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Abstract

The cubic nonlinearity activator-inhibitor model equa-
tion is a simple example of a pattern-forming sys-
tem for which strong mathematical results can be ob-
tained. Basic properties of solutions and the deriva-
tion of a Lyapunov functional for the cubic nonlin-
earity model are presented. Potential applications
include control of large MEMS actuator arrays.

1. Introduction

There are a variety of pattern-forming systems, and
the properties and generation of patterns in various
physical contexts, such as in chemical reactions, have
been extensively studied [1]. Distributed control
schemes based on pattern-forming-system dynamics
might be useful for applications involving large num-
bers of actuators and sensors. For example, with
MEMS technology it is now possible to realize a 1000
by 1000 array of torsional microaps in a square inch
(for digital micromirror chips), and similar actuator
arrays could potentially be used to inuence bound-
ary layer uid ow, micro-position small parts, or
manipulate small amounts of substances for chemi-
cal reactions.

The cubic nonlinearity activator-inhibitor model equa-
tion is a simple example of a pattern-forming sys-
tem for which strong mathematical results can be
obtained. Besides spatially periodic patterns, inter-
esting equilibria such as �nite-amplitude spike solu-
tions can also be excited. After discussing the general
behavior of the system and citing the basic proper-
ties of solutions, a Lyapunov functional for the cubic
nonlinearity model is derived. The Lyapunov func-
tional derivation is based on a technique developed
by Brayton and Moser for nonlinear circuit theory
[2]. Finally, some generalizations of the dynamics and
Lyapunov functional are briey described.
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tures (through Harvard University). Also, this work
was partially supported by an Achievement Rewards
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2. Activator-inhibitor equations

Activator-inhibitor equations are a special case of the
generalized reaction-di�usion equation

�@tu = D�u+ f(u); (1)

whereD and � are constant matrices, and u(x; t) rep-
resents the vector of concentrations of the reactants
at each point x 2 
 � Rn, 
 open and bounded, and
at each time t � 0. The activator-inhibitor dynamics
are

��@t� = l2�� � q(�; �; C)

��@t� = L2�� �Q(�; �; C); (2)

where � is the activator concentration, � is the in-
hibitor concentration; ��, �� , l, and L are positive
constants setting the time and length scales for the
variation of the activator and inhibitor; and C is the
bifurcation (or control) parameter. The spatially uni-
form (or homogeneous) equilibrium state (�h; �h) is
determined from

q(�h; �h; C) = 0; Q(�h; �h; C) = 0; (3)

and we also have the following conditions on q and Q
for the dynamics to be activator-inhibitor dynamics:

@�q(�h; �h; C) < 0; @�Q(�h; �h; C) > 0;

(@�q(�h; �h; C))(@�Q(�h; �h; C))

�(@�q(�h; �h; C))(@�Q(�h; �h; C)) > 0; (4)

for some range of values for C. To simplify the anal-
ysis, it is further assumed that in fact

@�Q > 0; (@�q)(@�Q)� (@�q)(@�Q) > 0 8C; (5)

where the arguments (�h; �h; C) have been suppressed,
and that that as C passes through some critical value,
@�q goes from being positive to negative. Further-
more, for @�q > 0, the spatially uniform equilibrium
state is stable, and for @�q < 0, the spatially uni-
form equilibrium state is unstable so that patterns
form. When @�q > 0, spike solutions or other dissi-
pative structures may be stable with some region of
attraction, while simultaneously the spatially uniform
equilibrium solution is also stable with a di�erent re-
gion of attraction. If the system is bistable, there
are three spatially uniform equilibrium solutions, two



of which are stable (satisfying @�q > 0), and one of
which is unstable (satisfying @�q < 0). There are two
important dimensionless quantities that can be used
to classify activator-inhibitor equations based on the
types of patterns they support beyond the bifurcation
threshold. These same classi�cations also indicate
what types of dissipative structures can exist before
the bifurcation threshold is reached. The parameters
are

� = ��=�� (ratio of time constants)

� = l=L (ratio of di�usion lengths). (6)

The types of patterns which appear beyond the bi-
furcation threshold are

� � > 1 but � << 1 leads to a spatially periodic
patterns which are stationary in time,

� � << 1 but � > 1 leads to spatially uniform
but time-periodic patterns, and

� � << 1 and � << 1 leads to patterns which are
both spatially periodic and time periodic.

