On the Converse to Pompeiu's Problem

by C.A. Berenstein

TR 1997-22
El Problema de Pompeiu

CARLOS ALBERTO BERENSTEIN

Vamos a hablar aquí de tres trabajos sobre el tema, uno de L. Zalcman (Arch. for Rat. Mech. and Anal. vol 47, 1972) y otros dos que aún no han aparecido: uno de Brown, Schreiber y Taylor, y el otro de Taylor y el autor. El trabajo de L. Zalcman contiene una abundante bibliografía, a la cual me remito.

El problema original que el matemático rumano D. Pompeiu consideró en 1929 es el siguiente:

Supongamos que D sea un conjunto compacto en el plano xy, Σ el grupo de los movimientos euclídeos (rotaciones y translaciones), f una función continua tal que

$$\int \int_{D} f(x, y) \, dx \, dy = 0, \quad \forall \sigma \in \Sigma,$$

¿esto implica que $f \equiv 0$?

Pompeiu dijo que si D era un disco entonces la conclusión era correcta, lamentablemente la función $f(x, y) = \sin \frac{2\pi x}{a} \cos \frac{2\pi y}{b}$ da un contrasejemplo con una elección conveniente del valor a. Más tarde él probó que si D es un cuadrado $y f$ tenía límite en el infinito entonces la conclusión valía. (Este resultado es correcto aún sin esta condición adicional sobre la función f)

DEFINICIÓN — Una familia $\mathscr{D} = \{D\}$ de conjuntos compactos en \mathbb{R}^2 tiene la propiedad (P) si para toda función continua f,

(1) $$\int \int_{D} f(x, y) \, dx \, dy \quad \forall D \in \mathscr{D}$$

implica $f \equiv 0$.

Un problema parecido, que naturalmente se llamaría problema de Morera es el siguiente: sea $\mathcal{C} = \{C\}$ una familia de curvas cerradas y rectificables en el plano xy, $z = x + iy$, f continua, y supongamos que

$$\int_{C} f(z) \, dz = 0 \quad \forall C \in \mathcal{C},$$

¿se deduce que f es una función analítica en todo el plano complejo? Si eso sucede, \mathcal{C} tiene la propiedad (M). Veamos que ellas están relacionadas. Primero, suponemos de ahora en adelante que \mathscr{D} es una familia invariante por translaciones. Como siempre ∂D denota la frontera del conjunto D.

LEMA. Si todos los conjuntos de la familia \mathscr{D} tienen frontera rectificable y $\mathcal{C} = \{\partial D : D \in \mathscr{D}\}$ entonces, \mathcal{D} tiene la propiedad (P) si y solo si \mathcal{C} tiene la propiedad (M).
DEMONSTRACIÓN. Primero observemos que podemos suponer que \(f \) es una función de clase \(C^\infty \). Dado que si \(\varphi \in C_0^\infty(\mathbb{R}^2) \), \(\int f(x, y) \, dx \, dy = 1 \), defínimos como de costumbre \(\phi_\varepsilon(x, y) = \varepsilon^{-2} \, \varphi(x/\varepsilon, y/\varepsilon) \) para \(\varepsilon > 0 \). Entonces, \(f_\varepsilon = f \ast \phi_\varepsilon \) satisface (1) (respectivamente (2)) si \(f \) lo hace pues la familia \(\mathcal{D} \) (resp. \(\mathcal{C} \)) es invariante bajo traslaciones. Por otro lado, \(\mathcal{D} \subset \mathcal{C} \) sobre conjuntos acotados y por lo tanto si \(f_\varepsilon \equiv 0 \) (resp. analítica) se deduce que \(f \) lo es también.

Ahora bien, como \(f \) es \(C^\infty \) podemos usar la fórmula de Green, y tenemos

\[
\int_D \frac{\partial f}{\partial z} \, dx \, dy = \int_D \frac{1}{2} \left(f_x + if_y \right) \, dx \, dy = \frac{1}{2i} \int_D \frac{\partial f}{\partial \overline{z}} \, dz \wedge d\overline{z} = \\
= \frac{1}{2i} \int_D df \, dz = \frac{1}{2i} \int_{\partial D} f(z) \, dz.
\]

Por lo tanto se ve inmediatamente que la propiedad (P) para \(\mathcal{D} \) implica (M) para \(\mathcal{C} \), porque si \(f \) satisface (2) entonces \(\frac{\partial f}{\partial \overline{z}} \) satisface (1) y por lo tanto \(\frac{\partial f}{\partial \overline{z}} \equiv 0 \), es decir \(f \) es analítica entera. Para probar la conversa basta usar el hecho que existe \(g \in C^\infty \) tal que \(f = \frac{\partial g}{\partial \overline{z}} \) y entonces utilizar la fórmula (3) con \(g \) en lugar de \(f \). Q.E.D.

