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Abstract

The performance of demand-driven caching depends on the locality of reference exhibited by the
stream of requests made to the cache. In spite of numerous efforts, no consensus has been reached on
how to formally compare streams of requests on the basis of their locality of reference. We take on this
issue by introducing the notion of Temporal Correlations (TC) ordering for comparing strength of temporal
correlations in streams of requests. This notion is based on the supermodular ordering, a concept of positive
dependence which has been successfully used for comparing dependence structures in sequences of rvs.
We explore how the TC ordering captures the strength of temporal correlations in several Web request
models, namely, the higher-order Markov chain model (HOMM), the partial Markov chain model (PMM)
and the Least-Recently-Used stack model (LRUSM). We establish a folk theorem to the effect that the
stronger the temporal correlations, the smaller the miss rate for the PMM. Conjectures and simulations
are offered as to when this folk theorem should hold under the HOMM and under the LRUSM. Lastly,

we investigate the validity this folk theorem for general input streams under the Working Set algorithm.

Keywords: Locality of reference in request streams, Temporal correlations, Positive dependence, Folk theorem

for miss rates.

|. INTRODUCTION

The performance of any form of caching is determined by a number of factors, chief amongst them the statistical
properties of the streams of requests made to the cache. One important such propertpdalitiyeof reference
present in a request stream whereby bursts of references are made in the near future to objects referenced in the
recent past. The implications for cache management should be clear — Increased locality of reference should yield

performance improvements for demand-driven caching that exploits recency of reference.



The notion of locality and its importance for caching were first recognized by Belady [7] in the context of
computer memory. Subsequently, a number of studies have shown that request streams for Web objects exhibit
strong locality of referende[17, 18, 19]. Attempts at characterization were made early on by Denning through the
working set model [12, 13]. Yet, like the notion of burstiness used in traffic modeling, locality of reference, while
endowed with a clear intuitive content, admits no simple definition. Not surprisingly, in spite of numerous efforts,
no consensus has been reached on how to formalize the notion, letcalopare streams of requests on the basis
of their locality of reference.

Although several competing definitions are currently available, it is by now widely accepted that the two
main contributors to locality of reference at@mporal correlations in the streams of requests and thapularity
distribution of requested objects. To describe these two sources of locality, and to frame the subsequent discussion,
we assume the following generic setup: We consider a univers®¥ afacheable items or documents, labeled
i =1,...,N, and we writeA/ = {1,..., N}. The successive requests arriving at the cache are modeled by
a sequenceR = {R;, t = 0,1,...} of AM-valued rvs. For simplicity, we say that reque3t occurs at time
t=0,1,....

1. The popularity of the sequence of request®:, t =0,1,...} is defined as the pmp = (p(3),...,p(N)) on
N given by

p(i) :—tliI&%tz:t)l[RT—i] a.s., i=1,...,N, Q)
whenever these limits exist (and they do in most models treated in the literature). Popularity is usually viewed as
a long-term expression of locality which captures the likelihood that a document will be requested in the future
relative to other documents. Throughout we assume for the request sRetimat the limits (1) exist and are

constants. To avoid uninteresting situations, itliways the case that
p(i)>0, i=1,... N. (2)

2. Temporal correlations are more delicate to define. Indeed, it is somewhat meaningless to use the covariance
function
v(s,t) := Cov[Rs, Rt], s,t=0,1,....

as a way to capture these temporal correlations as is traditionally done in other contexts. This is because of the

categorical nature of the rvs{R;, t =0,1,...} which take values in a discrete set — We tddk..., N} but we

could have selectefll, %, cee %} instead; in factany set of N distinct points in an arbitrary space would do the
job. Thus, theactual values of the rv§R,, ¢t =0,1,...} are of no consequence, and the focus should instead be
on therecurrence patterns displayed by requests for particular documents over time. It is observed [26] that Web

traces usually exhibit short-term temporal correlations in the sense that the probability of requesting a particular

1At least in the short timescales

2A pmf p on {1,..., N} satisfying (2) is said to bedmissible. Under this non-triviality condition (2), every document will
eventually be requested by virtue of (1).



document given that the document was recently requested is higher than what it would be if the document has not
been recently requested.

The question naturally arises as to whether the popularity pmf and temporal correlations in the stream of requests
can be compared on the basis of some notions that lead to useful implications for cache management and at the same
time, naturally explain the underlying definition of locality of reference. In particular, the follovatkgtheorem is
expected to hold: For good caching policies, the stronger locality of reference, the smaller the miss rate. A natural
approach to these issues is to relate locality of reference in a stream of requests to the skewness of its popularity
pmf with the understanding that the more skewed the popularity pmf, the greater locality of reference. For instance,
the notion of entropy [16] and the concept of majorization [20, 30, 31, 33, 34] have been used successfully to
capture skewness in the popularity pmf. In [20, 31, 33] the authors have established a version of the folk theorem
by showing (via majorization and Schur-concavity) that the more skewed the popularity pmf (thus, the stronger
locality of reference), the smaller the miss rate of the cache. This was done for various cache replacement policies
under the standarthdependent Reference Model (IRM) according to which the reques{R;, ¢t = 0,1,...} are
i.i.d. rvs distributed according to the prpf3

With respect to temporal correlations, even though there exist several metrics, e.g., the inter-reference time
[16, 17, 25], the working set size [12, 13] and the stack distance [1, 22], none has been found appropriate for
formalizing this type of folk theorems. Here, we complement our earlier work by focusing on temporal correlations
as the source of locality of reference. We do so by applying conceptesitfve dependence in order to capture
the strength of temporal correlations exhibited by Web request streams. These notions have been used previously
in many contexts, e.g., traffic engineering [5, 6, 32] and reliability theory [4, 28]. The main contributions are now
summarized:

1. Temporal correlations and positive dependence ¥We make a connection between the concepts of positive
dependence in sequence of rvs [Section IlI] and temporal correlations in the stream of requests [Section IlI].
Specifically, relying on the notion of supermodular ordering [Definition 3], we define the TC ordering [Definition
10] as a way of comparing two streams of requests on the basis of the strength of their temporal correlations.

2. Temporal correlations in Web request models -“We apply the TC ordering to investigate the existence
of temporal correlations in several Web request models that are believed to exhibit such correlations, namely, the
higher-order Markov chain model (HOMM), the partial Markov chain model (PMM) and the Least-Recently-Used
stack model (LRUSM). For the HOMM [Section IV] and the LRUSM [Section VI], we demonstrate that both
models exhibit temporal correlations in the sense that they have stronger strength of temporal correlations than the
IRM with the same popularity pmf in the TC ordering. For the PMM [Section V], we show that its strength of
temporal correlations is indeed captured by its correlation parameter as expected.

