On the Generalized Numerical Range

by

M.K.H. Fan and A.L. Tits
ON THE GENERALIZED NUMERICAL RANGE

by

M.K.H. Fan & A.L. Tits
On the Generalized Numerical Range *

M.K.H. Fan
A.L. Tits †

Electrical Engineering Department and Systems Research Center
University of Maryland, College Park, MD 20742

June 9, 1987

Abstract

Let $A_k, k = 1, \ldots, m$ be $n \times n$ Hermitian matrices and let $f : \mathbb{C}^n \to \mathbb{R}^m$ have components $f^k(x) = x^H A_k x, k = 1, \ldots, m$. When $n \geq 3$ and $m = 3$, the set $W(A_1, \ldots, A_m) = \{ f(x) : \| x \| = 1 \}$ is convex. This property does not hold in general when $m > 3$. These particular cases of known results are proven here using a direct, geometric approach. A geometric characterization of the contact surfaces is obtained for any n and m. Necessary conditions are given for $f(x)$ to be on boundary of $W(A_1, \ldots, A_m)$ or on certain subsets of this boundary. These results are of interest in the context of the computation of the structured singular value, a recently introduced tool for the analysis and synthesis of control systems.

*This research was supported by the National Science Foundation under grants No. DMC-84-51515 and OIR-85-00108.
†Please address all correspondence to the second author.
1 Introduction

Let $A_k, k = 1,\ldots,m$, be $n \times n$ Hermitian matrices and let $f : \mathbb{C}^n \to \mathbb{R}^m$ have components $f^k(x) = x^H A_k x$, $k = 1,\ldots,m$. The \textit{generalized numerical range of matrices} A_1,\ldots,A_m is the set $W(A_1,\ldots,A_m) = \{f(x) : ||x|| = 1\}$, a subset of \mathbb{R}^m (e.g., [1–3]). It has been long known that, when $m = 2$, this set is always convex [1] and that, when $m = 3$, it still has a convex boundary [1,4]. Here a set is said to have a convex boundary if its intersection with each of its support hyperplane is convex [1,2,4]. More recently, it was shown [5–7], as a particular case of a more general result, that the generalized numerical range is still convex when $m = 3$ and $n > 2$, but that this property fails to hold in general if $m > 3$ or $n = 2$. In this note, a direct, geometric proof of convexity is given for the case $m = 3, n > 2$. For $m > 3$ or $n = 2$, a canonical family of examples is exhibited where $W(A_1,\ldots,A_m)$ is not convex. For any m and n, a geometric characterization of the intersections of $W(A_1,\ldots,A_m)$ with its supporting hyperplanes is derived. Necessary conditions on x are given for $f(x)$ to be (i) on the boundary of $W(A_1,\ldots,A_m)$, (ii) on the intersection of this boundary with the boundary of the cone $\hat{W}(A_1,\ldots,A_m)$ it generates, and (iii) on a certain type of ‘corner’ of $W(A_1,\ldots,A_m)$. These results are of interest in the context of the computation of the structured singular value, a quantity recently introduced by Doyle [8] as a tool in control system analysis and synthesis (see [9]).

We will make repeated use of the concept of \textit{3D-ellipsoid}, defined as follows.

\textbf{Definition 1.} We call \textit{3D-ellipsoid} the image in \mathbb{R}^m of the unit sphere in \mathbb{R}^3 under an affine map. A 3D-ellipsoid is degenerate if it is entirely contained.
in a two-dimensional affine set. □

With this definition, a 3D-ellipsoid is a compact set entirely contained in a subspace of \(\mathbb{R}^m \) of dimension three (the range of the affine map). It can consist in either the boundary of a nondegenerate ellipsoid, a solid ellipse, a line segment, or a point.

In the sequel, \(\partial B \) is the unit sphere in \(\mathbb{C}^n \), \(\Re \) and \(\Im \) indicate the real and imaginary parts and, for any set \(S \), \(\text{co}S \) denotes its convex hull.

2 Main Results

The following two propositions hold for any \(m \). The first one is a straightforward extension of a result in [8].

