 and bar 4). The lackluster

performancefor these 3 bendimarks is due to the subordinate thread incurring a

over a single-threaded (superscalar) processorfor a con guration with moderate skipping in the
subordinate thread (low speculation) and a con guration of aggressie skipping in the subordinate

thread (high speculation), respectively.

51

large number of instruction cade misses.

In the bars of the averageperformance,there is a jump in performancefrom
the rst 2 barsto the last 2 bars. This indicatesthat with a subordinate thread that
has fewer restrictions to advance,our SST scheme performs even better. We also
noticed from the averageperformancebars that when memory accesseare skipped
by the main thread the performanceimproves, especially when the subordinate
thread aggressiely skips instructions. When the subordinate thread does not do
aggressie skipping, the performancedoesnot improve much even when the main
thread skips memory accessesThe performancenumbers presetied in Figure 4.1

are further analyzedin the following subsectionsusing additional statistics.

4.1.2 Instruction Distribution in The Main Thread

The rst logical result to be drawn from the previous subsectionis that the
main thread runs faster, hencecortributing to the overall performanceimprovemen.
It is running fasterbecausat is skipping instructions whoseoutcomeswere correctly
producedby the subordinate thread. Figure 4.2 shows the distribution of the total
instructions in the main thread for two of the SST shemeswhoseperformancewas
showvn in Figure 4.1 (rst and third bars). Eac bar in Figure 4.2 shows the division
of skipped instructions in the main thread. The main thread performsall memory
accessedut may skip the addresscomputation part of memory instructions. A
signi cant portion of the total instructions is skipped by the main thread in both

shemes;hencethe main thread runs faster. The rst bar of Figure 4.2 correspnds

52

to an SST con guration with a high-speculation subordinate thread, and the second
bar correspndsto an SST con guration with a low speculation subordinate thread.
In the rst stheme(rst bar), fewer instructions are skipped by the main thread,
becausethe subordinate thread skipped more aggressiely. On the average,in the
rst case,approximately 45% of the instructions were executedby the subordinate
thread and 55% of the instructions were executedby the main thread. In the sec-
ond case,this division is approximately 60%-40%.The distribution of instructions
amongthe threads and the performance(Figure 4.1) have a strong correlation. For
example,for the rst sdemein Figure 4.2, the division betweenthe main thread
and the subordinate thread for bendimark parseris roughly 50%-50%.In Figure 4.1
(third bar), the performanceimprovemen for this sthemeis 24%. For the second
stheme, this division is roughly 30%-70%. Its performanceimprovemert is about
13%(rst bar of Figure 4.1). This tells usthat a more equaldistribution of instruc-
tions between the subordinate thread and the main thread for bendimark parser
producesa more equal distribution of work amongthe threads and hencea higher
performance. This is not the casefor all bendimarks, however; someof them (such
asgx) will have a more equal distribution of work if the subordinate thread skips
aggressiely. On the average,by letting the main thread skip instructions, a more
balanceddistribution of work amongthe threads occurred, which resultedin better

performanceas shavn in Figure 4.1.

53

120

executed
non br. & non mem.
branches

mem. addresses

a: SST: High speculation subordinate thread
110 b: SST: Low speculation subordinate thread

BONE

100
90
80
70
60

50

% Dynamic Instructions

40

30

20

QZIB ab 22 parser

avg.

Figure 4.2: Instruction distribution in main thread for two schemes:(a) SST with
high speculative subordinate thread; (b) SST with not too speculative subordinate

thread

4.1.3 LessWork Done by the Subordinate Thread on Wrong Paths

We had argued earlier that if the main thread skips some instructions, it
can detect subordinate thread miss-predictionsearlier, thereby cutting down the
time spert by the subordinate thread on wrong-path instructions. In Figure 4.3
we shav a comparisonof the distribution of work done by the subordinate thread
for four shemes(4 bars per benchmark). Ead bar showvs the work done by the
subordinate thread which is divided into three parts: percenage of instructions
skipped, percenage of instructions executedon the correct path, and percertage of
instructions executedon the wrong path. In the rst two sthemes(corresppnding
to the rst two bars, respectively), the subordinate thread is highly speculative,
and so it skips instructions aggressiely. The main thread is not allowed to do
any skipping in the rst sdieme (slipstream), and in the secondstemethe main

54

SST, low speculation ST

XXXXXXXNXXXXNXXNXXNXXNXNNN

RRRRILLILILLLLLILILLLILIR

y ab xy ab XY ab xy ab xy ab xy

180

T

()]

c

o

=1

8

5

0

o}

Q'

7}

o

[

9]

2

Do §

Spn o RRRRRLILILILILILILLLLRILILILN

=0 2

nn c

7Y =

P79

03

c £

o 3T

S oo

g5 8

s? 2

55a

ww = LB

c3 0 —

g% AR

Lo

m,s

c

Lo

oe

=

2 XNXXXXNNXXXNXNNNNXNNN]

nn XXX

%4 BB
XXX

£% R RRRRRRRRRRRRRRRRRRRRR,

Q
Q 3 M LN
W oQ SRR LRLLLILLLLILLLLLLLILLLL
o ,m. .m. AR
200 SRIIIILASSILILLLILILLLILIL
| XN
O 000000000000 O0OO0O0O0 O
NODIONFdQodroOB T O N

SUONINISU| AIWRUAQ %

bord

Ive su

avg.

(b) SSTwith a highly

perl
inate thread.

tructions and advancesfaster.
th our expectations. The same

bord
ins

parse
ive su
ips

tream with a not too speculat

te thread on wrong paths for four schemes

ips
55

thread sk
and agreesw

mcf twolf
ina
; (c) Sl
in

ab Xy ab x

bzip

ab xy
d for the last 2 setsof bars.

tly whenthe ma

b
y ab xv

I can

gzip

Work doneby the subord
(d) SSTwith a not too speculat

ab x

It is clearfrom the rst two setsof barsthat the work doneon the wrong path
true for all the bendimarks

IS

thread skipsinstructions (SST). In the third and fourth sthemes(third and fourth
bars, respectively), the subordinate thread is not too speculative. The third sdheme

correspndsto the slipstream processorand the fourth correspndsto SST.

(a) Slipstreamwith a highly speculative subordinate thread

speculative subordinate thread

Figure 4.3

nate thread
decreasesign
This

results are obtaine

4.1.4 Performancelmprovemert with a Highly Speculative Subordi-
nate Thread Versusa Not-T oo-Speculative Subordinate Thread

In the previoussubsection,we shaved that the work doneby the subordinate
thread on wrong pathsis signi cantly reducedin the SST con gurations. It is higher
though for a con guration with highly speculative subordinate thread comparedto
a con guration with a low-speculation subordinate thread as shavn in Figure 4.3.
Howe\er, the averageperformancefor a con guration with the highly speculative
subordinate thread is higher than that of the low-speculation subordinate thread,
as shown in Figure 4.1. This is becausethe number of correct-path instructions
executedby the subordinate thread for a con guration with the low-speculation
subordinate thread (third and fourth bars of Figure 4.3) is much higher than that
with a con guration with a highly speculative subordinate thread (rst and second
bars of Figure 4.3). This indicates that a low-speculation subordinate thread is
much slower than a highly speculative subordinate thread. A highly speculative
subordinate thread is able to perform a better job in hiding the long latency of
critical memory instructions and branch miss-predictions,becauseit is faster (ex-
ecuting fewer non-critical instructions) and readesthose long latency instructions
faster. Even though a highly speculative subordinate thread may end up skipping
somecritical instructions becauseit speculatesaggressiely, it still delivers more
help to the main thread than a low-speculation subordinate thread. Note that if the
subordinate thread is too aggressie in speculating and skipping instructions, sud

that all of its outcomesare incorrect, the main thread will end up executing most

56

of the instructions, rendering the subordinate thread useless.We will comeacross

very speculative subordinate threadsin Chapter 6.

4.1.5 Improvemern in the Subordinate Thread L2 Cade Miss Rate

By analyzingall the bendhmarks, we noticed that with symbiosis(main thread
consumingresults of the subordinate thread without executingtheir correspnding
instructions) the L2 cade missesincurred by the subordinate thread decreasedor
almost all the bendimarks, while the number of L2 cade missesincurred by the
main thread remainedrelatively unchangedfor all bendimarks. This is showvn in
Figure 4.4. The rst bar shows the L2 cade missrate for a single thread scheme.
The secondand third bars shaw the distribution of L2 cade missesncurred among
the subordinate thread and the main thread in the basic subordinate threading
stheme(slipstream) and the SST stheme. The subordinate thread L2 cathe misses
are further divided into L2 cade missesthat are usefulto the main thread and L2
cade missesthat are uselesgi.e., do not provide any help to the main thread). It
is clear from Figure 4.4 that with synbiosis (SST), the uselesd.2 missesdecreased
over all the bendimarks, especially for bendimarks mcf, twolf, parser, and vpr.

We like to point out that the decreasein L2 cade miss rate for the SST
subordinate thread is becauseof the reduction in the speedgap betweenthe main
thread and the subordinate thread. When the main thread is running with a speed
closeto that of the subordinate thread, it is lesslikely that the main thread will

throw pagesout of the L2 cade that are neededby the subordinate thread in the

57

22

Single Thread: L2 Misses

Slipstream/SST: Subordinate thread usel L2
Slipstream/SST: Subordinate thread useful L2 mi
Slipstream/SST: Main thread L2 misses

20

B00E

18

[
)

a. Single Thread
b. Slipstream
c. SST

BoR
NN

L2 Cache Miss Rate
B
o

a
gzip gcc bzip mcf twolf vortex parser perl vpr avg.

Figure 4.4: Distribution of averagelL2 cade missesbtainedwith: (a) Singlethread,;

(b) Slipstream processor;and (c) SST.

near future. As a result, the subordinate thread L2 cade missrate will improve.
Also, with symbiosis, the main thread may consumethe subordinate thread results
of memory loadswhich reducesthe number of times the main thread hasto access
memory This againmakesit lesslikely for the main thread to throw from the the L2
cade pagesthat are neededby the subordinate thread in the future. Finally, when
the main thread runs faster, the memory updates made by the subordinate thread
will be immediately done by the main thread. This reducesthe speculative values
used by the subordinate thread, which, in turn, reducesthe number of memory
accesse# performswith incorrect addressesthereby reducingthe number of useless

L2 cade missesit may incur.

58

4.1.6 Improvemern in the Main Thread L1 DCadhe Miss Rate

In order to understandthe e ect of memory symbiosison the main thread L1
dcathe missesn the SST scheme,we plotted the perceriage of main thread total L1
dcate missesncurred when memory synbiosisis applied (white portion of rst bar
of Figure 4.5). By memory symbiosis,we meanletting the main thread consumethe
subordinate thread results of load instructions. It is clear from Figure 4.5 that the
L1 dcade missesincurred by the main thread decreasedvith memory symbiosis,
for all the bendhmarks. On average,8% of the L1 dcate missesincurred by the
main thread were saved when memory symbiosis was applied (black portion of the
rst bar of Figure 4.5). The secondbar of Figure 4.5 provides more statistics of the
L1 dcate accessedoneby the main thread when memory synbiosisis applied. A
signi cant portion of the L1 dcade accesseslone by the main thread is reduced
(20% on average)when we apply memory symbiosis, as shovn in the upper portion
of the secondbar of Figure 4.5. Together, the middle and lowest portions of the
secondbar in Figure 4.5 show the total L1 dcade accessethat are skipped by the
main thread when memory synbiosis is applied. On average, almost 16% of the
L1 dcade accesseskipped by the main thread with memory symbiosis would have
causedan L1 dcade missif the main thread did not skip them (lowest portion of

the secondbar in Figure 4.5).

Main Thread L2 Cache Misses: The mainthread L2 cade missesdo not shov
signi cant changewith memory symbiosis, asshavn in Figure 4.4. An insigni cant

decreasen the main thread L2 cathe missesoccurswith memory symbiosisthough,

59

Main thread L1 dcache misses incurred
Main thread L1 dcache misses saved
Main thread L1 dcache accesses incufred
Main thread L1 dcache accesses saved

Main thread L1 dcache misses saved

120

110

]| gEEN0

100

90

80

70

60

50

40

30

20

10

gzip gcc bzip mcf twolf vortex parser perl vpr

Figure 4.5: Main thread L1 dcade: (a) missesincurred and saved with SST when
memory symbiosis is applied; and (b) accessescurred and saved with SST when

memory synbiosisis applied.

becauseof the overall decreasein the main thread memory accesses.Howeer, a
slight increasein the main thread L2 cade missesoccur for bendamarks mcf and
vortex becausethe main thread reahesthe L2 cathe missesfaster beforethey are

fully servicedby the subordinate thread.

4.1.7 Reductionin the Main Thread Branch Miss-predictions

In this subsectionwe show the advantage of our SST model over the slipstream
model in reducingthe brandh miss-predictionsincurred by the main thread. In SST,
the main thread selectively consumeghe subordinate thread branch outcomesonly
if they are non-data-speculative, and usesthe predictions obtained from the branch
predictor for all other branch instructions. This is in cortrast to the slipstream

model, in which the main thread blindly usesthe subordinate thread outcomes

60

of brandh instructions as predictions instead of the predictions obtained from the
branch predictor. In Figure 4.6 we shav the perceniage of brandh instructions
that were miss-predictedin the main thread for three di erent processommodels, a
singlethread model that usesthe predictions of the branch predictor for all branch
instructions (rst bar), the slipstreammodel (secondbar), and the SST model (third
bar). As shown, the SST model performs the best with respect to reducing the
branch miss-predictionsincurred by the main thread, on average 58% less than
the singlethread model, while the slipstream model only reducedthe branch miss-
predictions of the main thread to an average of 40% lessthan the single thread
model.

The subordinate thread may executebrandchesthat have one or more data-
speculative input operands,and this introducesmoreincorrect branch predictionsin
the main thread of the slipstreammodel. Thoseincorrect predictionsmay have been
avoided if the subordinate thread followed the branch predictor predictions without
executing the branch instruction. In other words, the predictions of the branch
predictor are moreaccuratethan the onesobtainedby letting the subordinate thread
executethe branch instruction with speculative input values. On the other hand,
SST avoids introducing incorrect predictions into the main thread by not allowing
the main thread to useall the subordinate thread branch outcomesas predictions.
Rather, in SST, the subordinate thread outcomesof branch instructions that are
executedusing data-speculative input valuesare not trusted by the main thread.
As a result, the main thread doesnot consumethem from the subordinate thread,

and instead follows the predictions of the branch predictor.

61

16

[0 Single Thread: uses only branch predictor outcomes
O Slipstream: uses only subordinate thread branch outcomes

=
(3~
g 14 B SST: uses branch predictor outcomes and subordinate thread branch outcomesg
=
‘T
e
212
=
o
=
2] o —
‘g 10 62%
=
=] o,
£ s 10% 85% - _
S5 1826
B 7o © 19%
o 0
p 0,
2 . 20% - 34%
= 90% 23% 40%
L)
2 1239% 2350 25% 5804
S
> 4
=4 2289%
o 3069
é (o)
> 15%
O [

gzip gcc bzip mcf twolf vortex parser perl vpr avg.

Figure 4.6: Main thread % of branch miss-predictionsincurred when using: (a)
The brand predictions obtained from a brand predictor for all brand instructions
(singlethread); (b) The brand predictionsobtainedfrom the subordinate thread for
all branch instructions (slipstream); (c) The non-data-speculative branch outcomes
of the subordinate thread, and the predictions obtained from the branch predictor

for all other branch instructions (SST).

The SST model, howeer, is consenrative becauset considersall branch out-
comescomputed using speculative input valuesto be incorrect, which is not the
case.Therefore, it wastessomeopportunities in which the data-speculative branch
outcomesof the subordinate thread are correct and may bene t the main thread
by letting it avoid a brandh miss-prediction penalty. This is not the casein the
slipstream model where the main thread will bene t from all correct branch out-
comesin the subordinate thread whether they are data-speculative or not. From
the results shovn in Figure 4.6, we can concludethat the data-speculative branch

outcomesof the subordinate thread that are correct are fewer than the onesthat

62

are incorrect, and hencethe SST model wins.

