Discrete-Time Filtering For Linear Systems In Correlated Noise With Non-Gaussian Initial Conditions

By
R. B. Sowers
&
A. M. Makowski

SYSTEMS RESEARCH CENTER
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20742
DISCRETE-TIME FILTERING FOR LINEAR SYSTEMS
IN CORRELATED NOISE WITH NON-GAUSSIAN INITIAL CONDITIONS

RICHARD B. SOWERS and ARMAND M. MAKOWSKI

Department of Electrical Engineering
University of Maryland
College Park, MD 20742

ABSTRACT

We consider the one-step prediction problem for discrete-time linear systems in correlated plant and observation noises, and non-Gaussian initial conditions. Explicit representations are obtained for the MMSE and LMMSE (or Kalman) estimates of the state given past observations. These formulae are obtained with the help of the Girsanov transformation for Gaussian white noise sequences, and display explicitly the dependence of the quantities of interest on the initial distribution. Applications of these results can be found in [5] and [6].

I. INTRODUCTION

We consider the one-step prediction problem associated with the stochastic discrete-time linear dynamical system

\begin{align}
X_{t+1}^* &= A_t X_t^* + W_{t+1}^* \\
X_t^* &= \xi \\
Y_t &= H_t X_t^* + V_{t+1}
\end{align}

(1.1)

defined on some probability triple \((\Omega, \mathcal{F}, P)\) which carries the \(\mathbb{R}^n\)-valued process \(X_t^*, t = 0, 1, \ldots\) and the \(\mathbb{R}^p\)-valued observation process \(Y_t, t = 0, 1, \ldots\). Here, for all \(t = 0, 1, \ldots\), the matrices \(A_t\) and \(H_t\) are of dimension \(n \times n\) and \(n \times k\), respectively. Throughout we make the following assumptions (A.1)-(A.3), where

(A.1): The process \(\{W_{t+1}, V_{t+1}\}, t = 0, 1, \ldots\) is a zero-mean Gaussian White Noise (GWN) sequence with covariance structure \(\Gamma_{t+1}, t = 0, 1, \ldots\) given by

\[
\Gamma_{t+1} := \text{Cov} \begin{pmatrix} W_{t+1}^* \\ V_{t+1}^* \end{pmatrix} = \begin{pmatrix} \Sigma_{W_{t+1}} & \Sigma_{W_{t+1}V_{t+1}} \\ \Sigma_{W_{t+1}V_{t+1}} & \Sigma_{V_{t+1}} \end{pmatrix},
\]

(1.2)

(A.2): For all \(t = 0, 1, \ldots\), the covariance matrix \(\Sigma_{W_{t+1}}\) is positive definite; and

(A.3): The initial condition \(\xi\) has distribution \(\mathcal{F}\) with finite first and second moments \(\mu\) and \(\Sigma\), respectively, and is independent of the process \(\{W_{t+1}, V_{t+1}\}, t = 0, 1, \ldots\). No a priori assumptions, save those on the first two moments, are enforced on \(\mathcal{F}\).

The (one-step) prediction problem associated with (1.1) is defined as the problem of computing, for each \(t = 0, 1, \ldots\), the conditional distribution of the state \(X_t^*\) given the observations \(\{Y_0, \ldots, Y_t\}\) or, equivalently, of evaluating the conditional expectation

\[
E[\phi(X_{t+1}^*)|Y_0, \ldots, Y_t]
\]

(1.3)

for all bounded Borel mappings \(\phi: \mathbb{R}^n \to \mathcal{C}\), with \(\mathcal{C}\) denoting set of the complex numbers. In this paper, we solve the prediction problem (1.3) associated with (1.1)-(1.2).

When the plant and observation noises are uncorrelated, and the observation noise sequence \(\{V_t, t = 0, 1, \ldots\}\) is standard (i.e., \(\Sigma_{V_t} = 0\) and \(\Sigma_{V_{t+1}} = I_n\) for all \(t = 0, 1, \ldots\)), the prediction problem posed above is the discrete-time counterpart of the situation investigated in [4]. In Section II, we briefly outline the discrete-time setup of the basic ingredients of the arguments developed in [4]. We then show in Section III how to modify these ideas in order to solve the prediction problem in the case of correlated noise. We shall discover that the structure of the solution of the prediction problem with correlated noise is essentially the same as that for uncorrelated noise. Indeed, the only difference is in the propagation of a collection finite-dimensional sufficient statistics; the mapping from these statistics to the filter is the same as in [4]. In Section IV, we present, without proof, representations for the MMSE and LMMSE estimates of \(X_t^*\) on the basis of \(\{Y_0, Y_1, \ldots, Y_t\}\) for \(t = 0, 1, \ldots\). These representations are derived by using Theorem 1.

A word on the notation: For any positive integers \(n\) and \(m\), we denote the space of \(n \times m\) real matrices by \(\mathbb{R}_{mxn}\), and the cone of \(n \times n\) symmetric positive-definite matrices by \(\mathbb{R}_{+m}\). As in [4], for every \(\Sigma \in \mathbb{R}_{++m}\), let \(X_{\Sigma}\) and \(B_{\Sigma}\) denote generic \(\mathbb{R}^p\)-valued random variables (RV's) such that \(X_{\Sigma}\) is a \(\mathbb{R}^p\)-valued zero-mean Gaussian RV with covariance matrix \(\Sigma\). For every bounded Borel mapping \(\phi: \mathbb{R}^p \to \mathcal{C}\), we define the mappings \(T_\phi: \mathbb{R}^p \times \mathbb{R}^m \to \mathcal{C}\) and \(\Psi_\phi: \mathbb{R}^p \times \mathbb{R}^m \times \mathbb{R}^{m \times k} \to \mathcal{C}\) by

\[
T_\phi(x; b; \Sigma) := \mathcal{E}[\phi(x + X_{\Sigma})\exp[b^T B_{\Sigma}]]
\]

(1.4)

and

\[
\Psi_\phi(x; b; \Sigma; \Lambda; \Delta) := \mathcal{E}[\phi(x + X_{\Sigma})\exp[b^T (1 - \Delta^T \text{Cov}(\xi, \Lambda))]]
\]

(1.5)

with the understanding that \(\Delta\) denotes integration with respect to the Gaussian distribution of the RV \(X_{\Sigma}\).