In this work we are mainly concerned with the � > 1
but � << 1 case, because static spike solutions can
be stable below threshold in such systems. Although
static spike solutions can also be stable below thresh-
old when � << 1 and � << 1, traveling spike solu-
tions and other more complicated solutions are also
possible in that case, so the analysis is more di�cult
[3,4,5].

For the cubic nonlinearity model,

q = �3 � � � �

Q = � + � � C: (7)

The spatially uniform equilibrium solution is easily
found to be (�h; �h) =

�
C1=3; C � C1=3

�
; and we have

@�Q(�; �) = 1 > 0

@�Q(�; �) = 1 > 0

@�q(�; �) = �1 < 0; 8(�; �): (8)

Furthermore, @�q(�h; �h) = 3C2=3 � 1; so that

@�q(�h; �h) < 0 for � 1

3
p
3
< C <

1

3
p
3
; (9)

and

(@�q)(@�Q)� (@�q)(@�Q)

����
(�h;�h)

= 3C2=3 > 0: (10)

3. Basic properties of solutions

The purpose of this section is to present mathemati-
cally rigorous statements concerning the cubic nonlin-
earity model. For convenience, we restate the coupled

system of PDEs:

��@t� = l2�� � �3 + � + �

��@t� = L2�� � � � � + C; (11)

where ��, �� , l, and L are positive constants, and
C is also a constant. It turns out that for none of
the results presented below does it matter whether
the spatially uniform equilibrium state of the system
is stable. Also, it doesn't matter what any of the
constants are, until �nally in the last subsection we
will see that indeed � = ��=�� > 1 is the su�cient
condition for static solutions to be stable.

Existence, uniqueness, and regularity

The cubic nonlinearity model belongs to a general
class of models

��@t� + L�� + f�(�) = �

��@t� + L�� + f�(�) = ��; (12)

de�ned on an open bounded subset 
 � Rn, where L�
and L� are uniformly parabolic operators, and f�(�)
and f�(�) are odd-order polynomials with positive
leading coe�cients. Suppose also that the boundary
conditions are one of the three basic types:

1. Dirichlet: �(x; t) = 0; �(x; t) = 0 on @
,

2. Neumann: rx� � n = 0; rx� � n = 0 on @

where n is normal to @
, or

3. periodic boundary conditions.

Also, suppose the initial data (�(0); �(0)) 2 L2(
) �
L2(
). Using the standard techniques for proving
existence and uniqueness for parabolic PDEs, one can
prove that the above system of PDEs has a unique
weak solution (�(x; t); �(x; t)), with

� 2 L1(0; T ;L2(
)) \ L2(0; T ;H(
))

\L2p� (0; T ;L2p�(
))
� 2 L1(0; T ;L2(
)) \ L2(0; T ;H(
))

\L2p� (0; T ;L2p�(
)); (13)

where 2p� � 1 is the degree of f�(�), 2p� � 1 is the
degree of f�(�), and H(
) is the appropriate Sobolev
space corresponding to the boundary conditions (e.g.,
H(
) = H1

0 (
) for Dirichlet boundary conditions)
[6,7]. In addition to existence and uniqueness of solu-
tions, the solutions also depend continuously on the
initial data.

If we have the further assumptions that the boundary
@
 is C2 and that (�(0); �(0)) 2 L2p� (
) � L2p� (
),
then we can show further that

D2� 2 L2(0; T ;L2(
))

D2� 2 L2(0; T ;L2(
)); (14)



which implies

� 2 L2(0; T ;H2(
))

� 2 L2(0; T ;H2(
)); (15)

with H2(
) corresponding to H(
) de�ned in the ap-
propriate way. These bounds on the second partial
derivatives of � and � are what we mean by \regular-
ity." We will require this amount of regularity in the
calculations that follow. The restriction that the cou-
pling between the � and � equations is linear is used
in the proofs of existence, uniqueness, and regularity.