Proposition 1. If \(n = 2 \), \(W(A_1, \ldots, A_m) \) is a 3D-ellipsoid. The \(k \)th coordinate of its center is \(\text{trace}(A_k)/2 \).

Proof. For \(k = 1, \ldots, m \), let

\[
A_k = \begin{bmatrix}
 a_k & b_k \\
 \overline{b_k} & c_k
\end{bmatrix},
\]

where \(a_k, c_k \in \Re \), \(b_k \in \mathbb{C} \), and \(\overline{b_k} \) is the complex conjugate of \(b_k \). The unit sphere in \(\mathbb{C}^2 \) can be expressed as

\[
\left\{ e = \exp(i\phi) \begin{bmatrix}
 \cos \theta \\
 \sin \theta \exp(i\psi)
\end{bmatrix} : \theta, \phi, \psi \in \Re \right\}
\]

where \(i \) is the square root of -1. For \(e \) as in (1), elementary manipulations give

\[
e^H A_k e = \frac{\text{trace}(A_k)}{2} + \frac{a_k - c_k}{2} \Re b_k - \Im b_k \begin{bmatrix}
 \cos(2\theta) \\
 \sin(2\theta) \cos \psi \\
 \sin(2\theta) \sin \psi
\end{bmatrix}.
\]
Since \(\begin{pmatrix} \cos(2\theta) \\ \sin(2\theta) \cos \psi \\ \sin(2\theta) \sin \psi \end{pmatrix} : \theta, \psi \in \mathbb{R} \) is the unit sphere in \(\mathbb{R}^3 \), the claim is proven. \(\square \)

Proposition 2. If \(n \geq 3 \), \(W(A_1, \ldots, A_m) \) is not a nondegenerate 3D-ellipsoid.

Proof. If \(W(A_1, \ldots, A_m) \) is a singleton, the claim holds. Thus suppose it is not, i.e., suppose there exist \(y, z' \in \partial B \) and \(k_0 \in \{1, \ldots, m\} \) such that

\[
y^H A_{k_0} y \not\equiv z'^H A_{k_0} z'.
\]

(2)

Since \(n \geq 3 \), there exists an \(x \in \partial B \) such that

\[
x^H y = x^H z' = 0
\]

and, without loss of generality (in view of (2)),

\[
x^H A_{k_0} x \not\equiv y^H A_{k_0} y.
\]

(3)

In view of (2), continuity implies that there exists a \(z \in \partial B \) in the subspace of \(\mathbb{C}^n \) generated by \(y \) and \(z' \) such that

\[
z^H A_{k_0} z \not\equiv x^H A_{k_0} x
\]

and

\[
z^H A_{k_0} z \not\equiv y^H A_{k_0} y.
\]

(4)

Now consider the sets

\[
W_y = W([x^|y]^H A_1[x^|y], \ldots, [x^|y]^H A_m[x^|y])
\]

and

\[
W_z = W([x^|z]^H A_1[x^|z], \ldots, [x^|z]^H A_m[x^|z]).
\]
Since both \(y \) and \(z \) are orthogonal to \(x \), both \(W_y \) and \(W_z \) are subsets of \(W(A_1, \ldots, A_m) \). By Proposition 1, both are 3D-ellipsoids and their centers have as \(k_0 \)th coordinate respectively \((x^H A_{k_0} x + y^H A_{k_0} y)/2 \) and \((x^H A_{k_0} x + z^H A_{k_0} z)/2 \), so that, in view of (4), the two sets are distinct. Thus at least one of them is a proper subset of \(W(A_1, \ldots, A_m) \). Since the known properties of \(y \) and \(z \) are identical, there is no loss of generality in assuming that this set is \(W_y \). Also, clearly, \(W_y \) passes through the two points in \(\mathbb{R}^m \) whose \(k \)th coordinates are \(x^H A_k x \) and \(y^H A_k y \). Thus, in view of (3), \(W_y \) is not a singleton. Since clearly a nondegenerate 3D-ellipsoid cannot have any 3D-ellipsoid but singletons as proper subsets, the proof is complete. \(\square \)

In proving the next proposition, we will make use of the following lemma, which extends a result in [8]. It holds for any \(n \) and \(m \).

