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Caprimulgidae, a cosmopolitan family of nocturnal or crepuscular 

insectivorous birds, comprises the subfamilies Caprimulginae (nightjars) and 

Chordeilinae (nighthawks).  A phylogeny was reconstructed using cytochrome b, c-

myc and growth hormone DNA sequences.  Likelihood, parsimony and Bayesian 

analyses identify four major phylogenetic groups, three New World and one Old 

World.  One New World clade consists of whip-poor-wills and relatives; a second 

consists of two traditional nighthawk genera, Chordeiles and Podager; a third 

consists of the remaining Neotropical taxa.  C. enarratus, a Madagascan endemic, 

branches before these clades, and has no close relatives among the species sampled.  

The subfamilies are not monophyletic, suggesting the morphological specializations 

characterizing “nighthawks” evolved multiple times.  Eurostopodus forms the earliest 

branches of the tree and may be paraphyletic.  Caprimulgus is polyphyletic with 

  



respect to many other genera in the family, which are often defined by distinct 

plumage traits that may reflect sexual selection.  
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Introduction 

While birds are among the best studied classes of organisms, many questions 

remain about their basic biology.  Nightjars and nighthawks (Caprimulgidae) are a case in 

point.  Because most of their activity occurs in the dark of night, little is known about 

their behavior or ecology.  However, recent research has begun to increase our 

knowledge of the breeding and foraging biology of these secretive birds (Aragones et al. 

1999; Sierro et al. 2001; Jetz et al. 2003; Grand and Cushman 2003; Wichmann 2004; 

Lane et al. 2004a; Lane et al. 2004b).  Better understanding of the evolutionary 

relationships of Caprimulgidae is needed to provide a comparative framework for 

interpreting studies on the behavior and ecology of these enigmatic birds.   

The Caprimulgidae are a cosmopolitan family of nocturnal or crepuscular 

insectivorous birds found in a variety of habitats (Cleere 1999).  All caprimulgids are 

cryptically colored in shades of brown and gray.  During the day, they generally roost 

horizontally on the ground, although they can occasionally be found on branches in trees 

or on rocks.  All caprimulgids are aerial foragers.  Although they have small bills, they 

have very wide gapes that are thought to open both horizontally and vertically (Cleere 

1998).  Presumably, this trait helps them catch flying prey. 

Early attempts to describe nightjar relationships were limited to the available 

morphological and behavioral data (e.g. Sclater 1866a; Sclater 1866b; Beddard 1886; 

Davis 1962; Ingels 2001; Cleere 2002; Whitney et al. 2003).  However, due to their 

cryptic coloration, conserved appearance, and poorly known behavior, traditional 

phylogenetic studies based on morphology and behavior have been unsatisfactory in 

determining the evolutionary history of caprimulgids.  This is not unexpected in a group 
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like Caprimulgidae, since morphological and behavioral characters may be under uniform 

selection for crypticity and thus, can be misleading due to convergent or parallel 

evolution.  Consequently, relationships within and among nightjars remain contentious 

(see Systematic Background).   

Advances in molecular methods provide a potent alternative to morphological and 

behavioral phylogenetic analyses.  Molecular genetic research, beginning in the 1980s, 

has begun to unravel some of the complexity of caprimulgid relationships (Sibley and 

Ahlquist 1990; Mariaux and Braun 1996; Barrowclough et al. 2006).  These results 

indicate a larger degree of genetic diversity present in caprimulgids than would otherwise 

be expected, given their conserved external morphology.  The purposes of this study are 

to develop a robust phylogeny of Caprimulgidae, test the monophyly of genera and 

subfamilies within the family and begin the interpretation of character evolution. 

Systematic Background 

The Caprimulgidae are one of five major lineages within the order 

Caprimulgiformes.  Until the nineteenth century, all Caprimulgiformes were classified 

into one family and assigned to a single genus Caprimulgus (Cleere 1999).  Beginning in 

the nineteenth century, enough morphological differences were recognized to separate 

species into different genera and families (reviewed by Sibley and Ahlquist 1990; Cleere 

1999).  Eventually, five families were recognized, Steatornithidae (oilbird), Podargidae 

(frogmouths), Caprimulgidae (nightjars and nighthawks), Aegothelidae (owlet-nightjars), 

and Nyctibiidae (potoos).  Appendix A gives a more detailed synopsis of caprimulgiform 

systematics.   
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While ornithologists generally accepted these five families as being each others’ 

closest relatives, the morphological and genetic diversity was remarked upon, and their 

relationship to other birds continued to be debated (Sibley and Ahlquist 1990).  Recently, 

monophyly of the order has been questioned.  Both morphological and molecular studies 

have found that the order may not be monophyletic because considerable evidence now 

indicates that Aegothelidae is sister to Apodiformes (swifts and hummingbirds) (Livezey 

and Zusi 2001; Mayr 2002; Cracraft et al. 2004; Barrowclough et al. 2006; Braun and 

Huddleston unpublished).  However, an expanded clade of Caprimulgiformes with swifts 

and hummingbirds nested within it does appear to be a monophyletic group (S. Hackett et 

al., unpublished data from the Early Bird consortium). 

Caprimulgidae is the largest of the five caprimulgiform families, including about 

89-90 species (Cleere 1998; Cleere 1999; Holyoak 2001).  Two subfamilies are 

traditionally recognized; Caprimulginae (nightjars) and Chordeilinae (nighthawks), based 

on morphological and behavioral characters (Peters 1940; Cleere 1998; Cleere 1999; 

Holyoak 2001).  Caprimulginae are found throughout the world and have a 

schizognathous palate1 (Cleere 1998; Cleere 1999; Holyoak 2001).  Most Caprimulginae 

have long rictal bristles around the gape and tend to be sit-and-wait predators, sallying 

after flying insects from perches on the ground or from open limbs.  In contrast, the 

Chordeilinae are only found in the New World and have a desmognathous palate2 (Cleere 

1998).  They generally lack rictal bristles and have longer, narrower wings.  Chordeilinae 

                                                 
1 Refers to cleft palates; maxillo-pallatines are separate from each other or vomers in mid-line (Schodde 
and Mason 1980; Holyoak 2001). 
2 Refers to uncleft palates; broad maxillo-palatines that join each other or the vomers in the midline 
(Schodde and Mason 1980; Holyoak 2001). 
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also tend to be more aerial feeders, hunting by hawking on the wing rather than sallying 

from a perch.   

Although as many as 51 genera have been named in the past (Cleere 1999), about 

15 genera are currently considered valid (Figure 1).  Four genera are traditionally placed 

within Chordeilinae, Chordeiles, Lurocalis, Nyctiprogne and Podager (Peters 1940; 

Cleere 1998; Cleere 1999).  The other eleven genera, Eurostopodus, Nyctidromus, 

Phalaenoptilus, Siphonorhis, Nyctiphrynus, Caprimulgus, Macrodipteryx, Hydropsalis, 

Uropsalis, Macropsalis and Eleothreptus are placed within Caprimulginae (Peters 1940; 

Cleere 1998; Cleere 1999).  However, Holyoak (2001) places Podager in Caprimulginae 

 

 

Figure 1:  List of genera and number of species.   
Nomenclature follows Holyoak (2001).  Numbers in parentheses indicates number of 
species in each genus.  Arrows indicate differences from the traditional taxonomy 
followed by Cleere (1998).   
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because it has rictal bristles, which are lacking in other chordeilines.  Holyoak also places 

Eurostopodus within Chordeilinae based on some morphological affinities with other 

Chordeilinae.  Among these are a lack of rictal bristles, square tails, and narrow, pointed 

wings (Schodde and Mason 1980; Holyoak 2001).  Furthermore, Holyoak recognizes the 

monotypic Afrotropical genus Veles and places it in Chordeilinae, along with 

Eurostopodus.  Veles had been subsumed within Caprimulgus, but a recent review 

(Cleere 2001) noted several distinctive morphological characters that suggest it may be a 

valid genus.  It has usually been treated as a caprimulgine (Peters 1940; Cleere 2001).  To 

add further confusion to the taxonomy, Holyoak (2001) lumps Macropsalis into 

Uropsalis while Cleere (1998) follows Peters (1940) and continues to treat them as 

distinct genera. 

Most caprimulgid species are placed within the genus Caprimulgus based on 

similar external appearance, making it one of the largest of all avian genera (55 species 

according to Holyoak, 57 according to Cleere).  However, DNA-DNA hybridization 

studies (Sibley and Ahlquist 1990) found large genetic divergences between some 

purported congeners.  In fact, C. europaeus had a distance of ∆T50H = 7.8 from C. 

vociferus, a distance found at the subfamily level in other taxa (Sibley and Ahlquist 

1990).  Examination of the proposed phylogeny according to DNA-DNA hybridization 

data indicates that the genus Caprimulgus may be polyphyletic (Figure 2).  This result is 

further supported by DNA sequencing studies (Cracraft et al. 2004; Barrowclough et al. 