Dissipativity property

For �nite-dimensional systems, the physical notion of
dissipativity can be tied to the mathematical con-
cept of the existence of an absorbing set. For in�nite-
dimensional systems, it is not so clear how dissipativ-
ity should be precisely de�ned, since there are systems
which are considered \dissipative," but for which the
existence of absorbing sets has not been established
[7]. However, if for an in�nite-dimensional system
we can prove the existence of an absorbing set, we
can certainly label the system dissipative, and the
cubic nonlinearity model does possess an absorbing
set. The energy bounds required to show the exis-
tence of an absorbing set are stronger than those re-
quired to show existence, uniqueness, and regularity
of solutions.

Let u(t) = (�(t); �(t)) denote the solution for the cu-
bic nonlinearity model, let u0 = u(0), and let L =
L2(
) � L2(
). Then the semigroup fS(t)gt�0 de-
�ned by

S(t) : L ! L

u0 ! u(t) (16)

is well-de�ned 8t 2 [0; T ] for T arbitrarily large. Note
thatH = (H(
)\L2p� (
))�(H(
)\L2p� (
)) � L is
the Hilbert space in which u(t) lies for almost every
t. However, writing S(t) : L ! L reects the fact
that our initial conditions only need to be in L for
the existence and uniqueness theory to hold.

The semigroup fS(t)gt�0 satis�es the basic semigroup
properties,

S(t+ s) = S(t) � S(s) 8s; t � 0

S(0) = I (the identity)

u(t+ s) = S(t)u(s) = S(s)u(t); (17)

and in addition, because of the continuous depen-
dence of solutions on initial data, we have that S(t)
is a continuous operator 8t � 0. A set B � U , where
U is an open set in L, is called an absorbing set in
U if the orbit of any bounded set of U enters into
B after a certain time (which may depend on the
set); i.e., 8B0 � U ; B0 bounded, 9t1(B0) such that
S(t)B0 � B 8t � t1(B0). An attractor is a set A � L
such that

(i) A is invariant; i.e., S(t)A = A 8t � 0, and

(ii) 9 U ; open, such that 8u0 2 U ; S(t)u0 ! A as
t!1; i.e., dist(S(t)u0;A)! 0 as t!1.

The largest such U is the basin of attraction of A. If
the basin of attraction of A is all of L, then A is a
global attractor for fS(t)gt�0.
The existence of a global attractor implies the exis-
tence of an absorbing set. For the cubic nonlinearity
model, the existence of an absorbing set implies the
existence of an attractor, due to the following theo-
rem:

Theorem: Suppose L is a Banach space and that the
operators S(t) satisfy the semigroup properties and
are continuous operators from L into itself 8t > 0.
Suppose that there exists an open set U and a bounded
set B of U \H such that B � H �� L and B is ab-
sorbing in U . Then the !-limit set of B, A = !(B), is
a compact attractor which attracts the bounded sets of
U . It is the maximal bounded attractor. Furthermore,
if U is convex and connected, then A is connected, too.

Remark: By H �� L, for H and L Banach spaces,
we mean H is compactly embedded in L. For our H
and L, H �� L follows from standard compactness
theory [6].

So to demonstrate the dissipativity of the cubic non-
linearity model, we need to exhibit an absorbing set
in H. Such an absorbing set does exist for the cubic
nonlinearity model. In fact, this absorbing set ab-
sorbs all the bounded sets of H. The existence of this
absorbing set then implies the existence of a global
attractor by the above theorem.

