
ABSTRACT

Title of dissertation: Symbiotic Subordinate Threading (SST)

Rania Mameesh,Doctor of Philosophy, 2007

Dissertation directed by: Dr Manoj Franklin
Electrical and Computer EngineeringDepartment

Integration of multiple processorcoreson a singledie, relatively constant die

sizes,increasingmemory latencies,and emergingnew applications createnew chal-

lengesand opportunities for processorarchitects. How to build a multi-core pro-

cessorthat provides high single-threadperformancewhile enabling high through-

put through multi-programming? Conventional approaches for high single-thread

performanceuse a large instruction window for memory latency tolerance, which

requires large and complex cores. However, to be able to integrate more coreson

the samedie for high throughput, coresmust be simpler and smaller.

We present an architecture that obtains high performancefor single-threaded

applications in a multi-core environment, while using simpler cores to meet the

high throughput requirement. Our scheme,calledSymbiotic Subordinate Threading

(SST), achievesthe bene�ts of a large instruction window by utilizing otherwiseidle

coresto run dynamically constructedsubordinate threads(a.k.a. helper threads) for

the individual threads running on the active cores.

In our proposedexecutionparadigm, the subordinate thread fetchesand pre-

processesinstruction streamsand retires processedinstructions into a bu�er for the

main thread to consume.The subordinate thread executesa smaller versionof the

program executedby the main thread. As a result, it runs far aheadto warm up

the data caches and �x branch miss-predictionsfor the main thread. In-
igh t in-

structions are present in the subordinate thread, the bu�er, and the main thread,

forming a very large e�ective instruction window for single-threadout-of-order ex-

ecution. Moreover, using a simple technique of identifying the subordinate thread

non-speculative results, the main thread canintegrate the subordinate thread's non-

speculative resultsdirectly into its state without having to executetheir correspond-

ing instructions. In this way, the main thread is sped up becauseit also executes

a smaller version of the program, and the total number of instructions executed

is minimized, thereby achieving an e�cien t utilization of the hardware resources.

The proposedSST architecture does not require large register �les, issuequeues,

load/store queues,or reorderbu�ers. In addition, it incurs only minor hardware ad-

ditions/changes. Experimental results show remarkable latency-hiding capabilities

of the proposedSST architecture, outperforming existing architectures that share

similar high-level microarchitecture.

We performed two extensionsof our SST scheme,and cameup with two ad-

ditional microarchitectures. In the �rst extension, we developed a simple way to

allow the subordinate thread be aware of its own speculation. A speculative-aware

subordinate thread is capableof identifying instructions that are more likely to pro-

duce invalid values,and so may skip their execution. In the secondextension,we

allow a subordinate thread to have its own subordinate thread. The main thread

and multiple subordinate threads are arranged in a hierarchy basedon the degree

of their speculation, with the most speculative subordinate thread at the bottom

of the hierarchy and the least speculative thread (the main thread) at the top of

the hierarchy. This new microarchitecture, namedHierarchical Symbiotic Subordi-

nate Threading, combinesthe bene�t of the speedof highly speculative subordinate

threads with the accuracyof not-too-speculative subordinate threads.

Symbiotic Subordinate Threading (SST)

by

Rania Mameesh

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, CollegePark in partial ful�llmen t

of the requirements for the degreeof
Doctor of Philosophy

2007

Advisory Commmittee:

Dr Manoj Franklin, Chair/Advisor
Dr Amr Baz
Dr CharlesSilio
Dr Donald Yeung
Dr Peter Petrov

c
 Copyright by

Rania Mameesh

2007

ACKNOWLEDGMENTS

I owe my gratitude to all the peoplewho have made this thesis possibleand

becauseof whom my graduateexperiencehasbeenonethat I will cherish forever.

First and foremostI'd like to thank my advisor, ProfessorManoj Franklin for

giving me an invaluableopportunit y to work on challengingand extremely interest-

ing projects over the past �v e years.

I would also like to thank my committee members, Dr Amr Baz, Dr Charles

Silio, Dr Donald Yeung, and Dr Peter Petrov for agreeingto serve on my thesis

committee and for sparing their invaluable time reviewing the manuscript.

I owe my deepest thanks to my family - my parents and brother who have

always stood by me and guidedme through my career,and have pulled me through

against impossibleodds at times. Words cannot expressthe gratitude I owe them.

It is impossibleto remember all, and I apologizeto those I've inadvertently

left out.

Lastly, thank you all and thank God!

ii

TABLE OF CONTENTS

List of Tables vi

List of Figures vii

1 In tro duction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Roadmap . 7

2 Background 8
2.1 Single-ChipMulti-core Processors. 8

2.1.1 Motivation for Building Single-ChipMultipro cessors. 9
2.1.2 Single-ChipMulti-core Architecture Models 11

2.2 Multithreading . 14
2.2.1 Multiprogramming . 14
2.2.2 Parallel Processing . 15

2.3 Subordinate Threading . 16
2.3.1 Usesof Subordinate Threading 17
2.3.2 Subordinate Thread Construction Techniques 19

3 Symbiotic Subordinate Threading (SST) | The Concepts and Im-
plemen tation Details 25
3.1 A Simple Methodology for Distilling The Subordinate Thread 25
3.2 A Simple and E�cien t Way of Pruning The Main Thread 29

3.2.1 Basic Idea . 29
3.2.2 Skipping Non-Memory Instructions 30
3.2.3 Skipping Memory Accesses(Only LOAD Instructions) 32
3.2.4 An Example . 34

3.3 Communicating Subordinate Thread Results and Decoded Informa-
tion to the Main Thread . 37

3.4 Putting it All Together: The SST Microarchitecture 41
3.4.1 Basic Operation . 43
3.4.2 Memory System. 44
3.4.3 Recovery of the Subordinate Thread from Miss-speculation . . 45

4 Exp erimen tal Results of SST 47
4.1 PerformanceEvaluation of SST Against SlipstreamProcessor 49

4.1.1 AverageIPC Improvement of SST 50
4.1.2 Instruction Distribution in The Main Thread 52
4.1.3 LessWork Done by the Subordinate Thread on Wrong Paths . 54
4.1.4 PerformanceImprovement with a Highly SpeculativeSubordi-

nate Thread Versusa Not-Too-Speculative Subordinate Thread 56
4.1.5 Improvement in the Subordinate Thread L2 Cache Miss Rate 57

iii

4.1.6 Improvement in the Main Thread L1 DCache Miss Rate . . . 59
4.1.7 Reduction in the Main Thread Branch Miss-predictions 60

4.2 PerformanceEvaluation of SST Against DCE 63
4.2.1 IPC Improvement of SST without Memory Symbiosis (100

Cyclesfor Main Memory Access) 64
4.2.2 IPC Improvement of SSTwith Memory Symbiosis(100Cycles

for Main Memory Access) . 65
4.2.3 IPC Improvement of SSTwith Memory Symbiosis(300Cycles

for Main Memory Access) . 66
4.2.4 Reduction in the Subordinate Thread L2 Cache Miss Rate . . 68

5 An Optimized Implemen tation of SST 70
5.1 A Partially Speculative-Aware Subordinate Thread 71
5.2 The Subordinate Thread Recoversfrom Miss-Speculation By Switch-

ing Roleswith the Main Thread . 75
5.3 New SST Microarchitecture . 79
5.4 Experimental Results . 79

5.4.1 IPC Improvement . 82
5.4.2 Branch Miss-predictionsin The Main Thread 84
5.4.3 Branch Miss-predictionsin the Subordinate Thread 85
5.4.4 L2 Cache Miss Rate . 87
5.4.5 Reduction in the Total Number of ExecutedInstructions . . . 88

6 HSST: Hierarc hical Symbiotic Subordinate Threading 91
6.1 A Motivating Example . 92
6.2 Implementation Details of HSST. 96

6.2.1 Spawning Subordinate Threads 98
6.2.2 Distilling the Subordinate Thread 100
6.2.3 Result Integration . 102
6.2.4 Recovering the Subordinate Thread Corrupted State 103

6.3 Experimental Results . 103
6.3.1 PerformanceImprovement . 105
6.3.2 Advantagesof Result Integration 108
6.3.3 Improvement in L2 Cache Miss Ratio 112
6.3.4 Experimenting with More than Two Subordinate Threads . . 115

7 Related Work 117
7.1 SST and Run-aheadexecution . 117
7.2 SST and Leader/Follower Architectures 120
7.3 SST and Result Reuse . 125
7.4 SST and ClusteredArchitecutures . 126

8 Future Work 127
8.1 Making the FastestThread the Leader 127
8.2 Hybrid HSST Processor . 128

iv

8.3 Exploiting Program Behavior ChangesUsing Dual Thread Execution
Models . 129

8.4 Division of Work . 130
8.5 Power Studies . 131
8.6 Simulation Work . 132

9 Summary and Conclusions 133

Bibliography 137

v

LIST OF TABLES

4.1 Microarchitectural Simulation ParametersFor Smaller Cores 48

4.2 Microarchitectural Parameterswith Larger Cores 63

5.1 Microarchitectural Simulation Parametersfor Old & New SST 81

6.1 HSST Microarchitectural Parameters 104

6.2 SuperscalarMicroarchitectural Parameters 105

vi

LIST OF FIGURES

3.1 SST top level design. 26

3.2 Identifying the backward sliceof a branch instruction. 27

3.3 RSB update scenarios. 32

3.4 MSB addressing. 33

3.5 (a) Loop examplefrom benchmark perl; (b) Example of reducingthe
number of executedinstructions by the main thread. 35

3.6 FIFO queue.. 38

3.7 SST microarchitecture. 42

3.8 Fast recovery of the subordinate thread state. 43

4.1 % IPC improvement achieved with symbiotic subordinate threading
(SST) over the slipstream processor(main thread does not skip in-
structions). (a) SST with low speculation subordinate thread, and
main thread doesnot skip load instructions; (b) SST with low spec-
ulation subordinate thread, and main thread skips load instructions;
(c) SST with high speculation subordinate thread, and main thread
doesnot skip load instructions; (d) SST with high speculation sub-
ordinate thread, and main thread skips load instructions 51

4.2 Instruction distribution in main thread for two schemes:(a) SSTwith
high speculativesubordinate thread; (b) SSTwith not too speculative
subordinate thread . 54

4.3 Work doneby the subordinate thread on wrongpathsfor four schemes:
(a) Slipstreamwith a highly speculative subordinate thread; (b) SST
with a highly speculative subordinate thread; (c) Slipstream with a
not too speculative subordinate thread; (d) SST with a not too spec-
ulative subordinate thread. 55

4.4 Distribution of averageL2 cache missesobtained with: (a) Single
thread; (b) Slipstreamprocessor;and (c) SST. 58

4.5 Main thread L1 dcache: (a) missesincurred and saved with SST
when memory symbiosis is applied; and (b) accessesincurred and
saved with SST when memory symbiosis is applied. 60

vii

4.6 Main thread % of branch miss-predictionsincurred when using: (a)
The branch predictionsobtainedfrom a branch predictor for all branch
instructions (singlethread); (b) The branch predictionsobtainedfrom
the subordinate thread for all branch instructions (slipstream); (c)
The non-data-speculativebranch outcomesof the subordinate thread,
and the predictions obtained from the branch predictor for all other
branch instructions (SST). 62

4.7 IPC obtained with memory latency 100cyclesfor: (a) Singlethread
scheme; (b) DCE scheme; and (c) SST scheme (main thread con-
sumesthe results of the subordinate thread for only non-memory
instructions. 65

4.8 IPC obtained with memory latency 100cyclesfor: (a) Singlethread
scheme;(b) DCE scheme;and (c) SSTscheme(main thread consumes
the results of the subordinate thread for all typesof instructions). . 66

4.9 IPC obtained with memory latency 300cyclesfor: (a) Singlethread
scheme; (b) DCE scheme; and (c) SST scheme (main thread con-
sumesthe results of the subordinate thread for only non-memory
instructions. 67

4.10 Distribution of averageL2 cache missesobtained with memory la-
tency 300cyclesfor: (a) Singlethread scheme;(b) DCE scheme;and
(c) SSTscheme(main thread consumesthe resultsof the subordinate
thread for only non-memoryinstructions). 67

5.1 Subordinate thread and main thread switch roles after recovery of
the subordinate thread from miss-speculation. 76

5.2 New SST Microarchitecture. 78

5.3 IPC for 5 schemes:(a) Singlethread (a superscalarthat combinestwo
coresin one); (b) DCE with speculative unaware subordinate thread;
(c) SST with speculative unaware subordinate thread; (d) DCE with
speculative-awaresubordinate thread; (e) SSTwith speculative-aware
subordinate thread. 82

5.4 Percentage IPC improvement over a singlethread (a superscalarthat
combines two cores in one) for four schemes: (a) DCE with spec-
ulative unaware subordinate thread; (b) SST with speculative un-
aware subordinate thread; (c) DCE with speculative-aware subordi-
nate thread; (d) SST with speculative-aware subordinate thread. . . . 84

viii

5.5 Percentage branch miss-predictionsincurred by the main thread for
�v e schemes: (a) Single thread (a superscalar that combines two
coresin one); (b) DCE with speculative-unaware subordinate thread;
(c) SST with speculative-unaware subordinate thread; (d) DCE with
speculative-awaresubordinate thread; (e) SSTwith speculative-aware
subordinate thread. 86

5.6 Percentageof incorrect branch outcomesof the subordinate thread for
four schemes:(a) DCE with speculative-unaware subordinate thread;
(b) SST with speculative-unaware subordinate thread; (c) DCE with
speculative-awaresubordinate thread; (d) SSTwith speculative-aware
subordinate thread. 87

5.7 L2 cache miss rate (only complete misses)in the main thread for
�v e schemes: (a) Single thread (a superscalar that combines two
coresin one); (b) DCE with speculative-unaware subordinate thread;
(c) SST with speculative-unaware subordinate thread; (d) DCE with
speculative-awaresubordinate thread; (e) SSTwith speculative-aware
subordinate thread. 88

5.8 Distribution of skipped and executedinstructions in the main thread
and the subordinate thread for two schemes:(a) SSTwith speculative-
unaware subordinate thread; (b) SST with speculative-aware subor-
dinate thread. 89

6.1 Examplefrom benchmark perl showing the codesnippet for: (a) Main
thread; (b) Subordinate thread of main-subA model; and (c) Subor-
dinate thread of main-subB model. 93

6.2 Pros and consof high and low speculation subordinate threads. . . . 95

6.3 HSST High Level Microarchitecture: (a) HSST similar to a cache
hierarchy; (b) HSST block diagram; and (c) Components of Thread
Controller (TC). 97

6.4 HSST detailed microarchitecture design. 99

6.5 IPC obtained for four schemes: (a) Single thread (superscalar); (b)
SST with subA (main-subA); (c) SST with subB (main-subB); and
(d) HSST with both subA and subB. 107

6.6 IPC obtained for four schemes: (a) Single thread (superscalar); (b)
SST with subA (main-subA); (c) SST with subB (main-subB); and
(d) HSST with both subA and subB. 107

ix

6.7 Distribution of instruction outcomesin main thread for threeschemes:
(a) SST with subA (main-subA); (b) SST with subB (main-subB);
and (c) HSST with subA and subB. 108

6.8 Averagebranch miss-predictionsin main thread for four schemes:(a)
Singlethread (superscalar);(b) SSTwith subA (main-subA); (c) SST
with subB (main-subB); and (d) HSST with both subA and subB. . . 110

6.9 Percentageof branch instructions that werea miss-predictionand the
main thread obtained their correct outcomesfrom the subordinate
thread, for three schemes:(a) SST with subA (main-subA); (b) SST
with subB (main-subB); and (c) HSST with both subA and subB. . 110

6.10 L2 cachemissratio in main thread for four schemes:(a) Singlethread;
(b) SST with subA (main-subA); (c) SST with subB (main-subB);
and (d) HSST with both subA and subB. 112

6.11 IPC obtained for four schemes: (a) SST with a single subordinate
thread; (b) HSSTwith two subordinate threads;(c) HSSTwith three
subordinate threads; and (d) HSST with four subordinate threads. . . 113

6.12 Averagebranch miss-predictionsin main thread for four schemes:(a)
SSTwith a singlesubordinate thread; (b) HSSTwith two subordinate
threads;(c) HSSTwith threesubordinate threads;and(d) HSSTwith
four subordinate threads. 113

6.13 Average incorrect branch results of four subordinate threads with
di�erent levels of speculation: (a) Subordinate thread at speculation
level 1 (subA); (b) Subordinate thread at speculation level 2 (subB);
(c) Subordinate thread at speculation level 3 (subC); and (d) Subor-
dinate thread at speculation level 4 (subD). 114

6.14 L2 cache miss ratio in main thread for four schemes:(a) SST with a
single subordinate thread; (b) HSST with two subordinate threads;
(c) HSST with three subordinate threads; and (d) HSST with four
subordinate threads. 114

x

Chapter 1

In tro duction

1.1 Motivation

Recent trends in microarchitecture reveal a move towards multi-core archi-

tectures that can e�cien tly leveragethe billion transistor chips promisedby future

technologies. All major high-performancemicroprocessorvendorshave announced

or are already selling chips with two to nine cores.Future generationsof thesepro-

cessorswill undoubtedly include more coreson a singlechip multipro cessor(CMP)

[1, 2]. In 2001,IBM introducedthe dual-corePOWER-4 [47]processor,and in 2004

it introduced the POWER-5 processor,in which each core supports 2-way simul-

taneousmultithreading (SMT) [48]. In 2005IBM introduced the Cell Broadband

Engine Architecture known as Cell processor[72], which combined eight synergis-

tic processorelements with a dual-issuePOWER processorelement. In 2004Sun

announcedthe Niagara processor[49], which included eight cores,each of which is

a four-way SMT. AMD, Fujitsu, and Intel have also releasedtheir dual-core chip

multipro cessors[50, 51, 52].

Multiprogrammed environments as well as parallel applications bene�t the

most out of multiple cores.However, the performanceof individual serial programs

doesnot improve and may even su�er a penalty becauseof increasedcontention for

sharedresourcessuch ascachesin a multi-core environment. Moreover, the costand

1

complexity of software increasesif applications are manually parallelized to obtain

a bene�t from multiple cores.Finally, many generalpurposeapplications, that are

easyto parallelize, exhibit limited scalability. Therefore, they may not be able to

take advantage of additional coresbeyond a certain point.

Improving the performanceof single threads in a multi-core environment has

provento bedi�cult for several reasons.First, multi-core architecturesfavor simpler

and smallercoresto addressthe application needsfor parallelization and the power

budget, which limits the opportunit y to exploit the available ILP with wide-issue

cores. Also, achieving high single-threadperformancein the presenceof relatively

increasingmemory latencieshas traditionally required large and complex coresto

sustain a large number of instructions in
igh t while waiting for memory. On the

other hand, special-purposehardware acceleratorsthat are located outside the core

can improve a thread's performanceby eliminating control and memorybottlenecks

(e.g. advanced branch predictors and data prefetchers), but they often result in

signi�cant chip area additions and additional complexity. In light of thesetrends,

architectural techniques that allow the use of additional coresto speed up single

threads are becomingan attractiv e alternative [31].

Subordinate threading is onesuch technique that utilizes multi-core architec-

tures for single-threadperformancebecauseof its abilit y to overcomethe hurdles

imposedby unpredictable branches and long-latency memory accesses.The basic

idea is to spawn subordinate threads (also called helper threads), which are shorter

versionsof the main thread that executein parallel with the main thread. Because

they areshorter, they advancefaster than the main thread, and perform many useful

2

actions on behalf of the main thread, thereby speedingup the main thread com-

putation. Useful actions performed by the subordinate thread include instruction

and data pre-fetching to reducecache misses[3, 4, 6, 7, 32, 8, 9, 10, 11, 12], and

precomputing the outcome of hard-to-predict branches [27, 28, 29]. Moreover, it

has been shown that the main thread can also bene�t signi�cantly from directly

consumingsubordinate thread results that are guaranteed to be correct [4, 35].

This dissertation describesand evaluatesa new hardware-basedarchitectural

framework, namedSymbiotic Subordinate Threading (SST), that allows otherwise

idle coresin a CMP to function ashelper enginesfor the individual threadsrunning

on the active cores. Our model exploits various sourcesof subordinate threading

bene�ts: cache pre-fetching, branch pre-computation, and result reuse. The sub-

ordinate thread runs aheadof the main thread, performing cache pre-fetches and

resolving branch miss-predictionsaheadof the main thread demand and forward-

ing all of its results to the main thread. The main thread consumesthe subordi-

nate thread results that are guaranteed to be correctly executedby the subordinate

thread without executing their corresponding instructions. Speedingup the main

thread in this mannerhasseveral advantages. First, the overall speedof the proces-

sor increases,becauseit is dependent on how fast the main thread moves forward.

Second,a fastermain thread detectsthe subordinate thread's miss-speculationsear-

lier, thereby cutting down the amount of time spent by the subordinate thread on

wrong-path or wrong-datainstructions. Third, both threadsaremaking e�cien t use

of the resources,by executinga relatively lessoverlapping portions of the program

in parallel. Finally, becauseof the provision for early detection of violations, the

3

subordinate thread is now free to do more aggressive speculations. This symbiotic

relationship betweenthe two threadsspeedsup both of them, resulting in signi�cant

improvements in performance.

1.2 Contributions

This dissertation makes�v e major contributions, outlined below:

1. Symbiotic Subordinate Threading (SST): A key contribution of this dis-

sertation is the development of a minimal dual-coreSST model on a CMP platform

that achieves signi�cant performancebene�ts. The model usessimple hardware

structures to facilitate forwarding of results from the subordinate thread to the

main thread as well as determining if those results can be consumedby the main

thread without executingtheir corresponding instructions. At the heart of our SST

model is the formation of the subordinate thread dynamically. We provide a simple

and e�cien t way of distilling the subordinate thread dynamically with minimum

hardware requirements. Recovering the subordinate thread from the wrong path

is another major concernand is addressedwith minimum overhead. Our scheme

is purely at the hardware level so it does not require any compiler intervention.

(Chapters 3,4 and 5).

2. Understanding SST: Insight is provided regarding the sourcesof symbiotic

subordinate threading performance. This focusesexploration of the architecture

and leadsto the following key results: (a) Signi�cant performanceimprovement is

4

achieved with symbiotic subordinate threading, up to 27% improvement in speed.

(b) A signi�cant improvement in L2 cache missesis achieved in the subordinate

thread. Also, a signi�cant improvement in L1 dcache missesis achieved in the main

thread. (c) The number of branch miss-predictionsincurred by the main thread are

reducedwith SST.(d) Increasedcooperation of the main thread and the subordinate

thread is evident. First, the number of instructions executedby the main thread is

reduced,up to 40%. Second,the subordinate thread wrong-path work is reduced

signi�cantly (Chapter 4).

4. Comparison between SST and other schemes: We perform comparisons

betweenSST schemeand other already existing schemesthat sharethe samehigh

level implementation asSST.Thoseschemesare the slipstreamprocessor,and dual-

core executionmodel (DCE) [18, 36]. Both the slipstream processorand the DCE

schemeare pure hardware mechanismsfor speedingup single thread performance

just like SST. They provide the samemeansas SST for forwarding results of the

subordinate thread to the main thread but do not provide the meansto identify the

correct results of the subordinate thread as SST does. Hence,the main thread in

slipstreamand in DCE consumesthe subordinate thread resultsasvalueand control

predictions and so must validate them by executing all instructions. However, in

SSTthe main thread consumesthe correct resultsof the subordinate thread without

executing their corresponding instructions. We show that SST, outperforms those

techniqueswith a relatively simpler hardware additions. The averageperformance

improvement of SST is 27% and 14% over the Slipstream processorand the DCE

5

scheme,respectively (Chapter 4).

3. An optimized implemen tation of SST: We provide another implementa-

tion of SST in which the subordinate thread is aware of its own speculation. By

letting the subordinate thread know which registersand memory locationsarespec-

ulative, it can avoid executinginstructions that usesdata-speculative input values.

In that sense,the subordinate thread distills itself and only executesinstructions

that will yield correct results. This is especially useful in reducing the number of

times the subordinate thread miss-speculatesand goeson the wrong path. It also

provides the bene�t of reducing the total number of instructions executedby both

the main thread and the subordinate thread (Chapter 5).

5. Hierarc hical Symbiotic Subordinate Threading (HSST): This is an-

other key contribution of this dissertation, extending the SST scheme to include

more than onesubordinate thread. Our HSST executionparadigm allows a subor-

dinate thread to have its own subordinate thread. Collectively, the main thread and

the subordinate threads form a hierarchy, with the main thread at the top of the

hierarchy. As we traversethe hierarchy downwards the subordinate thread speed

and speculation increasebecauseit executesfewer instructions, and so, its abilit y

to exploremore instructions than its instruction window allows, increases.Results

generatedby a thread are consumedby its parent thread just like in SST with a

singlesubordinate thread. We exploredHSST with two subordinate threads, three

subordinate threads and four subordinate threads. Our results yield that as we

6

add more subordinate threads, the penaltiesassociated with squashingand recov-

ering the subordinate threads increasesuch that they o�set the bene�ts when we

go beyond two subordinate threads. With two subordinate threads we achieved an

averageperformanceimprovement of 15% over an SST scheme that usesa single

subordinate thread (best of the two) (Chapter 6).

1.3 Roadmap

Background material is covered in Chapter 2. In Chapter 3, we describe how

the main thread is pruned in order to be faster. This introductory Chapter provide

insight into the implementation details of symbiotic subordinate threading (�rst

and secondcontributions respectively). The sourcesof performanceimprovement

achieved with symbiotic subordinate threading are discussedin Chapter 4 as well

as comparing its performanceagainst already existing schemes(secondand third

contributions). An optimized implementation of symbiotic subordinate threading

is presented in Chapter 5 (fourth contribution) in which the subordinate thread

is speculative aware. Hierarchical symbiotic subordinate threading is discussedin

Chapter 6 (�fth contribution). Chapter 7 describes the related work. We propose

the future work in Chapter 8. Chapter 9 concludesthe dissertation.

