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Gauss, Statistics, and Gaussian EliminationG. W. StewartDepartment of Comuter Science andInstitute for Advanced Computer StudiesUniversity of Maryland at College Park1. IntroductionEveryone knows that Gauss invented Gaussian elimination, and, excepting a quib-ble, everyone is right.1 What is less well known is that Gauss introduced the pro-cedure as a mathematical tool to get at the precision of least squares estimates.In fact the computational component in the original description is so little visible,that it takes some doing to see an algorithm in it.Gaussian elimination, therefore, was not conceived as a general numerical algo-rithm with applications in statistics and least squares. Rather it was a procedurethat sprang from the interface of statistics and computation. Since the full story isknown only to the few who have consulted the original sources, I hope my readerswill be interested to see how Gauss did things. But there is more than the sat-isfaction of idle curiosity here. Gauss and Laplace were the premier statisticiansof their day, and Gauss alone was the premier numerical analyst. Today we stillhave something to learn from observing Gauss's practices.2. ChroniclesThe principle of least squares arose from the problem of combining sets of overde-termined equations to form a square system that could be solved for the unknowns.The problem went under the name of the combination of observations, and hasbeen well surveyed by Stigler [23] in his History of Statistics. By way of back-ground, I will relate in chronological order the major events in the story of leastsquares, from Gauss's �rst discovery to his �nal treatment in the 1820's.In his correspondence, Gauss asserted that he had discovered the principle ofleast squares in 1824 (or 1825, the dates vary). Gauss seems to have had little1The quibble is that in 1759, in the very �rst paper to appear in his collected works [14],Lagrange gave the basic computational formulas for Gaussian elimination. His purpose, however,was to determine if a critical point was a minimum, not to solve linear equations. There is noindication that the paper had any inuence on Gauss, or anyone else.1



2 Gauss, Statistics, and Gaussian Eliminationregard for the principle itself, and even said he thought others must have usedit before him. In June of 1828 Gauss [11, v. 10] made the following entry inthe little diary of discoveries he kept from 1796 to 1814: \Probability calculusdefended against Laplace."2 Laplace, following Boscovich [1, 16], had suggestedthat observations be combined by minimizing the sum of the absolute values ofthe residuals subject to the condition that the residuals sum to zero. Gauss feltthat this way of combining observations violated the dictates of probability theory,and his alternative was the �rst probabilistic justi�cation of least squares.The following entry in the diary, also dated June 1898, contains the statement:\The problem of elimination resolved in such a way that nothing more can bedesired."3 I take this entry to be the �rst reference to Gaussian elimination. Buta decade was to pass before Gauss published either the probabilistic justi�cationor the elimination procedure.Although we tend to regard Gauss chiey as a mathematician, it was as an as-tronomer that he �rst made his mark. On New Year's Day of 1801, the astronomerPiazzi discovered the asteroid Ceres. The new planet became unobservable afteronly nine degrees of an arc had been recorded, and astronomers were faced withproblem of determining where to look for it next. Gauss undertook the calcula-tion, using new techniques in physical astronomy and presumably his principle ofleast squares. At the end of 1801, he predicted where in the heavens the asteroidwould be found, and his reputation was made.Gauss, who was generally slow to publish, began work in 1805 on his TheoriaMotus Corporum Coelestium, in which he described his techniques for computingorbits and gave his �rst probabilistic justi�cation of the principle of least squares.He �nished in 1806, but his publisher, worried by German losses to Napoleon,insisted he translate the treatise into Latin. In consequence it did not appearuntil 1809 [2]. In the meantime, Legendre [20] published and named the methodof least squares (la m�ethode des moindres quarr�es) in an appendix to a memoirappearing in 1805. When the Theoria Motus �nally appeared, Legendre foundthat Gauss had claimed the principle for his own, and he took exception. Theresult was a priority dispute, which need not concern us here. 4In the Theoria Motus, Gauss had assumed the errors in the observations werenormally distributed. In 1811, Laplace [17] used his central limit theorem togive an essentially di�erent justi�cation of least squares. This is not the place to2In the original Latin: Calculus probabilitatis contra La Place defensus.3Problema eliminationis ita solutum, ut nihil amplius desiderari possit.4Placket [21] gives balanced survey with translations from Gauss's correspondence.