Single Core Parameters

Main Memory Latency 100+ cycles
ROB/LAStQ/F etchQ size= 64/32/16 ertries
Branch Penalty 16 cycles

SST-Speci ¢ Parameters

Sub. Thread Re-start Penalty | 16+ cycles

Memory Threshold 10 cycles

Table 4.2: Microarchitectural Parameterswith Larger Cores

4.2 PerformanceEvaluation of SST Against DCE

In the previoussectionwe highlighted the bene ts of our SSTmodel againstthe
slipstreammodel. In this sectionwe highlight the bene ts of our SST model, using
larger cores,with larger window sizeto be ableto serve morein- igh t instructions at
the sametime. Larger window sizesare especially suitable for long latency memory
instructions becausdhey canexploremorein- igh t instructions and hencecansene
more than one L2 catde miss at the sametime. We also usemuch larger L2 miss
latency, at leasta 100 cycles,and 16 cyclesbranch miss-prediction penalty. The
new parametersare shovn in Table 4.2.

We performed se\eral experimerts with varying L2 cade miss latencies. In
all the experimerts, we let the subordinate thread run aheadwhen it encourers
an instruction that results in an L2 cahe miss, by supplying an invalid value for

63

its output operand. A memory instruction is consideredlong latency if it reathed
the head of the ROB and blocked the subordinate thread pipeline for 10 cycles.
This allows the subordinate thread to run even faster with a much wider instruction
window. Hence,it readesthe long latency memory instructions faster than before.
That makesit more suitable for prefetching. Howewer, it may go on the wrong path
much sooner.

We compareour SST results against a dual-core execution paradigm (DCE)
[36], that was proposedto acceleratesequetial programs. DCE is similar to our
SST model and both of them sharea similar high-level architecture: two processors
connectedvia a FIFO queue. DCE consistsof two superscalarcores,a front pro-
cessorand a badk processor.The front processomresenblesthe subordinate thread
and the bad processoresenilesthe main thread in our terms. The front processor
executesinstructions exceptfor long latency cade misses,it instead producesan
invalid value instead of blocking the pipeline, similar to runahead execution [19].
The front processoralso forwards all its results to the badk processor,which uses

them as predictions similar to the slipstream processor.

4.2.1 IPC Improvemert of SSTwithout Memory Symbiosis(100 Cy-
clesfor Main Memory Access)

Figure 4.7 preserts the IPC obtainedfor three sdhemes:assinglethread scheme,
a basesubordinate threading scheme (DCE), and SST. We let the main thread in

SST consumeresults of the subordinate thread only for non-memoryinstructions

64

19%29%

100 Cycles L2 Cache Miss Latency.

m Single Thread
O DCE
1.4 Bl SST: Main thread consumes subordinate thread non-load rgsults.

1.2 59%8%

37%57% 23063204

IPC
i

26%41%
1%2%
45%58%
0.8 2196239 135%180%
13%13%

- H

o

gzip gcc bzip mcf twolf vortex parser perl vpr avg.

Figure 4.7: IPC obtained with memory latency 100 cyclesfor: (a) Single thread
scheme; (b) DCE stheme;and (c) SST sdheme (main thread consumeshe results

of the subordinate thread for only non-memoryinstructions.

(non-memorysynbiosis). We alsolet the main memorylatency be 100cycles. There
are three bars, correspnding to ead of the three sdhemes. It is clear from Figure
4.7 that SST performs better than the other schemes. The average performance
improvemen of SST is 9% against the DCE sdheme. For somebendmarks like
bzip mcf, twolf, parser, and vpr, there is a signi cant performanceimprovemert

over DCE.

4.2.2 IPC Improvemer of SST with Memory Symbiosis (100 Cycles
for Main Memory Access)

We performed another experimert in which we allowed the main thread to

consumethe subordinate thread results of load instructions as well (memory sym-

65

19%34%

I Single Thread
18 O DCE
Bl SST: Main thread consumes all subordinate thread resllts.

100 Cycles L2 Cache Miss Latency.

1.2 59699%

0, 0,
37%63% S696a006 2376379

IPC
i

45%69% 1%3%
135%200%

o
®

21%249%
13%13%

o
o)

o
IS

o
N

gzip gcc bzip mcf twolf vortex parser perl vpr avg.

o

Figure 4.8: IPC obtained with memory latency 100 cyclesfor: (a) Single thread
scheme; (b) DCE stheme;and (c) SST sdheme (main thread consumeshe results

of the subordinate thread for all typesof instructions).

biosis). We let the main memory latency be 100 cycles. Figure 4.8 shaws the IPC
obtained for the three sthemes,a singlethread stheme,the DCE stheme,and SST
(rst, second,and third bar, respectively). It is clear from Figure 4.8 that SST
performs better than the other schemes. The average performanceimprovemern
of SST in this caseis 14% againstthe DCE sdieme. Again, there is a signi cant

performanceimprovemen for bendimarks bzip mcf, twolf, parser, and vpr.

4.2.3 IPC Improvemer of SST with Memory Symbiosis (300 Cycles
for Main Memory Access)

We also evaluated our SST scheme with a 300 cycle L2 cade miss latency.

The IPCs for the three sthemes(single thread, DCE, and SST) are showvn in Figure

66

1.6
46%58%
1.5

1.4 m Single Thread
’ O DCE
1.3 B SST: Main thread consumes subordinate thread non-load rgsults.

1.2 300 cycles L2 Cache Miss Latency.
7%10%

1.1

0.9

IPC

o8 34%43%
0.7
-2%-2% 5go4 7394 1 X016% 46%69%

0.6 88%102%

0-5 32%634% 215%2809%
0.4
0.3

0.2
0.1 |||

azip gcc bzip mcf twolf vortex parser perl vpr avg.

Figure 4.9: IPC obtained with memory latency 300 cyclesfor: (a) Single thread
scheme; (b) DCE stheme;and (c) SST sdheme (main thread consumeshe results

of the subordinate thread for only non-memoryinstructions.

22 m Single Thread: L2 Misses
— [0 DCE/SST: Subordinate thread usel L2 mi
20 [0 DCE/SST: Subordinate thread useful L2 misses
B SST: Main thread L2 misses
18
16
a. Single Thread
214 b. DCE
o
n c. SST
R}
=12
[<5)
=
]
O 10
~
-
8
6

gcc bzip mcf twolf vortex parser perl vpr avg.

Figure 4.10: Distribution of averagelL2 cadie missesobtained with memory latency
300 cyclesfor: (a) Single thread stheme; (b) DCE stheme; and (c) SST stheme
(main thread consumesghe results of the subordinate thread for only non-memory

instructions).

67

4.9 (rst, secondand third bars respectively). Symbiosiswas enabledfor only non-
memory instructions. The IPC for all three shemesacrossall bendimarks dropped
further whenthe L2 cade miss penalty increasedto 300 cyclesas expected. It is
clear from Figure 4.9 that SST still performsbetter than the singlethread and the

DCE sthemes.The averageperformanceimprovemen of SSTis 9% against DCE.

4.2.4 Reductionin the Subordinate Thread L2 Cace Miss Rate

By analyzingall the bendimarks, we noticed that with symbiosisthe L2 cade
missesincurred by the subordinate thread decreasedor almost all the bendmarks,
while the number of L2 cadhe missesncurred by the main thread remainedrelatively
unchangedfor all bendimarks. This is shovn in Figure 4.10. The rst bar shovsthe
number of L2 cade missesincurred in the single thread scheme. The secondand
third bars show the distribution of L2 cadie missesincurred amongthe subordinate
thread and the main thread in the basic subordinate threading sdheme(DCE) and
SST. The subordinate thread L2 cade missesare further divided into L2 cade
missesthat are usefulto the main thread and L2 cade missesthat are uselesqi.e.,
do not provide any help to the main thread). It is clearfrom Figure 4.10that with
symbiosis, the uselesd.2 cade missesdecreasedaver all the bendimarks, esgecially
for bendmarks bzip mcf, twolf, parser, and vpr. Theseresults agreewith what we
obtainedearlierin the previoussection. Howe\er, the subordinate thread in the SST
sthemeincurred more uselesd.2 cade misses.This is explainedby noting that the

subordinate thread in SST run aheadwhenit encourers an L2 cade miss, and so

68

runs much faster than the subordinate thread in the previous section. This makes
the speed gap betweenthe main thread and the subordinate thread much larger,
making it more likely for the subordinate thread to perform memory accessesvith
invalid addressesand hencegeneratinguselesd .2 cade misses.

The subordinate thread L1 cade missesimproved with SST just as in the
previous section. Also, with SST the number of branch miss-predictionsdecreased

in the main thread just like in the previoussection.

69

Chapter 5

An Optimized Implemen tation of SST

In this chapter we presen a new microarchitecture of SST that capturesall
of the featuresof the old SST designbut is more e cient. We identify someine -
ciencieswith regardto distilling the subordinate thread and recovering it from the
wrong path. In the new implemertation of SST the subordinate thread is aware of
its own speculation. This hasse\eral advantages. First, a speculative-avare subor-
dinate thread can avoid executinginstructions with data-speculative input values.
This makesthe subordinate thread faster, asit will executefewer uselessnstruc-
tions. Also, this makesour SST more e cien t becausehe main thread will execute
those data-speculative instructions anyway, and so it would be redundart if the
subordinate thread also executesthem.

We also provide a simple recovery sthemefor the subordinate thread when it
goeson a wrong path that takesadvantage of the dual-purposecore we provide in
the new SST designto ensurea quick re-start for the subordinate thread after its
recovery as well as eliminate the needfor a shadav register le. In the new SST
design,ead core may play the role of a subordinate thread or a main thread, and
both coresare coupledwith a FIFO queuethat operatesin both directions. In this
way, recovering the subordinate thread involves a simple switch medanism to the

role of ead core (from a subordinate thread role to a main thread role and vice

70

versa)and to the direction of information ow on the FIFO queue.

In this chapter we only discussthe newly added parts and issuesconcerning
the new design. Any other details are assumedo be identical to the old designand
we refer the readerto Chapter 3. Finally, we presen our results for the new SST
designand compareit to the old SST designand to a subordinate threading stheme

that doesnot employ synbiosis, the dual-coreexecutionparadigm (DCE) [36].

5.1 A Partially Speculative-Aware Subordinate Thread

In the old designof SST, the subordinate thread hasno accoun of the registers
that cortain data-speculative valuesin its register le or memory addresseghat
cortain data-speculative values. As a result, it executesinstructions that take,
data-speculative valuesasinput. It is highly probablethat the subordinate thread
will produceincorrect results for data-speculative instructions, thereby wasting its
execution bandwidth on uselessinstructions, and limiting its instruction window
size. With branch instructions it is evenworse,becausehe subordinate thread may
obtain a correct prediction from the brand predictor, and yet go on the wrong path
becauset executedthe branch instruction with incorrect (data-speculative) input
values. Finally, the main thread will anyway executethose instructions because
they are data-speculative in the subordinate thread, and thereforeit is redundart
that the subordinate thread executesthem. We introduce a simple medanism for
making the subordinate thread self aware of the speculationsit makes. This aids

it in making better decisionsconcerningwhich instructions to include and which

71

instructions to exclude, i.e., the distillation process. This also eliminates further

redundart executionsaswell as speedsup the subordinate thread.

Distilling the Subordinate Thread in the Old SST Design: In the old
designof SST, branch instructions that are highly predictable are iderti ed using
the saturating courters in the branch predictor. They are then marked and their
badkward slicesthat currerntly residein the pipeline are also marked. They are all
then corverted to no-ops, freeing up all the resourcesthey hold. Also, in the old
design,long-latencymemoryinstructions areremoved from the pipelineaswell when
they arrive at the ROB headand block the pipeline. An invalid (speculative) valueis
suppliedto their dependen instructions that currently residein the pipeline, which,
in turn, are also corverted to no-ops. The old design, howewer, cannot idertify
any instructions further that are dependernt on the onesremoved. In other words,
distillation occursonly for the window of instructions that happen to exist in the
pipeline at the time when the long-latency memory instruction was iderti ed or

when the highly predictable branch instruction wasidenti ed.

Distilling the Subordinate Thread in the New SST Design: In the new
designof SST, the subordinate thread includesan RSB and an MSB just like the
main thread, to aid it in identifying registersthat cortain data-speculative values
aswell as memory locations that cortain data-speculative values. Any instruction
that is converted to a no-op or is identied as a long-latency instruction marks

the correspnding bit of its output operand in the RSB as data-speculative. All

72

storeinstructions mark the correspnding bit of their hashedaddressin the MSB as
data-speculative. In this way, the subordinate thread keepstrack of data-speculative
registersor memory locations. Later, if an instruction that usesa data-speculative
value as its input arrives at the pipeline, it is automatically identied as a data-
speculative instruction and is corverted to a no-op. Hence, with the aid of the
RSB and the MSB, the subordinate thread now can identify instructions that are

dependert on the removed onesewen if they arrive at the pipeline much later.

Operation of the Subordinate Thread RSB: The RSB is treated in the sub-
ordinate thread in the sameway asin the main thread of the old and new designs
of SST, but with minor di erences. It is read and updated by the subordinate
thread in the dispatch and writeback stagesjust asin the main thread. However,
instructions that arrive at the ROB headand are identi ed aslong-latencyinstruc-
tions are treated di erently. Initially, those instructions are non-data-speculative
and sothey do not mark any bits in the RSB. When they arrive at the ROB head
and becomeiderti ed as long-latency instructions, the RSB bit correspnding to
their output operandis marked asdata-speculative in the writebadk stage. Also, for
all instructions currertly residing in the pipeline that are dependen on the long-
latency instruction, the RSB bit correspnding to their output operandsis marked
asdata-speculative. The samealsohappensto highly predictable branchesand their

badkward slicesthat currently residein the pipeline.

73

Operation of the Subordinate Thread MSB: The MSB is read and updated
by the subordinate thread in the dispatch and writeback stagesjust like the RSB.
Initially , all of its bits are setto zerces,indicating that all memory addressesn the
subordinate thread cortain non-data-speculative values. Unmarking the MSB bits
occursonly when the subordinate thread recovers from a miss-sgeculation. Again,
long-latencyinstructions and their dependencychains aswell as highly predictable
branchesand their badkward slicesare treated asin the casewith the RSB.

The RSB and MSB of the subordinate thread, howewer, do not re ect an
accuratepicture of the data-speculative registerand memory locations. That's why

the main thread in the new designmust maintain another set of RSB and MSB.

Inaccuracy of the Subordinate Thread MSB: Weidentify acasethat renders
the subordinate thread MSB aslessaccuratethan the main thread MSB (of the old
and new designs). This caseis of a store instruction whoseaddresscannot be de-
termined becausadts input operandsare data-speculative, and sothe correspnding
bit of its hashedaddresscannot be marked in the MSB. Hence,the marked bits of
the subordinate thread MSB only re ect a subsetof the total bits that should be

marked. The full setis represeted by the marked bits in the main thread MSB.

Inaccuracy of the Subordinate Thread RSB: The inaccuracy of the sub-
ordinate thread MSB is re ected upon the RSB. If a load instruction that has a
non-data-speculative addressarrives, it may very well read from the addressthat

was not marked in the subordinate thread MSB, and soit is not really non-data-

74

speculative. Howewer, it will not mark the bit correspnding to its output register
as data-speculative in the RSB, rendering the subordinate thread RSB inaccurate.
Therefore, the marked bits of the subordinate thread RSB do not re ect the full
speculative state of the register le.

Note that the slight inaccuracyof the subordinate thread RSB and MSB a ects
the number of instructions that will be distilled out of the subordinate thread. That
may causethe subordinate thread to executemore instructions becauset failed to
identify someas data-speculative. That is tolerable as the SST sdheme achieves

considerableimprovemerts, aswill be shavn in the result section.

Fully Speculativ e-Aw are Subordinate Threads: Note that the caseof a store
instruction that hasa speculative addresscan be handledin the subordinate thread
by simply marking all the bits of its MSB as data-speculative. This makes the
subordinate thread skip all subsequenload instructions, aswell astheir dependency
chains. This consenative approad ensuresthat the subordinate thread is fully
aware of its own speculation. Howeer, the subordinate thread then may skip too

many instructions, thereby becomingtoo speculative to be useful.