7

Chapter 2

Background

This chapter providesthe necessarybackground to better understandthis dis-

sertation. First we discusssingle-chip multi-core processors,which is the current

trend for maintaining microprocessorperformancegrowth by providing signi�cant

bene�ts for both parallel and throughput oriented computing. We then discuss

multithreading as a way to boost processorthroughput by dividing the program

workload into multiple threads that run simultaneouslyon the multiple coresavail-

able on the chip, thereby making e�cien t useof processorresourcesand boosting

performancethrough exploiting thread level parallelism (TLP). Finally, we discuss

subordinate threading and their bene�ts towards improving single-thread perfor-

mance. Subordinate threading techniques utilize otherwise idle coreson a single-

chip to run subordinate threads that perform someuseful actions on behalf of the

main thread.

2.1 Single-ChipMulti-core Processors

Execution models that can support multiple threads on a single-chip such as

simultaneousmultithreading (SMT), chip multipro cessing(CMP), and chip multi-

threading (CMT) [30, 1, 2], have received much attention from the research commu-

nity in the computer architecture �eld. On the multiple processingelements (cores)

8

available in a modern processor,onecan run multiple programsin parallel, or mul-

tiple threads from the sameprogram in parallel to overlap useful computations, or

subordinate threadsto assistthe executionof the main computation thread. In this

section we discussthe technological constraints that lead to single-chip multi-core

processors,mainly, the superscalar'sdiminishing returns and the demandfor a de-

centralized microarchitecture, in addition to the low power budget constraint, and

the demand for low inter-processorcommunication latency. We then discussthe

existing single-chip multi-core processorarchitectures.

2.1.1 Motivation for Building Single-ChipMultipro cessors

Earlier in 1996,Olukotun et. al [1] showed that a better useof silicon area is

a multipro cessorconstructed from simpler processorsand that building a complex

wide issuesuperscalarCPU is not the best useof silicon resources.We list someof

the motivating reasonsfor building a single-chip multi-core processor.

Diminishing Performance of the Wide-Issue Superscalar Mo del: The su-

perscalar processoryields diminishing returns in performanceas the issuewidth

increases,due to the increasedcomplexity of the issuequeueand limitations in in-

struction level parallelism. The net e�ect of all the comparisonlogic and encoding

associated with a wide instruction issuequeueis that it takes a large amount of

die area to implement. Moving to the circuit level, a wide instruction issuequeue

requireslongerwiresthat spanthe length of the structure, resulting in longerdelays.

Farkas et. al. found that an eight-issue machine only performs 20% better than a

9

four-issuemachine when the e�ect of cycle-timeis included in the performanceesti-

mates[53]. This leadsto the needfor a microarchitecture constructedfrom simpler

processorsto maintain the performancegrowth of microprocessors.

Application Demand: From the applicationsperspective, the microarchitecture

that works best dependson the amount and characteristicsof parallelismpresent in

the applications. Applications fall into two categories. The �rst category consists

of applications with low to moderate amounts of parallelism (under 40 instructions

per cycle), most of which are integer applications. The secondcategory consists

of applications with large amounts of parallelism, greater than 40 instructions per

cycle. The
oating point applications fall into the secondcategory and most of

the parallelism is in the form of loop-level parallelism. These two categoriesre-

quire di�erent execution models. Integer applications work best on a moderately

superscalarprocessorwith very high clock ratesbecausethere is little parallelismto

exploit. On the other hand, a decentralized multipro cessorparadigmbest suitesthe

oating point programsbecauseit exploits the vast amount of parallelismpresent in

those programs. Multi-core microarchitectures will work well on integer programs

becauseeach individual processoris a simple superscalarprocessorwith very high

clock rates. Also, multi-core microarchitectures can exploit the parallelism of the

oating point applications by running multiple threads in parallel from the same

program on the available cores.

10

Low Power Budget Requiremen t: Finally, power considerationsalsofavor sim-

pler processorsbut with low frequency. For workloads with adequatethread level

parallelism (TLP), doubling the number of coresand halving the frequencydeliv-

ers roughly equivalent performance,while reducing power consumptionby a factor

of four [2]. However, for applications with limited TLP, speculative parallelism or

subordinate threading have to be exploited for obtaining good single-threadper-

formance under a low-power budget; otherwise single-threadperformancewill be

negatively a�ected due to low frequency.

Low Comm unication Latencies Requiremen t: In multiprogramming andcon-

ventional parallel processingenvironments, communication betweenthreadsis through

sharedmemory and has latenciestypically in the hundredsof CPU cycles[1]. Be-

causeof the high inter-thread communication latencies,threadsareconstructedsuch

that they rarely have to communicate, and this implies that �ne-grain parallelism

cannot beexploited. The addition of low-latency inter-processorcommunication be-

tweenprocessorson the samechip allows the multi-core processorto better exploit

the available parallelism in applications.

2.1.2 Single-ChipMulti-core Architecture Models

The most commonuse for CMP and CMT is to executemultiple threads in

parallel to increasethroughput. The widespreaduseof visualization and multimedia

applications tend to increasethe number of active processesor independent threads

on a desktopor a server in a particular point of time. Oneway to increasethroughput

11

is to executethreads simultaneously from multiple applications. Another way is to

executemultiple threads in parallel that come from a single application, such as

transaction processing. Multi-core processorscan also be used to acceleratethe

execution of a single thread of control. We next discussthe trade-o�s between

CMP and CMT in what they can o�er regarding throughput and single-thread

performance.

CMP: Each core on a CMP processorruns only a single-thread. To increase

throughput, cores are made simpler and smaller to accommodate more threads.

Hence,layout e�ciency increases,resulting in morefunctional units within the same

silicon area plus faster clock rates. The problem with CMP is that the hardware

partitioning of on-chip processorsrestricts performance. The hardware partition

results in smaller resourcessincethe level-1 caches, TLBs, branch predictors, and

functional units are divided amongthe multiple processors.Hence,single-threaded

programscannotuseresourcesfrom the other processorcoresand the smallerlevel-1

resourcesper corecauseincreasedmiss rates [54].

CMT: CMT processorsprovide support for many simultaneoushardware threads

of execution in various ways, including SMT and CMP. Recall that, in an SMT

processor,the physical processorcore appearsto the operating systemas if it is a

symmetric multipro cessorcontaining several logical processors.Hence,the physical

processorcoreexecutesinstructions from morethan oneinstruction stream(thread).

This increasesthroughput through thread-level parallelism and tolerates processor

12

andmemorylatenciesto increaseprocessore�ciency . The problemwith SMT is that

complexity and circuit delays grow faster with issuewidth. In addition, multiple

threads on a single core share the samelevel-1 cache, TLB, and branch predictor

units, which causescontention. The resulting increasein cache missesand branch

miss-prediction rates limits performance. Merging CMP and SMT combines the

advantages of both the individual techniques. CMT has the CMP advantages of

more functional units and a faster clock than a wide-issueprocessor. Also, the

addition of SMT increasesthe e�ciency of the underlying CMT, becausethere is no

hardware partitioning of processorresources,which allows a number of instructions

from multiple threadsto accessthe functional units, henceincreasingthe functional

unit utilization.

Trade-o�s: More smallercoresmakesthe throughput of CMPs higher than that of

SMTs; however, a wide-issueSMT delivershigher single-threadperformance.Given

the signi�cant areacostassociated with high-performancecores,for a �xed areaand

power budget, the CMT designchoiceis betweensmall number of high performance

(high frequency, aggressive out-of-order, large issuewidth) coresor multiple simple

(low frequency, inorder, limited issuewidth) cores. For workloads with su�cien t

TLP, the simpler core solution may deliver superior chip-wide performanceat the

fraction of the power. However, the simpler coresolution will not work well for ap-

plications with limited TLP, unlessother meansfor parallelization are used. In this

dissertation,we realizethe low areaand low power budget, sowe believe that future

CMTs will use simpler cores. Hence,we focus in this dissertation on subordinate

13

threading to speedup the performanceof a singlethread that lacks su�cien t TLP.

2.2 Multithreading

Multithreading booststhe processorthroughput and improvessingle-program

performance,through exploiting thread-level parallelism that residesin programs.

It hasbeenstudied extensively in both academiaand industry [63,42,64]. To make

useof the available transistor budget, processormanufacturers such as IBM, Intel,

and AMD started integrating more coresand/or threads on a single chip to sup-

port multithreading. Many studies in academiahave beencarried out to examine

the potential of usingmultithreading processorssuch asSMT and CMP. We expect

that multithreading will continue to bene�t single-programperformanceas well as

processorthroughput, as long as the transistor count on a chip continuesto grow.

Below, we discusssomeof the multithreading execution paradigmsmainly multi-

programming and parallel processing.We also, discusshow each of them exploits

the available thread-level parallelism in programs.

2.2.1 Multiprogramming

Multiprogramming utilizes multipro cessorsystemsand increasesthe overall

processorthroughput by running multiple independent programs simultaneously.

Also, in a multiprogramming environment, communication or synchronization be-

tween threads is not frequent, thereby, thread-level parallelism can be easily ex-

tracted from programs. The parallelism exploited by multiprogramming is from

14

di�erent programs. However, becausemultipro cessorsystemsserve a large num-

ber of threads that often sharecritical hardware resources,thosecritical hardware

resourcesare often saturated with so many threads. This results in diminishing

throughput as more threads are fed into the system. Moreover, sometimes, we are

interestedin speedingup a singleprogram and not only achieving high throughput.

However, multiprogramming often sacri�cessingle-programperformancein order to

achieve higher throughput.

2.2.2 Parallel Processing

In parallel processing,the program is divided into subprograms,which all run

in parallel on a multipro cessorsystem. In this way, single-programperformanceis

boosted. One way to improve the performanceof a single program is We discuss

two di�erent parallel processingparadigms. The �rst one is conventional parallel

processingand the other is thread-level data speculation technique.

In conventional multipro cessorsystems,when a program is partitioned into

multiple subprograms,each subprogramusually runs almost independently, thereby

exploiting thread-level parallelismin a singleprogram. In such a system,the threads

arecompletelynon-speculativeand overlap usefulcomputations,which improvesthe

processorthroughput. The partitioning is doneby a compileror a programmersuch

that the threads are independent. The programmeror compiler, also takescare of

handling the synchronization amongthe di�erent threads.

In thread-level speculation, the program is partitioned into multiple threads

15

speculatively. Thread-level speculation exploits thread-level parallelism by running

the multiple threads in parallel. When, partitioning the threads, it is assumedthat

there areno memorydependencesbetweenthreads. Each thread commits its results

sequentially in the original program order, and this ensurescorrect program execu-

tion. Dependenceviolations are detectedby a special hardware, which recovers the

threads from any memory dependenceviolations. This hardware, also holds inter-

mediate results until a thread commits. True dependenciesbetweenstore and load

operationsprevent the threadsfrom running and exploiting thread-level parallelism.

In thread-level speculation a �nder-grain thread synchronization is neededand is

supported by the hardware, as in a chip multipro cessor.

In thread-level speculation,complicateddependencestructuresoften limit suc-

cessfulexploitation of thread-level parallelism. This leadsto subordinate threading,

as a meansof boosting single-threadperformancewhen thread-level parallelism is

scarceand partitioning a program into speculative threads is di�cult due to com-

plicated dependencestructures present in the program.

2.3 Subordinate Threading

With integrating more processorcoreson a single-chip multipro cessor,com-

munication delays have beenreducedconsiderably. In subordinate threading, oneor

more subordinate (helper) threads run in parallel with the main thread to help its

execution. We identify two unique characteristics of subordinate threading. First,

subordinate threads help speedup the executionof the main computation thread.

16

However, they do not a�ect the processorthroughput. Subordinate threadshelp the

main thread executionby running far aheadof the main thread, such that they do

work on its behalf. Second,the executionof subordinate threadsaredecoupledfrom

that of the main thread and their code doesnot have to be extracted from the origi-

nal programcode. Subordinate threadsopen up a lot of opportunities for exploiting

otherwiseidle coreson a chip-multipro cessorfor single-programperformanceas we

will show in this dissertation. Below, we present someof the previously proposed

usesof subordinate threading to assistthe executionof a singleprogram. We then

describe someof the tradeo�s of constructing e�ective subordinate threads.

2.3.1 Usesof Subordinate Threading

Tolerating Long-Latencies on Behalf of the Main Thread: Subordinate

threads improve the performanceof the main computation thread by hiding the

latenciesof critical instructions such as load instructions that miss in the cache or

miss-predictedbranch instructions. Subordinate threadshelp the main computation

thread by executinga sliceof the main computation thread. Becausethey execute

fewer instructions than the main thread, they areable to run aheadof it and trigger

long-latency events much earlier. They also overlap those latencies with useful

computations. Someexamplesincludedata pre-fetching [7, 32,33,34,8, 3, 4, 10,12],

instruction pre-fetching [6, 14], branch outcomepre-computation [27], and virtual

function call target prediction [5]. Somesubordinate threads only trigger cache-

missesbut they never completely serviceit, instead they run aheadto �nd other

17

independent cache-missesand trigger them [59,19, 11]. For the subordinate threads

to be e�ective they have to accomplishtheir task in a timely fashion. If they are

too slow, the main thread will not bene�t and if they are too fast, they may throw

pagesout of the cache that are neededby the main thread.

Executing the Exception Handler Code in Parallel with the Main Thread:

Subordinate threads can alsobe usedto run the exceptionhandler code of faulting

instructions. This relieves the main thread from executingthis code, and so it can

continue to executein parallel other instructions that are independent from the one

that causedthe exception [65]. If the code being executeddoesnot contain many

exceptions, or if there is not enough independent instructions from the faulting

instruction to overlap with the exceptionhandler code, then performancemay not

improve much.

Used as an Accurate Value and Branc h Predictor to the Main Thread:

Subordinate threadsthat aredistilled such that they executehard-to-predict branch

instructions and their backward slices,or critical load instructions that miss in the

cache and their backward slices,produce near accurate results. Those results can

serve as near perfect predictions in the main thread, thereby allowing the main

thread to do progressin the event of a cachemissand reducingthe number of branch

miss-predictionsin the main thread [36, 18, 45]. However, becausethe subordinate

thread may execute instructions speculatively, it may introduce incorrect branch

predictionsthat otherwisewould not occur if the main thread followedthe prediction

18

obtained from the branch predictor.

Incorp orating Fault Tolerance: Subordinate threads can also be used to im-

prove fault tolerance. They are a redundant copy of the main computation thread

that runs on another core, thereby helping in detection and recovery from faults

that occur during the program execution[66, 67]. This type of subordinate thread

executesthe samecodeasthe main thread, and soit is totally redundant, and there-

fore it doesnot contribute to the processorperformance.However, in the slipstream

processor,the subordinate thread, called A-stream in slipstream terms, is usedfor

both performanceimprovement as well as fault tolerance[15].

Implemen ting Hardw are Structures and Algorithms in Soft ware: Using

subordinate threading, one can implement complicated hardware structures or al-

gorithms in software, such as a cache pre-fetcher algorithm [46], and run them as

helper threadson sparecores.In this way, the hardware complexity of the processor

for supporting thosenew complicatedstructures is vastly reduced.Hence,reducing

the testing and validation cost of the processorhardware. In this case,the sub-

ordinate thread code is not derived from the original program, rather it is general

purposeand servesany of the individual threads running on the active cores.

2.3.2 Subordinate Thread Construction Techniques

Oneof the important issuesin subordinate threading is generatingsubordinate

threads that perform their required task e�ectively. In this dissertation we focus

19

on thosesubordinate threadsthat enhancesingle-threadperformance.That means,

constructing subordinate threadsmust take into considerationthat the subordinate

thread has to produce accurate results at the right time. There are several ways

for constructing subordinate threads. One way, is constructing subordinate threads

manually by the programmer[3]. The disadvantage of manual construction, is that

it is labor intensive and is error-prone. Hence,automating the construction is more

fruitful.

Kim [73] classi�esthe variousapproachesof constructing e�ective subordinate

threadsautomatically basedon how and whenin the program'slifetime subordinate

threads are constructed. There are four possibleapproachesto extracting subordi-

nate threads. First, in compiler-based extraction the compiler analyzesthe program

code and generatessubordinate threads at the source-level [32]. The secondap-

proach is linker-based extraction, which generatessubordinate threads using binary

analysis[8, 29]. The third approach is dynamic optimizer-based extraction. In this

approach, binary-level code is analyzedand extracted similar to linker-basedextrac-

tion. However, the extraction of binary-level code occursat runtime using dynamic

optimization techniques. Finally, the fourth approach is hardware-based extraction

[7, 10, 18]. In this approach, subordinate threadsare extracted at runtime from in-

struction traces. This requires,runtime analysisof retired instructions usingspecial

hardware structures.

Each of the four approachesmakesuseof di�erent analysistechniquesin dif-

ferent phasesof a program's lifetime, to generatee�ective subordinate threads.

Therefore,each approach exhibits very di�erent characteristics. Below, we describe

20

someof the tradeo�s between the main two approaches to extracting subordinate

threads, compiler-basedextraction and hardware-basedextraction; a more detailed

treatment is available in [73]. Wealsodiscussthe operating systemintervention with

compiler-basedsubordinate threads versushardware-basedsubordinate threads.

Run-time Versus Compile-time Information: In hardware-basedextraction,

the runtime information is used to accurately identify long-latency events (cache

missesand hard-to-predict branches) in a program. However, the sizeof the hard-

ware structure responsiblefor detecting dependencesamonginstructions to help in

extracting independent subordinate thread code is not su�cien tly large, resulting

in a limited scope of analysis. The runtime information, however, cannot be uti-

lized in compiler-basedapproaches. They needto collect o�-line pro�les instead for

identifying long-latency events. Compiler-basedapproaches operate in the earlier

phasesof the program lifetime, and so they utilize the high-level information of the

program.

Dep endence on the Mac hine Platform: When the subordinate thread is gen-

erated at runtime (hardware-basedextraction), it becomesdependent on the hard-

ware platform, i.e., the machine implementation. This is because,hardware-based

extraction requires a special hardware structure for analyzing retired instruction

traces. Therefore,this special hardware structure must be redesignedfor every new

processordesign. On the other hand, compiler-basedapproachesgeneratea source

code that can be compiled for any processordesign. Therefore,compiler-basedex-

21

traction is completely independent of the platform, thereby generatingcode that is

portable.

E�ect on Transparency to the User: Runtime extraction is transparent to

the user,hence,hardware-basedapproachesare completely transparent to the user.

In hardware-basedapproaches,all the necessaryhardware for runtime analysisand

generationof subordinate threadsis implemented within the processor.On the other

hand, the compiler-basedapproach is less transparent for several reasons. First,

it requiresadditional compilation stepssuch as code analysisand o�-line pro�ling.

Second,it requiresthe programsourcecode, which is sometimesunavailable. Third,

it requireschangesto the instruction set architecture (ISA).

E�ect on Hardw are Complexit y: In compiler-basedextraction, the subordi-

nate threadsare generatedusing software, thereby reducingthe hardware complex-

it y. Compiler-basedapproachesrequire somehardware support though for support-

ing multithreading. On the other hand, hardware-basedapproachesgeneratesubor-

dinate threads using hardware, henceincreasingthe hardware complexity. Adding

newhardware,hasthe disadvantageof increasingthe the testing and validation cost

of the hardware. However, this dependson how much special hardware is required

for hardware-basedextraction.

Op erating System Indep endence: The operating systemis the onethat sched-

ulesthe compiler-basedsubordinate threads to begin executingon the hardware. It

may take a thread up to 50 thousand cyclesto begin executingon hardware since

22

the time it got scheduledby the operating systemdue to context switching. Recall

that, subordinate threadsmust accomplishtheir task at a time suitable to the main

thread. If they are too slow, they will not beableto hide the latency associated with

memory or branch miss-predictions.If they are too fast, they may throw out of the

cacheblocks that areneededby the main thread. Becausesubordinate threadsmust

be timely, the operating systemmust schedule them at the sametime as the main

thread. On the other hand, pure hardware-basedsubordinate threads are launched

independent from the operating system. They are triggered on spareidle coresby

the hardware, and begin execution with no delay once they are triggered. That

makeshardware-basedsubordinate threadsmore
exible and more event-driv en, so

they are launched only when needed.

From the above discussion,we can concludethat each approach (compiler-

basedand hardware-based)exhibits its own advantagesand disadvantages. In this

dissertation, however, we focus on the hardware-basedgeneration of subordinate

threads due to the following reasons.First of all, while compiler-basedapproaches

have been evaluated previously in many research proposals,hardware-basedcon-

struction of subordinate threadsis relatively newandhasnot beenfully investigated.

Also, we believe that it is possibleto support hardware-basedextraction of subor-

dinate threads with moderate additions/changesto the hardware of existing mul-

tithreading processors,as we will show in this dissertation. Third, while compiler-

basedextraction utilizes high-level program information of the earlier phasesof the

program lifetime, by supporting hardware-basedextraction we are alsoutilizing the

runtime information to construct subordinate threads for improving single-thread

23

performance.Fourth, with so many coresintegrated on a singlechip, there is more

opportunit y to use otherwise idle coresto improve the performanceof the active

cores. Finally, it is much faster to switch the mode of a core to act as a subor-

dinate enginefor another active core than to make the operating systemlaunch a

subordinate thread.

Wediscussin the following chaptersour proposedsubordinate threadingmodel,

named, Symbiotic Subordinate Threading, which is a hardware-basedapproach of

subordinate threading.

24

Chapter 3

Symbiotic Subordinate Threading (SST) | The Concepts

and Implemen tation Details

In this chapter we describe our proposedSST scheme. The basic SST is a

dual-coresubordinate threading schemein which one core is the main thread and

the other core acts as the helper engine(subordinate thread) for the main thread.

The high level view of SSTis shown in Figure 3.1. Each thread, main or subordinate,

runs on a separatecore on a chip multipro cessingplatform (CMP) [1]. Each core

has its own data cache (dcache), instruction cache (icache), functional units (FUs),

issuequeue, reorder bu�er (ROB), branch predictor, and register �le (RF). Both

threads sharea uni�ed L2 cache, which is updated only by the main thread. The

subordinate thread forwards all of its outcomesto the main thread via a �rst-in-

�rst-out (FIF O) queue. The mechanismsfor distilling the subordinate thread and

the main thread as well as the meansfor communicating the subordinate thread

outcomesto the main thread will be described shortly, followed by the detailed

designof SST.

3.1 A Simple Methodology for Distilling The Subordinate Thread

In order for the subordinate thread to run aheadof the main thread, it must

speculate more often and skip instructions. There have been several techniques

25

L2 Cache

read/write read only

FIFO
writeread

CMP

Pred.IssueQ Branch

icache dcache

.....

SST High Level View on A Single Chip Platform

Pred.IssueQ Branch

icache dcache

.....

RF FUs ROB RF FUs ROB

Main
Core 1

Subordinate
Core 2

Figure 3.1: SST top level design.

for distilling the subordinate thread, and they can be divided into dynamic (at run

time) and static (by the compiler). In our implementation of the subordinate thread

we distill it dynamically using the hardware, to utilize the runtime information

about the program and the data. Also, our hardware mechanism doesnot require

caching recurring code regionsof the subordinate thread as conventional hardware

mechanismsrequire.

The subordinate thread we use skips highly predictable branches and their

backward slices. This allows it to concentrate on the hard-to-predict branch in-

structions. It also identi�es critical memory instructions and retires them early

from the pipeline similar to runaheadexecution[19], so that they do not block the

pipeline. The criticalit y of a memory instruction is determined by the number of

cyclesit spendsat the headof the ROB, waiting for main memory.

26

r4 = r5 + r3

r1 = r1 + r3

j to top if r4 == r1

r3 = mem [r2 + offset]

top:

r5 = mem [r7 + offset]

Backward Slice of Branch Instruction

producers
by recursion

producers

....

....

....

....

....

Figure 3.2: Identifying the backward sliceof a branch instruction.

Iden tifying highly predictable branc hes: We use a simple methodology for

identifying highly predictable (non-critical) branch instructions and distill them out

of the subordinate thread along with their backward slices. We usea branch pre-

dictor to identify highly predictable branches. Branch instructions that are critical

usually have low prediction con�dence in the branch predictor, and the highly pre-

dictable onesusually have high prediction con�dencein the branch predictor. When

the subordinate thread skips a highly predictable branch instruction, it follows the

predicted outcomeand direction of the highly predictable branch at the fetch stage

and marks all pipeline instructions in front of the highly predictable branch in-

struction if they belong to its backward slice. Figure 3.2 shows a branch and its

backward slice. The algorithm for identifying the backward slice of a branch in-

27

struction beginsby identifying the producer instructions of each input operand of

the branch instruction (thoseproducer instructions areshown with a squareat their

output operand in Figure 3.2). Next, by recursion,the algorithm is applied on the

producer instructions to identify the instructions that producetheir input operands

(shown with a circle at their output operand in Figure 3.2), and so on.

Iden tifying long latency memory instructions: Our subordinate thread also

doesnot wait for long latency memory instructions to complete. When a memory

instruction reachesthe headof the ROB, a counter is resetand is incremented every

cycle the memory instruction spendsat the head of the ROB. When that counter

reachesa speci�c maximum value, the subordinate thread concludesthat this mem-

ory instruction is critical (long latency). It marks all subsequent instructions in the

pipeline that are dependent on its outcome. It then suppliesa speculative value

(most likely an invalid value) for the output operandof the memory instruction and

retires it.