Throughout, \(I_n\) denote the unit matrix in \(\mathbb{R}_{++n}\), and let \(G_n\) denote the zero element in \(\mathbb{R}_{++n}\), i.e., the \(n \times n\) matrix whose elements are all zero. Elements of \(\mathbb{R}^m\) are always interpreted as column vectors; transposition is denoted by \(^T\).

Let \(\Phi(\cdot, \cdot)\) be the state transition matrix associated with \(\{A_t, t = 0, 1, \ldots\}\), i.e.,

\[
\Phi(t, t) = I_n \quad \Phi(s, t) = A_s^\cdot \Phi(s, t) , \quad s = t, t + 1, \ldots
\]

(1.6)

and let \(\Psi(\cdot, \cdot)\) be the state transition matrix given by

\[
\Psi(t, t) = I_n \quad \Psi(t, t + 1) = \{A_t - \Sigma_{W_{t+1}}^{-1} \Sigma_{W_{t+1}V_{t+1}} \} \Phi(t, t)
\]

(1.7)

\[
t = t, t + 1, \ldots
\]

Presented at the 1989 Conference on Information Sciences and Systems, Johns Hopkins University, March 22-2.
II. THE FILTERING PROBLEM

II.1. The main results

We define the \(Q_n \)-valued sequence \(\{P_t, t = 0, 1, \ldots\} \) by the
recessions
\[
P_{t+1} = A_t P_t A_t^* + \Sigma_{t+1}^\prime
- [A_t P_t H_t^* + \Sigma_{t+1}^\prime] [H_t P_t H_t^* + \Sigma_{t+1}^\prime]^{-1} [A_t P_t H_t^* + \Sigma_{t+1}^\prime]'
\]
\[P_0 = O_n, \quad t = 0, 1, \ldots \quad (2.1)\]
and, for convenience, we introduce the \(Q_n \)-valued sequence \(\{Q_t, t = 0, 1, \ldots\} \), where
\[J_t := H_t P_t H_t^* + \Sigma_{t+1}^\prime, \quad t = 0, 1, \ldots \quad (2.2)\]
The two deterministic sequences \(\{Q_t, t = 0, 1, \ldots\} \) and \(\{R_t, t = 0, 1, \ldots\} \) in \(M_{n\times n} \) and \(Q_n \), respectively, are now defined recursively by
\[
Q_{t+1} = A_t Q_t - [A_t P_t H_t^* + \Sigma_{t+1}^\prime] J_t^{-1} H_t [Q_t + \Psi(t, 0)]
+ \Sigma_{t+1}^\prime J_t^{-1} H_t \Psi(t, 0), \quad t = 0, 1, \ldots \quad (2.3)\]
\[
Q_0 = O_n, \quad t = 0, 1, \ldots \quad (2.4)\]
From these sequences, we form the \(2n \times n \)-valued sequence \(\{\Sigma_t, t = 0, 1, \ldots\} \) by setting
\[
\Sigma_t = \begin{pmatrix} P_t & Q_t \\ Q_t^* & R_t \end{pmatrix}, \quad t = 0, 1, \ldots \quad (2.5)\]
We also generate the \(IR^n \)-valued processes \(\{\hat{X}_t, t = 0, 1, \ldots\} \) and \(\{\hat{B}_t, t = 0, 1, \ldots\} \) via the recursive relations
\[
\hat{X}_{t+1} = [A_t - [A_t P_t H_t^* + \Sigma_{t+1}^\prime] J_t^{-1} H_t] \hat{X}_t
+ \Sigma_{t+1}^\prime J_t^{-1} H_t \hat{Y}_t, \quad t = 0, 1, \ldots \quad (2.6)\]
\[
\hat{X}_0 = 0. \quad (2.7)\]
\[
\hat{B}_{t+1} = \hat{B}_t - (Q_t + \Psi(t, 0)) H_t J_t^{-1} H_t \hat{X}_t
+ \Sigma_{t+1}^\prime J_t^{-1} H_t \hat{Y}_t, \quad t = 0, 1, \ldots \quad (2.8)\]
\[
\hat{B}_0 = 0. \quad (2.9)\]
Finally, define an auxiliary deterministic \(Q_n \)-valued sequence \(\{M_t, t = 0, 1, \ldots\} \) by
\[
M_{t+1} = M_t + \Psi(t, 0) H_t (\Sigma_{t+1}^\prime)^{-1} H_t \Psi(t, 0), \quad t = 0, 1, \ldots \quad (2.10)\]
\[
M_0 = 0. \quad (2.11)\]
The solution to the prediction problem associated with (1.1) can now be given. Define the filtration \(\{Y_t, t = 0, 1, \ldots\} \) of \(\mathcal{F} \) as the one generated by the observations \(\{Y_t, t = 0, 1, \ldots\} \), i.e.,
\[
Y_t := \sigma \{Y_0, Y_1, \ldots, Y_t\}, \quad t = 0, 1, \ldots \quad (2.12)\]
Moreover, let \(\mathbb{I} \) denote the constant mapping \(IR \to IR : x \to 1. \)

Theorem 1. For any bounded Borel mapping \(\phi : IR^n \to IR \) and any \(t = 0, 1, \ldots \), the relationship
\[
E[\psi(X_{t+1})] = \int IR^n \psi(\hat{X}_{t+1}) d\hat{B}_{t+1} \quad (2.13)\]
holds true P-a.s.

Note that \(\Psi(\cdot, \cdot) = \Phi(\cdot, \cdot) \) when \(\Sigma_{t+1}^\prime = O_n \) and \(\Sigma_{t+1}^\prime = I_n \) for \(t = 0, 1, \ldots \), in which case (2.10) reduces to the discrete-time analog of the results of [4]. We readily see that the structure of the predictor in the general situation is not markedly different from what would have been obtained in the uncorrelated case. The noise correlation is encoded in the universal sufficient statistics [6] that parametrize the predictor, but does not affect the form of the statistics. Bearing functionalizations.

