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Abstract

The performance of demand-driven caching depends on the locality of reference exhibited by the

stream of requests made to the cache. In spite of numerous efforts, no consensus has been reached on

how to formallycompare streams of requests on the basis of their locality of reference. We take on this

issue by introducing the notion of Temporal Correlations (TC) ordering for comparing strength of temporal

correlations in streams of requests. This notion is based on the supermodular ordering, a concept of positive

dependence which has been successfully used for comparing dependence structures in sequences of rvs.

We explore how the TC ordering captures the strength of temporal correlations in several Web request

models, namely, the higher-order Markov chain model (HOMM), the partial Markov chain model (PMM)

and the Least-Recently-Used stack model (LRUSM). We establish a folk theorem to the effect that the

stronger the temporal correlations, the smaller the miss rate for the PMM. Conjectures and simulations

are offered as to when this folk theorem should hold under the HOMM and under the LRUSM. Lastly,

we investigate the validity this folk theorem for general input streams under the Working Set algorithm.

Keywords: Locality of reference in request streams, Temporal correlations, Positive dependence, Folk theorem

for miss rates.

I. I NTRODUCTION

The performance of any form of caching is determined by a number of factors, chief amongst them the statistical

properties of the streams of requests made to the cache. One important such property is thelocality of reference

present in a request stream whereby bursts of references are made in the near future to objects referenced in the

recent past. The implications for cache management should be clear – Increased locality of reference should yield

performance improvements for demand-driven caching that exploits recency of reference.
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The notion of locality and its importance for caching were first recognized by Belady [7] in the context of

computer memory. Subsequently, a number of studies have shown that request streams for Web objects exhibit

strong locality of reference1 [17, 18, 19]. Attempts at characterization were made early on by Denning through the

working set model [12, 13]. Yet, like the notion of burstiness used in traffic modeling, locality of reference, while

endowed with a clear intuitive content, admits no simple definition. Not surprisingly, in spite of numerous efforts,

no consensus has been reached on how to formalize the notion, let alonecompare streams of requests on the basis

of their locality of reference.

Although several competing definitions are currently available, it is by now widely accepted that the two

main contributors to locality of reference aretemporal correlations in the streams of requests and thepopularity

distribution of requested objects. To describe these two sources of locality, and to frame the subsequent discussion,

we assume the following generic setup: We consider a universe ofN cacheable items or documents, labeled

i = 1, . . . , N , and we writeN = {1, . . . , N}. The successive requests arriving at the cache are modeled by

a sequenceR = {Rt, t = 0, 1, . . .} of N -valued rvs. For simplicity, we say that requestR t occurs at time

t = 0, 1, . . ..

1. The popularity of the sequence of requests{R t, t = 0, 1, . . .} is defined as the pmfp = (p(i), . . . , p(N)) on

N given by

p(i) := lim
t→∞

1
t

t−1∑
τ=0

1 [Rτ = i] a.s., i = 1, . . . , N, (1)

whenever these limits exist (and they do in most models treated in the literature). Popularity is usually viewed as

a long-term expression of locality which captures the likelihood that a document will be requested in the future

relative to other documents. Throughout we assume for the request streamR that the limits (1) exist and are

constants. To avoid uninteresting situations, it isalways the case that2

p(i) > 0, i = 1, . . . , N. (2)

2. Temporal correlations are more delicate to define. Indeed, it is somewhat meaningless to use the covariance

function

γ(s, t) := Cov[Rs, Rt], s, t = 0, 1, . . . .

as a way to capture these temporal correlations as is traditionally done in other contexts. This is because of the

categorical nature of the rvs{Rt, t = 0, 1, . . .} which take values in a discrete set – We took{1, . . . , N} but we

could have selected{1, 1
2 , . . . , 1

N } instead; in factany set ofN distinct points in an arbitrary space would do the

job. Thus, theactual values of the rvs{Rt, t = 0, 1, . . .} are of no consequence, and the focus should instead be

on therecurrence patterns displayed by requests for particular documents over time. It is observed [26] that Web

traces usually exhibit short-term temporal correlations in the sense that the probability of requesting a particular

1At least in the short timescales
2A pmf p on {1, . . . , N} satisfying (2) is said to beadmissible. Under this non-triviality condition (2), every document will

eventually be requested by virtue of (1).
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document given that the document was recently requested is higher than what it would be if the document has not

been recently requested.

The question naturally arises as to whether the popularity pmf and temporal correlations in the stream of requests

can be compared on the basis of some notions that lead to useful implications for cache management and at the same

time, naturally explain the underlying definition of locality of reference. In particular, the followingfolk theorem is

expected to hold: For good caching policies, the stronger locality of reference, the smaller the miss rate. A natural

approach to these issues is to relate locality of reference in a stream of requests to the skewness of its popularity

pmf with the understanding that the more skewed the popularity pmf, the greater locality of reference. For instance,

the notion of entropy [16] and the concept of majorization [20, 30, 31, 33, 34] have been used successfully to

capture skewness in the popularity pmf. In [20, 31, 33] the authors have established a version of the folk theorem

by showing (via majorization and Schur-concavity) that the more skewed the popularity pmf (thus, the stronger

locality of reference), the smaller the miss rate of the cache. This was done for various cache replacement policies

under the standardIndependent Reference Model (IRM) according to which the requests{R t, t = 0, 1, . . .} are

i.i.d. rvs distributed according to the pmfp.3

With respect to temporal correlations, even though there exist several metrics, e.g., the inter-reference time

[16, 17, 25], the working set size [12, 13] and the stack distance [1, 22], none has been found appropriate for

formalizing this type of folk theorems. Here, we complement our earlier work by focusing on temporal correlations

as the source of locality of reference. We do so by applying concepts ofpositive dependence in order to capture

the strength of temporal correlations exhibited by Web request streams. These notions have been used previously

in many contexts, e.g., traffic engineering [5, 6, 32] and reliability theory [4, 28]. The main contributions are now

summarized:

1. Temporal correlations and positive dependence –We make a connection between the concepts of positive

dependence in sequence of rvs [Section II] and temporal correlations in the stream of requests [Section III].

Specifically, relying on the notion of supermodular ordering [Definition 3], we define the TC ordering [Definition

10] as a way of comparing two streams of requests on the basis of the strength of their temporal correlations.

2. Temporal correlations in Web request models –We apply the TC ordering to investigate the existence

of temporal correlations in several Web request models that are believed to exhibit such correlations, namely, the

higher-order Markov chain model (HOMM), the partial Markov chain model (PMM) and the Least-Recently-Used

stack model (LRUSM). For the HOMM [Section IV] and the LRUSM [Section VI], we demonstrate that both

models exhibit temporal correlations in the sense that they have stronger strength of temporal correlations than the

IRM with the same popularity pmf in the TC ordering. For the PMM [Section V], we show that its strength of

temporal correlations is indeed captured by its correlation parameter as expected.

3. Temporal correlations and miss rate –Regarding the aforementioned folk theorem for the miss rate, we

3The IRM is often used for checking various properties of caching systems [9], however, it does not exhibit any of the

correlations that have been observed in Web reference streams. Some examples of the models with temporal correlations will

be discussed later in this paper.
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establish the statement to the effect that “the stronger the strength of temporal correlations, the smaller the miss

rate” when the input to the cache is the PMM [Section VIII-A]. Conjectures and simulations are offered as to

when this folk theorem should hold under the HOMM [Section VIII-B] and under the LRUSM [Section VIII-C].