Relación con el problema de la síntesis espectral

Como hemos visto en el lema, podemos limitarnos a considerar funciones indefinidamente diferenciables. Si llamamos \(\mu_D \) la medida de Lebesgue restringida a \(D \) (o la medida \(dz \) restringida a \(\partial D \)) cuando consideramos el problema de Pompeiu (resp. de Morera), entonces tenemos que las \(\mu_D \), \(D \in \mathcal{D} \) (resp. \(\mathcal{C} \)), generan un subespacio lineal cerrado \(V \subseteq \mathcal{C}'(\mathbb{R}^2) \), las hipótesis implican que \(V \) es invariantes por transiciones. Si \(f \) satisface (1) (resp. (2)) tenemos que

\[T(f) = 0 \quad \forall T \in V \]
(y también \(T \ast f \equiv 0 \), \(\forall T \in V \)). Es decir, \(f \in V^\perp \subseteq \mathcal{C}'(\mathbb{R}^2) \).

Es claro que \(V^\perp \) también es un subespacio cerrado, e invariantes por transiciones, más aún \((V^\perp)^\perp = V\). Con esta notación, la propiedad (P) (resp. (M)) es equivalente a cualquiera de estas dos cosas:

a) \(V^\perp = \{0\} \);

b) \(V = \mathcal{C}'(\mathbb{R}^2) \).

Ahora bien, asociado a un subespacio \(V \) como el de arriba, en análisis armónico se acostumbra a considerar el espectro de \(V \), es decir, el subespacio lineal cerrado de \(\mathcal{C}'(\mathbb{R}^2) \) generado por las funciones \(p(x) \, e^{i \varrho \cdot x} \in V^\perp \), donde \(x = (x_1, x_2), z = (z_1, z_2), z \cdot x = z_1 x_1 + z_2 x_2 \), y por \(p(x) \) se un polinomio. A este subespacio lo designaremos como \(V_0^\perp \). Se acostumbra considerar el espectro numérico, \(sp(V) \), formado por los \(\varrho \in \mathbb{C}^2 \) tales que \(e^{i \varrho \cdot x} \in V^\perp \). En ese caso, el polinomio \(p \) de más arriba le asigna una “multiplicidad” al punto \(z \), en el sentido siguiente:

Si \(T \in V, z_0 \in sp(V) \) entonces \(\hat{T}(z_0) = \langle e^{i \varrho_0 \cdot x}, T(x) \rangle = 0 \), más aún, si \(p(x) \, e^{i \varrho_0 \cdot x} \in V^\perp \) entonces \(p(D) \, \hat{T}(z) \mid_{z = z_0} = 0 \). Se puede ver fácilmente que \(V_0^\perp \) es un subespacio invariante por transiciones y por lo tanto \(V_0 = (V_0^\perp)^\perp \) también lo es. Claramente \(V_0 \supseteq V \), en realidad,
\[V_0 = \{ T \in \mathcal{E}'(\mathbb{R}^2) : \hat{T}(z) = 0 \text{ si } z \in sp(V) \text{ con la multiplicidad correcta} \} \]

Entonces, el problema de la síntesis espectral es fácil de enunciar, ¿es \(V = V_0 \)? (Es decir, el espectro de \(V \) determina \(V \) completamente.) Es claro que podemos reemplazar \(2 \) por \(n \) en todos lados y este problema sigue teniendo sentido. El resultado más importante que se conoce es el siguiente,