II.2. The discrete-time Ginsanov transformation

The proof of these results hinges crucially on a discrete-time version of the Ginsanov change of measure transformation [1], which is summarized here for easy reference. Let \(\{F_t, t = 0, 1, \ldots\} \) be a filtration of \(\mathcal{F} \), and let \(\{U_{t+1}, t = 0, 1, \ldots\} \) be an \(IR^n \)-valued zero-mean \((\mathcal{F}_t, P) \) GWN sequence with correlation structure \(\Lambda_{t+1} := E[U_{t+1} U_{t+1}^\prime] \) for \(t = 0, 1, \ldots \), i.e., for all \(t = 0, 1, \ldots \), the RV \(U_{t+1} \) is \(\mathcal{F}_{t+1} \)-measurable and
\[
E[\exp(\theta U_{t+1}) | \mathcal{F}_t] = \exp \left(-\frac{\theta^2}{2} \Lambda_{t+1} \theta \right), \quad t = 0, 1, \ldots \quad (2.14)\]
for every \(\theta \) in \(IR^n \). For any \(IR^n \)-valued \(\mathcal{F}_\tau \)-adapted sequence \(\{X_t, t = 0, 1, \ldots\} \), we define the sequences \(\{\hat{U}_{t+1}, t = 0, 1, \ldots\} \) and \(\{L_t, t = 0, 1, \ldots\} \) taking values in \(IR^n \) and \(IR \), respectively, by
\[
\hat{U}_{t+1} := U_{t+1} - \Lambda_{t+1} X_t, \quad t = 0, 1, \ldots \quad (2.15)\]
and
\[
L_t := \Pi x \cdot U_{t+1} - \frac{1}{2} \Lambda_{t+1} X_t, \quad t = 1, 2, \ldots \quad (2.16)\]
with \(\Lambda_0 := 1 \).

Fix a non-negative integer \(T \), and define a measure \(P_{T+1} \) on \((\Omega, \mathcal{F}) \) by
\[
P_{T+1}(A) := \int_A L_{T+1} dP, \quad A \in \mathcal{F}. \quad (2.17)\]
It is easy to see that

(a) The measure \(P_{T+1} \) is a probability measure which agrees with \(P \) on \(\mathcal{F}_T \), and which is mutually absolutely continuous with \(P \); in fact, its Radon-Nikodym derivative is given by
\[
\frac{dP_{T+1}}{dP} = L_{T+1}; \quad (2.18)\]

(b) The sequence \(\{U_{t+1}, t = 0, 1, \ldots, T\} \) is a zero-mean \((\mathcal{F}_t, P_{T+1}) \) GWN process with \(E_{T+1}[U_{t+1} U_{t+1}^\prime] = \Lambda_{t+1} \) for \(t = 0, 1, \ldots, T \) (where \(E_{T+1} \) is the expectation operator associated with \(P_{T+1} \)); and

(c) The process \(\{L_t^\prime, t = 0, 1, \ldots, T + 1\} \) is an \((\mathcal{F}_t, P_{T+1}) \)-martingale.

An alternate expression for (2.13) is simply
\[
L_{t+1} := \Pi x \cdot \hat{U}_{t+1} + \frac{1}{2} \Lambda_{t+1} X_t, \quad t = 1, 2, \ldots \quad (2.19)\]
II.3. The methodology for the uncorrelated case

As noted earlier, the solution to the filtering problem associated with the uncorrelated case can be found in [4] for the continuous-time version of (1.1). We briefly review the arguments of [4] in the discrete-time framework of this paper. Throughout the remainder of this section, we assume $\Sigma_{t+1} = O_n$ and $\Sigma_{t+1} = I_n$ for $t = 0, 1, \ldots$ and fix a positive integer T. A careful inspection of the solution of [4] reveals that it is articulated around the following two facts (B.1) and (B.2), where

(B.1): A decomposition of the RV's $\{X^*_t, t = 0, 1, \ldots\}$ of the form

$$X^*_t = X_t + Z_t \quad t = 0, 1, \ldots$$

(2.17)

with $\{X_t, t = 0, 1, \ldots\}$ representing the effects of the plant noise process and $\{Z_t, t = 0, 1, \ldots\}$ representing the effects of the initial condition ξ.

The most natural such decomposition is described by the recursions

$$X_{t+1} = A_t X_t + W_{t+1}^* \quad t = 0, 1, \ldots$$

(2.18)

and

$$Z_{t+1} = A_t Z_t \quad Z_0 = \xi, \quad t = 0, 1, \ldots$$

(2.19)

in which case $Z_t = \Phi(t, 0)\xi$ for $t = 0, 1, \ldots$. However, for any decomposition of the form (2.17) we obtain

$$Y_t = H_t X_t + V_{t+1} \quad t = 0, 1, \ldots$$

(2.20)

where

$$V_{t+1} := V_{t+1}^* + H_t Z_t \quad t = 0, 1, \ldots$$

(2.21)

If $\{\{W_{t+1}, V_{t+1}\}, t = 0, 1, \ldots, T\}$ were a GWN sequence under P, the prediction problem associated with (2.18)-(2.21) would fall within the purview of Kalman filtering. With this in mind, we now use the Girsanov transformation to find a new measure under which to carry out the calculations.

(B.2): A probability measure \tilde{P} on $(\mathcal{F}, \mathcal{F})$, which is mutually absolutely continuous with P and which agrees with P on $\sigma(\xi)$, such that under \tilde{P}, $\{\{W_{t+1}, V_{t+1}\}, t = 0, 1, \ldots, T\}$ is a GWN sequence independent of the RV ξ.