Lastly, we consider the miss rate of general input streams under the Working Set algorithm [Section IX]. The result

indicates that the folk theorem does hold when the cache holds one document, while it may not hold in some other

situations where counterexamples are given.

The paper is organized as follows: Various concepts of positive dependence are introduced in Section II and the

TC ordering is defined in Section III. We apply the TC ordering to the HOMM, the PMM and the LRUSM in

Section IV, V and VI, respectively. The miss rate and its folk theorem are discussed in Section VII. Specific results

and conjectures on the folk theorem under the PMM, the HOMM and the LRUSM are provided in Section VIII.

Section IX is devoted to the Working Set algorithm. Concluding remarks are given in Section X.

A word on the notation in use: Equivalence in law or in distribution between rvs (and stochastic processes) is

denoted by=st. Convergence in law or in distribution (ast → ∞) is denoted by=⇒ t.

II. M ODELING POSITIVE DEPENDENCE

A. Conditionally increasing in sequence

Positive dependence in a collection of rvs can be captured in several ways. Here, we begin with the following

strong notion.

Definition 1: TheIRn-valued rvX = (X1, . . . , Xn) is said to be conditionally increasing in sequence (CIS) if for

eachk = 1, 2, . . . , n − 1, the family of conditional distributions{[Xk+1|X1 = x1, . . . , Xk = xk]} is stochastically

increasing inx = (x1, . . . , xk).

More precisely, this definition states that for eachk = 1, 2, . . . , n − 1, for x and y in IRk with x ≤ y

componentwise, it holds that

[Xk+1|(X1, . . . , Xk) = x] ≤st [Xk+1|(X1, . . . , Xk) = y] (3)

where[Xk+1|(X1, . . . , Xk) = x] denotes any rv distributed according to the conditional distribution ofX k+1 given

(X1, . . . , Xk) = x (with a similar interpretation for[Xk+1|(X1, . . . , Xk) = y]). In other words, we require

E [g(Xk+1)|(X1, . . . , Xk) = x] ≤ E [g(Xk+1)|(X1, . . . , Xk) = y]

for all increasing functiong : IR → IR provided the expectations exist.

The property in Definition 1 is sometimes called stochastic increasingness in sequence (SIS). It is often used as

a sufficient condition for establishing the association of rvs [4, 15].

B. Supermodular ordering

Several stochastic orderings have been found well suited for comparing the dependence structures of random

vectors. Here we rely on thesupermodular ordering which has been used recently in several queueing and reliability

applications [5, 6, 28, 32]. The underlying class of functions associated with this ordering is first introduced.
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Definition 2: A functionϕ : IRn → IR is said to be supermodular (sm) if

ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y), x, y ∈ IRn

where we setx ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) andx ∧ y = (x1 ∧ y1, . . . , xn ∧ yn).

The supermodular ordering is the integral ordering associated with the class of supermodular functions.

Definition 3: For IRn-valued rvsX andY , we say thatX is smaller thanY in the supermodular ordering, written

X ≤sm Y , if E [ϕ(X)] ≤ E [ϕ(Y )] for all supermodular Borel measurable functionsϕ : IRn → IR provided the

expectations exist.

It is a simple matter to check [5] that for anyIRn-valued rvsX andY , the comparisonX ≤sm Y necessarily

implies the distributional equalities

Xi =st Yi, i = 1, . . . , n, (4)

as well as the covariance comparisons

Cov[Xi, Xj ] ≤ Cov[Yi, Yj ], i, j = 1, . . . , n (5)

whenever these quantities are well defined. Thus, the comparisonX ≤ sm Y represents a possible formalization of

the statement that “Y is more correlated thanX.” Before stating some basic comparisons related to the supermodular

ordering, we need the following definition.

Definition 4: For IRn-valued rvsX andX̂, we say thatX̂ = (X̂1, . . . , X̂n) is an independent version ofX =

(X1, . . . , Xn) if the rvsX̂1, X̂2, . . . , X̂n are mutually independent witĥXi =st Xi for eachi = 1, . . . , n.

The positive dependence between the componentsX 1, . . . , Xn of the IRn-valued rvX can also be expressed by

requiring that the rvX be larger in the supermodular ordering than its independent versionX̂. This gives rise to

the following notion of positive dependence [24]:

Definition 5: The IRn-valued rvX = (X1, . . . , Xn) is said to be positive supermodular dependent (PSMD) if

X̂ ≤sm X whereX̂ is the independent version ofX.

The next proposition explores the relationships between the two notions of positive dependence introduced thus

far, and is due to Meester and Shanthikumar [23, Thm. 3.8].

Theorem 6: Consider anIRn-valued rvX = (X1, . . . , Xn). If X is CIS, thenX is PSMD.

C. Extensions to sequences

We can naturally extend the definitions above to sequences of rvs.

Definition 7: The twoIR-valued sequencesX = {Xn, n = 1, 2, . . .} andY = {Yn, n = 1, 2, . . .} satisfy the

relationX ≤sm Y if (X1, . . . , Xn) ≤sm (Y1, . . . , Yn) for all n = 1, 2, . . ..

Definition 8: For sequences ofIR-valued rvsX = {Xn, n = 1, 2, . . .} andX̂ = {X̂n, n = 1, 2, . . .}, we say

thatX̂ is an independent version ofX if the rvs{X̂n, n = 1, 2, . . .} are mutually independent witĥXn =st Xn for

all n = 1, 2, . . ..

Definition 9: TheIR-valued sequenceX = {Xn, n = 1, 2, . . .} is CIS (resp. PSMD) if for eachn = 1, 2, . . ., the

IRn-valued rv(X1, . . . , Xn) is CIS (resp. PSMD).
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III. T EMPORAL CORRELATIONS INWEB REQUEST STREAMS

Given a stream of requestsR = {Rt, t = 0, 1, . . .}, we set

Vt(i) = 1 [Rt = i] , t = 0, 1, . . . , (6)

for eachi = 1, . . . , N , i.e., the rvVt(i) is the indicator function of the event that the request at timet is made to

documenti. If the sequence of requests{R t, t = 0, 1, . . .} were to exhibit locality of reference through some form

of temporal correlations, a request to documenti would likely be followed by a burst of references to documenti

in the near future. This corresponds to the presence of positive dependence in the sequence{V t(i), t = 0, 1, . . .}
and leads naturally to the following definition ofTemporal Correlations (TC) ordering.

Definition 10: The request streamR1 = {R1
t , t = 0, 1, . . .} is said to have weaker temporal correlations than the

request streamR2 = {R2
t , t = 0, 1, . . .}, writtenR1 ≤TC R2, if for eachi = 1, . . . , N , the comparison

{V 1
t (i), t = 0, 1, . . .} ≤sm {V 2

t (i), t = 0, 1, . . .}

holds where for eachk = 1, 2, the rvs{V k
t (i), t = 0, 1, . . .} denote the indicator process associated withRk via (6).

The comparisonR1 ≤TC R2 can be viewed as a formalization of the fact that the streamR1 has less locality

of reference than the streamR2. The difficulty associated with the “categorical” nature of streams of requests has

been bypassed by focusing instead on their indicator processes (6).

