
Sparks: Coherence as an Abstract TypePete KeleherDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742keleher@cs.umd.eduAbstractWe are currently designing Sparks, a protocol construction library that we hope will allow us toimprove the performance of DSM systems to within a few percent of tightly-coupled multiprocessors.Sparks' abstractions will allow us to cleanly and systematically explore the design space of high-level synchronization operations, rather than proposing and implementing new operations in an adhoc fashion. Sparks' basic abstraction is the coherence history, an object that summarizes pastcoherence actions to shared segments. Our emphasis here is more on creating and investigatingthe abstractions that make a broad variety of optimizations possible, rather than on the individualoptimizations themselves. However, we will thoroughly quantify the performance gains allowed bythe synchronization types created via the Sparks library.Our overall goal is to improve DSM performance. We will gauge our success by targetingapplications from benchmark suites such as SPLASH-2, as well as representative applications fromcomputational chemistry, biology, and satellite image analysis. Sparks' history abstraction will beused to make several important contributions towards our performance goal: (1) e�cient techniquesto implement high-level synchronization, (2) e�cient automatic prefetching using prefetch playbacks,and (3) external interfaces to run-time libraries and automatically parallelized code sections. Byimproving DSM e�ciency, we hope to make the shared memory paradigm more appealing, andtherefore useful, to the research community.1 IntroductionShared memory is a more intuitive programming model than alternatives such as message-passing.Software distributed shared memory (DSM) systems provide the abstraction of shared memory toapplications running on networks of workstations and distributed memory machines such as theSP-2, CM-5, and Paragon. Unfortunately, the latencies for global operations in either environmentare several orders of magnitude more expensive than on tightly-coupled multiprocessors. As aresult, early DSMs performed well for only a restricted class of applications.Previous work [5, 7] addressed part of the problem by proposing weak memory consistencymodels. These memory models allow processors' views of shared memory to temporarily diverge,bringing them back into agreement only at subsequent synchronization. This work signi�cantlybroadened the class of applications that performs acceptably on DSMs, but falls short of allowingDSMs to rival the performance of multiprocessors in general.We are currently designing Sparks, a protocol construction library that we hope will allow us toimprove the performance of DSM systems to within a few percent of tightly-coupled multiprocessors.1



Sparks' basic abstraction is the coherence history. A history is an object that summarizes pastcoherence actions to shared segments. The Sparks history objects can be used to create high-performance synchronization types, prefetching strategies, and interfaces. Our emphasis is oncreating and investigating the abstractions that make a broad variety of optimizations possible,rather than on the individual optimizations themselves. However, we will thoroughly quantify theperformance gains allowed by the synchronization types created via the Sparks library.Sparks will be implemented in the context of the Coherent Virtual Memory (CVM)[10] system,a new DSM that has advanced support for multiple protocols, multi-threading, and prefetching.Speci�c concentrations of the Sparks research will include:� High-level synchronization - Sparks' abstractions will allow us to cleanly and systemati-cally explore the design space of high-level synchronization operations, rather than proposingand implementing new operations in an ad hoc fashion. We will place special emphasis onthe interaction of synchronization and protocol design.� Prefetch Playbacks - Our simulation results indicate that a majority of data accesses ineven fairly complicated applications can be predicted by using runtime analysis. This analysis,in combination with Sparks mechanisms, can cleanly record data transfers, associate themwith individual synchronization objects, and play back the associated data transfer duringsubsequent iterations. We will develop a suite of prefetch heuristics that are automaticallytriggered by access patterns, and evaluate their performance in the context of CVM.� External interfaces - Combining DSM support with run-time libraries and automaticallyparallelized code sections has enormous potential. One of the primary obstacles to reachingthis potential is in the di�culty of creating appropriate mechanisms for the DSM and librarycode to \hand o�" responsibility for data segments. In particular, the interface must allowdetailed description of the current state and distribution of shared data when control istransferred. History objects can be used to create 