2006; Braun and Huddleston unpublished) and suggests revisions are needed in generic 

allocations within Caprimulgidae.  However, taxon sampling within these studies has 

been too limited to offer suggestions on how to revise the genera.  Sibley and  
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Figure 2:  Inferred phylogeny based on DNA-DNA hybridization data (Sibley and 
Ahlquist 1990). 
 

 

Ahlquist (1990) suggested that the genus Antrostomus was available for the two New 

World Caprimulgus, C. vociferus and C. carolinensis, but their study only included six 

species of Caprimulgus, leaving the position of others unresolved. 

Davis (1962) attempted to describe relationships among North American 

Caprimulgus using acoustic evidence, arguing that species recognition of nocturnal birds 

would be heavily dependent on voice.  In fact, the common names of various North 

American caprimulgids are based on the bird’s song, suggesting vocalizations may be 

distinct enough to be useful characters for phylogenetic analysis.  Based on these studies, 

Davis (1962) placed C. cayennensis and C. maculicaudus into the genus Antiurus.  He 

also concluded there are two groups within the genus Antrostomus:   
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(1)  four species in two subgroups, rufus plus badius and salvini plus 

carolinensis; 

(2)  three species in two subgroups, vociferus and saturatus plus arizonae. 

C. v. arizonae is usually recognized as a subspecies of C. vociferus (Cleere 1998; Cleere 

1999; Holyoak 2001).  However, some studies suggest the two forms may represent 

separate species (American Ornithologists' Union 1998).  Davis (1962) grouped C. v. 

arizonae closer to C. saturatus than to C. vociferus, suggesting it may be distinct enough 

to warrant elevation to full species.  He left C. ridgwayi in Caprimulgus with the caveat 

that more sampling would be needed to further subdivide this genus.  With further taxon 

sampling, Davis (1978) placed C. ridgwayi in a genus Setopagis along with C. parvulus.  

Many of the other currently recognized caprimulgid genera are comprised of only 

one or a few species (Figure 1).  These genera are often recognized based on elaborate 

morphological characters such as elongated tail or wing feathers.  Such characters are 

likely sexually selected and do not necessarily reflect evolutionary history.  They may 

have evolved independently or they may be recently derived autapomorphic characters.  

For example, the genus Macrodipteryx consists of two species of Afrotropical nightjars, 

M. longipennis and M. vexillarius. Breeding males are characterized by elongated second 

innermost primary wing feathers, which are used for sexual display-flights during the 

breeding season (Cleere 1998; Holyoak 2001).  Males are thought to attract females by 

displaying at leks, suggesting they are polygynous.  It is very likely that the elongated 

feathers evolved relatively rapidly in response to sexual selection.  However, differences 

in plumage, wing shape and structure of the second primaries suggest the two species 
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may not be closely related at all.  In fact, M. vexillarius had at one time been placed into 

its own genus, Semeïophorus (Peters 1940; Cleere 1998; Cleere 1999). 

The genus Macropsalis typically consists of one species, M. creagra (also known 

as M. forcipata) (Peters 1940; Cleere 1998; Cleere 1999; Holyoak 2001), although 

Holyoak synonymizes this genus with Uropsalis (Figure 1), which consists of two 

additional species, U. segmentata and U. lyra.  All three of these species are Neotropical.  

Males are characterized by having elongated outermost tail feathers.  However, the 

structure of this tail feather differs between the two genera.  This difference, when 

combined with enlargement of the three outermost primaries found only in males of 

Macropsalis (Holyoak 2001), accounts for the distinction between the two genera.  It is 

likely these elongated tail feathers are sexually selected. U. lyra is known to display at 

communal leks (Holyoak 2001) although little is known about whether this is also true in 

the other two species.   

In the past, the genus Eurostopodus has been treated as a synonym of 

Caprimulgus (Schodde and Mason 1980).  Morphologically, species in Eurostopodus 

tend to be larger and darker in color and lack long rictal bristles.  Two species, E. 

macrotis and E. temminckii, have “ear tufts” and have previously been recognized in a 

separate genus, Lyncornis.  Traditionally, these birds are placed within Caprimulginae 

although, as previously mentioned, Holyoak (2001) places them with Chordeilinae 

(Figure 1).  However, placing Eurostopodus with Chordeilinae groups Old World taxa 

with what is otherwise strictly a New World group.  Holyoak does this primarily based on 

the lack of rictal bristles, but describes other similarities such as narrow wings and square 

tails (Schodde and Mason 1980; Holyoak 2001).  Presumably, these traits evolved 
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independently and Eurostopodus spp. are distinct nightjars that may be of ancient origin, 

based on their large genetic divergences.   

DNA-DNA hybridization studies (Figure 2) indicate that the genus Eurostopodus 

may be sufficiently different (∆T50H = 12.3) from the rest of Caprimulginae to warrant 

placing them into a separate family, Eurostopodidae (Sibley and Ahlquist 1990).  

Furthermore, studies by Mariaux and Braun (1996), using mitochondrial cytochrome-b 

(cytb), indicated that the two species of Eurostopodus sequenced, E. papuensis and E. 

mystacalis, always separated from the Caprimulgidae (Figure 3).  In fact, they were more 

distinct from the Caprimulginae than was Chordeiles.  These results were consistent with 

Sibley and Ahlquist’s recognition of a family, Eurostopodidae.  Subsequent molecular 

studies (Braun and Huddleston unpublished) using cytb and nuclear c-myc demonstrate 

Eurostopodus is monophyletic with other caprimulgids, and represents an early radiation 

of the group.  However, these studies indicate the genus Eurostopodus itself may not be 

monophyletic (See Figure 4).  E. macrotis appears paraphyletic to other Eurostopodus, 

suggesting the genus Lyncornis may still be valid. 
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Figure 3:  Inferred phylogeny using cytb (Mariaux and Braun 1996) 
 
 
 
 
 

 
 
Figure 4:  Inferred phylogeny of Caprimulgidae using cytb and c-myc (Braun and 
Huddleston unpublished) 
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Objectives 

In this study, I wished to test two principal hypotheses regarding caprimulgid 

evolution:   

(1) Are the genera Caprimulgus (55-57 species) and Eurostopodus (7 species) 

monophyletic?  Testing monophyly of Caprimulgus and Eurostopodus will 

determine whether they are recent and rapidly radiating clades or old and 

morphologically conserved composite groups.  Monophyly would suggest the 

morphological and behavioral similarities are due to a recent and rapid 

radiation.  The alternative hypothesis, that the genera are not monophyletic, 

could suggest these birds have maintained a successful lifestyle and body plan 

while morphologically divergent forms arose from within the group through 

adaptation and/or sexual selection.   

(2) Are the two traditional subfamilies, Chordeilinae and Caprimulginae, 

monophyletic?  If both subfamilies are monophyletic, then aerial hawking 

and sallying, and the morphological adaptations associated with each foraging 

mode, may have evolved once.  If neither subfamily is monophyletic, then one 

or both of these suites of behavioral and morphological adaptations must have 

arisen multiple times through convergent evolution. 

I tested these hypotheses by constructing a robust phylogeny of Caprimulgidae 

using molecular sequence data.  For this study, I assembled tissue samples from >60% of 

caprimulgid taxa and 14 of 15 currently recognized genera.  I collected DNA sequence 

data from one mitochondrial (cytb) and two nuclear genes (cellular myelocytomatosis 

proto-oncogene [c-myc] and growth hormone [GH]).  Cytb is a rapidly evolving gene that 
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is best for resolving diversification at the species level to subfamily and possibly family 

level (Moore and DeFilippis 1997).  C-myc is a well-studied proto-oncogene that is 

slowly evolving and more useful for studying deep divergences (Graybeal 1994; Ericson 

et al. 2000).   GH was developed as a probe of phylogeny for Early Bird, a large-scale 

collaborative project to determine higher level relationships among birds, in which our 

laboratory is involved.  Based on data collected from Early Bird, the evolutionary rate of 

GH was determined to be intermediate between cytb and c-myc for Caprimulgiformes.  

Cytb and c-myc were chosen to correspond with previous studies done in this lab (Braun 

and Huddleston unpublished).  GH was chosen to complement rates of divergence of the 

other two genes and hopefully provide resolution at various depths of the tree.  

Phylogenetic analyses were conducted using maximum likelihood, parsimony and 

Bayesian methods to provide a diverse analytical framework for interpretation of the 

data. 
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Materials and Methods 

Taxon Sampling 

Taxonomic nomenclature follows Holyoak (2001) as it is the most recent 

treatment of Caprimulgiformes available.  Frozen tissue samples were obtained from the 

museum tissue collections listed in Table 1.  I attempted to include one sample of every 

named species available, and included well marked subspecies on a case by case basis.  