5.2 The Subordinate Thread Recorersfrom Miss-SgeculationBy Switch-

ing Roleswith the Main Thread

Becauseead core in the new design of SST is symmetric, i.e., they both

corntain the samehardware, eady may act asa main or subordinate thread. In the

75

SST: Before Switching Roles SST: After Switching Roles

Corel Core 2 Corel Core 2
Main Subordinate Subordinate Main

| P . |

Data Flow 1 Data Flow

|
|] .]
] -] : : . _ =
!] i : i

|

I

e -8
i - = -

L_ﬁ__ R switghing 4 N
| read/write read only read only read/write |

\
\ N ' /

Aol o [z

Figure 5.1: Subordinate thread and main thread switch roles after recovery of the

subordinate thread from miss-speculation.

new design, we let the coresswitch roles when recovering the subordinate thread
from a miss-sgeculation, i.e., the main thread becomeghe subordinate thread and
the subordinate thread becomeghe main thread. This aidsin faster recovery of the
subordinate thread from a miss-sgeculation, by eliminating the penalty assaiated
with squashingand re-starting the subordinate thread (in the old design, when
the subordinate thread re-starts after miss-sgculation, it takesa number of cycles
equalto the pipeline depth until it can producethe rst result and placeit on the
FIFO queuefor the main thread consumption, during which time the main thread

is blocked, waiting for the subordinate thread results).

Switc hing Roles: When the main thread detects that the subordinate thread

hasgoneon a wrong path it initiates recovery. This involvesthe subordinate thread

76

switching its register le with the shadav register le to have a cleancopy of the
register le and copying the program courter from the main thread. Also, all ertries
of the L1 dcade of the subordinate thread are invalidated, and then the subordinate
thread is squashed.In the new design,oncethesestepsare done, the main thread
and the subordinate thread switch rolesasshown in Figure 5.1. After switching, the
subordinate thread hasthe correct memory and register le state (which belonged
originally to the main thread) and can begin placing results onto the FIFO queue
without any delays, asits pipelineis full. The ow of data on the FIFO queueis
also switched, and so the main thread readsthe results of the subordinate thread
at the new end of the FIFO queue. Also, the accessepermissionto the L2 cade

are switched.

Using FIF O Queue Instead of Shadow Register File: In the newSSTdesign
we can eliminate the useof the shadav register le by usingthe FIFO queueinstead.
Becauseof switching roles, the FIFO queuecan be usedto transfer data in both
directions. Hence,it canbe usedby the main thread to forward its register le values
to the subordinate thread upon recovery. Oncethe main thread has written all of
its register le values,it canswitch its role to the subordinate thread role, and when
the subordinate thread copiesthe registervaluesfrom the FIF O queue,it canswitch
its role to the main thread role. The useof the FIFO queueto transfer the register
valuesof the main thread to the subordinate thread upon recosery may introduce
slight delays, but it hasthe advantage of eliminating the hardware assaiated with

the shadav register le.

s

New SST Hardware

78

|
|
o Issue |
m ICache Queue |
© ke I
®© |
o |cs || 2 ! ”
5e
= mm Fetch Unit _umnogmm. Execution Core L1 !
Q| 5o —>1 Rename Unit -
T o
.m >, UOmo:mf ” 3|
© ! ! Q|
2 e | i = Writeback & |
98 2 ” ” ritebac !
S [RF : 7, 7” ROB , |
0 3 | MSB | | RSB | Commit Unit | |
> e SRR R) commit | ”
| ! |
t |
P e o el mmm o - ! ”
@ |
E=A ,
2| y
1
4 2
L 379
L O
N o i
| (]
| [J] |
4 |
P e e e m—— - R , |
1 | |
| |
o SO 2 A o IWWoI 7 | !
g ” ” N NWwon gl
B : : =
a | @SN sy S o E
=) 7 7 204 % 0RqeIIM 2]
o v A g
[e] l [OB
0 Lo
— ! |
B |58 L] wun eweusy S4B | (=,
3 9
= | 8% < | Munyaed » 8p003Q 10D UONNOAXT |<=| 17
El @ || §
£ 2 !
T
= anand

9yJed| anss|

Figure 5.2: New SST Microarchitecture.

5.3 New SST Microarchitecture

Figure 5.2 shawvs the new SST microardiitecture. The hardware for idertify-
ing data-speculative outcomesof the subordinate thread is distributed amongboth
the subordinate thread and the main thread in the new microarchitecture. The
subordinate thread includes,an RSB to help it identify its own registersthat con-
tain non-data-speculative values, as well as an MSB to help it lter out memory
addresseghat are written by store instructions. The main thread includesan RSB
and an MSB asin the older implemertation to help it idertify non-data-spgeculative
outcomesof the subordinate thread. The RSB and MSB are still neededn the main
thread becausethe subordinate thread RSB and MSB are not very accuratein the
caseof a partially speculative subordinate thread. In the caseof a fully speculative
subordinate thread, the main thread neednot keepan RSB and an MSB. Note that
the coresare symmetric, and so eat core can act as a main thread as well as a
subordinate thread. The data ow on the FIFO bu er is now in both directions.

Other than these,both the old and new microarcitectures are idertical.

5.4 Experimenal Results

In this sectionwe presen the results we obtained by letting the subordinate
thread keeptrack of its own speculationsand recovering the subordinate thread by
switching its role with the main thread. In order to study the new SST model, we
deweloped a simulator that models the new SST stheme, which is an extension of

the SST simulator deweloped earlier for the old SST design. The microarditectural

79

parameterswe usedare shavn in Table5.1. The L1 dcade of a subordinate thread
is invalidated on its recovery from the wrong paths. All coresusea single branch
predictor, which is only updated by the main thread.

In our simulations, the subordinate thread treats long-latencymemoryinstruc-
tions that read the ROB headand block the pipeline asin runaheadexecution[19];
it suppliesan invalid value and retires the blocking memory instruction beforeit is
serviced. For a speculative-avare subordinate thread, we usethe RSB and MSB to
further distill it, and we disablethem for a speculative-unavare subordinate thread.

In order to showv the bene ts of our new SST stheme, we compareits perfor-
mancewith the old SST sthemepreserted in the previouschapter. We alsocompare
its performanceagainstthe DCE model (in which the main thread executesevery
instruction) [36. We comparefour di erent schemestogether: (1) A subordinate
threading shemein which the subordinate thread is speculative-unavare, and the
main thread does not skip any instruction (DCE), (2) its SST version, i.e., the
main thread consumesghe subordinate thread results without executingtheir corre-
sponding instructions, (3) a subordinate threading sdhemein which the subordinate
thread is speculative-avare and the main thread doesnot skip any instruction (an

extensionof DCE), and (4) its SST version. Note that both the DCE

80

Single Core Parameters

L1 ICache sz/assa/repl/in/lat=16KB/1w ay/ LRU/6 4B/1 cycle

L1 DCache sz/lassa/repl/In/lat=64KB/4w ay/ LRU/6 4B/1 cycle

L2 Cadhe (datatinstrs.) | sz/assa/repl/In/lat=1024KB/8w ay/LR U/1 28B/ 6cydes

Main Memory Latency 100cycles

Fetch/issue/retire Bandwidth = 4/4/4

ROB/LAStQ/F etchQ size= 64 entries/32 entries/16 entries
Branch Predictor type = bimodal, size= 32K ertries
Branch Penalty 16 cycles

Superscalar-Speci ¢ Parameters

Fetch/issue/retire Bandwidth = 8/8/8

ROB/LAStQ size= 128/64/32 ertries

SST-Speci ¢ Parameters

MSB 64 bits

FIFO Queue latency/Bandwidth/size = 2 cycles/5 instrs./32 instrs.

Branch/Mem Thresholds | Branch Count = 1, Memory Cycles= 10

Sub. Thread Recovery 16 cycles

Table 5.1: Microarchitectural Simulation Parametersfor Old & New SST

and SSTsdemeswe usein the comparisonusethe sametype of subordinate thread,
i.e., distilled in the sameway. This is to have a fair comparisonwhen comparing
the shemeswith a speculative-unavare subordinate thread and with a speculative-

aware subordinate thread.

81

Single Thread
DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

NEOED

gzip gcc bzip mcf twolf vortex parser perl vpr avg.

Figure 5.3: IPC for 5 sthemes:(a) Singlethread (a superscalarthat conmbinestwo
coresin one); (b) DCE with speculative unaware subordinate thread; (c) SST with
speculative unaware subordinate thread; (d) DCE with speculative-avare subordi-

nate thread; (e) SST with speculative-avare subordinate thread.

5.4.1 IPC Improvemert

The IPCs we obtained for a single thread (superscalarwith double the issue
width of a single core, Table 5.1), a DCE stheme with speculative-unavare sub-
ordinate thread, an SST sheme with speculative-unavare subordinate thread, a
DCE sdemewith speculative-avare subordinate thread, and an SST stheme with
speculative-avare subordinate thread, are preseted in Figure 5.3. Ead bar cor-
responds to one of the v e sthemes. The percertage improvemert over a single
thread for ead of the four schemesis also shaovn in Figure 5.4. For almost all the
bendmarks, the SST shemeand the DCE sthemewith a speculative-avare subor-

dinate thread (third and fourth bars) outperform the other two sthemesexceptfor

82

two bendimarks mcf and twolf. Thosetwo bendimarks are memory bound and the
speculative-unavare subordinate thread executesmnost of the data-speculative loads
and stores, which yields correct results. In other words, the speculative-unavare
subordinate thread performs value predictions for the memory addressesand this
helpsin caseof bendimarks, mcf and twolf.

Note that the SST sheme of bar 2 outperforms the DCE scheme of bar 1
for almost all the bendimarks with the exception of bendymark perl. However,
the performanceof the SST sthemein bar 4 has becomecloseto that of DCE in
bar 3. This can be explained by the branch miss-predictionswhoselatenciesthe
subordinate thread is able to hide. Recall that the subordinate thread in both
schemesis speculative-avare, and soit only executesthe brand instructions that
are not data-speculative and skips all other branch instructions (and follows the
prediction of the branch predictor). That makesthe DCE and the SST sdhemes
equivalent in terms of the number of subordinate thread correct branch outcomes
consumedby the main thread. It also makesboth sthemesequivalert in terms of
the number of branch miss-predictionsincurred by the main thread becausan both
sthemesthe main thread will follow the prediction of the branch predictor for those
brand instructions that were not computed by the subordinate thread. The DCE
will follow the onesof the subordinate thread that have a prediction almostidentical

to that of the main thread branch predictor.

83

40

DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

36

NEO@E

32

28

24

20

16

12

% IPC Improvement over Single Thread

ALANANNUNTANARNAANRRNRRNAN RN RN RNNRANANNANY

ANARANANRNRARANANRNRRNA NN
ANTANTANRARANARRNRNRR RN

ALNUNRANANANNRANANANANANNNNY
ANEANANRARANANANRNRARARRRRRY

i
AANAANNANNANNNNNANANNNRRRY

ANNANANNANNANRNNNANNANN
ANNANANRNANRANANINRNNN

FRARANANRNRNRNNRNNY

ANNANANN

vpr avg.

q
-
[}
X
T
Q
=
[}
[0}
=
T
0]
i

o e
i gcc bzip mcf twolf

Figure 5.4: Percertiage IPC improvemern over a single thread (a superscalarthat
combines two coresin one) for four sthemes: (a) DCE with speculative unaware
subordinate thread; (b) SSTwith speculative unaware subordinate thread; (c) DCE
with speculative-avare subordinate thread; (d) SST with speculative-avare subor-

dinate thread.

5.4.2 Branch Miss-predictionsin The Main Thread

From the above discussiornwe cansay that the number of branch miss-predictions
incurred by the main thread in the DCE and SST sthemesthat employ a speculative-
aware subordinate thread must be roughly equal. We con rm this by plotting the
percenage of branch miss-predictionsof the main thread in Figure 5.5 for the same
v e shemesas above. The last two bars (bar 4 and bar 5) correspnd to the DCE
and SST sthemeswith a speculative-avare subordinate thread. Note that they are
almost the same acrossall bendymarks, as expected. The perceriage of branch
miss-predictionsincurred by the main thread for the DCE and SST schemeswith a
speculative-unawvare subordinate thread is shavn in bar 2 and 3, respectively. For

84

almost all the bendimarks, the DCE and SST sdhemeswith a speculative-avare
subordinate thread has fewer brandh miss-predictionsin the main thread than the
other two schemesthat employ a speculative-unavare subordinate thread, with the
exceptionof bendimark perl. Finally, the DCE sthemewith a speculative-unavare
subordinate thread (bar 2) hasthe most number of branch miss-predictionsin the
main thread, which even exceedsthat of the single thread. This is becausethe
DCE sthemetreats all of the branch outcomesof the subordinate thread as pre-
dictions instead of the predictions given by the brancdh predictor. This introduces
extra branch miss-predictionsinto the main thread becausehe speculative-unavare
subordinate thread executesalmost all the speculative branch instructions and for-
wards their speculative resultsto the main thread, which trusts them and consumes
them instead of the predictions given by the branch predictor. With symbiosis,
most of those incorrect predictions are eliminated, as evidert from the drop in the

percenage of branch miss-predictions(bar 3).

5.4.3 Branch Miss-predictionsin the Subordinate Thread

In Figure 5.6 we shav the percenage of subordinate thread incorrect branch
outcomesfor four shemes:DCE with speculative-unavare subordinate thread, SST
with speculative-unawvare subordinate thread, DCE with speculative-avare subor-
dinate thread, and SST with speculative-avare subordinate thread. The incorrect

branch outcomesof the subordinate thread are either incorrect predictions of

85

Single Thread
DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

20

i8

NEOEO

[
)

=y
1N

% branch miss-prediction

mcf twolf vortex parser perl vpr avg.

Figure 5.5: Percertage branch miss-predictionsincurred by the main thread for v e
schemes:(a) Singlethread (a superscalarthat combinestwo coresin one); (b) DCE
with speculative-unavare subordinate thread; (c) SST with speculative-unavare
subordinate thread; (d) DCE with speculative-avare subordinate thread; (e) SST

with speculative-avare subordinate thread.

the branch predictor that it followed without executing the correspnding branch
instructions, or those computed by itself using data-speculative input values. In
the DCE and SST shemesthat usea speculative-unavare subordinate thread (bar
1 and bar 2, respectively), both type of incorrect branch outcomesexist, but in
the DCE and SST shemesthat use a speculative-avare subordinate thread, all
incorrect branch outcomescorrespnd to only incorrect predictions obtained from
the brandh predictor. As shown in Figure 5.6, the speculative-avare subordinate
thread hasthe least number of incorrect branch outcomes(bars 3 and 4) compared
to the speculative-unavare subordinate thread (bars 1 and 2), with the exceptionof

bendimark perl. For bencdimark perl, usingvalue prediction for the branch outcomes

86

=y
W

DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

R
N

[y
[
NROE

’_\
o © O

w » 000 N

N

% incorrect branch outcomes of the subordinate thread (wrong path occurences)

twolf vortex parser

Figure 5.6: Percenage of incorrect branch outcomesof the subordinate thread for
four sthemes:(a) DCE with speculative-unavare subordinate thread; (b) SST with
speculative-unawvare subordinate thread; (c) DCE with speculative-avare subordi-

nate thread; (d) SST with speculative-avare subordinate thread.

in the subordinate thread is more e ective.

5.4.4 L2 Cade Miss Rate

We alsoshaw the impact of having a speculative-avare subordinate thread on
the main thread L2 cade missrate. It is clearfrom Figure 5.7 that the main thread
L2 cade missrate for the DCE and SST schemeswith a speculative-avare subordi-
natethread (fourth and fth bars)is much higherthan that of the other shhemeswith
a speculative-unavare subordinate thread (secondand third bars). This con rms
that data-predictionsfor calculating memory addressesn the speculative-unavare

subordinate thread was relatively accurate,thereby making the subordinate thread

87

11

Single Thread
DCE with speculative non-aware sub. thredg
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

Q

10

NEOEO

5).