TEOREMA (L. Schwartz, 1947). Si \(n = 1 \) entonces \(V = V_0 \). Para \(n > 1 \) aún no se sabe que sucede; veremos más abajo que los problemas de Pompeiu y Morera son casos particulares del problema de la síntesis espectral para \(n = 2 \). Antes de seguir recordemos que \(\mathcal{E}'(\mathbb{R}^n) \) es un álgebra sin divisores de cero para el producto de convolución. Es un resultado bien conocido que del hecho que \(V \) y \(V_0 \) son invariantes por translaciones y cerrados se deduce que son ideales de este álgebra. Otro hecho bien conocido es que la transformada de Fourier

\[T \longrightarrow \hat{T}, \quad \hat{T}(x) = \langle e^{i\xi \cdot x}, T(x) \rangle \]

es un isomorfismo algebraico entre el álgebra \(\mathcal{E}'(\mathbb{R}^n) \) y una subálgebra del espacio de funciones enteras en \(C^n \) que denotamos \(\mathcal{E}(\mathbb{R}^n) \). A este espacio \(\mathcal{E}(\mathbb{R}^n) \) le asignamos la topología que hace que el isomorfismo \(T \longrightarrow \hat{T} \) se vuelva también un homeomorfismo. Llamamos \(I \) (resp. \(I_0 \)) el ideal cerrado de \(\mathcal{E}'(\mathbb{R}^n) \) formado por \(\{ \hat{T} : T \in V \text{ (resp. } V_0) \} \). Claramente \(I = I_0 \), si y sólo si \(V = V_0 \), ¿cual es la ventaja de toda esta notación? La siguiente, se hace entrar en juego, un tercer ideal \(I_{loc} \),

\[I_{loc} = \{ \hat{T} \in \mathcal{E}'(\mathbb{R}^n) : \hat{T} \text{ está en } I \text{ localmente} \} \]

es decir, si \(\hat{T} \in I_{loc} \), entonces para todo \(z_0 \in \mathbb{C}^n \) existe un entorno \(U \) de \(z_0 \), funciones \(\hat{T}_1, \ldots, \hat{T}_m \in I \) y funciones \(G_1, \ldots, G_m \) analíticas en \(U \) tales que

\[\hat{T}(z) = \sum_{j=1}^{m} G_j(z) \hat{T}_j(z), \quad \forall z \in U. \]

Observemos que es fácil saber si \(I_{loc} = \mathcal{E}'(\mathbb{R}^n) \) o no, basta que las funciones de \(I \) no tengan ceros comunes.

Ahora bien, después de todo esto, tenemos el siguiente lema folklórico.

LEMA. \(I_0 = I_{loc} \).

Por lo tanto, el teorema de Schwartz se reduce a: “para todo ideal cerrado \(I \) de \(\mathcal{E}'(\mathbb{R}^n) \), tenemos \(I = I_{loc} \).” Facílmente se puede deducir de aquí el siguiente corolario.

COROLARIO. Sean \(\sigma, \tau \) dos números positivos de cociente irracional. Si para todo par de números \(a < b \) tales que \(b - a = \sigma \text{ o bien } b - a = \tau \), tenemos que

\[\int_{a}^{b} f(x) \, dx = 0 \text{ entonces } f(x) \equiv 0. \]

Si \(\rho \) es una rotación en \(\mathbb{R}^2 \) y \(T \in \mathcal{E}'(\mathbb{R}^2) \) definimos \(T_\rho \) mediante la fórmula

\[T_\rho(f) = T(f \circ \rho^{-1}) \quad \forall f \in C_c(\mathbb{R}^2) \]

Decimos que \(V \) es invariante por rotaciones si \(T \in V \) implica \(T_\rho \in V \) para toda rotación \(\rho \).

Teremos ahora el siguiente teorema,

TEOREMA. Si \(V \subseteq \mathcal{E}'(\mathbb{R}^2) \) es invariante por rotaciones, entonces \(I = I_{loc} \) (y por lo tanto \(V = V_0 \))
De aquí se ve que en este caso las propiedades a) y b) de más arriba son equivalentes a

c) \(I_{loc} = \mathfrak{B}'(\mathbb{R}^2) \)

o
d) las funciones de \(I \) no tienen ceros comunes.

Por lo tanto tenemos como corolarios las siguientes dos respuestas afirmativas al problema de Pompeiu.

Ejemplo 1. La familia \(\mathcal{D} = \{ \sigma(D_0) : \sigma \in \Sigma, D_0 \text{ es un rectángulo fijo} \} \) tiene la propiedad \((P) \). Más aún, basta tomar por \(D_0 \) un conjunto convexo cuya frontera contenga por lo menos un punto anguloso.