exible and �ne-grained descriptions ofshared state, making clean external interfaces relatively simple to implement.The rest of this research plan is organized as follows. Section 2 gives a brief overview of currentDSM research. Section 3 gives an overview of the concepts, functionality, and projected use of theSparks class library. Finally, Section 4 summarizes the research issues and discusses our conclusions.2 BackgroundDistributed Shared Memory (DSM) systems support the abstraction of shared memory for applica-tions running on loosely-couple distributed systems, i.e. workstations on a general-purpose network(Figure 1). The DSM layer traps page faults and satis�es them by fetching data across the network.While early systems strictly emulated the sequentially consistent [13] programming model oftightly-coupled multiprocessors, most recent systems support relaxed consistency models that pro-duce identical results for most applications, but allow the use of many performance optimizations.As part of my dissertation research, I de�ned lazy release consistency (LRC) [7], a close relationto the eager release consistency (ERC) [5] memory model. DSMs that implement ERC delaypropagating modi�cations of shared data until they execute a release (see Figure 2), and then themodi�cations are performed globally. Under LRC protocols, processors further delay performingmodi�cations remotely until subsequent acquires by other processors. Additionally, the modi�ca-tions are only performed at the processor that performed the acquire (see Figure 3). The centralintuition of LRC is that competing accesses to shared locations in correct programs will (almost)2
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always be separated by synchronization. Since coherence operations are deferred until synchro-nization is acquired, we can piggyback consistency information on the existing synchronizationmessages. In general, LRC performs better than ERC by eliminating consistency messages andfurther hiding the e�ects of false sharing.I demonstrated the usefulness of LRC by implementing and testing TreadMarks, a softwareDSM that implements a multi-writer version of LRC. TreadMarks is proof that user-level DSMsare capable of e�ciently running applications that were written for tightly-coupled multiprocessors,without requiring a di�erent programming model or user annotations.3 Sparks: Abstract Type Support for CoherenceDSMs typically separate synchronization support from shared address space support in order toachieve good performance [1, 3, 9, 6]. Such systems provide a limited set of synchronization primi-tives (locks, barriers), and expect application programmers to build sophisticated synchronizationconstructs in terms of them.However, building high level synchronization objects using locks or barriers is often inappropri-ate, because the coherence constraints implied by the locks may be more strict than those neededby the high level object. Figures 5 and 4 show lock-based and Sparks-based queue implementationsin an LRC environment. In both cases, process P1 creates and inserts item x, P2 creates and insertsitem y, and P3 retrieves item x. LRC systems transitively require the acquirer of a lock to see allshared updates seen by the last releaser. In the lock-based queue Figure 5, both P2 and P3 see allupdates seen by P1, and P3 sees all updates seen by P2. More to the point, P2 invalidates its copyof the page containing x and P3 invalidates its copy of the pages containing both x and y. However,P2 never needs to see x. It merely transfers knowledge of x's creation from P1 to P3. Similarly, P3does not need to know about y. Therefore, neither P2's invalidation of the page containing x, norP3's invalidation of the page containing y are necessary. In general, applying unnecessary coherenceoperations can waste bandwidth, create extra CPU overhead, and cause unnecessary page faults.The Sparks class library can be used to build high level synchronization objects that accuratelyre
ect the synchronization objects' coherence semantics. Our approach is related to the causalityannotations of CarlOS [11], but Sparks will provide a much richer set of mechanisms and �nercontrol over the scope of consistency actions. Sparks will replace the top layer of CVM. Sincecoherence in LRC systems like CVM is driven by synchronization, it is also entirely proper to viewSparks as a toolkit with which to write DSM protocols.In the following sections, we describe Sparks histories, and present several examples of theiruse. This list is by no means complete, we expect new uses to emerge as the system is built andwe gain experience using it.3.1 HistoriesCoherence histories allow users to express and manipulate coherence constraints. By applying onenode's history at another node, the second node's view of shared state is brought up to date withrespect to events seen by the �rst.More formally, a history is a partially ordered set of intervals [8], where an interval describesan interval of time for a single processor. Intervals contain write notices, which are generally justindications that a given page has been modi�ed. Applying such a notice invalidates the associatedpage. However, a write notice may also contain the newly written data, and hence applicationof the write notice updates the page instead of invalidating it. Intervals represent a logical unit4
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Figure 5 Lock-based queueof time; they have no correspondence with real time. In a distributed system, new intervals aretypically started at each non-local synchronization event.Figure 6 shows the example of Figure 4 with intervals labeled. Interval 0 of P1, written as i01,contains a single write notice for the page containing x. A history of P3 at the time of the acquirecould be written as: H3 = fi01; i02; i12; i03g (1)where intervals are ordered in a topological sort of the partial orderings (see Figure 7 imposed byprogram order, (i01 precedes i11), and synchronization order (i01 precedes i12).Histories have three types of extent: a temporal extent, a segment extent, and a thread extent.The temporal extent speci�es the interval of time for which events are summarized. A limitedtemporal extent can be