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ABSTRACT

High-resolution spectral estimation is an important subject in many applications of modern
signal processing. The fundamental problem in applying various high-resolution spectral es-
timation algorithms is the computational complexity. Recently, the truncated QR methods
have been shown to be comparable to the SVD-based methods for the sinusoidal frequency
estimation based on the forward-backward linear prediction (FBLP) model. However, with-
out exploiting the special structure of the FBLP matrix, the QR decomposition (QRD) of
the FBLP matrix has the computational complexity on the order of %(Gm —n)n? + O(n?)
for a 2m x n FBLP matrix. Here we propose a fast algorithm to perform the QRD of
the FBLP matrix. It is based on exploiting the special Toeplitz-Hankel form of the FBLP
matrix. The computational complexity is then reduced to 10n? 4+ 4mn + O(n). The fast
algorithm can also be easily implemented onto a linear systolic array. The number of time
steps required is further reduced to 2m + 5n — 4 by using the parallel implementation. The
reometric transformation, which improves the numerical stability, for the downdating of
the Cholesky factors is also considered.







1 Introduction

High-resolution spectral estimation is an important subject in many applications of modern
signal processing [1]. The fundamental problem in applying various high-resolution spectral
estimation algorithms is the computational complexity. In the pioneering paper of Tufts
and Kumaresan [2], a SVD-based method for solving the forward-backward linear prediction
(FBLP) least-squares(LS) problem was used to resolve the frequencies of closely spaced
sinusoids from a limited amount of data samples. By imposing an excessive order in the
IFBLP model and then truncating small singular values to zero, this truncated SVD method
yields a low SNR threshold and greatly suppresses spurious frequencies. However, the
massive computation required by SVD makes it unsuitable for real time super-resolution
applications.

Recently, the truncated QR methods [5] have been shown to be comparable to the
SVD-based methods in various situations. It is very effective for the sinusoidal frequency
estimation based on the FBLP model. However, without considering the special struc-
ture of the FBLP matrix, the QR decomposition (QRD) of the FBLP matrix still has the
computational complexity on the order of O(n3).

Seeking fast algorithms for specially structured matrices has captured lots of attention
recently, especially the Toeplitz-structured matrices are used in many signal processing
applications [3, 4, 9, 10, 11, 12, 13]. However, exploiting the special structure of the FBLP
matrix for fast algorithm implementation has not yet been considered so far. Here we
propose a fast algorithm to perform the QRD of the FBLP matrix. The computational cost
of the truncated QR methods can be further reduced from O(n3) to O(n?) which makes it

more attractive than the SVD-based methods. Without exploiting the special structure of



the FBLP matrix, the straight-forward QRD of the FBLP matrix has the computational
complexity on the order of %(()'m —n)n?+ 0(n?) for a 2m x n FBLP matrix. The proposed
fast algorithm reduces it to the order of 10nz+4mn+0(n). The geometric transformation is
also considered to improve the numerical stability in downdating the Cholesky factors. We
will also show that the proposed fast algorithm is amenable to parallel processing. A fully-
pipelined linear systolic array based on the multi-phase operations is used to implement the
fast algorithm parallelly. The required time steps is further reduced to 2m + 5n — 4.

This paper is organized as follows. The basic properties and the special structure of
the FBLP matrix are presented in Section 2 and exploiting the Toeplitz-Hankel structure
is considered in Section 3. In Section 4, the rank-1 modifications of the Cholesky factors
are briefly reviewed and the geometric transformation is proposed to improve the numerical
stability in downdating the Cholesky factors. The fast algorithm is then given in Section 5.

Finally the parallel implementation is considered in Section 6.

2 Forward-Backward Linear Prediction

2.1 Forward and Backward Linear Prediction

Suppose we observe a time sequence u(i—1),u(i—2),- -, u(¢— M), and would like to predict
u(7) based on a linear LS estimation. The forward linear prediction problem is to minimize
the sum of the forward prediction-error energy,
N
min Y fes (i), (1)
= i=M+1
where

es(i) = w(i) - wlu(i - 1),



wl(i—1) =[u(i — 1), u(i—2),---,u(i = M),

and w; € RM X1 is a forward prediction weight vector. This is equivalent to solving the LS

problem
where ) 3
u(1) u(2) e u(M)
u(2) u(3) ceeu(M 4 1)
Af = )
u(N-M) w(N-M+1) --- u(N-1)
and