Lemma 1. Given any \(u, v_0, v_1 \in W(A_1, \ldots, A_m) \), there exists a point-to-set map \(E_{uv_0v_1} : [0, 1] \to 2^{\mathbb{R}^m} \), continuous in the Hausdorff topology, such that \(u, v_0 \in E_{uv_0v_1}(0) \) and \(u, v_1 \in E_{uv_0v_1}(1) \) and such that for all \(t \in [0, 1] \), \(E_{uv_0v_1}(t) \) is a 3D-ellipsoid contained in \(W(A_1, \ldots, A_m) \).

Proof. First, suppose that \(v_0 \neq u \neq v_1 \), and let \(x, y_0, y_1 \in \partial B \) be unit vectors such that, for \(k = 1, \ldots, m \), \(u^k = x^H A_k x \), \(v_0^k = y_0^H A_k y_0 \), \(v_1^k = y_1^H A_k y_1 \). Clearly, \(\{x, y_0\} \) and \(\{x, y_1\} \) are both linearly independent over \(\mathbb{C} \) and the vectors \(y_0' \) and \(y_1' \), given by

\[
y_0' = \frac{1}{\|y_0 - (x^H y_0)x\|}(y_0 - (x^H y_0)x)
\]

and

\[
y_1' = \frac{1}{\|y_1 - (x^H y_1)x\|}(y_1 - (x^H y_1)x)
\]

are both orthogonal to \(x \) and have unit length. Let \(y : [0, 1] \to \partial B \) be any continuous map such that \(y(0) = y_0' \) and \(y(1) = y_1' \) and such that, for all
\(t \in [0, 1], y(t) \) belongs to the subspace of \(\mathbb{C}^n \) generated by \(y_0 \) and \(y_1 \). Next, for \(k = 1, \ldots, m \), let \(B_k : [0, 1] \to \mathbb{C}^{2 \times 2} \) be the continuous map defined by

\[
B_k(t) = \begin{bmatrix} x & y(t) \end{bmatrix}^H A_k \begin{bmatrix} x & y(t) \end{bmatrix} \quad \forall t \in [0, 1].
\]

Proposition 1 implies that, for each \(t \in [0, 1] \), \(W(B_1(t), \ldots, B_m(t)) \) is a 3D-ellipsoid, say \(E_{w_0v_1}(t) \). It is easily checked that \(E_{w_0v_1} \) satisfies the required conditions. Finally, if \(u = v_0 \) (resp. \(u = v_1 \)), pick \(E_{w_0v_1} \) to be the constant map whose value is any 3D-ellipsoid contained in \(W(A_1, \ldots, A_m) \) and passing through \(u \) and \(v_1 \) (resp. \(u \) and \(v_0 \)). □

Proposition 3. If \(n \geq 3 \), \(W(A_1, A_2, A_3) \) is convex.

Proof. Let \(u, v \in W(A_1, A_2, A_3) \) and let \(E \subset W(A_1, A_2, A_3) \) be a 3D-ellipsoid passing through \(u \) and \(v \) (see Lemma 1). We will show that the convex hull of \(E \), denoted by \(\text{co}E \), is contained in \(W(A_1, A_2, A_3) \), thus proving convexity. If \(E \) is degenerate, the result is clear. Thus assume \(E \) is nondegenerate. In view of Proposition 2, \(E \) must be a proper subset of \(W(A_1, A_2, A_3) \). Thus let \(\hat{w} \in W(A_1, A_2, A_3) \), \(\hat{w} \not\in E \), and let \(w \) be any point in \(\text{co}E \). We prove that \(w \in W(A_1, A_2, A_3) \). If \(w = \hat{w} \), the claims holds. Thus suppose that \(w \neq \hat{w} \). Let \(w_0 \) and \(w_1 \) be the intersection points with \(E \) of the straight line through \(w \) and \(\hat{w} \) and without loss of generality suppose that \(w \) lies between \(\hat{w} \) and \(w_0 \). Let \(E_{\hat{w}w_0w_1} : [0, 1] \to \mathbb{R}^m \) be as specified by Lemma 1. Clearly \(w \in \text{co}E_{\hat{w}w_0w_1}(0) \) and \(w \not\in \text{co}E_{\hat{w}w_0w_1}(1) \). Since \(E_{\hat{w}w_0w_1} \) is a continuous map, there must exist \(t \in [0, 1] \) such that \(w \in E_{\hat{w}w_0w_1}(t) \). Thus \(w \in W(A_1, A_2, A_3) \). □