Handling Instructions Mark ed to Be Skipp ed: The backward slicesof highly

predictable branches,aswell as long latency memory instructions and their depen-

dency chains free all the resourcesthey hold. Hencethey do not �nish executing

and passinto the pipeline as no-ops. Once they reach the head of the ROB, their

ROB entry is reclaimed and their decoded information is written onto the FIFO

queue. Becausethey passinto the pipeline as no-ops,they leave the pipeline much

earlier, and so, more instructions can be brought into the pipeline, resulting in a

28

wider instruction window for the subordinate thread.

Note that the subordinate thread passesevery instruction onto the FIFO

queue, even if it did not execute it. In caseof skipped branches, it also passes

the predicted branch outcomethat it followed. This is essential information that is

passedto the main thread to help it monitor the subordinate thread path, as will

be discussedlater.

3.2 A Simple and E�cien t Way of Pruning The Main Thread

In this sectionwe introducean algorithm that helpsthe main thread consume

the resultsthat werecorrectly producedby the subordinate thread without having to

executetheir corresponding instructions. This involves recording the subordinate

thread speculative state (registers or memory addressesthat contain speculative

valuesin the subordinate thread), to aid in identifying outcomesof the subordinate

thread that were computed using speculative input valuesfrom those that did not

involveany speculative input values.Wewill show that our techniquefor pruning the

main thread is independent from the subordinate thread type. A working example

is presented at the end of this sectionfor clari�cation.

3.2.1 Basic Idea

In order for the subordinate thread to run ahead of the main thread, it

skips instructions. The output registersof thoseskipped instructions contain data-

speculative values. Someof the instructions the subordinate thread executesare

29

dependent on the onesit skipped. The outcomesof those dependent instructions

are speculative in nature (which could be correct or incorrect). We categorizethe

instructions executedby the subordinate thread into two classes:those producing

data-speculative outcomesand thoseproducing non-data-speculative outcomes.

Data-sp eculativ e outcomesare those that are obtained when the subordinate

thread usesat least oneinput register that is data-speculative. An input register is

data-speculative in the subordinate thread if it is producedby an instruction that

was skipped by the subordinate thread, or if it was producedby a data-speculative

instruction in the subordinate thread. Data-speculative outcomescould be incorrect

and so the main thread doesnot consumethem.

Non-data-sp eculativ e outcomesarethosethat areobtainedwhenthe subordinate

thread usesnon-data-speculative input registers. In other words, the valuesof their

input registersmatch thoseof the main thread, and the outcomeswill match those

producedby the main thread. Therefore, they are correct outcomesand the main

thread can consumethem without executingtheir corresponding instructions.

3.2.2 Skipping Non-Memory Instructions

We proposean algorithm for keepingtrack of the architected registersof the

subordinate thread that contain data-speculative valuesand thosethat contain non-

data-speculative values. We introduce a bitmap called the Register Speculation

Bitmap (RSB) with asmany bits asthe number of architected registers.This bitmap

speci�es whethereach architected registerin the subordinate thread contains a data-

30

speculative valueor not. It is kept and updated by the main thread during dispatch

and writeback. A `1' in a bit position indicatesthat the corresponding registerhasa

data-speculative value. Initially , all registersin the subordinate thread contain non-

data-speculative values,and soall the bits of the RSB are initialized to zeroes(non-

data-speculative). Also, every time the subordinate thread re-starts, after a control

or data miss-prediction, it is given a fresh copy of the register �le that contains no

data-speculative values,and so all the bits of the RSB are reset (cleared).

Scenarios for Up dating the RSB: There are three scenariosfor updating the

bits of the RSB by the main thread. First, when the subordinate thread skips

an instruction, the bit corresponding to its output register is marked by the main

thread at dispatch stage as data-speculative in the RSB. When the subordinate

thread executesan instruction, if any of its input registershas beenmarked in the

RSB, then alsothe output registeris markedby the main thread at dispatch stageas

data-speculative in the RSB. Finally, if noneof the input registersof the instruction

have been marked in the RSB and the subordinate thread has not skipped the

instruction, then the bit corresponding to the output register of the instruction

is reset to `0' (non-data-speculative) by the main thread at dispatch stage. Only

in this �nal case,the main thread can consumethe result of the instruction from

the subordinate thread without re-executingit. In the other two cases,the main

thread must executethe instruction, and validate its outcomeagainst the result it

obtained from the subordinate thread. If they match, the main thread unmarks the

bit corresponding to the output register of the instruction in the RSB, otherwise

31

r1 = mem [r2 + offset]

r4 = r5 + r3

skip

data-speculative

non-data-speculative

....

r1 marked

r4 marked

r4 unmarked

....

 r0 r1 r2 r3 r4 r5

....

 r0 r1 r2 r3 r4 r5

 r0 r1 r2 r3 r4 r5

r4 = r1 + r3

Updating RSB

Figure 3.3: RSB update scenarios.

it remainsmarked. This validation and unmarking of the RSB bits is done by the

main thread at writeback.

Figure 3.3 shows a code snippet in which the �rst instruction is skipped by

the subordinate thread. Its output register (r1) is marked in the RSB as data-

speculative. Later on, another instruction that usesr1 as input operand is also

data-speculative, and so its output register (r4) is marked as data-speculative in

the RSB. The last instruction shown in the code snippet is not data-speculative

becauseboth its input operands(registers r3 and r5) are not marked in the RSB

and thereforethey are non-data-speculative. Therefore, the output operand (r4) is

not data-speculative and so is unmarked in the RSB.

3.2.3 Skipping Memory Accesses(Only LOAD Instructions)

We proposea similar mechanism to the one mentioned in the previous sub-

sectionfor keepingtrack of the subordinate thread memoryaddresseswhosememory

valuesaredata-speculativeandthosewhosememoryvaluesarenon-data-speculative.

32

Mem. Addr. HASH

x

x
x

MSB
 ...

Address Translation to an MSB Bit

Figure 3.4: MSB addressing.

We introduce another bitmap, the Memory Speculation Bitmap (MSB), similar to

the RSB. A perfect MSB would contain as many bits as the number of unique

memory addresses.That would be a huge bitmap however, and so we compromise

that with a much smaller bitmap that is indexed by hashing the memory address

as shown in Figure 3.4. It is kept and updated by the main thread in the dis-

patch stage. Initially , the subordinate thread beginswith a memory state that is

non-data-speculative, and so all the bits of the MSB are initialized to zeroes(non-

data-speculative). All of the bits of the MSB are also reset (cleared) every time

the subordinate thread re-starts (from control or data miss-prediction),becauseits

dcache is all invalidated upon re-starting.

A bit in the MSB is marked by the main thread as data-speculative if the

memory addressof a store instruction maps to that bit. We considerall store in-

structions to bedata-speculative in the subordinate thread, becausethe subordinate

thread is not allowed to update the memory hierarchy except its L1 dcache, and so

all writes it does to its L1 dcache are lost when blocks are thrown out of it. As

a result, a load that follows a store in the subordinate thread may read from the

33

samestore addressbefore the main thread makes the update and therefore may

read a stale value. Hence,any load in the subordinate thread with the samead-

dressas a previousstore is consideredto be reading a data-speculative value. The

main thread must thereforeexecuteall store instructions. It alsomust executeload

instructions whosememory addressesmap to a marked bit in the MSB. However,

it may consumeresults produced by the subordinate thread for load instructions

whoseMSB bits corresponding to their hashedmemory addressesare not marked

as data-speculative.

The main thread doesnot unmark bits in the MSB (exceptwhena subordinate

thread recovers from a data or control miss-prediction,in which caseall the bits of

the MSB are unmarked), becausemore than one addressmay map to the same

bit in the MSB; so if one of them is speculative, the corresponding bit is marked.

Future referencesto the samebit by di�erent addresseswill result in the main thread

executing those instructions, as it cannot determine which of theseaddresseshad

marked the bit.

3.2.4 An Example

Consider the loop examplefrom benchmark perl shown in Figure 3.5a. The

subordinate thread and the main thread arespawnedat the sametime and they both

beginexecutionfrom instruction 1. The subordinate thread skipshighly predictable

branchesand their backward slices.

After a few iterations of the loop, the jump instruction (instruction 7) settles

34

Memory
address

.
.. .. .

.
.. .. .

XX

m1 2 3 4 5 60

Hash

Index

X

rkr1 r2 r3 r4 r5 r6r0

Memory Speculation Bitmap (MSB)

Register Speculation Bitmap (RSB) Main Thread

5. r3 = r6 + r0

6. mem[skip] = r2

7. j to loop if r3 != r0

2. skip

3. r2 = mem[skip]

4. r6 = r6 + imm2

20. r3 = r5 + r0

..
.

1.loop: skip

5. r3 = r6 + r0

6. mem[r5 + offset1] = r2

7. j to loop if r3 != r0

2. r4 = r4 + imm1

3. r2 = mem[r4 + offset0]

4. r6 = r6 + imm2

1.loop: r5 = r5 + imm0

20. r3 = r5 + r0

..
.

a. Example from Perl Benchmark:
Subordinate Thread

5. skip

6. mem[r5 + offset1] = r2

7. skip

2. r4 = r4 + imm1

3. r2 = mem[r4 + offset0]

4. skip

1.loop: r5 = r5 + imm0

20. r3 = r5 + r0

..
.

b. Pruning the Main Thread: r6 marked as data-speculative

Figure 3.5: (a) Loop example from benchmark perl; (b) Example of reducing the

number of executedinstructions by the main thread.

its prediction to be taken and is determinedto be highly predictable by the branch

predictor. At this point the subordinate thread beginsto skip the jump instruction

along with its backward slice (instructions 4 and 5). This makes the subordinate

thread run faster than the main thread. Registersr3 and r6 are marked in the

RSB by the main thread as data-speculative, becausetheir producer instructions

wereskipped by the subordinate thread. However, after the loop code, register r3 is

updated by instruction 20 which usesnon-data-speculative input registers(r5 and

r0). As a result, its outcome is non-data-speculative and register r3 is unmarked

in the RSB. Only during the loop iterations, r3 is marked in the RSB as data-

speculative.

Registersr3 and r6 do not serve as input registersto any subsequent instruc-

tions executedby the subordinate thread. Therefore,the subordinate thread's out-

comesof instructions 1 and 2 are non-data-speculative, and the main thread may

consumethem without executingtheir corresponding instructions. This is shown in

35

Figure 3.5b; note that the main thread skips instruction 1 and 2.

Note that the main thread does not skip store instructions becauseit has

to maintain a correct L2 cache. The subordinate thread's dcache may become

corrupted, becausethe subordinate thread may skip store instructions, and dirt y

blocks in its dcache canbe displacedby old blocks from lower levelsof memory that

werenot yet updated by the main thread. To ensurea correct L2 cache, all memory

stores are executedby the main thread; however, the main thread can skip the

addressgenerationpart. So, the memory addresscalculation part of instructions 3

and 6 is skipped by the main thread. When the main thread dispatchesinstruction

3 to the dynamic scheduler, it marks registerr2 asdata-speculative in the RSB. The

main thread later unmarks it in the RSB if the value it read from memory matches

the value it obtained from the subordinate thread. In this example,it is shown as

unmarked. The memory accesspart of instruction 3 can be skipped as well by the

main thread if the MSB bit at the hashedindex of its addressis not marked (it

is not skipped in this example). Instruction 6 is a store instruction so it will be

executedby the main thread and will mark the corresponding bit in the MSB.

A miss-speculation in the subordinate thread will occur in the last iteration

of the loop of Figure 3.5. The subordinate thread will follow the same branch

direction (taken). The main thread will follow the samedirection asthe subordinate

thread and will executethe branch instruction, which will result in a branch miss-

prediction. Beforethe main thread fully resolvesthat branch, it might have fetched

and decoded from the wrong path. Any marking or unmarking in the RSB or MSB

does not matter, as both bitmaps will be clearedwhen the subordinate thread is

36

re-started.

Pruning the Main Thread is not A�ected by the Subordinate Thread

T yp e: Wepresented a simplemethodologywith very little hardwareaddedto help

in pruning the main thread. We like to point out herethat this is independent of the

typeof subordinate thread running. The subordinate thread maybevery speculative

or moderately speculative. It can be formed dynamically or formed statically. If

the subordinate thread doesnot useany form of speculation then the bitmaps are

not needed,asall outcomesof the subordinate thread will be non-data-speculative;

otherwisethey are needed.

3.3 Communicating Subordinate Thread Resultsand DecodedInfor-

mation to the Main Thread

In SST the subordinate thread forwards its results to the main thread aspart

of the increasedcooperation betweenthe main thread and the subordinate thread.

Also, in SSTthe subordinate thread fetchesall instructions and then decodesthem.

We let the subordinate thread forward the decoded information of all instructions

it fetches to the main thread, even if it did not execute them. This saves the

main thread from having to fetch and decode again what was already fetched and

decodedby the subordinate thread. We useda �rst-in-�rst-out (FIF O) queueasthe

communication meansbetween the subordinate thread and the main thread. The

subordinate thread writes each instruction onto the FIFO queuewhen it commits

37

...
ROB Commit Unit

Rename Unit

Decode Unit

Output Values

Output Operands

Input Values

Input Operands

Tag (skipped/executed)

Write

Main Thread Subordinate Thread
tail

head

commit

FIFO Q

Select
mux

Receive Buffer

Read

Figure 3.6: FIFO queue.

it. The main thread readsthe entries of the FIFO queueduring dispatch stage.

Op eration of the FIF O Queue: As shown in Figure 3.6, the FIFO queuecon-

nects the main thread and the subordinate thread. When the subordinate thread

commits an instruction, it writes its results (if it executedit) and its decoded infor-

mation on oneendof the FIFO queue,the tail. The main thread readsthe entries of

the FIFO queuefrom the other end, the head,and placesthe entries onto a receive

bu�er. Each entry in the FIFO queuecontains a tag that indicates whether the

subordinate thread executedthe instruction or not. Also, each entry in the FIFO

queuecontains �elds to store the decoded information (opcode, input and output

operands)of the instruction as well as their values.

Main Thread Bene�ts from the FIF O Queue: The FIFO queuerepresents

the medium in which all of the subordinate thread's work is stored for the main

38

thread consumption. Becauseof the simplicity of the FIFO queue,the instructions

are placed by the subordinate thread in order and the main thread readsthem in

order, requiring no extra work for checking the order of the instructions, hencethe

main thread may not loosesynchronization with the subordinate thread. Also, the

main thread can read at its own pace(which is usually slower than the subordinate

thread) from the FIFO queue. The main thread also usesthe FIFO queueinstead

of its icache, for readingfrom it the decoded information of every instruction placed

by the subordinate thread, and this saves a lot of fetch and decode cycles in the

main thread. As shown in Figure 3.6, there is a multiplexer with a selectsignal that

selectsbetweenthe decoded instructions coming from the decode unit of the main

thread versusthe decoded instructions comingfrom the receive bu�er. If the receive

bu�er is empty, then the selectline is set to 0, and the decoded instructions coming

from the decode unit passthrough the multiplexer; otherwisethe onescomingfrom

the FIFO queuepassthrough the multiplexer. In the casewhen there is no running

subordinate thread, then the receive bu�er will be always empty and the decoded

information will always be comingfrom the decode unit. The main thread may also

bene�t from the subordinate thread results that are non-data-speculative becauseit

can read them from the FIFO queue,and consumethem without having to execute

their corresponding instructions. Finally, it requiresno sophisticatedcomparisons

for the main thread to integrate the subordinate thread resultsfrom the FIFO queue

into its state (register �le and memory).

39

Subordinate Thread Bene�ts from FIF O Queue: The subordinate thread

alsobene�ts from placing its resultsand decoded information onto the FIFO queue.

In this way the main thread can monitor its control path, and can detect when

it goes on a wrong path. Also, the FIFO queueincreasesthe e�ective sizeof the

subordinate thread instruction window, by allowing it to placeall its outcomeson

the FIFO queueoncethey are committed. This freesthe subordinate thread ROB

entries faster, allowing more in-
igh t instructions to be fetched into its ROB.

Dra wbacks of Using a FIF O Queue: The FIFO queueis extra hardware that

is placed outside the cores. Hence, it adds more complexity and communication

latency between the threads. It takes several cyclesfor the subordinate thread to

place its outcomeson the FIFO queue,and it takesadditional cyclesfor the main

thread to read thoseoutcomes.

Alternativ es to Using A FIF O Queue: There arealternativesto usinga FIFO

queuefor communication betweenthe main thread and the subordinate thread. One

such alternative is using shared memory. In this scheme, the subordinate thread

writes its results to sharedmemoryand the main thread readsfrom sharedmemory.

This requires the programmer to program the communication between the main

thread and the subordinate thread via sharedmemory, which doesnot apply to our

model becausethe SSTsubordinate thread is spawnedand formeddynamically. An-

other alternative is to usemessage-passingvia the on-chip interconnectionnetwork.

It requiressendingand receivingmessagesbetweenthe cores,which is not practical

40

becausein the caseof SST, there will be a continuous
o w of messagesgoing from

the subordinate thread to the main thread and that may overload the interconnect.

Also, if onemessagearrivesbeforeanother, that may causelossof synchronization

betweenthe main thread and the subordinate thread. For thosereasons,we �nd the

useof a FIFO queueto bemoreattractiv e, especially that it is a dedicatedhardware

bu�er just to serve the main thread and the subordinate thread.

3.4 Putting it All Together: The SST Microarchitecture

We next present a hardware implementation of the SST schemethat we have

proposed. It usestwo corespresent in a chip-multipro cessing(CMP) platform [1].

In addition to multiple sequencers,a CMP processorhas multiple pipelines for

processingmultiple threadsin parallel. Figure 3.7 shows a 2-coreCMP enhancedto

support our SST scheme. Each thread runs on a separatecorecontaining a register

�le, an issuequeue,a branch predictor, an ROB, an L1 dcache, and an icache. A

secondlevel cache(L2 cache) is sharedamongboth threads,and canbeupdatedonly

by the main thread. Weaddedextra hardware for pruning both the main thread and

the subordinate thread. The extra hardware included is the Register Speculation

Bitmap (RSB) for the purposeof identifying non-data-speculative registervaluesof

the subordinate thread. Also, the Memory Speculation Bitmap (MSB) is included

to help identify memory addressesthat contain non-data-speculative valuesin the

subordinate thread. The FIFO queueis includedfor communicating the subordinate

thread results and decoded instructions to the main thread.

41

Fetch Unit Decode &
Rename Unit

ROB

Execution Core

ICache Issue
Queue

Writeback &
Commit Unit

RF

M
a

in
 T

h
re

a
d

 C
o

re

R
e
a
d

W
ri
te

S
u

b
o

rd
in

a
te

 T
h

re
a

d
 C

o
re

R
e
a
d

R
e
a
d

R
e
a
d
/W

ri
te

..
.

B
ra

n
ch

P
re

d
ic

to
r

L
2

F
IF

O
 Q

C
a
ch

e

U
p
d
a
te

S
S

T
 H

a
rd

w
a
re

commit

commit

L1
DCache

R
e
a
d

U
p
d
a
te

MSB

DCache

Fetch Unit

RSB

Issue
Queue

Writeback &RF
Commit Unit

Execution Core

B
ra

n
ch

P
re

d
ic

to
r

ROB

ICache

Decode &
Rename Unit L1

F
ig

ur
e

3.
7:

S
S

T
m

ic
ro

ar
ch

ite
ct

ur
e.

42

Read/
Write

Switch
Open

Switch
Open

Main
Thread

RF

Switch
Open

Switch
Open

Read/
Write

RF
Thread
Main

Fast Register File Copy

 Main Thread

 Subordinate Thread

RF
Extra

RF

Write

Working

Read/Write

 Subordinate Thread

 Main Thread

RF
Extra

RF

Write

Working

Before Register File Copy After Register File Copy

Read/Write

Figure 3.8: Fast recovery of the subordinate thread state.

3.4.1 Basic Operation

The subordinate thread starts with a full copy of the program, and is then

distilled. It is spawned when the main thread is spawned and continues to run

as long as the main thread runs. In our implementation of SST, the subordinate

thread is the leaderand the main thread follows. It is possiblethat the main thread

may go ahead of the subordinate thread, such as when the subordinate thread

recovers from miss-speculation. However, in our implementation of SST, we do not

let the main thread advancewith executinginstructions if the FIFO queueis empty.

This ensuresthat it never goesaheadof the subordinate thread, and hence,does

not loosesynchronization with the subordinate thread. The main thread restarts

the subordinate thread when it goes on a wrong path and when a system call is

encountered. In the caseof a system call, the subordinate thread is restarted in

kernelmode and continuesto executeasa helper thread to the main thread. It does

43

not executethe I/O instructions; theseare executedby the main thread. The RSB

and MSB are readand updated by the main thread in the dispatch stage. The RSB

can also be updated by the main thread in the writeback stage. The subordinate

thread writes its outcomesinto the FIFO queuein the commit stageand the main

thread readsthem in the decode (dispatch) stage.

Instructions Executed by the Main Thread: In our SST scheme,we try to

eliminate the redundancy between the main thread and the subordinate thread.

We achieve that by letting the main thread skip instructions that were correctly

executedby the subordinate thread. The main thread has to executethough, all

instructions identi�ed as data-speculative in the subordinate thread as well as the

onesskipped by the subordinate thread. The main thread must executeall store

instructions, as well.

3.4.2 Memory System

The main thread and the subordinate thread sharean L2 cache. The main

thread has to maintain a correct memory system,and so it is allowed to read and

write the L2 cache. A subordinate thread's dcache can be corrupt becauseit is

speculative, and so it is not allowed to write to the sharedL2 cache. Therefore,all

memorywrites to the L2 cache are doneby the main thread even if the subordinate

thread performedthem correctly on its dcache.

44

3.4.3 Recovery of the Subordinate Thread from Miss-speculation

Becausethe subordinate thread is speculative, it often goeson a wrong path,

as well as corrupts its state (register �le and L1 dcache). The work done by the

subordinate thread on wrong paths is useless.Also, if its state is mostly corrupt

while it is on the correctpath, then it will bedoinguselesswork aswell, asmostof its

input operandswill have speculative (invalid) values. When the subordinate thread

miss-speculates,it is better to re-start it with a freshcleancopy of the main thread

correct state. This requires squashingthe subordinate thread, and copying the

program counter and correct registervaluesfrom the main thread. The subordinate

thread also invalidates all of its L1 dcache lines upon recovery. The main thread

alsoclearsthe MSB and RSB bitmaps upon recovery of the subordinate thread.

Full versus Partial Recovery: While the subordinate thread is copying the

main thread register �le, the main thread cannot advance forward. We minimize

the delays due to register �le copy, by letting the subordinate thread copy the

main thread register �le only if most of its registersare corrupted (full recovery).

Otherwise the subordinate thread doesnot have to copy the main thread register

�le (partial recovery). In partial recovery, the subordinate thread only recovers its

correct path and invalidates the entries in its dcache. Partial recovery allows both

the main thread and the subordinate thread to start executingmuch faster than in

full recovery. Partial recovery can be applied when the subordinate thread went on

a wrong path and only slightly corrupted its register �le while on the correct path.

45

Fast Register File Copy: Onesimpleway to reducedelays due to registercopy-

ing is to include an extra register �le (in addition to the register �les kept by each

thread). This is shown in Figure 3.8. The main thread is responsible for updating

its own register �le as well as the extra register �le. When a subordinate thread is

about to start (immediately after its spawning or after a miss-speculation recovery),

it switchesto the extra register �le, which has the correct state. The extra register

�le now becomesthe working register �le of the subordinate thread. The register

�le usedpreviously by the subordinate thread becomesthe extra register �le that

will be updated by the main thread in the future. The useof the extra register �le

is similar to the useof shadowregisters presented in [25] for doing compiler-based

speculation (boosting).

Penalt y for Re-starting the Subordinate Thread: When re-starting the sub-

ordinate thread, it takesa while for the �rst instruction result to be producedand

bu�ered by the subordinate thread for the main thread consumption. That time is

equal to at least the depth of the pipeline. During that time, the main thread must

wait until the subordinate thread beginsto produceresultsand write them onto the

FIFO queue.

46

Chapter 4

Exp erimen tal Results of SST

In this chapter we present experimental results highlighting the performance

gainsobtained due to increasedcooperation betweenthe main thread and the sub-

ordinate thread in our SST scheme. In order to show the bene�ts of our scheme,

we compareits performancewith an alreadyexisting subordinate threading scheme,

the slipstreamprocessor[18], which doesnot let the main thread skip instructions.

We also compareits performanceagainst a secondsubordinate threading scheme,

the Dual-Core Execution scheme(DCE) [36], which employs a similar subordinate

thread to the onewe usein SST,and doesnot let the main thread skip instructions.

Our SST schemeachieves higher performancethan the slipstream processor,with

a much simpler hardware. It alsoachievesmuch higher performancethan the DCE

schemewith moderate additions of hardware, mainly the MSB and the RSB.

We developed our own cycle-accuratesubordinate threading simulator from

the SimpleScalartoolset [26]. Our simulator faithfully models an SST systemrun-

ning on a multi-core CMP, with a main thread and a subordinate thread, and their

interconnections,as per the block diagram of Figure 3.7 in the previous chapter.

The microarchitectural parameterswe usedare given in Table 4.1. The L1 dcache

of a subordinate thread is invalidated on its recovery from the wrong paths. We

used a single branch predictor for all cores,and the predictor is updated only by

47

the main thread.