Main thread L2 cache miss rate (complete misse

L2 Cache Miss Rate

mcf twolf vortex parser perl vpr avg.

Figure 5.7: L2 cade missrate (only complete misses)in the main thread for v e
schemes:(a) Singlethread (a superscalarthat combinestwo coresin one); (b) DCE
with speculative-unavare subordinate thread; (c) SST with speculative-unavare
subordinate thread; (d) DCE with speculative-avare subordinate thread; (e) SST

with speculative-avare subordinate thread.

more e ective in prefetching. On the other hand, the DCE and SST schemeswith
a speculative-avare subordinate thread did not bene t from the value predictions

and simply skipped the data-speculative memory instructions.

5.4.5 Reductionin the Total Number of Executed Instructions

The speculative-avare subordinate thread skips the data-speculative instruc-
tions in addition to the highly predictable branchesand long-latency instructions,
while the speculative-unavare subordinate thread skips only the highly predictable
branchesand long-latency instructions. Therefore,the number of instructions exe-

cuted by a speculative-avare subordinate thread is lessthan that of a speculative-

88

130

M skipped by subordinate thread) " . R
120 O executed by subordinate thrdad b: SST with speculative non-aware subordinate thrjead

skipped by main thread X, y: SST with speculative aware subordinate thread
110 [0 executed by main thread

100

NN

2

YRR

90

N,
A
B0
BAAEBEEEY

KB

WA

A
Y

80

SRR

7

SAASAANAAA
A

70

WA

254
B
=
4]
B3
B3
B3
B
B
=
B2
B
=
4]
B3
B3
B3
B
B
=
B2
5]

o
[N

A
O

ANNNANNNRN,

60

% Dynamic Instructions

50

40

30

20

10

ab xy ab xy ab xy ab Xy ab x

ab x ab x ab xy ab xy ab xy
gzip gcc bzip mcf twolf Y Vortexy parsely perl vpr

avg.

Figure 5.8: Distribution of skipped and executedinstructions in the main thread
and the subordinate thread for two sdhemes: (a) SST with speculative-unavare

subordinate thread; (b) SST with speculative-avare subordinate thread.

unaware subordinate thread. Howewer, the main thread consumesrelatively the
samenumber of results from either threads becausesad thread must have executed
the samenumber of non-data-speculative instructions. This implies that the total

number of instructions executedin an SST shemewith a speculative-avare subor-
dinate thread must be lower than that of an SST schemewith a speculative-unavare
subordinate thread. In orderto con rm that, we considerthe number of instructions
executedin the main thread and the subordinate thread for two schemes:SST with

speculative-unavare subordinate thread and SST with speculative-avare subordi-
nate thread (the rst two bars and the last two bars in Figure 5.8, respectively).
The rst andthird barsshav the number of instructions executedby the subordinate
thread versusthe number of instructions it skipped for both schemes.lt is clearthat

the speculative-avare subordinate thread executedmuch fewer instructions than the

89

speculative-unawvare subordinate thread. The secondand fourth bars shov the num-
ber of instructions the main thread executedversusthe onesit skipped for the two
SST schemes. On average,the main thread executedrelatively the samenumber
of instructions for both sthemes. We can therefore concludethat the SST scheme
with a speculative-avare subordinate thread executesfewer instructions than the
SST sthemewith a speculative-unavare subordinate thread.

The main thread in SSTwith a speculative-avare subordinate thread executed
slightly fewer instructions (bar 4) than the SST with a speculative-unavare subor-
dinate thread (bar 2). The speculative-unavare subordinate thread is slower than
the speculative-avare subordinate thread becauset executesnoreinstructions, and
Soit is not as e ective as the speculative-avare subordinate thread in hiding the
branch miss-predictionlatency. Hence,it producesslightly fewer resultsthat canbe
consumedby the main thread without executingtheir correspnding instructions.

This is true for most of the bendmarks, with the exceptionof bendimark vortex

90

Chapter 6

HSST: Hierarc hical Symbiotic Subordinate Threading

Subordinate threadsthat executefewer instructions may advancevery rapidly,
but maybe highly speculative and go along wrong paths quite frequertly aswell as
produce incorrect results. On the other hand, subordinate threads that execute
more instructions may produce many more correct results, but may not be fast
enoughto hide the latenciesof long-latency instructions. Therefore, we investigate
a schemethat utilizes both the speedof highly speculative subordinate threadsand
the con dence of not-too-speculative subordinate threads.

In this chapter we proposehierarchical symbiotic sutordinate threading (HSST)
to achieve both of thesegoals,by incorporating a hierarchy of subordinate threads.
That is, the main thread along with the subordinate threads form a hierarchy,
in terms of their composition as well as forwarding of results. Each subordinate
thread cortains a subsetof the instructions of its parent thread, the thread that
is immediately above it in the hierarchy. Therefore, it is faster and can explore
the future earlier than its parert but is more speculative than its parert. The
subordinate thread outcomesare not thrown away; rather they are forwarded to
their parerts using techniquessimilar to previously proposedapproates (Chapter
3). With this arrangemen, ead thread bene ts from the threads below it in the

hierarchy.

91

HSST is a light-weigh architectural framework that extendsthe SST scheme
to using seeral subordinate threads instead of a single subordinate thread. It
makesuseof otherwiseidle coresin a CMP to improve the performanceof individ-
ual threadsrunning on the active cores. It incurs only minor hardware changes.We
deweloped a cycle-accuratemulti-core simulator to verify its performance.We eval-
uated HSST againstSST. Our experimertal resultsshow that a HSST con guration

with two subordinate threads improvesthe averageperformanceby 16% over SST.

6.1 A Motivating Example

We begin with a motivating exampleto illustrate the tradeo betweena fast
and highly speculative subordinate thread that canstride aheadto explorethe future
versusa more consenative subordinate thread that doesnot speculatesooften, and
sois slow, with a limited run-aheadcapability. The examplewe presen is for two
SST models, main-subA model and main-subB model. The subordinate threads
subA and subB have di erent degreesof speculation. SubA is lessspeculative than
subB. We will descrile the bene t of ead with regardto its ability to perform data
pre-fetching in the L2 cade.

Considerthe main thread code snippet in Figure 6.1a. The code snippets subA
and subB are shawvn in Figure 6.1b and Figure 6.1c,respectively. Assumeall three
threads begin execution at instruction 0 and iterate only oncein the loop. Cade
blocks of instructions 3 and 8 still have 20 cyclesto arrive at the L1 dcadesin

all three threads. SubA and subB executea subsetof the instructions executedby

92

Subordinate thread A is less speculative and so its state is less corrupted, but is slow with limited ability to runahead.
Subordinate thread B is fast, highly speculative, and can runahead more, but its state is highly corrupted.

93

Main Thread Subordinate Thread A (of Main-SubA Model) Subordinate Thread B (of Main-SubB Model)
loop

0.jto A7ifr1!=r9 Not taken 0.jto A7ifr1!=r9 Not taken 0.jto A7ifrl!=r9 Not taken

1.ri=r1+1 1.ri=r1+1 1.ri=r1+1

2.14=r4+1r3 2.14=r4+1r3 2.14=r4+1r3

3.5 =mem[r4 + r0] 20 cycles 3.r5=mem[r4 + r0] 20 cycles 3.5 =mem[r4 + r0] 20 cycles

4.6 = mem[r5 + r0] L2 cache miss 4. 16 = mem[r5 + r0] L2 cache miss 4. 16 = mem[r5 + r0] L2 cache miss

5.r8 =17 xor r6 5.8 =7 xor r6 5.8 =7 xor r6

6.jto AOifr8!=r0 Not taken 6.jto AOifr8 I=r0 Predict not taken 6.jto AOif r8 I=r0 Predict not taken

7.19=r2+r3 7.19=r12+1r3 7.19=r2+13

8.r10 = mem([r9 + r0] 20 cycles 8. 110 = mem([r9 + r0] 20 cycles 8. r10 = mem[r9 + r0] | 20 cycles

9.111=r1*r3 9.r111=r1*r3 9.r11=r1*r3

10. r12 = mem[r1l + r0] L2 cache miss 10. r12 = mem[rll + r0] | L2 cache miss 10. r12 = mem[rll + r0] L2 cache miss
11.r10=r6 and r8 11.r10=r6 and r8 - - 11.r10 =r6 and r8 - -
~ = ~ =
12.r11=r5+1 12.r111=r5+1 31X s 12.111=r5+1 31X s
13.r12 =r11 xor r10 13.r12 =r11 xor r10 e @ 13.r12 =r11 xor r10 rs &
- < S| x| |=
14.jto A20ifr12 '=r0 14.jto A20ifr12 '=r0 S s 14.jto A20ifr12 '=r0) X x =
15.112 = 112 *r12 [] Instruction attempted | 15 119 = 12 * 112 Exx]” 15. 112 = r12 * 112 Erx(x|”
. then skipped . g0 . RT3
(@) . [] Instruction skipped (b) . Register Speculation Bitmap (c) . Register Speculation Bitmap

Figure 6.1: Example from bendmark perl shoving the code snippet for: (a) Main
thread; (b) Subordinate thread of main-subA model; and (c) Subordinate thread of

main-subB model.

the main thread. Instructions skipped by the individual threads are highlighted in
grey. Both subordinate threadsskip long-latencyinstructions that block the pipeline
and their dependencychains, similar to that in run-aheadexecution[19]. Depen-
dency chains of skipped instructions are identi ed by marking the output registers
of skipped instructions as data-speculative in the RSB. SubA identi es an instruc-
tion to be a long-latencyinstruction if it readhesthe headof the ROB and stalls the
pipeline for 20 cycles. SubB will wait for 10 cyclesonly. Both subordinate threads
may skip brandh instructions, and follow their predicted outcomes. SubA attempts
to executeinstructions 4 and 10, and then removesthem out of the pipeline because
they missin the L2 cade. It skips5 and 6 becausehey are dependert on 4. SubB
skips all instructions exceptO, 1, 2, 7, and 9. It attempts to executeinstructions
3, 8, and 10, and then skips them becauseit concludesthat they are long-latency
instructions. It skips the remaining instructions becausethey are dependert on

instructions 3, 8, and 10.

Comparison between SubA and SubB: SubB executesonly a subsetof the
instructions executedby subA, and so it runs faster and can explore the future
earlierthan subA. Howewer, subB corrupts its state (register le and memory) much
fasterthan subA, and soit may not nd any independer instructions to executein
the future. The number of bits marked as data-speculative in subA's RSB is half
thosemarked in subB's RSB, asshavn in Figure 6.1b and Figure 6.1c,respectively.
Therefore, the correct results produced by subB are fewer than those produced by

SubA. Also, subB is morelikely to go on the wrong path than subA, asit skipsmore

94

High Versus Low Speculation Subordinate Threads

High Speculation Pros:

-Faster (executes fewer instructions)
-Larger instruction window

Low Speculation Cons:

-Slower (executes more instructions)
-Smaller instruction window

High Speculation Cons:

-Corrupts its state faster

-Goes on the wrong path more often
-Aggressive, misses opportunities
-Produces fewer correct results

-Huge speed gap with the main thread

Low Speculation Pros:

-State is sllightly corrupted

-Goes on the wrong path less often
-Less aggressive, exploits opportunities
-Produces a lot of correct results
-Slightly faster than the main thread

Figure 6.2: Pros and consof high and low speculation subordinate threads.

brand instructions. Note that becausesubB is aggressie in skipping instructions,

it did not attempt to executeinstruction 4 although it is an L2 cate miss. On

the other hand, subA's state is lesscorrupt, but it had to block longerthan subA,

waiting for instructions 3 and 8 to complete, before readiing the L2 cade miss
instructions (4 and 10). Finally, the speedgap betweenthe main thread and subB
is much larger than that betweenthe main thread and subA. This impliesthat subA
will spend lesstime on the wrong path than subB and is lesslikely to throw pages
out of the L2 cade that are neededby the main thread, than subB. We summarize
the pros and consof highly speculative subordinate threads sud assubB aswell as
low-speculative subordinate threads sud as subA in Figure 6.2. HSST exploits the

advantagesof both typesof subordinate threadswhile avoiding their disadvantages.

95

6.2 Implemenation Details of HSST

We concludedthe previous sectionby preseting the trade-o s of a fast and
more speculative subordinate thread that canrun aheadto explorethe future versus
a slov and lessspeculative subordinate thread with limited run-ahead capability.
The basic idea of combining the advantages of both sthemesand eliminating the
disadwantagesis to organizemultiple subordinate threads as a cade-like hierarchy.
Ead subordinate thread in the hierardhy is a subsetof its parent thread (main or
subordinate). Therefore,it is more speculative and faster than its parert, and can
run aheadof its parent (Figure 6.3a).

We next presen an implemertation of HSST with a main thread and multiple
subordinate threads on a chip-multipro cessing(CMP) platform [37]. In addition to
multiple sequencersa CMP processotasmultiple pipelinesfor processingmultiple
threadsin parallel. Figure 6.3b shaws a high level designof the CMP that supports
HSST. The top of the hierarchy is the main thread, followed by subA, then subB,
andsoon. The L2 cadeis sharedamongall threadsand is updated only by the main
thread. A subordinate thread's L1 dcade can be corrupt becauset is speculative,
and soit is not allowed to write to the sharedL2 cade.

There are seeral concernsfor supporting HSST on a CMP platform. We
addressthose concernswith minimum additional hardware. The rst concernis
spawning subordinate threadson idle cores. This is handled by the thread controller
(TC) . The secondconcernis distilling ead subordinate thread sud that it executes

only a subsetof the instructions executedby its parernt thread. Our subordinate

96

Size
Resultg

(a) HST: Like Cache Hierarchy

Speed
Speculation
- Runahead

Core 1: Main

(b) HSST High Level View on A Single Chip Platform

!

,,

read/write

Core 2; SubA

22 155

(c) Thread Controller
Multithreading Bit Vector

[IxIxT]
Sub. Thread Level Vector

[1Tol Te]

Core 3: SubB

read only

L2 Cache

read only

!

Figure 6.3: HSST High Level Microarchitecture: (a) HSST similar to a cade hier-

archy; (b) HSST block diagram; and (c) Componerts of Thread Cortroller (TC).

97

thread is pruned dynamically, which requires support at the core level. Figure
6.4 shows the detailed microarchitecture designof HSST. Each coreis modi ed to
support HSST. The HSST core maintains three simple bitmaps, the RSB, the MSB
and the levelvector (LV) for pruning the subordinate thread. In the caseof partially
speculative-avare subordinate threads, ead core must include an extra RSB and
an extra MSB to be ableto idertify its child's resultsthat are non-data-speculative.
Third, results generatedby a subordinate thread are forwardedto its parert thread
via a rst-in-rst-out (FIF O) queuethat connectsead subordinate thread to its
parert thread. Note that in Figure 6.4 we showv only two subordinate threads, subA
and subB in addition to the main thread although, HSST can support any number
of subordinate threads. SubA follows the main thread in the hierarchy, followed by

subB.