3. Temporal correlations and miss rate —Regarding the aforementioned folk theorem for the miss rate, we

3The IRM is often used for checking various properties of caching systems [9], however, it does not exhibit any of the
correlations that have been observed in Web reference streams. Some examples of the models with temporal correlations will
be discussed later in this paper.



establish the statement to the effect that “the stronger the strength of temporal correlations, the smaller the miss
rate” when the input to the cache is the PMM [Section VIII-A]. Conjectures and simulations are offered as to
when this folk theorem should hold under the HOMM [Section VIII-B] and under the LRUSM [Section VIII-C].
Lastly, we consider the miss rate of general input streams under the Working Set algorithm [Section IX]. The result
indicates that the folk theorem does hold when the cache holds one document, while it may not hold in some other
situations where counterexamples are given.

The paper is organized as follows: Various concepts of positive dependence are introduced in Section Il and the
TC ordering is defined in Section Ill. We apply the TC ordering to the HOMM, the PMM and the LRUSM in
Section IV, V and VI, respectively. The miss rate and its folk theorem are discussed in Section VII. Specific results
and conjectures on the folk theorem under the PMM, the HOMM and the LRUSM are provided in Section VIII.
Section 1X is devoted to the Working Set algorithm. Concluding remarks are given in Section X.

A word on the notation in use: Equivalence in law or in distribution between rvs (and stochastic processes) is

denoted by=,;. Convergence in law or in distribution (&s— oo) is denoted by—>;.

Il. MODELING POSITIVE DEPENDENCE
A. Conditionally increasing in sequence

Positive dependence in a collection of rvs can be captured in several ways. Here, we begin with the following

strong notion.

Definition 1: TheR"-valued rvX = (X4,...,X,,) is said to be conditionally increasing in sequence (CIS) if for
eachk = 1,2,...,n — 1, the family of conditional distribution§[ X ;11| X1 = 1, ..., Xx = x|} is stochastically
increasing inc = (x1,..., ).

More precisely, this definition states that for eaeh= 1,2,...,n — 1, for z andy in R* with < y

componentwise, it holds that

[(Xir1[(X15- 00 Xi) = 2] <ot [Xpp1[(X1,- 00, Xi) = 9] 3)
where[X;11|(X1,. .., Xk) = ] denotes any rv distributed according to the conditional distributiol pf, given
(X1,...,Xk) =« (with a similar interpretation fofX1|(X1, ..., X%) = y]). In other words, we require

E[g(Xp41)|(Xa, ..., Xi) = 2] S E [g(Xpq1)[(X1, ..., Xi) = 9]
for all increasing functiory : R — R provided the expectations exist.

The property in Definition 1 is sometimes called stochastic increasingness in sequence (SIS). It is often used as

a sufficient condition for establishing the association of rvs [4, 15].

B. Supermodular ordering

Several stochastic orderings have been found well suited for comparing the dependence structures of random
vectors. Here we rely on theipermodular ordering which has been used recently in several queueing and reliability

applications [5, 6, 28, 32]. The underlying class of functions associated with this ordering is first introduced.



Definition 2: A functiony : R"™ — R is said to be supermodular (sm) if

o@Vy)+o@Ay) > o) +o(y), @yecR"

wherewesetVy = (z1Vy1,...,Tn Vyn)@nde ANy = (£1 AY1, ..., Tn AYn).

The supermodular ordering is the integral ordering associated with the class of supermodular functions.

Definition 3: ForR"™-valued rvsX andY , we say thaiX is smaller tharY in the supermodular ordering, written
X < Y, IfE[p(X)] < E[p(Y)] for all supermodular Borel measurable functigns R™ — R provided the
expectations exist.

It is a simple matter to check [5] that for afy"-valued rvsX andY, the comparisorX <,,, Y necessarily
implies the distributional equalities

X, =x Y, i=1,...,n, (4)

as well as the covariance comparisons
Cov[X;, X;] < Cov|Y;,Y;], 4,j=1,...,n (5)

whenever these quantities are well defined. Thus, the compaksan,,,, Y represents a possible formalization of
the statement thaf¥" is more correlated thaX .” Before stating some basic comparisons related to the supermodular
ordering, we need the following definition.

Definition 4: ForR"-valued rvsX andX, we say thatX = (X,,...,X,,) is an independent version & =
(X1,...,X,) ifthe rvsX,, Xs, ..., X,, are mutually independent with; =,, X, foreachi =1,... n.

The positive dependence between the compon&nts. ., X,, of the R"-valued rvX can also be expressed by
requiring that the rnéX' be larger in the supermodular ordering than its independent verXiofThis gives rise to
the following notion of positive dependence [24]:

Definition 5: TheR"-valued rvX = (X1,...,X,) is said to be positive supermodular dependent (PSMD) if
X <, X whereX is the independent version &F.

The next proposition explores the relationships between the two notions of positive dependence introduced thus
far, and is due to Meester and Shanthikumar [23, Thm. 3.8].

Theorem 6: Consider aR™-valued rvX = (X1,...,X,). If X is CIS, thenX is PSMD.

C. Extensions to sequences

We can naturally extend the definitions above to sequences of rvs.

Definition 7: The twoR-valued sequenceX = {X,, n = 1,2,...} andY = {Y,, n = 1,2,...} satisfy the
relationX <, Y if (X1,...,X,) <sm (Y1,...,Y,) foralln=1,2,....

Definition 8: For sequences dk-valued rvsX = {X,, n = 1,2,...} andX = {X,, n = 1,2,...}, we say
that X is an independent version &F if the rvs{ X,,, n = 1,2,...} are mutually independent wit,, =, X,, for
alln=1,2,....

Definition 9: TheR-valued sequenc¥ = {X,, n=1,2,...} is CIS (resp. PSMD) if foreach = 1,2, .., the
R"-valued r'v(Xy,...,X,) is CIS (resp. PSMD).



Ill. TEMPORAL CORRELATIONS INWEB REQUEST STREAMS

Given a stream of requesB® = {R;, t =0,1,...}, we set
Vi(i)=1[R: =14, t=0,1,..., (6)

for eachi =1,..., N, i.e., the rvV;(¢) is the indicator function of the event that the request at tineemade to
document. If the sequence of requesi®,, t = 0,1,...} were to exhibit locality of reference through some form
of temporal correlations, a request to documewbuld likely be followed by a burst of references to document
in the near future. This corresponds to the presence of positive dependence in the s¢fuéice = 0,1,...}
and leads naturally to the following definition ®mporal Correlations (TC) ordering.