Gauss, Statistics, and Gaussian Elimination 3enter into details, but briey Laplace showed that the solutions of a combinationof equations were asymptotically normal and from this concluded that the leastsquares combination would minimize the mean absolute error in the solutions.Laplace's approach does not readily extend beyond two unknowns.The �nal chapter occurred in the 1820's when Gauss [5, 6, 8] published twomemoirs on least squares. The �rst, in two parts, contains yet another justi�cationof least squares|Gauss's famous minimum variance theorem. These papers alsocontain some nice algorithmics, which will concern us later.3. The Precision of EstimatesThe �rst appearance of Gaussian elimination in print occurs in Section 182 ofthe Theoria Motus. In order to understand what Gauss is about, we will have tosketch some background.Gauss (after a linearization) considers the model5y = Xb+ e;where X is n� p. The errors ei are assumed to be independent random variableswith common distribution '(e). Gauss introduces the function'(y1 � xT1 b)'(y2 � xT2b) � � �'(yn � xTnb); (3.1)where the xTi are the rows of X and uses a Bayesian argument with a uniformprior to argue that the value of b that maximizes (3.1) is the most probable valueof the unknowns.Gauss now supposes the distribution of the ei is normal; that is, '(e) / e�h2e2 .He identi�es the parameter h with the precision6 of y. The function (3.1) nowbecomes proportional to e�h2
; (3.2)where 
 = (y�Xb)T(y �Xb)5We will make free use of matrices in what follows, but only as a means of abbreviatingGauss's scalar equations.6We must not use terms like variance or standard deviation here. The number h is simply aparameter in a speci�c distribution. Only in the Theoria Combinationis will Gauss introducethe second moment of a general distribution as a measure of variation.



4 Gauss, Statistics, and Gaussian Eliminationis the residual sum of squares. Thus, Gauss's most probable value is obtainedby minimizing the residual sum of squares, which justi�es the principle of leastsquares. The normal equations can be derived as usual by di�erentiation.Gauss next turns to the problem of estimating the precision of the least squaresestimates. His technique is to integrate all but the last unknown out of (3.2), afterwhich the precision can be read o�. However, to perform the required integrations
 must be expressed in a special form, and the tool for arriving at that form isGaussian elimination.The procedure as given by Gauss is the following. Letu1 = 12 @
@b1 � r11b1 + r12b2 + � � �+ r1pbp � s1; (3.3)and let 
1 = 
� u21r11 : (3.4)Then clearly the derivative of 
1 with respect to b1 is zero, so that 
1 is indepen-dent of b1.One more step will illustrate the general procedure. Setu2 = 12 @
1@b2 � r22b2 + r23b3 + � � �+ r2pbp � s2:Then 
2 = 
1 � u22r22is independent of b1 and b2. Continuing in this manner we arrive at the decom-position 
 = u21r11 + u22r22 + � � �+ u2prpp + �;in which ui is independent of b1; : : : ; bi�1 and � is constant.Gauss now considers the expressione�h2
 / exp��h2 u21r11� � exp��h2 u22r22� � � � exp��h2 u2prpp�:and integrates with respect to b1 over the real line. Since the last p� 1 factors inthis expression are free of b1, they remain unchanged by the integration. The �rst