Sixty-seven specimens of Caprimulgidae were included in the study representing 58 of 89 

species and 14 of the 15 genera recognized by Holyoak (2001).  Six additional taxa from 

the other four caprimulgiform families were included as outgroups (Table 1).   

Laboratory Methods 

DNA Extraction 

Total genomic DNA was extracted from frozen tissues using proteinase K 

digestion, phenol:chloroform extraction and ethanol precipitation (Sambrook et al. 1989; 

Mariaux and Braun 1996).  Phase-Lock gel (Eppendorf) was used during 

phenol:chloroform extraction to separate the organic and aqueous phases.  (Refer to 

Appendix B for a more detailed protocol).  Genomic DNA was visualized on a 1.5% 

agarose gel to check for chain length and quantified using a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies).  Working DNA stocks were diluted to a 

final concentration of 10 ng/µL.   
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Table 1:  Tissue samples used.  (Nomenclature follows Holyoak (2001)) 
SPECIES TISSUE NO. LOCATION 
OUTGROUP   
Aegotheles insignis UKAN 5081 Papua New Guinea 
Batrachostomus septimus CMNH B499 Philippines 
Podargus strigoides LSUM B8654 Zoo/Captive 
Steatornis caripensis LSUM B7474 Peru 
Nyctibius bracteatus LSUM B4509 Peru 
Nyctibius grandis LSUM B15415 Bolivia 
CAPRIMULGIDAE   
Chordeilinae   
Chordeiles acutipennis 1 USNM B4378 Guyana 
Chordeiles acutipennis 2 UKAN 9308 El Salvador 
Chordeiles acutipennis 3 UKAN 9367 El Salvador 
Chordeiles minor USNM B7387 Cayman Islands 
Chordeiles pusillus USNM B12993 Guyana 
Chordeiles rupestris ANSP T2755 Ecuador 
Lurocalis rufiventris ANSP 4467 Ecuador 
Lurocalis semitorquatus semitorquatus USNM B5244 Guyana 

L. s. nattereri UKAN 277 Paraguay 
Nyctiprogne leucopyga UKAN 3144 Paraguay 
Eurostopodus argus MVIC C718 Australia 
Eurostopodus macrotis USNM B3732 Philippines 
Eurostopodus mystacalis MVIC JWC129 Australia 
Eurostopodus papuensis MVIC E660 Papua New Guinea 
Caprimulginae   
Caprimulgus aegyptius LSUM B46332 Kuwait 
Caprimulgus affinis FMNH 358300 Philippines 
Caprimulgus anthonyi ANSP 4580 Ecuador 
Caprimulgus batesi USNM B9899 Gabon 
Caprimulgus carolinensis USNM B16552 United States 
Caprimulgus cayennensis USNM B11295 Guyana 
Caprimulgus clarus UMMZ T2159  
Caprimulgus climacurus FMNH 396431 Ghana 
Caprimulgus enarratus FMNH 431158 Madagascar 
Caprimulgus europaeus LSUM B23375 South Africa 
Caprimulgus fossii ZMUC 115493 Tanzania 
Caprimulgus indicus UWBM 47117 Russia 
Caprimulgus longirostris LSUM B32361 Peru 
Caprimulgus macrurus 1 USNM B4000 Papua New Guinea 
UKAN=University of Kansas Natural History Museum; CMNH=Cincinnati Museum of Natural History; 
LSUM=Louisiana State University Museum of Natural Science; USNM=U.S. National Museum of Natural 
History; ANSP=Academy of Natural Sciences; MVIC=Museum Victoria; FMNH=Field Museum of 
Natural History; UMMZ=University of Michigan Museum of Zoology; ZMUC=Zoological Museum 
University of Copenhagen; UWBM= Burke Museum of Natural History and Culture; BARR=Marjorie 
Barrick Museum of Natural History; CONACYT=Consejo Nacional de Ciencia y Tecnología; OMVP=El 
Museo de Zoología de la Facultad de Ciencias de la Universidad Nacional Autónoma de Mexico (UNAM) 
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Table 1 cont’d 
SPECIES TISSUE NO. LOCATION 
Caprimulgus macrurus 2 USNM B5657 Myanmar 
Caprimulgus maculicaudus UKAN 5488 Guyana 
Caprimulgus madagascariensis FMNH 436420 Madagascar 
Caprimulgus manillensis 1 USNM B6090 Philippines 
Caprimulgus manillensis 2 USNM B3673 Philippines 
Caprimulgus nigrescens USNM B4478 Guyana 
Caprimulgus nigriscapularis FMNH 346199 Uganda 
Caprimulgus parvulus 1 UKAN 106 Paraguay 
Caprimulgus parvulus 2 USNM B5879 Argentina 
Caprimulgus pectoralis UWBM 71315 South Africa 
Caprimulgus poliocephalus BARR 11252 Malawi 
Caprimulgus ridgwayi 1 CONACYT 415 Mexico 
Caprimulgus ridgwayi 2 CONACYT 852 Mexico 
Caprimulgus ruficollis UMMZ T2507 Gambia 
Caprimulgus rufigena BARR 7950 South Africa 
Caprimulgus rufus USNM B4420 Guyana 
Caprimulgus salvini CONACYT 328 Mexico 
Caprimulgus saturatus LSUM B28251 Panama 
Caprimulgus v. vociferus UKAN 2457 USA 
Caprimulgus v. arizonae 1 BARR 12900 Mexico 
Caprimulgus v. arizonae 2 OMVP 406 Mexico 
Caprimulgus whitelyi 1 USNM B19022 Guyana 
Caprimulgus whitelyi 2 USNM B19106 Guyana 
Eleothreptus anomalus UKAN 3275 Paraguay 
Hydropsalis torquata BARR 6500 Argentina 
Hydropsalis climacocerca USNM B10337 Guyana 
Macrodipteryx longipennis UMMZ T2505 Gambia 
Macropsalis lyra ANSP 5033 Ecuador 
Macropsalis segmentata ANSP 4962 Ecuador 
Nyctidromus albicollis USNM B324 Panama 
Nyctiphrynus mcleodii FMNH 5830 Mexico 
Nyctiphrynus ocellatus LSUM B12445 Bolivia 
Nyctiphrynus yucatanicus UKAN 2110 Mexico 
Phalaenoptilus nutallii USNM B84 United States 
Podager nacunda USNM B2768 Argentina 
Nyctiphrynus rosenbergi 1 ANSP B2002 Ecuador 
Nyctiphrynus rosenbergi 2 ANSP B2003 Ecuador 
Siphonorhis brewsteri UKAN 8149 Dominican Republic 
UKAN=University of Kansas Natural History Museum; CMNH=Cincinnati Museum of Natural History; 
LSUM=Louisiana State University Museum of Natural Science; USNM=U.S. National Museum of Natural 
History; ANSP=Academy of Natural Sciences; MVIC=Museum Victoria; FMNH=Field Museum of 
Natural History; UMMZ=University of Michigan Museum of Zoology; ZMUC=Zoological Museum 
University of Copenhagen; UWBM= Burke Museum of Natural History and Culture; BARR=Marjorie 
Barrick Museum of Natural History; CONACYT=Consejo Nacional de Ciencia y Tecnología; OMVP=El 
Museo de Zoología de la Facultad de Ciencias de la Universidad Nacional Autónoma de Mexico (UNAM) 
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Table 1 cont’d 
SPECIES TISSUE NO. LOCATION 
Caprimulgus sp.◊ ZMUC 115717 Uganda 
◊ Unidentified species from ZMUC.  No voucher available.  Possible species are:  C. tristigma, C. 
natelensis, C. ruwenzorii, or C. fraenatus 
UKAN=University of Kansas Natural History Museum; CMNH=Cincinnati Museum of Natural History; 
LSUM=Louisiana State University Museum of Natural Science; USNM=U.S. National Museum of Natural 
History; ANSP=Academy of Natural Sciences; MVIC=Museum Victoria; FMNH=Field Museum of 
Natural History; UMMZ=University of Michigan Museum of Zoology; ZMUC=Zoological Museum 
University of Copenhagen; UWBM= Burke Museum of Natural History and Culture; BARR=Marjorie 
Barrick Museum of Natural History; CONACYT=Consejo Nacional de Ciencia y Tecnología; OMVP=El 
Museo de Zoología de la Facultad de Ciencias de la Universidad Nacional Autónoma de Mexico (UNAM) 
 
 
 

DNA Amplification and Sequencing 

DNA was amplified via polymerase chain reaction (PCR) and sequenced for three 

gene regions:  cytb, c-myc, and GH.  Primers used for PCR amplification and sequencing 

are listed in Table 2.  All PCRs were performed on a MJ Research Tetrad thermocycler.  