Now fix i = 1, . . . , N . WheneverR1 ≤TC R2, the equi-marginal property (4) of the supermodular ordering

yields P
[
V 1

t (i) = 1
]

= P
[
V 2

t (i) = 1
]

for all t = 0, 1, . . ., or equivalently,

P
[
R1

t = i
]

= P
[
R2

t = i
]
, t = 0, 1, . . . (7)

Under the assumption that for eachk = 1, 2, the limits (1) exist as constants for the request streamR k, we have

pk(i) = E

[
lim

t→∞
1
t

t∑
τ=1

1
[
Rk

τ = i
]]

= lim
t→∞

1
t

t∑
τ=1

P
[
Rk

τ = i
]

by the Bounded Convergence Theorem. Combining this last equation with (7) immediately leads top 1 = p2, i.e.,

the comparisonR1 ≤TC R2 requires that the request streamsR1 and R2 have the same popularity profile. In

other words, the TC ordering can capture only the contributions from temporal correlations to locality of reference.

Proposition 11: If for eachi = 1, . . . , N , the indicator process{V t(i), t = 0, 1, . . .} associated with a request

streamR is PSMD, thenR̂ ≤TC R whereR̂ is the independent version ofR.

When the request streamR is a stationary sequence, the independent versionR̂ of R is simply the IRM whose

popularity pmf is the common marginal of the request streamR.

Proof. Fix i = 1, . . . , N . Under the enforced assumptions, the sequence{V t(i), t = 0, 1, . . .} associated withR is

PSMD. This amounts to{V̂t(i), t = 0, 1, . . .} ≤sm {Vt(i), t = 0, 1, . . .}, where the sequence{V̂t(i), t = 0, 1, . . .}
is the independent version of the indicator sequence{V t(i), t = 0, 1, . . .}. With R̂ = {R̂t, t = 0, 1, . . .} being the

independent version of the request streamR, it is plain that

{V̂t(i), t = 0, 1, . . .} =st {1
[
R̂(t) = i

]
, t = 0, 1, . . .}, i = 1, . . . , N
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and the proof is completed.

In what follows, we investigate whether various request models of interest display temporal correlations in the

sense of the TC ordering. These models include the higher-order Markov chain model, the partial Markov chain

model and the Least-Recently-Used stack model.

IV. H IGHER-ORDER MARKOV CHAIN MODEL

Several higher-order Markov chain models have been proposed to characterize Web request streams (e.g., see

[10, 14, 26] and references therein) due to their ability to capture some of the observed temporal correlations. In this

section we present a model, recently proposed by Psounis et al. [26], which captures both the long-term popularity

and short term temporal correlations of Web request streams.

The model can be described as follows: LetN -valued rvs{R0, . . . , Rh−1} be the initial requests and let{Yt, t =

0, 1, . . .} be a sequence of i.i.d.N -valued rvs withP [Yt = i] = p(i) for each i = 1, . . . , N . The pmf p =

(p(1), . . . , p(N)) is assumed to be admissible (2) and as we shall see shortly, it will turn out to be the popularity

pmf of this model. Next, with0 ≤ α1, . . . , αh < 1 and
∑h

k=1 αk < 1, let {Zt, t = 0, 1, . . .} be another sequence

of i.i.d. {0, 1, . . . , h}-valued rvs with

P [Zt = k] = αk, k = 1, . . . , h and P [Zt = 0] = β = 1 −
h∑

k=1

αk > 0, t = 0, 1, . . .

i.e., the rvZt is distributed according to the pmfα = (β, α1, . . . , αh). The collections of rvs{R0, . . . , Rh−1},

{Yt, t = 0, 1, . . .} and {Zt, t = 0, 1, . . .} are mutually independent. For eacht = h, h + 1, . . ., the requestR t is

described by the evolution

Rt = 1 [Zt = 0] Yt +
h∑

k=1

1 [Zt = k] Rt−k. (8)

In words, the requestRt is made to the same document requested at timet − k, namelyR t−k, with probability

αk, for somek = 1, . . . , h; otherwiseRt is chosen independently of the past according to the popularity pmfp

andRt = Yt.

The requests{Rt, t = 0, 1, . . .} form anhth-order Markov chain since the value ofR t depends only on the rvs

Rt−1, . . . , Rt−h. In fact, for t = h, h + 1, . . ., we have from (8) that for any(i 0, . . . , it−1) in N t,

P [Rt = i|Rτ = iτ , τ = 0, . . . , t − 1] = βp(i) +
h∑

k=1

αk1 [it−k = i] (9)

= P [Rt = i|Rτ = iτ , τ = t − h, . . . , t − 1] .

With β > 0, this hth-order Markov chain is irreducible and aperiodic on its finite state space; its stationary

distribution exists and is unique. It can be shown [26] that

lim
t→∞P [Rt = i] = lim

t→∞
1
t

t∑
s=1

1 [Rs = i] = p(i) a.s. (10)



8

for eachi = 1, . . . , N , and it is therefore warranted to call the pmfp the long-term popularity pmf of this request

model. Moreover, there exists a unique stationary version, still denoted thereafter by{R t, t = 0, 1, . . .}.

The parameters of the model are the history window sizeh, the pmfα and the popularity pmfp, and we shall

refer to this model by HOMM(h, α, p). That the HOMM(h, α, p) exhibits temporal correlations is formalized in

the next result.

Theorem 12: Assume the request streamR = {Rt, t = 0, 1, . . .} to be modeled according to the stationary

HOMM(h, α, p) with β > 0. Then, it holds that̂R ≤TC R whereR̂ is the IRM with popularity pmfp.

Proof. By Proposition 11, it suffices to show for eachi = 1, . . . , N , that the indicator sequence{V t(i), t =

0, 1, . . .} associated with the request streamR is PSMD. To do so, we construct another sequence ofN -valued rvs

R̃ = {R̃t, t = 0, 1, . . .} as follows: The rvs{R̃0, . . . , R̃h−1} are i.i.d. rvs distributed according to the pmfp and the

rvs {R̃t, t = h, h+1, . . .} are generated through the evolution (8) with the help of mutually independent sequences

of i.i.d. rvs {Ỹt, t = 0, 1, . . .} and{Z̃t, t = 0, 1, . . .} distributed according to the pmfsp andα, respectively. The

collections of rvs{Ỹt, t = 0, 1, . . .} and{Z̃t, t = 0, 1, . . .} are taken to be independent of the rvs{R̃0, . . . , R̃h−1}.

By construction, the process̃R = {R̃t, t = 0, 1, . . .} is anhth-order Markov chain and withβ > 0, we get

{R̃t+τ , t = 0, 1, . . .} =⇒τ {Rt, t = 0, 1, . . .}. (11)

Fix i = 1, . . . , N . Let {Ṽt(i) = 1
[
R̃t = i

]
, t = 0, 1, . . .} be the indicator sequence associated with the

sequenceR̃ defined earlier. We will show that this sequence{Ṽt(i), t = 0, 1, . . .} is CIS. For eacht = 0, 1, . . .,

set Ṽ
t
(i) = (Ṽ0(i), . . . , Ṽt(i)). Because the sequence{Ṽt(i), t = 0, 1, . . .} is a sequence of{0, 1}-valued rvs, it is

CIS [27] if for eacht = 0, 1, . . ., the inequality

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]
≤ P

[
Ṽt+1(i) = 1|Ṽ t

(i) = yt
]

(12)

holds for all vectorsxt = (x0, . . . , xt) andyt = (y0, . . . , yt) in {0, 1}t+1 with xt ≤ yt componentwise.