used to name only those events that occurred during part of an execution,such as between two synchronizations. A temporal extent is described by using version vectors tosummarize the earliest and latest included intervals of each processor in the system. The temporalextent of H3 in Equation 1 could be written as:f?;?;?g f0; 1; 1g (2)meaning that the history summarizes all intervals from the start of execution to i01 on P1, i12 on P2,and i03 on P3.The segment extent names the region of shared memory that may be a�ected by the history'swrite notices. The segment extent of H3 is the set of pages that contain the variables x, y, andz. The primary purpose of the segment extent is to limit the scope of a history's consistencyactions to a subset of shared memory. In a page-based DSM like CVM, a segment consists of a setof pages. However, segments could also be composed of arbitrarily-shaped objects in distributedobject systems such as Midway [1], CRL [6], or Emerald [2].The thread extent names the set of threads whose write notices may be contained in the history.Usually this includes all threads in a system. For example, the thread extent of H3 is P1, P2, andP3. However, limiting the thread extent has several uses, including limiting the information passedto a global barrier by each node (each needs only to tell the barrier master about its own intervals),and integrating prefetching with thread scheduling on multi-threaded nodes.5
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i 0Figure 7 Interval Partial Order3.2 Programming with SparksThe initial prototype of Sparks will be written as a C++ class library. Later versions may migrateto a language-based approach as we expand the scope of the research to include compiler-basedanalysis of synchronization and automatic protocol veri�cation.A simpli�ed de�nition of the History class is shown in Figure 8. This de�nition allows historiesto be added, subtracted, and applied. The set * routines allow the extents to be directly modi�ed.Additionally, some protocol implementations of get data() will return all data present locallywhose creation is described by the history's write notices. This apply data routine can be used toupdate pages when the history is applied elsewhere. The register routine is used to tell Sparksto begin recording shared writes in a given history.Adding histories Hi and Hj results in a new history that contains all intervals named in eitherHi or Hj . For example, the coherence operations that take place in a lock acquisition on an LRCsystem can be expressed by:Hacq += Hrel;apply Hacq;The existence of a history detailing modi�cations to shared memory does not imply that anycoherence operation has taken place. Consistency action only occurs when a history is applied tothe local version of shared memory. In the above example, the �rst line merely creates a descriptionof shared modi�cations seen by either the acquirer or releaser. No action is performed until theresulting history is applied in the second line. All three extents may be modi�ed by an addition.Histories may also be subtracted. Subtracting Hi from Hj limits the temporal scope of theresulting history to the interval of time seen by Hj but not by Hi. History subtraction can beused to create a compact representation of all shared updates to the extents covered by history Hinduring a speci�c interval of time:History Hsave;extern History Hlocal;void begin record () fHsave = Hlocal;g 6



class History fTemporalExtent temporal;SegmentExtent segment;ThreadExtent thread;void register(int on or o�);void operator += (History *);void operator -= (History *);void apply();UpdateData *get data();void apply data(UpdateData *);void set temporal(TemporalExtent *, TemporalExtent *);void set segment(SegmentExtent *);void set thread(ThreadExtent *);g; Figure 8 History ClassHistory * end record () freturn Hlocal - Hsave;gwhere we assume Hlocal is registered (recording is turned on). The history returned by end recordcontains a complete record of the intervals that were created or learned about between the calls tobegin record and end record. The next section presents possible uses of this type of construction.3.3 High-Level Synchronization: QueuesAs discussed above, unintended consequences can result from using constructs as powerful as Locksto build high level synchronization types. In the case of the lock-based queue in Figure 5, theunintended consequences are processor P2's invalidation of page px, and P3's invalidation of py.The only intended consequence is P3's invalidation of px.The Sparks-based queue implementation in Figure 4 stores the history of the data producerwith the object in the queue. When the data is consumed by P3, P1's history is applied P3.3.4 Reductions and Mutual ExclusionMany operations in parallel programs can be described as reductions, or operations that are associa-tive and commutative. The semantics only require mutual exclusion between consecutive reducers.However, reductions are typically implemented using locks. Locks are stronger than necessarybecause their implementation updates later reducers with all coherence actions taken by prior re-ducers. The only coherence actions that need to be performed are those to the data modi�ed bythe reduction.Reductions can be implemented in Sparks similarly to locks, except that a segment extent isused to limit the scope of the histories transferred between consecutive reducers. The below codepresents the relevant aspects of a reduction acquisition:(1) reduce acquire(SegmentExtent * object) f(2) send request for object to current owner7