PCR products were visualized in a 1.5% agarose gel.   

Cytb 

PCR for cytb was performed in 50 µL reactions.  Final concentrations were 1x 

Taq DNA Polymerase Buffer (Promega), 2.5 mM MgCl2 (Promega), 0.2 mM each dNTP, 

and 0.2 µM each of primers L14764 and H16060, 0.05 U/µL Taq DNA polymerase 

(Promega) and 0.40 ng/µL template DNA.  PCR was performed under the following 

cycling conditions: initial denaturation at 95°C for five min, followed by 30 cycles of 

95°C for 30 sec, 55°C for 30 sec and 72°C for one min, with a final extension at 72°C for 

10 min.   Cytb PCR products were separated from primers and excess nucleotides by 

precipitation using polyethylene glycol (PEG) precipitation (Refer to Appendix B for 

details).  



 

 

Table 2:  Primers used for PCR amplification and sequencing 
Gene Primer Sequence 5’ to 3’ Reference 
Cytb  L14764 TGTTACAAAAAAATAGGMCCMGAAGG Sorenson et al. 1999 
Cytb  

  

  
   
 

L15323 CCATGAGGACAAATATCATTCTGAGGTGC 
 

Mariaux and Braun 1996 
Cytb L15749 GCCATCCTACGCTCAATCCC Braun and Huddleston unpublished
Cytb H15295 TGATATTTGTCCTCATGG Braun and Huddleston unpublished
Cytb H15730 GGGATTGAGCGTAGGATGGC Braun and Huddleston unpublished
Cytb H16060 TTTGGYTTACAAGACCAATG Braun and Huddleston unpublished
c-myc MYC-F-01 TAATTAAGGGCAGCTTGAGTC Harshman et al. 2003 
c-myc MYC-F-02 TGAGTCTGGGAGCTTTATTG Harshman et al. 2003 
c-myc MYC-F-03 AGAAGAAGAACAAGAGGAAG 

 
Harshman et al. 2003 

c-myc MYC-F-05 CACAAACTYGAGCAGCTAAG
 

Harshman et al. 2003 
c-myc MYC-R-04 

 
 

GGCTTACTGTGCTCTTCT Harshman et al. 2003 
c-myc MYC-R-06 TTAGCTGCTCAAGTTTGTG Harshman et al. 2003 
c-myc 

 
MYC-R-47

 
CTATAAAGACTTTATTAAAGGTATTTACAT This study 

GH GH-F874 CCTTCCCWGCCATGCCCCTTTCCAACC Yuri et al. unpublished 
GH  

  
  
 
 
   
    
     
  

GH-R1925 TCCCTTCTTCCAGGTCCTTTART Yuri et al. unpublished 
GH GH-F897 TGTTTGCCAACGCTGTGCTGAGG Yuri et al. unpublished 
GH GH-R1477 TACCGATTTCTGCTGGGCATCATCCTTC Yuri et al. unpublished 
GH GH-INT2-F-04 CTCTRARARCAGTGGGAGATGGC Yuri et al. unpublished 
GH GH-INT2-R-04 GCCATCTCCCACTGYTYTYAGAG Yuri et al. unpublished 

  GH GH-CAP-F-01 GTGAGAGGAAGACTTTTAGG This study
GH GH-CAP-R-01 CCTAAAAGTCTTCCTCTCAC This study
GH GH-CAP-F-02 GATGAGGAAAGGCTGAGGG

 
This study

GH GH-CAP-R-02 CCCTCAGCCTTTCCTCATC This study



 

C-myc 

Initial amplification of c-myc was performed in 10 µL reactions.  Final 

concentrations were 1x PCR Buffer (supplied with TaKaRa HS), 1.75 mM MgCl2, 0.2 

mM each dNTP, 0.25 µg/µL bovine serum albumin (BSA), 0.2 µM each of primers 

MYC-F-01 and MYC-R-47, 0.05 U/µL Taq DNA polymerase (TaKaRa HS), and 0.5 

ng/µL template DNA.  PCR was performed under the following cycling conditions:  

initial denaturation at 95°C for five min, followed by 40 cycles of 95°C for 30 sec, 53°C 

for 30 sec and 72°C for one min, with a final extension at 72°C for 10 min.   Sometimes, 

initial amplifications were weak or produced multiple bands and had to be re-amplified 

using a 5’ nested primer to increase specificity.  PCR products were diluted 1:10 and 1 

µL of the dilution was re-amplified in 50 µL reactions.  Final concentrations were 1x 

PCR Buffer (GeneChoice) 1.7 mM MgCl2, 0.2 mM each dNTP and 0.2 µM each primers 

MYC-F-02 and MYC-R-47, to which was added 0.05 U/µL Taq DNA polymerase 

(GeneChoice).  Re-amplifications were performed under the following cycling 

conditions:  95°C for five min followed by 25 cycles of 95°C for 30 sec, 55°C for 30 sec 

and 72°C for one min with a final extension at 72°C for 10 min.  Final products were 

cleaned using PEG precipitation (Appendix B). 

GH 

Initial amplification of GH was performed in 25 µL reactions.  Final 

concentrations were 1x PCR Buffer (GeneChoice), 2.0 mM MgCl2, 0.2 mM each dNTP, 

0.2 µg/µL BSA, 0.1 mM tetramethylammonium chloride (TMAC), 0.2 µM each primers 

F874 and R1925, 0.4 U/µL Taq DNA polymerase (GeneChoice), and 0.4 ng/µL template 

DNA.  PCR was performed under the following cycling conditions:  initial denaturation 
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at 94°C for three min followed by 10 cycles of 94°C for 30 sec, 70-61°C for 30 sec, 

decreasing annealing temperature by 1°C per cycle, and 72°C for one min, then 30 cycles 

of 94°C for 30 sec, 61°C for 30 sec and 72°C for one min with a final extension at 72°C 

for 10 min.   In most cases, initial amplifications produced multiple bands.  PCR products 

were diluted 1:10 and 1 µL of the dilution was re-amplified using nested primers in 50 

µL reactions.  Final concentrations were 1x PCR Buffer (GeneChoice), 1.5 mM MgCl2, 

1.7 mM each dNTP, 0.1 mM TMAC and 0.25 µM each primers F897 and R1477, and 

0.025 U/µL Taq DNA polymerase (GeneChoice).  Re-amplifications were performed 

under the following cycling conditions:  94°C for three min followed by 5 cycles of 94°C 

for 30 sec, 66-62°C for 30 sec, reducing annealing temperature by 1°C per cycle, and 

72°C for 45 sec, then 25 cycles of 94°C for 30 sec, 62°C for 30 sec and 72°C for 45 sec, 

with a final extension at 72°C for 10 min.  Final products were cleaned using either PEG 

precipitation or gel purified using the Qiaquick gel purification kit (Qiagen). 

Sequencing 

Purified PCR products were cycle sequenced on both strands with the primers 

listed in Table 2. (Refer to Appendix B for reaction conditions).  Excess dye terminators 

were removed from cycle sequencing reactions using Sephadex G-50 (Sigma) filtration 

spin columns.  Sequences were run on an ABI 3100 capillary DNA sequencer (Applied 

Biosystems).  

Cloning 

In some cases, nuclear PCR products had to be cloned due to sequence length 

heterozygosity.  PCR products were cloned using a “TOPO TA for Sequencing” cloning 
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kit (Invitrogen) to obtain a clean sequence for one or more of the alleles (Refer to 

Appendix B for more details).  Two colonies from each PCR product were isolated and 

grown overnight in LB liquid culture.  Plasmids were purified using a FastPlasmid Mini 

kit (Eppendorf).  The resulting products were sequenced using primers listed in Table 2. 

Data Analysis 

Sequence assembly and alignment 

Sequences were edited and assembled into contiguous fragments using 

Sequencher 4.5 (GeneCodes).  Each taxon was checked for double stranded sequence 

reads for each gene.  Single nucleotide polymorphisms from heterozygotes were coded 

using standard ambiguity codes.  Sequences from cloned fragments were included after 

removal of vector sequences.  In cases where a base from the cloned sequence differed 

from the direct sequence (due to Taq polymerase error), the direct sequence was accepted 

as correct.   

Sequences were initially aligned automatically using ClustalX (Thompson et al. 

1997) with default parameters for gap opening and extension costs.  Alignments were 

further improved manually using Se-Al (Rambaut 1996).   

Base frequencies for each gene and gene partition were examined using the chi-

square test in PAUP*4.0b10 (Swofford 2002) to determine if there was significant base 

compositional heterogeneity among taxa. 