A canonical family of examples is easily constructed, showing that Proposition 3 cannot be extended to the case of more than three matrices. More precisely, for any \(m \geq 4 \), \(n \geq 2 \), one can find matrices \(A_1, \ldots, A_m \) such
that $W(A_1, \ldots, A_m)$ does not have a convex boundary (and thus is not convex). The construction is as follows. For $k = 1, \ldots, m - 1$, let $B_k \in \mathbb{C}^{2 \times 2}$ be Hermitian matrices such that $W(B_1, \ldots, B_{m-1})$ is a nondegenerate 3D-ellipsoid (see Proposition 1). Then, for $k = 1, \ldots, m - 1$, let $A_k \in \mathbb{C}^{n \times n}$ be Hermitian matrices such that A_k has B_k as its top left corner and let $A_m = \text{diag}(\sigma_1, \ldots, \sigma_m)$ with $\sigma_1 = \sigma_2 > \sigma_3 \geq \ldots \geq \sigma_m$. It is easily checked that the intersection of $W(A_1, \ldots, A_m)$ with its supporting hyperplane $\{u \in \mathbb{R}^m : u^m = \sigma_1\}$ is an \mathbb{R}^m-imbedding of $W(B_1, \ldots, B_{m-1})$, which is not convex.

Using the construction just described, the following proposition can be easily proved.

Proposition 4. The intersection of $W(A_1, \ldots, A_m)$ with any of its supporting hyperplanes is an \mathbb{R}^m-imbedding of the generalized numerical range of some matrices. □

It is easy to see that, for any m and n, points $f(x)$ on the intersection of $W(A_1, \ldots, A_m)$ with any supporting hyperplane are characterized by the fact that the corresponding x is an eigenvector to the smallest eigenvalue of $\sum_{k=1}^{m} w^k A_k$ where the w^k's are the components of a vector orthogonal to the hyperplane, pointing toward $W(A_1, \ldots, A_m)$. This fact is used by Doyle to construct the projection of the origin on $W(A_1, \ldots, A_m)$ when $W(A_1, \ldots, A_m)$ is convex ([8], see also [10]). Below, we derive properties of any point on the boundary of $W(A_1, \ldots, A_m)$ as well as properties of points on certain subsets of this boundary.

Proposition 5. If $x \in \partial B$ is such that $f(x)$ is on the boundary of $W(A_1, \ldots, A_m)$ then there exists a direction $w \in \mathbb{R}^m$ such that x is an eigenvector of $\sum_{k=1}^{m} w^k A_k$. Moreover (i) if x is any supporting hyperplane to
$W(A_1, \ldots, A_m)$ at $f(x)$, then the direction orthogonal to N is a valid choice for w. (ii) If $f(x)$ is on the boundary of any cone containing $W(A_1, \ldots, A_m)$ (or, equivalently, of the cone generated by $W(A_1, \ldots, A_m)$), then w can be chosen in such a way that

$$\sum_{k=1}^{m} w^k A_k x = 0.$$

(iii) If there exists no subset of $W(A_1, \ldots, A_m)$ containing $f(x)$ that is locally homeomorphic to $\mathbb{R}^{m-(q-1)}$, $1 \leq q \leq m$, around $f(x)$, then there is a q-dimensional subspace S of $\mathcal{V} = \{ A \in \mathcal{C}^{m \times n} : A = \sum_{k=1}^{m} w^k A_k, w^t \in \mathbb{R} \}$ such that all matrices in S admit x as an eigenvector.