Definition 10: The request strealR* = {R}, t = 0,1,...} is said to have weaker temporal correlations than the

request strearR> = {R?, t = 0,1,...}, writtenR' <r¢ R?, ifforeachi =1,..., N, the comparison

(Vi (i), t=0,1,...} <om {V2(i), t=0,1,.. }

holds where for each = 1,2, the rvs{V/*(i), t = 0,1, ...} denote the indicator process associated Rithvia (6).

The comparisoR' <r¢ R? can be viewed as a formalization of the fact that the stré&imhas less locality
of reference than the streaf?. The difficulty associated with the “categorical” nature of streams of requests has
been bypassed by focusing instead on their indicator processes (6).

Now fix i = 1,...,N. WheneverR' <, R?, the equi-marginal property (4) of the supermodular ordering
yieldsP [V/!(i) = 1] =P [V2(i) = 1] for all t = 0,1,..., or equivalently,

PR/ =i =P[R} =i], t=0,1,... (7)
Under the assumption that for eakh= 1,2, the limits (1) exist as constants for the request stréafy we have
t
1
k- o . k
pH) = grgotzl = gggO;;P[RH]

by the Bounded Convergence Theorem. Combining this last equation with (7) immediately lgatis=t@?, i.e.,
the comparisorR! <;¢ R? requires that the request strea®s and R? have the same popularity profile. In
other words, the TC ordering can capture only the contributions from temporal correlations to locality of reference.
Proposition 11: If for eachi = 1,..., N, the indicator processV.(i), t = 0,1, ...} associated with a request
streamR is PSMD, thenR <1 R whereR is the independent version &.
When the request streaf is a stationary sequence, the independent ver&oof R is simply the IRM whose

popularity pmf is the common marginal of the request strdam

Proof. Fixi=1,...,N. Under the enforced assumptions, the sequémGé:), ¢t = 0,1, ...} associated wittR is
PSMD. This amounts t§V; (i), t = 0,1,...} <4 {Vi(i), t = 0,1,...}, where the sequendd/; (i), t = 0,1,...}
is the independent version of the indicator sequeficgi), ¢t =0,1,...}. With R= {Rt, t=0,1,...} being the

independent version of the request streBmit is plain that

{ﬂ@%t:QL”}:ﬁﬂmMUZQ,t:QL”},i:L”wN



and the proof is completed. [

In what follows, we investigate whether various request models of interest display temporal correlations in the
sense of the TC ordering. These models include the higher-order Markov chain model, the partial Markov chain

model and the Least-Recently-Used stack model.

IV. HIGHER-ORDERMARKOV CHAIN MODEL

Several higher-order Markov chain models have been proposed to characterize Web request streams (e.g., see
[10, 14, 26] and references therein) due to their ability to capture some of the observed temporal correlations. In this
section we present a model, recently proposed by Psounis et al. [26], which captures both the long-term popularity
and short term temporal correlations of Web request streams.

The model can be described as follows: I\&tvalued rvs{ Ry, . .., R,—1} be the initial requests and I¢t;,t =
0,1,...} be a sequence of i.i.dV-valued rvs withP [Y; =i = p(i) for eachi = 1,...,N. The pmfp =
(p(1),...,p(N)) is assumed to be admissible (2) and as we shall see shortly, it will turn out to be the popularity
pmf of this model. Next, with) < a1,...,ap, < 1 and 22:1 ar <1, let {Z;,t =0,1,...} be another sequence
of i.i.d. {0,1,..., h}-valued rvs with

PlZ,=kl=ap, k=1,....,h and P[Z,=0]= —1—Zak>0 t=0,1,...

i.e., the rvZ, is distributed according to the pnet = (5, a1, ..., ). The collections of rv§ Ry, ..., Rr-1},
{Y;,t =0,1,...} and{Z;,t = 0,1,...} are mutually independent. For eath= h,h + 1,..., the requesiR; is

described by the evolution

h
Ry =1[Z,=0Y;+ Y 1[Z =k Ri . ®)
k=1
In words, the requesk; is made to the same document requested at time:, namely R, with probability

ay, for somek = 1,..., h; otherwiseR; is chosen independently of the past according to the popularitygpmf
andR; =

The request§ R;,t = 0, 1,...} form anh!"-order Markov chain since the value &f; depends only on the rvs
Ri 1,...,Ri_p. Infact, fort = h,h+1,..., we have from (8) that for anfiy,...,i;_1) in NV,

PR =i|R, =ir,7=0,....t—1] = fp(i)+ Y opllip_p =1 )
= PR =R, =ip, 7=t —h,...,t—1].

With 3 > 0, this ht"-order Markov chain is irreducible and aperiodic on its finite state space; its stationary

distribution exists and is unique. It can be shown [26] that

lim P[R; =4 = lim — Zl =p(i) a.s. (20)

t—o00 t—oo t



foreachi =1,..., N, and it is therefore warranted to call the ppthe long-term popularity pmf of this request
model. Moreover, there exists a unique stationary version, still denoted thereaff& by=0,1,...}.

The parameters of the model are the history window sizthe pmfa and the popularity pmp, and we shall
refer to this model by HOMM{, o, p). That the HOMM¢, o, p) exhibits temporal correlations is formalized in
the next result.

Theorem 12: Assume the request strealh = {R;,t = 0,1,...} to be modeled according to the stationary
HOMM(h, o, p) with 3 > 0. Then, it holds thalR <, R whereR is the IRM with popularity pmp.

Proof. By Proposition 11, it suffices to show for ea¢h= 1,..., N, that the indicator sequendd/,(i),t =
0,1,...} associated with the request stre&ris PSMD. To do so, we construct another sequenck’afalued rvs
R={R;,t=0,1,...} as follows: The rv§ Ry, ..., R,_1 } are i.i.d. rvs distributed according to the ppiind the

rvs {Rt, t=h,h+1,...} are generated through the evolution (8) with the help of mutually independent sequences
of iid. rvs {Y;,t =0,1,...} and{Z;,t = 0,1,...} distributed according to the pmjfs and «, respectively. The
collections of rvs{Y;,t = 0,1,...} and{Z,,t = 0,1,...} are taken to be independent of the {\By, ..., R;_1}.