On the other hand, for the backward linear prediction, we observe a sequence u(: —
M+ 1),u(i — M 4 2),---, u(i), and would like to predict u(i — M) based on a linear LS

estimation. The backward linear prediction problem is to optimize the criterion,

N

min Y ley(i)f?, 3)

i=M+1

where

ep(i) = u(i — M) — wj u®(i),
uPT() = [u(i = M + 1), u(i — M +2),- -, u(3)],

and wy, € RMX1 i 3 backward prediction weight vector. Here B denotes the backward ar-
rangement of a vector, that is, @B(i) is a backward arrangement of the vector u(¢). Similarly,

this is equivalent to solving the LS problem

AAbe ~ Ql)a (4)



where

w(M+1) w(M) - u(2)
Ay = )
wW(N—-1) w(N-2) - u(N-M)
w(N) w(N-1) --- w(N-M+1)

and

Ql? = [u(l)a ,U(N - M)]

2.2 Forward-Backward Linear Prediction

To obtain a smoother result, we can combine both the forward and backward linear pre-
diction together. We call this th forward-backward linear prediction (FBLP) method. The
idea was originated by Burg [6] for the lattice predictors and the first application of the
FBLP method to the design of linear predictor based on the method of least-squares was
developed independently by Ulrych and Clayton (1976) and Nuttall (1976) [7]. To improve
the performance, Tufts and Kumaresan [2] developed a modified FBLP method which is
very effective for estimating closely spaced frequencies.

The FBLP method is to minimize the sum of the FBLP errors energy,

min Y- (e + lesl)P). (5)




and the desired response vector b is
b = [bf (7). (7)

The FBLP method is to solve the following LS problem,

1

Aw = b. (8)

Denote @y, i, and @ as the optimal weight vectors of the forward, backward, and forward-
backward linear prediction, respectively. It can be easily shown from the normal equation

approach that

b= [®f + @) [ @y + Pridy], (9)

where ¢; = A?Af and @, = ArgrAb. It is certainly obvious that @ is a weighted average
of @w; and @,. Accordingly, a smoother solution than that of the forward and backward
linear predictions can be obtained. It is unlikely to develop fast algorithms for the FBLP
method based on (9), though fast algorithms to obtain @ and @, do exist by exploiting
the Toeplitz or Hankel structure.

An augmented form of the FBLP method can be obtained by putting A and b together



as

u(1) u(2)

u(2) u(3)

w(N-M) u(N-M+1)

[Aibl=| —_ N
u(M +1) u(M)

u(N - 1) w(N — 2)

uw(N) w(N = 1)

u(N - 1)

u(2)

w(N - M)

u(N-M+1)

u(M + 1)

u(M +2)

u(N)

wN-M-1)

u(N — M)

(10)

It is interesting to see that there is a special structure in this augmented matrix. The

matrix can be partitioned into two parts; the upper submatrix is of Hankel structure and

the lower one is of Toeplitz structure. Furthermore, both matrices can be related as follows,

where J € RIMFDX(M+1) g o7 exchange matrix given by

1

(11)

The matrix of the form as given in (10) is called the Toeplitz- Hankel matrix. As we can see,




the augmented matrix of the FBLP problem is of the Toeplitz-Hankel form with a special

property, i.e.

- 1 T - ky
H T
. EZ
K=[Ab=|____|=|____|-= : (12)
T T
i T i Eo(n-nr)

This special property can be used for developing a fast algorithm that will be considered in

following sections.

3 Exploiting the Toeplitz-Hankel Structure

By using the truncated QR method for the high-resolution AR spectral estimation, the
key computational issue is to solve the FBLP LS problem based on the QR decomposition
(QRD). Without considering the special structure, a conventional QRD requires &~ 4(N —
M)M? + O(M?) multiplications to obtain the upper triangular matrix R. This is on the
order of O(M?3) since usually N > M. Thus, a reasonable approach is to find a fast
algorithm for the FBLP LS problem by exploiting its special Toeplitz-Hankel structure.
This problem has not been considered so far, though the LS problem with Toeplitz structure
has been studied extensively (3, 4, 9, 10, 11, 12, 13].