6.2.1 Spawvning Subordinate Threads

Our HSST implemertation is purely at the hardware level and maintains the
exibilit y to support multithreaded applications. The subordinate thread mode
is used only when there are free cores. This is determined by the TC. The TC
maintains a bit for every corethat indicatesif that coreis idle or is busy (running a
thread from a multithreaded application). Thosebits are storedin the multithreaded
vector, asillustrated in Figure 6.3c. When there are free cores,the TC may spavn
subordinate threads on them. The TC assignsa level to ead spavned subordinate

thread and storesthe level ass@iated with ead subordinate thread in the level

98

66

"uBisap 8InN13)ILPIe0IdIW Paje1sp 1 SSH :'9 ainbi4

7 ayoe)
peay | @ MPESY
pesy
“““““““““““ !
| ! | !
[9) , I [} , I 9]
5 | | 5 | | 5
- & I ! - @ I ! - @
=40 | ” =40 | ” =10
la) ! | a ! | a
I ! I !
| ! | !
| ! | !
” ” ” ”
<] = I ! 5 = | I s -
S| oI5| | ¢ | %5 | S| |55
c Q | c Q | c Q
5 g = [| S c=l [) S E
E 8 E | ! S 8 E | ! E 8 E
§ | |58 | | 8 |58 | | 8| |55
I I
5 20 ” ! X 20 ” ! X 20
= I ! = I ! £
L E | | N | £
El | i El | i £
03 8! Dl e 8l V] o3 8
i) I ! [is] I i)
29 o | vl 23 0 , | 83 9
Kilef x ! V| e 14 !] x
| ! | !
” ” ” ”
= I I = . I I =
| L2 | L LE | | @5
O o | | [N | | O o
kel 1 kel 1 T
E ” | 3 | ” :
] | 0] |]
[0] [J] Q
[a] I ; ” 8} x X ” a x
| ! | !
| ! | !
| ! | !
| ! | !
” ” ” ”
I ! I !
L ! | W ! |
= X < | = X < | =
o c ! | o c ! . P 2
S > 2 I ! G > 2 I ! G > 2
© I~ | ! © < | ! ® =
O L I ! o L I ! (8] L
= 9] | ! = [7) | ! = 9]
Iy I I i I I L
| | B | | H
!) 2] !) 2]
peay ! , peay 9 ! , peay %
| ! | !
” ” ” ”
10)01pald I i J0j1pald I i 1001pald
. | youeig prepd . | youelg prepd
| ! | !
I ! I !
! ! 310D Yqns ! ! 8100 pealyl urep

alempreH 1 SSH

vector. In Figure 6.3c,there aretwo freecores,and sothe TC spavneda subordinate
thread on ead free core for helping one of the running threads (the shadedbox).
Eadh spavned subordinate thread is assigneda level that is stored in the level
vector. The main thread is assignedevel 0 (shadedbox). The TC assignsevelsin
ascendingorder. Every time the TC assignsa subordinate thread to a free core, it
setsthe appropriate bit in the core'slevel vector (LV). The coreneedsto store the
subordinate thread level, asit is required for dynamically pruning the subordinate
thread, aswill be seennext.

Note that eat core hastwo modes,a subordinate thread mode and a regular
mode. The corerealizesit is in the subordinate thread mode if its LV is not empty.
Our implemerntation sofar is for having subordinate threadsthat help only a single
main thread. We can extend it to seweral main threads eat having its own sub-
ordinate threads. In this casethe TC will have to maintain a level vector for ead
main thread to store in it which coresrun subordinate threads for that particular

main thread and at what level ead subordinate thread is running.

6.2.2 Distilling the Subordinate Thread

Ead subordinate thread is distilled dynamically in order to be able to run
aheadof its parert thread. The level bit setin the core running the subordinate
thread determinesthe aggressienessof the subordinate thread in skipping instruc-
tions. A level one subordinate thread is the least aggressie, asit is the level right

below the main thread. A level 2is moreaggressie, andsoon. A subordinate thread

100

may skip past long-latency instructions as well as highly predictable branchesand
their badkward slices. It may alsoskip the dependencychains of the skipped instruc-
tions, and so it maintains information about its register le state and its memory
state in order to be able to identify the dependencychains of skipped instructions.

It maintains this information using the MSB and the RSB.

Long-Latency Instructions: A subordinate thread decidesthat a memory in-
struction is a long-latency instruction if it arrivesat the ROB head and stalls the
pipeline for a number of cyclesdetermined by the subordinate thread level. For
example,the rst level subordinate thread may usen cycles. The secondlevel sub-
ordinate thread may usen/2 cycles,the third level may usen/4 cycles,and soon.
The subordinate thread will tossthe long-latencyinstruction out of the pipelineand

free all its resources.

Highly Predictable Branc hes: Highly predictable branchescan be determined
from the saturating courters storedin the branch predictor for every branch instruc-
tion. A brand instruction is consideredto be highly predictable if its saturating
courter readesa certain threshold determined by the subordinate thread level. A
lower threshold of the saturating courter is required as we go down the hierarcy.
The subordinate thread may toss out instructions that form the badkward slice of
the branch if they are still in the pipeline. Note that we give priority to memory
instructions. If a memoryinstruction forms a badckward slice of a highly predictable

brand, it is not tossedout of the pipeline until it arrives at the ROB head and

101

attempts the memory access.This is to ensurethat if it wasan L2 missthen it is

at least attempted.

Dep endency Chains of Skipp ed Instructions: Ead subordinate thread main-
tainsan RSBto helpit Iter outinstructions that attempt to usespeculative register
values. Also, ead subordinate thread maintains an MSB to help it in identifying
LOAD instructions that read data-speculative valuesand hencecan be skipped by

the subordinate thread.

6.2.3 Result Integration

Eadh child thread forwards all its instructions and resultsto its parernt thread
and marks the non-data-speculative ones. The child thread retires its results at
the tail of the FIFO bu er that connectsit to its parert. The parert thread reads
at the head of the FIFO bu er all forwarded results. The parert consumesthe
non-data-speculative oneswithout executingtheir correspnding instructions. The
parert thread also doesnot fetch and decale instructions becauset receivesthem
from its child thread. Note that the parernt thread cannot proceedwith executing
any instruction unlessits child thread has already placed it on the FIFO queue.
This is to ensurethat the parert thread always follows its child thread and that

they are both syndironized.

102

6.2.4 Recoering the Subordinate Thread Corrupted State

When the subordinate thread state is corrupt or when it goes on a wrong
path, it becomeauselessand the bestthing is to restart the subordinate thread and
recover its state. Recovering the subordinate thread state requirescopying the more
accurate state of its parert. The subordinate thread may copy the register le of
its parert and invalidate its L1 dcade. If its parert thread is a subordinate thread,
then it needsalsoto copy the RSB and MSB of its parert. When a parent thread
detectsthat its child thread had goneon a wrong path, it announceso the TC its
needto recover its children and the TC restarts all threads below it. All restarted
subordinate threads will needto copy the state of the parert thread that initiated

the recovery.

6.3 Experimerntal Results

In order to ewaluate our proposedHSST stheme,we extendedour SST simu-
lator to support multiple subordinate threadsthat are arrangedin a hierarcy. Our
simulator faithfully modelsan HSST systemrunning on a multi-core CMP, with a
main thread, two subordinate threads, and their interconnections,as per the block
diagram of Figure 6.4. The microarditectural parameterswe used are shovn in
Table6.1. The L1 dcade of a subordinate thread is invalidated on its recovery from
the wrong paths. All coresusea single branch predictor, which is updated only by

the main thread.

103

Single Core Parameters

L1 ICache

sz/assa/repl/in/lat=16KB/1w ay/LR U/6 4B/ 1cycle

L1 DCache

szlassa/repl/In/lat=64KB/4w ay/LR U/6 4B/ 1cycle

L2 Cade (data+tinstrs.)

szlassa/repl/In/lat=1024KB/8w ay/LR U/1 28B/6 cycles

Main Memory Latency

18 cycles(results preseried for 100 cyclesas well)

Fetch/issue/retire

bandwidth = 4/4/4

ROB/LASIQ/F etchQ

size= 64/32/16 entries

Branch Predictor

type = bimodal, size= 32K ertries, penalty 7 cycles+

HSST-Speci ¢ Parameters

MSB

64 bits

FIFO Queue

latency/bandwidth/sz = 2 cycles/5 instrs./32 instrs.

Branch Threshold

conf. count for subA/subB/subC/subD = 16/8/5/4

Memory Threshold

wait cyclesfor subA/subB/subC/subD = 50/25/16/12

Sub. Thread Recovery

20 cycles

Table 6.1: HSST Microarchitectural Parameters

We evaluated our HSST sdhemeagainsttwo SST schemes,main-subA scheme

and main-subB scheme,ead having a main thread and a singlesubordinate thread.
In the main-subA sdeme, the subordinate thread is subA and in the main-subB
scheme, it is subB. We let HSST use two subordinate threads, subA and subB.
SubA follows the main thread in the hierarchy and subB is at the lowest level of the
hierardhy. We achieved signi cant performanceimprovemen with HSST againstthe

SST shemes. HSST may use any number of subordinate threads. We tried more

104

Superscalar-Speci ¢ Parameters

Fetch/issue/retire bandwidth = 16/16/16

ROB/LAStQ/F etchQ size= 256/128/64 entries

Branch Penalty 7 cycles(results preseried for 16 cyclesas well)

Main Memory Latency | 18 cycles(results presened for 100 cyclesas well)

Table 6.2: SuperscalarMicroarchitectural Parameters

than two subordinate threadsaswell and did not seesigni cant further performance
improvemen. The latency thresholdsfor skipping memory and brandh instructions
in eat subordinate thread are shavn in Table 6.1. Our comparisonsare againsta
baseline superscalarprocessomwith three times the issuewidth of a singlecoreand

three times its capacity for in- igh t instructions.

6.3.1 Performancelmprovemert

Figure 6.5 presens the IPC obtained with result integration enabledfor four
schemes: single thread base sheme, main-subA sdeme, main-subB sdieme and
HSST. There are four bars per bendimark, correspnding to eadh scheme. The
singlethread sdhemeis a superscalarprocessomwhosemicroarcditectural parameters
are showvn in Table 6.2. For all four shemeswe use a brandh penalty of 7 cycles
and a memory latency of 18 cycles. For the SST schemesand the HSST scheme,the
subordinate thread incurs minimum penalty on recovery becausewe useda shadav

register le asin Chapter 3. Also, the branch threshold for highly predictable

105

branchesfor subA is 2 and for subB is 1. We also presen another set of results for
the samefour sthemesin Figure 6.6, but we let the memory latency be 100cycles,
the brandh miss-prediction penalty be 16 cycles, the subordinate thread recovery
penalty be 20 cycles, the branch threshold for subA be 16, the branch threshold
for subB be 8, the subordinate thread be speculative-avare and only skip branch
instructions.

It is clearfrom Figures6.5and 6.6that HSST performsbetter than main-subA
and main-subB for all the bendhmarks. The averageperformanceimprovemen of
the three symbiotic sthemesover the single thread basesdemeis shovn on top of
the averagebars, 38% for HSST, 22% for main-subA, and 19% for main-subB in
Figure 6.5 and in the sameorder in Figure 6.6, 21%, 13% and 14%. The rst set
of results shown in Figure 6.5 indicate that with a much smaller pipeline per core,
a more accurate branch predictor and smaller memory latencies,the HSST stheme
performs better, than in a much larger pipeline with long memory latenciesand a
lessaccurate branch predictor. This implies that our stheme exploits parallelism
when it is available better than the superscalar processorwith 3 times the issue
width and 3 times the sizeof eat core. The performanceimprovemen of HSST is
due to result integration, which hidesthe brandh penaltiesand pre-fetdhing the L2

cade misses,aswill be seenin the following subsections.

106

Single thread

SST with subA
SST with subB
HSST with subA & subB

BON[

38.3%
19.5%
22.6%

IPC

gcc i mcf twolf vortex parser perl vpr avg.

Figure 6.5: IPC obtained for four schemes:(a) Singlethread (superscalar);(b) SST

with subA (main-subA); (c) SST with subB (main-subB); and (d) HSST with both

SsubA and subB.
1.6 [Single thread
’ SST with subA
0] SST with subB
u HSST with subA & subB
1.4
1.2
1 21.5%
M 14.3%
(&) 13.8%%
(=8 —
— 0.8 .
0.6
0.4
0.2
o (- Ll Ll L Ll Ll L
gcc vortex parser perl vpr avg.

Figure 6.6: IPC obtained for four schemes:(a) Singlethread (superscalar);(b) SST
with subA (main-subA); (c) SST with subB (main-subB); and (d) HSST with both

SubA and subB.

107

120| SUbA: a slice of the main thread.
subB: a slice of subA.

a: SST with subA.

110 p: SST with subB.

c: SST with subA & subB.

produced by main

consumed by main from subA
consumed by main from subB
consumed by main & subA from sufhB

ooNnm

100

9

]

8

]

7

)

6

]

5

]

% Dynamic Instruction Outcomes

4

]

3

)

2

]

1

)

e a b c a b c a b c a b c a b c a b c a b c abc%
gzip gcc bzip mcf twolf vortex parser perl Vi

Figure 6.7: Distribution of instruction outcomesin main thread for three schemes:
(a) SST with subA (main-subA); (b) SST with subB (main-subB); and (c) HSST

with subA and subB.

6.3.2 Advantagesof Result Integration

In HSST, results correctly produced by a child thread are consumedby its
parert thread without executingtheir correspnding instructions. This exploits the
available parallelism and hidesthe branch miss-predictionlatencies,in addition to

reducingthe redundart and uselesscomputations done by ead thread.

Exploiting Parallelism: Resultintegration allowsindependert computationsdone
by a child thread to overlap with other independert computations doneby its par-
ert thread. This speedsup the parert thread, which in turn will speedup its own
parert and soon until the highestlevel in the hierarchy (main thread). We looked
at the distribution of instruction outcomesin the main thread for the three shemes

(main-subA, main-subB, and HSST). This data is preserted in Figure 6.7. The

108

three bars showv the distribution of instruction outcomesin the main thread for
main-subA, main-subB, and HSST, respectively. In all three bars, the distribution
of instruction outcomesshaows the percenage of outcomesproduced by the main
thread (instructions executedby the main thread) and the percenage of instruc-
tion results consumedby the main thread from the subordinate threads without
re-executingthem.

In HSST the main thread executedroughly the samenumber of instructions
as in the main-subA sdheme (rst bar), and yet the IPC of HSST is higher than
that of main-subA (Figures 6.5 and 6.6). The IPC is governedby the main thread,
and so, it must have gained speed. The reasonfor this speedis that the main
thread received the outcomesof subA sooner. That meansthat subA must have
gainedspeed. We know that a considerableamourt of the outcomesthat subA was
supposedto produce were actually producedin parallel by subB. Therefore, subA
did not have to executeall the instructions that it was supposeto execute. Rather,
it consumedthe outcomesof a big percenage of thoseinstructions from subB and

passedthem along with the outcomesit producedto the main thread.

E cien t Execution: Resultintegration reducesthe number of instructions eath
thread has to do, by eliminating redundart computations. Redundart computa-
tions are computations that a parert thread neednot do becauseits child thread
hasalready donethem. This allows ead thread to usethe available resourcesmore
e ciently. In other words, result integration makese cient useof the small hard-

ware structures available in ead corewhile delivering high speed.

109

13

O Single Thread
12 H SST with subA
SST with subB
O HSST with subA & subB
11
10 W
= 9 m M
=3
= 8|
D
S
a7 —
L2 |
= —
S © _ —
=
< —
;5
=
a
3
2
' HIEH
o S Ll
gzip bzip mcf vortex parser vpr avg.

Figure 6.8: Averagebranch miss-predictionsin main thread for four sthemes: (a)
Single thread (superscalar); (b) SST with subA (main-subA); (c) SST with subB

(main-subB); and (d) HSST with both subA and subB.

=]

=~

L

=

o 10

=

= a: SST with subA. -

E 9 SST: Main consumed from subA

= . : [0 SST: Main consumed from subB

; b: SST with subB. Bl HSST: Main consumed from subA

=) - i

= 8 c: HSST with SUDA & SubB. [0 HSST: Main & subA consumed from subB

2

e 7

S

<@

L

o 6

7

=

=]

£ 5

=2

=2

8 a

=

-~

2

< 3

=

=]

54

L 2

=

=

g i H %ﬂ

k=1
a b c a b c a b c a b c a b c al?c a_b c a b c a b c a b c
gzip gcc bzip mcf twolf vortex parser perl vpr avg.

Figure 6.9: Perceriage of branch instructions that were a miss-predictionand the
main thread obtained their correct outcomesfrom the subordinate thread, for three
schemes: (a) SST with subA (main-subA); (b) SST with subB (main-subB); and

(c) HSST with both subA and subB.

110

Hiding Branc h Penalty: The miss-predictionpenalty of a miss-predictedoranch

instruction can be incurred by seweral threads up the hierarchy. With result inte-
gration, all threads above the thread that rst incurred the penalty do not have
to incur it if that thread executedthe branch non-speculatively. In HSST, subA
consumesthe non-speculative results of subB without executingtheir correspnd-
ing instructions. Those results include branch instructions that may have been
miss-predictedbut were pre-executedby subB, thereby hiding their miss-prediction
penalty. Moreover, the main thread consumesranch outcomesthat subA consumed
from subB, in addition to the branch outcomescalculatedby subA. We plotted the

percenage of times the main thread wernt on the wrong path for the following four

models: singlethread (superscalar),main-subA, main-subB,and HSST (Figure 6.8).