Single Core Parameters

L1 ICache sz/assoc/repl/ln/lat=16KB/1w ay/LR U/6 4B/1cycle

L1 DCache sz/assoc/repl/ln/lat=64KB/4w ay/LR U/6 4B/1cycle

L2 Cache (data+instrs.) sz/assoc/repl/ln/lat=1024KB/8w ay/LR U/1 28B/6 cycles

Main Memory Latency 50 cycles

Fetch/issue/retire Bandwidth = 4/4/4

ROB/LdStQ/F etchQ size= 32/16/8 entries

Branch Predictor type = bimodal, size= 32K entries

Branch Penalty 3 cycles

SST-Speci�c Parameters

MSB 64 bits

FIFO Queue latency/bandwidth/size = 2 cycles/4 instrs./32 instrs.

Branch Threshold Low speculation = 60, High speculation = 1

Sub. Thread Recovery 7+ cycles

Slipstream-Speci�c Parameters

Sub. Thread Distill Unit 512 entries

Table 4.1: Microarchitectural Simulation ParametersFor Smaller Cores

Weusedthe SPEC INT2000 benchmarksfor this study. Weusedthe SimPoint

toolset [38, 39, 40] to identify representativ e simulation points. Each benchmark is

simulated for 500 million instructions after fast-forwarding the number of instruc-

tions determinedby SimPoint, which is around 1 billion for most benchmarks.

48

4.1 PerformanceEvaluation of SST Against SlipstreamProcessor

In this experiment, we evaluated 4 di�erent con�gurations of our SST scheme

to show the bene�ts of symbiosis| increasedcooperation betweenthe main thread

and the subordinate thread | by allowing the main thread to consumethe non-data-

speculative resultsof the subordinate thread without executingtheir corresponding

instructions.

In the �rst con�guration of SST, the subordinate thread is not highly specu-

lative and the main thread consumesresults of the subordinate thread that do not

involve any memory access(i.e., it does not consumeany results of load instruc-

tions). The subordinate thread in the secondcon�guration of SST is not highly

speculative aswell, but the main thread may consumeall of the subordinate thread

results including the ones corresponding to load instructions. In the third and

fourth con�gurations of SST, the subordinate thread is highly speculative. The

main thread in the third con�guration consumesall results that are correctly pro-

duced by the subordinate thread except those of the load instructions, and in the

fourth con�guration, it consumesthe results of the load instructions as well. The

branch and memory thresholdsshown in Table 4.1 indicate the level of speculation

of the subordinate thread. For a not-too-speculative subordinate thread, a branch

instruction is consideredhighly predictableand can be removed from the pipeline if

its con�dence counter reached 60, and for a highly speculative subordinate thread

the branch instruction can be removed from the pipeline if its con�dence counter

reached 1.

49

4.1.1 AverageIPC Improvement of SST

We �rst evaluated the IPC performancegains of SST against the slipstream

processor[15, 18]. In slipstream processors,the A-stream (subordinate thread)

runs a shorter program basedon the removal of ine�ectual instructions (highly pre-

dictable branchesand their backward slices)while the R-stream(main thread) uses

the A-stream results as predictions to make faster progress. Hencethe R-stream

(main thread) executesevery instruction in order to validate its outcome against

the outcomeobtained from the A-stream (subordinate thread). In this experiment

we distill the subordinate thread of SSTjust like in slipstreamfor a fair comparison.

So, we use a table that storessaturating counters for highly predictable branches

and their backward slicesjust as in slipstream. This table is updated by the main

thread. For every fetched instruction, the subordinate thread checks its correspond-

ing saturating counter to decidewhether to skip or executethat instruction. The

size of this table is 1024entries. We will later show that if the SST subordinate

thread is distilled in the manner we discussedin Section 3.1, then we can achieve

much higher performancethan the A-stream in slipstream (which usesthe huge

table).

Figure 4.1 presents the results obtained for the four con�gurations of SST

against that of a slipstreamprocessor.Each bar represents the averageIPC perfor-

manceimprovement obtained from skipping instructions in the main thread for the

four con�gurations of SST, versusthe corresponding baseslipstream scheme (the

main thread doesnot skip instructions)1.

1The baseslipstream processorcon�gurations we usedhave an averagespeedupof 7% and 14%

50

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

5

10

15

20

25

30

35

40

45

50

%
IP

C
Im

pr
ov

em
en

t

Lo speculation ST, MT consumes non-mem. results
Lo speculation ST, MT consumes all results
Hi speculation ST, MT consumes non-mem. results
Hi speculation ST, MT consumes all results

ST: Subordinate Thread
MT: Main Thread

Figure 4.1: % IPC improvement achieved with symbiotic subordinate threading

(SST) over the slipstream processor(main thread doesnot skip instructions). (a)

SST with low speculation subordinate thread, and main thread doesnot skip load

instructions; (b) SST with low speculation subordinate thread, and main thread

skipsload instructions; (c) SSTwith high speculationsubordinate thread, and main

thread doesnot skip load instructions; (d) SST with high speculation subordinate

thread, and main thread skips load instructions

It is clear from Figure 4.1 that our SST performswell for all the benchmarks.

The averageperformanceimprovement is 10%, 11%, 21%, and 27% for the four

schemes.All benchmarks except gcc, vortex, and perl perform very well, especially

with a highly speculative subordinate thread (bar 3 and bar 4). The lackluster

performancefor these3 benchmarks is due to the subordinate thread incurring a

over a single-threaded(superscalar) processorfor a con�guration with moderate skipping in the

subordinate thread (low speculation) and a con�guration of aggressive skipping in the subordinate

thread (high speculation), respectively.

51

large number of instruction cache misses.

In the bars of the averageperformance,there is a jump in performancefrom

the �rst 2 bars to the last 2 bars. This indicatesthat with a subordinate thread that

has fewer restrictions to advance,our SST schemeperforms even better. We also

noticed from the averageperformancebars that when memory accessesare skipped

by the main thread the performance improves, especially when the subordinate

thread aggressively skips instructions. When the subordinate thread does not do

aggressive skipping, the performancedoesnot improve much even when the main

thread skips memory accesses.The performancenumbers presented in Figure 4.1

are further analyzedin the following subsections,using additional statistics.

4.1.2 Instruction Distribution in The Main Thread

The �rst logical result to be drawn from the previous subsectionis that the

main thread runs faster,hencecontributing to the overall performanceimprovement.

It is running fasterbecauseit is skipping instructions whoseoutcomeswerecorrectly

producedby the subordinate thread. Figure 4.2 shows the distribution of the total

instructions in the main thread for two of the SST schemeswhoseperformancewas

shown in Figure 4.1 (�rst and third bars). Each bar in Figure 4.2 shows the division

of skipped instructions in the main thread. The main thread performs all memory

accessesbut may skip the addresscomputation part of memory instructions. A

signi�cant portion of the total instructions is skipped by the main thread in both

schemes;hencethe main thread runs faster. The �rst bar of Figure 4.2 corresponds

52

to an SSTcon�guration with a high-speculationsubordinate thread, and the second

bar correspondsto an SSTcon�guration with a low speculationsubordinate thread.

In the �rst scheme(�rst bar), fewer instructions are skipped by the main thread,

becausethe subordinate thread skipped more aggressively. On the average,in the

�rst case,approximately 45%of the instructions were executedby the subordinate

thread and 55% of the instructions were executedby the main thread. In the sec-

ond case,this division is approximately 60%-40%.The distribution of instructions

amongthe threadsand the performance(Figure 4.1) have a strong correlation. For

example, for the �rst scheme in Figure 4.2, the division between the main thread

and the subordinate thread for benchmark parser is roughly 50%-50%.In Figure 4.1

(third bar), the performanceimprovement for this schemeis 24%. For the second

scheme, this division is roughly 30%-70%. Its performanceimprovement is about

13%(�rst bar of Figure 4.1). This tells us that a moreequaldistribution of instruc-

tions between the subordinate thread and the main thread for benchmark parser

producesa more equal distribution of work amongthe threads and hencea higher

performance.This is not the casefor all benchmarks, however; someof them (such

as gcc) will have a more equal distribution of work if the subordinate thread skips

aggressively. On the average,by letting the main thread skip instructions, a more

balanceddistribution of work amongthe threadsoccurred,which resulted in better

performanceas shown in Figure 4.1.

53

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

10

20

30

40

50

60

70

80

90

100

110

120

%
 D

yn
am

ic
In

str
uc

tio
ns

executed
non br. & non mem.
branches
mem. addresses

a: SST: High speculation subordinate thread
b: SST: Low speculation subordinate thread

a b a b a b a b a b a b a b a b a b a b

Figure 4.2: Instruction distribution in main thread for two schemes:(a) SST with

high speculative subordinate thread; (b) SST with not too speculative subordinate

thread

4.1.3 LessWork Done by the Subordinate Thread on Wrong Paths

We had argued earlier that if the main thread skips some instructions, it

can detect subordinate thread miss-predictionsearlier, thereby cutting down the

time spent by the subordinate thread on wrong-path instructions. In Figure 4.3

we show a comparisonof the distribution of work done by the subordinate thread

for four schemes(4 bars per benchmark). Each bar shows the work done by the

subordinate thread which is divided into three parts: percentage of instructions

skipped, percentage of instructions executedon the correct path, and percentage of

instructions executedon the wrong path. In the �rst two schemes(corresponding

to the �rst two bars, respectively), the subordinate thread is highly speculative,

and so it skips instructions aggressively. The main thread is not allowed to do

any skipping in the �rst scheme(slipstream), and in the secondschemethe main

54

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

%
 D

yn
am

ic
In

str
uc

tio
ns

wrong path
correct path
skipped

a b x y

a: Slipstream, high speculation ST
b: SST, high speculation ST

a b x y a b x y a b x y a b x y a b x y a b x y a b x y a b x y a b x y

x: Slipstream, low speculation ST
y: SST, low speculation ST

ST: Subordinate Thread

Figure 4.3: Work doneby the subordinate thread on wrong paths for four schemes:

(a) Slipstreamwith a highly speculative subordinate thread; (b) SST with a highly

speculative subordinate thread; (c) Slipstream with a not too speculative subordi-

nate thread; (d) SST with a not too speculative subordinate thread.

thread skips instructions (SST). In the third and fourth schemes(third and fourth

bars, respectively), the subordinate thread is not too speculative. The third scheme

corresponds to the slipstreamprocessorand the fourth corresponds to SST.

It is clear from the �rst two setsof bars that the work doneon the wrong path

decreasessigni�cantly when the main thread skips instructions and advancesfaster.

This is true for all the benchmarks, and agreeswith our expectations. The same

results are obtained for the last 2 setsof bars.

55

4.1.4 PerformanceImprovement with a Highly Speculative Subordi-

nateThread Versusa Not-Too-SpeculativeSubordinateThread

In the previoussubsection,we showed that the work doneby the subordinate

thread on wrongpaths is signi�cantly reducedin the SSTcon�gurations. It is higher

though for a con�guration with highly speculative subordinate thread comparedto

a con�guration with a low-speculation subordinate thread as shown in Figure 4.3.

However, the averageperformancefor a con�guration with the highly speculative

subordinate thread is higher than that of the low-speculation subordinate thread,

as shown in Figure 4.1. This is becausethe number of correct-path instructions

executedby the subordinate thread for a con�guration with the low-speculation

subordinate thread (third and fourth bars of Figure 4.3) is much higher than that

with a con�guration with a highly speculative subordinate thread (�rst and second

bars of Figure 4.3). This indicates that a low-speculation subordinate thread is

much slower than a highly speculative subordinate thread. A highly speculative

subordinate thread is able to perform a better job in hiding the long latency of

critical memory instructions and branch miss-predictions,becauseit is faster (ex-

ecuting fewer non-critical instructions) and reachesthose long latency instructions

faster. Even though a highly speculative subordinate thread may end up skipping

somecritical instructions becauseit speculatesaggressively, it still delivers more

help to the main thread than a low-speculation subordinate thread. Note that if the

subordinate thread is too aggressive in speculating and skipping instructions, such

that all of its outcomesare incorrect, the main thread will end up executingmost

56

of the instructions, rendering the subordinate thread useless.We will comeacross

very speculative subordinate threads in Chapter 6.

4.1.5 Improvement in the Subordinate Thread L2 Cache Miss Rate

By analyzingall the benchmarks,we noticed that with symbiosis(main thread

consumingresults of the subordinate thread without executingtheir corresponding

instructions) the L2 cache missesincurred by the subordinate thread decreasedfor

almost all the benchmarks, while the number of L2 cache missesincurred by the

main thread remained relatively unchangedfor all benchmarks. This is shown in

Figure 4.4. The �rst bar shows the L2 cache miss rate for a single thread scheme.

The secondand third bars show the distribution of L2 cache missesincurred among

the subordinate thread and the main thread in the basic subordinate threading

scheme(slipstream) and the SST scheme. The subordinate thread L2 cache misses

are further divided into L2 cache missesthat are useful to the main thread and L2

cache missesthat are useless(i.e., do not provide any help to the main thread). It

is clear from Figure 4.4 that with symbiosis (SST), the uselessL2 missesdecreased

over all the benchmarks, especially for benchmarks mcf, twolf, parser, and vpr.

We like to point out that the decreasein L2 cache miss rate for the SST

subordinate thread is becauseof the reduction in the speedgap betweenthe main

thread and the subordinate thread. When the main thread is running with a speed

closeto that of the subordinate thread, it is lesslikely that the main thread will

throw pagesout of the L2 cache that are neededby the subordinate thread in the

57

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

2

4

6

8

10

12

14

16

18

20

22

L2
 C

ac
he

 M
iss

 R
at

e

Single Thread: L2 Misses
Slipstream/SST: Subordinate thread useless L2 misses
Slipstream/SST: Subordinate thread useful L2 misses
Slipstream/SST: Main thread L2 misses

a b c

a. Single Thread

b. Slipstream
c. SST

Figure 4.4: Distribution of averageL2 cachemissesobtainedwith: (a) Singlethread;

(b) Slipstreamprocessor;and (c) SST.

near future. As a result, the subordinate thread L2 cache miss rate will improve.

Also, with symbiosis, the main thread may consumethe subordinate thread results

of memory loadswhich reducesthe number of times the main thread has to access

memory. This againmakesit lesslikely for the main thread to throw from the the L2

cache pagesthat are neededby the subordinate thread in the future. Finally, when

the main thread runs faster, the memory updatesmadeby the subordinate thread

will be immediately done by the main thread. This reducesthe speculative values

used by the subordinate thread, which, in turn, reducesthe number of memory

accessesit performswith incorrect addresses,thereby reducingthe number of useless

L2 cache missesit may incur.

58

4.1.6 Improvement in the Main Thread L1 DCache Miss Rate

In order to understandthe e�ect of memory symbiosison the main thread L1

dcache missesin the SSTscheme,we plotted the percentageof main thread total L1

dcache missesincurred whenmemorysymbiosisis applied (white portion of �rst bar

of Figure 4.5). By memorysymbiosis,we meanletting the main thread consumethe

subordinate thread results of load instructions. It is clear from Figure 4.5 that the

L1 dcache missesincurred by the main thread decreasedwith memory symbiosis,

for all the benchmarks. On average,8% of the L1 dcache missesincurred by the

main thread were saved when memory symbiosis was applied (black portion of the

�rst bar of Figure 4.5). The secondbar of Figure 4.5 providesmore statistics of the

L1 dcache accessesdoneby the main thread when memory symbiosis is applied. A

signi�cant portion of the L1 dcache accessesdone by the main thread is reduced

(20% on average)when we apply memory symbiosis,asshown in the upper portion

of the secondbar of Figure 4.5. Together, the middle and lowest portions of the

secondbar in Figure 4.5 show the total L1 dcache accessesthat are skipped by the

main thread when memory symbiosis is applied. On average,almost 16% of the

L1 dcache accessesskipped by the main thread with memory symbiosiswould have

causedan L1 dcache miss if the main thread did not skip them (lowest portion of

the secondbar in Figure 4.5).

Main Thread L2 Cache Misses: The main thread L2 cache missesdo not show

signi�cant changewith memory symbiosis,asshown in Figure 4.4. An insigni�cant

decreasein the main thread L2 cache missesoccurswith memorysymbiosisthough,

59

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

10

20

30

40

50

60

70

80

90

100

110

120 Main thread L1 dcache misses incurred
Main thread L1 dcache misses saved
Main thread L1 dcache accesses incurred
Main thread L1 dcache accesses saved
Main thread L1 dcache misses saved

Figure 4.5: Main thread L1 dcache: (a) missesincurred and saved with SST when

memory symbiosis is applied; and (b) accessesincurred and saved with SST when

memory symbiosis is applied.

becauseof the overall decreasein the main thread memory accesses.However, a

slight increasein the main thread L2 cache missesoccur for benchmarks mcf and

vortex becausethe main thread reaches the L2 cache missesfaster before they are

fully servicedby the subordinate thread.

4.1.7 Reduction in the Main Thread Branch Miss-predictions

In this subsectionweshow the advantageof our SSTmodel over the slipstream

model in reducingthe branch miss-predictionsincurred by the main thread. In SST,

the main thread selectively consumesthe subordinate thread branch outcomesonly

if they are non-data-speculative, and usesthe predictions obtained from the branch

predictor for all other branch instructions. This is in contrast to the slipstream

model, in which the main thread blindly usesthe subordinate thread outcomes

60

of branch instructions as predictions instead of the predictions obtained from the

branch predictor. In Figure 4.6 we show the percentage of branch instructions

that were miss-predictedin the main thread for three di�erent processormodels,a

singlethread model that usesthe predictions of the branch predictor for all branch

instructions (�rst bar), the slipstreammodel (secondbar), and the SSTmodel (third

bar). As shown, the SST model performs the best with respect to reducing the

branch miss-predictions incurred by the main thread, on average 58% less than

the single thread model, while the slipstreammodel only reducedthe branch miss-

predictions of the main thread to an averageof 40% less than the single thread

model.

The subordinate thread may executebranches that have one or more data-

speculative input operands,and this introducesmoreincorrect branch predictionsin

the main thread of the slipstreammodel. Thoseincorrect predictionsmay havebeen

avoided if the subordinate thread followed the branch predictor predictions without

executing the branch instruction. In other words, the predictions of the branch

predictor aremoreaccuratethan the onesobtainedby letting the subordinate thread

executethe branch instruction with speculative input values. On the other hand,

SST avoids introducing incorrect predictions into the main thread by not allowing

the main thread to useall the subordinate thread branch outcomesas predictions.

Rather, in SST, the subordinate thread outcomesof branch instructions that are

executedusing data-speculative input valuesare not trusted by the main thread.

As a result, the main thread doesnot consumethem from the subordinate thread,

and instead follows the predictions of the branch predictor.

61

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

2

4

6

8

10

12

14

16

Av
er

ag
e

br
an

ch
 m

iss
-p

re
dic

tio
n

inc
ur

re
d

by
 th

e
m

ain
 th

re
ad

Single Thread: uses only branch predictor outcomes
Slipstream: uses only subordinate thread branch outcomes
SST: uses branch predictor outcomes and subordinate thread branch outcomes

7%
20%

90%

123%

62%

85%

15%

156%

23%
35%

228%
306%

19%

34%

23%

10%
18%

23%

40%

58%

Figure 4.6: Main thread % of branch miss-predictionsincurred when using: (a)

The branch predictions obtained from a branch predictor for all branch instructions

(singlethread); (b) The branch predictionsobtainedfrom the subordinate thread for

all branch instructions (slipstream); (c) The non-data-speculative branch outcomes

of the subordinate thread, and the predictions obtained from the branch predictor

for all other branch instructions (SST).

The SST model, however, is conservative becauseit considersall branch out-

comescomputed using speculative input values to be incorrect, which is not the

case.Therefore, it wastessomeopportunities in which the data-speculative branch

outcomesof the subordinate thread are correct and may bene�t the main thread

by letting it avoid a branch miss-prediction penalty. This is not the casein the

slipstream model where the main thread will bene�t from all correct branch out-

comesin the subordinate thread whether they are data-speculative or not. From

the results shown in Figure 4.6, we can concludethat the data-speculative branch

outcomesof the subordinate thread that are correct are fewer than the onesthat

62

are incorrect, and hencethe SST model wins.

Single Core Parameters

Main Memory Latency 100+ cycles

ROB/LdStQ/F etchQ size= 64/32/16 entries

Branch Penalty 16 cycles

SST-Speci�c Parameters

Sub. Thread Re-start Penalty 16+ cycles

Memory Threshold 10 cycles

Table 4.2: Microarchitectural Parameterswith Larger Cores

4.2 PerformanceEvaluation of SST Against DCE

In the previoussectionwehighlighted the bene�ts of our SSTmodelagainstthe

slipstreammodel. In this sectionwe highlight the bene�ts of our SST model, using

larger cores,with larger window sizeto beableto serve morein-
igh t instructions at

the sametime. Larger window sizesare especially suitable for long latency memory

instructions becausethey canexploremorein-
igh t instructions and hencecanserve

more than one L2 cache miss at the sametime. We also usemuch larger L2 miss

latency, at least a 100 cycles,and 16 cyclesbranch miss-prediction penalty. The

new parametersare shown in Table 4.2.

We performed several experiments with varying L2 cache miss latencies. In

all the experiments, we let the subordinate thread run aheadwhen it encounters

an instruction that results in an L2 cache miss, by supplying an invalid value for

63

its output operand. A memory instruction is consideredlong latency if it reached

the head of the ROB and blocked the subordinate thread pipeline for 10 cycles.

This allows the subordinate thread to run even faster with a much wider instruction

window. Hence,it reachesthe long latency memory instructions faster than before.

That makesit moresuitable for prefetching. However, it may go on the wrong path

much sooner.

We compareour SST results against a dual-coreexecution paradigm (DCE)

[36], that was proposedto acceleratesequential programs. DCE is similar to our

SST model and both of them sharea similar high-level architecture: two processors

connectedvia a FIFO queue. DCE consistsof two superscalarcores,a front pro-

cessorand a back processor.The front processorresembles the subordinate thread

and the back processorresemblesthe main thread in our terms. The front processor

executesinstructions except for long latency cache misses,it instead producesan

invalid value instead of blocking the pipeline, similar to runahead execution [19].

The front processoralso forwards all its results to the back processor,which uses

them as predictions similar to the slipstreamprocessor.

4.2.1 IPC Improvement of SSTwithout Memory Symbiosis(100Cy-

clesfor Main Memory Access)

Figure 4.7presents the IPC obtainedfor threeschemes:a singlethread scheme,

a basesubordinate threading scheme(DCE), and SST. We let the main thread in

SST consumeresults of the subordinate thread only for non-memory instructions

64

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP
C

Single Thread
DCE
SST: Main thread consumes subordinate thread non-load results.

5%8%

21%23%

19%29%

135%180%
45%58%

1%2%

37%57%

13%13%

26%41%
23%32%

100 Cycles L2 Cache Miss Latency.

Figure 4.7: IPC obtained with memory latency 100 cycles for: (a) Single thread

scheme; (b) DCE scheme;and (c) SST scheme(main thread consumesthe results

of the subordinate thread for only non-memoryinstructions.

(non-memorysymbiosis). Wealsolet the main memorylatency be100cycles.There

are three bars, corresponding to each of the three schemes. It is clear from Figure

4.7 that SST performs better than the other schemes. The averageperformance

improvement of SST is 9% against the DCE scheme. For somebenchmarks like

bzip, mcf, twolf, parser, and vpr, there is a signi�cant performanceimprovement

over DCE.

4.2.2 IPC Improvement of SST with Memory Symbiosis(100 Cycles

for Main Memory Access)

We performed another experiment in which we allowed the main thread to

consumethe subordinate thread results of load instructions as well (memory sym-

65

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP
C

Single Thread
DCE
SST: Main thread consumes all subordinate thread results.

5%9%

21%24%

19%34%

135%200%
45%69% 1%3%

37%63%

13%13%

26%49% 23%37%

100 Cycles L2 Cache Miss Latency.

Figure 4.8: IPC obtained with memory latency 100 cycles for: (a) Single thread

scheme; (b) DCE scheme;and (c) SST scheme(main thread consumesthe results

of the subordinate thread for all typesof instructions).

biosis). We let the main memory latency be 100 cycles. Figure 4.8 shows the IPC

obtained for the three schemes,a single thread scheme,the DCE scheme,and SST

(�rst, second,and third bar, respectively). It is clear from Figure 4.8 that SST

performs better than the other schemes. The averageperformanceimprovement

of SST in this caseis 14% against the DCE scheme. Again, there is a signi�cant

performanceimprovement for benchmarks bzip, mcf, twolf, parser, and vpr.

4.2.3 IPC Improvement of SST with Memory Symbiosis(300 Cycles

for Main Memory Access)

We also evaluated our SST scheme with a 300 cycle L2 cache miss latency.

The IPCs for the three schemes(single thread, DCE, and SST) are shown in Figure

66

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

IP
C

Single Thread
DCE
SST: Main thread consumes subordinate thread non-load results.

7%10%

32%34%

46%58%

215%280%

88%102%
-2%-2% 58%73%17%16% 46%69%

34%43%

300 cycles L2 Cache Miss Latency.

Figure 4.9: IPC obtained with memory latency 300 cycles for: (a) Single thread

scheme; (b) DCE scheme;and (c) SST scheme(main thread consumesthe results

of the subordinate thread for only non-memoryinstructions.

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

2

4

6

8

10

12

14

16

18

20

22

L2
 C

ac
he

 M
iss

 R
at

e

Single Thread: L2 Misses
DCE/SST: Subordinate thread useless L2 misses
DCE/SST: Subordinate thread useful L2 misses
SST: Main thread L2 misses

a b c

a. Single Thread

b. DCE

c. SST

Figure 4.10: Distribution of averageL2 cache missesobtained with memory latency

300 cycles for: (a) Single thread scheme; (b) DCE scheme; and (c) SST scheme

(main thread consumesthe results of the subordinate thread for only non-memory

instructions).