By construction, the procesé = {Rt,t =0,1,...} is anh'h-order Markov chain and with¥ > 0, we get
{Riyr, t=0,1,..} =, {Ry, t =0,1,...}. (11)

Fix i = 1,...,N. Let {V;(4) = 1 [Rt :z} , t = 0,1,...} be the indicator sequence associated with the
sequenceR defined earlier. We will show that this sequendé (i), t =0,1,...} is CIS. For eacht = 0,1, ...,
setV' (i) = (Vo(i), ..., Vi(i)). Because the sequen¢®;(i),t = 0,1,...} is a sequence of0, 1}-valued rvs, it is
CIS [27] if for eacht = 0, 1,.. ., the inequality

P Vi1 () = 11V () = 2] <P [V (i) = 11V () = o] (12)

holds for all vectorse? = (xo,...,z;) andy’ = (yo,...,y:) in {0,1}! with ! < y* componentwise.
Fort=0,1,...,h — 2, it holds for allz* = (x,...,z;) in {0,1}*! that

P [f/;sﬂ(z) — 1V () = wt} =P [‘7#1(2) = 1} =P [RtJrl = Z} = p(i) (13)

by independence of the nR&y, ..., Ry_1, and the inequality (12) is obtained for each- 0,1,...,h — 2. Next,
fort=h—1,h,..., andz! = (x,...,2¢) in {0,1}'L, let (io,...,i;) be an element io\*+! with the property
that for eachk =0, ...,t, iy =i if z = 1 andiy # i if z;, = 0. With such an element, we obtain from (9) that

PWH@:HQWHEQ:%WWM}: P@m:ﬂ@w”ﬁg:%wqm
h

Bp(i) + ) il [ips1-k = ]

k=1

h
Bp(i) + Z Tyl - (14)
k=1



Since (14) holds for anyio, ...,i;) in N**! satisfying the property above, a standard preconditioning argument

readily yields
h
~ . ~ .
P [Visa(i) = 1V (5) = @] = Bp(i) + > i (15)
k=1
This last expression being monotone increasingein = (zo,...,z;), we obtain the inequality (12) for each
t=hh+1,...

Thus, the inequalities (12) hold fatl t = 0,1, .... This implies that the sequendé/; (i), t = 0,1,...} is CIS,
whence indeed PSMD by Theorem 6, i.e.,

(Vi(i), t=0,1,...} <um {Vi(d), t=0,1,...} (16)
Where{f/t(z’), t=0,1,...} is the independent version ¢, (i), = 0,1,...}. Now, recalling (11), it is plain that
(Vier (i), t=0,1,...} =, {Vi(i), t=0,1,...} (17)

where {V;(i), t = 0,1,...} is a sequence of i.i.d{0, 1}-valued rvs withP {%(i) = 1} = p(i) and is exactly
the independent version di;(:), ¢ = 0,1,...}. By invoking the fact that the sm ordering is closed under weak
convergence [24, Thm. 3.9.8, p. 116], we conclude from (11), (16) and (17) that

{(Vi(d), t =0,1,...} <em {Vi(0), t=0,1,...}.

Therefore, the sequendd’;(i), t =0,1,...} is PSMD for each = 1,..., N, and the proof is completed. m

V. THE PARTIAL MARKOV CHAIN MODEL

The partial Markov chain model was introduced as a reference model for computer memory paging [2]. It is a
subclass of higher-order Markov chain models and corresponds to HGMMp) with parameter, = 1. In that
case, we havex = (4, a1) wherea; = 1 — 8 and we refer to this model as PMNL(p).

Under this model, with probability — 5, R; = R;_1, otherwise with probability3, R, = Y;, i.e., R; is drawn
independently of the past according to the popularity pmTherefore, for a given popularity pmf, it is natural
to expect that the smaller the value of correlation parametéhe greater the temporal correlations exhibited by
the PMM(@G, p). In the extreme cases, @&s] 1, the PMM(3, p) becomes the IRM with popularity pmf and there
are no temporal correlations. On the other handj ds0, all the requests are made to the same document, hence
displaying the strongest possible form of temporal correlations. The following result, which contains Theorem 12
when h = 1, formalizes these statements with the help of the TC ordering, thereby confirming the intuition that
the parametefs of PMM(3, p) indeed constitutes a measure of the strength of temporal correlations.

Theorem 13: Assume for eack = 1,2 that the request streaR’* = {Rf’“, t=0,1,...} is modeled according
to the stationary PMMg|,, p) for some pmip onN. If 0 < 35 < f31, thenR"* <, R™.

The proof of this theorem relies on the following comparison of Markov chains under the supermodular ordering

due to Biuerle [5].
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Theorem 14: Let X = {X;, t = 0,1,...} andX' = {X/, t = 0,1,...} be two stationary Markov chains on
{0,1,...,n} with transition matriced® andP’, respectively. Fofy, ..., v, > 0 with0 < Z;;O v; < 1, define the
(n+1) x (n+ 1) matrix

[ 1= k0 M Tn ]
o 1=2m T
QY0+, 7m) = _ N _ (18)
Y0 el e 1=

With P = Q(vo, - - -, Yn) @ndP’ = Q(cyo, - - ., ¢y for somed < ¢ < 1, it holds thatX <., X'.

Proof of Theorem 13. Fix i =1,..., N. Given a sequenc®” = {Rf, t=0,1,...} modeled according to the
stationary PMMg, p), it follows from (15) that the indicator sequen@éff(i), t=0,1,...} associated withR”
is a Markov chain o0, 1} with
P [V (i) = 1|VE (i) = w0, ..., V], (i) = xt_l} =Bp(i) + (1 - Bar_1, t=1,2,...
for any (zo,...,z;_1) in {0, 1}%. Its transition matrixP” (i) is simply given by
1—pp(i)  Bp(i)
B —p(i)) 1-pBQ1—p(i))
or equivalently, in the notation (18), b¥”(i) = Q(v0,71) where~, = B(1 — p(i)) and~, = SBp(i) with

PPy =

0<yw+mn=p<1L

For two stationary PMM request streanf®” and R”* with 0 < 8, < 1, we can always write?, = ¢3;
with 0 < ¢ = 82 < 1. Thus, the Markov chaingV/” (i),t = 0,1,...} and {V/**(i),t = 0,1,...} have transition
matricesP™ (i) = Q(v0,71) and P2 (i) = Q(co, ¢y1), respectively, withyy = 31(1 — p(i)), v1 = fip(i) and
c= %. By applying Theorem 14, we obtain the comparigofn’ (i), t = 0,1, ...} <em {V{2(i),t =0,1,...} for

eachi = 1,..., N, whenceR”* <o R". ]

VI. LEAST-RECENTLY-USED STACK MODEL

The Least-Recently-Used stack model (LRUSM) has long been known to be a good model for generating
sequences of requests whose statistical properties match those of observed reference streams [11, 29]. We first
state its definition and basic properties, and then show that under some appropriate assumptions on the model, the

LRUSM exhibits stronger strength of temporal correlations than its independent version in the TC ordering.