Gauss, Statistics, and Gaussian Elimination 5factor integrates to a constant. Thus Gauss is left with a distribution proportionalto e�h2
1 / exp��h2 u22r22� � � � exp��h2 u2prpp�;which is free of b1. Continuing this process of integrating out the parameters bi,Gauss �nds that the distribution of bp is proportional toexp��h2 u2prpp�;where up = rppbp � sp:Gauss concludes that the most probable value of bp, obtained by setting up = 0,is b̂p = sprppand its precision is hprpp :Gauss now goes on to show that if you write the normal equations in the formAb = c (3.5)and express b as a function of c in the formb = Vc; (3.6)then the (p; p)-element of V is 1rpp . Since the resulting expression for the precisionclearly does not depend on the position of the unknown, Gauss concludes that theprecision of any of the estimates b̂i is hpvii.It is ironic that the Theoria Motus should have become the principle referencefor Gaussian elimination as a computational tool. As we have seen, Gauss usedelimination to give a derivation of one of the most important results of linearregression theory. He was certainly aware of the computational consequences ofhis elimination procedure, and promised to describe them in a later work. Butcomputational considerations are absent from the Theoria Motus itself. Gaussmerely points out that the normal equations can be solved by ordinary elimina-tion (eliminatio vulgaris), presumably a variant of what we now call Gauss{Jordanelimination. An extension, which Gauss will later call general elimination (elim-inatio inde�nite), can be used to pass from the normal equations (3.5) to theinverse system (3.6).



6 Gauss, Statistics, and Gaussian Elimination4. The Scalar ConnectionIn 1810, in Disquisitio de Elementis Ellipticis Palladis [3], Gauss gave the numer-ical details of his algorithm and illustrated it with an example. The usual scalarformulas for Gaussian elimination can be derived by translating the original algo-rithm into operations on the matrix of second derivatives of 
. Speci�cally, if weset aij = 12 @2
@bi@bj ;then we see from (3.3) that a11 = r11 and from (3.4) that
1 = 
� 1a11�12 @
@b1�2:It follows that a(1)ij � 12 @2
1@bi@bj = aij � ai1a1ja11 :In the expression on the right, we recognize the formulas for performing one stepof Gaussian elimination, as we understand it today, on a matrix whose elementsare aij. This is essentially the algorithm Gauss describes in the Disquisitio.To complete the solution of the normal equations by Gaussian elimination,note that since 
 = u21r11 + u22r22 + � � �+ u2prpp + �;the function 
 assumes its minimum value � whenu1 = u2 = � � � = up = 0:Since 0 = up = rppbp � spis a linear equation involving only bp, it can be solved immediately for bp. Havingdetermined bp, one can solve for bp�1 from the equation0 = up�1 = rp�1;p�1bp�1 + rp�1;pbp � sp�1:Continuing in this manner, we can determine estimates for all the unknowns bi.This of course is nothing more than the back substitution phase of Gaussianelimination.



Gauss, Statistics, and Gaussian Elimination 75. The Matrix ConnectionThe above description of the algorithm is incomplete, in the sense that it doesnot give formulas for the constant parts si of the functions ui. To see where theycome from, it will be useful to express the algorithm in terms of matrices.The function 
 can be written in the form
 = (bT �1) XTX XTyyTX yTy! b�1!� (bT �1) A ccT �! b�1!If we set R = 0BBBB@r11 r12 � � � r1p0 r22 � � � r2p... ... ...0 0 � � � rpp1CCCCA and s = 0BBBB@s1s2...sp1CCCCA ;where the r's and s's are from the de�nitions of the functions u [see (3.3)], thenit is easy to verify that A ccT �! =  RT 0sT �! D�1 00 ��1! R s0 �! ;where D = diag(r11; r22; : : : ; rpp):Thus Gaussian elimination, as practiced by Gauss, amounts to factoring the aug-mented cross-product matrix into a lower triangular matrix, a diagonal matrix,and the transpose of the lower triangular matrix. It is common practice today towork with the augmented cross-product matrix.The vector u whose components are the functions ui can be written in theform u = Rb� s:The process sketched above of setting the ui to zero and back-solving amounts tosolving the triangular system Rb = s:



8 Gauss, Statistics, and Gaussian Elimination6. The Computation of VariancesWriting in 1821, Gauss [4] summarized his and Laplace's justi�cations of leastsquares as follows.From the foregoing we see that the two justi�cations each leave some-thing to be desired. The �rst depends entirely on the hypotheticalform of the probability of the error; as soon as that form is rejected,the values of the unknowns produced by the method of least squaresare no more the most probable values than is the arithmetic mean inthe simplest case mentioned above. The second justi�cation leaves usentirely in the dark about what to do when the number of observationsis not large. In this case the method of least squares no longer has thestatus of a law ordained by the probability calculus and has only thesimplicity of the operations it entails to recommend it.In the Pars Prior of his memoirTheoria Combinationis Observationum ErroribusMinimis Obnoxiae [7], Gauss resolved the dilemma by introducing the notion ofmean square error as a measure of variance and showing that among all linearcombinations of the observations that produced exact estimates in the absence oferror the least squares estimates have least mean square error.In the Pars Posterior of the Theoria Combinationis [6], Gauss addresses theproblem of computing variances. He points out that his elimination method givesonly the variance of the last unknown. Since (he continues) a general eliminationto invert the normal equations is expensive, some calculators have adopted thepractice of performing the elimination with another unknown placed last.7 Gausssays that he will give a better way.Gauss actually gives two solutions to the problem. In the �rst he shows thatif one inverts the system Rb = s to get Ts = b, then the matrix V obtained bypassing from (3.5) to (3.6) can be writtenV = TDTT:Thus the diagonal elements of V can be computed as a weighted sum of squaresof the rows of T. Gauss gives two algorithms for computing T, one of themparticularly advantageous when only a few variances are to be computed.7Laplace, for example, recommended a similar procedure in the �rst supplement to hisTh�eorie Analytique des Probabilit�es [18].



Gauss, Statistics, and Gaussian Elimination 9The second method is a very general result for computing the variance of anarbitrary linear combination t = gTb+ �of the unknowns b. Speci�cally, if we pass from the variables b to the variablesu, so that t assumes the form t = hTu+ t̂;then t̂ is the value of t at the least squares estimates of the unknowns,8 and itsvariance is proportional to hTDh:Moreover, h may be obtained by solving the triangular systemRTh = g:Thus Gauss reduces the problem of computing a variance to that of solving atriangular system.A modern practice in numerical linear algebra is to compute a matrix de-composition and then use it in a variety of computations. Although it wouldbe anachronistic to call Gauss a decompositionalist, he calculated like one. Theresults of his elimination serve as a computational platform from which both es-timates and variances can be obtained.7. Computational ComplexityDid Gaussian elimination represent an improvement over the practices of theday? If we assume that people were using Gauss{Jordan elimination to solvesystems, they would have performed roughly 12p3 multiplications and about thesame number of additions. Gaussian elimination, on the other hand, requiresabout 16p3 multiplications and additions. Thus Gaussian elimination representsan improvement of a factor of about three.If variances are required, the inversion of the normal equations by Gauss-Jordan elimination would cost an additional 13p3 multiplications and additions fora total of 56p3. With Gauss's approach the total is 13p3, an improvement by a factor52 . 8It has been asserted [22] that Gauss established that t̂ enjoyed the same minimum varianceproperties as the components of b̂. Although the result is true, Gauss never proved it.



10 Gauss, Statistics, and Gaussian EliminationIn an age in which a workstation can solve a system of order 100 with barely ahiccup, it is easy to be cavalier about factors of three. To see what it might havemeant to people who had to do their calculations by hand, consider the followingquote from A Treatise on the Adjustment of Observations published in 1884 byT. W. Wright [24, p. 173]:Dr. H�ugel, of Hessen, Germany, states that he has solved 10 normalequations in from 10{12 hours, using a log. table, but that 29 equationstook him seven weeks.Without Gaussian elimination Dr. H�ugel's twelve hours would have stretched toa day and a half, and his seven weeks to almost half a year.8. NotationGauss, like most mathematicians of his time, made sparing use of subscripts andsuperscripts, prefering to use primes or sequences of letters to distinguish variables.For example, Gauss writes his linear model in the formv = ax + by + cx + etc:+ lv0 = a0x + b0y + c0x + etc:+ l0v00= a00x+ b00y + c00x+ etc:+ l00 etc:Here x, y, z, etc. are the unknowns we have been denoting by bi and the v's arethe errors. Although this expansive notation appears awkward to us, in Gauss'shands it could be quite expressive. For example, here (slightly edited) is how hewrites the normal equations.0 = [aa]x+ [ab]y+ [ac]z + etc:+ [al]0 = [ab]x + [bb]y + [bc]z + etc:+ [bl]0 = [ac]x + [bc]y + [cc]z + etc:+ [cl] etc:Note the elegant way in which the notation [ab] suggests a sum of products fromthe a and b columns.Gauss's notation for elimination is equally well considered. The following is