This probability measure \tilde{P} is defined by the Radon-Nikodym derivative

$$\frac{d\tilde{P}}{dP} := \exp \left[-\sum_{t=0}^{T} (H_t Z_t)^* V_{t+1} - \frac{1}{2} \sum_{t=0}^{T} (H_t Z_t)^* [H_t Z_t] \right] \quad t = 0, 1, \ldots$$

(2.22)

In view of this last relation, we define the IRn-valued RV's $\{L_t, t = 0, 1, \ldots\}$ by

$$L_{t+1} := \exp \left[-\sum_{s=0}^{t} (H_t Z_t)^* V_{s+1} - \frac{1}{2} \sum_{s=0}^{t} (H_t Z_t)^* [H_t Z_t] \right] \quad t = 0, 1, \ldots$$

(2.23)

with $L_0 = 1$, and observe that $dP/d\tilde{P} = L_{T+1}$. We may use this probability measure \tilde{P} to solve our original filtering problem through the well-known relationship [3, Sec. 27.4]

$$\mathbb{E}[\phi(X^*_t)] = \frac{\mathbb{E}[\phi(X_t)] - \frac{1}{2} \mathbb{E}[\phi(X_t) L_{T+1}^* | Y_t]}{\mathbb{E}[L_{T+1}^* | Y_t]} \quad P - a.s.$$

(2.24)

which holds for each bounded Borel mapping $\phi : IR^m \rightarrow C$ and $t = 0, 1, \ldots, T$. Here \mathbb{E} denotes the expectation operator associated with P.

We recall that $(L_{t-1}^{-1}, t = 0, 1, \ldots, T+1)$ is an $(\mathcal{F}_t, \mathbb{P})$-martingale by virtue of the Girsanov transformation. Thus, fixing ϕ and $t = 0, 1, \ldots, T$, we see from the law of iterated conditioning that

$$\mathbb{E}[\phi(X^*_t)] = \mathbb{E}[\mathbb{E}[\phi(X^*_t) | \mathcal{F}_t] | \mathcal{F}_{t-1}] | \mathcal{F}_{t-1}]$$

(2.25)

since X^*_t is clearly \mathcal{F}_{t-1}-measurable and $Y_t \in \mathcal{F}_{t-1}$.

To pursue the discussion, we introduce the IRn-valued RV's $\{B_t, t = 0, 1, \ldots\}$ and the Qn-valued sequence $\{M_t, t = 0, 1, \ldots\}$ by setting

$$B_{t+1} := \sum_{s=0}^{t} \Phi(s, 0)^* H_t^* V_{t+1} \quad t = 0, 1, \ldots$$

(2.26)

and

$$M_{t+1} := \sum_{s=0}^{t} \Phi(s, 0)^* H_t^* H_t \Phi(s, 0) \quad t = 0, 1, \ldots$$

(2.27)

with $B_0 = 0$ and $M_0 = O_n$. From (2.21), (2.26) and (2.27), we observe that

$$L_{t+1}^{-1} = \exp \left[\xi^* B_{t+1} - \frac{1}{2} \xi^* M_{t+1} \xi \right] \quad t = 0, 1, \ldots$$

(2.28)

and readily conclude from (2.25) that

$$\mathbb{E}[\phi(X^*_t) | \mathcal{F}_t] | \mathcal{F}_{t-1}] = \mathbb{E}[\phi(X^*_t + \Phi(t + 1, 0) \xi) | \mathcal{F}_t] \mathcal{F}_{t-1}]$$

(2.29)

By property (B.2), we see from (2.18)-(2.21) that under P, the RV's $\{X_t, B_t\}$ and $\{Y_0, Y_1, \ldots, Y_T\}$ are jointly Gaussian (and independent of the σ-field $\sigma(\xi)$). Motivated by standard facts for Gaussian RV's [7, Sec. 2.7], we thus define the MMSE sequences $\{\tilde{X}_t, t = 0, 1, \ldots\}$ and $\{\tilde{B}_t, t = 0, 1, \ldots\}$ by

$$\tilde{X}_{t+1} = \mathbb{E}[X_{t+1} | Y_t]$$

(2.30)

and

$$\tilde{B}_{t+1} = \mathbb{E}[B_{t+1} | Y_t]$$

(2.31)

with corresponding errors

$$\tilde{X}_{t+1} := X_{t+1} - \tilde{X}_{t+1}$$

As in [4], standard arguments [7, Sec. 2.7] imply that the RV's $\{\tilde{X}_{t+1}, \tilde{B}_{t+1}\}$ are P-independent, Y_t-independent, and P-independent of the σ-field $\sigma(\xi)$ since the RV's $\{X_t, B_t\}$ and $\{Y_0, Y_1, \ldots, Y_T\}$ are P-independent of the σ-field $\sigma(\xi)$. Moreover, under P, the IRm-valued RV $\{X_t, B_t\}$ is a zero-mean Gaussian RV with covariance matrix Σ_t, given by

$$\Sigma_t := \mathbb{E} \left[\left(\begin{array}{c} \tilde{X}_{t+1} \\ \tilde{B}_{t+1} \end{array} \right) \left(\begin{array}{c} \tilde{X}_{t+1} \\ \tilde{B}_{t+1} \end{array} \right)^* \right] = \left(\begin{array}{cc} P_{t+1} & Q_{t+1} \\ Q_{t+1} & R_{t+1} \end{array} \right)$$

(2.32)
Clearly, the matrices P_{s+1}, Q_{s+1}, and R_{s+1} are elements of Q_{n}, $M_{n\times n}$, and Q_{n}, respectively, with the interpretation that

$$P_{s+1} = E[\bar{X}_{s+1}^{'}\bar{X}_{s+1}], \quad Q_{s+1} = E[\bar{X}_{s+1}B_{s+1}],$$
and

$$R_{s+1} = E[B_{s+1}B_{s+1}].$$

(2.33)

The RV's $\bar{X}_{i+1} + \Phi(t + 1, \xi)\bar{B}_{i+1}$ and ξ are all \mathcal{F}_{s}-measurable, and from the remarks made earlier, we conclude [2, Prop. 6.1.1] through (2.29) that

$$E[\phi(\lambda_{i+1}^{s+1})]_{\mathcal{F}_{s}} = \exp \left\{ \lambda t\Phi - \frac{1}{2}\lambda^{2} - \frac{1}{2} \Phi^{2} \right\}$$

(2.34)

where the mapping \mathcal{T} is defined by (1.4).