A. LRU stack and stack distance

Let A(N) denote the set of all permutations of thiedistinct document$1, ..., N}. Equivalently, an element of

A(N) is an ordered sequence &f distinct elements drawn from the sft, ..., N'}. It is convenient to picture such
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an elemenf) = (Q(1),...,0Q(N)) of A(N) as astack with ©2(1) in the top position, followed by2(2), ..., Q(N),
in that order.

Given an initial stack,, with any stream of reques® = {R;, t =0, 1, ...}, we can associate a stack sequence
{Q,t =0,1,...} through the following recursive mechanism (which emulates the stack behavior of the LRU policy
as explained below): For ea¢h=0,1,.. ., let D; denotes the position of the documd®t,, in the stack(),, i.e.,

the rv D; is the unique element dfl, ..., N} such that
Qt (Dt) == Rt+1. (19)

The stack2,; is then given by
Q4 (Dy) if k=1
Qp1(k) =9 Quk—1) ifk=2,...,D; (20)
Q(k) if k=D;+1,...,N.
In words, the documer®,(D;) = R+, is moved up to the highest position (i.e., position 1) in the stagk;
at time¢ + 1 and the document&,(1),...,Q:(D; — 1) are shifted down by one position while the documents
Qe (Dy +1),...,2%(N) remain unchanged. We refer to the {B,,t = 0,1,...} so defined as the stack distance
sequence associated with the request str&am
Conversely, given the initial stadR, in A(N), with any sequence dfl,..., N}-valued rvs{D;,t =0,1,...},
we can use the stack operation (20) to generate a sequed¢d/Ofvalued rvs{Q ., ¢ = 0,1,...}. A request stream

R is readily generated from this stack sequence by reading off the top of the stack, i.eR with2y(1), we have
Ryq :Qt(Dt) = QtJrl(l)v t=0,1,... (21)

The rvs{D;,t =0,1,...} form the stack distance sequence associated with the request d&ekafined at (21).

The stack and stack distance introduced above are often referred to as LRU stack and stack distance, respectively,
in reference to the popular Least-Recently-Used (LRU) policy. The LRU policy evicts the document in the cache
which was requested the least recently at the time the replacement is required. Its dynamics are best described
through the notion of LRU stack and stack distance as we now briefly explain: Returning to (20), we see that the
stack(); at timet ranks the documents according to their recency of reference with the most recently requested
document remaining at the highest stack position. For éaehl, ..., N, the documenf2,;(k) at positionk in the
stack (), is the k** most recently referenced document at timéence the name, LRU stack. Consequently, the
documents,(1),...,Q:(M) in the first M positions of the stack); simply yield the documents in cache under

the LRU policy with cache sizé/ when the request®,, ..., R, have already been servéd.

B. The LRU stack model

The duality between streams of requests and stack distances embedded in (20) can be used to advantage in defining

sequences of requests with temporal correlations. We present one of the simplest ways to do just ttesstThe

“This stack implementation of LRU is one of the factors behind its popularity.
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Recently-Used stack model (LRUSM) with pmfa on \V is defined as the request stred®f = {RZ,t =10,1,...}
whose stack distance sequer{de,,t = 1,2,...} is a collection ofi.i.d. rvs distributed according to the praf,
ie.,

PDi,=kl=ar, k=1,...,N;t=0,1,...,

given some arbitrary initial stacR, in A(N). Throughout we assume that the @ is independent of the stack
distances{ D;,t = 1,2,...}, and uniformly distributed oveA(N). In that case, the stack {2, t =0,1,...}
form a stationary sequence, and so do the requesf{ R&,t = 0,1,...}. This request model is denoted by
LRUSM(a).
The popularity pmf of the LRUSM is discussed first in Proposition 15; its proof can be found in [35].
Proposition 15: Assume the request stredRf = {R2,t = 0,1,...} to be modeled according to the stationary
LRUSM(a). If an > 0, then foreach = 1, ..., N, it holds that

1

t
Pa(i) = tlirgzot Zl[R?zi] =5 o5
T=1

Thus, under LRUSM, as every document is equally popular, locality of reference is expressed solely through
temporal correlations with no contribution from the popularity of documents. This was found to be a drawback
of the LRUSM for characterizing Web request streams, and several variants of this model have been proposed to

accommodate this shortcoming [3, 8.

C. Temporal correlationsin LRUSM

As was done with the HOMM, we explore how temporal correlations exhibited by the LRUSM can be charac-
terized through the TC ordering. The main result is contained in
Theorem 16: Assume the request streaRf* = {R¥,t = 0,1,...} to be modeled according to the stationary

LRUSM(a) with stack distance pmf satisfying
a1 >az>...>any > 0. (22)

Then, it holds thaR® <, R® whereR® is the independent version 8.

A proof of Theorem 16 is omitted in the interest of brevity, but is available in [35]. Under the assumptions of
Theorem 16, the independent versiff of the stationary LRUSM{) is simply the IRM with uniform popularity
pmfu = (%, cee %). In fact, it is not hard to see that the stationary LRU&M{ndeed coincides with the IRM

with uniform popularity pmfu.

VIl. THE MISS RATE AND ITS FOLK THEOREM

Themiss rate of a caching policy is defined as the long-term frequency of the event that the requested document is
not found in the cache; it provides a measure of the effectiveness of the caching policy. It is a commonly held belief

that good caching takes advantage of locality of reference in that the stronger the strength of temporal correlations
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(i.e., the stronger locality of reference) in the stream of requests to the cache, the smaller the miss rate. We explore
this “folk theorem” in the context of demand-driven caching which is briefly introduced in this section. Specific
results and conjectures are provided in Section VIII under PMM, HOMM and LRUSM and in Section IX under
general Web request models exhibiting temporal correlations.

The system is composed of a server where a copy of each d¥tbhacheable documents is available, and of a
cache of sizeV (1 < M < N). Documents are first requested at the cache: If the requested document has a copy
already in cache (i.e., a hit), this copy is downloaded from the cache by the user. If the requested document is not
in cache (i.e., a miss), a copy is requested instead from the server to be put in the cache. If the cache is already
full, then a document already in cache is evicted to make place for the copy of the document just requested.

Let S; denote the collection of documents in cache just before tirme thatS; is a subset of\/, and letU;
denote the decision to be performed according to the cache replacementmpaliégrce. Demand-driven caching

is characterized by the dynamics

Sy if Ry €5
Stp1=19 S+ Ry if Ry &S, |Se| <M (23)

Se—U+ Ry if Ry & 54,18 =M
where |S;| denotes the cardinality of the s&%, and S; — U; + R; denotes the subset dfl,..., N} obtained
from S; by removingU; and then addind?; to it, in that order. These dynamics reflect the following operational
assumptions: (i) actions are taken only at the time requests are made, hence the terminology demand-driven caching;
(il) a requested document not in cache is always added to the cache if the cache is not full; and (iii) eviction is
mandatory if the requestR; is not in cacheS; and the caché&; is full.