4. Lyapunov functional derivation

The energy estimates of the previous subsections were
essentially L2(
)-norm bounds on solutions and their
derivatives. Now we consider energy calculations rel-
ative to energy functionals. The initial observation
is that for the cubic nonlinearity model, there is an
energy functional

V =

Z



�
l2

2
jr�j2 + 1

4
�4 � 1

2
�2 � �� � L2

2
jr�j2

�1

2
�2 + C�

�
dx; (18)

such that

_V =
�V

��
� (@t�) + �V

��
� (@t�)

= �
Z



�
��(@t�)

2 � ��(@t�)
2
�
dx

= �
��

@t�
@t�

�
;

�
�� 0
0 ���

��
@t�
@t�

��
: (19)

An equivalent way of expressing this is

�J
�
@t�
@t�

�
= rV; J =

�
�� 0
0 ���

�
: (20)



so that

_V =

�
rV;

�
@t�
@t�

��
= �

��
@t�
@t�

�
; J

�
@t�
@t�

��
(21)

We thus have a gradient system with respect to an
inde�nite metric. What Brayton and Moser showed
was that for systems of ODEs which are gradient with
respect to an inde�nite metric, it is sometimes possi-
ble to �nd a radially unbounded Lyapunov function
V � such that _V � � 0 and _V � = 0 only at equilibrium
points [2]. The conclusion is then that all system tra-
jectories converge to the set of equilibrium points. For
the cubic nonlinearity model, the linearized analyses
of Kerner and Osipov indicate that the stable solu-
tions are static in time if � = ��=�� is su�ciently large
(i.e., � > 1), and the stable solutions oscillate, or pul-
sate, in time if � is su�ciently small (i.e., � << 1).
The non-oscillating case is the one for which we could
hope to �nd a radially unbounded energy function
which decreases along system trajectories.

To see how the technique of Brayton and Moser works
for ODE systems, consider the simplest discretization
of the cubic nonlinearity model in one spatial dimen-
sion with periodic boundary conditions,

�� _�k = l2
�
�k�1 � 2�k + �k+1

�2

�
� �3k + �k + �k

�� _�k = L2
�
�k�1 � 2�k + �k+1

�2

�
� �k � �k + C; (22)

where � is the distance between the discretized points
along the x�axis where we are evaluating �k and �k,
and the indices k are taken to be mod N where 2N
is the total number of ODEs.

As for the PDE system, we can write this discretized
system as a gradient system with respect to an indef-
inite metric: let

V =
l2

�2

 X
k

�2k �
X
k

�k�k+1

!
+
1

4

X
k

�4k�
1

2

X
k

�2k

�L2

�2

 X
k

�2k �
X
k

�k�k+1

!
� 1

2

X
k

�2k + C
X
k

�k

�
X
k

�k�k; (23)

so that

_V =
X
k

@V

@�k
_�k +

X
k

@V

@�k
_�k

= �
X
k

h
��( _�k)

2 � ��( _�k)
2
i

= �[ _�T _�T ]

�
��I 0
0 ���I

��
_�
_�

�
; (24)

where � = (�1; :::; �N ), � = (�1; :::; �N ), and I denotes
the N �N identity matrix. We de�ne rV and J in
analogy with equations (20) and (21).

The technique of Brayton and Moser involves �rst
computing D2V , which looks like

D2V =

�
P �I
�I Q

�
; (25)

where each block is N � N . It turns out not to be
necessary to compute P , but it is necessary to write
down Q and show that Q is invertible. A simple cal-
culation gives

Q = �
�
I +

L2

�2
R

�
; (26)

where

R =

2
6666666664

2 �1 0 � � � 0 �1
�1 2 �1 0 � � � 0

0 �1 2 �1 ...
... 0

. . . 0

0
... 2 �1

�1 0 � � � 0 �1 2

3
7777777775
: (27)

Since R is positive semide�nite, Q is invertible, and
we can de�ne

M =

�
0 0
0 �2Q�1

�

J�=J + (D2V )MJ =

�
��I �2��Q�1
0 ��I

�
: (28)

Corresponding to this J�, there is a

V � = V +
1

2
(rV )TMrV; (29)

such that

�J�
�

_�
_�

�
= rV �; (30)

as can be easily seen by taking the gradient of V �.