The Toeplitz part of the Toeplitz-Hankel matrix can be partitioned as

w(M+1) 27 T u
T = = , (13)

y T ol w(N - M)

-1



where

w(M+1) wM) .- u(2)

3 w(M+2) w(M+1) .- u(3)

T = )
w(N—-1) w(N-=2) -+ w(N-M)

QT = [U(M)’ v 7u(2)7u(1)]7
y7 = [u(M 4 2),- -, u(N — 1), w(N)],
ul = u(1),u(2), -, u(N - M - 1)],

vl = [W(N),w(N —1),--,uw(N — M + 1)],

and the Hankel part of the Toeplitz-Hankel matrix can be partitioned as

u H 28T w(M +1)
H=TJ= = 7 (14)
w(N — M) BT H ¥
where R .
u(2) u(3) ceouw(M+1)
_ . u(3) w(4) ceeu(M 4+ 2)
H=TJ= ,
w(N-M) w(N-M+1) -+ u(N-1)
BT = [w(N = M + 1), -, u(N - 1), u(N)] = 2T J,
and

BT = [u(1), w(2), -, u(M)] = 2T .

Again, here B denotes the backward arrangement of a vector.



Now, from the above partitions, the Toeplitz-Hankel matrix K can be partitioned as

follows,

and

KTK =

K

wlu+ wi (N — M)+ (M + 1) + Ty

ﬁT_q—i- QBU(N— M)+ zu(M + 1)+TTy HT

w(N - M) BT

w(M+1)

=

Also, the matrix K can be partitioned as

K

and with this partition, we have

KTK =

BT

T

~.

z u(M +1)
H y
T u
oT u(N — M)

2BaBT L HTH + TTT + voT

04+ TTT 4 vBuBT 4 g7

(15)

uT I+ w(N = M)uBT + w(M + 1)2T + 7T

(16)

aBu(M + 1)+ HTy + TTu + vu(N — M)

u(M + 1)zPT + gTﬁ +uI'T + u(N - M) w*(M+1)+ ng-i— wl'u+ u?(N - M)

(18)

Let the QRD of the matrix K be K = QR, where R € RMAUX(M+1) jg an upper



triangular matrix and it can also be partitioned as follows,

1,1 7_1T
0 Ry

Ry

OT

U5

TM+1,M+1

(19)

where R, € RM*M g the principal bottom submatrix of R, R, € RM*M is the principal

top submatrix of R, and

T _
= [7’1,2,7‘1,3,"',T1,M+1],

T
ry = [rl,M+1»7'2,M+1a te 'aTM,M+l]~

Note that both R, and R; are upper triangular matrices. Since the matrix @ is orthogonal,

we have

and

RTR =

Define

then we have

KThR = RTR,

T
1Ty

£1Z’_’ir + RgRb

fl

ot

=~

R{ R, Riry

T T 2
5 Ry TaTs + "M 41, M41

K'R =ATqd + 77T,

From the lower right submatrices of (16) and (21), we obtain

RERy + e = KTK + 227 + 0507,

Also, from the upper left submatrices of (18) and (21), we have

RIR, = KTK + vol + 28207,

10

(20)

(21)

(22)

(25)



Substituting (25) to (24), we obtain the relation between Ry, and R; as given by

RbTRb:RtTRt+fL_'_:gT—_:QBQBT+QBUBT—1)DT—£17*{. (26)

4 Rank-1 Modifications of Cholesky Factors

The key issues in computing (26) are the rank-1 updatings and downdatings of the Cholesky
factors. Let both R, and Ry be M x M upper triangular matrices with positive elements

on the diagonal. The rank-1 updating of the Cholesky factor R, is given by
RiRs=RIR, +z2”, (27)

where z is an M-vector and Ry is the Cholesky factor after R, is updated by z. Consider

the QRD of the augmented matrix

Ry

Obviously, since ) is an orthogonal matrix, we see that
RTR = RTR, + z27 = RTRy. (29)

That is, the rank-1 updating can be achieved by obtaining the QRD of [z, RI}T. Since R,
is an upper triangular matrix, the orthogonal matrix @ is a product of M Givens rotations

matrices given by

QT = Unrs Unicinr - U g, (30)

11



where

ck Sk
Uk k1 = )