67

4.9 (�rst, secondand third bars respectively). Symbiosiswas enabledfor only non-

memory instructions. The IPC for all three schemesacrossall benchmarks dropped

further when the L2 cache miss penalty increasedto 300 cyclesas expected. It is

clear from Figure 4.9 that SST still performsbetter than the single thread and the

DCE schemes.The averageperformanceimprovement of SST is 9% against DCE.

4.2.4 Reduction in the Subordinate Thread L2 Cache Miss Rate

By analyzingall the benchmarks, we noticed that with symbiosisthe L2 cache

missesincurred by the subordinate thread decreasedfor almost all the benchmarks,

while the number of L2 cachemissesincurred by the main thread remainedrelatively

unchangedfor all benchmarks. This is shown in Figure 4.10. The �rst bar shows the

number of L2 cache missesincurred in the single thread scheme. The secondand

third bars show the distribution of L2 cache missesincurred amongthe subordinate

thread and the main thread in the basicsubordinate threading scheme(DCE) and

SST. The subordinate thread L2 cache missesare further divided into L2 cache

missesthat are useful to the main thread and L2 cache missesthat are useless(i.e.,

do not provide any help to the main thread). It is clear from Figure 4.10that with

symbiosis, the uselessL2 cache missesdecreasedover all the benchmarks, especially

for benchmarks bzip, mcf, twolf, parser, and vpr. Theseresults agreewith what we

obtainedearlier in the previoussection. However, the subordinate thread in the SST

schemeincurred more uselessL2 cache misses.This is explainedby noting that the

subordinate thread in SST run aheadwhen it encounters an L2 cache miss,and so

68

runs much faster than the subordinate thread in the previous section. This makes

the speed gap between the main thread and the subordinate thread much larger,

making it more likely for the subordinate thread to perform memory accesseswith

invalid addressesand hencegeneratinguselessL2 cache misses.

The subordinate thread L1 cache missesimproved with SST just as in the

previoussection. Also, with SST the number of branch miss-predictionsdecreased

in the main thread just like in the previoussection.

69

Chapter 5

An Optimized Implemen tation of SST

In this chapter we present a new microarchitecture of SST that capturesall

of the featuresof the old SST designbut is more e�cien t. We identify someine�-

ciencieswith regard to distilling the subordinate thread and recovering it from the

wrong path. In the new implementation of SST the subordinate thread is aware of

its own speculation. This hasseveral advantages. First, a speculative-aware subor-

dinate thread can avoid executing instructions with data-speculative input values.

This makes the subordinate thread faster, as it will executefewer uselessinstruc-

tions. Also, this makesour SST moree�cien t becausethe main thread will execute

those data-speculative instructions anyway, and so it would be redundant if the

subordinate thread alsoexecutesthem.

We also provide a simple recovery schemefor the subordinate thread when it

goeson a wrong path that takesadvantage of the dual-purposecorewe provide in

the new SST designto ensurea quick re-start for the subordinate thread after its

recovery as well as eliminate the needfor a shadow register �le. In the new SST

design,each core may play the role of a subordinate thread or a main thread, and

both coresare coupledwith a FIFO queuethat operatesin both directions. In this

way, recovering the subordinate thread involvesa simple switch mechanism to the

role of each core (from a subordinate thread role to a main thread role and vice

70

versa)and to the direction of information
o w on the FIFO queue.

In this chapter we only discussthe newly added parts and issuesconcerning

the new design.Any other details are assumedto be identical to the old designand

we refer the reader to Chapter 3. Finally, we present our results for the new SST

designand compareit to the old SSTdesignand to a subordinate threading scheme

that doesnot employ symbiosis, the dual-coreexecutionparadigm (DCE) [36].

5.1 A Partially Speculative-Aware Subordinate Thread

In the old designof SST,the subordinate thread hasno account of the registers

that contain data-speculative values in its register �le or memory addressesthat

contain data-speculative values. As a result, it executesinstructions that take,

data-speculative valuesas input. It is highly probable that the subordinate thread

will produce incorrect results for data-speculative instructions, thereby wasting its

execution bandwidth on uselessinstructions, and limiting its instruction window

size. With branch instructions it is even worse,becausethe subordinate thread may

obtain a correct prediction from the branch predictor, and yet go on the wrong path

becauseit executedthe branch instruction with incorrect (data-speculative) input

values. Finally, the main thread will anyway execute those instructions because

they are data-speculative in the subordinate thread, and therefore it is redundant

that the subordinate thread executesthem. We introduce a simple mechanism for

making the subordinate thread self aware of the speculations it makes. This aids

it in making better decisionsconcerningwhich instructions to include and which

71

instructions to exclude, i.e., the distillation process. This also eliminates further

redundant executionsaswell as speedsup the subordinate thread.

Distilling the Subordinate Thread in the Old SST Design: In the old

designof SST, branch instructions that are highly predictable are identi�ed using

the saturating counters in the branch predictor. They are then marked and their

backward slicesthat currently residein the pipeline are also marked. They are all

then converted to no-ops, freeing up all the resourcesthey hold. Also, in the old

design,long-latencymemoryinstructions areremovedfrom the pipelineaswell when

they arriveat the ROB headand block the pipeline. An invalid (speculative) valueis

suppliedto their dependent instructions that currently residein the pipeline,which,

in turn, are also converted to no-ops. The old design, however, cannot identify

any instructions further that are dependent on the onesremoved. In other words,

distillation occurs only for the window of instructions that happen to exist in the

pipeline at the time when the long-latency memory instruction was identi�ed or

when the highly predictable branch instruction was identi�ed.

Distilling the Subordinate Thread in the New SST Design: In the new

designof SST, the subordinate thread includes an RSB and an MSB just like the

main thread, to aid it in identifying registersthat contain data-speculative values

as well as memory locations that contain data-speculative values. Any instruction

that is converted to a no-op or is identi�ed as a long-latency instruction marks

the corresponding bit of its output operand in the RSB as data-speculative. All

72

store instructions mark the corresponding bit of their hashedaddressin the MSB as

data-speculative. In this way, the subordinate thread keepstrack of data-speculative

registersor memory locations. Later, if an instruction that usesa data-speculative

value as its input arrives at the pipeline, it is automatically identi�ed as a data-

speculative instruction and is converted to a no-op. Hence, with the aid of the

RSB and the MSB, the subordinate thread now can identify instructions that are

dependent on the removed oneseven if they arrive at the pipeline much later.

Op eration of the Subordinate Thread RSB: The RSB is treated in the sub-

ordinate thread in the sameway as in the main thread of the old and new designs

of SST, but with minor di�erences. It is read and updated by the subordinate

thread in the dispatch and writeback stagesjust as in the main thread. However,

instructions that arrive at the ROB headand are identi�ed as long-latencyinstruc-

tions are treated di�erently. Initially , those instructions are non-data-speculative

and so they do not mark any bits in the RSB. When they arrive at the ROB head

and becomeidenti�ed as long-latency instructions, the RSB bit corresponding to

their output operandis marked asdata-speculative in the writeback stage. Also, for

all instructions currently residing in the pipeline that are dependent on the long-

latency instruction, the RSB bit corresponding to their output operandsis marked

asdata-speculative. The samealsohappensto highly predictablebranchesand their

backward slicesthat currently residein the pipeline.

73

Op eration of the Subordinate Thread MSB: The MSB is read and updated

by the subordinate thread in the dispatch and writeback stagesjust like the RSB.

Initially , all of its bits are set to zeroes,indicating that all memory addressesin the

subordinate thread contain non-data-speculative values. Unmarking the MSB bits

occursonly when the subordinate thread recovers from a miss-speculation. Again,

long-latency instructions and their dependencychains as well as highly predictable

branchesand their backward slicesare treated as in the casewith the RSB.

The RSB and MSB of the subordinate thread, however, do not re
ect an

accuratepicture of the data-speculative registerand memory locations. That's why

the main thread in the new designmust maintain another set of RSB and MSB.

Inaccuracy of the Subordinate Thread MSB: Weidentify a casethat renders

the subordinate thread MSB aslessaccuratethan the main thread MSB (of the old

and new designs). This caseis of a store instruction whoseaddresscannot be de-

termined becauseits input operandsare data-speculative, and sothe corresponding

bit of its hashedaddresscannot be marked in the MSB. Hence,the marked bits of

the subordinate thread MSB only re
ect a subsetof the total bits that should be

marked. The full set is represented by the marked bits in the main thread MSB.

Inaccuracy of the Subordinate Thread RSB: The inaccuracy of the sub-

ordinate thread MSB is re
ected upon the RSB. If a load instruction that has a

non-data-speculative addressarrives, it may very well read from the addressthat

was not marked in the subordinate thread MSB, and so it is not really non-data-

74

speculative. However, it will not mark the bit corresponding to its output register

as data-speculative in the RSB, rendering the subordinate thread RSB inaccurate.

Therefore, the marked bits of the subordinate thread RSB do not re
ect the full

speculative state of the register �le.

Note that the slight inaccuracyof the subordinate thread RSBandMSB a�ects

the number of instructions that will be distilled out of the subordinate thread. That

may causethe subordinate thread to executemore instructions becauseit failed to

identify someas data-speculative. That is tolerable as the SST scheme achieves

considerableimprovements, as will be shown in the result section.

Fully Speculativ e-Aw are Subordinate Threads: Note that the caseof a store

instruction that hasa speculative addresscan be handledin the subordinate thread

by simply marking all the bits of its MSB as data-speculative. This makes the

subordinate thread skip all subsequent load instructions, aswell astheir dependency

chains. This conservative approach ensuresthat the subordinate thread is fully

aware of its own speculation. However, the subordinate thread then may skip too

many instructions, thereby becomingtoo speculative to be useful.

5.2 The SubordinateThread Recoversfrom Miss-SpeculationBy Switch-

ing Roleswith the Main Thread

Becauseeach core in the new design of SST is symmetric, i.e., they both

contain the samehardware, each may act as a main or subordinate thread. In the

75

switching

Data Flow

L2 Cache

read/write read only

Subordinate
Core 2

L2 Cache

read only

Core 1 Core 2
Subordinate Main

read/write

Data Flow

Core 1
Main

SST: After Switching RolesSST: Before Switching Roles

Figure 5.1: Subordinate thread and main thread switch roles after recovery of the

subordinate thread from miss-speculation.

new design,we let the coresswitch roles when recovering the subordinate thread

from a miss-speculation, i.e., the main thread becomesthe subordinate thread and

the subordinate thread becomesthe main thread. This aids in faster recovery of the

subordinate thread from a miss-speculation, by eliminating the penalty associated

with squashingand re-starting the subordinate thread (in the old design, when

the subordinate thread re-starts after miss-speculation, it takesa number of cycles

equal to the pipeline depth until it can produce the �rst result and place it on the

FIFO queuefor the main thread consumption,during which time the main thread

is blocked, waiting for the subordinate thread results).

Switc hing Roles: When the main thread detects that the subordinate thread

hasgoneon a wrong path it initiates recovery. This involvesthe subordinate thread

76

switching its register �le with the shadow register �le to have a clean copy of the

register�le and copying the programcounter from the main thread. Also, all entries

of the L1 dcacheof the subordinate thread are invalidated, and then the subordinate

thread is squashed.In the new design,oncethesestepsare done, the main thread

and the subordinate thread switch rolesasshown in Figure 5.1. After switching, the

subordinate thread has the correct memory and register �le state (which belonged

originally to the main thread) and can begin placing results onto the FIFO queue

without any delays, as its pipeline is full. The
o w of data on the FIFO queueis

also switched, and so the main thread readsthe results of the subordinate thread

at the new end of the FIFO queue. Also, the accessespermissionto the L2 cache

are switched.

Using FIF O Queue Instead of Shadow Register File: In the newSSTdesign

wecaneliminate the useof the shadow register�le by usingthe FIFO queueinstead.

Becauseof switching roles, the FIFO queuecan be used to transfer data in both

directions. Hence,it canbeusedby the main thread to forward its register�le values

to the subordinate thread upon recovery. Once the main thread has written all of

its register�le values,it canswitch its role to the subordinate thread role, and when

the subordinate thread copiesthe registervaluesfrom the FIFO queue,it canswitch

its role to the main thread role. The useof the FIFO queueto transfer the register

valuesof the main thread to the subordinate thread upon recovery may introduce

slight delays, but it has the advantage of eliminating the hardware associated with

the shadow register �le.

77

Write

Subordinate Thread Core

Read

...

 L2

FIFO Q

Cache

Update

com
m

it

Read

Read

Update

Main Thread Core

Branch
Predictor

co
m

m
it

New SST Hardware

Read/Write Read

Fe
tc

h
U

ni
t

D
ec

od
e

&
R

en
am

e
U

ni
t

R
O

B

Ex
ec

ut
io

n
C

or
e

IC
ac

he
Is

su
e

Q
ue

ue

W
rit

eb
ac

k
&

C
om

m
it

U
ni

t
R

F

L1
D

C
ac

he

R
F

R
enam

e U
nit

Fetch U
nit

R
SB

Issue

R
O

B

Q
ueue

W
riteback &

C
om

m
it U

nit

L1
D

C
ache

Execution C
ore

Predictor

M
SB

Branch

IC
ache

D
ecode &R

SB

M
SB

Figure 5.2: New SST Microarchitecture.

78

5.3 New SST Microarchitecture

Figure 5.2 shows the new SST microarchitecture. The hardware for identify-

ing data-speculative outcomesof the subordinate thread is distributed amongboth

the subordinate thread and the main thread in the new microarchitecture. The

subordinate thread includes,an RSB to help it identify its own registersthat con-

tain non-data-speculative values, as well as an MSB to help it �lter out memory

addressesthat are written by store instructions. The main thread includesan RSB

and an MSB as in the older implementation to help it identify non-data-speculative

outcomesof the subordinate thread. The RSB and MSB arestill neededin the main

thread becausethe subordinate thread RSB and MSB are not very accuratein the

caseof a partially speculative subordinate thread. In the caseof a fully speculative

subordinate thread, the main thread neednot keepan RSB and an MSB. Note that

the coresare symmetric, and so each core can act as a main thread as well as a

subordinate thread. The data
o w on the FIFO bu�er is now in both directions.

Other than these,both the old and new microarchitectures are identical.

5.4 Experimental Results

In this sectionwe present the results we obtained by letting the subordinate

thread keeptrack of its own speculationsand recovering the subordinate thread by

switching its role with the main thread. In order to study the new SST model, we

developed a simulator that models the new SST scheme,which is an extensionof

the SST simulator developed earlier for the old SST design.The microarchitectural

79

parameterswe usedare shown in Table 5.1. The L1 dcache of a subordinate thread

is invalidated on its recovery from the wrong paths. All coresusea single branch

predictor, which is only updated by the main thread.

In our simulations, the subordinate thread treats long-latencymemoryinstruc-

tions that reach the ROB headand block the pipelineasin runaheadexecution[19];

it suppliesan invalid value and retires the blocking memory instruction beforeit is

serviced.For a speculative-aware subordinate thread, we usethe RSB and MSB to

further distill it, and we disablethem for a speculative-unaware subordinate thread.

In order to show the bene�ts of our new SST scheme,we compareits perfor-

mancewith the old SSTschemepresented in the previouschapter. We alsocompare

its performanceagainst the DCE model (in which the main thread executesevery

instruction) [36]. We comparefour di�erent schemestogether: (1) A subordinate

threading schemein which the subordinate thread is speculative-unaware, and the

main thread does not skip any instruction (DCE), (2) its SST version, i.e., the

main thread consumesthe subordinate thread resultswithout executingtheir corre-

sponding instructions, (3) a subordinate threading schemein which the subordinate

thread is speculative-aware and the main thread doesnot skip any instruction (an

extensionof DCE), and (4) its SST version. Note that both the DCE

80

Single Core Parameters

L1 ICache sz/assoc/repl/ln/lat=16KB/1w ay/ LRU/6 4B/1 cycle

L1 DCache sz/assoc/repl/ln/lat=64KB/4w ay/ LRU/6 4B/1 cycle

L2 Cache (data+instrs.) sz/assoc/repl/ln/lat=1024KB/8w ay/LR U/1 28B/ 6cycles

Main Memory Latency 100 cycles

Fetch/issue/retire Bandwidth = 4/4/4

ROB/LdStQ/F etchQ size= 64 entries/32 entries/16 entries

Branch Predictor type = bimodal, size= 32K entries

Branch Penalty 16 cycles

Superscalar-Speci�c Parameters

Fetch/issue/retire Bandwidth = 8/8/8

ROB/LdStQ size= 128/64/32 entries

SST-Speci�c Parameters

MSB 64 bits

FIFO Queue latency/Bandwidth/size = 2 cycles/5 instrs./32 instrs.

Branch/Mem Thresholds Branch Count = 1, Memory Cycles = 10

Sub. Thread Recovery 16 cycles

Table 5.1: Microarchitectural Simulation Parametersfor Old & New SST

and SSTschemeswe usein the comparisonusethe sametype of subordinate thread,

i.e., distilled in the sameway. This is to have a fair comparisonwhen comparing

the schemeswith a speculative-unaware subordinate thread and with a speculative-

aware subordinate thread.

81

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

IPC

Single Thread
DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

Figure 5.3: IPC for 5 schemes:(a) Single thread (a superscalarthat combines two

coresin one); (b) DCE with speculative unaware subordinate thread; (c) SST with

speculative unaware subordinate thread; (d) DCE with speculative-aware subordi-

nate thread; (e) SST with speculative-aware subordinate thread.

5.4.1 IPC Improvement

The IPCs we obtained for a single thread (superscalarwith double the issue

width of a single core, Table 5.1), a DCE scheme with speculative-unaware sub-

ordinate thread, an SST scheme with speculative-unaware subordinate thread, a

DCE schemewith speculative-aware subordinate thread, and an SST schemewith

speculative-aware subordinate thread, are presented in Figure 5.3. Each bar cor-

responds to one of the �v e schemes. The percentage improvement over a single

thread for each of the four schemesis also shown in Figure 5.4. For almost all the

benchmarks, the SST schemeand the DCE schemewith a speculative-aware subor-

dinate thread (third and fourth bars) outperform the other two schemesexcept for

82

two benchmarks mcf and twolf. Thosetwo benchmarks are memory bound and the

speculative-unaware subordinate thread executesmost of the data-speculative loads

and stores, which yields correct results. In other words, the speculative-unaware

subordinate thread performs value predictions for the memory addressesand this

helps in caseof benchmarks, mcf and twolf.

Note that the SST scheme of bar 2 outperforms the DCE scheme of bar 1

for almost all the benchmarks with the exception of benchmark perl. However,

the performanceof the SST scheme in bar 4 has becomecloseto that of DCE in

bar 3. This can be explained by the branch miss-predictionswhoselatencies the

subordinate thread is able to hide. Recall that the subordinate thread in both

schemesis speculative-aware, and so it only executesthe branch instructions that

are not data-speculative and skips all other branch instructions (and follows the

prediction of the branch predictor). That makes the DCE and the SST schemes

equivalent in terms of the number of subordinate thread correct branch outcomes

consumedby the main thread. It also makes both schemesequivalent in terms of

the number of branch miss-predictionsincurred by the main thread becausein both

schemesthe main thread will follow the prediction of the branch predictor for those

branch instructions that were not computed by the subordinate thread. The DCE

will follow the onesof the subordinate thread that have a prediction almost identical

to that of the main thread branch predictor.

83

gzip gcc bzip mcf twolf vortex parser perl vpr avg.

-8

-4

0

4

8

12

16

20

24

28

32

36

40

%
IPC

 Im
pro

ve
me

nt
ov

er
Sin

gle
 Th

rea
d

DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

Figure 5.4: Percentage IPC improvement over a single thread (a superscalar that

combines two coresin one) for four schemes: (a) DCE with speculative unaware

subordinate thread; (b) SSTwith speculative unaware subordinate thread; (c) DCE

with speculative-aware subordinate thread; (d) SST with speculative-aware subor-

dinate thread.

5.4.2 Branch Miss-predictionsin The Main Thread

From the abovediscussionwecansay that the number of branch miss-predictions

incurred by the main thread in the DCE andSSTschemesthat employ a speculative-

aware subordinate thread must be roughly equal. We con�rm this by plotting the

percentage of branch miss-predictionsof the main thread in Figure 5.5 for the same

�v e schemesasabove. The last two bars (bar 4 and bar 5) correspond to the DCE

and SST schemeswith a speculative-aware subordinate thread. Note that they are

almost the sameacrossall benchmarks, as expected. The percentage of branch

miss-predictionsincurred by the main thread for the DCE and SST schemeswith a

speculative-unaware subordinate thread is shown in bar 2 and 3, respectively. For

84

almost all the benchmarks, the DCE and SST schemeswith a speculative-aware

subordinate thread has fewer branch miss-predictionsin the main thread than the

other two schemesthat employ a speculative-unaware subordinate thread, with the

exceptionof benchmark perl. Finally, the DCE schemewith a speculative-unaware

subordinate thread (bar 2) has the most number of branch miss-predictionsin the

main thread, which even exceedsthat of the single thread. This is becausethe

DCE scheme treats all of the branch outcomesof the subordinate thread as pre-

dictions instead of the predictions given by the branch predictor. This introduces

extra branch miss-predictionsinto the main thread becausethe speculative-unaware

subordinate thread executesalmost all the speculative branch instructions and for-

wards their speculative results to the main thread, which trusts them and consumes

them instead of the predictions given by the branch predictor. With symbiosis,

most of those incorrect predictions are eliminated, as evident from the drop in the

percentage of branch miss-predictions(bar 3).

5.4.3 Branch Miss-predictionsin the Subordinate Thread

In Figure 5.6 we show the percentage of subordinate thread incorrect branch

outcomesfor four schemes:DCE with speculative-unaware subordinate thread, SST

with speculative-unaware subordinate thread, DCE with speculative-aware subor-

dinate thread, and SST with speculative-aware subordinate thread. The incorrect

branch outcomesof the subordinate thread are either incorrect predictions of

85

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

2

4

6

8

10

12

14

16

18

20

%
bra

nc
h m

iss
-pr

ed
ict

ion

Single Thread
DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

Figure 5.5: Percentage branch miss-predictionsincurred by the main thread for �v e

schemes:(a) Singlethread (a superscalarthat combinestwo coresin one); (b) DCE

with speculative-unaware subordinate thread; (c) SST with speculative-unaware

subordinate thread; (d) DCE with speculative-aware subordinate thread; (e) SST

with speculative-aware subordinate thread.

the branch predictor that it followed without executing the corresponding branch

instructions, or those computed by itself using data-speculative input values. In

the DCE and SST schemesthat usea speculative-unaware subordinate thread (bar

1 and bar 2, respectively), both type of incorrect branch outcomesexist, but in

the DCE and SST schemesthat use a speculative-aware subordinate thread, all

incorrect branch outcomescorrespond to only incorrect predictions obtained from

the branch predictor. As shown in Figure 5.6, the speculative-aware subordinate

thread has the least number of incorrect branch outcomes(bars 3 and 4) compared

to the speculative-unaware subordinate thread (bars 1 and 2), with the exceptionof

benchmark perl. For benchmark perl, usingvalueprediction for the branch outcomes

86

gzip gcc bzip mcf twolf vortex parser perl vpr
0

1

2

3

4

5

6

7

8

9

10

11

12

13

%
inc

orr
ec

t b
ran

ch
 ou

tco
me

s o
f th

e s
ub

ord
ina

te
thr

ea
d (

wr
on

g p
ath

 oc
cu

ren
ce

s)

DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

Figure 5.6: Percentage of incorrect branch outcomesof the subordinate thread for

four schemes:(a) DCE with speculative-unaware subordinate thread; (b) SST with

speculative-unaware subordinate thread; (c) DCE with speculative-aware subordi-

nate thread; (d) SST with speculative-aware subordinate thread.

in the subordinate thread is more e�ective.

5.4.4 L2 Cache Miss Rate

We alsoshow the impact of having a speculative-aware subordinate thread on

the main thread L2 cache missrate. It is clear from Figure 5.7 that the main thread

L2 cache missrate for the DCE and SSTschemeswith a speculative-aware subordi-

nate thread (fourth and �fth bars) is much higher than that of the other schemeswith

a speculative-unaware subordinate thread (secondand third bars). This con�rms

that data-predictions for calculating memory addressesin the speculative-unaware

subordinate thread was relatively accurate,thereby making the subordinate thread

87

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

1

2

3

4

5

6

7

8

9

10

11

L2
 C

ac
he

 M
iss

 R
ate

Single Thread
DCE with speculative non-aware sub. thread
SST with speculative non-aware sub. thread
DCE with speculative aware sub. thread
SST with speculative aware sub. thread

Main thread L2 cache miss rate (complete misses).

Figure 5.7: L2 cache miss rate (only completemisses)in the main thread for �v e

schemes:(a) Singlethread (a superscalarthat combinestwo coresin one); (b) DCE

with speculative-unaware subordinate thread; (c) SST with speculative-unaware

subordinate thread; (d) DCE with speculative-aware subordinate thread; (e) SST

with speculative-aware subordinate thread.

more e�ective in prefetching. On the other hand, the DCE and SST schemeswith

a speculative-aware subordinate thread did not bene�t from the value predictions

and simply skipped the data-speculative memory instructions.