The main thread in HSST incurred fewer branch miss-predictions(third bar) than

the main-subA sdheme (rst bar) and the main-subB stheme (secondbar). The

advantage of HSST over the SST schemeswith regard to the number of branch

miss-predictionscan be explained by the amourt of correct branch results subA
obtained from subB. We plot in Figure 6.9 the averagenumber of branch outcomes
that are miss-predictedin the main thread, but the subordinate thread was able to

hide their miss-prediction penalty, for the three shemes,main-subA, main-subB,
and HSST. In HSST subB was able to pre-executefor subA a considerableamourt

of its miss-predictedbranches(grey portion of the third bar in Figure 6.9). Further,

subA in turn forwardedall its results alongwith subB'sresultsto the main thread.

Note that becausesubA was sped up by subB, subA was able to hide even more
branch penalties,thereby bene ting the HSST main thread.

111

6.5

Single Thread

SST with subA
SST with subB
HSST with subA & subB

Tow i

twolf vortex parser perl vpr avg.

B NI

5.5

4.5

3.5

L2 Miss Ratio (percentage)

2.5

1.5

s [l

gzip gcc bzip

Figure 6.10: L2 cace missratio in main thread for four schemes:(a) Singlethread,;
(b) SST with subA (main-subA); (c) SST with subB (main-subB); and (d) HSST

with both subA and subB.

6.3.3 Improvemern in L2 Cade Miss Ratio

Figure 6.10shavs the main thread L2 cade missratio for four shemes,single
thread (superscalar)scheme,main-subA, main-subB,and HSST. On average the L2
cade missratio reducedfurther with HSST (fourth bar). This result implies that
in HSST, subB is helping subA with the L2 cade misses. This in turn speedsup
subA, which is alsogoingto bring in someblocks into the L2 cade beforethe main
thread needsthem. Theseresultsimply that more e ective L2 cade pre-fetciing is

occurring in HSST than in the main-subA and the main-subB models.

112

HSST (2
HSST (3

0RO

HSST (4

SST (single subordinate thread)
subordinate threads
subordinate threads|
subordinate threads|
5.999
6.5%
] 6.8%0
vortex parser perl vpr avg.

Figure 6.11: IPC obtained for four schemes: (a) SST with a single subordinate

thread; (b) HSST with two subordinate threads; (c) HSST with three subordinate

threads; and (d) HSST with four subordinate threads.

10 M [0 SST (single subordinate thread
|| HSST (2 subordinate threads|
9 HSST (3 subordinate threads
0 HSST (4 subordinate threads
s —

=

=3

R=1

=1

&) f—

(=N

8 i

= —

-

=3 —

=

©

[=a)

=

bzip twolf vortex parser vpr

Figure 6.12: Averagebrandh miss-predictionsin main thread for four schemes:(a)

SST with a single subordinate thread; (b) HSST with two subordinate threads; (c)

HSST with three subordinate threads;and (d) HSST with four subordinate threads.

113

Level 1 subordinate thread
Level 2 subordinate thread
Level 3 subordinate thread
Level 4 subordinate thread

\‘
o
BON0

% of branch incorrect results of the subordinate thread

vpr avg.

twolf vortex parser

gcc bzip

Figure 6.13: Averageincorrect branch results of four subordinate threads with dif-
ferert levelsof speculation: (a) Subordinate thread at speculationlevel 1 (subA); (b)
Subordinate thread at speculation level 2 (subB); (c) Subordinate thread at specu-

lation level 3 (subC); and (d) Subordinate thread at speculation level 4 (subD).

4.8
4.4
4 [0 SST (single subordinate thread)
3.6 HSST (2 subordinate threads]
" [} HSST (3 subordinate threads|
O HSST (4 subordinate threads]

3.2

2.4

L2 Miss Ratio (percentage)

1.6
1.2
0.8
1
[e) % [}
twolf vortex parser perl vpr avg.

gzip gcc bzip

Figure 6.14: L2 cade missratio in main thread for four schemes:(a) SST with a
single subordinate thread; (b) HSST with two subordinate threads; (c) HSST with

three subordinate threads; and (d) HSST with four subordinate threads.

114

6.3.4 Experimerting with More than Two Subordinate Threads

We performedanotherexperimert in which we usedmorelevelsof speculations
in the hierarchy, i.e., more subordinate threads in order to ewaluate the e ect of
adding more subordinate threads. We evaluated three subordinate threadsand four
subordinate threads. Level 1 subordinate thread (subA) is the subordinate thread
right belonv the main thread, followed by level 2 subordinate thread (subB), then
level 3 subordinate thread (subC), and nally level 4 subordinate thread (subD).
Level 4 subordinate thread is the most speculative subordinate thread, its branch
thresholdis 4 and its memorythresholdis 12 cycleswhile level 1 subordinate thread
is the least speculative with a brandch threshold of 16 and a memory threshold of 50
cycles. The thresholdsof ead level are showvn in Table 6.1.

The IPC we obtained for four sthemes(SST with a singlesubordinate thread,
HSST with two subordinate threads, HSST with three subordinate threads, and
HSSTwith four subordinate threads)is shovn in Figure 6.11. The singlesubordinate
thread we usedwith SSTis the rst subordinate thread right after the main thread
in all the three HSST schemes. The IPC acrossall the bendymarks doesnot shov
any improvemert beyond that obtained with two subordinate threads. With three
and four subordinate threads (3rd and 4th bars), the IPC either doesnot change
or decreasesWe obtained more statistics to understandthe lackluster performance
shovn when increasingthe number of subordinate threads beyond two.

We plot the main thread average branch miss-prediction for the samefour

sthemesin Figure 6.12. The main thread incurs the most number of branch miss-

115

predictions in the SST scheme (rst bar). It incurs the least number of branch

miss-predictionswhen we usetwo subordinate threads (secondbar). When we use
two and three subordinate threads, the number of branch miss-predictionsincreases
(third and fourth bars, respectively). This is becausehe subordinate thread at the

bottom of the hierarchy becomesmore and more speculative and hencegoes more

on the wrong path. Its parert thread, therefore, hasto squashit more often and

cannot proceeduntil its child is recovered. This slovs down both the child and the

parert, making both threadsine ectiv e in hiding the branch miss-predictionlatency.

We shaw in Figure 6.13the number of times eat subordinate thread was squashed
becausat went on the wrong path. The number of times a subordinate thread gets
squashedncreasesaswe go from the rst bar (least speculative subordinate thread)

to the fourth bar (most speculative subordinate thread).

Finally, Figure 6.14 shows the L2 cade missrate of the main thread for the
four. There is no signi cant decreasdn the L2 cade miss rate shavn in the last
two bars (HSST with 3 and 4 subordinate threads). Howeer, there is a signi cant
decreasan the L2 cade missrate in the secondbar (HSST with two subordinate
threads) comparedto the SST scheme(rst bar). From our discussionwe conclude
that HSST may not provide signi cant performanceimprovemen beyond two sub-
ordinate threads due to the increasedpenaltiesof squashingthe highly speculative
subordinate threads that o set the insigni cant decreasein the main thread L2

cade missrate.

116

Chapter 7

Related Work
Although our SST work originated mainly from subordinate threading, the
end product doeshave somesimilarities with previously proposedideas. We shall

compareand cortrast our ideasto theseexisting ideas.

7.1 SST and Run-aheadexecution

In run-ahead execution[11, 19] only a single thread is running at any time.
When the main thread is unableto make progressbecausehe instruction window is
blocked due to a long latency cade miss, the state of the processoris chedkpointed
and it switchesto the run-ahead mode. In the run-ahead mode, the blocking in-
struction is removed from the window by supplying it with an invalid value. In this
way, the processorcan cortinue to fetch, execute,and pseudoretire instructions,
without updating the architectural state. Instructions that follow, if dependen
on the blocking instruction, are also removed from the window. When the block-
ing instruction completes,the processorreturns to the "normal’ mode and restores
the chedpointed state. All instructions executedin the run-ahead mode will be
fetched and executedagain during normal mode. The run-ahead mode usesthe
samehardware cortext asthe main thread with someextra hardware. The bene t

of run-aheadcomesfrom letting the processorfetch and executemore instructions

117

than the instruction window normally permits with the hope of reating subsequen
long-latency cathe missesearlier soasto processthem in parallel with the blocking
instruction that rst initiated the run-aheadmode. Howeer, the cost of transition-
ing from the run-aheadmode to the normal mode involvesa pipeline squash,which
is equalto a branch miss-predictionpenalty. Early return from the run-aheadmode
to the normal mode may hide sud latency, but it limits the distance of e ective
run-aheadexecution[19].

We identify seweral limitations in run-aheadexecution, that are overcomein
our SST sheme. The main di erence with our executionmodel is that, run-ahead
executionusesa single hardware cortext for both the normal and run-aheadmodes,
while SST usesa separatehardware cortext for the main thread and the subor-
dinate thread(s). Hence,all threadsin SST run in parallel whereasin run-ahead
execution,only a singlemode is running at any point of time, either normal mode or
speculative run-aheadmode. This allows speculative executionin SSTto last much
longer than in run-ahead execution, in addition to eliminating chedkpointing and
mode transition. In run-ahead execution, speculative executionin the run-ahead
mode stops oncethe processorreturns to the normal mode even if sud speculative
execution is on the correct path and generatescorrect pre-fetdh addresses. This
a ects the aggressienessof run-ahead execution. Second,ead cade missin a
chain of dependen cade misseswill causethe run-ahead processorto erter the
run-aheadmode. If only a few instructions exist between sud misses,the proces-
sor will pre-executethe sameset of future instructions multiple times [55], thereby

wasting processorresources. SST eliminates all these limitations seamlesslyand

118

achieves higher performance. Third, in SST the subordinate thread exploits more
opportunities to have a wider window and to run faster, skipping highly predictable
branches and their badkward slicesin addition to processingthe blocking instruc-
tions in the samemannerasrun-aheadexecution. Fourth, in SST, the main thread
monitors the subordinate thread state to obtain the maximum bene t out of the
subordinate thread, but in run-aheadexecutionthis monitoring doesnot exist, and
so oncethe run-ahead mode deviatesfrom the wrong path or corrupts its state, it
becomesuseless.Finally, the useof re-usingresults in run-ahead[20] executionis
limited, becausehe run-aheadmode runs a very short time with correct valuesand
then it corrupts its state or deviatesaway from the correct path, thereby producing
uselesdgncorrect outcomes. On the other hand, becausethe main thread monitors
the subordinate thread path in SST, it is able to make it run more e ectively on
the correct path with correct state, thereby cortributing more correctresultsto the
main thread.

In cortinual ow pipelines(CFP) [56], long latency instructions sud as cade
missesand their dependen instructions (called slice instructions) are drained out
of the issuequeueand register le by using invalid values as fetched data, simi-
lar to run-aheadexecution. Unlike run-ahead execution, the slice instructions are
not thrown out of the pipeline; rather they are stored in a slice processingunit
and the subsequenindependen instructions cortinue their executionspeculatively.
When the blocking cache misscompletes the sliceinstructions re-erter the execution
pipeline and commit the speculative results. In this way, the work during run-ahead

executionis not discardedand there is no needto re-fetch and re-executethosein-

119

structions. To maintain sud speculative data, however, CFP requirescoarse-grain
retiremernt and a large certralized load/store queue (a hierarchical store queueis
proposedto reduceits latency criticality [57, 56] and a hew improvemen is pro-
posedin [58]). Comparedto CFP, SST eliminatessuc large certralized structures
and builds upon much simpler processorcores(e.g., smallerregister les). The fast
brand resolution at the subordinate thread (due to its simpler, shallover pipeline)
reducesthe cost of most branch miss-predictions.SinceSST doesnot needany cen-
tralized rename-map-tablechedpoints, it alsoeliminatesthe complexity for estimat-
ing branch prediction con dence and creating chedkpoints only for low-con dence

brandhes,as neededin CFP.

7.2 SST and Leader/Follower Architectures

In this sectionwe compareour model against subordinate threading architec-
tures that exhibit the leader/follower aspect of our model. In SST, the subordinate
thread (leader) and the main thread (follower) together with the FIFO communi-
cation queueform a very large instruction window for single-thread out-of-order
execution. Coupling two (or more) relatively simple processordo form a large in-
struction window for out-of-orderprocessingvasoriginated in multiscalar processors
[61],and SST providesa complexity-e ective way to construct suc a window while

eliminating elaborate inter-thread (or inter-task) register/memory comrmunication.

Decoupled Arc hitectures: Running a program on two processorspne leading

and the other following, nds its roots in decoupledarchitectures[21, 68|, which par-

120

tition the programinto two partitions | a memory accesgartition and an execute
partition | ead of which executesin parallel. The Execute Processorperforms
all computations and the AccessProcessorperformsall accesse$o the data mem-
ory. The accesgrocessomperformsthe data fetch aheadof demandby the execute
processorthereby hiding the memory accesdatency. The primary di erence with

our processoris that decouplingis part of the instruction set architecture (requir-

ing more sophisticatedcompilation), whereasour executionmodel is purely at the
microarditecture level. Also, our shemedoesnot classifyinstructions as memory
accessnstructions and executeinstructions. In SST, the subordinate thread(s) not
only pre-fetchesthe data but also provides a highly accurateinstruction stream by
xing branch miss-predictionsfor the main thread. Moreover, all this is accom-

plished without the di cult task of partitioning the program.

Slipstream pro cessors: Slipstreamprocessord15, 18] are leader/follower archi-
tectures proposedto acceleratesequetial programs. They are similar to SST and
sharea similar high-lewel architecture: two processorsconnectedthrough a FIFO
comrmunication bu er. Howewer, SSTand slipstreamprocessoradieve their perfor-
manceimprovemers in quite di erent ways. In slipstreamprocessorsthe A-stream
runs a shorter program basedon the removal of ine ectual instructions while the
R-stream usesthe A-stream results as predictions to make faster progress. The
A-stream is a relatively slover leader since long latency cade missesstill block
its pipeline unlessthey are detected ine ectual and removed from the A-stream.

The R-stream s a relatively slowver follower as well, becauset must executeevery

121

instruction executedby the A-stream ewen if the A-stream executedit correctly.
On the other hand, in SST the main thread consumeshe subordinate thread non-
speculative results without executing their correspnding instructions (instead of
using them as predictions). This allows the main thread to becomea faster fol-
lower. Also, in SST, the subordinate thread is a much faster leaderas it operates
on a virtually ‘ideal' L2 cade aswell as skip highly predictable branchesand their
badkward slices;hence,its e ectiv e instruction window is much bigger than that of

slipstream.

Dual-core execution model: The dual-coreexecutionparadigm (DCE) [36] is
another leader/follower architecture proposedto acceleratesequetial programs. It
is similar to SST and sharesa similar high-lewvel architecture: two processorscon-
nectedthrough a FIFO comnunication bu er. It consistsof two superscalarcores,
a front processor(leader) and a bad processor(follower). The front processorre-
senblesthe A-stream and the badk processomresenblesthe R-streamin slipstream
terms. The front processorhoweer, executesall instructions exceptfor long-latency
cade misses. For a long-latency cadie miss, it instead producesan invalid value
instead of blocking the pipeline similar to run-ahead execution. Other than that,
ewerything elsein DCE is the sameasin slipstream. Our SST model di ers from
DCE in the sameway asit di ers from slipstream. Also, the subordinate thread in
SSTis a faster leaderthan DCE's front processorbecauset not only operateson
a virtually “ideal' L2 cade, but it also skips highly predictable branchesand their

badkward slices. Therefore, its e ective instruction window is larger than that of

122

DCE.