If J� were symmetric, it would be a metric, and the
dynamics would be gradient dynamics. However, J�

is not symmetric. But if J� is positive de�nite, V �

will still be decreasing along trajectories. If we can
further show that V � is radially unbounded and _V =
0 if and only if _� = _� = 0, we will be able to conclude
that the trajectories of the system converge to the set
of equilibrium points.

As for the positive de�niteness of J�, we have

[ _�T _�T ]

�
��I �2��Q�1
0 ��I

��
_�
_�

�

= ��j _�j2 + ��j _�j2 � 2�� _�
TQ�1 _�

=

����p�� _� � 1p
�
Q�1(

p
�� _�)

����
2

+
��p�� _���2 �

1

�

��Q�1(p�� _�)��2 ; (31)



and if
1p
�
jjQ�1jj < 1; (32)

then we see that J� is positive de�nite. Furthermore,
we can calculate jjQ�1jj = 1, and arrive at the condi-
tion that J� is positive de�nite if

� > 1: (33)

Because

_V � = �[ _�T _�T ]J�
�

_�
_�

�
; (34)

we also see that if J� is positive de�nite, then _V � � 0
and _V � = 0 if and only if _� = _� = 0.

We compute V � and verify that it is radially un-
bounded:

V �=
l2

�2

 X
k

�2k �
X
k

�k�k+1

!
+

1

4

X
k

�4k �
1

2

X
k

�2k

+
L2

�2

 X
k

�2k �
X
k

�k�k+1

!
+

1

2

X
k

�2k � C
X
k

�k

+
X
k

�k�k � (� � C)TQ�1(� � C); (35)

where  = [1 1 � � � 1]T .

We thus arrive at the conclusion that for the dis-
cretized one-dimensional system with periodic bound-
ary conditions, regardless of the �neness of the dis-
cretization (N and �), as long as � > 1, we can �nd a
radially unbounded Lyapunov function V � such that
_V � � 0 and _V � = 0 if and only if _� = _� = 0. We
can therefore conclude that all trajectories must con-
verge to the set of equilibrium points, provided � > 1.
(Even with Dirichlet or Neumann boundary condi-
tions, or with multiple spatial dimensions, we still
have the same conclusion provided � > 1.)

In fact, we can adapt the same technique just used to
the original system of PDEs, which is in fact the main
contribution of this work. The �rst step is to calculate
the second derivative of the energy functional V . We
have

V : X ! R; (36)

where X represents the space in which the (�; �) lie.
At each p 2 X , there is a derivative map,

DVp : X ! R

u 7! DVp � u =
d

d�
V (p+ �u)

����
�=0

; (37)

which corresponds to the �rst variation of V evalu-
ated at a particular (�; �). By rV , we mean

rV =

� �l2�� + �3 � � � �
L2�� � � � � + C

�
; (38)

for then

DV(�;�) �
�
��
��

�
=

Z



rV �
�
��
��

�
dx; (39)

where (u;v) =
R


u � vdx is our inner product. We

can then de�ne the second-derivative map at a point
p 2 X as

D2Vp : X �X ! R

(u;v) 7! d2

d�d�
V (p+ �u+ �v)

����
�=0;�=0

: (40)

We can de�ne the second-derivative matrix D2V by

D2V(�;�) �
��

��1
��1

�
;

�
��2
��2

��

=

Z



[��1 ��1]D
2V

�
��2
��2

�
dx: (41)

The second-derivative matrix D2V is computed to be

D2V =

�
(3�2 � 1� l2�) �1

�1 (�1 + L2�)

�
: (42)

We thus see that the quantity that plays the role of
the matrix Q in the discretized system is the operator
�1 + L2�. Therefore, we need to address the issue
of �nding an inverse for �1 + L2�.