—Sk Ck

with
a b
Ck = —F=—, Sk T T—-
1/0,2—}-172 ,/a2+b2

a and b are the elements in the k-th and & + 1-th rotation planes, respectively. Accordingly,

Ry 2T
=Umm+1Un—1p - Ui g . (31)

o” Ry

On the other hand, the rank-1 downdating of the Cholesky factor R, can be obtained

from (27) as

RYR, = RTR; — za”. (32)
Similarly, the downdating can be obtained by a sequence of hyperbolic rotations given by

R, a7

= UM,M+1(7M—1,M X 'Ul,Z , (33)
o Ry

12



where the hyperbolic rotation matrices are of the form

Ukgsr =

with

1
Ck  —38k
b
— 8§y, C
1
a . b
= e, $ = ———.
(l2 . b2 a2 _ b?

Again, here @ and b are the elements in the k-th and k£ + 1-th rotation planes, respectively.

Geometric Transformation

The hyperbolic rotation is well known for its numerical instability. This can be seen

easily by noting that if « &~ b, then é; and §; can be possibly unbounded or even imaginary-

valued. Specifically, the hyperbolic rotation of two given rows is given by

k. —Sk Ak Ak k+1

~8k  Cg by biks1

and for j=k+1,---, M +1,

Cy Gk M1 Qp g Ak gyl
vy beagr 0 britr
s [
kg = /@ = b o
T brk
Chk= 7y Sk = 7T,
Gk A,k

Qp,j = Chak,j = Skbij,

br; = —8kag,; + Coi ;.

13



Since both ¢ and § are unbounded parameters, the computation of (35) may suffer severe

roundoff errors or even overflow under finite-precision implementation. In fact, as shown in

Fig.1, the hyperbolic rotation parameters can be expressed by

secl =

)
e
I}

0sf’
. sin 8
& = tanf = ——,
cos
where
ek . bk
cosf = —=, ginf = —=2=,
gk an
Now that
0 sin 6 sin? 4
—sinbag; = ———ap; +—=bg;
’] cosf " cosh "V
= —3Spag; + 5};[)1\«,]' — COS Obk,j,
equation (35) can be expressed as
4 = ——{as; — sin Obg )
Ag,j = @y, ; — sin 6oy ;
1] COSH 2 J 7
bk,j = —sin O&k,j + cos Obk,j.

(36)

(38)

(39)

Obviously, this is preferable because most of the computations involved bounded parameters

such as cos § and sin 8. Similar results have also been obtained in [3], however, the approach

gives no geometric sense. The new downdating algorithm is summarized as follows:

~ —_ 2 2
Ak =[O — bk,k’

7

cosf = Elﬂ7 sinf = —k——,
ar,k A,k

andforj=k+1,.--,M +1
ag,; = (ag; —sinbby ;)/ cos b,

br; = —sinfay ; + cos Oby ;.

14

(40)



Such a geometric transformation is not unique. For example, it can be easily shown that,

similar to the above derivations, (35) can also be transformed to

i)k,j = (—sinfag ; + by ;)/ cos®,

ar; = cosfayj — sin OIA)k,j. (41)

5 The Fast Algorithm

It is now clear how to perform the updating and downdating of the Cholesky factors. We
can then go back to the computational issue of (26). As we can see, in (26), there are two
rank-1 updatings and three rank-1 downdatings. Let us split (26) into a sequence of five

up/down-dating equations given by

RiRy = R{Ri+za',

RIR, = RTR, —aBp®"

RIRs = RIRy+ 5P,

RTR, = RYR;— T,

RIRy = RIRy—1;1T, (42)
where Ry, Ry, and R;,¢ = 1,2,3,4 are all M x M upper triangular matrices, and all of the

vectors involved are M-dimensional. The definitions of these vectors can be found from

Section 3. Suppose now we have the first row of Ry, [rf ;,7] 4, -, 71 mls to obtain the first

row of Ry, [r{,l, r%’Q, . -,riM], we use a Givens rotation such that
r%,l r}’Q 7’%,M . w(M) w(M—-1) --- wu(l)
= U(l) i (43)
0 T i otz Tim