Flea-Flic ker Mo del: \Flea-Flicker" two passpipelining [41]is closestto SSTin
terms of integrating run-aheadexecution and leader/follower architectures. In the
Flea-Flicker design,two pipelines(A-pip e and B-pipe) are introduced and coupled
with a queue. The A-pipe executesall instructions without stalling. Instructions
with one or more unready sourceoperandsskip the A-pipe and are stored in the
coupling queue. The B-pipe executesinstructions deferredin the A-pipe and incor-
poratesthe A-pipe results. Comparedto this work, SST is basedon out-of-order
execution,thereby having higher latency hiding. More importantly, ea- ic ker tries
to reusethe work of the A-pipe by introducing a lot of complexity overheads(e.g.,
the certralized memory order bookkeeping and the coupling result store in ea-
ic ker), while SST usesthe simple RSB and MSB bitmaps to identify results that
the main thread can reusefrom the subordinate thread. The elimination of sud
certralized structuresis the reasonwhy SSTis a much more scalableand complexity

e ective design.

Dual-core speculativ e multithreading: Srikanth et. al [42] proposeda min-
imal dual-core speculative multithreading model (SpMT) that adieves signi cant
performanceimprovemen for single-threadedapplications. In this model, one core
executeghe speculative threads (leader), while the other executesnon-speculatively
(follower). In this scheme,the resultsof instructions that are executedby the specu-

lative threadsand not a ected by data dependenceviolations are bu ered and later

123

committed by the non-speculative thread without re-executingthem. The non-
speculative thread may spavn speculative threads whenewer a spavn point arrives
and only onespeculative thread may run at any point of time. There arethreetypes
of speculative threads; run-aheadspeculative thread that is spavned when a cade
miss latency is encounered, a procedurethread that is forked when the procedure
call is encourtered, and a loop speculative thread that is forked when a badkward
slice of a branch instruction is encourtered se\eral times. The main di erence with

SSTis that SST usesa single speculative thread and it has no forking or spavn

points.

Master/Sla ve speculativ e parallelization: In master/slave speculative paral-
lelization (MSSP) [43, 44, there are two types of threads, a compiler generated
single master thread (subordinate thread) and a slave (main thread) that is par-
allelized into multiple tasks. The slave threads usethe outcomesof the master as
predictions. The HSST versionof SST di ers from master-slae in dividing the sub-
ordinate thread and not the main thread into seweral more speculative subordinate

threads, and in the hierarchical organization of the subordinate threads.

Pre-execution/Pre-computation architectures: In pre-execution/pre-computation
architectures [59, 12, 3, 4, 60, 9], a pre-execution/pre-computationthread is con-
structed using either hardware or the compiler and leadsthe main thread to provide
timely pre-fetchesor computed branch outcomes(for miss-predictedbrancies). In

a multithreaded architecture, howeer, pre-executionthreads and the main thread

124

compete for a sharedinstruction window and a cade missin any thread will block
its executionand potertially a ect other threadsthrough resourcecompetition. In
future execution[45], an otherwiseidle core on a chip multipro cessorpre-executes
future loop iterations using value prediction to perform cade pre-fetching for the

main thread.

7.3 SST and Result Reuse

Deterministically reducing the number of executedinstructions by meansof
Dynamic Instruction Reusewas proposedin [16, 17]. The main idea is to keep
copiesof recen instruction results (along with their operand values)sothat future
dynamic instancesof the sameinstruction can usethe samevalue, if they have the
sameinput valuesasthe bu ered ones.The key di erenceswith our schemearethat
it works with a singlethread of cortrol, and bu ers instruction results for far longer
periods of time. Moreover, our shemedoesnot compareentire registervaluesasin
[16, 17]; rather it usesthe RSB to identify registersthat are data-speculative from

thosethat are not.

The use of result integration in data-driven multithreading: Speculative data-
driven multithreading (DDMT) [4] forks subordinate threadsthat are decidedstat-
ically. With the useof a technique called register integration [13], the main thread
is able to allow the main thread to directly useresults computedin the data driven
threads (DDTs). Integration exploits the fact that both the main thread and the

DDT placeresultsin a sharedphysicalregister le (in an SMT (simultaneousmulti-

125

threading) implemertation). Using a modi cation to register renaming,integration
allows the main thread to recognizeand claim DDT results. The main way SST
di ers from DDMT is in the way the main thread integratesresults from the sub-
ordinate thread. Becauseof its generality, it can handle subordinate threads with

a lot of data and cortrol speculations. Pruning the main thread in SST is based
on the architected register speci ers, and soit is independen of register renaming.
SST can thereforework on both SMT and CMP (Chip Multipro cessor)platforms.
The subordinate thread in SST runs aslong asthe main thread runs, while a DDT

is spavned when needed,and vanishesafter it performsits task.

7.4 SST and Clustered Architecutures

In clustered architectures [22, 23, 24], the processorresourcesare split into
two or more clusters. Each cluster is simpler, faster, and consumedesspower than
a monolithic architecture. Instructions are generallydispatched to clustersbasedon
data dependenciesn order to localize dependencieswithin a cluster and to reduce
communication among clusters. The main di erence with our execution model is
that clusteredprocessordiave a singlethread of cortrol (and thereforea singlefetch

unit), whereasSST hastwo or more threads of cortrol.

126

Chapter 8

Future Work
Our SST/HSST has somelimitations. In this chapter we identify some of
those drawbadks and provide insight into our intended solutions. We also discuss

someways of extending our SST work in the future.

8.1 Making the FastestThread the Leader

Our SSTand HSST sdhemesare leader-follaver architectures becausehe par-
ert thread newer goesaheadof its child thread. The assumptionis that, the child
thread is more speculative than its parert thread and runs faster, and therefore it
is always aheadof its parert thread. Howewer, there are occasionswhen the paren
thread can go aheadof the child thread becausesat of them generatesaccesseto
di erent memory locations. For instance, a parert thread and its child thread may
accessa block of memory that residesin the parert's L1 dcade but is not in the
child's L1 dcade and not in the sharedL2 cade. In this casethe child will block
for sometimeuntil it realizesthat the correspnding memory instruction is a long
latency instruction and retires it early beforethe block arrivesfrom main memory.
In SST and HSST howewer, we do not allow the parent thread to go aheadof its
child thread, and sothe parert thread will alsoblock until it receivesthe speculative

result of the memoryinstruction from its child. If the parent thread hasgoneahead

127

and executedthe memory instruction, it would have deliveredthe result to its own
parert much faster.

We intend to explore SST and HSST schemesthat do not de ne the leaderto
be the child thread and the follower to be the parert thread. Rather, the leaderwill
be the fastestthread (whether parert or child). In other words, instead of holding
the parert thread until its child thread forwardsits results, we will permit the parert
thread to run aheadof its child thread. This hasseeral implications: First, speed
will be governed by the fastestthread at any time, i.e, if at sometime the parert
thread can be faster than the child thread, then it makessenseto make the parert
thread the leader. Second,the parernt and the child may loose syndronization.
Therefore, medanismsmust be provided to ensurethat they are re-syntironized.
Third, the parernt thread must therefore be independen of its child thread, and so

it must fetch and decale its own instructions whenit goesaheadof its child thread.

8.2 Hybrid HSST Processor

In SST or HSST the subordinate threads are more generaland they are all
distilled in the samemanner but with di erent levels of speculations. We intend
to try specializedsubordinate threads sud that ead is concernedabout a di erent
type of critical latency. For instance,the lowestlevel subordinate thread canbe only
concernedabout pre-fetching the instruction cade for all the other levelsaswell as
fetching and decaling all instructions. This can be done by making it only fetch,

decale, andretire all instructions, and sothe only latency it would incur is the icache

128

misslatency. We can useanothertype of subordinate thread that is concernedonly
about pre-fetdhing the L2 cade and skips all branches and their badkward slices.
We canuseathird type of subordinate thread that is concernednly about resolving
hard-to-predict branch instructions. We canthen put all threadsin a hierarchy with
the main thread. It would make senseto put the most speculative thread (the one
that performsicade pre-fetching) at the bottom of the hierarchy, and on top of it
the onethat pre-fetchesthe L2 cade and then the onethat performsbranch pre-
computation and at the top of the hierardy, the main thread. That would make
an HSST sdhemewith a hybrid collection of subordinate threads. We can take that
further by adjusting the level of speculation of ead thread basedon the running

application.

8.3 Exploiting Program Behavior ChangesUsing Dual Thread Exe-

cution Models

One way of utilizing the additional processingcoresin a multi-core erviron-
mert is to run subordinate threads on them so as to speed up the execution of
critical instructions. Another option is to spavn speculative threads on them so as
to exploit thread level parallelism. We performeda study on our SST schemewhich
is a subordinate threading schemeand a speculative multithreading technique, the
trace processor69].

In the trace processor,the compiler or hardware partitions a sequetial pro-

gram into speculative threads and the processorexecutesmultiple tracesin parallel,

129

with the help of multiple processingcores. Processingcoresare arrangedasa circular
gueue,in which only the headprocessingcoreis allowed to commit its instructions.
All other processingcorescannot commit instructions until they becomethe head.
A speculative thread is a cortiguous sequenceof dynamic instructions, called a
trace. A trace is spavned before cortrol readesthat trace, and before knowing if
its executionis required or not. The use of traces allows aggressie exploitation of
thread-lewel parallelism from programsthat are inherertly sequetial.

Our study shaws that someapplications bene t more from the SST stheme,
and othersbene t morefrom the speculative multi-threading approad (the average
performancewas slightly higher for the SST approad). More importantly, our
results also shov that many of the applications cannot be strictly categorizedas
favoring either speculative multi-threading or decoupledexecutionas SST. Rather,
most applications alternate betweenthe two categoriesduring di erent phasesof
their execution. We plan to idertify characteristicsof code regionsthat make them
more suitable to be run using one approad or the other. We alsoplan to evaluate
the potertial for a hybrid processorthat can switch execution modes between a
trace processomode (exploiting thread-lewel parallelism) and SST mode (exploiting

decoupledexecution).

8.4 Division of Work

Our SST and HSST models try to divide the instructions to be executed

amongthe di erent threads sud that if onethread producesthe correct result of a

130

particular instruction, then all the threadsabove it in the hierarchy should consume
that result without executingits correspnding instruction. In that sense,we are
dividing the instructions to be executedamongthe threads. Howewer, good division

of instructions amongthe threads doesnot always result in good division of work.

For better utilization of the hardware, it is more important to eliminate redundart

computations and have a more equal distribution of work amongthe threads.

We plan to study the division of work amongthe threads more carefully, suc
that we can idertify more accurately the level of speculation of eat thread. An
ideal division of work would make eat thread in a dual-core perform only 50% of
the required work in parallel. If we usea secondsubordinate thread, then ead of
the three threads should perform only 33.3% of the work in parallel, and so on.
Unfortunately, the world is not that ideal for seeral reasons:First, the application
may not be easily divided among the threads equally becauseit may not cortain
enoughparallelism. Secondthe hugememorywall aswell asbranch miss-prediction
penalties are another obstacleto adieving a more equal work distribution among
the cores(threads). We intend to identify at run-time the ideal division of work
of an application amongthe available cores. We also intend to identify the ideal

number of threadsto usefor a particular application.

8.5 Power Studies

We alsointend to do somepower studiesof our SSTand HSST sthemesagainst

already existing shemessud as the slipstream processorand the DCE stheme

131

[18, 36]. We expect that the SST schemewill yield the lowest power consumption
becauseit tries to reducethe redundart computations, and so it executesfewer

instructions than both the slipstream processorand the DCE scheme.

8.6 Simulation Work

Although we performed most of our studiesusing a simulator that we dewel-
oped basedon the SimpleScalartoolkit, we realizethat it is not very modular, and
soit isdicult to extendor modify it. We intend to revisit the designof our simu-
lator to make it more modular sud that it is easierto manipulate and usefor more
studies.

Our currert simulator doesnot allow us to do power studies. In order to do
our intended power studies, we plan to extend our simulator to make it simulate
somepower models. This will require an extensive dewelopmert work.

Also, as we add more coresto our simulator, the simulation time increases.
Simulating our HSST stheme with three subordinate threads, takes on average8
hours for a single bendimark, for only 500 million instructions. We realize that it
is crucial to our researb to make the simulation time faster.

Finally, we intend to experimert with the oating-p oint bendimarks also. We
expect that they will yield much higher performancethan the integer bendimarks
becauseour schemesexploit the available parallelism, which is more presen in

oating-p oint bendimarks.

132

Chapter 9

Summary and Conclusions

In keeping with the natural trend towards integration, current and future
microprocessorsare enbracing the prosperity of single-dip multi-core processors.
Although multi-core processorsdeliver signi cantly improved system throughput,
single-thread performanceis not addressedand is negatively a ected. This is be-
cause,multi-core architectures integrate simpler and smaller coresto achieve high
throughput and meet a low power budget while high single-thread performance
requireslarger and more complexcoresthat have a wide instruction window to sus-
tain a vast amourt of instructions while serving long-latency memory instructions
in parallel.

In this dissertation, we presened Synbiotic Subordinate Threading (SST), a
novel processorarchitecture that utilizes idle coreson a single chip multipro cessor
for improving single-threadperformancewhile maintaining the exibilit y to support
multithreaded applications. We demonstratedthat our SST scheme achieves high
performancewith minor hardware changesover dual-core processorssud as the
slipstream processorand the DCE processor. Its performancerangesfrom 7% to
45% over slipstream processorand 2% to 20% over DCE for integer bendimarks.
We showed that SST can directly integrate the correct results of the subordinate

thread into the main thread state without executing their correspnding instruc-

133

tions in the main thread. Result integration bene ts our SST schemein two ways.
First, the subordinate thread incorrect results are not used as predictions in the
main thread, henceeliminating the introduction of incorrect predictionsin the main
thread. Second,the number of instructions executedby the main thread is signif-
icantly reduced,resulting in a faster main thread and a more e cient use of the
hardware resources.In other words, instructions are implicitly divided amongthe
main thread and the subordinate thread, which allows more than one instruction
to be servicedin parallel. Also, with a faster main thread, the subordinate thread
spends lesstime on wrong path instructions, and henceit is lesscorruptive and
performsits tasks more e cien tly.

We also presened another implemenation of SST in which the subordinate
thread is informed of its own speculative state and usesthis information to avoid
executingmore instructions that are likely to produce speculative incorrect results.
We demonstratedthat this new designof SST minimizesthe number of times the
subordinate thread deviatesfrom the correct path, hencereducing the number of
times the subordinate thread hasto recover from the wrong path, i.e., lesssquash
and re-start penalties. Also, a speculative aware subordinate thread is faster and
more e cient, becauseit executesonly the instructions that are more likely to
produce useful results. Howewer, we noticed that a speculative-avare subordinate
thread neglectsvalue prediction as an e ective meansfor predicting memory ad-
dresses. As a result, the new SST sdheme did not deliver good performancefor
bendimarksthat bene ted from value prediction sud asmcf and twolf. The average
performanceimprovemert of the new SST sthemethat employs a speculative-avare

134

subordinate thread over the old SST schemeis 9%, and rangesfrom -20%to 20%.
We alsonoticed that the DCE shemewith a speculative-avare subordinate thread
performedalmost as well asthe SST schemewith a speculative-avare subordinate
thread. This is becausethe DCE schemesu ers in generalfrom incorrect branch
outcomesproducedby the subordinate thread and consumedby the main thread as
predictions; howewer, with a speculative-avare subordinate thread, the number of
incorrect branch outcomesof the subordinate thread reducedsigni cantly. The new
SST sdhemestill hasthe advantage of executing fewer instructions than the DCE
stheme.

Another extensionof our SST schemeis the Hierarchical Symbiotic Subordi-
nate Threading (HSST), in which a subordinate thread is allowed to have its own
subordinate thread. The HSST scheme, brings together the advantages of high
speculative subordinate threadswith the advantagesof low speculative subordinate
threads while reducing the impact of their drawbads. Highly speculative subordi-
nate threadsare fasterwith alargerinstruction window to explorebut they go more
often on the wrong path. On the other hand, low speculative subordinate threadsex-
ecutemoreinstructions, and sothey produce more correct results, however they are
slower and have a limited instruction window to explore. We comparedour HSST
sthemewith two subordinate threads (subA and subB) againsttwo SST sthemes,
eat emplgying one of the subordinate threads. SubA is lessspeculative than subB
and follows the main thread in the hierardy. SubB acts as a subordinate thread
for subA. We report an average performanceimprovemen of 16% over the SST

con guration with subA and 18% over the SST con guration with subB. We also

135

presered results for HSST schemewith two, three, and four subordinate threads.
Our resultsindicate that asthe number of subordinate threadsincreasesthe penal-
ties asseiated with squashingand recovering the subordinate thread increase.Also,
the bene t of the subordinate thread with regardto cade pre-fetching and branch
pre-computation decreasessit becomesanore speculative. An HSST con guration
with three and four subordinate threads did not improve the performancebeyond
two subordinate threads.