5.4.5 Reduction in the Total Number of ExecutedInstructions

The speculative-aware subordinate thread skips the data-speculative instruc-

tions in addition to the highly predictable branchesand long-latency instructions,

while the speculative-unaware subordinate thread skips only the highly predictable

branchesand long-latency instructions. Therefore, the number of instructions exe-

cuted by a speculative-aware subordinate thread is lessthan that of a speculative-

88

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

10

20

30

40

50

60

70

80

90

100

110

120

130

%
Dy

na
mi

c I
ns

tru
cti

on
s

skipped by subordinate thread
executed by subordinate thread
skipped by main thread
executed by main thread

a b x y

a, b: SST with speculative non-aware subordinate thread

a b x y a b x y a b x y a b x y a b x y a b x y a b x y a b x y a b x y

x, y: SST with speculative aware subordinate thread

Figure 5.8: Distribution of skipped and executedinstructions in the main thread

and the subordinate thread for two schemes: (a) SST with speculative-unaware

subordinate thread; (b) SST with speculative-aware subordinate thread.

unaware subordinate thread. However, the main thread consumesrelatively the

samenumber of results from either threadsbecauseeach thread must have executed

the samenumber of non-data-speculative instructions. This implies that the total

number of instructions executedin an SST schemewith a speculative-aware subor-

dinate thread must be lower than that of an SSTschemewith a speculative-unaware

subordinate thread. In order to con�rm that, weconsiderthe number of instructions

executedin the main thread and the subordinate thread for two schemes:SST with

speculative-unaware subordinate thread and SST with speculative-aware subordi-

nate thread (the �rst two bars and the last two bars in Figure 5.8, respectively).

The �rst and third barsshow the number of instructions executedby the subordinate

thread versusthe number of instructions it skipped for both schemes.It is clearthat

the speculative-aware subordinate thread executedmuch fewer instructions than the

89

speculative-unaware subordinate thread. The secondand fourth barsshow the num-

ber of instructions the main thread executedversusthe onesit skipped for the two

SST schemes. On average,the main thread executedrelatively the samenumber

of instructions for both schemes. We can therefore concludethat the SST scheme

with a speculative-aware subordinate thread executesfewer instructions than the

SST schemewith a speculative-unaware subordinate thread.

The main thread in SSTwith a speculative-awaresubordinate thread executed

slightly fewer instructions (bar 4) than the SST with a speculative-unaware subor-

dinate thread (bar 2). The speculative-unaware subordinate thread is slower than

the speculative-aware subordinate thread becauseit executesmoreinstructions, and

so it is not as e�ective as the speculative-aware subordinate thread in hiding the

branch miss-predictionlatency. Hence,it producesslightly fewer results that canbe

consumedby the main thread without executing their corresponding instructions.

This is true for most of the benchmarks, with the exceptionof benchmark vortex.

90

Chapter 6

HSST: Hierarc hical Symbiotic Subordinate Threading

Subordinate threadsthat executefewer instructions may advancevery rapidly,

but maybe highly speculative and go along wrong paths quite frequently as well as

produce incorrect results. On the other hand, subordinate threads that execute

more instructions may produce many more correct results, but may not be fast

enoughto hide the latenciesof long-latency instructions. Therefore,we investigate

a schemethat utilizes both the speedof highly speculative subordinate threadsand

the con�denceof not-too-speculative subordinate threads.

In this chapter weproposehierarchical symbioticsubordinate threading(HSST)

to achieve both of thesegoals,by incorporating a hierarchy of subordinate threads.

That is, the main thread along with the subordinate threads form a hierarchy,

in terms of their composition as well as forwarding of results. Each subordinate

thread contains a subset of the instructions of its parent thread, the thread that

is immediately above it in the hierarchy. Therefore, it is faster and can explore

the future earlier than its parent but is more speculative than its parent. The

subordinate thread outcomesare not thrown away; rather they are forwarded to

their parents using techniquessimilar to previously proposedapproaches(Chapter

3). With this arrangement, each thread bene�ts from the threads below it in the

hierarchy.

91

HSST is a light-weight architectural framework that extendsthe SST scheme

to using several subordinate threads instead of a single subordinate thread. It

makesuseof otherwiseidle coresin a CMP to improve the performanceof individ-

ual threadsrunning on the active cores.It incurs only minor hardware changes.We

developed a cycle-accuratemulti-core simulator to verify its performance.We eval-

uated HSSTagainstSST.Our experimental resultsshow that a HSSTcon�guration

with two subordinate threads improvesthe averageperformanceby 16%over SST.

6.1 A Motivating Example

We begin with a motivating exampleto illustrate the tradeo� betweena fast

andhighly speculativesubordinate thread that canstride aheadto explorethe future

versusa moreconservative subordinate thread that doesnot speculatesooften, and

so is slow, with a limited run-aheadcapability. The examplewe present is for two

SST models, main-subA model and main-subB model. The subordinate threads

subA and subB have di�erent degreesof speculation. SubA is lessspeculative than

subB. We will describe the bene�t of each with regard to its abilit y to perform data

pre-fetching in the L2 cache.

Considerthe main thread codesnippet in Figure 6.1a. The codesnippetssubA

and subB are shown in Figure 6.1b and Figure 6.1c, respectively. Assumeall three

threads begin execution at instruction 0 and iterate only oncein the loop. Cache

blocks of instructions 3 and 8 still have 20 cycles to arrive at the L1 dcaches in

all three threads. SubA and subB executea subsetof the instructions executedby

92

..
.

..
.

20 cycles

20 cycles

L2 cache miss

L2 cache miss

5. r8 = r7 xor r6

3. r5 = mem[r4 + r0]

2. r4 = r4 + r3

6. j to A0 if r8 != r0

7. r9 = r2 + r3

8. r10 = mem[r9 + r0]

9. r11 = r1 * r3

10. r12 = mem[r11 + r0]

4. r6 = mem[r5 + r0]

1. r1 = r1 + 1

0. j to A7 if r1 != r9

20 cycles

20 cycles

L2 cache miss

L2 cache miss

5. r8 = r7 xor r6

3. r5 = mem[r4 + r0]

2. r4 = r4 + r3

6. j to A0 if r8 != r0

7. r9 = r2 + r3

8. r10 = mem[r9 + r0]

9. r11 = r1 * r3

10. r12 = mem[r11 + r0]

4. r6 = mem[r5 + r0]

1. r1 = r1 + 1

0. j to A7 if r1 != r9

20 cycles

20 cycles

L2 cache miss

L2 cache miss

5. r8 = r7 xor r6

3. r5 = mem[r4 + r0]

2. r4 = r4 + r3

6. j to A0 if r8 != r0

7. r9 = r2 + r3

8. r10 = mem[r9 + r0]

9. r11 = r1 * r3

10. r12 = mem[r11 + r0]

4. r6 = mem[r5 + r0]

1. r1 = r1 + 1

0. j to A7 if r1 != r9

11. r10 = r6 and r8

12. r11 = r5 + 1

13. r12 = r11 xor r10

15. r12 = r12 * r12

14. j to A20 if r12 != r0

11. r10 = r6 and r8

12. r11 = r5 + 1

13. r12 = r11 xor r10

15. r12 = r12 * r12

14. j to A20 if r12 != r0

11. r10 = r6 and r8

12. r11 = r5 + 1

13. r12 = r11 xor r10

15. r12 = r12 * r12

14. j to A20 if r12 != r0

Predict not takenPredict not takenNot taken

Not taken Not taken Not taken

....

....

....

xx x

x

x
x

x
x

Main Thread Subordinate Thread B (of Main-SubB Model)

Register Speculation Bitmap

x

loop

Register Speculation Bitmap

 r1
 r2

 r3
 r4

 r5
 r6

 r1
 r2

 r3
 r4

 r5
 r6

 r7
 r8

 r9
 r1

0
 r1

1
 r1

2

 r7
 r8

 r9
 r1

0
 r1

1
 r1

2

(a) (b) (c)

Subordinate Thread A (of Main-SubA Model)

Instruction attempted
then skipped
Instruction skipped

Subordinate thread A is less speculative and so its state is less corrupted, but is slow with limited ability to runahead.
Subordinate thread B is fast, highly speculative, and can runahead more, but its state is highly corrupted.

F
ig

ur
e

6.
1:

E
xa

m
pl

e
fr

om
be

nc
hm

ar
k

pe
rl

sh
ow

in
g

th
e

co
de

sn
ip

pe
t

fo
r:

(a
)

M
ai

n

th
re

ad
;(

b)
S

ub
or

di
na

te
th

re
ad

of
m

ai
n-

su
bA

m
od

el
;a

nd
(c

)
S

ub
or

di
na

te
th

re
ad

of

m
ai

n-
su

bB
m

od
el

.

93

the main thread. Instructions skipped by the individual threads are highlighted in

grey. Both subordinate threadsskip long-latencyinstructions that block the pipeline

and their dependencychains, similar to that in run-aheadexecution [19]. Depen-

dency chains of skipped instructions are identi�ed by marking the output registers

of skipped instructions as data-speculative in the RSB. SubA identi�es an instruc-

tion to be a long-latencyinstruction if it reachesthe headof the ROB and stalls the

pipeline for 20 cycles. SubB will wait for 10 cyclesonly. Both subordinate threads

may skip branch instructions, and follow their predicted outcomes.SubA attempts

to executeinstructions 4 and 10, and then removesthem out of the pipelinebecause

they miss in the L2 cache. It skips 5 and 6 becausethey are dependent on 4. SubB

skips all instructions except 0, 1, 2, 7, and 9. It attempts to executeinstructions

3, 8, and 10, and then skips them becauseit concludesthat they are long-latency

instructions. It skips the remaining instructions becausethey are dependent on

instructions 3, 8, and 10.

Comparison between SubA and SubB: SubB executesonly a subsetof the

instructions executedby subA, and so it runs faster and can explore the future

earlier than subA. However, subB corrupts its state (register �le and memory) much

faster than subA, and soit may not �nd any independent instructions to executein

the future. The number of bits marked as data-speculative in subA's RSB is half

thosemarked in subB's RSB, asshown in Figure 6.1b and Figure 6.1c,respectively.

Therefore, the correct results producedby subB are fewer than those producedby

subA. Also, subB is more likely to go on the wrong path than subA, asit skipsmore

94

-Goes on the wrong path less often
-Less aggressive, exploits opportunities
-Produces a lot of correct results
-Slightly faster than the main thread

Low Speculation Pros:

-Slower (executes more instructions)
-Smaller instruction window

Low Speculation Cons:

-Corrupts its state faster
-Goes on the wrong path more often
-Aggressive, misses opportunities
-Produces fewer correct results
-Huge speed gap with the main thread

High Versus Low Speculation Subordinate Threads

High Speculation Cons:

-Faster (executes fewer instructions)
-Larger instruction window

High Speculation Pros:

-State is sllightly corrupted

Figure 6.2: Pros and consof high and low speculation subordinate threads.

branch instructions. Note that becausesubB is aggressive in skipping instructions,

it did not attempt to executeinstruction 4 although it is an L2 cache miss. On

the other hand, subA's state is lesscorrupt, but it had to block longer than subA,

waiting for instructions 3 and 8 to complete, before reaching the L2 cache miss

instructions (4 and 10). Finally, the speedgap betweenthe main thread and subB

is much larger than that betweenthe main thread and subA. This implies that subA

will spend lesstime on the wrong path than subB and is lesslikely to throw pages

out of the L2 cache that are neededby the main thread, than subB. We summarize

the pros and consof highly speculative subordinate threadssuch assubB aswell as

low-speculative subordinate threadssuch assubA in Figure 6.2. HSST exploits the

advantagesof both typesof subordinate threadswhile avoiding their disadvantages.

95

6.2 Implementation Details of HSST

We concludedthe previous section by presenting the trade-o�s of a fast and

morespeculative subordinate thread that canrun aheadto explorethe future versus

a slow and lessspeculative subordinate thread with limited run-ahead capability.

The basic idea of combining the advantages of both schemesand eliminating the

disadvantagesis to organizemultiple subordinate threads as a cache-like hierarchy.

Each subordinate thread in the hierarchy is a subsetof its parent thread (main or

subordinate). Therefore, it is more speculative and faster than its parent, and can

run aheadof its parent (Figure 6.3a).

We next present an implementation of HSST with a main thread and multiple

subordinate threads on a chip-multipro cessing(CMP) platform [37]. In addition to

multiple sequencers,a CMP processorhasmultiple pipelinesfor processingmultiple

threads in parallel. Figure 6.3b shows a high level designof the CMP that supports

HSST. The top of the hierarchy is the main thread, followed by subA, then subB,

andsoon. The L2 cacheis sharedamongall threadsand is updatedonly by the main

thread. A subordinate thread's L1 dcache can be corrupt becauseit is speculative,

and so it is not allowed to write to the sharedL2 cache.

There are several concernsfor supporting HSST on a CMP platform. We

addressthose concernswith minimum additional hardware. The �rst concern is

spawning subordinate threadson idle cores.This is handledby the thread controller

(TC) . The secondconcernis distilling each subordinate thread such that it executes

only a subsetof the instructions executedby its parent thread. Our subordinate

96

TC

CMP

Pred.IssueQ Branch

icache dcache

.....

RF FUs ROB

.....
FIFO

writeread
Pred.IssueQ Branch

icache dcache

RF FUs ROB
FIFO

writeread
Pred.IssueQ Branch

icache dcache

RF FUs ROB

read onlyread onlyread/write

L2 Cache

Core 1: Main Core 3: SubBCore 2: SubA

Multithreading Bit Vector

.....XX

Sub. Thread Level Vector

.....21 0

(c) Thread Controller

Speed
Speculation
Runahead

...

Main

SubA
Results
Size

SubB

(a) HST: Like Cache Hierarchy

(b) HSST High Level View on A Single Chip Platform

Figure 6.3: HSST High Level Microarchitecture: (a) HSST similar to a cache hier-

archy; (b) HSST block diagram; and (c) Components of Thread Controller (TC).

97

thread is pruned dynamically, which requires support at the core level. Figure

6.4 shows the detailed microarchitecture designof HSST. Each core is modi�ed to

support HSST. The HSST coremaintains three simple bitmaps, the RSB, the MSB

and the levelvector (LV) for pruning the subordinate thread. In the caseof partially

speculative-aware subordinate threads, each core must include an extra RSB and

an extra MSB to be able to identify its child's results that are non-data-speculative.

Third, resultsgeneratedby a subordinate thread are forwarded to its parent thread

via a �rst-in-�rst-out (FIF O) queuethat connectseach subordinate thread to its

parent thread. Note that in Figure 6.4 we show only two subordinate threads,subA

and subB in addition to the main thread although, HSST can support any number

of subordinate threads. SubA follows the main thread in the hierarchy, followed by

subB.

6.2.1 Spawning Subordinate Threads

Our HSST implementation is purely at the hardware level and maintains the

exibilit y to support multithreaded applications. The subordinate thread mode

is used only when there are free cores. This is determined by the TC. The TC

maintains a bit for every corethat indicates if that coreis idle or is busy (running a

thread from a multithreaded application). Thosebits arestoredin the multithreaded

vector, as illustrated in Figure 6.3c. When there are free cores,the TC may spawn

subordinate threads on them. The TC assignsa level to each spawned subordinate

thread and stores the level associated with each subordinate thread in the level

98

 L
2

C
ac

he

Fetch Unit Decode &
Rename Unit

ROB

Execution Core

ICache Issue
Queue

Writeback &
Commit Unit

RF

R
ea

d

Br
an

ch
Pr

ed
ic

to
r

commit

Su
bA

 C
or

e
Su

bB
 C

or
e

H
SS

T
H

ar
dw

ar
e

U
pd

at
e

U
pd

at
e

U
pd

at
e

L1
DCache

Fetch Unit Decode &
Rename Unit

ROB

Execution Core

ICache Issue
Queue

Writeback &
Commit Unit

RF

L1
DCache

Fetch Unit Decode &
Rename Unit

ROB

Execution Core

ICache Issue
Queue

Writeback &
Commit Unit

RF

L1
DCache

W
rit

e
...

FI
FO

 Q
W

rit
e

...
FI

FO
 Q

R
ea

d
R

ea
d

R
ea

d
R

ea
d/

W
rit

e
R

ea
d

R
ea

d

M
ai

n
Th

re
ad

 C
or

e

Br
an

ch
Pr

ed
ic

to
r

commit

R
ea

d

Br
an

ch
Pr

ed
ic

to
r

commit

MSBLV

RSB

RSB

LV

TC

MSB

MSB

LV RSB

F
ig

ur
e

6.
4:

H
S

S
T

de
ta

ile
d

m
ic

ro
ar

ch
ite

ct
ur

e
de

si
gn

.

99

vector. In Figure 6.3c,therearetwo freecores,and sothe TC spawneda subordinate

thread on each free core for helping one of the running threads (the shadedbox).

Each spawned subordinate thread is assigneda level that is stored in the level

vector. The main thread is assignedlevel 0 (shadedbox). The TC assignslevels in

ascendingorder. Every time the TC assignsa subordinate thread to a free core, it

setsthe appropriate bit in the core'slevel vector (LV). The coreneedsto store the

subordinate thread level, as it is required for dynamically pruning the subordinate

thread, as will be seennext.

Note that each corehastwo modes,a subordinate thread mode and a regular

mode. The corerealizesit is in the subordinate thread mode if its LV is not empty.

Our implementation so far is for having subordinate threads that help only a single

main thread. We can extend it to several main threads each having its own sub-

ordinate threads. In this casethe TC will have to maintain a level vector for each

main thread to store in it which coresrun subordinate threads for that particular

main thread and at what level each subordinate thread is running.

6.2.2 Distilling the Subordinate Thread

Each subordinate thread is distilled dynamically in order to be able to run

aheadof its parent thread. The level bit set in the core running the subordinate

thread determinesthe aggressivenessof the subordinate thread in skipping instruc-

tions. A level one subordinate thread is the least aggressive, as it is the level right

below the main thread. A level 2 is moreaggressive, andsoon. A subordinate thread

100

may skip past long-latency instructions as well as highly predictable branchesand

their backward slices.It may alsoskip the dependencychainsof the skipped instruc-

tions, and so it maintains information about its register �le state and its memory

state in order to be able to identify the dependencychains of skipped instructions.

It maintains this information using the MSB and the RSB.

Long-Latency Instructions: A subordinate thread decidesthat a memory in-

struction is a long-latency instruction if it arrivesat the ROB head and stalls the

pipeline for a number of cyclesdetermined by the subordinate thread level. For

example,the �rst level subordinate thread may usen cycles.The secondlevel sub-

ordinate thread may usen/2 cycles,the third level may usen/4 cycles,and so on.

The subordinate thread will tossthe long-latencyinstruction out of the pipelineand

free all its resources.

Highly Predictable Branc hes: Highly predictable branchescan be determined

from the saturating counters storedin the branch predictor for every branch instruc-

tion. A branch instruction is consideredto be highly predictable if its saturating

counter reachesa certain threshold determinedby the subordinate thread level. A

lower threshold of the saturating counter is required as we go down the hierarchy.

The subordinate thread may toss out instructions that form the backward slice of

the branch if they are still in the pipeline. Note that we give priorit y to memory

instructions. If a memory instruction forms a backward sliceof a highly predictable

branch, it is not tossedout of the pipeline until it arrives at the ROB head and

101

attempts the memory access.This is to ensurethat if it was an L2 miss then it is

at least attempted.

Dep endency Chains of Skipp ed Instructions: Each subordinate thread main-

tains an RSB to help it �lter out instructions that attempt to usespeculative register

values. Also, each subordinate thread maintains an MSB to help it in identifying

LOAD instructions that read data-speculative valuesand hencecan be skipped by

the subordinate thread.

6.2.3 Result Integration

Each child thread forwards all its instructions and results to its parent thread

and marks the non-data-speculative ones. The child thread retires its results at

the tail of the FIFO bu�er that connectsit to its parent. The parent thread reads

at the head of the FIFO bu�er all forwarded results. The parent consumesthe

non-data-speculative oneswithout executingtheir corresponding instructions. The

parent thread also doesnot fetch and decode instructions becauseit receives them

from its child thread. Note that the parent thread cannot proceedwith executing

any instruction unlessits child thread has already placed it on the FIFO queue.

This is to ensurethat the parent thread always follows its child thread and that

they are both synchronized.

102

6.2.4 Recovering the Subordinate Thread Corrupted State

When the subordinate thread state is corrupt or when it goes on a wrong

path, it becomesuselessand the best thing is to restart the subordinate thread and

recover its state. Recovering the subordinate thread state requirescopying the more

accuratestate of its parent. The subordinate thread may copy the register �le of

its parent and invalidate its L1 dcache. If its parent thread is a subordinate thread,

then it needsalso to copy the RSB and MSB of its parent. When a parent thread

detectsthat its child thread had goneon a wrong path, it announcesto the TC its

needto recover its children and the TC restarts all threads below it. All restarted

subordinate threads will needto copy the state of the parent thread that initiated

the recovery.

6.3 Experimental Results

In order to evaluate our proposedHSST scheme,we extendedour SST simu-

lator to support multiple subordinate threadsthat are arrangedin a hierarchy. Our

simulator faithfully models an HSST systemrunning on a multi-core CMP, with a

main thread, two subordinate threads, and their interconnections,as per the block

diagram of Figure 6.4. The microarchitectural parameterswe used are shown in

Table6.1. The L1 dcache of a subordinate thread is invalidated on its recovery from

the wrong paths. All coresusea singlebranch predictor, which is updated only by

the main thread.

103

Single Core Parameters

L1 ICache sz/assoc/repl/ln/lat=16KB/1w ay/LR U/6 4B/ 1cycle

L1 DCache sz/assoc/repl/ln/lat=64KB/4w ay/LR U/6 4B/ 1cycle

L2 Cache (data+instrs.) sz/assoc/repl/ln/lat=1024KB/8w ay/LR U/1 28B/6 cycles

Main Memory Latency 18 cycles(results presented for 100 cyclesas well)

Fetch/issue/retire bandwidth = 4/4/4

ROB/LdStQ/F etchQ size= 64/32/16 entries

Branch Predictor type = bimodal, size= 32K entries, penalty 7 cycles+

HSST-Speci�c Parameters

MSB 64 bits

FIFO Queue latency/bandwidth/sz = 2 cycles/5 instrs./32 instrs.

Branch Threshold conf. count for subA/subB/subC/subD = 16/8/5/4

Memory Threshold wait cyclesfor subA/subB/subC/subD = 50/25/16/12

Sub. Thread Recovery 20 cycles

Table 6.1: HSST Microarchitectural Parameters

We evaluated our HSST schemeagainst two SST schemes,main-subA scheme

and main-subBscheme,each having a main thread and a singlesubordinate thread.

In the main-subA scheme, the subordinate thread is subA and in the main-subB

scheme, it is subB. We let HSST use two subordinate threads, subA and subB.

SubA follows the main thread in the hierarchy and subB is at the lowest level of the

hierarchy. Weachieved signi�cant performanceimprovement with HSSTagainstthe

SST schemes. HSST may useany number of subordinate threads. We tried more

104

Superscalar-Speci�c Parameters

Fetch/issue/retire bandwidth = 16/16/16

ROB/LdStQ/F etchQ size= 256/128/64 entries

Branch Penalty 7 cycles(results presented for 16 cyclesas well)

Main Memory Latency 18 cycles(results presented for 100 cyclesas well)

Table 6.2: SuperscalarMicroarchitectural Parameters

than two subordinate threadsaswell and did not seesigni�cant further performance

improvement. The latency thresholdsfor skipping memory and branch instructions

in each subordinate thread are shown in Table 6.1. Our comparisonsare against a

baseline superscalarprocessorwith three times the issuewidth of a singlecoreand

three times its capacity for in-
igh t instructions.

6.3.1 PerformanceImprovement

Figure 6.5 presents the IPC obtained with result integration enabledfor four

schemes: single thread basescheme, main-subA scheme, main-subB scheme and

HSST. There are four bars per benchmark, corresponding to each scheme. The

singlethread schemeis a superscalarprocessorwhosemicroarchitectural parameters

are shown in Table 6.2. For all four schemeswe use a branch penalty of 7 cycles

and a memory latency of 18 cycles.For the SSTschemesand the HSST scheme,the

subordinate thread incurs minimum penalty on recovery becausewe useda shadow

register �le as in Chapter 3. Also, the branch threshold for highly predictable

105

branchesfor subA is 2 and for subB is 1. We alsopresent another set of results for

the samefour schemesin Figure 6.6, but we let the memory latency be 100cycles,

the branch miss-prediction penalty be 16 cycles, the subordinate thread recovery

penalty be 20 cycles, the branch threshold for subA be 16, the branch threshold

for subB be 8, the subordinate thread be speculative-aware and only skip branch

instructions.

It is clearfrom Figures6.5and 6.6that HSSTperformsbetter than main-subA

and main-subB for all the benchmarks. The averageperformanceimprovement of

the three symbiotic schemesover the single thread baseschemeis shown on top of

the averagebars, 38% for HSST, 22% for main-subA, and 19% for main-subB in

Figure 6.5 and in the sameorder in Figure 6.6, 21%, 13% and 14%. The �rst set

of results shown in Figure 6.5 indicate that with a much smaller pipeline per core,

a more accuratebranch predictor and smaller memory latencies,the HSST scheme

performs better, than in a much larger pipeline with long memory latenciesand a

lessaccurate branch predictor. This implies that our scheme exploits parallelism

when it is available better than the superscalar processorwith 3 times the issue

width and 3 times the sizeof each core. The performanceimprovement of HSST is

due to result integration, which hides the branch penaltiesand pre-fetching the L2

cache misses,aswill be seenin the following subsections.

106

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

IPC

Single thread
SST with subA
SST with subB
HSST with subA & subB

19.5%
22.6%

38.3%

Figure 6.5: IPC obtained for four schemes:(a) Singlethread (superscalar);(b) SST

with subA (main-subA); (c) SST with subB (main-subB); and (d) HSST with both

subA and subB.

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

IPC

Single thread
SST with subA
SST with subB
HSST with subA & subB

13.8%
14.3%

21.5%

Figure 6.6: IPC obtained for four schemes:(a) Singlethread (superscalar);(b) SST

with subA (main-subA); (c) SST with subB (main-subB); and (d) HSST with both

subA and subB.