15



where U('_) denotes a Givens rotation matrix and z(®) is an (M — 1)-vector. With the first

row of Ry, we can proceed to find the first row of Ry by using a hyperbolic rotation given

by
2 2 2 :
i T2t Tim : w(l) w(2) -+ w(M)
M=, , (44)
(1
0 BT M1 T2 T},M
where [7() denotes a hyperbolic rotation matrix and gB(l) is an (M — 1)-vector. Similarly,

the first rows of R3, R4 and Rj can be obtained as follows:

iy mie o iy s | UN=M+1) u(N-M+2) - uN)
=" ;
1
0 QBT( ) r? e T%,M
(45)
™1 T2 T}‘yM iy u(N) u(N -1) w(N-M+1)
) = Uy ; (46)
1
0 QT( " 7"?,2 "M
b
T1r T2 1M . 1,2 T1,3 0 TLM41
Y=g, , (47)
0 I?T(l) 7’11,1 7’;1,2 T Til,M

where U(S1) is a Givens rotation matrix, f/'(41) and (7(51) are hyperbolic rotations, and QB(l),

v and ggl) are all (M — 1)-vectors. From (19), it is clear that the first row of Ry is, in

fact, the second row of R;, except for rll”M. That is,

[Té,za Té,sv o 'aré,M] = {7’[1),17 7’11),27 Tt Tll),M—l]' (48)

Note that rf‘j = 0 for i > j. With the second row of R, and &1, QB(I), _l_]B(l), v and

r_gl), the computations of eqns. (43) - (47) can be repeated to obtain the second row of

Ry by applying two updatings, U(12) and U(BQ), and three downdatings, l~7(22), ﬁ(42), and (;'(5’2).

The dimension of each vector is M — 1 for this second iteration. Similar iterations can

16



be continued to generate the subsequent rows of R; and R, until the matrix R in (19) is
obtained.

The issue now is how to obtain the first row of R;. This is equivalent to obtaining the
first row of R. In general, there is no short cut for obtaining this row and it can be done by
a sequence of Givens rotations on the matrix K to zero out the first column of K, except
its leading element on the diagonal. Denote # as a ”"don’t care” element or vector, the fast
algorithm is given as follows:

The Fast Toeplitz-Hankel Orthogonalization Algorithm

(Initialization)

27O = (M), u(M = 1), u(1)),

2P = fu(1), u(2), -, (1)),

o7 = [w(N), u(N = 1), -+, u(N = M + 1)],

0
o = (N = M4 1), (N = M4 2), ()]

Fori=1to2(N - M)-1,
k(i) kg
= Ug :
# ki
End For;
[rin, e ] = [l #17 = kv _an)s

0
T =0t

(Main Iterations)

Fori=1to M — 1,

17



(Phase 1)

T_}T 1 &T(i_l)
= Tl ,
0, 2T v pt?
(Phase 2)
ﬂ?T - ﬁBT(i_l)
= U~
0) (9) T ’
0, 2" r}
(Phase 3)
[ r i—1
zf’] . HBT( )
0. »BTY =t 27 ’
(Phase 4)
ZZ}IT y QT(i_l)
= :
0, T X 37
(Phase 5)
I_?T ) 05 E{(i-—l)
N R O] ’
0, % ri!

ZtiT.H = the elements of zi?T excluding the last one,

End For.

As we can see, for the initialization (obtaining the first row of R), the computational
cost is [2-2(N — M) —1]- M ~ 4(N — M)M multiplications (since only half of the rotation
needed to be done). Following this, the recursions in the main iterations are then started.

As there are five rotation-like up/downdatings, the computational cost is

M(M +1)

5 1)~ 10M* + O(M)

5X (AM +4(M — 1)+ -+ +4-1) = 20(

18



(for multiplication). Therefore, the total computational complexity is ~ 1OM2+4(N-M)M
(for multiplication) for a 2(N — M) x M Toeplitz-Hankel matrix. As mentioned before, with-
out considering the special structure, by using the conventional QRD, the computational
complexity is of &~ 4M3 + O(M?). Obviously, the proposed fast algorithm has an improve-
ment of an order of magnitude. In general, for the QRD of a 2m x n Toeplitz-Hankel
matrix, the fast algorithm needs 10n2 + 4mn + O(n) multiplications, while a conventional
implementation needs 2(6m — n)n? + O(n?), where m > n.

If the least-squares weight vector is of interested, a back substitution can then be used
for computing the weight vector. For the truncated QR method, a truncation of the noise

subspace is necessary before computing the weight vector [5].