For t = 0, 1, . . . , h − 2, it holds for allxt = (x0, . . . , xt) in {0, 1}t+1 that

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]

= P
[
Ṽt+1(i) = 1

]
= P

[
R̃t+1 = i

]
= p(i) (13)

by independence of the rvs̃R0, . . . , R̃h−1, and the inequality (12) is obtained for eacht = 0, 1, . . . , h − 2. Next,

for t = h − 1, h, . . ., andxt = (x0, . . . , xt) in {0, 1}t+1, let (i0, . . . , it) be an element inN t+1 with the property

that for eachk = 0, . . . , t, ik = i if xk = 1 and ik 	= i if xk = 0. With such an element, we obtain from (9) that

P
[
Ṽt+1(i) = 1|(R̃0, . . . , R̃t) = (i0, . . . , it)

]
= P

[
R̃t+1 = i|(R̃0, . . . , R̃t) = (i0, . . . , it)

]

= βp(i) +
h∑

k=1

αk1 [it+1−k = i]

= βp(i) +
h∑

k=1

αkxt+1−k. (14)



9

Since (14) holds for any(i0, . . . , it) in N t+1 satisfying the property above, a standard preconditioning argument

readily yields

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]

= βp(i) +
h∑

k=1

αkxt+1−k. (15)

This last expression being monotone increasing inx t = (x0, . . . , xt), we obtain the inequality (12) for each

t = h, h + 1, . . ..

Thus, the inequalities (12) hold forall t = 0, 1, . . .. This implies that the sequence{ Ṽt(i), t = 0, 1, . . .} is CIS,

whence indeed PSMD by Theorem 6, i.e.,

{ ˆ̃V t(i), t = 0, 1, . . .} ≤sm {Ṽt(i), t = 0, 1, . . .} (16)

where{ ˆ̃V t(i), t = 0, 1, . . .} is the independent version of{Ṽt(i), t = 0, 1, . . .}. Now, recalling (11), it is plain that

{ ˆ̃V t+τ (i), t = 0, 1, . . .} =⇒τ {V̂t(i), t = 0, 1, . . .} (17)

where{V̂t(i), t = 0, 1, . . .} is a sequence of i.i.d.{0, 1}-valued rvs withP
[
V̂0(i) = 1

]
= p(i) and is exactly

the independent version of{Vt(i), t = 0, 1, . . .}. By invoking the fact that the sm ordering is closed under weak

convergence [24, Thm. 3.9.8, p. 116], we conclude from (11), (16) and (17) that

{V̂t(i), t = 0, 1, . . .} ≤sm {Vt(i), t = 0, 1, . . .}.

Therefore, the sequence{Vt(i), t = 0, 1, . . .} is PSMD for eachi = 1, . . . , N , and the proof is completed.

V. THE PARTIAL MARKOV CHAIN MODEL

The partial Markov chain model was introduced as a reference model for computer memory paging [2]. It is a

subclass of higher-order Markov chain models and corresponds to HOMM(h, α, p) with parameterh = 1. In that

case, we haveα = (β, α1) whereα1 = 1 − β and we refer to this model as PMM(β, p).

Under this model, with probability1 − β, Rt = Rt−1, otherwise with probabilityβ, Rt = Yt, i.e., Rt is drawn

independently of the past according to the popularity pmfp. Therefore, for a given popularity pmfp, it is natural

to expect that the smaller the value of correlation parameterβ, the greater the temporal correlations exhibited by

the PMM(β, p). In the extreme cases, asβ ↑ 1, the PMM(β, p) becomes the IRM with popularity pmfp and there

are no temporal correlations. On the other hand, asβ ↓ 0, all the requests are made to the same document, hence

displaying the strongest possible form of temporal correlations. The following result, which contains Theorem 12

when h = 1, formalizes these statements with the help of the TC ordering, thereby confirming the intuition that

the parameterβ of PMM(β, p) indeed constitutes a measure of the strength of temporal correlations.

Theorem 13: Assume for eachk = 1, 2 that the request streamRβk = {Rβk

t , t = 0, 1, . . .} is modeled according

to the stationary PMM(βk, p) for some pmfp onN . If 0 < β2 ≤ β1, thenRβ1 ≤TC Rβ2 .

The proof of this theorem relies on the following comparison of Markov chains under the supermodular ordering

due to Bäuerle [5].
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Theorem 14: Let X = {Xt, t = 0, 1, . . .} andX ′ = {X ′
t, t = 0, 1, . . .} be two stationary Markov chains on

{0, 1, . . . , n} with transition matricesP andP ′, respectively. Forγ0, . . . , γn ≥ 0 with 0 <
∑n

j=0 γj ≤ 1, define the

(n + 1) × (n + 1) matrix

Q(γ0, . . . , γn) =




1 − ∑
j �=0 γj γ1 · · · γn

γ0 1 − ∑
j �=1 γj · · · γn

...
...

...

γ0 γ1 · · · 1 − ∑
j �=n γj




. (18)

With P = Q(γ0, . . . , γn) andP ′ = Q(cγ0, . . . , cγn) for some0 ≤ c ≤ 1, it holds thatX ≤sm X ′.

Proof of Theorem 13. Fix i = 1, . . . , N . Given a sequenceRβ = {Rβ
t , t = 0, 1, . . .} modeled according to the

stationary PMM(β, p), it follows from (15) that the indicator sequence{V β
t (i), t = 0, 1, . . .} associated withRβ

is a Markov chain on{0, 1} with

P
[
V β

t (i) = 1|V β
0 (i) = x0, . . . , V

β
t−1(i) = xt−1

]
= βp(i) + (1 − β)xt−1, t = 1, 2, . . .

for any (x0, . . . , xt−1) in {0, 1}t. Its transition matrixP β(i) is simply given by

P β(i) =


 1 − βp(i) βp(i)

β(1 − p(i)) 1 − β(1 − p(i))


 ,

or equivalently, in the notation (18), byP β(i) = Q(γ0, γ1) where γ0 = β(1 − p(i)) and γ1 = βp(i) with

0 < γ0 + γ1 = β ≤ 1.

For two stationary PMM request streamsRβ1 and Rβ2 with 0 < β2 ≤ β1, we can always writeβ2 = cβ1

with 0 < c = β2
β1

≤ 1. Thus, the Markov chains{V β1
t (i), t = 0, 1, . . .} and{V β2

t (i), t = 0, 1, . . .} have transition

matricesP β1(i) = Q(γ0, γ1) andP β2(i) = Q(cγ0, cγ1), respectively, withγ0 = β1(1 − p(i)), γ1 = β1p(i) and

c = β2
β1

. By applying Theorem 14, we obtain the comparison{V β1
t (i), t = 0, 1, . . .} ≤sm {V β2

t (i), t = 0, 1, . . .} for

eachi = 1, . . . , N , whenceRβ1 ≤TC Rβ2 .

VI. L EAST-RECENTLY-USED STACK MODEL

The Least-Recently-Used stack model (LRUSM) has long been known to be a good model for generating

sequences of requests whose statistical properties match those of observed reference streams [11, 29]. We first

state its definition and basic properties, and then show that under some appropriate assumptions on the model, the

LRUSM exhibits stronger strength of temporal correlations than its independent version in the TC ordering.

A. LRU stack and stack distance

Let Λ(N ) denote the set of all permutations of theN distinct documents{1, . . . , N}. Equivalently, an element of

Λ(N ) is an ordered sequence ofN distinct elements drawn from the set{1, . . . , N}. It is convenient to picture such



11

an elementΩ = (Ω(1), . . . , Ω(N)) of Λ(N ) as astack with Ω(1) in the top position, followed byΩ(2), . . . , Ω(N),

in that order.