107

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

10

20

30

40

50

60

70

80

90

100

110

120

%
Dy

na
mi

c I
ns

tru
cti

on
 O

utc
om

es

produced by main
consumed by main from subA
consumed by main from subB
consumed by main & subA from subB

a: SST with subA.
b: SST with subB.

a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

c: SST with subA & subB.

subA: a slice of the main thread.
subB: a slice of subA.

Figure 6.7: Distribution of instruction outcomesin main thread for three schemes:

(a) SST with subA (main-subA); (b) SST with subB (main-subB); and (c) HSST

with subA and subB.

6.3.2 Advantagesof Result Integration

In HSST, results correctly produced by a child thread are consumedby its

parent thread without executingtheir corresponding instructions. This exploits the

available parallelism and hides the branch miss-prediction latencies,in addition to

reducing the redundant and uselesscomputations doneby each thread.

Exploiting Parallelism: Result integration allowsindependent computationsdone

by a child thread to overlap with other independent computations doneby its par-

ent thread. This speedsup the parent thread, which in turn will speedup its own

parent and so on until the highest level in the hierarchy (main thread). We looked

at the distribution of instruction outcomesin the main thread for the three schemes

(main-subA, main-subB, and HSST). This data is presented in Figure 6.7. The

108

three bars show the distribution of instruction outcomesin the main thread for

main-subA, main-subB, and HSST, respectively. In all three bars, the distribution

of instruction outcomesshows the percentage of outcomesproduced by the main

thread (instructions executedby the main thread) and the percentage of instruc-

tion results consumedby the main thread from the subordinate threads without

re-executingthem.

In HSST the main thread executedroughly the samenumber of instructions

as in the main-subA scheme (�rst bar), and yet the IPC of HSST is higher than

that of main-subA (Figures 6.5 and 6.6). The IPC is governedby the main thread,

and so, it must have gained speed. The reasonfor this speed is that the main

thread received the outcomesof subA sooner. That meansthat subA must have

gainedspeed. We know that a considerableamount of the outcomesthat subA was

supposedto produce were actually produced in parallel by subB. Therefore, subA

did not have to executeall the instructions that it wassupposeto execute.Rather,

it consumedthe outcomesof a big percentage of those instructions from subB and

passedthem along with the outcomesit producedto the main thread.

E�cien t Execution: Result integration reducesthe number of instructions each

thread has to do, by eliminating redundant computations. Redundant computa-

tions are computations that a parent thread neednot do becauseits child thread

hasalready donethem. This allows each thread to usethe available resourcesmore

e�cien tly. In other words, result integration makese�cien t useof the small hard-

ware structures available in each corewhile delivering high speed.

109

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

1

2

3

4

5

6

7

8

9

10

11

12

13

%
Br

an
ch

 M
iss

-pr
ed

ict
ion

Single Thread
SST with subA
SST with subB
HSST with subA & subB

Figure 6.8: Averagebranch miss-predictionsin main thread for four schemes: (a)

Single thread (superscalar); (b) SST with subA (main-subA); (c) SST with subB

(main-subB); and (d) HSST with both subA and subB.

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

1

2

3

4

5

6

7

8

9

10

%
of

ma
in

thr
ea

d b
ran

ch
 m

iss
-pr

ed
ict

ion
s p

re-
co

mp
ute

d b
y s

ub
ord

ina
te

thr
ea

d

SST: Main consumed from subA
SST: Main consumed from subB
HSST: Main consumed from subA
HSST: Main & subA consumed from subB

a: SST with subA.

b: SST with subB.

a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

c: HSST with subA & subB.

Figure 6.9: Percentage of branch instructions that were a miss-predictionand the

main thread obtained their correct outcomesfrom the subordinate thread, for three

schemes: (a) SST with subA (main-subA); (b) SST with subB (main-subB); and

(c) HSST with both subA and subB.

110

Hiding Branc h Penalt y: The miss-predictionpenalty of a miss-predictedbranch

instruction can be incurred by several threads up the hierarchy. With result inte-

gration, all threads above the thread that �rst incurred the penalty do not have

to incur it if that thread executedthe branch non-speculatively. In HSST, subA

consumesthe non-speculative results of subB without executing their correspond-

ing instructions. Those results include branch instructions that may have been

miss-predictedbut werepre-executedby subB, thereby hiding their miss-prediction

penalty. Moreover, the main thread consumesbranch outcomesthat subA consumed

from subB, in addition to the branch outcomescalculatedby subA. We plotted the

percentage of times the main thread went on the wrong path for the following four

models: singlethread (superscalar),main-subA,main-subB,and HSST(Figure 6.8).

The main thread in HSST incurred fewer branch miss-predictions(third bar) than

the main-subA scheme (�rst bar) and the main-subB scheme (secondbar). The

advantage of HSST over the SST schemeswith regard to the number of branch

miss-predictionscan be explained by the amount of correct branch results subA

obtained from subB. We plot in Figure 6.9 the averagenumber of branch outcomes

that are miss-predictedin the main thread, but the subordinate thread wasable to

hide their miss-prediction penalty, for the three schemes,main-subA, main-subB,

and HSST. In HSST subB was able to pre-executefor subA a considerableamount

of its miss-predictedbranches(grey portion of the third bar in Figure 6.9). Further,

subA in turn forwarded all its results along with subB's results to the main thread.

Note that becausesubA was sped up by subB, subA was able to hide even more

branch penalties,thereby bene�ting the HSST main thread.

111

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

L2
 M

iss
 R

ati
o (

pe
rce

nta
ge

)

Single Thread
SST with subA
SST with subB
HSST with subA & subB

Figure 6.10: L2 cache missratio in main thread for four schemes:(a) Singlethread;

(b) SST with subA (main-subA); (c) SST with subB (main-subB); and (d) HSST

with both subA and subB.

6.3.3 Improvement in L2 Cache Miss Ratio

Figure 6.10shows the main thread L2 cache missratio for four schemes,single

thread (superscalar)scheme,main-subA,main-subB,and HSST.On average,the L2

cache miss ratio reducedfurther with HSST (fourth bar). This result implies that

in HSST, subB is helping subA with the L2 cache misses.This in turn speedsup

subA, which is alsogoing to bring in someblocks into the L2 cache beforethe main

thread needsthem. Theseresults imply that more e�ective L2 cache pre-fetching is

occurring in HSST than in the main-subA and the main-subB models.

112

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

IPC

SST (single subordinate thread)
HSST (2 subordinate threads)
HSST (3 subordinate threads)
HSST (4 subordinate threads)

5.99%
6.5%

6.8%

Figure 6.11: IPC obtained for four schemes: (a) SST with a single subordinate

thread; (b) HSST with two subordinate threads; (c) HSST with three subordinate

threads;and (d) HSST with four subordinate threads.

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

1

2

3

4

5

6

7

8

9

10

%
Br

an
ch

 M
iss

-pr
ed

ict
ion

SST (single subordinate thread)
HSST (2 subordinate threads)
HSST (3 subordinate threads)
HSST (4 subordinate threads)

Figure 6.12: Averagebranch miss-predictionsin main thread for four schemes:(a)

SST with a singlesubordinate thread; (b) HSST with two subordinate threads; (c)

HSSTwith three subordinate threads;and (d) HSSTwith four subordinate threads.

113

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

%
of

bra
nc

h i
nc

orr
ec

t re
su

lts
 of

 th
e s

ub
ord

ina
te

thr
ea

d

Level 1 subordinate thread
Level 2 subordinate thread
Level 3 subordinate thread
Level 4 subordinate thread

Figure 6.13: Averageincorrect branch results of four subordinate threads with dif-

ferent levelsof speculation: (a) Subordinate thread at speculationlevel 1 (subA); (b)

Subordinate thread at speculation level 2 (subB); (c) Subordinate thread at specu-

lation level 3 (subC); and (d) Subordinate thread at speculation level 4 (subD).

gzip gcc bzip mcf twolf vortex parser perl vpr avg.
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

4.8

L2
 M

iss
 R

ati
o (

pe
rce

nta
ge

)

SST (single subordinate thread)
HSST (2 subordinate threads)
HSST (3 subordinate threads)
HSST (4 subordinate threads)

Figure 6.14: L2 cache miss ratio in main thread for four schemes: (a) SST with a

singlesubordinate thread; (b) HSST with two subordinate threads; (c) HSST with

three subordinate threads;and (d) HSST with four subordinate threads.

114

6.3.4 Experimenting with More than Two Subordinate Threads

Weperformedanotherexperiment in which weusedmorelevelsof speculations

in the hierarchy, i.e., more subordinate threads in order to evaluate the e�ect of

adding moresubordinate threads. We evaluated three subordinate threadsand four

subordinate threads. Level 1 subordinate thread (subA) is the subordinate thread

right below the main thread, followed by level 2 subordinate thread (subB), then

level 3 subordinate thread (subC), and �nally level 4 subordinate thread (subD).

Level 4 subordinate thread is the most speculative subordinate thread, its branch

threshold is 4 and its memorythreshold is 12cycleswhile level 1 subordinate thread

is the least speculative with a branch threshold of 16 and a memory threshold of 50

cycles.The thresholdsof each level are shown in Table 6.1.

The IPC we obtained for four schemes(SST with a singlesubordinate thread,

HSST with two subordinate threads, HSST with three subordinate threads, and

HSSTwith four subordinate threads)is shown in Figure 6.11. The singlesubordinate

thread we usedwith SST is the �rst subordinate thread right after the main thread

in all the three HSST schemes.The IPC acrossall the benchmarks doesnot show

any improvement beyond that obtained with two subordinate threads. With three

and four subordinate threads (3rd and 4th bars), the IPC either does not change

or decreases.We obtained more statistics to understandthe lackluster performance

shown when increasingthe number of subordinate threads beyond two.

We plot the main thread averagebranch miss-prediction for the samefour

schemesin Figure 6.12. The main thread incurs the most number of branch miss-

115

predictions in the SST scheme (�rst bar). It incurs the least number of branch

miss-predictionswhen we usetwo subordinate threads (secondbar). When we use

two and three subordinate threads, the number of branch miss-predictionsincreases

(third and fourth bars, respectively). This is becausethe subordinate thread at the

bottom of the hierarchy becomesmore and more speculative and hencegoesmore

on the wrong path. Its parent thread, therefore, has to squashit more often and

cannot proceeduntil its child is recovered. This slows down both the child and the

parent, making both threadsine�ectiv e in hiding the branch miss-predictionlatency.

We show in Figure 6.13the number of times each subordinate thread wassquashed

becauseit went on the wrong path. The number of times a subordinate thread gets

squashedincreasesaswe go from the �rst bar (least speculative subordinate thread)

to the fourth bar (most speculative subordinate thread).

Finally, Figure 6.14 shows the L2 cache miss rate of the main thread for the

four. There is no signi�cant decreasein the L2 cache miss rate shown in the last

two bars (HSST with 3 and 4 subordinate threads). However, there is a signi�cant

decreasein the L2 cache miss rate in the secondbar (HSST with two subordinate

threads) comparedto the SST scheme(�rst bar). From our discussion,we conclude

that HSST may not provide signi�cant performanceimprovement beyond two sub-

ordinate threads due to the increasedpenaltiesof squashingthe highly speculative

subordinate threads that o�set the insigni�cant decreasein the main thread L2

cache miss rate.

116

Chapter 7

Related Work

Although our SST work originated mainly from subordinate threading, the

end product doeshave somesimilarities with previously proposedideas. We shall

compareand contrast our ideasto theseexisting ideas.

7.1 SST and Run-aheadexecution

In run-aheadexecution [11, 19] only a single thread is running at any time.

When the main thread is unableto make progressbecausethe instruction window is

blocked due to a long latency cache miss, the state of the processoris checkpointed

and it switches to the run-aheadmode. In the run-aheadmode, the blocking in-

struction is removed from the window by supplying it with an invalid value. In this

way, the processorcan continue to fetch, execute,and pseudoretire instructions,

without updating the architectural state. Instructions that follow, if dependent

on the blocking instruction, are also removed from the window. When the block-

ing instruction completes,the processorreturns to the `normal' mode and restores

the checkpointed state. All instructions executedin the run-ahead mode will be

fetched and executedagain during normal mode. The run-ahead mode usesthe

samehardware context as the main thread with someextra hardware. The bene�t

of run-aheadcomesfrom letting the processorfetch and executemore instructions

117

than the instruction window normally permits with the hope of reaching subsequent

long-latencycache missesearlier soas to processthem in parallel with the blocking

instruction that �rst initiated the run-aheadmode. However, the cost of transition-

ing from the run-aheadmode to the normal mode involvesa pipeline squash,which

is equalto a branch miss-predictionpenalty. Early return from the run-aheadmode

to the normal mode may hide such latency, but it limits the distance of e�ective

run-aheadexecution[19].

We identify several limitations in run-aheadexecution, that are overcomein

our SST scheme. The main di�erence with our executionmodel is that, run-ahead

executionusesa singlehardware context for both the normal and run-aheadmodes,

while SST usesa separatehardware context for the main thread and the subor-

dinate thread(s). Hence,all threads in SST run in parallel whereasin run-ahead

execution,only a singlemode is running at any point of time, either normal modeor

speculative run-aheadmode. This allows speculative executionin SST to last much

longer than in run-ahead execution, in addition to eliminating checkpointing and

mode transition. In run-ahead execution, speculative execution in the run-ahead

mode stopsoncethe processorreturns to the normal mode even if such speculative

execution is on the correct path and generatescorrect pre-fetch addresses.This

a�ects the aggressivenessof run-ahead execution. Second,each cache miss in a

chain of dependent cache misseswill causethe run-ahead processorto enter the

run-aheadmode. If only a few instructions exist betweensuch misses,the proces-

sor will pre-executethe sameset of future instructions multiple times [55], thereby

wasting processorresources. SST eliminates all these limitations seamlesslyand

118

achieves higher performance. Third, in SST the subordinate thread exploits more

opportunities to have a wider window and to run faster, skipping highly predictable

branches and their backward slicesin addition to processingthe blocking instruc-

tions in the samemanneras run-aheadexecution. Fourth, in SST, the main thread

monitors the subordinate thread state to obtain the maximum bene�t out of the

subordinate thread, but in run-aheadexecutionthis monitoring doesnot exist, and

so oncethe run-aheadmode deviatesfrom the wrong path or corrupts its state, it

becomesuseless.Finally, the useof re-using results in run-ahead[20] execution is

limited, becausethe run-aheadmode runs a very short time with correct valuesand

then it corrupts its state or deviatesaway from the correct path, thereby producing

uselessincorrect outcomes. On the other hand, becausethe main thread monitors

the subordinate thread path in SST, it is able to make it run more e�ectively on

the correct path with correct state, thereby contributing more correct results to the

main thread.

In continual
o w pipelines(CFP) [56], long latency instructions such ascache

missesand their dependent instructions (called slice instructions) are drained out

of the issuequeueand register �le by using invalid values as fetched data, simi-

lar to run-aheadexecution. Unlike run-aheadexecution, the slice instructions are

not thrown out of the pipeline; rather they are stored in a slice processingunit

and the subsequent independent instructions continue their executionspeculatively.

When the blocking cachemisscompletes,the sliceinstructions re-enter the execution

pipelineand commit the speculative results. In this way, the work during run-ahead

executionis not discardedand there is no needto re-fetch and re-executethosein-

119

structions. To maintain such speculative data, however, CFP requirescoarse-grain

retirement and a large centralized load/store queue(a hierarchical store queueis

proposedto reduce its latency criticalit y [57, 56] and a new improvement is pro-

posedin [58]). Comparedto CFP, SST eliminatessuch large centralized structures

and builds upon much simpler processorcores(e.g., smaller register �les). The fast

branch resolution at the subordinate thread (due to its simpler, shallower pipeline)

reducesthe cost of most branch miss-predictions.SinceSSTdoesnot needany cen-

tralized rename-map-tablecheckpoints, it alsoeliminatesthe complexity for estimat-

ing branch prediction con�dence and creating checkpoints only for low-con�dence

branches,as neededin CFP.

7.2 SST and Leader/Follower Architectures

In this sectionwe compareour model against subordinate threading architec-

tures that exhibit the leader/follower aspect of our model. In SST, the subordinate

thread (leader) and the main thread (follower) together with the FIFO communi-

cation queue form a very large instruction window for single-thread out-of-order

execution. Coupling two (or more) relatively simple processorsto form a large in-

struction window for out-of-orderprocessingwasoriginated in multiscalar processors

[61], and SST providesa complexity-e�ectiv e way to construct such a window while

eliminating elaborate inter-thread (or inter-task) register/memory communication.

Decoupled Arc hitectures: Running a program on two processors,one leading

and the other following, �nds its roots in decoupledarchitectures[21,68], which par-

120

tition the program into two partitions | a memory accesspartition and an execute

partition | each of which executesin parallel. The Execute Processorperforms

all computations and the AccessProcessorperforms all accessesto the data mem-

ory. The accessprocessorperforms the data fetch aheadof demandby the execute

processor,thereby hiding the memory accesslatency. The primary di�erence with

our processoris that decouplingis part of the instruction set architecture (requir-

ing more sophisticatedcompilation), whereasour executionmodel is purely at the

microarchitecture level. Also, our schemedoesnot classify instructions as memory

accessinstructions and executeinstructions. In SST, the subordinate thread(s) not

only pre-fetchesthe data but alsoprovides a highly accurateinstruction stream by

�xing branch miss-predictionsfor the main thread. Moreover, all this is accom-

plished without the di�cult task of partitioning the program.

Slipstream pro cessors: Slipstreamprocessors[15, 18] are leader/follower archi-

tectures proposedto acceleratesequential programs. They are similar to SST and

sharea similar high-level architecture: two processorsconnectedthrough a FIFO

communication bu�er. However, SSTand slipstreamprocessorsachieve their perfor-

manceimprovements in quite di�erent ways. In slipstreamprocessors,the A-stream

runs a shorter program basedon the removal of ine�ectual instructions while the

R-stream usesthe A-stream results as predictions to make faster progress. The

A-stream is a relatively slower leader since long latency cache missesstill block

its pipeline unlessthey are detected ine�ectual and removed from the A-stream.

The R-stream is a relatively slower follower as well, becauseit must executeevery

121

instruction executedby the A-stream even if the A-stream executedit correctly.

On the other hand, in SST the main thread consumesthe subordinate thread non-

speculative results without executing their corresponding instructions (instead of

using them as predictions). This allows the main thread to becomea faster fol-

lower. Also, in SST, the subordinate thread is a much faster leader as it operates

on a virtually `ideal' L2 cache as well as skip highly predictable branchesand their

backward slices;hence,its e�ective instruction window is much bigger than that of

slipstream.

Dual-core execution model: The dual-coreexecution paradigm (DCE) [36] is

another leader/follower architecture proposedto acceleratesequential programs. It

is similar to SST and sharesa similar high-level architecture: two processorscon-

nectedthrough a FIFO communication bu�er. It consistsof two superscalarcores,

a front processor(leader) and a back processor(follower). The front processorre-

sembles the A-stream and the back processorresembles the R-stream in slipstream

terms. The front processor,however, executesall instructions exceptfor long-latency

cache misses. For a long-latency cache miss, it instead producesan invalid value

instead of blocking the pipeline similar to run-aheadexecution. Other than that,

everything elsein DCE is the sameas in slipstream. Our SST model di�ers from

DCE in the sameway as it di�ers from slipstream. Also, the subordinate thread in

SST is a faster leader than DCE's front processor,becauseit not only operateson

a virtually `ideal' L2 cache, but it also skips highly predictable branchesand their

backward slices. Therefore, its e�ective instruction window is larger than that of

122

DCE.

Flea-Flic ker Mo del: \Flea-Flicker" two passpipelining [41] is closestto SST in

terms of integrating run-aheadexecutionand leader/follower architectures. In the

Flea-Flicker design,two pipelines(A-pip e and B-pipe) are introducedand coupled

with a queue. The A-pipe executesall instructions without stalling. Instructions

with one or more unready sourceoperandsskip the A-pipe and are stored in the

coupling queue.The B-pipe executesinstructions deferredin the A-pipe and incor-

porates the A-pipe results. Compared to this work, SST is basedon out-of-order

execution,thereby having higher latency hiding. More importantly,
ea-
ic ker tries

to reusethe work of the A-pipe by introducing a lot of complexity overheads(e.g.,

the centralized memory order bookkeeping and the coupling result store in
ea-

ic ker), while SST usesthe simple RSB and MSB bitmaps to identify results that

the main thread can reusefrom the subordinate thread. The elimination of such

centralized structures is the reasonwhy SSTis a much morescalableand complexity

e�ective design.

Dual-core speculativ e multithreading: Srikanth et. al [42] proposeda min-

imal dual-corespeculative multithreading model (SpMT) that achieves signi�cant

performanceimprovement for single-threadedapplications. In this model, onecore

executesthe speculative threads(leader),while the other executesnon-speculatively

(follower). In this scheme,the resultsof instructions that areexecutedby the specu-

lative threadsand not a�ected by data dependenceviolations are bu�ered and later

123

committed by the non-speculative thread without re-executing them. The non-

speculative thread may spawn speculative threads whenever a spawn point arrives

and only onespeculative thread may run at any point of time. There are three types

of speculative threads; run-aheadspeculative thread that is spawned when a cache

miss latency is encountered, a procedurethread that is forked when the procedure

call is encountered, and a loop speculative thread that is forked when a backward

sliceof a branch instruction is encountered several times. The main di�erence with

SST is that SST usesa single speculative thread and it has no forking or spawn

points.

Master/Sla ve speculativ e parallelization: In master/slave speculative paral-

lelization (MSSP) [43, 44], there are two types of threads, a compiler generated

single master thread (subordinate thread) and a slave (main thread) that is par-

allelized into multiple tasks. The slave threads use the outcomesof the master as

predictions. The HSST versionof SSTdi�ers from master-slave in dividing the sub-

ordinate thread and not the main thread into several more speculative subordinate

threads,and in the hierarchical organization of the subordinate threads.

Pre-execution/Pre-computation architectures: In pre-execution/pre-computation

architectures [59, 12, 3, 4, 60, 9], a pre-execution/pre-computation thread is con-

structed usingeither hardware or the compilerand leadsthe main thread to provide

timely pre-fetchesor computed branch outcomes(for miss-predictedbranches). In

a multithreaded architecture, however, pre-executionthreads and the main thread

124

compete for a sharedinstruction window and a cache miss in any thread will block

its executionand potentially a�ect other threads through resourcecompetition. In

future execution [45], an otherwise idle core on a chip multipro cessorpre-executes

future loop iterations using value prediction to perform cache pre-fetching for the

main thread.

7.3 SST and Result Reuse

Deterministically reducing the number of executedinstructions by meansof

Dynamic Instruction Reusewas proposed in [16, 17]. The main idea is to keep

copiesof recent instruction results (along with their operand values)so that future

dynamic instancesof the sameinstruction can usethe samevalue, if they have the

sameinput valuesasthe bu�ered ones.The key di�erenceswith our schemearethat

it works with a singlethread of control, and bu�ers instruction results for far longer

periods of time. Moreover, our schemedoesnot compareentire registervaluesas in

[16, 17]; rather it usesthe RSB to identify registersthat are data-speculative from

thosethat are not.

The use of result integration in data-driven multithreading: Speculative data-

driven multithreading (DDMT) [4] forks subordinate threads that are decidedstat-

ically. With the useof a technique called register integration [13], the main thread

is able to allow the main thread to directly useresults computedin the data driven

threads (DDTs). Integration exploits the fact that both the main thread and the

DDT placeresults in a sharedphysical register�le (in an SMT (simultaneousmulti-

125

threading) implementation). Using a modi�cation to register renaming, integration

allows the main thread to recognizeand claim DDT results. The main way SST

di�ers from DDMT is in the way the main thread integrates results from the sub-

ordinate thread. Becauseof its generality, it can handle subordinate threads with

a lot of data and control speculations. Pruning the main thread in SST is based

on the architected register speci�ers, and so it is independent of register renaming.

SST can thereforework on both SMT and CMP (Chip Multipro cessor)platforms.

The subordinate thread in SST runs as long as the main thread runs, while a DDT

is spawned when needed,and vanishesafter it performs its task.

7.4 SST and ClusteredArchitecutures

In clustered architectures [22, 23, 24], the processorresourcesare split into

two or more clusters. Each cluster is simpler, faster, and consumeslesspower than

a monolithic architecture. Instructions aregenerallydispatched to clustersbasedon

data dependenciesin order to localizedependencieswithin a cluster and to reduce

communication among clusters. The main di�erence with our execution model is

that clusteredprocessorshave a singlethread of control (and thereforea singlefetch

unit), whereasSST has two or more threads of control.

126

Chapter 8

Future Work

Our SST/HSST has some limitations. In this chapter we identify someof

those drawbacks and provide insight into our intended solutions. We also discuss

someways of extending our SST work in the future.

8.1 Making the FastestThread the Leader

Our SSTand HSST schemesare leader-follower architecturesbecausethe par-

ent thread never goesaheadof its child thread. The assumptionis that, the child

thread is more speculative than its parent thread and runs faster, and therefore it

is always aheadof its parent thread. However, there are occasionswhen the parent

thread can go aheadof the child thread becauseeach of them generatesaccessesto

di�erent memory locations. For instance,a parent thread and its child thread may

accessa block of memory that residesin the parent's L1 dcache but is not in the

child's L1 dcache and not in the sharedL2 cache. In this casethe child will block

for sometimeuntil it realizesthat the corresponding memory instruction is a long

latency instruction and retires it early beforethe block arrivesfrom main memory.

In SST and HSST however, we do not allow the parent thread to go aheadof its

child thread, and sothe parent thread will alsoblock until it receivesthe speculative

result of the memory instruction from its child. If the parent thread hasgoneahead

127

and executedthe memory instruction, it would have delivered the result to its own

parent much faster.