6 Parallel Implementation

The fast algorithm obtained in the previous section not only reduces the computational
complexity, but is also amenable for parallel implementation. From the fact that only the
first row of the upper triangular matrix R has to be obtained first, a linear array of M + 1
processing cells, as shown in Fig.2, can be used to rotate the matrix I’ such that the first
column can be zeroed out and when the initialization phase is finished, the first row of the
matrix R is kept in the linear array. Fig.3 shows the initialization to obtain the first row of
R. The operations of the processing cells are given in Table 1. The data matrix is arranged
in a skewed manner for the systolic array implementation [15]. The idea is similar to the
triangular array for the QRD proposed by Gentleman and Kung [14]. The difference is that
their scheme is a general one without considering any special structure of the data matrix.

Accordingly, a full triangular array is needed.

19



Due to the consideration of the special Toeplitz-Hankel structure, once the first row of
the matrix R is available, the subsequent rows of R can be generated one by one by the
main iterations given in the fast algorithm. To start the main iterations, r‘; is needed.

Fortunately, it is the first M elements of the first row of R that are stored in the first M

. . . e 0 T{0) 7(0)
processing cells. The main iterations are now started with inputs QT( ), QB , _@B ,

T(0) (0)

T and rf () BT

(1) 1 .
, and the outputs are gz , QBT , QT(l), and f{( ), respectively,

as illustrated in Fig.4. The outputs all have one less dimensions than their inputs. The

pT

vector 7°; can now be obtained on the linear array.

As given in the main iterations, there are five different phases. The operations of the
processing cells for different phases are given in Table 1. Based on the multi-phase concept
proposed in [16], the outputs are fedback to the input ports for another iteration of different
phases. Note that the outputs are obtained from PE2 to PEM. The feedback is, however,
directed to the processors from PE1 to PE(M —1). Since thT takes the first M —1 elements
of zblT, it occupies the first M — 1 processing cells. The second iteration is started once the
fedback data are available. It is fully pipelined without any intermediate data arrangement
and interrupt. The iterations are then continued until all the rows of R are obtained. The
data movement of the third iteration is given in Fig.5 and the overall data arrangement is
given in Fig.6.

The number of time steps required for this linear array implementation is now being
further reduced to 2(N — M)+ (5(M —1)+1) = 2N +3M —4 (or 2m+5n—4 fora2m x n
Toeplitz-Hankel matrix) which is linearly proportional to either M or N (m or n).

If the LS weight vector is of interest, another phase for the back substitution can be

started easily since all the data are now available in the linear array. The details of the

20



operations of the back substitution using a linear array can be found in [14, 17]

7 Conclusions

In this paper, we propose a fast algorithm for the QRD of a Toeplitz-Hankel matrix. The
computational complexity for the QRD of a 2m X n Toeplitz-Hankel matrix is 10n? +4mn +
O(n) multiplications, which has an order of magnitude improvement over conventional
algorithms. This algorithm can also be implemented onto a fully pipelined multi-phase
linear systolic array. The number of time steps required is further reduced to 2m+5—4 for
the parallel implementation. An interesting point for the QRD of the specially structured
matrices such as Toeplitz and Toeplitz-Hankel forms is that there is no need to store all the
generated rows of the upper triangular matrix R. As long as the first row of R is known,

all the subsequent row can be generated recursively, and this is also the basic principle of

the proposed fast algorithm.
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Table and Figure Captions:

Table 1 The operations of the processing cells in different phases.
Fig.1 The geometric relationship.

Fig.2 The linear systolic array and its processing cells.

Fig.3 The initialization.

Fig.4 The first iteration with five different phases.

Fig.5 The second iteration with five different phases.

Fig.6 The overall data arrangement.
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Initialization Phases 1 & 3 Phases 2, 4, & 5
d=+r?+ a2 d=+r?+ z? d=r?—z?
PE1 c=rld, s=gzgld|c=r[d, s=z/d|c=d[r, s=z/r
r=d r=d r=d
PE,,1<:<M+1lir=cr+sz r=cr+ sz r=(r—sz)/c
Yy =—8r+cz Yy = —8r+cz Y = —ST + CT

Table 1: The operations of the processing cells in different phases
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