Ejemplo 2. Llamemos \(Q = \{ s_1/s_2 : s_1 \neq 0, s_2 \neq 0 \} \) tales que la función \(J_1 \) de Bessel satisface \(J_1(s_1) = J_1(s_2) = 0 \). Entonces la familia \(\mathcal{D} \) generada (mediante transiciones) por dos discos fijos de radios \(r_1 \) y \(r_2 \) tiene la propiedad \((P) \) si y solo si \(r_1/r_2 \notin Q \).

En el mismo espíritu se puede probar

Teorema. Si \(I \subseteq \mathfrak{B}'(\mathbb{R}^2) \) contiene una función cuyo conjunto de ceros es una unión de rectas complejas, entonces \(I = I_{loc} \).

Como aplicación tenemos

Ejemplo 3. Sea \(D \) el cuadrado \(\{ x : |x_1| \leq a, |x_2| \leq a \} \), \(a > 0 \). Entonces

\[
\hat{\mu}_D(z_1, z_2) = 4 \frac{\text{sen} \, az_1}{z_1} \cdot \frac{\text{sen} \, az_2}{z_2},
\]

y por lo tanto

\[
\{ z : \hat{\mu}_D(z) = 0 \} = \bigcup_{m \in \mathbb{Z}} \left\{ z : z_1 = \frac{\pi m}{a} \right\} \cup \left\{ z : z_2 = \frac{\pi m}{a} \right\}.
\]

De aquí se deduce fácilmente que si \(\mathcal{D} \) es la familia generada (por transiciones únicamente) por tres cuadrados como el de arriba de lados \(2a, 2b \) y \(2c \) respectivamente, entonces \(\mathcal{D} \) tiene la propiedad \((P) \) si y solo si \(a/b, b/c \) y \(c/a \) son irracionales.

Si tomamos \(D \) como arriba, parecería que siempre se necesitan por lo menos dos otros conjuntos \(D' \) y \(D'' \) para que la familia \(\mathcal{D} \) generada por ellos (mediante transiciones solamente) tenga la propiedad \((P) \).

Finalizamos con un resultado curioso de L. Zalcman, que no se obtiene por los métodos esbozados más arriba. Llamemos \(D \) el cuadrado unidad, es decir \(0 \leq x_1, x_2 \leq 1 \). A cada punto \(x \in D \) le podemos asociar un cuadrado \(D_x \) de centro \(x \) tal que \(D_x \) sea el cuadrado más grande posible contenido en \(D \) y de lados paralelos a los ejes. Supongamos que \(f \) sea continua en \(D \) y que

\[
\int \int_{D_x} \ f(x_1, x_2) \ \, dx_1 \, dx_2 = 0 \quad \forall x \in D
\]

entonces se puede ver que \(f \equiv 0 \) de la manera siguiente. Sea \(m \) un número natural arbitrario \((m > 1) \), dividimos \(D \) de la manera obvia en \(m^2 \) cuadrados iguales de lados paralelos a los ejes coordenados. Llamemos \(D_1 \) al cuadrado que está en el vértice superior izquierdo, y \(D_2, D_3, D_4 \) los tres únicos cuadro-
ditos adjacentes yendo en el sentido de los agujas de un reloj. Se deduce de las hipótesis que si \(D_5 = \bigcup_{j=1} D_j \) entonces

\[
\int \int_{D_j} f(x_1, x_2) \, dx_1 \, dx_2 = 0. \text{ para } j = 1, 2, 4, 5
\]

y por lo tanto (4) también vale con \(j = 3 \). De esta manera se sigue, y se ve fácilmente que la integral sobre cualquier cuadrado es cero. Por lo tanto \(f \) es identicamente nula.

Modifiquemos levemente el problema, llamemos \(\frac{1}{2} \, D_x \) al cuadrado similar a \(D_x \) pero de lado mitad y asumamos solamente

\[
\int \int_{\frac{1}{2} \, D_x} f(x_1, x_2) \, dx_1 \, dx_2 = 0 \quad \forall x \in D
\]

¿es que \(f \equiv 0 \)? No sé, es fácil ver que \(f \equiv 0 \) sobre \(\partial D \).

Instituto de Matemática Pura e Aplicada
Rio de Janeiro — Brasil

University of Maryland
Maryland — USA