Gauss, Statistics, and Gaussian Elimination 11from the Supplementum [8] to the Theoria Combinationis[bb; 1] = [bb]� [ab]2[aa][bc; 1] = [bc]� [ab][ac][aa][bd; 1] = [bd]� [ab][ad][aa]etc:[cc; 2] = [cc]� [ac]2[aa] � [bc;1]2[bb;1][cd; 2] = [cd]� [ac][ad][aa] � [bc;1][bd;1][bb;1]etc:[dd; 3] = [dd]� [ad]2[aa] � [bd;1]2[bb;1] � [cd;2]2[cc;1]Here as above, a pair of letters indicates the position in the normal equations.The appended numerals indicate the level of elimination. Incidentally, this seemsto be the �rst appearance of the inner product form of the algorithm, in which thematrix R is generated row by row. It is the preferred form for hand calculation,since one need only record an array of 12p2 numbers.9. LegacyThe casting of Gauss's results in matrix notation in some sense trivializes them.With our knowledge of matrix algebra, we can leap ahead to results that re-searchers of Gauss's time could only arrive at by more pedestrian routes. Yet wemust be careful not to be patronizing. Gauss and his successors accomplished agreat deal with their techniques and notation.For example, Gauss's presentation of his algorithm as elimination in a quadraticform strikes us as unusual today. Yet it was the �rst of many reductions ofquadratic and bilinear forms that later became our familiar matrix decomposi-tions, including among others the LU decomposition, the Jordan canonical form,and the singular value decomposition. As Kline points out in his book Mathemat-ical Thought from Ancient to Modern Times [13, Ch. 33], by the time the use ofmatrices had become widespread, many of the principal results of matrix theoryhad already been established.Gauss's algorithms, written in his notation, survived into the twentieth cen-tury, especially in books on geodesy. Thereafter, as people began to use present-day notation, his contributions became less visible. By 1959, when I �rst began



12 Gauss, Statistics, and Gaussian Eliminationworking with computers, Gaussian elimination had come to mean any triangular-ization of a system of equations, symmetric or nonsymmetric, followed by a backsubstitution, and none of us had an idea of what Gauss had actually done.Yet what he did is worth recalling. Gauss worked with real-life problems andgot his hands dirty solving them. He always looked for the best, most e�cientalgorithm; and when he had it, he expressed it in a clean notation that suggestedhow to use it. These virtues are no less important today than in Gauss's time.References[1] R. J. Boscovich and C. Maire. De Litteraria Expeditione per Ponti�ciamditionem ad dimetiendas duas Meridiani graduss. Palladis, Rome, 1755. Citedin [23].[2] C. F. Gauss. Theoria Motus Corporum Coelestium in Sectionibus ConicisSolem Ambientium. Perthes and Besser, Hamburg, 1809. Cited and reprintedin [11, v. 7, pp. 1{261]. English translation by C. H. Davis [10]. French andGerman translations of Book II, Part 3 in [9, 12].[3] C. F. Gauss. Disquisitio de elementis ellipticis Palladis. Commentatinessocietatis regiae scientarium Gottingensis recentiores, 1, 1810. Cited andreprinted in [11, v. 6, pp. 1{64]. French translation of xx13{14 in [9]. Germantranslation of xx10{15 in [12].[4] C. F. Gauss. Anzeige: Theoria combinationis observationum erroribus min-imis obnoxiae: Pars prior. G�ottingische gelehrte Anzeigen, 33:321{327, 1821.Cited and reprinted in [11, v. 4, pp. 95{100].[5] C. F. Gauss. Anzeige: Theoria combinationis observationum erroribus min-imis obnoxiae: Pars posterior. G�ottingische gelehrte Anzeigen, 32:313{318,1823. Cited and reprinted in [11, v. 4, pp. 100{104].[6] C. F. Gauss. Theoria combinationis observationum erroribus minimis obnox-iae: Pars posterior. Commentatines societatis regiae scientarium Gottingen-sis recentiores, 5, 1823. Cited and reprinted in [11, v. 4, pp. 27{53]. Frenchand German translations in [9, 12].[7] C. F. Gauss. Theoria combinationis observationum erroribus minimis obnox-iae: Pars prior. Commentatines societatis regiae scientarium Gottingensis