Phylogenetic Analyses 

Individual genes 

Maximum parsimony analysis (MP) was performed on each individual gene using 
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PAUP*.  A heuristic search of 1000 random taxon addition search replicates and TBR 

branch swapping was performed with parsimony as the optimality criterion and all 

characters equally weighted.  To test the robustness of the trees, non-parametric bootstrap 

analyses were run on each gene.  For cytb, 1000 bootstrap pseudo-replicates were 

performed with 100 random sequence additions per pseudo-replicate.  However, initial 

analyses of the nuclear genes found large numbers of equally parsimonious trees and it 

was necessary to limit the number of trees saved in the bootstrap analyses.  One hundred 

bootstrap pseudo-replicates were performed with 20 random additions per pseudo-

replicate.  A limit of 100 trees (NCHUCK=100 CHUCKSCORE=1) was placed on the 

number of trees retained for swapping in each random addition replicate.   

A maximum likelihood analysis (ML) was also performed on each gene. 

Modeltest 3.7 (Posada and Crandall 1998) was used to evaluate models of sequence 

evolution and select model parameters.  A neighbor-joining tree initially was obtained via 

PAUP* using Jukes-Cantor distances.  Parameter values were calculated on this tree for 

56 nested models of sequence evolution.  The models were evaluated in Modeltest 3.7 

using the Akaike Information Criterion.  The best model and parameter values were input 

into a heuristic tree search of 10 random addition replicates and TBR branch swapping 

using ML as the optimality criterion.  Model estimation was then repeated on the 

resulting tree.  This process was repeated until tree topology and model parameter values 

converged in a successive-approximations approach (Swofford et al. 1996; Sullivan et al. 

2005).  Models and parameter values for each gene are shown in Table 3.  Subsequently, 

a heuristic search was performed with 10 random sequence additions and TBR branch 

swapping, using likelihood as the optimality criterion to obtain the final tree.  Confidence 



 

 

 
Table 3:  Parameters used in maximum-likelihood analyses 

  BASES
GENE MODEL    A C G T

SHAPE 
PARAMETER (α) 

PROPORTION OF 
INVARIABLE SITES (I) 

Cytb GTRa + Id + Γ 0.3231 0.4466 0.0648 0.1655  0.6642 0.4612 
c-myc TVMb + I + Γ

 
    

    
    
    
    

0.3159 0.2053 0.2147 0.2641 0.7604 0.4849
GH TVMefc + Γ 0.2500 0.2500 0.2500 0.2500 0.7038 0.0000
c-myc + cytb GTR + I + Γ 0.3011 0.3591 0.1650 0.1748 0.5947 0.5278
Combined GTR + I + Γ 0.2731 0.2952 0.2049 0.2268 0.4582 0.3714
Nuclear (c-myc + GH) TVM + I + Γ 0.2727 0.2319 0.2408 0.2546 0.7279 0.3039

aGTR=General-time-reversible model; bTVM=Transversional model;  cTVMef=Transversional model with equal base 
frequencies; dI=proportion of invariable sites; 
 
 

Table 3:  cont’d 
 RATES 
GENE     A↔C A↔G A↔T C↔G C↔T G↔T 
Cytb  0.5385 15.1977 1.4056 0.4116 21.0715 1.0000
C-myc 

  
 

 

0.6586 4.9011 0.2631 0.8169 4.9011 1.0000
GH 1.1449 3.9682 0.5907 1.0019 3.9682 1.0000
c-myc + cytb 0.8752 5.1878 1.2045 0.2365 18.6091 1.0000
Combined 1.0681 4.1678 0.7715 0.4450 9.6335 1.0000
nuclear (c-myc + GH) 0.9749 4.3743 0.4630 0.9669 4.3743 1.0000

 



 

in the hypothesized tree was estimated using 100 bootstrap replicates with one random 

sequence addition per pseudo-replicate.   

A Bayesian analysis (MB) was performed using MrBayes v3.1 (Huelsenbeck and 

Ronquist 2001).  Four MCMC chains were run simultaneously for 10,000,000 

generations and sampled every 500 generations.  Data collected from the first 1,000,000 

generations (2000 trees) were discarded as burn-in.  A general-time-reversible model 

with invariable sites and a gamma distribution (GTR + I + Γ) was used for analysis.  For 

cytb, the analysis was performed with the data partitioned by first, second, and third base 

positions.  For c-myc the analysis was performed with three data partitions, intron, exon 

and UTR.  The data was partitioned by coding and noncoding sequences for the GH 

analysis. 

Combined Analyses 

A partition homogeneity test or ILD (incongruence length difference) test (Farris 

et al. 1995) was performed using PAUP* to determine if there was significant conflict 

between gene partitions.   

 Pairwise gene combinations 

C-myc and cytb were analyzed together.  For parsimony analysis, 1000 random 

addition replicates and TBR branch swapping were performed with parsimony as the 

optimality criterion.  To test the robustness of the tree, 1000 bootstrap pseudo-replicates 

were performed with 100 random sequence additions per pseudo-replicate.     

A ML analysis was also performed using PAUP*.  An initial starting tree was 

obtained using GARLI (Zwickl 2006) which uses a genetic algorithm and a GTR + I + Γ 

model of evolution.  Modeltest was then used to select a model and parameter values in 
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the successive-approximations approach described earlier.  Further trees were analyzed 

using PAUP*.  For model and parameter values used, refer to Table 3.  A ML heuristic 

search was performed with 10 random sequence additions and TBR branch swapping 

using likelihood as the optimality criterion. Confidence in the hypothesized tree was 

estimated using 100 bootstrap replicates with one random sequence addition per 

bootstrap replicate.   

A Bayesian analysis was performed with MrBayes using a GTR + I + Γ model.  

Four MCMC chains were run simultaneously for 10,000,000 generations and sampled 

every 500 generations.  Data collected from the first 1,000,000 generations (2000 trees) 

was discarded as burn-in.  The dataset was analyzed with two partitions, one for each 

gene. 

 All genes 

MP and ML analyses were performed on the combined dataset using PAUP* and 

the methods previously described.  For the ML analysis, a general-time-reversible model 

was used, with invariable sites and a gamma distribution (GTR + I + Γ) (Table 3).   

A MB analysis was performed using four MCMC chains run simultaneously for 

10,000,000 generations and sampled every 500 generations.  A GTR + I + Γ model was 

used for analysis.  The dataset was analyzed with three partitions, one for each gene.  

Data from the first 1,000,000 generations (2000 trees) was discarded as burn-in. 

Constrained Trees 

 Constrained tree searches were run on each of the individual gene datasets, as 

well as the combined and pairwise gene datasets.  Trees were constrained for monophyly 

of each of the subfamilies under the Holyoak classification as well as the more traditional 
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classification (Peters 1940; Cleere 1998; Cleere 1999).  Additional constrained tree 

searches were run with the two genera, Caprimulgus and Eurostopodus, as monophyletic.  

A ML analysis was performed using PAUP* and the best fit model previously described 

with model parameters optimized using Modeltest in a successive approximations 

approach as described above.  A heuristic search was performed with 10 random 

sequence additions using likelihood as the optimality criterion.   
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Results 

Sequence analyses 

The final alignment of all genes in the analysis was 4224 base pairs (bp) in length.  

A total of 47 bp were excluded from the analysis as ambiguously aligned (see below).  

All analyses of the 73 ingroup plus outgroup taxa were conducted on the remaining 4177 

characters. 

Cytb was 1143 bp in length in all but two taxa, N. albicollis and C. enarratus, 

which both showed a single codon deletion near the 3’ end at positions 1135-1137.  

Further amplification and sequencing using different pairs of primers yielded similar 

results, suggesting the products were from authentic mtDNA rather than nuclear copies of 

mitochondrial DNA sequences.   The fact that the deletions maintain the reading frame 

suggests the sequences were from functional coding sequences.  Length variation at the 

3’ end of cytb has been known to occur in other birds (Groth 1998; Cicero and Johnson 

2001; Randi et al. 2001).   

C-myc sequences ranged from 1230-1271 bp in length which totaled to 1316 bp in 

length when aligned.  Of these, two poly-nucleotide tracts totaling 47 bp (29 in intron and 

18 in UTR) were subsequently excluded from all analyses as too variable to be 

unambiguously aligned, resulting in 1269 bp aligned for analysis (range 1211-1241 bp 

unaligned).  Of these, 323 bp (range 290-310) were from intron b, 575 bp (range 563-

575) were from exon 3, and 371 bp (range 356-363) were from 3’UTR.  