From (2.34), we now readily obtain by the law of iterated conditioning that

$$E[\phi(\lambda_{i+1}^{s+1})]_{\mathcal{F}_t} = E \left\{ \exp \left\{ \lambda t\Phi - \frac{1}{2}\lambda^{2} \right\} \mathcal{T}[\bar{X}_{i+1} + \Phi(t + 1, \xi)\bar{B}_{i+1}] \right\}_{\mathcal{F}_t}$$

(2.35)

where the mapping $\mathcal{U}\phi$ is defined by (1.5). We have used the fact that the RV's $\{\bar{X}_{i+1}, \bar{B}_{i+1}\}$ are \mathcal{F}_t-measurable and therefore \mathcal{P}-independent of $\sigma(\xi)$. The reader will readily check that the substitution of (2.35) (with arbitrary ϕ and with $\phi = B$) results in (2.10) since $\Psi(\cdot) = \Phi(\cdot)$, under the assumptions $\Sigma_{*} = O_{n}$ and $\Sigma_{*} = I_{n}$ for $t = 0, 1, \ldots$.

III. THE CORRELATED CASE

We now show how the arguments outlined in the preceding section for the uncorrelated case need to be modified so as to handle the correlated case as well. Let T be a fixed non-negative integer, and consider a decomposition of $\{\bar{X}_{s+1}, t = 0, 1, \ldots\}$ of the form (2.17) and define $\{\bar{V}_{s+1}, t = 0, 1, \ldots\}$ by (2.21). If $\Sigma_{*} = O_{n}$ for $t = 0, 1, \ldots$, we would arrive at the probability measure \mathcal{P} characterized by property (B.2) as follows: Define the filtration $\{\mathcal{F}_{t}, t = 0, 1, \ldots\}$ by

$$\mathcal{F}_{t+1} = \mathcal{F}_{t} \cup \sigma(V_{s+1}, s = 0, 1, \ldots)$$

(3.1)

with $\mathcal{F}_{0} = \sigma(W_{0}, V_{s+1}, s = 0, 1, \ldots)$, and observe that the sequence $\{V_{s+1}, t = 0, 1, \ldots\}$ is an $(\mathcal{F}_{t}, \mathcal{P})$ zero-mean GWN sequence. The Girsanov transformation implies that \mathcal{P} as defined in (2.22) enjoys property (B.2). However, if $\Sigma_{*} = I_{n}$ for $t = 0, 1, \ldots$, then the sequence $\{V_{s+1}, t = 0, 1, \ldots\}$ is not necessarily an $(\mathcal{F}_{t}, \mathcal{P})$ zero-mean GWN sequence because now the sequence $\{V_{s+1}, t = 0, 1, \ldots\}$ may not be independent of \mathcal{F}_{0}, in which case \mathcal{P} given by (2.22) need not enjoy property (B.2).

We may overcome this difficulty when the plant and observation noise sequences have an arbitrary covariance structure by performing a Girsanov transformation on the joint IRC-**-valued sequence $\{(W_{t}, V_{t}), t = 0, 1, \ldots\}$. With this in mind, we change the definition (2.1) to read instead

$$\mathcal{F}_{t+1} = \mathcal{F}_{t} \cup \sigma(W_{s+1}, V_{s+1}, s = 0, 1, \ldots)$$

(3.2)

with $\mathcal{F}_{0} = \sigma(\xi)$. We now define the IRC-**-valued sequence $\{(W_{t}, V_{t}), t = 0, 1, \ldots\}$ by

$$\begin{align*}
W_{t+1} &= W_{t} + \left(\Sigma_{*} - \Sigma_{*} \right)^{1/2} \left(\Phi(t + 1, \xi) - \Phi(t, \xi) \right) \left(\Sigma_{*} \right)^{1/2} \psi_{t} \psi_{t}^{T} \\
V_{t+1} &= V_{t} + \left(\Sigma_{*} - \Sigma_{*} \right)^{1/2} \left(\Phi(t + 1, \xi) - \Phi(t, \xi) \right) \left(\Sigma_{*} \right)^{1/2} \psi_{t} \psi_{t}^{T} \end{align*}$$

(3.3)

where $\psi_{t} = 0, 1, \ldots$ and $\psi_{t} = 1, 0, \ldots$ are \mathcal{F}_{t}-adapted sequences taking values in IRC and \mathcal{P}, respectively, which we have to specify. Reviewing the Girsanov transformation, we see that for any two such sequences $\{(\psi_{t}, t = 0, 1, \ldots) \}$ and $\{(\psi_{t}, t = 0, 1, \ldots) \}$, we can find a probability measure \mathcal{P} on (Ω, \mathcal{F}) satisfying (B.3) where

$$\mathcal{P} = \mathcal{F}_{t}$$

(3.3b)

where $\mathcal{F}_{t} = \sigma(\xi), t = 0, 1, \ldots \}$ is a zero-mean $(\mathcal{F}_{t}, \mathcal{P})$ GWN sequence with the same covariance structure under \mathcal{P} as the covariance structure under \mathcal{P} of the original noise sequence $\{(W_{t}, V_{t}), t = 0, 1, \ldots\}$. Now if we impose the constraints (2.21), the sequences $\{(\psi_{t}, t = 0, 1, \ldots) \}$ and $\{(\psi_{t}, t = 0, 1, \ldots) \}$ in (3.3) must necessarily have the form

$$\psi_{t} = 0, 1, \ldots \text{ and } \psi_{t} = 1, 0, \ldots$$

(3.4)

for some unspecified \mathcal{F}_{t}-adapted sequence $\{(\psi_{t}, t = 0, 1, \ldots) \}$ taking values in IRC. Injecting (3.4) into (3.3), we obtain

$$W_{t+1} = W_{t} + \Sigma_{*}^{1/2}(\Sigma_{*}^{1/2})^{-1}H_{t}Z_{t} + \Sigma_{*}^{1/2}(\Sigma_{*}^{1/2})^{-1}Z_{t}^{T}\psi_{t}$$