Given an initial stackΩ0, with any stream of requestsR = {Rt, t = 0, 1, . . .}, we can associate a stack sequence

{Ωt, t = 0, 1, . . .} through the following recursive mechanism (which emulates the stack behavior of the LRU policy

as explained below): For eacht = 0, 1, . . ., let Dt denotes the position of the documentRt+1 in the stackΩt, i.e.,

the rv Dt is the unique element of{1, . . . , N} such that

Ωt(Dt) = Rt+1. (19)

The stackΩt+1 is then given by

Ωt+1(k) =




Ωt(Dt) if k = 1

Ωt(k − 1) if k = 2, . . . , Dt

Ωt(k) if k = Dt + 1, . . . , N.

(20)

In words, the documentΩt(Dt) = Rt+1 is moved up to the highest position (i.e., position 1) in the stackΩ t+1

at time t + 1 and the documentsΩt(1), . . . , Ωt(Dt − 1) are shifted down by one position while the documents

Ωt(Dt + 1), . . . , Ωt(N) remain unchanged. We refer to the rvs{D t, t = 0, 1, . . .} so defined as the stack distance

sequence associated with the request streamR.

Conversely, given the initial stackΩ0 in Λ(N ), with any sequence of{1, . . . , N}-valued rvs{D t, t = 0, 1, . . .},

we can use the stack operation (20) to generate a sequence ofΛ(N )-valued rvs{Ω t, t = 0, 1, . . .}. A request stream

R is readily generated from this stack sequence by reading off the top of the stack, i.e., withR 0 = Ω0(1), we have

Rt+1 = Ωt(Dt) = Ωt+1(1), t = 0, 1, . . . (21)

The rvs{Dt, t = 0, 1, . . .} form the stack distance sequence associated with the request streamR defined at (21).

The stack and stack distance introduced above are often referred to as LRU stack and stack distance, respectively,

in reference to the popular Least-Recently-Used (LRU) policy. The LRU policy evicts the document in the cache

which was requested the least recently at the time the replacement is required. Its dynamics are best described

through the notion of LRU stack and stack distance as we now briefly explain: Returning to (20), we see that the

stackΩt at time t ranks the documents according to their recency of reference with the most recently requested

document remaining at the highest stack position. For eachk = 1, . . . , N , the documentΩ t(k) at positionk in the

stackΩt is the kth most recently referenced document at timet, hence the name, LRU stack. Consequently, the

documentsΩt(1), . . . , Ωt(M) in the firstM positions of the stackΩt simply yield the documents in cache under

the LRU policy with cache sizeM when the requestsR0, . . . , Rt have already been served.4

B. The LRU stack model

The duality between streams of requests and stack distances embedded in (20) can be used to advantage in defining

sequences of requests with temporal correlations. We present one of the simplest ways to do just that: TheLeast-

4This stack implementation of LRU is one of the factors behind its popularity.
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Recently-Used stack model (LRUSM) with pmf a on N is defined as the request streamRa = {Ra
t , t = 0, 1, . . .}

whose stack distance sequence{Dt, t = 1, 2, . . .} is a collection ofi.i.d. rvs distributed according to the pmfa,

i.e.,

P [Dt = k] = ak, k = 1, . . . , N ; t = 0, 1, . . . ,

given some arbitrary initial stackΩ0 in Λ(N ). Throughout we assume that the rvΩ0 is independent of the stack

distances{Dt, t = 1, 2, . . .}, and uniformly distributed overΛ(N ). In that case, the stack rvs{Ω t, t = 0, 1, . . .}
form a stationary sequence, and so do the request rvs{Ra

t , t = 0, 1, . . .}. This request model is denoted by

LRUSM(a).

The popularity pmf of the LRUSM is discussed first in Proposition 15; its proof can be found in [35].

Proposition 15: Assume the request streamRa = {Ra
t , t = 0, 1, . . .} to be modeled according to the stationary

LRUSM(a). If aN > 0, then for eachi = 1, . . . , N , it holds that

pa(i) = lim
t→∞

1
t

t∑
τ=1

1 [Ra
τ = i] =

1
N

a.s.

Thus, under LRUSM, as every document is equally popular, locality of reference is expressed solely through

temporal correlations with no contribution from the popularity of documents. This was found to be a drawback

of the LRUSM for characterizing Web request streams, and several variants of this model have been proposed to

accommodate this shortcoming [3, 8].

C. Temporal correlations in LRUSM

As was done with the HOMM, we explore how temporal correlations exhibited by the LRUSM can be charac-

terized through the TC ordering. The main result is contained in

Theorem 16: Assume the request streamRa = {Ra
t , t = 0, 1, . . .} to be modeled according to the stationary

LRUSM(a) with stack distance pmfa satisfying

a1 ≥ a2 ≥ . . . ≥ aN > 0. (22)

Then, it holds that̂Ra ≤TC Ra whereR̂a is the independent version ofRa.

A proof of Theorem 16 is omitted in the interest of brevity, but is available in [35]. Under the assumptions of

Theorem 16, the independent version̂Ra of the stationary LRUSM(a) is simply the IRM with uniform popularity

pmf u = ( 1
N , . . . , 1

N ). In fact, it is not hard to see that the stationary LRUSM(u) indeed coincides with the IRM

with uniform popularity pmfu.

VII. T HE MISS RATE AND ITS FOLK THEOREM

Themiss rate of a caching policy is defined as the long-term frequency of the event that the requested document is

not found in the cache; it provides a measure of the effectiveness of the caching policy. It is a commonly held belief

that good caching takes advantage of locality of reference in that the stronger the strength of temporal correlations
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(i.e., the stronger locality of reference) in the stream of requests to the cache, the smaller the miss rate. We explore

this “folk theorem” in the context of demand-driven caching which is briefly introduced in this section. Specific

results and conjectures are provided in Section VIII under PMM, HOMM and LRUSM and in Section IX under

general Web request models exhibiting temporal correlations.

The system is composed of a server where a copy of each of theN cacheable documents is available, and of a

cache of sizeM (1 ≤ M < N ). Documents are first requested at the cache: If the requested document has a copy

already in cache (i.e., a hit), this copy is downloaded from the cache by the user. If the requested document is not

in cache (i.e., a miss), a copy is requested instead from the server to be put in the cache. If the cache is already

full, then a document already in cache is evicted to make place for the copy of the document just requested.

Let St denote the collection of documents in cache just before timet so thatS t is a subset ofN , and letUt

denote the decision to be performed according to the cache replacement policyπ in force. Demand-driven caching

is characterized by the dynamics

St+1 =




St if Rt ∈ St

St + Rt if Rt 	∈ St, |St| < M

St − Ut + Rt if Rt 	∈ St, |St| = M

(23)

where |St| denotes the cardinality of the setSt, and St − Ut + Rt denotes the subset of{1, . . . , N} obtained

from St by removingUt and then addingRt to it, in that order. These dynamics reflect the following operational

assumptions: (i) actions are taken only at the time requests are made, hence the terminology demand-driven caching;

(ii) a requested document not in cache is always added to the cache if the cache is not full; and (iii) eviction is

mandatory if the requestRt is not in cacheSt and the cacheSt is full.