The decisiondU,, t = 0,1,...} are determined through an eviction poligy In most policies of interest, the
dynamics of the cache can be characterized through the evolution of suitably defined vdiaples= 0,1, ...}
where); is known as thetate of the cache at timet. The cache state is specific to the eviction policy and is selected
with the following in mind: (i) The setS; of documents in the cache at timecan be recovered from,; (ii) the
cache staté),; is fully determined through the knowledge of the trigle., R,, U;) in a way that is compatible
with the dynamics (23); and (iii) the eviction decisiéfy at timet¢ can be expressed as a function of the past
(Q0, Ro, Uo, ..., —1, Re—1,Us—1, 4, R¢) (possibly through suitable randomization), i.e., for eack 0,1, ...,
there exists a mapping; such that/; = m.(Qo, Ro, Uo, . . ., -1, Re—1, Ui—1, 4, Re; E¢) where the nE, is taken
independent of the pa&, Ry, ..., U;—1, 2, R;). Collectively the mappingém:, t = 0, 1, ...} define the eviction
policy .

For example, under the random poltgyve can take the cache stadg to be the (unordered) s&t of documents
in the cache while under the LRU policy, the cache sfateis is a permutation of the elements & for all
t=0,1,...

Under the random policy, when the cache is full, the document to be evicted from the cache is selected randomly according
to the uniform distribution.
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Under the cache replacement policy the miss rateVl . (R) when the input to the cache is the request stream

R is defined as the limiting constant

M,(R) = lim - 213 ¢ 5] as. (24)

t—oo t

whenever the limit exists. Almost sure convergence in (24) (and elsewhere) is taken under the probability measure

on the sequence of s, R;, Uy, t =0,1,...} induced by the request streaR) through the eviction policyr.

VIII. FOLK THEOREMS ON VARIOUS REQUEST MODELS
A. PMM

The miss rates of PMM under demand-driven cache replacement policies have been previously considered in [2].
For particular caching policies such as LRU and FIFO, the miss rate under BMic shown to be proportional
to the miss rate of the IRM with the same popularity pmfwe first demonstrate this fact in some generality and
then use it to compare the miss rates of two PMM streams with different strength of temporal correlations.

As we seek to evaluate the limit (24) for the PMBAfp) under the cache replacement policywe shall need

the following definitions: For eacl’ = 1,2, ..., define
T
T)=> 1(2 =
t=1

as the number of times from time 1 up to tirfiethat the requests are chosen independently of the past according
to the popularity pmp. Also, for eachk = 1,2,..., lety(k) = inf{t = 1,2,...: A(t) = k}. Under demand-driven

caching with the PMM input, a miss can only occur at the time epach$ (k = 1,2, ...) at which point we have

Rf(k,) =Y, (). Therefore, it follows from the definition of the ngy(k), £ = 1,2,...} that
T A(T) A(T)
SR ¢S] = D[R ¢ Syw| = D1 [Vam £ Sw] . T=1.2,
t=1 k=1 k=1

and the miss rate under PMWl(p) is given by
T
1 . AT)
By — - 6 _
Ma(R) = Jim 31 [R5 =i ()
By the Strong Law of Large Numbers, we see that the limit of the first term in (25) is simply

A(T)
Tlgr(l)o T 7T13170T21 [Z:=0]=p0 a.s. (26)

AT)

LYy ¢ Syom] | - (25)
k=1

The limit of the second term in (25) in general does not necessarily have a closed-form expression. However, It
does admit a simple expression in the special case when the cache replacement psaliisfies the following
condition:

(¥) Forallt=1,2,..., if Ry = R;_1, then the cache state and eviction rule at titme 1 are the same as those

at timet, i.e., Qt+1 = Qt and Ut+1 = Ut.
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Under this condition, we can write the second limit as
1 (T)

. 1 .
A sy 2 D # Syw] = Jim o ; LYy ¢ Sy = Mx(p) 27)

>
~
=

=
Il
—

where]\Z/ﬂ(p) is the miss rate of the IRM with popularity prpf under the policyr. The last equality follows from
the fact that the rv§Y,, 1y, £ = 1,2,...} form an IRM with popularity pmfp and that by Conditionx), the cache
sets{S,),k = 1,2,...} are similar to the cache sets under the policyshen the input is the IRM sequence
{Y, k), k= 1,2,...}. Combining (25), (26) and (27) yields the expression for the miss rate of Rij(as

Mr(R°) = B M (p). (28)

Condition ) is satisfied by many cache replacement policies of interest, e.g., the pblictshe LRU, FIFO and
random policies, but not by the CLIMB policy [31]. Equipped with the expression (28), we can now conclude to
the following monotonicity result.

Theorem 17: Assume that the cache replacement poficsatisfies Condition) and that for each = 1,2, the
request streanR” = {Rfk, t =0,1,...} is modeled according to the stationary PMM|(p) for some pmfp on
N. Then,M,(R") < M,(R"") wheneved < (3, < f3;.

In view of Theorem 13, we conclude that the folk theorem on the miss rate indeed holds for stationary PMMs

under any cache replacement policy which satisfies Conditihn (

B. HOMM

Consider the following situation: LR be HOMM(, o, p) for some pmf vectorg on A anda on {0, ..., h},
respectively. For som@ < ¢ < 1, let R° denote HOMM¢, a¢, p) where a¢ is obtained froma by taking
af =coy foreachk =1,... h,andf®=1—-c(1 - B8) =B+ (1 —¢)(1 — B). Obviously,3° > 3 while af, < a;,
for eachk = 1,...,h. In other words, under HOMM(, ««, p), there is a smaller probability to generate a new
request independently of past requests than under HOMM, p). Therefore, in an attempt to generalize Theorem
12, it is reasonable to think that HOMRK(« ¢, p) has less temporal correlations than HOMiM, p) according
to the TC ordering, i.e.R° <p¢c R. Taking our cue from Theorem 17, we would then expect the inequality
M. (R) < M,(R°) to hold for some good caching policies. We summarize these expectations as the following
conjecture:

Conjecture 18: Assume the request stred®to be modeled according to HOMM(cx, p). For somé) < ¢ < 1,
if R® is modeled according to HOMM( ¢, p) with a® = (1 — ¢(1 — ), caq,...,cay), then the comparison
R° <p¢ R holds. Furthermore, under some appropriate cache replacementpatibplds that\l .(R) < M, (R°).