We intend to exploreSST and HSST schemesthat do not de�ne the leaderto

be the child thread and the follower to be the parent thread. Rather, the leaderwill

be the fastest thread (whether parent or child). In other words, instead of holding

the parent thread until its child thread forwards its results,wewill permit the parent

thread to run aheadof its child thread. This has several implications: First, speed

will be governed by the fastest thread at any time, i.e, if at sometime the parent

thread can be faster than the child thread, then it makessenseto make the parent

thread the leader. Second,the parent and the child may loose synchronization.

Therefore, mechanismsmust be provided to ensurethat they are re-synchronized.

Third, the parent thread must thereforebe independent of its child thread, and so

it must fetch and decode its own instructions when it goesaheadof its child thread.

8.2 Hybrid HSST Processor

In SST or HSST the subordinate threads are more generaland they are all

distilled in the samemanner but with di�erent levels of speculations. We intend

to try specializedsubordinate threadssuch that each is concernedabout a di�erent

typeof critical latency. For instance,the lowest level subordinate thread canbeonly

concernedabout pre-fetching the instruction cache for all the other levelsaswell as

fetching and decoding all instructions. This can be done by making it only fetch,

decode,and retire all instructions, andsothe only latency it would incur is the icache

128

misslatency. We can useanother type of subordinate thread that is concernedonly

about pre-fetching the L2 cache and skips all branches and their backward slices.

Wecanusea third typeof subordinate thread that is concernedonly about resolving

hard-to-predict branch instructions. We canthen put all threadsin a hierarchy with

the main thread. It would make senseto put the most speculative thread (the one

that performs icache pre-fetching) at the bottom of the hierarchy, and on top of it

the one that pre-fetches the L2 cache and then the one that performs branch pre-

computation and at the top of the hierarchy, the main thread. That would make

an HSST schemewith a hybrid collection of subordinate threads. We can take that

further by adjusting the level of speculation of each thread basedon the running

application.

8.3 Exploiting Program Behavior ChangesUsing Dual Thread Exe-

cution Models

One way of utilizing the additional processingcoresin a multi-core environ-

ment is to run subordinate threads on them so as to speed up the execution of

critical instructions. Another option is to spawn speculative threads on them so as

to exploit thread level parallelism. We performeda study on our SST schemewhich

is a subordinate threading schemeand a speculative multithreading technique, the

trace processor[69].

In the trace processor,the compiler or hardware partitions a sequential pro-

gram into speculative threads, and the processorexecutesmultiple tracesin parallel,

129

with the helpof multiple processingcores.Processingcoresarearrangedasa circular

queue,in which only the headprocessingcoreis allowed to commit its instructions.

All other processingcorescannot commit instructions until they becomethe head.

A speculative thread is a contiguous sequenceof dynamic instructions, called a

trace. A trace is spawned beforecontrol reaches that trace, and beforeknowing if

its execution is required or not. The useof tracesallows aggressive exploitation of

thread-level parallelism from programsthat are inherently sequential.

Our study shows that someapplications bene�t more from the SST scheme,

and othersbene�t more from the speculative multi-threading approach (the average

performancewas slightly higher for the SST approach). More importantly, our

results also show that many of the applications cannot be strictly categorizedas

favoring either speculative multi-threading or decoupledexecutionas SST. Rather,

most applications alternate between the two categoriesduring di�erent phasesof

their execution. We plan to identify characteristicsof code regionsthat make them

more suitable to be run using oneapproach or the other. We alsoplan to evaluate

the potential for a hybrid processorthat can switch execution modes between a

trace processormode(exploiting thread-level parallelism) and SSTmode(exploiting

decoupledexecution).

8.4 Division of Work

Our SST and HSST models try to divide the instructions to be executed

amongthe di�erent threads such that if onethread producesthe correct result of a

130

particular instruction, then all the threadsabove it in the hierarchy shouldconsume

that result without executing its corresponding instruction. In that sense,we are

dividing the instructions to be executedamongthe threads. However, good division

of instructions amongthe threads doesnot always result in good division of work.

For better utilization of the hardware, it is more important to eliminate redundant

computations and have a more equal distribution of work amongthe threads.

We plan to study the division of work amongthe threadsmore carefully, such

that we can identify more accurately the level of speculation of each thread. An

ideal division of work would make each thread in a dual-coreperform only 50% of

the required work in parallel. If we usea secondsubordinate thread, then each of

the three threads should perform only 33.3% of the work in parallel, and so on.

Unfortunately, the world is not that ideal for several reasons:First, the application

may not be easily divided among the threads equally becauseit may not contain

enoughparallelism. Second,the hugememorywall aswell asbranch miss-prediction

penalties are another obstacleto achieving a more equal work distribution among

the cores(threads). We intend to identify at run-time the ideal division of work

of an application among the available cores. We also intend to identify the ideal

number of threads to usefor a particular application.

8.5 Power Studies

Wealsointend to do somepower studiesof our SSTand HSSTschemesagainst

already existing schemessuch as the slipstream processorand the DCE scheme

131

[18, 36]. We expect that the SST schemewill yield the lowest power consumption

becauseit tries to reduce the redundant computations, and so it executesfewer

instructions than both the slipstreamprocessorand the DCE scheme.

8.6 Simulation Work

Although we performedmost of our studiesusing a simulator that we devel-

oped basedon the SimpleScalartoolkit, we realizethat it is not very modular, and

so it is di�cult to extend or modify it. We intend to revisit the designof our simu-

lator to make it more modular such that it is easierto manipulate and usefor more

studies.

Our current simulator doesnot allow us to do power studies. In order to do

our intended power studies, we plan to extend our simulator to make it simulate

somepower models. This will require an extensive development work.

Also, as we add more coresto our simulator, the simulation time increases.

Simulating our HSST scheme with three subordinate threads, takes on average8

hours for a single benchmark, for only 500 million instructions. We realize that it

is crucial to our research to make the simulation time faster.

Finally, we intend to experiment with the
oating-p oint benchmarks also. We

expect that they will yield much higher performancethan the integer benchmarks

becauseour schemesexploit the available parallelism, which is more present in

oating-p oint benchmarks.

132

Chapter 9

Summary and Conclusions

In keeping with the natural trend towards integration, current and future

microprocessorsare embracing the prosperity of single-chip multi-core processors.

Although multi-core processorsdeliver signi�cantly improved system throughput,

single-threadperformanceis not addressed,and is negatively a�ected. This is be-

cause,multi-core architectures integrate simpler and smaller coresto achieve high

throughput and meet a low power budget while high single-thread performance

requireslarger and more complexcoresthat have a wide instruction window to sus-

tain a vast amount of instructions while serving long-latency memory instructions

in parallel.

In this dissertation, we presented Symbiotic Subordinate Threading (SST), a

novel processorarchitecture that utilizes idle coreson a singlechip multipro cessor

for improving single-threadperformancewhile maintaining the
exibilit y to support

multithreaded applications. We demonstratedthat our SST schemeachieves high

performancewith minor hardware changesover dual-core processorssuch as the

slipstream processorand the DCE processor. Its performancerangesfrom 7% to

45% over slipstream processorand 2% to 20% over DCE for integer benchmarks.

We showed that SST can directly integrate the correct results of the subordinate

thread into the main thread state without executing their corresponding instruc-

133

tions in the main thread. Result integration bene�ts our SST schemein two ways.

First, the subordinate thread incorrect results are not used as predictions in the

main thread, henceeliminating the introduction of incorrect predictions in the main

thread. Second,the number of instructions executedby the main thread is signif-

icantly reduced, resulting in a faster main thread and a more e�cien t use of the

hardware resources.In other words, instructions are implicitly divided among the

main thread and the subordinate thread, which allows more than one instruction

to be servicedin parallel. Also, with a faster main thread, the subordinate thread

spends less time on wrong path instructions, and henceit is lesscorruptive and

performs its tasks more e�cien tly.

We also presented another implementation of SST in which the subordinate

thread is informed of its own speculative state and usesthis information to avoid

executingmore instructions that are likely to producespeculative incorrect results.

We demonstratedthat this new designof SST minimizes the number of times the

subordinate thread deviates from the correct path, hencereducing the number of

times the subordinate thread has to recover from the wrong path, i.e., lesssquash

and re-start penalties. Also, a speculative aware subordinate thread is faster and

more e�cien t, becauseit executesonly the instructions that are more likely to

produce useful results. However, we noticed that a speculative-aware subordinate

thread neglectsvalue prediction as an e�ective meansfor predicting memory ad-

dresses. As a result, the new SST scheme did not deliver good performancefor

benchmarks that bene�ted from valueprediction such asmcf and twolf. The average

performanceimprovement of the new SSTschemethat employs a speculative-aware

134

subordinate thread over the old SST schemeis 9%, and rangesfrom -20%to 20%.

We alsonoticed that the DCE schemewith a speculative-aware subordinate thread

performedalmost as well as the SST schemewith a speculative-aware subordinate

thread. This is becausethe DCE schemesu�ers in generalfrom incorrect branch

outcomesproducedby the subordinate thread and consumedby the main thread as

predictions; however, with a speculative-aware subordinate thread, the number of

incorrect branch outcomesof the subordinate thread reducedsigni�cantly. The new

SST schemestill has the advantage of executing fewer instructions than the DCE

scheme.

Another extensionof our SST schemeis the Hierarchical Symbiotic Subordi-

nate Threading (HSST), in which a subordinate thread is allowed to have its own

subordinate thread. The HSST scheme, brings together the advantages of high

speculative subordinate threadswith the advantagesof low speculative subordinate

threads while reducing the impact of their drawbacks. Highly speculative subordi-

nate threadsare fasterwith a larger instruction window to explorebut they go more

often on the wrongpath. On the other hand, low speculativesubordinate threadsex-

ecutemore instructions, and sothey producemorecorrect results,however they are

slower and have a limited instruction window to explore. We comparedour HSST

schemewith two subordinate threads (subA and subB) against two SST schemes,

each employing oneof the subordinate threads. SubA is lessspeculative than subB

and follows the main thread in the hierarchy. SubB acts as a subordinate thread

for subA. We report an averageperformanceimprovement of 16% over the SST

con�guration with subA and 18% over the SST con�guration with subB. We also

135

presented results for HSST schemewith two, three, and four subordinate threads.

Our results indicate that asthe number of subordinate threadsincreases,the penal-

ties associated with squashingand recovering the subordinate thread increase.Also,

the bene�t of the subordinate thread with regard to cache pre-fetching and branch

pre-computation decreasesas it becomesmore speculative. An HSST con�guration

with three and four subordinate threads did not improve the performancebeyond

two subordinate threads.

The hardware requirements for SST and all its extensionsare moderate. For

pruning the main thread we only require the bitmaps (RSB and MSB) and the as-

sociated logic for maintaining them. For pruning the subordinate thread we require

additional bitmaps (RSB and MSB) and their associated logic. The FIFO queue

is neededfor the communication between the subordinate thread and the main

thread. The FIFO queueis perhapsthe largestpieceof hardware we add. However,

the FIFO queueis a simple pieceof hardware that allows forwarding the results of

the subordinate thread to the main thread, and facilitates integration and improves

the performance.Also, the FIFO queueis a much smallerand lesscomplexpieceof

hardware than doubling the sizeof each core.

Finally, we plan to continue the work on SST. We believe that more enhance-

ments can be madeto SST to improve its performance.

136

BIBLIOGRAPHY

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. -Y. Chang, The

Case for a Single-Chip Multiprocessor (Proc. 7th International Symposium

on Architectural Support for ProgrammingLanguagesand Operating Systems,

1996).

[2] LawrenceSpracklen and Santosh G. Abraham, Chip Multithr eading, Opportuni-

ties and Challenges(Proc. 11th International Symposiumon High Performance

Computer Architecture, 2005).

[3] C. -K. Luk, Tolerating Memory Latency through Software-Controlled Pre-

Execution in SimultaneousMultithr eading Processors(Proc. 28th International

Symposium on Computer Architecture, June 2001).

[4] A. Roth and G. S. Sohi, Speculative Data-Driven Multithr eading (Proc. 7th In-

ternational Symposium on High PerformanceComputer Architecture (HPCA-

7), 2001).

[5] A. Roth, A. Moshovos,and G. S. Sohi, Improving Virtual Function Call Target

Prediction via Dependence-Based Pre-Computation (Proc. 13th Annual Inter-

national Conferenceon Supercomputing, June 1999),pages356-364.

[6] J. Pierce and T. Mudge, Wrong-Path Instruction Prefetching(Proc. 27th An-

nual IEEE/A CM International Symposium on Microarchitecture, 1994) .

137

[7] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen, Dynamic Speculative

Precomputation (Proc. 34th Annual IEEE/A CM International Symposium on

Microarchitecture, 2001) .

[8] S. S. W. Liao, P. H. Wang, G. Ho
ehner, D. Lavery, and J. P. Shen,Post-Pass

Binary Adaptation for Software-Based SpeculativePrecomputation (Proc. ACM

SIGPLAN Conferenceon ProgrammingLanguageDesignand Implementation,

June 2002).

[9] C. Zilles and G. S. Sohi, Execution-Based-Prediction Using Speculative Slices

(Proc. 28th International Symposium on Computer Architecture, 2001).

[10] M. Annavaram, J. Patel, and E. Davidson, Data Prefetching by Dependence

Graph Precomputation (Proc. 28th International Symposium on Computer Ar-

chitecture, June 2001).

[11] J. Dundasand T. Mudge, ImprovingData CachePerformance by Pre-executing

Instructions Under A CacheMiss (Proc. International Conferenceon Super-

computing, July 1997),pages68-75.

[12] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes,Y. -F. lee, D. Lavery, and

J. P. Shen,Speculative Precomputation: Long-rangePrefetchingof Delinquent

Loads (Proc. 28th International Symposium on Computer Architecture, June

2001).

138

[13] A. Roth and G. S.Sohi,Register Integration: A Simpleand E�cient Implemen-

tation of SquashReuse(Proc. 33Annual IEEE/A CM International Symposium

on Microarchitecture, 2000).

[14] T. Aamodt, P. Marcuello, P. Chow, P. Hammarlund, and H. Wang, Prescient

Instruction Prefetch(Proc. MTEA C-6, November 2002).

[15] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, Slipstream processors: im-

proving both performance and fault tolerance (Proc. 9th International Confer-

enceon Architectural Support for ProgrammingLanguagesand Operating Sys-

tems, 2000),pages257-268.

[16] A. Sodani and G. S.Sohi,Dynamic Instruction Reuse(Proc. 24th International

Symposium on Computer Architecture, June 1997).

[17] R. Bodik, R. Gupta, and M. L. So�a, Load-ReuseAnalysis: Design and Eval-

uation (Conf. on PLDI-99, Atlanta, Georgia,May 1999) .

[18] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, A Study of Slipstream Pro-

cessors (Proc. 33rd annual IEEE/A CM international symposium on Microar-

chitecture, December 2000) .

[19] O. Mutlu, J. Stark, C. Wilkerson,and Y. Patt, Runahead Execution: An Alter-

native to Very Large Instruction Windows for Out-of-order Processors(Proc.

36th Annual IEEE/A CM International Symposium on Microarchitecture, De-

cember 2003).

139

[20] O. Mutlu, H. Kim, J. Stark, and Y. Patt, On Reusing the Results of Pre-

Executed Instructions in a Runahead Execution Processor(Computer Architec-

ture Letters, Vol. 4, January 2005) .

[21] L. Kurian, P. T. Hulina, and L. D. Coraor, Memory Latency E�e cts in Decou-

pled Architectureswith a SingleData Memory Module(Proc. 19th International

Symposium on Computer Architecture, 1992),pages236-245.

[22] R. Canal, J. M. Parcerisa, and Antonio Gonzalez,Dynamic Cluster Assign-

ment Mechanisms(Proc. 6th International Symposium on High Performance

Computer Architecture, 2000).

[23] J. Keller, The 21264: A Superscalar Alpha Processorwith Out-of-Order Exe-

cution (MicroprocessorForum, October 1996) .

[24] S. Palacharla, N. J. Jouppi, and J. E. Smith, Complexity-E�ective Superscalar

Processors (Proc. 24th International Symposium on Computer Architecture,

1997),pages206-218.

[25] M. D. Smith, M. Horowitz, and M. S. Lam, E�cient Superscalar Performance

ThroughBoosting(Proc. 5th International Conferenceon Architectural Support

for Programming Languagesand Operating Systems,October 1992).

[26] D. Burger, T. M. Austin, and S. Bennett, Evaluating Future Microprocessors:

The Simplescalar Tool Set (University of Wisconsin Madison, July 1996), CS

TR-1308.

140

[27] R. Chappell, F. Tseng, A. Yoaz, and Y. Patt, Di�cult-Path Branch Predic-

tion Using Subordinate Microthreads (Proc. 29th International Symposium on

Computer Architecture, May 2002) .

[28] R. Chappell, J. Stark, S.Kim, S.Reinhardt, andY. Patt, SimultaneousSubordi-

nate Microthreading (ssmt) (Proc. 26th International Symposiumon Computer

Architecture, May 1999).

[29] A. Roth and S. Sohi, A Quantitative Frameworkfor Automated Pre-Execution

Thread Selection (Proc. 35th International Symposium on Microarchitecture,

2002),pages430-441.

[30] D. M. Tullsen, S. Eggers,and H. M. Levy, SimultaneousMultithr eading: Maxi-

mizing On-Chip Parallelism(Proc. 22th International Symposiumon Computer

Architecture, 1995) .

[31] J. Rattner, Multi-core to the masses(Proc. 14th International Conferenceon

Parallel Architectures and Compilation Techniques,2005).

[32] D. Kim and D. Yeung,Designand Evaluation of Compiler Algorithms for Pre-

Execution (Proc. 10th International Conferenceon Architectural Support for

Programming Languagesand Operating Systems,October 2002), pages159-

170.

[33] D. Kim and D. Yeung, A Study of Source-Level Compiler Algorithms for Au-

tomatic Construction of Pre-Execution Code(ACM Transactionson Computer

Systems,August 2004),pages326-379.

141

[34] D. Kim, S. S. Liao, P. H. Wang, J. del Cuvillo, X. Tian, X. Zou, H. Wang, D.

Yeung, M. Girkar, and J. P. Shen,Physical Experimentation with Prefetching

Helper Threads on Intel's Hyperthreaded Processors(Proc. IEEE 2nd Interna-

tional Symposium on Code Generationand Optimization, March 2004),pages

27-38.

[35] R. Mameeshand M. Franklin, Symbiotic Subordinate Threading (Proc. ICCD-

23, 2005).

[36] Huiyang Zhou, Dual-core execution: Building a Highly Scalable Single-thread

instruction window (Proc. 14th International Conferenceon Parallel Architec-

tures and Compilation Techniques,2005).

[37] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. -Y. Chang, The

Casefor a Single-ChipMultiprocessor(Proc. 7th International Symposium on

Architectural Support for Programming Languagesand Operating Systems,

1996).

[38] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, Automatically Par-

allelizing Large Scale Program Behavior (Proc. 10th International Conference

on Architectural Support for ProgrammingLanguagesand Operating Systems,

2002).

[39] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder,

Using SimPoint for Accurate and E�cient Simulation (Proc. SIGMETRICS,

June 2003).

142

[40] G. Hamerly, E. Perelman,and B. Calder, How to Use SimPoint to Pick Simu-

lation Points (Proc. SIGMETRICS, 2004) .

[41] R. Barnes, E. Nustrom, J. Sias, S. Patel, N. Navarro, and W. Hwu , Beat-

ing in-order stalls with
e a-
icker two passpipelining (IEEE Transactionson

ComputersVol. 55 No. 1, 2006) .

[42] S. Srinivasan,H. Akkary, T. Holman, and K. Lai, A Minimal dual-core specu-

lative multithreading architecture (Proc. ICCD-22, 2004) .

[43] Craig Zilles and G. Sohi, Master/Slave Speculative Parallelization (Proc. 35th

Annual IEEE/A CM International Symposium on Microarchitecture, 2002).

[44] Craig Zilles, Master/Slave Speculative Parallelization and Approximate Code

(PhD Thesis,Univeristy of Wisconsin,2002).

[45] Ilya Ganusov and Martin Burtschur, Future Execution: A Hardware Pre-

fetching Techniquefor Chip Multiprocessors(Proc. 14th International Confer-

enceon Parallel Architectures and Compilation Techniques,2005) .

[46] Ilya Ganusov and Martin Burtschur, E�cient Emulation of Hardware Prefetch-

ers via Event-Driven Helper Threading(Proc. 15th International Conferenceon

Parallel Architectures and Compilation Techniques,2006).

[47] C. Moore, POWER4 SystemMicroarchitecture (Proc. MicroprocessorForum,

2006).

143

[48] R. Kalla, B. Sinharoy, and J. Tendler, IBM POWER5 chip: a dual-core mul-

tithreaded processor(Proc. 37th Annual IEEE/A CM International Symposium

on Microarchitecture, 2004),pages40-47.

[49] P. Kongetira, A 32-wayMultithr eaded SPARC Processor(Proc. Hot Chips 16,

http://www.hotc hips.org/archive/, 2004) .

[50] Advanced Micro Devices, AMD Demonstrates Dual Core Leadership

(http://www.amd.com, 2004).

[51] T. Maruyama, SPARC64 VI: Fujitsu's Next Generation Processor(Proc. Mi-

croprocessorForum, 2003) .

[52] C. McNairy and R. Bhatia, Montecito - the Next Product in the Itanium Pro-

cessorFamily (Proc. Hot Chips 16, http://www.hotc hips.org/archive,2004).

[53] K. Farkas, N. Jouppi, and P. Chow, Register File Considerations in Dynam-

ically Scheduled Processors(Proc. of 2nd International Symposium on High-

PerformanceComputer Architecture, 1996),pages40-51.

[54] James Burns and jean-Luc Gaudiot, Area and System Clock E�e cts on

SMT/CMP Throughput (IEEE Transactions on Computers, Vol. 54, No. 2,

February 2006) .

[55] O. Mutlu, H. Kim, and Y. Patt, Techniquesfor e�cient processingin runahead

execution engines(Proc. 32nd International Symposium on Computer Archi-

tecture, 2005) .

144

[56] S. T. Srinivasan,R. Rajwar, H. Akkary, A. Gandhi, and M. Upton, Continual

Flow Pipelines (Proc. 11th International Conferenceon Architectural Support

for Programming Languagesand Operating Systems,2004) .

[57] H. Akkary, R. Rajwar, and S. Srinivasan,Checkpoint processingand recovery:

towards scalablelarge instruction window processors(Proc. 36th International

Symposium on Microarchitecture, 2003) .

[58] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai, Scalable load

and store processingin latency tolerant processors(Proc. 32nd International

Symposium on Computer Architecture, 2005).

[59] R. Balasubramonian,S. Dwarkadas,and D. Albonesi,Dynamically Allocating

ProcessorResourcesBetween Nearby and Distant ILP (Proc. 28th International

Symposium on Computer Architecture, 2001).

[60] P. H. Wang,J. D. Collins, E. Grochowski, R. M. Kling, and J. P. Shen,Memory

Latency-Tolerance Approachesfor Itanium Processors:Out-of-Order Execution

vs. Speculative Precompuation (Proc. of the 8th International Symposium on

High PerformanceComputer Architecture, 2002).

[61] M. Franklin, The Multiscalar Archtecture (PhD Thesis,University of Wisconsin,

Madison, December 1993).

[62] K. Z. Ibrahim, G. T. Byrd, and E. Rotenberg, Slipstream Execution Mode

for CMP-Based Multiprocessors(Proc. 9th International Symposium on High-

PerformanceComputer Architecture, February 2003).

145

[63] H. Akkary and M. A. Driscoll, A Dynamic Multithr eading Processor(Proc. 31st

International Symposium on Microarchitecture, 1998),pages226-236.

[64] M. Franklin and G. S. Sohi, The ExpandableSplit Window Paradigm for Ex-

ploiting Fine-grain Parallelism (Proc. International Conferenceon Supercom-

puting, 1997).

[65] C. B. Zilles, J. S.emer,and G. S.Sohi,The Useof Multithr eading for Exception

Handling (Proc. 32nd International Symposium on Microarchitecture, 1999),

pages219-229.

[66] T. N. Vijaykumar, I. Pomeranz,and K. Cheng,Transient-Fault RecoveryUsing

Simultaneous Multithr eading (Proc. 29th Annual International Symposium on

Computer Architecture, May 2002),pages87-98.

[67] S. S. Mukherjee,M. Kontz, and S. K. Reinhardt, Detailed Designand Evalua-

tion of Redundant Multithr eading Alternatives (Proc. International Symposium

on Computer Architecture, May 2002),pages99-110.

[68] JamesE. Smith, Decoupled Access/Execute Compuer Architectures (Proc. 9th

International Symposium on Computer Architecture, 1982).

[69] E. Rotenberg, Q. Jacobson,Y. Sazeides,and J. E. Smith, Trace Processors

(Proc. 30th Annual Symposium on Microarchitecture, 1997) .

[70] S. Vajapeyam and T. Mitra, Improving Superscalar Instruction Dispatch and

Issueby Exploiting Dynamic Code sequences(Proc. 24th International Sympo-

sium on Computer Architecture, 1997).

146

[71] Q. Jacobson,E. Rotenberg, and J. E. Smith, Path-based Next Trace Prediction

(Proc. 30th International Symposium on Microarchitecture, 1997) .

[72] Kahle, J., The Cell Processor Architecture (Proc. 38th Annual IEEE/A CM

International Symposium on Microarchitecture, 2005) .

[73] Dongkeun Kim, Compiler-Based Pre-Execution (Department of Electrical and

Computer Engineering,University of Maryland in CollegePark, 2004).

147