Suppose �rst that we have periodic boundary con-
ditions. Since the functions (��; ��) we are working
with are in L2(
), their Fourier series are well-de�ned
(in the distributional sense):

u(x) =
X
k

uke
ik�x

uk =
1

j
j
Z



u(x)e�ik�xdx;

u(x) 2 L2(
);
X
k

jukj2 <1: (43)

(Here we are thinking of k as a vector containing
indices which are not necessarily integer. For ex-
ample, in the one-dimensional case, we would have
k = 2�m=L where m is an integer and L = j
j is the
length of the interval 
.) Then

(�1 + L2�)u(x) = �
X
k

(1 + L2jkj2)ukeik�x; (44)

so the inverse operator for �1 + L2� has the form

(�1+L2�)�1v(x) = w(x)�v(x) =
Z



w(x�y)v(y)dy;
(45)

where w(x) can be represented as

w(x) =
X
k

�1
1 + L2jkj2 e

ik�x: (46)



Before we can conclude that we have an appropriate
inverse, however, we need to verify, since �1 + L2�
takes functions in H2(
) to L2(
), that w(x)�� takes
functions in L2(
) to H2(
). But this is in fact the
case, since an equivalent norm to the H2(
) norm is

jjujj2 =
 X

k

jukj2
�
1 + jkj2�2

!1=2

: (47)

Thus, from the form of w(x)� �, it is clear that w(x)�
v(x) 2 H2(
) if v(x) 2 L2(
). Thus, we have veri�ed
(at least for periodic boundary conditions) that (�1+
L2�)�1 : L2(
)! H2(
) is a well-de�ned operator.

Proceeding by analogy with the discretized case, we
can compute

V � = V � (r�V; (�1 + L2�)�1r�V ); (48)

where

r�V = L2������+C = (�1+L2�)���+C; (49)
obtaining

V �=

Z



�
l2

2
jr�j2 + 1

4
�4 � 1

2
�2 +

L2

2
jr�j2 + 1

2
�2

�C� + �� � (� � C)[(�1 + L2�)�1(� � C)]

�
dx:

(50)

From this expression for V �, it is apparent that V � is
radially unbounded. In analogy with the discretized
case, we obtain

rV � = �
�
�� �2��(�1 + L2�)�1

0 ��

� �
@t�
@t�

�
_V � =

�
Z



[@t� @t�]

�
�� �2��(�1 + L2�)�1

0 ��

� �
@t�
@t�

�
dx

(51)

For periodic boundary conditions, the operator norm
of (�1+L2�)�1 turns out to be one, just like the ma-
trix norm of Q�1 in the discretized case. This leads
to the same conclusion as before, that if � > 1 then
there is a radially unbounded Lyapunov functional
V � such that _V � � 0 and _V � = 0 only at equilibrium
points of the dynamics.

For Dirichlet or Neumann boundary conditions, we
need to assume that the boundary of 
 is C2 (so that
we have the necessary second-derivative bounds re-
quired for calculating the variations of V and V �),
and we need to use Fourier transform techniques in-
stead of Fourier series techniques. The same Lya-
punov functional is computed and the same conclu-
sions apply as for periodic boundary conditions.

5. Generalizations and future work

The existence of a Lyapunov functional for the cubic
nonlinearity model is a starting point for further anal-
ysis in several directions. Since (for periodic bound-
ary conditions) the Lyapunov functional takes a sim-
ple form at equilibria,

V �e =

Z



�1

4
�4 � 1

2
C� +

1

2
C2dx; (52)

the Lyapunov functional may be useful for analyzing
the stability of equilibria. Also, there are several gen-
eralizations of the basic cubic nonlinearity model that
respect generalizations of the Lyapunov functional,
one of which is the complex activator-inhibitor equa-
tion,

��@t� = l2�� � j�j2� + � + �

��@t� = L2�� � � � � + C; (53)

where �, �, and C are complex. The complex activator-
inhibitor equation can be used, under suitable hy-
potheses, to model the amplitude and phase evolution
in the continuum limit of a network of coupled van
der Pol oscillators (represented by �), coupled to a
network of resonant circuits (represented by �), with
an external oscillating input (represented by C), all
with the same natural frequency. Another generaliza-
tion of the basic cubic nonlinearity model for which
the Lyapunov functional can also be adapted is the
addition of symmetric long-range coupling to the �
dynamics. Long-range coupling can be used to select
ideal patterns from among competing patterns.
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