Establishing this conjecture appears to be much more difficult than for the PMM, and requires further investigation.
However, in support of this conjecture, we have carried out several experiments under the LRU policy when the

input to the cache is modeled according to the HOMM. Throughout, wéVfix 100 and let the input popularity
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Fig. 1. LRU miss rates for various cache sizes when the input to the cache is the HOMM(), p, s) With o (5) =
(67 %7 R %)

pmf be the Zipf-like distributiorp,, with parameterx = 0.8, i.e.,

F—

N
p(i):pa(i)zﬁ, i=1,...,N, with Co(N):=> i (29)
« i=1

The Zipf-like distribution has been found appropriate for modeling the popularity distributions of observed reference
streams in several data sets [9]. We consider five different classes of HOMM, each with different history window size
h=1,...,5.In each class, the input streaRf’ (with 0 < 3 < 1), is generated according to HOMRK(ar(8), p,)
with a, (8) = (8, 52,..., 152). The validity of Conjecture 18 would require that the mappihg> M 1ru(R”)
be increasing.

From Figure 1, the miss rate is indeed found to be increasing as the pardinieteeases for all cases and for
all cache sizes. Wheh = 1, HOMM reduces to PMM and the results here confirm the validity of the expression
(28) and of Theorem 17. It is interesting to note that for a given cachelMizthe miss rates of all HOMM input
streams withh, < M are the same as the miss rate of the PMM. This suggests some form of insensitivity of the
LRU miss rate under the HOMM to the history window sizeand to the pmia. Lastly, for all cases and for all
cache sizes, the miss rate always goe8 &3 3 goes to0. This is due to the fact thatm, .., P [R? = R?_l} =1

whenever the:"-order Markov chainR’ is aperiodic.
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C. LRUSM

According to Theorem 16, the stationary LRUSM (with stack distance pmé satisfying condition (22) has
stronger strength of temporal correlations than the stationary LRWEMIG the vein of Theorem 13, it is then
natural to wonder when does the LRUSWl(have weaker temporal correlations than the LRU&Mior pmf b
not necessarily uniform. Theorem 16 suggests that this could happen when theipmfore skewed toward the
smaller values of stack distance than the @gmér equivalently, that the componentsifire more balanced than
the components o&. The skewness in pmfs is naturally captured through the notiomapbrization [21]: For

vectorsz andy in R, we say thate is majorized by y, and writex < y, whenever the conditions

n n N N
Zx[l]gz:ym, n=1,...,N -1, and Z.ﬁzzzyz (30)
=1 =1 =1 =1

hold with z(y) > zg) > ... > 25 @andypy > yp2) > ... > yjn) denoting the components af andy arranged in
decreasing order, respectively. It is well known that< a for any pmfa on A/. With this notion, we can now
state the following conjecture.

Conjecture 19: Consider request strearf®&* andR® which are modeled according to the stationary LRUGM(
and LRUSMp), respectively. If both pmfa andb satisfy (22) withb < a, then the comparisoR® <« R® holds.

When both pmfsy andb satisfy (22), the conditions (30) for the majorization comparigcx a to hold reduce to

ibigzn:ai, nzl,...,N—l. (31)
i=1 i=1

This condition is a formalization of the statement that the pnig more skewed toward the smaller values of stack
distance than the pnif.®

To glean evidence in favor of Conjecture 19, we consider the LRU policy and note that thé/fipstsitions
of the LRU stack); associated with the LRUSM are simply the documents in the LRU cache of\giz¢ time
t + 1. Thus, a miss of the LRU cache of siaé will occur at timet¢ + 1 if D; > M and the miss rate under the
LRU policy for the LRUSM@) can alternatively be given by

1 t N
Mypy(R®) = Jlim - 1D, >M] = P[D,>M] = Y a as (32)
=1 k=M+1

upon making use of the Strong Law of Large Numbers. Combining (31) and (32), we conclude that for two LRUSM

request stream®* and R? satisfying the conditions of Conjecture 19, it holds thd{ gy (RY) < MLRU(R").
This is of course the desired inequality expressing the folk theorem for miss rates under the LRU policy which

would be expected if Conjecture 19 were to hold.

IX. WORKING SET (WS) ALGORITHM

We now take a first step toward establishing the folk theorem for the miss rate under general Web request models
that exhibit temporal correlations. We do so by focusing on a specific replacement policy called the Working Set
(WS) algorithm.

®The condition (31) is equivalent to the usual stochastic ordering [27] between theapanfd b wherea <.: b.
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The working set model was introduced by Denning [12], and can be defined as follows: Consider a request stream
R={R;,t=0,1,...}. Fixt=0,1,.... For eachr = 1,2,..., we define the working sét/ (¢, 7; R) of lengthr
at timet to be the set oflistinct documents occurring amongst the pastonsecutive requests ;. 1)+, . ., R,
The size of the working sdi/ (¢, ; R) is denoted byS(t, 7; R). The working set and its size have been used as
measures of strength of locality of reference. Some of their properties are discussed in [13].

Fix = = 1,2,.... The Working Set (WS) algorithm with length is the algorithm that maintains the previous
T consecutive requested documefts_,+,..., R;—1 in the cacheS; at timet. In other words, the cach§; is
simply the working setV (¢ — 1, 7; R) with the conventiodV (—1,7; R) = ¢. This algorithm differs from other
demand-driven caching policies in that the number of documents in the cache may change over time while demand-
driven caching policies have a fixed cache side(as soon as each document has been called at least once). The
number of documents in the cache at titnender the WS algorithm is basically the number of distinct documents
in W(t — 1, 7; R) which is the working set siz8(¢t — 1, 7; R).

The operation of the WS algorithm can be described as follows: For eacl, 1,.. ., let Q; be the state of
the cache at time defined byQ); = (R;_,)+,..., R;—1). It is easy to see from this definition that the cache state
Q.41 is completely determined by the previous cache stateand the current requedt;. Furthermore, the cache

setS; can be recovered frof}; by taking
Si={i=1,....,N:ie}=W(t-1,7R), t=0,1,....