(3.5)

and the appropriate probability measure \mathcal{P} given by the Girsanov theorem and satisfying (B.3) is then defined by

$$d\mathcal{P} = \exp \left\{ \sum_{t=0}^{T} \left[\psi_{t}(W_{t} - \Sigma_{*}^{1/2}(\Sigma_{*}^{1/2})^{-1}Z_{t}) - Z_{t}^{T}H_{t}(\Sigma_{*}^{1/2})^{-1}V_{t} \right] \right\}$$

(3.6)

In order to complete the specification of the decomposition (2.17) and of the probability measure (3.6), we must specify $\{(X_{t}, t = 0, 1, \ldots) \}$, $\{(Z_{t}, t = 0, 1, \ldots) \}$, and $\{(\psi_{t}, t = 0, 1, \ldots) \}$. To that end we rewrite the evolution of $(X_{t}, t = 0, 1, \ldots)$ in terms of $\{X_{t}, t = 0, 1, \ldots\}$, $\{Z_{t}, t = 0, 1, \ldots\}$, and $\{W_{t}, t = 0, 1, \ldots\}$. Since we wish to use the properties of \mathcal{P}, it is more natural to write this evolution in terms of $\{W_{t}, t = 0, 1, \ldots\}$ rather than in terms of $\{W_{t}, t = 0, 1, \ldots\}$, and this leads to

$$X_{t+1} + Z_{t+1} = X_{t} + Z_{t} + W_{t+1} - \Sigma_{*}^{1/2}(\Sigma_{*}^{1/2})^{-1}H_{t}Z_{t}$$

(3.7)

This suggests a separation of the dynamics in the form

$$X_{t+1} = A_{t}X_{t} + W_{t+1} + \Sigma_{*}^{1/2}(\Sigma_{*}^{1/2})^{-1}Z_{t}^{T}\psi_{t}$$

(3.8)
and

\[Z_{t+1} = \left[A_t - \Sigma_{t+1}^0 (\Sigma_{t+1}^{\infty})^{-1} H_t \right] Z_t + \xi_t \quad t = 0, 1, \ldots \]

(3.9)

where \(\zeta \) and \(\xi_t, \ t = 0, 1, \ldots \) are \(\mathcal{F}_t \)-valued RVs yet to be specified. We shall simply assume that

\[\varphi_t = 0, \quad \xi_t = 0 \quad \text{and} \quad \zeta = 0, \quad t = 0, 1, \ldots \]

(3.10)

At this point, a summary of the relevant quantities is in order under the constraints (3.10).

* The effect of the initial condition

\[Z_{t+1} = \left[A_t - \Sigma_{t+1}^0 (\Sigma_{t+1}^{\infty})^{-1} H_t \right] Z_t \quad t = 0, 1, \ldots \]

(3.11)

which may also be written as \(Z_t = \Psi(t, 0) \xi \) for \(t = 0, 1, \ldots \).

* The noise processes

\[
\begin{align*}
(W_{t+1} & \begin{pmatrix} W_{t+1}^0 \\ V_{t+1}^0 \\ V_{t+1}^1 \\ V_{t+1}^2 \\
\end{pmatrix}) = \begin{pmatrix} W_{t+1}^0 \\ V_{t+1}^0 \\ V_{t+1}^1 \\ V_{t+1}^2 \\
\end{pmatrix} - \begin{pmatrix} \Sigma_{t+1}^0 \\ \Sigma_{t+1}^{\infty} \\ \Sigma_{t+1}^{\infty} \\ \Sigma_{t+1}^{\infty} \\
\end{pmatrix}\begin{pmatrix} 0 \\ (\Sigma_{t+1}^{\infty})^{-1} H_t Z_t \\
\end{pmatrix} \\
& \begin{pmatrix} W_{t+1}^0 + \Sigma_{t+1}^{\infty} \begin{pmatrix} 0 \\ (\Sigma_{t+1}^{\infty})^{-1} H_t Z_t \\
\end{pmatrix} \\
\end{pmatrix} + \begin{pmatrix} \Sigma_{t+1}^0 \\ \Sigma_{t+1}^{\infty} \\ \Sigma_{t+1}^{\infty} \\ \Sigma_{t+1}^{\infty} \\
\end{pmatrix} H_t Z_t,
\end{align*}
\]

(3.12)

* The auxiliary system

\[
\begin{align*}
X_{t+1} &= A_t X_t + W_{t+1} \\
X_0 &= 0 \\
Y_t &= H_t X_t + V_{t+1}.
\end{align*}
\]

(3.13)

* The change of measure

\[
\frac{dP}{dP} = \exp \left\{ -\frac{1}{2} \sum_{s=0}^{T} Z_s^2 \right\} \frac{1}{\sqrt{2\pi}} \sum_{s=0}^{T} Z_s^2 \]

(3.14)

The properties of our decomposition and change of measure are summarized in

Proposition 1. Let the filtration \(\mathcal{F}_t, \ t = 0, 1, \ldots \) be given by (3.2). If the sequences \(\{X_t, \ t = 0, 1, \ldots\} \) and \(\{Z_t, \ t = 0, 1, \ldots\} \) and \(\{(W_{t+1}, V_{t+1}), \ t = 0, 1, \ldots\} \) are defined by (3.11)-(3.13) and if the probability measure \(P \) is defined by (3.14), then \(P \) and \(P \) are mutually absolutely continuous and agree on \(\mathcal{F}_0 \) and the process \(\{(W_{t+1}, V_{t+1}), \ t = 0, 1, \ldots, T\} \) is a zero-mean \((\mathcal{F}_t, P)\) GWN sequence with covariance structure \(\{\Sigma_{t+1}, t = 0, 1, \ldots, T\} \) under \(P \).