(3) extract history Hlast from reply(4) Hlast� >set segment(object);(5) Hlast� >apply();(6) gLine 4 reduces the scope of the coherence actions contained in Hlast to only those that a�ectthe pages in object, and Line 5 applies the result.3.5 Producer-Consumer SharingA common behavior in parallel programs is a stable pattern of data creation by one thread andconsumption by another. Such behavior is usually termed producer-consumer. We present twopossible mechanisms to optimize data transfer when the user has indicated that producer-consumerinteraction is possible.Page-based DSMs have no explicit association between data and the synchronization used toguard it. However, a given program usually obeys a fairly simple mapping between the two. Ourtrace-driven simulation shows that 81% of all access misses on shared data in Water [17], a relativelycomplicated molecular simulation, can be avoided by replaying data transfers. The access misses ofJacobi, a coarse-grained application, can be completely covered with simple analysis. Data accesslatencies directly account for 17% of the runtime for Water on top of CVM on an eight-node SP-2,and indirectly account for more through synchronization delays and load imbalance [10]. Since ourexperience indicates that access miss latency is at least as important as synchronization latency,we expect prefetch mechanisms to provide signi�cant performance bene�ts.The above routines begin record and end record can be used to cleanly record data creation.The code below shows pseudo-code for a possible implementation:SegmentExtent *object;begin record(Hlocal);: : :History *Hrec = end record(Hlocal);Hrec� >set segment(object);Msg *msg = new Msg(Hrec� >get data());msg� >send( consumer proc id );If Hlocal's SegmentExtent covers all of shared memory, the recording calls generate two snap-shots of all local updates made to shared memory between the calls. The routine end recordreturns a history containing only those changes made to shared memory between the two calls.The scope of this history is then limited to object by calling set segment with a SegmentExtentthat covers only the shared pages that contain the object. The data corresponding to these modi-�cations is accessed through the get data() method, and pushed to the expected consumer of thedata. At the consumer side, the data is applied to the local view of shared memory, circumventingthe invalidations and access misses that would otherwise have been required to retrieve the codefrom the producer.A second mechanism is useful when the sharing pattern is not stable. The producer usesbegin record and end record to delimit creation of data. At the �rst request for any page of thenew data by another processor, the DSM transfers the entire block of newly created data by usingthe history's get data() method. Again, Sparks lets us easily capture and transfer the set of pagesmodi�ed during the producer phase. 8



3.6 Prefetch PlaybacksPrefetch playbacks is a technique that allows us to record access misses taken during one itera-tion, and to play back the next update to the same data as an update during the next iteration.Section 3.5 describes a mechanism that allows a producer to update a known consumer. Prefetchplaybacks build on this mechanism by allowing a producer to use past history to automaticallyidentify the consumer.Coherence histories are essentially a record of write faults. We can use a similar mechanismto record read faults. Routines analogous to begin record and end record are used to create aReadHistory object that summarizes read misses taken between the two calls. These read historiesare then matched with producers at the next global synchronization (barrier) to identify targetsfor updates. The following pseudo-code illustrates a use of this technique:for (i = �1; i < 1; i++) fif (I am a producer) fint prod = -1;begin record();produce(i);History *hist = end record();if (hist � 0)send hist� >get data() to prod;prod = produce barrier(hist);g else fbegin read record();consume(i-1);ReadHistory *read hist = end read record();consume barrier(read hist);ggThe barrier routines append the histories to message arrival messages, and the barrier mastermatches producers to consumers by comparing SegmentExtents. During the next iteration, newlycreated data is pushed to the pid returned by produce barrier() while waiting for the barrier tocomplete.Recording and playing back data transfers was �rst used by the Mukherjee [14] in the contextof a sequentially consistent DSM. Our work di�ers in two ways. First, our recording mechanismswill be part of the synchronization type de�nitions. The playbacks will be initiated by automaticheuristics, making them more reliable and easier to apply. With the exception of di�erentiatingbetween producer and consumer barriers, all of the above mechanism could have been hidden insidethe barrier routines. We pulled much of it outside the barrier routines for explanatory purposes.Second, our technique will be used for prefetching, not to maintain coherence. We will not violatecorrectness if subsequent iterations access di�erent data.3.7 Compiler/Runtime Library InterfacesWe will use Sparks to generate interfaces to code created by the SUIF [16] parallelizing compiler,and to the CHAOS [4] runtime library.Our collaboration with Dr. Tseng's compiler group [16] will use communication analysis todetermine when data will be needed by other processors. By combining this information withstandard data
ow and dependence analysis, the compiler can initiate asynchronous data updatesand overlap communication with computation. 9
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