Proof. Suppose that $x \in \partial B$ is such that $f(x)$ is on the boundary of $W(A_1, \ldots, A_m)$. Let

$$\partial B_x = \{ z \in \partial B \mid x^H z = 0 \}$$

and, for $k = 1, \ldots, m$, let y_k be given by

$$y_k = A_k x - (x^H A_k x) x. \tag{5}$$

Clearly, for any $z \in \partial B_x$,

$$y_k^H z = x^H A_k z. \tag{6}$$

Next, for any $\theta \in \mathbb{R}$, $z \in \partial B_x$ define

$$f_x(\theta, z) = f(\cos \theta x + \sin \theta z)$$

$$= \cos^2 \theta f(x) + \sin^2 \theta f(z) + 2 \cos \theta \sin \theta R \left[\begin{array}{c} x^H A_1 z \\ \vdots \\ x^H A_m z \end{array} \right].$$
In view of (6), we can write
\[
\frac{\partial f_z(0, z)}{\partial \theta} = 2\Re \begin{bmatrix} x^H A_1 z \\ \vdots \\ x^H A_m z \end{bmatrix} = 2M \begin{bmatrix} \Re z \\ -\Im z \end{bmatrix}
\]
where
\[
M = \begin{bmatrix} \Re y_1^T & \Im y_1^T \\ \vdots & \vdots \\ \Re y_m^T & \Im y_m^T \end{bmatrix}.
\]

Let
\[
F = \left\{ \frac{\partial f_z(0, z)}{\partial \theta} \mid z \in \partial B_z \right\}.
\]

Since for all \(k, y_k \in \partial B_z\), the ellipsoid \(G\) given by
\[
G = \left\{ 2M \begin{bmatrix} I_n & 0 \\ 0 & -I_n \end{bmatrix} M^T b \mid \|M^T b\| = 1, \ b \in \mathbb{R}^m \right\}
\]
is a subset of \(F\). Clearly, since \(f(z)\) is on the boundary of \(W(A_1, \ldots, A_m)\), \(F\) cannot contain any neighborhood of the origin, so that \(G\) must be contained in an \(m - 1\) dimensional subspace of \(\mathbb{R}^m\). This implies that \(M\) is singular, i.e., \(\sum_{k=1}^m w^k y_k = 0\) for some nonzero \(w \in \mathbb{R}^m\). Thus it follows from (5) that \(z\) is an eigenvector of \(\sum_{k=1}^m w^k A_k\) as claimed. The corresponding eigenvalue is \(z^H (\sum_{k=1}^m w^k A_k) z\). If \(\mathcal{H}\) is any hyperplane supporting \(W(A_1, \ldots, A_m)\) at \(f(z)\), then \(G\) must be contained in \(\mathcal{H}\) and (i) easily follows. Consider now, the cone \(C\) generated by the ellipsoid \(f(z) + G\) and suppose that \(f(z)\) is on the boundary of a cone containing \(W(A_1, \ldots, A_m)\). Clearly, since \(G \subset F\), the ray \(r = \{ \alpha f(z) : \alpha > 0 \}\) cannot be an interior ray of \(\text{co}C\). Since \(r\) passes through the center of every section of \(C\), it implies that the interior of \(\text{co}C\)
is empty. Thus, C must be entirely contained in a hyperplane \mathcal{H} passing through the origin. Since r belongs to \mathcal{H}, it follows that
\[\sum_{k=1}^{m} w^k f^k(x) = 0, \]
i.e.,
\[x^H (\sum_{k=1}^{m} w^k A_k) x = 0 \]
for any w normal to \mathcal{H}. Claim (ii) follows. Finally, if no subset of $W(A_1, \ldots, A_m)$ containing $f(x)$ is homeomorphic to $\mathbb{R}^{m-(q-1)}$, $1 \leq q \leq m$, around $f(x)$, G must be contained in subspace \mathcal{T} of dimension $m - q$. The subspace $S = \{ A \in \mathcal{V} : A = \sum_{k=1}^{m} w^k A_k, \ w \perp \mathcal{T} \}$ satisfies claim (iii). □

Corollary. If $W(A_1, A_2)$ is nonsmooth at a boundary point $f(x)$, then x is an eigenvector of both A_1 and A_2. □

The well-known fact that such x is an eigenvector of $A_1 + jA_2$ [3,11] is a direct consequence of this corollary.

Acknowledgment. The authors are grateful to Dr. A. Bhaya and to J.C. Wang for helpful discussions and to Drs. A. Laub and M. Marcus for pointing out the result in [7] and related references.
References