The remaining 1765 bp in the alignment were from GH.  Raw sequences ranged 

from 781-1594 bp in length.  1659 bp (range 675-1488) were from intron 2, 32 bp were 

from exon 2, and 74 bp were from exon 3.  Sequence length ranged from 781-923 bp for 
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all but 17 taxa, which had a sequence length of 1566-1594 bp due to the presence of a 

long insertion of ~769 bp in the intron.    

Base compositions were homogeneous across all taxa and all genes when 

calculated based on parsimony informative characters (Table 4).  However, when all 

characters were analyzed, base compositions were significantly heterogeneous for GH.  

This is likely due to the presence of the large insertion found in the intron of 17 of the 

Old World caprimulgids.  When the insertion, which was rich in A’s and G’s, was 

removed from character analysis, base compositions were not significantly heterogeneous 

(Table 4).   Cytb was low in G’s and T’s, particularly in third base positions, and high in 

C’s.  C-myc was low in T’s in the exon and low in C’s and G’s in the UTR.  GH exons 

were low in G’s. 

Comparisons of mean pairwise distances (Figure 5) of taxa show that cytb is 

evolving the fastest and c-myc the slowest, with GH intermediate between the other two 

genes.  Within cytb, third base positions are evolving at a much faster rate than first and 

second base positions.  Exon 3 and the 3’UTR of c-myc are evolving at about the same 

rate, and both are evolving much slower than intron b.  Exons of GH are evolving at a 

slightly slower rate than the intron.  

The degree of substitution saturation in various gene elements was investigated by 

plotting the proportion of substitutions (total number of pairwise substitutions divided by 

total sequence length) against likelihood distance for c-myc, the most slowly evolving of 

the three genes (Figure 5).  Both nuclear genes, c-myc and GH, were not saturated.  

Among cytb sequences, there was evidence of saturation at all codon positions 



 

Table 4:  Characteristics of gene regions 

BASE COMPOSITIONS a χ2  

p-value 

# parsimony 
informative 
characters 

Average # 
of 

charactersGene 

A     C G T   
Cytb 0.33 (0.28) 0.46 (0.34) 0.05 0.16 (0.25) 1.00 (1.00) 506 1143 
Cytb 1+2 0.24 (0.23) 0.43 (0.28) 0.10 0.22 (0.31) 1.00 (1.00) 145 762 
Cytb 3 0.36 (0.39) 0.47 (0.45)

 
0.03 0.14 (0.13) 

 
0.33 (0.53) 

 
361 

 
381 

    

   
  

  

c-myc  0.26 (0.30) 0.25 (0.22) 0.29 0.20 (0.25) 1.00 (1.00) 200 1221 
c-myc exon 3 0.24 (0.34) 0.31 (0.24) 0.28 0.16 (0.17) 1.00 (1.00) 63 563 
c-myc intron b 0.26 (0.24) 0.24 (0.21) 0.29 0.21 (0.29) 1.00 (1.00) 98 300 
c-myc 3’UTR 0.29 (0.31) 0.20 (0.19)

 
0.18 0.33 (0.32) 

 
1.00 (1.00) 

 
39 

 
358 

 
GH 0.21 (0.24) 0.27 (0.26) 0.25 0.26 (0.26) 1.00 (< 358 1007
GH exons 2 + 3 0.26 (0.34) 0.33 (0.28) 0.03 0.38 (0.20) 1.00 (1.00) 15 106 
GH intron 2 0.21 (0.23) 0.27 (0.25) 0.26 0.26 (0.27) 1.00 (< 343 901
GH w/o insertion 0.20 (0.24) 0.28 (0.26) 0.25 0.27 (0.27) 1.00 (1.00) 294 830 
GH intron 2 w/o 0.20 (0.23) 0.28 (0.26) 0.26 0.26 (0.28) 1.00 (1.00) 279 724 
GH insertion only 0.32 (0.22) 0.19 (0.22) 0.32 0.17 (0.22) 1.00 (1.00) 64 758 

a Base compositions shown are for parsimony informative characters only. Numbers in parentheses represent base 
compositions from all characters. 
b P-values are for the χ² test of homogeneity of base compositions 

  



 

  

  

 
 
 
 
 
 

Table 5:  Average uncorrected pairwise distances 
cytb c-myc GH

 
All bp 

1st + 
2nd bp 

3rd 
bp 

 
All bp Exon 3 intron b 3' UTR  All bp Exons 2+ 3 Intron 2 

All taxa 0.13        0.05 0.31  0.03 0.02 0.06 0.02  0.07 0.03 0.07
Outgroup only 0.18          

          
        

0.08 0.38  0.06 0.04 0.12 0.05 0.12 0.04 0.13
Ingroup only 0.13 0.04 0.30  0.02 0.02 0.05 0.01 0.05 0.02 0.06
Ingroup to outgroup 0.17 0.07 0.38  0.06 0.04 0.12 0.04 0.13 0.05 0.14



 

 
Figure 5:  Saturation plots for sub-elements of each gene.  
Proportion of substitutions (total number of pairwise substitutions divided by total 
sequence length) is plotted vs c-myc ML distance based on the optimized likelihood 
model (Table 3):  (A) c-myc; (B) GH; and (C) cytb. 
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(Figure 5C).  In general, substitution types for all genes were biased towards transitions.  

For cytb, the number of transitions appears to be decreasing as distances get larger.  A 

closer examination of transitions and transversions versus likelihood distance indicates 

that at greater genetic distances, there are as many apparent transversions as there are 

transitions in third base positions (Figure 6B).  At these distances, multiple hits have 

occurred at many sites and substitution saturation for cytb may obscure phylogenetic 

signal. 

 

 

Figure 6:  Saturation plot for cytb:   
(A) 1st and 2nd base position; (B) 3rd base position.  Proportion of transitions and 
transversions are plotted against c-myc likelihood distance.   
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Phylogenetic Analyses 

Incongruence Length Difference Tests 

An ILD test of all data indicated significant conflict in phylogenetic signal among 

the genes (p = 0.02).  Pairwise analyses indicated that GH was the source of the conflict 

(Table 6).  To try to identify the source of conflict, several groups of taxa with different 

placement in the single gene trees were removed, and the ILD tests repeated, but the 

results remained significant.  Due to the significant ILD test results, separate 

phylogenetic analyses were conducted on each gene, and on a combined cytb and c-myc 

dataset.  For comparison, all three datasets were also combined for analysis, despite the 

significant conflict of GH with the other gene partitions, because some studies suggest 

the ILD test may be too conservative (Bull et al. 1993; Cunningham 1997; Darlu and 

Lecointre 2002).  

 

 

Table 6:  P values for pairwise ILD test of gene congruence. 
 Cytb c-myc 
c-myc 0.38 - 
GH 0.01 0.01 

 

 

Caprimulgid monophyly and basal taxa 

Since all well supported nodes are found with each analysis method, only the ML 

tree is shown.  Please refer to the Appendices for trees from MP and MB analyses. 

Caprimulgidae is monophyletic with strong support in all analyses of both nuclear 

genes and all combined analyses (Figure 7-9, 11).  In analyses of cytb (Figure 10), three 
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OW=Old World 
NW= New World 
BT=Basal Taxa 

Figure 7:  Maximum likelihood tree of all three genes combined (−ln L = 35807.86).   
Numbers indicate likelihood bootstrap (BP) >50%.
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OW=Old World 
NW= New World 
BT=Basal Taxa 

Figure 8:  C-myc maximum likelihood tree (−ln L = 5933.29).   
Numbers indicate likelihood BP >50% 
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OW=Old World 
NW= New World 
BT=Basal Taxa 

 
Figure 9:  GH maximum likelihood tree (−ln L = 10101.34).   
Numbers indicate likelihood BP >50%. 
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OW=Old World 
NW= New World 
BT=Basal Taxa 

Figure 10:  Cytb maximum likelihood tree (-ln L = 18130.75).   
Numbers indicate likelihood BP >50% 
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OW=Old World 
NW= New World 
BT=Basal Taxa 

Figure 11:  Cytb + c-myc maximum likelihood tree. (−ln L = 24794.69).   
Numbers indicate likelihood BP >50% 
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Eurostopodus spp. fail to group together with the other Caprimulgidae.  However, these 

are the most divergent ingroup taxa for all genes (Table 7), and substitution saturation in 

cytb may be obscuring phylogenetic signal at that depth of the tree (Figure 6).  

The four Eurostopodus spp. and C. enarratus are the earliest branching 

caprimulgids in all analyses (Figure 7-11).  This group of five species are therefore 

referred to as “basal taxa” (BT).  Genetic distances of these taxa to other Caprimulgidae 

are higher (Table 7), supporting the idea that these taxa are older than, and basal to, the 

rest of the Caprimulgidae. 