Motivated by the form of (3.14), we define the \(\mathcal{F}_t \)-valued sequence \(\{L_t, t = 0, 1, \ldots\} \) by

\[
L_{t+1} := \exp \left\{ -\frac{1}{2} \sum_{s=0}^{T} Z_s^2 \right\} \frac{1}{\sqrt{2\pi}} \sum_{s=0}^{T} Z_s^2 \]

(3.15)

with \(L_0 = 1 \), and observe that \(dP/dP = L_T P \). The Girsanov transformation now implies that \(\{L_t, t = 0, 1, \ldots, T\} \) is an \((\mathcal{F}_t,\bar{P})\)-martingale, and by the same arguments as the ones leading to (2.25) we conclude that

\[
\mathbb{E} \left[\phi(X_{t+1}^{\bar{P}}) \frac{dP}{d\bar{P}} \mid \mathcal{Y}_t \wedge \sigma(\xi) \right] = \mathbb{E} \left[\phi(X_{t+1}^{\bar{P}}) L_{t+1}^{-1} \mid \mathcal{Y}_t \wedge \sigma(\xi) \right].
\]

(3.16)

Since

\[
L_{t+1} := \exp \left\{ \sum_{s=0}^{T} Z_s^2 \right\} \frac{1}{\sqrt{2\pi}} \sum_{s=0}^{T} Z_s^2 \]

(3.17)

we see from (2.21) that

\[
L_{t+1} := \left(t \sum_{s=0}^{T} Z_s^2 \right) \frac{1}{\sqrt{2\pi}} \sum_{s=0}^{T} Z_s^2 \]

(3.18)

where

\[
B_{t+1} := \sum_{s=0}^{T} \psi(x, s) H_s \left(\Sigma_{s+1}^{\infty} \right)^{-1} V_{t+1} \]

(3.19)

and

\[
M_{t+1} := \sum_{s=0}^{T} \psi(x, s) H_s \left(\Sigma_{s+1}^{\infty} \right)^{-1} H_s \psi(x, s) \]

(3.20)

with \(B_0 = 0 \) and \(M_0 = 0 \). We may verify that the condition of \((M_{s}, t = 0, 1, \ldots, \) of (3.20) is equivalent to that of (2.8).

As before, we define the sequences \(\{X_{t+1}, t = 0, 1, \ldots\} \) and \(\{B_{t+1}, t = 0, 1, \ldots\} \) by (2.20), with corresponding errors \(\{\hat{X}_{t+1}, t = 0, 1, \ldots\} \) and \(\{\hat{B}_{t+1}, t = 0, 1, \ldots\} \) given by (2.21). The RVs \(\{X_{t+1}, B_{t+1}, t = 0, 1, \ldots, T\} \) may all be represented as linear combinations of \(\{(W_{t+1}, V_{t+1}), t = 0, 1, \ldots, T\} \), and are thus jointly Gaussian and independent of \(\sigma(\xi) \) under \(P \). As argued in the uncorrelated case, under \(P \), the \(\mathcal{F}_t \)-valued RV \(\{X_{t+1}, B_{t+1}\} \) is a zero-mean Gaussian RV with covariance matrix \(\Sigma_{t+1} \) which is \(P \)-independent of the \(\sigma \)-field \(\mathcal{Y}_t \wedge \sigma(\xi) \). Hence standard results on conditional expectations [2, Prop. 6.1.11] validates the following chain of equalities

\[
\mathbb{E} \left[\phi(X_{t+1}^{\bar{P}}) \exp \left\{ \phi(B_{t+1}) - \frac{1}{2} \phi^2 (M_{t+1}) \right\} \right] = \mathbb{E} \left[\phi(X_{t+1}^{\bar{P}}) + \psi(t + 1, 0) \xi \right].
\]

(3.21)

where \(\Sigma_{t+1} \) has the decomposition (2.32)-(2.33). Removing the conditioning upon \(\sigma(\xi) \), we find

\[
\mathbb{E} \left[\phi(X_{t+1}^{\bar{P}}) \frac{dP}{dP} \right] = \mathbb{E} \left[\phi(X_{t+1}^{\bar{P}}) + \psi(t + 1, 0) \xi \right],
\]

(3.22)

since \(\{X_{t+1}, B_{t+1}\} \) is \(\mathcal{Y}_t \)-measurable and therefore \(P \)-independent of \(\sigma(\xi) \).

At this point, we have solved the prediction problem over the finite horizon \(t = 0, 1, \ldots, T \). Indeed we readily obtain (2.10) by

...
injecting (3.22) (for arbitrary and for 0) into (2.24). The only remaining problem is to calculate \((\hat{X}_t, \hat{B}_t), t = 0, 1, \ldots, T + 1)\) and \((\Sigma_t, t = 0, 1, \ldots, T + 1)\). We combine (3.13) and (3.19) to rewrite the dynamics of \((\hat{X}_t, \hat{B}_t), t = 0, 1, \ldots, T + 1)\) and \((\Sigma_t, t = 0, 1, \ldots, T + 1)\) by

\[
\begin{align*}
\begin{bmatrix} \hat{X}_{t+1} \\ \hat{B}_{t+1} \end{bmatrix} &= \begin{bmatrix} A_t & 0 \\ 0 & I_n \end{bmatrix} \begin{bmatrix} \hat{X}_t \\ \hat{B}_t \end{bmatrix} \\
&+ \begin{bmatrix} I_n \\ 0 \end{bmatrix} \psi(t, 0) \begin{bmatrix} W_{t+1} \\ V_{t+1} \end{bmatrix} \\
\begin{bmatrix} X_0 \\ B_0 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
Y_t &= \begin{bmatrix} H_t \end{bmatrix} \begin{bmatrix} \hat{X}_t \\ \hat{B}_t \end{bmatrix} + \begin{bmatrix} 0 \\ I_n \end{bmatrix} \begin{bmatrix} W_{t+1} \\ V_{t+1} \end{bmatrix},
\end{align*}
\]

By applying the Kalman filtering equations to this system (under \(P\)), after appropriate identification, we easily arrive at the equations (2.1)-(2.7) satisfied by the sequence of \(\bar{H}\)-valued RV's \((\hat{X}_t, \hat{B}_t), t = 0, 1, \ldots, T + 1)\) and the \(\mathcal{M}_{2n\times 2n}\)-valued sequence \((\Sigma_t, t = 0, 1, \ldots, T + 1)\). The calculations are tedious, and the details are left to the interested reader [5].