Gauss, Statistics, and Gaussian Elimination 13recentiores, 5, 1823. Cited and reprinted in [11, v. 4, pp. 1{26]. French andGerman translations in [9, 12].[8] C. F. Gauss. Supplementum theoriae combinationis observationum erroribusminimis obnoxiae. Commentatines societatis regiae scientarium Gottingensisrecentiores, 6, 1828. Cited and reprinted in [11, v. 4, pp. 55{93]. French andGerman translations in [9, 12].[9] C. F. Gauss. M�ethode des Moindres Carres. Ballet{Bachelier, Paris, 1855.Translation by J. Bertrand of various works of Gauss on Least Squares.[10] C. F. Gauss. Theory of the Motion of the Heavenly Bodies Moving about theSun in Conic Sections. Little, Brown, and Company, 1857. Translation byCharles Henry Davis of Theoria Motus [2]. Reprinted by Dover, New York,1963.[11] C. F. Gauss. Werke. K�niglichen Gesellschaft der Wissenschaften zuG�ottingen., 1870{1928.[12] C. F. Gauss. Abhandlungen zur Methode der kleinsten Quadrate. P. Stankei-wica', Berlin, 1887. Translation by A. Borsch and P. Simon of various worksof Gauss on Least Squares.[13] M. Kline. Mathematical Thought from Ancient to Modern Times. OxfordUniversity Press, New York, 1972.[14] J.-L. Lagrange. Researches sur la m�etode de maximis et minimis.MiscellaneaTaurinensi, 1, 1759. Cited and reprinted in [15, v. 1, pp. 1{16].[15] J.-L. Lagrange. �vres de Langrange. Gauthier{Villars, Paris, 1867{1892.[16] P. S. Laplace. Sur quelques points du syst�eme du monde. Memoires del'Academie des Sciences de Paris, 1789. Cited and reprinted in [19, v. 11,pp. 475{558].[17] P. S. Laplace. M�emoire sur les int�egrales d�e�nies et sur application auxprobabilit�es. Memoires de l'Academie des Sciences de Paris, 11, 1810{1811.Cited and reprinted in [19, v. 12, pp. 355{412].[18] P. S. Laplace. Th�eorie Analytique des Probabilit�es. Courcier, Paris, thirdedition, 1820. Reprinted in [19, v. 7].



14 Gauss, Statistics, and Gaussian Elimination[19] P. S. Laplace. �vres Compe�etes. Gauthier{Villars, Paris, 1878{1912.[20] A. M. Legendre. Nouvelle m�ethodes pour la d�etermination des orbites descom�etes. Courcier, Paris, 1805. Cited in [23], where the appendix on leastsquares is reproduced.[21] R. L. Plackett. The discovery of the method of least squares. Biometrika,59:239{251, 1972.[22] H. L. Seal. The historical development of the Gauss linear model. Biometrika,54:1{24, 1967.[23] S. M. Stigler. The History of Statistics. Harvard University Press, Cambridge,Massachusetts, 1986.[24] T. W. Wright. A Treatise on the Adjustment of Observations. Van Nostrand,New York, 1884.