The decisions{Ut, t = 0, 1, . . .} are determined through an eviction policyπ. In most policies of interest, the

dynamics of the cache can be characterized through the evolution of suitably defined variables{Ω t, t = 0, 1, . . .}
whereΩt is known as thestate of the cache at timet. The cache state is specific to the eviction policy and is selected

with the following in mind: (i) The setSt of documents in the cache at timet can be recovered fromΩ t; (ii) the

cache stateΩt+1 is fully determined through the knowledge of the triple(Ω t, Rt, Ut) in a way that is compatible

with the dynamics (23); and (iii) the eviction decisionU t at time t can be expressed as a function of the past

(Ω0, R0, U0, . . . , Ωt−1, Rt−1, Ut−1, Ωt, Rt) (possibly through suitable randomization), i.e., for eacht = 0, 1, . . .,

there exists a mappingπt such thatUt = πt(Ω0, R0, U0, . . . , Ωt−1, Rt−1, Ut−1, Ωt, Rt; Ξt) where the rvΞt is taken

independent of the past(Ω0, R0, . . . , Ut−1, Ωt, Rt). Collectively the mappings{πt, t = 0, 1, . . .} define the eviction

policy π.

For example, under the random policy5, we can take the cache stateΩt to be the (unordered) setSt of documents

in the cache while under the LRU policy, the cache stateΩ t is is a permutation of the elements inSt for all

t = 0, 1, . . ..

5Under the random policy, when the cache is full, the document to be evicted from the cache is selected randomly according

to the uniform distribution.
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Under the cache replacement policyπ, the miss rateMπ(R) when the input to the cache is the request stream

R is defined as the limiting constant

Mπ(R) = lim
t→∞

1
t

t∑
τ=1

1 [Rτ /∈ Sτ ] a.s. (24)

whenever the limit exists. Almost sure convergence in (24) (and elsewhere) is taken under the probability measure

on the sequence of rvs{Ωt, Rt, Ut, t = 0, 1, . . .} induced by the request streamR through the eviction policyπ.

VIII. F OLK THEOREMS ON VARIOUS REQUEST MODELS

A. PMM

The miss rates of PMM under demand-driven cache replacement policies have been previously considered in [2].

For particular caching policies such as LRU and FIFO, the miss rate under PMM(β, p) is shown to be proportional

to the miss rate of the IRM with the same popularity pmfp. We first demonstrate this fact in some generality and

then use it to compare the miss rates of two PMM streams with different strength of temporal correlations.

As we seek to evaluate the limit (24) for the PMM(β, p) under the cache replacement policyπ, we shall need

the following definitions: For eachT = 1, 2, . . ., define

λ(T ) =
T∑

t=1

1 [Zt = 0]

as the number of times from time 1 up to timeT that the requests are chosen independently of the past according

to the popularity pmfp. Also, for eachk = 1, 2, . . ., let γ(k) = inf{t = 1, 2, . . . : λ(t) = k}. Under demand-driven

caching with the PMM input, a miss can only occur at the time epochsγ(k) (k = 1, 2, . . .) at which point we have

Rβ
γ(k) = Yγ(k). Therefore, it follows from the definition of the rvs{γ(k), k = 1, 2, . . .} that

T∑
t=1

1
[
Rβ

t /∈ St

]
=

λ(T )∑
k=1

1
[
Rβ

γ(k) /∈ Sγ(k)

]
=

λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]
, T = 1, 2, . . . ,

and the miss rate under PMM(β, p) is given by

Mπ(Rβ) = lim
T→∞

1
T

T∑
t=1

1
[
Rβ

t /∈ St

]
= lim

T→∞

(
λ(T )

T

) 
 1

λ(T )

λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

] . (25)

By the Strong Law of Large Numbers, we see that the limit of the first term in (25) is simply

lim
T→∞

λ(T )
T

= lim
T→∞

1
T

T∑
t=1

1 [Zt = 0] = β a.s. (26)

The limit of the second term in (25) in general does not necessarily have a closed-form expression. However, It

does admit a simple expression in the special case when the cache replacement policyπ satisfies the following

condition:

(�) For all t = 1, 2, . . ., if Rt = Rt−1, then the cache state and eviction rule at timet + 1 are the same as those

at time t, i.e., Ωt+1 = Ωt andUt+1 = Ut.
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Under this condition, we can write the second limit as

lim
T→∞

1
λ(T )

λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]
= lim

K→∞
1
K

K∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]
= M̂π(p) (27)

whereM̂π(p) is the miss rate of the IRM with popularity pmfp under the policyπ. The last equality follows from

the fact that the rvs{Yγ(k), k = 1, 2, . . .} form an IRM with popularity pmfp and that by Condition (�), the cache

sets{Sγ(k), k = 1, 2, . . .} are similar to the cache sets under the policyπ when the input is the IRM sequence

{Yγ(k), k = 1, 2, . . .}. Combining (25), (26) and (27) yields the expression for the miss rate of PMM(β, p) as

Mπ(Rβ) = β · M̂π(p). (28)

Condition (�) is satisfied by many cache replacement policies of interest, e.g., the policyA 0, the LRU, FIFO and

random policies, but not by the CLIMB policy [31]. Equipped with the expression (28), we can now conclude to

the following monotonicity result.

Theorem 17: Assume that the cache replacement policyπ satisfies Condition (�) and that for eachk = 1, 2, the

request streamRβk = {Rβk
t , t = 0, 1, . . .} is modeled according to the stationary PMM(βk, p) for some pmfp on

N . Then,Mπ(Rβ2) ≤ Mπ(Rβ1) whenever0 < β2 ≤ β1.

In view of Theorem 13, we conclude that the folk theorem on the miss rate indeed holds for stationary PMMs

under any cache replacement policy which satisfies Condition (�).

B. HOMM

Consider the following situation: LetR be HOMM(h, α, p) for some pmf vectorsp onN andα on {0, . . . , h},

respectively. For some0 < c < 1, let Rc denote HOMM(h, αc, p) where αc is obtained fromα by taking

αc
k = cαk for eachk = 1, . . . , h, andβc = 1− c(1 − β) = β + (1 − c)(1 − β). Obviously,βc ≥ β while αc

k ≤ αk

for eachk = 1, . . . , h. In other words, under HOMM(h, α, p), there is a smaller probability to generate a new

request independently of past requests than under HOMM(h, α c, p). Therefore, in an attempt to generalize Theorem

12, it is reasonable to think that HOMM(h, αc, p) has less temporal correlations than HOMM(h, α, p) according

to the TC ordering, i.e.,Rc ≤TC R. Taking our cue from Theorem 17, we would then expect the inequality

Mπ(R) ≤ Mπ(Rc) to hold for some good caching policies. We summarize these expectations as the following

conjecture:

Conjecture 18: Assume the request streamR to be modeled according to HOMM(h, α, p). For some0 < c < 1,

if Rc is modeled according to HOMM(h, αc, p) with αc = (1 − c(1 − β), cα1, . . . , cαh), then the comparison

Rc ≤TC R holds. Furthermore, under some appropriate cache replacement policyπ, it holds thatM π(R) ≤ Mπ(Rc).

Establishing this conjecture appears to be much more difficult than for the PMM, and requires further investigation.