The final step now consists in extending these results from the finite horizon \(T = 0, 1, \ldots, T\) to the infinite horizon \(T = 0, 1, \ldots)\). To that end, note the following: The dynamics of the sequences \((\hat{X}_t, \hat{B}_t), t = 0, 1, \ldots, T + 1)\) and \((\Sigma_t, t = 0, 1, \ldots, T + 1)\) are independent of \(T\). Moreover, although the transformed measure \(\hat{P}\) used in the derivation depends \(\hat{a}_n\) on \(T\), the definitions of the mappings \(\Theta\) and \(\hat{a}\) are independent of \(T\). These remarks are sufficient to yield Theorem 1 from the finite-horizon results of this section.

Following on the comments made at the end of the proof, we could have displayed explicitly the dependence of the transformed measure on the parameter \(T\), say through the notation \(\hat{P}_{T+1}\). Although \(\hat{P}_{T+1} = \hat{P}_T\) on the \(\sigma\)-field \(\mathcal{F}_T\) for all \(T = 0, 1, \ldots, T + 1\), and the probability measure \(\hat{P}_{T+1}\) is mutually absolutely continuous with respect to \(\hat{P}\), it is not true in general [5] that the projective system \(\{\hat{P}_T, T = 0, 1, \ldots\}\) has a limit \(\hat{P}\) which is absolutely continuous with respect to \(\hat{P}\) on the \(\sigma\)-field \(\bigvee \mathcal{F}_T\); i.e., there does not exist necessarily a probability measure \(\hat{P}\) on \(\bigvee \mathcal{F}_T\) such that \(\hat{P}\) is absolutely continuous with respect to \(\hat{P}\), and \(\hat{P}_T = \hat{P}\) on the \(\sigma\)-field \(\mathcal{F}_T\) for all \(T = 0, 1, \ldots, T + 1\). Although this could a priori complicate matters for the infinite-horizon situation, we shall not concern ourselves with this difficulty in what follows. Indeed, in the remainder of this paper, only statements for finite \(T\) will be made and the notation \(\hat{P}\) (and \(\hat{Q}\)) will be used throughout with the understanding that \(\hat{P} = \hat{P}_{T+1}\) for some \(T < T.\) As should be clear from earlier comments, the exact choice of \(T\) is irrelevant.

IV. REPRESENTATIONS FOR THE MMSE AND LLSE FILTERS

Using Theorem 1, we may develop formulae for the MMSE and LLSE estimates of \(X_{t+1}^X\) on the basis of \((Y_0, Y_1, \ldots, Y_t)\) for any \(t = 0, 1, \ldots, T\). In the interest of brevity, we shall omit the proofs. The reader is referred to [6] for a full exposition.

In addition to assumptions (A.1) to (A.3), we shall need an additional assumption (A.4), where

(A.4): The covariance matrix \(\Delta\) is positive-definite.

We shall also find it convenient to introduce the auxiliary quantities \(Q_t^0, \Delta^0, t = 0, 1, \ldots)\) in \(\mathcal{M}_{2n\times 2n}\) and \(\mathcal{Q}_n\), respectively, given by

\[
Q_t^0 := Q_t^0 + \Theta(t, 0) \quad \text{and} \quad \Delta^0 := M_t - \Delta_t, \quad t = 0, 1, \ldots
\]

Algebraic manipulation then reveals that these quantities propagate according to

\[
Q_{t+1}^0 = \begin{bmatrix} A_t & -A_t \Delta^0_t H_t \end{bmatrix} Q_t^0 A_t^T + \Sigma_{t+1}^n, \quad t = 0, 1, \ldots
\]

and

\[
\Delta^0_{t+1} = \Delta^0_t - A_t \Delta^0_t H_t \Delta^0_t H_t A_t^T, \quad t = 0, 1, \ldots
\]

The dynamics (2.7) then also simplifies into

\[
B_{t+1} = B_t - Q_t^0 H_t \Delta^0_t H_t^T B_t, \quad t = 0, 1, \ldots
\]

We then have:

Theorem 2. For all \(t = 0, 1, \ldots, T\)

\[
E[X_{t+1}^X|D_t] = \hat{X}_{t+1} + Q_{t+1}^0 \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp \left[z^T \hat{B}_{t+1} - \frac{1}{2} z^T \hat{R}_{t+1} z \right] \exp \left[z^T \hat{B}_{t+1} - \frac{1}{2} z^T \hat{R}_{t+1} z \right] dF(z)
\]

P.a.s., and if we denote by \(\hat{X}_{t+1}^X\) the LLSE estimate of \(X_{t+1}^X\) on the basis of \((Y_0, Y_1, \ldots, Y_t)\), then

\[
\hat{X}_{t+1}^X = \hat{X}_{t+1} + Q_{t+1}^0 [\hat{R}_{t+1} + \Delta^{-1}]^{-1} [\hat{R}_{t+1} + \Delta^{-1}] [\hat{B}_{t+1} + \Delta^{-1}]\mu.
\]

P.a.s. for all \(t = 0, 1, \ldots, T\).

Outline of Proof. Apply Theorem 1 to find the conditional characteristic function; i.e., let \(\varphi_{\Delta, t}\). We then differentiate the resulting expression with respect to \(\varphi\) to arrive at (4.3). Since the LLSE or Kalman filter depends solely on the first and second moments, and since the MMSE and LLSE filters coincide if \(\xi\) has a Gaussian distribution, we arrive at (4.6) by replacing \(F\) in (4.5) by a Gaussian distribution with mean \(\mu\) and covariance \(\Delta\). This representation for the LLSE filter is notable in that it explicitly displays the effects of the mean \(\mu\) and covariance \(\Delta\) of the initial condition \(\xi\); the only dependence of the filtering formulae on \(\mu\) and \(\Delta\) is through the affine mapping \(z = [\hat{R}_{t+1} + \Delta^{-1}]^{-1/2} [\hat{B}_{t+1} + \Delta^{-1}]\mu\).

V. REFERENCES