For ¢ > 7, regardless of a cache miss, the WS algorithm will evict the docuRent if R;,_, ¢ W (t,7; R) and
does not evict any document, otherwise.
The miss rate of the WS algorithm with lengthcan be defined in the same way as in the case of demand-driven

caching; it is given by the a.s. limit

T T
.1 1
Mws(R) = Tlgréof g 1[R: ¢ S:] = TIEI;OT g 1[R: ¢ W(t—1,7;R)] a.s. (33)
t=1 t=1

Given an input streanR = {R;,t = 0,1, ...}, let{V;(i),t =0,1,...},i=1,..., N, be the indicator sequences
(6) associated with it. Recall from (33) that a miss occurs at timden the documenk ; is not in the working

setW(t — 1, 7; R). Thus, the indicator function for the miss event at titnie 7 can be written as
1[Rt %W(t—l,T,R)] = 1[Rt ¢ {Rt—77---7Rt—1}]

i]1[i ¢ {Rt—ry..., Ri_1}]

I I
M= 1[]=
— [
0>
\ I

— i [T [Ree # 1)
=1

N T
= Y Vi) ] - viee(i)
=1 =1

"For anyz € R, we set(z)" = max(0, z).
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N
= > g(Vir(i),... . Vi(i)) (34)

=1
where we have set

7—1
g(an”-axT):x‘r H(]-_xE)a ($07~-~7x7)€RT+1' (35)
=0
Combining (33), (34) and (35) yields the miss rate under the WS algorithm as the limit

Ms(B) = %Ef;o—ZlRtw ~17iR)
T—717+1
1. PR
T+7' 1 N
Tlggof Z ZQVt @)y, Vi (3))  a.s. (36)

and if the request strea® admits some form of ergod|C|ty, then the limit (36) exists. One such condition for the
existence of the limit (36) is given in the next lemma whose proof is available in [31].
Lemma 20: Fix T = 1,2,.... Assume the request stredth= {R;,t = 0,1, ...} to couple with a stationary and

ergodic sequence of -valued rvsR = {Rf,t =0, 1, ...}. Then, the a.s. limit (36) exists and is given by

Mws(R) = hmZE (Vier(i),...,Vi(@)]  a.s. (37)

t—o00

To establish the folk theorem to the effect that the stronger the temporal correlations, the smaller the miss rate,
we need to show that
Mws(RQ) < Mws(Rl) whenever 1%1 <rc RQ. (38)

Therefore, upon recalling the definitions of the TC and sm orderings, we see from (37) that establishing (38) amounts
to showing that the mapping given in (35) is submoduldt.Unfortunately, the mapping is not submodular in
general; only in the special case= 1 is g a submodular function. We shall discuss these issues by first showing

the positive result whem = 1 and then providing counterexamples using the PMM when 1.

[t =1] — WhenT =1, we note thatS(t — 1,7; R) = 1 forall t = 1,2,. .., and the WS algorithm coincides with
any demand-driven caching policy having cache side= 1. In that case, the only document in the cache at time
t is the documen?;_; and a miss occurs wheR; # R;_1. The folk theorem holds in this special case for all
demand-driven caching policies.

Theorem 21: Consider an arbitrary demand-driven replacement paliayith M = 1. If the request streanR *
andR’ satisfy the relatioR' <rc R?, then it holds thaP [R? ¢ S?] <P [R} ¢ S}| foreacht =1,2,....

Proof. Fix k =1,2. For eacht = 1,2,..., we have from (34)-(35) that

N
L[RE ¢ SF] = 1[RE# R = D9V (0), V(D)

8A function ¢ : R™ — R is said to be submodular i# ¢ is supermodular.
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with the mappingy : R? — R being given byg(xz¢, z1) = z1 — oz, for any(zo, z1) € R%. Because the mapping
(xo,21) — xox1 IS supermodular, the mappin@o, z1) — —xoz1 IS submodular. The mappin@o,z1) — 1
being submodular, the mappingis therefore submodular since the sum of two submodular functions is still a
submodular function.

Given two request streanf?' andR? such thaiR' < R?, we recall the comparisod#/,! (i),t = 0,1,...} <.n
{V2(@i),t = 0,1,...} for eachi = 1,...,N. Thus by the definition of the sm ordering, we obtain for each
t=1,2,...,

N N
PRI ¢ ST = X E[(VE60).V2@)] = X BVl @),V 6)] = PR ¢S]

The desired result is a simple consequence of Lemma 20 and Theorem 21.

Corollary 22: Consider an arbitrary demand-driven replacement paliagth M = 1. If the request streanR *
andR? couple with stationary and ergodic sequence¥ efalued rvsf%1 andRQ, respectively, and satisfy the relation
R' <;c R?, then it holds thaMws(R?) < Mws(R").

[T > 1] — The folk theorem (38) does not necessarily hold whern 1 as we now demonstrate via counterexamples
when the PMM is taken to be the input to the cache.
The miss rate of the WS algorithm with Iengthfor PMM(8, p) [2] is given by

Mys(8,p) = 5Zp ))(L = Bp(@)) . (39)

From Section V, we would expect that as the strength of temporal correlations increases, i.e., the value of the
parameters decreases, the miss raléws (5, p) should be decreasing. To put it differently, the mappihg-
Mws (8, p) should be increasing when the popularity pmfs held fixed.

However, this is not always the case as we show in the counterexamples where the PMM stream is assumed to
have the uniform popularity pmi = ( & ,...,%).

Theorem 23: Assume the input stream to be modeled according to PBIM]. Under the WS algorithm with
lengthr, the miss rate functiohlws (3, w) given in (39) is increasing iff when < % and decreasing ifi when
g> L.

Thus, the folk theorem always holds when the lengtiof the WS algorithm is smaller than the number of

documentsV but may fail to hold otherwise.

Proof. When the PMM has the uniform popularity pmf the expression (39) for the miss rate under the WS

Ms(8,) = 3 <1 - %) (1 - %)Tl.

algorithm becomes
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Differentiating this expression with respect foyields

omian=(-0)(-5)"(-%)

Thus, the miss rate functiolws(53, u) is increasing when — % > 0, or equivalentlys < % and is decreasing

when1 — 22 < 0, or equivalently,3 > . n

X. CONCLUDING REMARKS

We introduce the notion of TC ordering which is based on the concept of positive dependence called supermodular
ordering, for comparing streams of requests on the basis of the strength of their temporal correlations. We show
that the TC ordering can capture the strength of temporal correlations present in Web request models which are
expected to exhibit temporal correlations, e.g., the HOMM, PMM and LRUSM. We then establish the folk theorem
to the effect that the stronger the strength of temporal correlations, the smaller the miss rate when the input to the
cache is the PMM while for general request models, we show that the folk theorem does not always hold but it
does hold under the demand-driven caching policy with cache size 1.

In the next step, we would like to establish the folk theorem for the miss rate under various caching policies,
e.g., the FIFO and LRU policies, for general input streams with temporal correlations. As was done in [34] for the
popularity, it is also interesting to characterize the temporal correlations of the so-called output of a cache, which
is the sequence of requests for missed documents, in terms of the temporal correlations of the input stream and of

the cache replacement policy in use.
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