However, in support of this conjecture, we have carried out several experiments under the LRU policy when the

input to the cache is modeled according to the HOMM. Throughout, we fixN = 100 and let the input popularity
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Fig. 1. LRU miss rates for various cache sizes when the input to the cache is the HOMM(h, αh(β), p0.8) with αh(β) =

(β, 1−β
h

, . . . , 1−β
h

)

pmf be the Zipf-like distributionpα with parameterα = 0.8, i.e.,

p(i) = pα(i) =
i−α

Cα(N)
, i = 1, . . . , N, with Cα(N) :=

N∑
i=1

i−α. (29)

The Zipf-like distribution has been found appropriate for modeling the popularity distributions of observed reference

streams in several data sets [9]. We consider five different classes of HOMM, each with different history window size

h = 1, . . . , 5. In each class, the input streamRβ (with 0 ≤ β ≤ 1), is generated according to HOMM(h, αh(β), pα)

with αh(β) = (β, 1−β
h , . . . , 1−β

h ). The validity of Conjecture 18 would require that the mappingβ → M LRU(Rβ)

be increasing.

From Figure 1, the miss rate is indeed found to be increasing as the parameterβ increases for all cases and for

all cache sizes. Whenh = 1, HOMM reduces to PMM and the results here confirm the validity of the expression

(28) and of Theorem 17. It is interesting to note that for a given cache sizeM , the miss rates of all HOMM input

streams withh ≤ M are the same as the miss rate of the PMM. This suggests some form of insensitivity of the

LRU miss rate under the HOMM to the history window sizeh and to the pmfα. Lastly, for all cases and for all

cache sizes, the miss rate always goes to0 asβ goes to0. This is due to the fact thatlim t→∞ P
[
R0

t = R0
t−1

]
= 1

whenever thehth-order Markov chainR0 is aperiodic.
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C. LRUSM

According to Theorem 16, the stationary LRUSM(a) with stack distance pmfa satisfying condition (22) has

stronger strength of temporal correlations than the stationary LRUSM(u). In the vein of Theorem 13, it is then

natural to wonder when does the LRUSM(b) have weaker temporal correlations than the LRUSM(a) for pmf b

not necessarily uniform. Theorem 16 suggests that this could happen when the pmfa is more skewed toward the

smaller values of stack distance than the pmfb, or equivalently, that the components ofb are more balanced than

the components ofa. The skewness in pmfs is naturally captured through the notion ofmajorization [21]: For

vectorsx andy in IRN , we say thatx is majorized by y, and writex ≺ y, whenever the conditions

n∑
i=1

x[i] ≤
n∑

i=1

y[i], n = 1, . . . , N − 1, and
N∑

i=1

xi =
N∑

i=1

yi (30)

hold with x[1] ≥ x[2] ≥ . . . ≥ x[N ] andy[1] ≥ y[2] ≥ . . . ≥ y[N ] denoting the components ofx andy arranged in

decreasing order, respectively. It is well known thatu ≺ a for any pmfa on N . With this notion, we can now

state the following conjecture.

Conjecture 19: Consider request streamsRa andRb which are modeled according to the stationary LRUSM(a)

and LRUSM(b), respectively. If both pmfsa andb satisfy (22) withb ≺ a, then the comparisonR b ≤TC Ra holds.

When both pmfsa andb satisfy (22), the conditions (30) for the majorization comparisonb ≺ a to hold reduce to
n∑

i=1

bi ≤
n∑

i=1

ai, n = 1, . . . , N − 1. (31)

This condition is a formalization of the statement that the pmfa is more skewed toward the smaller values of stack

distance than the pmfb.6

To glean evidence in favor of Conjecture 19, we consider the LRU policy and note that the firstM positions

of the LRU stackΩt associated with the LRUSM are simply the documents in the LRU cache of sizeM at time

t + 1. Thus, a miss of the LRU cache of sizeM will occur at timet + 1 if Dt > M and the miss rate under the

LRU policy for the LRUSM(a) can alternatively be given by

MLRU(Ra) = lim
t→∞

1
t

t∑
τ=1

1 [Dτ > M ] = P [Dt > M ] =
N∑

k=M+1

ak a.s. (32)

upon making use of the Strong Law of Large Numbers. Combining (31) and (32), we conclude that for two LRUSM

request streamsRa and Rb satisfying the conditions of Conjecture 19, it holds thatMLRU(Ra) ≤ MLRU(Rb).

This is of course the desired inequality expressing the folk theorem for miss rates under the LRU policy which

would be expected if Conjecture 19 were to hold.

IX. WORKING SET (WS) ALGORITHM

We now take a first step toward establishing the folk theorem for the miss rate under general Web request models

that exhibit temporal correlations. We do so by focusing on a specific replacement policy called the Working Set

(WS) algorithm.

6The condition (31) is equivalent to the usual stochastic ordering [27] between the pmfsa andb wherea ≤st b.
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The working set model was introduced by Denning [12], and can be defined as follows: Consider a request stream

R = {Rt, t = 0, 1, . . .}. Fix t = 0, 1, . . .. For eachτ = 1, 2, . . ., we define the working setW (t, τ ; R) of lengthτ

at timet to be the set ofdistinct documents occurring amongst the pastτ consecutive requestsR (t−τ+1)+ , . . . , Rt.7

The size of the working setW (t, τ ; R) is denoted byS(t, τ ; R). The working set and its size have been used as

measures of strength of locality of reference. Some of their properties are discussed in [13].

Fix τ = 1, 2, . . .. The Working Set (WS) algorithm with lengthτ is the algorithm that maintains the previous

τ consecutive requested documentsR(t−τ)+ , . . . , Rt−1 in the cacheSt at time t. In other words, the cacheSt is

simply the working setW (t − 1, τ ; R) with the conventionW (−1, τ ; R) = φ. This algorithm differs from other

demand-driven caching policies in that the number of documents in the cache may change over time while demand-

driven caching policies have a fixed cache sizeM (as soon as each document has been called at least once). The

number of documents in the cache at timet under the WS algorithm is basically the number of distinct documents

in W (t − 1, τ ; R) which is the working set sizeS(t − 1, τ ; R).

The operation of the WS algorithm can be described as follows: For eacht = 0, 1, . . ., let Ω t be the state of

the cache at timet defined byΩt = (R(t−τ)+ , . . . , Rt−1). It is easy to see from this definition that the cache state

Ωt+1 is completely determined by the previous cache stateΩ t and the current requestRt. Furthermore, the cache

setSt can be recovered fromΩt by taking

St = {i = 1, . . . , N : i ∈ Ωt} = W (t − 1, τ ; R), t = 0, 1, . . . .

For t ≥ τ , regardless of a cache miss, the WS algorithm will evict the documentR t−τ if Rt−τ /∈ W (t, τ ; R) and

does not evict any document, otherwise.

The miss rate of the WS algorithm with lengthτ can be defined in the same way as in the case of demand-driven

caching; it is given by the a.s. limit

MWS(R) = lim
T→∞

1
T

T∑
t=1

1 [Rt /∈ St] = lim
T→∞

1
T

T∑
t=1

1 [Rt /∈ W (t − 1, τ ; R)] a.s. (33)

Given an input streamR = {Rt, t = 0, 1, . . .}, let {Vt(i), t = 0, 1, . . .}, i = 1, . . . , N , be the indicator sequences

(6) associated with it. Recall from (33) that a miss occurs at timet when the documentR t is not in the working

setW (t − 1, τ ; R). Thus, the indicator function for the miss event at timet ≥ τ can be written as

1 [Rt /∈ W (t − 1, τ ; R)] = 1 [Rt /∈ {Rt−τ , . . . , Rt−1}]

=
N∑

i=1

1 [Rt = i]1 [i /∈ {Rt−τ , . . . , Rt−1}]

=
N∑

i=1

1 [Rt = i]
τ∏

�=1

1 [Rt−� 	= i]

=
N∑

i=1

Vt(i)
τ∏

�=1

(1 − Vt−�(i))

7For anyx ∈ IR, we set(x)+ = max(0, x).
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=
N∑

i=1

g(Vt−τ (i), . . . , Vt(i)) (34)

where we have set

g(x0, . . . , xτ ) = xτ

τ−1∏
�=0

(1 − x�), (x0, . . . , xτ ) ∈ IRτ+1. (35)

Combining (33), (34) and (35) yields the miss rate under the WS algorithm as the limit

MWS(R) = lim
T→∞

1
T

τ−1∑
t=1

1 [Rt /∈ W (t − 1, τ ; R)]

+ lim
T→∞

(
T − τ + 1

T

)
1

T − τ + 1

T∑
t=τ

N∑
i=1

g(Vt−τ (i), . . . , Vt(i))

= lim
T→∞

1
T

T+τ−1∑
t=τ

N∑
i=1

g(Vt−τ (i), . . . , Vt(i)) a.s. (36)

and if the request streamR admits some form of ergodicity, then the limit (36) exists. One such condition for the

existence of the limit (36) is given in the next lemma whose proof is available in [31].