The hardware requiremerts for SST and all its extensionsare moderate. For
pruning the main thread we only require the bitmaps (RSB and MSB) and the as-
scciated logic for maintaining them. For pruning the subordinate thread we require
additional bitmaps (RSB and MSB) and their asseiated logic. The FIFO queue
is neededfor the communication between the subordinate thread and the main
thread. The FIF O queueis perhapsthe largest pieceof hardware we add. Howe\er,
the FIFO queueis a simple pieceof hardware that allows forwarding the results of
the subordinate thread to the main thread, and facilitates integration and improves
the performance.Also, the FIFO queueis a much smallerand lesscomplexpieceof
hardware than doubling the sizeof ead core.

Finally, we plan to cortinue the work on SST. We beliewe that more enhance-

merts can be madeto SSTto improve its performance.

136

BIBLIOGRAPHY

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. -Y. Chang, The
Casefor a Single-Chip Multiprocessor (Proc. 7th International Symposium
on Architectural Support for Programming Languagesand Operating Systems,

1996).

[2] LawrenceSpraklen and Sartosh G. Abraham, Chip Multithr eading, Opportuni-
ties and Challengeg(Proc. 11th International Symposiumon High Performance

Computer Architecture, 2005).

[3] C. -K. Luk, Tolerating Memory Latency through Softwae-Controlled Pre-
Execution in Simultaneous Multithr eading Processors(Proc. 28th International

Symposium on Computer Architecture, June 2001).

[4] A. Roth and G. S. Sohi, Speculative Data-Driven Multithr eading (Proc. 7th In-
ternational Symposium on High PerformanceComputer Architecture (HPCA-

7), 2001).

[5] A. Roth, A. Moshovos, and G. S. Sohi, Improving Virtual Function Call Target
Prediction via Dependene-Basel Pre-Computation (Proc. 13th Annual Inter-

national Conferenceon Supercomputing, June 1999), pages356-364.

[6] J. Pierceand T. Mudge, Wrong-Path Instruction Prefetching(Proc. 27th An-

nual IEEE/A CM International Symposium on Microarchitecture, 1994).

137

[7] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen, Dynamic Sgeculative

Precomputation (Proc. 34th Annual IEEE/A CM International Symposium on

Microarchitecture, 2001).

[8] S.S.W. Liao, P. H. Wang, G. Ho ehner, D. Lavery, and J. P. Shen,Post-Pass
Binary Adaptation for Softwarme-Basel Speculative Precomputation (Proc. ACM

SIGPLAN Conferenceon Programming LanguageDesignand Implemertation,

June 2002).

[9] C. Zilles and G. S. Sohi, Execution-Baseal-Prediction Using Speculative Slices

(Proc. 28th International Symposium on Computer Architecture, 2001).

[10] M. Annavaram, J. Patel, and E. Davidson, Data Prefetching by Dependene

Graph Precomputation (Proc. 28th International Symposium on Computer Ar-

chitecture, June 2001).

[11] J. Dundasand T. Mudge, Improving Data CachePerformance by Pre-exeuting
Instructions Under A Cache Miss (Proc. International Conferenceon Super-

computing, July 1997), pages68-75.

[12] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes,Y. -F. lee, D. Lavery, and
J. P. Shen, Sgeculative Precomputation: Long-range Prefetchingof Delinquent

Loads (Proc. 28th International Symposium on Computer Architecture, June

2001).

138

[13] A. Roth and G. S. Sohi, Register Integration: A Simpleand E cient Implemen-
tation of SquashReuse(Proc. 33 Annual IEEE/A CM International Symposium

on Microarchitecture, 2000).

[14] T. Aamodt, P. Marcuello, P. Chow, P. Hammarlund, and H. Wang, Prescient

Instruction Prefetch(Proc. MTEA C-6, November 2002).

[15] K. Sundaramarthy, Z. Purser, and E. Rotenberg, Slipstream processors: im-
proving both performance and fault tolerance (Proc. 9th International Confer-
enceon Architectural Support for ProgrammingLanguagesand Operating Sys-

tems, 2000), pages257-268.

[16] A. Sadani and G. S. Sohi, Dynamic Instruction Reuse(Proc. 24th International

Symposium on Computer Architecture, June 1997).

[17] R. Bodik, R. Gupta, and M. L. So a, Load-ReuseAnalysis: Designand Eval-

uation (Conf. on PLDI-99, Atlanta, Georgia,May 1999).

[18] Z. Purser, K. Sundarammrthy, and E. Rotenberg, A Study of Slipstream Pro-
cessors (Proc. 33rd annual IEEE/A CM international symposium on Microar-

chitecture, Deceniber 2000).

[19] O. Mutlu, J. Stark, C. Wilkerson,and Y. Patt, Runahead Execution: An Alter-
native to Very Large Instruction Windows for Out-of-order Processors(Proc.
36th Annual IEEE/A CM International Symposium on Microarchitecture, De-

cenber 2003).

139

[20] O. Mutlu, H. Kim, J. Stark, and Y. Patt, On Reusingthe Results of Pre-
Executed Instructions in a Runahead Execution Processor(Computer Architec-

ture Letters, Vol. 4, January 2005).

[21] L. Kurian, P. T. Hulina, and L. D. Coraor, Memory LatencyE e cts in Decou-
pled Architectureswith a SingleData Memory Module (Proc. 19th International

Symposium on Computer Architecture, 1992), pages236-245.

[22] R. Canal, J. M. Parcerisa, and Antonio Gonzalez,Dynamic Cluster Assign-
ment Mechanisms(Proc. 6th International Symposium on High Performance

Computer Architecture, 2000).

[23] J. Keller, The 21264: A Supersalar Alpha Processorwith Out-of-Order Exe-

cution (MicroprocessorForum, October 1996).

[24] S. Palacharla, N. J. Jouppi, and J. E. Smith, Complexity-E ective Supersalar
Processors (Proc. 24th International Symposium on Computer Architecture,

1997), pages206-218.

[25] M. D. Smith, M. Horowitz, and M. S. Lam, E cient Sugersalar Performance
ThroughBoosting(Proc. 5th International Conferenceon Architectural Support

for Programming Languagesand Operating Systems,October 1992).

[26] D. Burger, T. M. Austin, and S. Bennett, Evaluating Future Microprocessors:
The Simplesalar Tool Set (University of Wisconsin Madison, July 1996), CS

TR-1308.

140

[27] R. Chappell, F. Tseng, A. Yoaz,and Y. Patt, Dicult-Path Branch Predic-
tion Using Sulordinate Microthreads (Proc. 29th International Symposium on

Computer Architecture, May 2002).

[28] R. Chappell, J. Stark, S.Kim, S.Reinhardt, and Y. Patt, Simultaneous Sutordi-
nate Microthreading (ssmt) (Proc. 26th International Symposiumon Computer

Architecture, May 1999).

[29] A. Roth and S. Sohi, A Quantitative Frameworkfor Automated Pre-Exeution
Thread Seletion (Proc. 35th International Symposium on Microarchitecture,

2002),pages430-441.

[30] D. M. Tullsen, S. Eggers,and H. M. Levy, Simultaneous Multithr eading: Maxi-
mizing On-Chip Parallelism (Proc. 22th International Symposiumon Computer

Architecture, 1995).

[31] J. Rattner, Multi-core to the masses(Proc. 14th International Conferenceon

Parallel Architectures and Compilation Tedniques,2005).

[32] D. Kim and D. Yeung, Designand Evaluation of Compiler Algorithms for Pre-
Execution (Proc. 10th International Conferenceon Architectural Support for
Programming Languagesand Operating Systems,October 2002), pages159-

170.

[33] D. Kim and D. Yeung, A Study of Source-Level Compiler Algorithms for Au-
tomatic Construction of Pre-Execution Code (ACM Transactionson Computer
Systems,August 2004), pages326-379.

141

[34] D. Kim, S. S. Liao, P. H. Wang, J. del Cuvillo, X. Tian, X. Zou, H. Wang, D.
Yeung, M. Girkar, and J. P. Shen, Physial Experimentation with Prefetching
Helper Threadson Intel's Hyperthreaded Processors(Proc. IEEE 2nd Interna-
tional Symposium on Code Generationand Optimization, March 2004), pages

27-38.

[35] R. Mameeshand M. Franklin, Symbiotic Sulordinate Threading (Proc. ICCD-

23,2005).

[36] Huiyang Zhou, Dual-core execution: Building a Highly Salable Single-thread
instruction window (Proc. 14th International Conferenceon Parallel Architec-

tures and Compilation Tedniques,2005).

[37] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. -Y. Chang, The
Casefor a Single-ChipMultipr ocessor(Proc. 7th International Symposium on
Architectural Support for Programming Languagesand Operating Systems,

1996).

[38] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, Automatically Par-
allelizing Large Sale Program Behavior (Proc. 10th International Conference

on Architectural Support for Programming Languagesand Operating Systems,

2002).

[39] E. Perelman, G. Hamerly, M. Van Biesbrou&, T. Sherwood, and B. Calder,
Using SimPoint for Accurate and E cient Simulation (Proc. SIGMETRICS,

June 2003).

142

[40] G. Hamerly, E. Perelman,and B. Calder, How to Use SimPoint to Pick Simu-

lation Points (Proc. SIGMETRICS, 2004).

[41] R. Barnes, E. Nustrom, J. Sias, S. Patel, N. Navarro, and W. Hwu , Beat-
ing in-order stalls with e a- icker two pass pipelining (IEEE Transactionson

ComputersVol. 55 No. 1, 2006).

[42] S. Srinivasan,H. Akkary, T. Holman, and K. Lai, A Minimal dual-cre specu-

lative multithreading architecture (Proc. ICCD-22, 2004).

[43] Craig Zilles and G. Sohi, Master/Slave Speculative Parallelization (Proc. 35th

Annual IEEE/A CM International Symposium on Microarchitecture, 2002).

[44] Craig Zilles, Master/Slave Speculative Parallelization and Approximate Code

(PhD Thesis, Univeristy of Wisconsin,2002).

[45] llya Ganusov and Martin Burtschur, Future Execution: A Hardware Pre-
fetching Techniquefor Chip Multipr ocessors(Proc. 14th International Confer-

enceon Parallel Architectures and Compilation Tedniques,2005).

[46] llya Ganusor and Martin Burtschur, E cient Emulation of Hardware Prefetch-
ersvia Event-Driven Helper Threading (Proc. 15th International Conferenceon

Parallel Architectures and Compilation Tedniques,2006).

[47] C. Moore, POWER4 SystemMicroarchitecture (Proc. MicroprocessorForum,

2006).

143

[48] R. Kalla, B. Sinharoy, and J. Tendler, IBM POWERS5 chip: a dual-core mul-
tithr eaded processor(Proc. 37th Annual IEEE/A CM International Symposium

on Microarchitecture, 2004), pages40-47.

[49] P. Kongetira, A 32-way Multithr eaded SPARC Processor(Proc. Hot Chips 16,

http://www.hotc hips.org/archive/, 2004).

[50] Advanced Micro Devices, AMD Demonstiates Dual Core Leadership

(http://www.amd.com, 2004).

[51] T. Maruyama, SPARC64 VI. Fujitsu's Next Genemation Processor(Proc. Mi-

croprocessorForum, 2003).

[52] C. McNairy and R. Bhatia, Montecito - the Next Product in the Itanium Pro-

cessorFamily (Proc. Hot Chips 16, http://www.hotc hips.org/archive,2004).

[53] K. Farkas, N. Jouppi, and P. Chow, Register File Considemtions in Dynam-
ically Scheluled Processors(Proc. of 2nd International Symposium on High-

PerformanceComputer Architecture, 1996), pages40-51.

[54] James Burns and jean-Luc Gaudiot, Area and System Clock E ects on
SMT/CMP Throughput (IEEE Transactionson Computers, Vol. 54, No. 2,

February 2006).

[55] O. Mutlu, H. Kim, and Y. Patt, Techniquesfor e cient processingin runahead
exeution engines(Proc. 32nd International Symposium on Computer Archi-

tecture, 2005).

144

[56] S.T. Srinivasan,R. Rajwar, H. Akkary, A. Gandhi, and M. Upton, Continual
Flow Pipelines (Proc. 11th International Conferenceon Architectural Support

for Programming Languagesand Operating Systems,2004).

[57] H. Akkary, R. Rajwar, and S. Srinivasan, Checkpoint processingand recovery:
towards salablelarge instruction window processors(Proc. 36th International

Symposium on Microarchitecture, 2003).

[58] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai, Salable load
and store processingin latency tolerant processors(Proc. 32nd International

Symposium on Computer Architecture, 2005).

[59] R. Balasubramonian,S. Dwarkadas, and D. Albonesi, Dynamically Allocating
ProcessorResourcesBetween Nearby and Distant ILP (Proc. 28th International

Symposium on Computer Architecture, 2001).

[60] P. H. Wang, J. D. Collins, E. Grochowski, R. M. Kling, and J. P. Shen,Memory
Latency-Tolerance Approachesfor Itanium Processors: Out-of-Order Execution
vs. Speculative Precompuation (Proc. of the 8th International Symposium on

High PerformanceComputer Architecture, 2002).

[61] M. Franklin, The Multiscalar Archtecture (PhD Thesis,University of Wisconsin,

Madison, Decentber 1993).

[62] K. Z. Ibrahim, G. T. Byrd, and E. Rotenberg, Slipstream Execution Mode
for CMP-Baseal Multipr ocessors(Proc. 9th International Symposium on High-
PerformanceComputer Architecture, February 2003).

145

[63] H. Akkary and M. A. Driscoll, A Dynamic Multithr eading Processor(Proc. 31st

International Symposium on Microarchitecture, 1998), pages226-236.

[64] M. Franklin and G. S. Sohi, The ExpandableSplit Window Paradigm for Ex-
ploiting Fine-grain Parallelism (Proc. International Conferenceon Supercom-

puting, 1997).

[65] C. B. Zilles, J. S.emer,and G. S. Sohi, The Use of Multithr eading for Exception
Handling (Proc. 32nd International Symposium on Microarchitecture, 1999),

pages219-229.

[66] T. N. Vijaykumar, I. Pomeranz,and K. Cheng, Transient-Fault Recovery Using
Simultaneous Multithr eading (Proc. 29th Annual International Symposium on

Computer Architecture, May 2002), pages87-98.

[67] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, Detailed Designand Evalua-
tion of Redundant Multithr eading Alternatives (Proc. International Symposium

on Computer Architecture, May 2002),pages99-110.

[68] JamesE. Smith, Decouplad Access/Execute Compuer Architectures (Proc. 9th

International Symposium on Computer Architecture, 1982).

[69] E. Rotenberg, Q. Jacobson,Y. Sazeidesand J. E. Smith, Trace Processors

(Proc. 30th Annual Symposium on Microarchitecture, 1997).

[70] S. Vajapeyam and T. Mitra, Improving Sugersalar Instruction Dispatch and
Issueby Exploiting Dynamic Code sequen@s(Proc. 24th International Sympo-
sium on Computer Architecture, 1997).

146

[71] Q. Jacobson E. Rotenberg, and J. E. Smith, Path-basel Next Trace Prediction

(Proc. 30th International Symposium on Microarchitecture, 1997).

[72] Kahle, J., The Cell Processor Architecture (Proc. 38th Annual IEEE/A CM

International Symposium on Microarchitecture, 2005).

[73] Dongkeun Kim, Compiler-Base&l Pre-Execution (Departmen of Electrical and

Computer Engineering,University of Maryland in CollegePark, 2004).

147