There are two distinct groups within the genus Eurostopodus: one with E. 

macrotis and another with E. papuensis, E. argus and E. mystacalis.  The average p-

distance between the two groups is 0.10 whereas the average p-distance amongst the 

three Eurostopodus spp. (papuensis, argus and mystacalis) is 0.05.  The order of 

branching of the two groups varies among genes and in combined analyses, without 

strong support for any of the possible topologies.  The two groups cluster together in GH 

analyses, but with low support (Figure 9), and Eurostopodus is not monophyletic in cytb, 

c-myc and combined analyses (Figure 7, 8, 10, 11).  Therefore, monophyly of this genus 

remains unresolved. 

C. enarratus is also an early branching taxon in all analyses (Figure 7-11).  It is 

endemic to dense forests in NW and E Madagascar and is likely an old lineage.  The 

position of C. enarratus on all trees refutes Caprimulgus monophyly.   

Core Caprimulgids 

All other caprimulgids form a clade with strong support in all analyses.  ML 



 

 

Table 7:  Average uncorrected pairwise distances among groups of taxa 
  cytb  c-myc  GH 
 All bp 1st+2nd bp 3rd bp  All bp Exon 3 intron b 3' UTR  All bp Exons 2+ 3 Intron 2
C. enarratus a 0.16        0.06 0.36  0.04 0.04 0.07 0.02 0.07 0.07 0.08
E. macrotis a 0.16          

          
          
          
          

0.05 0.38  0.04 0.03 0.08 0.01 0.08 0.04 0.09
E. argus a 0.18 0.06 0.40  0.04 0.03 0.08 0.02 0.09 0.07 0.09
E. mystacalis a 0.17 0.07 0.38  0.04 0.04 0.08 0.02 0.09 0.08 0.09
E. papuensis a 0.16 0.06 0.37  0.04 0.03 0.09 0.02 0.08 0.07 0.08
Old World (OW) b 0.10 0.03 0.23  0.01 0.01 0.02 0.01 0.03 0.02 0.03
New World 1 (NW1)b 0.10          

          
          
          
          

0.03 0.24  0.01 0.01 0.03 0.00 0.03 0.03 0.03
New World 2 (NW2)b 0.10 0.03 0.25  0.01 0.01 0.03 0.01 0.03 0.01 0.03
New World 3 (NW3) b 0.10 0.03 0.25  0.01 0.01 0.03 0.00 0.03 0.03 0.03
Basal taxa (BT) b 0.15 0.06 0.35  0.03 0.02 0.07 0.01 0.06 0.04 0.07
BT v outgroup (OG) c 0.18 0.07 0.39  0.06 0.04 0.13 0.04 0.12 0.09 0.14
OW to OG c 0.17          

          
          
          
          

0.07 0.38  0.06 0.05 0.12 0.04 0.14 0.11 0.15
NW1 to OG c 0.17 0.07 0.38  0.06 0.04 0.12 0.04 0.13 0.10 0.14
NW2 to OG c 0.18 0.07 0.40  0.06 0.04 0.12 0.04 0.13 0.09 0.15
NW3 to OG c 0.18 0.07 0.38  0.06 0.04 0.12 0.04 0.12 0.09 0.13
BT to OW c 0.16 0.06 0.37  0.04 0.04 0.08 0.02 0.09 0.08 0.10
NW1 to OW c 0.13          

          
          

0.04 0.30  0.02 0.02 0.04 0.01 0.06 0.07 0.06
NW2 to OW c 0.13 0.04 0.32  0.03 0.02 0.04 0.02 0.06 0.05 0.07
NW3 to OW c 0.13 0.04 0.30  0.03 0.02 0.04 0.02 0.06 0.05 0.06

a Average uncorrected p-distance for each of these taxa vs core caprimulgids 
b Average uncorrected p-distance within each of the major groups of taxa found in analyses 
c Average uncorrected p-distance between groups of taxa 

  



 

  

Table 7 cont’d:  Average uncorrected pairwise distances among groups of taxa 
  cytb  c-myc  GH 
 All bp 1st+2nd bp 3rd bp  All bp Exon 3 intron b 3' UTR  All bp Exons 2+ 3 Intron 2
NW1 to BT c 0.17        0.06 0.38  0.04 0.03 0.08 0.01 0.08 0.06 0.08
NW2 to BT c 0.17          

          
          

0.06 0.40  0.04 0.03 0.08 0.01 0.08 0.06 0.09
NW3 to BT c 0.17 0.06 0.38  0.04 0.03 0.08 0.02 0.08 0.06 0.08
NW1 to NW2 c 0.13 0.04 0.31  0.02 0.02 0.05 0.01 0.06 0.04 0.06
NW1 to NW3 c 0.12          

          
0.04 0.29  0.02 0.01 0.05 0.01 0.05 0.04 0.05

NW2 to NW3 c 0.13 0.04 0.31  0.03 0.02 0.06 0.02 0.05 0.03 0.06
a Average uncorrected p-distance for each of these taxa vs core caprimulgids 
b Average uncorrected p-distance within each of the major groups of taxa found in analyses 
c Average uncorrected p-distance between groups of taxa 



 

bootstrap support for this core caprimulgid clade ranged from 82-100% (Figure 7-11).  

Within this clade, there are four main groups found consistently in all single gene 

analyses, but with varying degrees of support (Figure 8, 9, 11).  These groups include one 

Old World (OW) and three New World (NW) clades.  When the genes are combined, 

support for each of these four main groups is strong (Figure 7, 11).  However, the 

relationships among these four groups remain unresolved, as the exact topology varies 

among the genes and in combined analyses.   

Four core clades 

Old World 

This clade includes all African, Asian, and European taxa sampled, aside from the 

basally branching Eurostopodus spp. and C. enarratus.  Support for it is very strong 

ranging from 97-100% ML bootstrap in single gene and combined analyses (Figure 7-

11).  A clade comprising C. clarus, C. fossii, C. climacurus, C. europaeus, C. rufigena, 

the unidentified Caprimulgus sp. from ZMUC, and M. longipennis is present in all 

analyses (ML bootstrap 64-94%) with support becoming very strong when all three genes 

are combined (100% ML bootstrap).  C. clarus is sister to C. fossii in all analyses except 

in c-myc (Figure 8) where it forms a polytomy with C. climacurus.  All three taxa form a 

clade in all analyses except GH (Figure 9).  At one time, these three taxa were classified 

under a separate genus, Scotornis (Peters 1940).  C. europaeus is sister to C. rufigena 

with strong support in all analyses.   The unidentified Caprimulgus sp. from ZMUC is not 

one that has been sequenced in this study.  Based on collection locality, some possible 

species are:  C. tristigma, C. natelensis, C. ruwenzorii, or C. fraenatus. 

41  



 

New World 1 

NW 1 is comprised of Nyctiphrynus, Phalaenoptilus, Siphonorhis, and a group of 

Caprimulgus spp.  This group is primarily made up of poorwills, whip-poor-wills, and 

chuck-wills-widow.  All Caprimulgus spp., with the exception of C. rufus, are found in 

North and Central America.   Siphonorhis, a West Indian island endemic, is basal to all 

taxa within this group in all analyses except in cytb and c-myc parsimony analyses (See 

Appendix D, E).   

C. v. vociferus, C. v. arizonae, and C. saturatus form a group in all analyses 

except those based on c-myc, but their interrelationships remain unresolved.  This 

suggests either that C. v. arizonae should be elevated to full species level rather than as a 

subspecies of C. vociferus, or that C. saturatus should be treated as a subspecies of C. 

vociferus.   

The group C. salvini plus C. carolinensis and C. rufus is found with varying 

degrees of support in all analyses except those based solely on c-myc or GH.  This 

relationship is stronger in combined analyses.  This group, along with C. ridgwayi, forms 

a strong clade of species whose breeding distributions are non-overlapping.  An 

unsampled species, C. badius, which breeds from Yucatan to Nicaragua, may complete 

this group. 

New World 2 

NW2 is comprised of two nighthawk genera, Chordeiles and Podager.  This clade 

is formed with high support in all single gene and combined analyses.  All analyses 

(Figure 7-10) place P. nacunda as sister to C. pusillus except for those based on cytb 

(Figure 10) where instead, P. nacunda branches basally to all Chordeiles species.  C. 
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acutipennis is sister to C. rupestris in all analyses, with the exception of c-myc where 

these two species form a polytomy with C. minor.  The separation of this clade from 

Lurocalis and Nyctiprogne makes Chordeilinae non-monophyletic. 

New World 3 

NW3 is primarily found in South America, and comprises Hydropsalis, 

Macropsalis, Eleothreptus, Nyctidromus, Nyctiprogne, Lurocalis and Caprimulgus.  Both 

nightjars (Hydropsalis, Macropsalis, Eleothreptus, Nyctidromus and Caprimulgus) and 

nighthawks (Lurocalis and Nyctiprogne) are found within this group.  Hydropsalis spp. 

are sister to C. cayennensis in all analyses except GH, where the relationships are 

unresolved.   