Lemma 20: Fix τ = 1, 2, . . .. Assume the request streamR = {Rt, t = 0, 1, . . .} to couple with a stationary and

ergodic sequence ofN -valued rvsR̃ = {R̃t, t = 0, 1, . . .}. Then, the a.s. limit (36) exists and is given by

MWS(R) = lim
t→∞

N∑
i=1

E [g(Vt−τ (i), . . . , Vt(i))] a.s. (37)

To establish the folk theorem to the effect that the stronger the temporal correlations, the smaller the miss rate,

we need to show that

MWS(R2) ≤ MWS(R1) whenever R1 ≤TC R2. (38)

Therefore, upon recalling the definitions of the TC and sm orderings, we see from (37) that establishing (38) amounts

to showing that the mappingg given in (35) is submodular.8 Unfortunately, the mappingg is not submodular in

general; only in the special caseτ = 1 is g a submodular function. We shall discuss these issues by first showing

the positive result whenτ = 1 and then providing counterexamples using the PMM whenτ > 1.

[τ = 1] – Whenτ = 1, we note thatS(t − 1, τ ; R) = 1 for all t = 1, 2, . . ., and the WS algorithm coincides with

any demand-driven caching policy having cache sizeM = 1. In that case, the only document in the cache at time

t is the documentRt−1 and a miss occurs whenRt 	= Rt−1. The folk theorem holds in this special case for all

demand-driven caching policies.

Theorem 21: Consider an arbitrary demand-driven replacement policyπ with M = 1. If the request streamsR 1

andR2 satisfy the relationR1 ≤TC R2, then it holds thatP
[
R2

t /∈ S2
t

] ≤ P
[
R1

t /∈ S1
t

]
for eacht = 1, 2, . . . .

Proof. Fix k = 1, 2. For eacht = 1, 2, . . ., we have from (34)-(35) that

1
[
Rk

t /∈ Sk
t

]
= 1

[
Rk

t 	= Rk
t−1

]
=

N∑
i=1

g(V k
t−1(i), V

k
t (i))

8A function ϕ : IRn → IR is said to be submodular if−ϕ is supermodular.
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with the mappingg : IR2 → IR being given byg(x0, x1) = x1−x0x1, for any(x0, x1) ∈ IR2. Because the mapping

(x0, x1) → x0x1 is supermodular, the mapping(x0, x1) → −x0x1 is submodular. The mapping(x0, x1) → x1

being submodular, the mappingg is therefore submodular since the sum of two submodular functions is still a

submodular function.

Given two request streamsR1 andR2 such thatR1 ≤TC R2, we recall the comparisons{V 1
t (i), t = 0, 1, . . .} ≤sm

{V 2
t (i), t = 0, 1, . . .} for each i = 1, . . . , N . Thus by the definition of the sm ordering, we obtain for each

t = 1, 2, . . .,

P
[
R2

t /∈ S2
t

]
=

N∑
i=1

E
[
g(V 2

t−1(i), V
2
t (i))

] ≤
N∑

i=1

E
[
g(V 1

t−1(i), V
1
t (i))

]
= P

[
R1

t /∈ S1
t

]
.

The desired result is a simple consequence of Lemma 20 and Theorem 21.

Corollary 22: Consider an arbitrary demand-driven replacement policyπ with M = 1. If the request streamsR 1

andR2 couple with stationary and ergodic sequences ofN -valued rvsR̃
1

andR̃
2
, respectively, and satisfy the relation

R1 ≤TC R2, then it holds thatMWS(R2) ≤ MWS(R1).

[τ > 1] – The folk theorem (38) does not necessarily hold whenτ > 1 as we now demonstrate via counterexamples

when the PMM is taken to be the input to the cache.

The miss rate of the WS algorithm with lengthτ for PMM(β, p) [2] is given by

MWS(β, p) = β
N∑

i=1

p(i)(1 − p(i))(1 − βp(i))τ−1. (39)

From Section V, we would expect that as the strength of temporal correlations increases, i.e., the value of the

parameterβ decreases, the miss rateMWS(β, p) should be decreasing. To put it differently, the mappingβ →
MWS(β, p) should be increasing when the popularity pmfp is held fixed.

However, this is not always the case as we show in the counterexamples where the PMM stream is assumed to

have the uniform popularity pmfu = ( 1
N , . . . , 1

N ).

Theorem 23: Assume the input stream to be modeled according to PMM(β, u). Under the WS algorithm with

lengthτ , the miss rate functionMWS(β, u) given in (39) is increasing inβ whenβ ≤ N
τ and decreasing inβ when

β > N
τ .

Thus, the folk theorem always holds when the lengthτ of the WS algorithm is smaller than the number of

documentsN but may fail to hold otherwise.

Proof. When the PMM has the uniform popularity pmfu, the expression (39) for the miss rate under the WS

algorithm becomes

MWS(β, u) = β

(
1 − 1

N

) (
1 − β

N

)τ−1

.
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Differentiating this expression with respect toβ yields

d

dβ
MWS(β, u) =

(
1 − 1

N

) (
1 − β

N

)τ−2 (
1 − τβ

N

)
.

Thus, the miss rate functionMWS(β, u) is increasing when1− τβ
N ≥ 0, or equivalently,β ≤ N

τ , and is decreasing

when1 − τβ
N < 0, or equivalently,β > N

τ .

X. CONCLUDING REMARKS

We introduce the notion of TC ordering which is based on the concept of positive dependence called supermodular

ordering, for comparing streams of requests on the basis of the strength of their temporal correlations. We show

that the TC ordering can capture the strength of temporal correlations present in Web request models which are

expected to exhibit temporal correlations, e.g., the HOMM, PMM and LRUSM. We then establish the folk theorem

to the effect that the stronger the strength of temporal correlations, the smaller the miss rate when the input to the

cache is the PMM while for general request models, we show that the folk theorem does not always hold but it

does hold under the demand-driven caching policy with cache size 1.

In the next step, we would like to establish the folk theorem for the miss rate under various caching policies,

e.g., the FIFO and LRU policies, for general input streams with temporal correlations. As was done in [34] for the

popularity, it is also interesting to characterize the temporal correlations of the so-called output of a cache, which

is the sequence of requests for missed documents, in terms of the temporal correlations of the input stream and of

the cache replacement policy in use.
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[5] N. Bäuerle, “Monotonicity results forMR|GI |1 queues,”Journal of Applied Probability34 (1997), pp. 514–524.
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