Constrained search results 

As a test of monophyly of current genera and subfamilies, constrained tree 

searches were run to compare likelihoods of constrained tree topologies to the likelihoods 

of optimal unconstrained tree topologies.  Monophyly of various groups (Eurostopodus, 

Caprimulgus, Chordeilinae, Caprimulginae) was enforced in separate constrained tree 

searches (Table 8).  Monophyly of both the traditional and Holyoak’s subfamilies were 

tested.  The results indicate a large decrease in likelihood when the genus Caprimulgus 

was constrained to be monophyletic, and when each of the subfamilies, either with 

Holyoak’s definition or with the traditional classification, were constrained to be 

monophyletic.  There was, however, a very small decrease in likelihood when 

Eurostopodus was constrained to be monophyletic (Table 8).  These results indicate that 

monophyly of Caprimulgus, Chordeilinae and Caprimulginae are all strongly rejected by 

the data, while the evidence against Eurostopodus monophyly is less strong. 



 

  

  

 

 
Table 8:  Comparison of likelihoods of alternative tree topologies 

 Hypothesis Cyt b  c-myc GH Combined
Holyoak Chordeilinae monophyletica 120.36    94.28 92.52 288.65
Chordeilinae monophyleticb 36.99    

    
    

    
    

26.72 21.09 76.14
Holyoak Caprimulginae monophyleticc 83.19 73.50 67.23 214.78
Caprimulginae monophyleticd 106.37 97.09 105.54 304.09
Eurostopodus monophyletice 8.18 0.70 - 2.86
Caprimulgus monophyleticf 258.74 200.38 221.03 673.37

Constrained ML heuristic tree searches were conducted in PAUP* using models of evolution 
previously estimated for unconstrained tree searches (Table 3) with parameters optimized using 
Modeltest 3.7.  Each constrained tree was compared to the respective optimal unconstrained ML tree 
for (a) cytb (-ln L = 18130.75), (b) c-myc (-ln L = 5933.29), (c) GH (-ln L = 10101.34), and (d) total 
combined datasets (-ln L 35807.86).  ∆ln L values shown are the decreases in likelihood of the 
constrained versus the unconstrained trees. 

a ((Chordeiles [6 OTUs], Eurostopodus [4 OTUs], Lurocalis [3 OTUs] Nyctiprogne)) 
b ((Chordeiles [6 OTUs], Lurocalis [3 OTUs] Nyctiprogne , Podager)) 
c ((Caprimulgus spp. [37 OTUs], Eleothreptus, Hydrosalis [2 OTUs], Macrodipteryx, Macropsalis [2 

OTUs], Nyctidromus, Nyctiphrynus [5 OTUs] P. nuttallii, P. nacunda, S. brewsteri)) 
d  ((Caprimulgus spp. (37 OTUs), E. anomalus, E. argus, E. macrotis, E. mystacalis, E. papuensis, H. 

climacocerca, H. torquata, M. longipennis, M. lyra, M. segmentata, N. albicollis, N. mcleodii, N. 
ocellatus, N. rosenbergi (2 OTUs), N. yucatanicus, P. nuttallii, S. brewsteri)) 

e ((E. argus, E. macrotis, E. mystacalis, E. papuensis)) 
f ((37 Caprimulgus spp.)) 

 



 

Indel support 

There was a total of 122 indel characters using simple indel coding implemented 

in SeqState (Müller 2006).  Of these, 74 characters were autapomorphic and four 

characters were indels located in poly-T regions that are prone to length variation and are 

therefore highly homplasious.  Fourteen indel characters were homoplasious requiring 

two to three changes on the combined ML tree.  The remaining thirty informative indel 

characters, requiring only a single change on the tree, were mapped onto the combined 

ML tree (Figure 12).  Most of these indels mapped to nodes that are strongly supported in 

analyses of substitutional variation.  However, several provide valuable additional 

support for weak or unresolved nodes.  For example, a large insertion (769 bases) is 

present in most OW taxa with the exception of C. manillensis and C. madagascariensis.  

There is little resolution at the base of the OW clade in any of the trees based on 

substitutional variation, therefore the 769 bp insertion provides good evidence for uniting 

all taxa in which it is present, and placing C. manillensis and C. madagascariensis at the 

base of the clade.  In our trees, the two taxa do not form a clade but are separated by short 

internodes with no support.   
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Figure 12:  Combined ML tree with indel characters indicated by black bars.   
Numbers indicate likelihood bootstrap >50% 
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Discussion 

Hypotheses and general conclusions 

The genetic data presented here confirm some traditional groupings of 

caprimulgids and provide a host of new insights.  All Caprimulgidae are monophyletic 

with respect to outgroup taxa.  Within the family, the two subfamilies, Caprimulginae and 

Chordeilinae, are not monophyletic.  Two of the four traditional chordeiline genera, 

Chordeiles and Podager, form the NW2 clade while the other two genera, Lurocalis and 

Nyctiprogne, are found within the NW3 clade with several traditionally caprimulgine 

genera.  The support for both clades is consistent among the three genes and strong in 

combined analyses.  In addition, Eurostopodus is an early radiation among all other 

Caprimulgidae, making the traditional Caprimulginae non-monophyletic.   

The alternative groupings of subfamilies, according to Holyoak (2001), are also 

not monophyletic.  Podager, which Holyoak considered to be caprimulgine, groups 

together with Chordeiles in the NW2 clade.  This suggests that rictal bristles, which 

Holyoak used to define the subfamilies, are not good diagnostic characters.  The genus 

Veles, treated as chordeiline by Holyoak (2001), was not available for study.  This genus 

has often been lumped with Caprimulgus, and presumably would group within the OW 

clade, but that must remain speculation until genetic data are available.  Maximum 

likelihood tree searches, where each of the subfamilies (both traditional and Holyoak’s) 

was constrained to be monophyletic, resulted in very large decreases in likelihood, 

rejecting monophyly of each subfamily.  Non-monophyly of the subfamilies suggest that 

aerial foraging, and the associated morphological adaptations, arose more than once (see 

Character Evolution below). 
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According to the genetic data, Eurostopodus spp. forms the base of all 

Caprimulgidae.  However, monophyly of Eurostopodus was inconclusive.  The ML tree 

with combined data has Eurostopodus paraphyletic, and the two groups have large 

genetic distances between them.  Indel data support E. argus, E. papuensis, and E. 

mystacalis as being more closely related to each other than to macrotis, which differs 

from the other three species in possessing ear tufts.  These results clearly indicate that 

macrotis is divergent enough from the other Eurostopodus spp. to warrant being placed 

into a separate genus Lyncornis.  However, constraint tree searches (Table 8) resulted in 

only a small decrease in likelihood to make the genus monophyletic.  These results, while 

consistent with Sibley and Ahlquist’s (1990) DNA hybridization study in showing large 

genetic distances, cast doubt on their recommendation to make it a separate family, 

Eurostopodidae.  If that course were taken, consistent treatment would require separation 

of macrotis and its probable sister species, temminckii, in yet another small family 

Lyncornidae.  That would serve little purpose in conveying the presently inferable 

relationships among nightbirds.  Although Barrowclough et al (2006) concurred with 

Sibley and Ahlquist on the separation of Eurostopodidae, limited taxon sampling 

prevented them from detecting the deep split within the current genus Eurostopodus.  

Only one species, Eurostopodus (=Lyncornis) macrotis, was included in their study.   

In all analyses, Caprimulgus is polyphyletic, with species found in each of the 

major clades with strong support.  ML tree searches, where this genus was constrained to 

be monophyletic, resulted in very large decreases in likelihood.  Caprimulgus has 

traditionally been a catchall for all Caprimulgidae lacking in striking characters, and the 

need to revise the genus has been remarked upon (Sibley and Ahlquist 1990; Cleere 
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1998; Cleere 1999; Holyoak 2001).  Polyphyly indicates caprimulgids have maintained a 

successful body plan, while alternative forms arose from within the traditional generic 

limits.  A number of genera have been named in the past, some of which may still be 

valid.   

Biogeography 

In this study, the five early branching taxa, Eurostopodus spp. and C. enarratus, 

are found in Australasia and Madagascar suggesting this region around the Indian Ocean 

as a possible origin of Caprimulgidae.  C.  enarratus, endemic to dense forests in NW 

and E Madagascar, is an early branching taxon found at the base of all Caprimulgidae 

save Eurostopodus.  One other species endemic to Madagascar, C. madagascariensis, is 

placed within the OW clade and has a more widespread distribution across the island, 

suggesting a second, more recent colonization. 

The data give strong support for biogeographical groupings among the remaining 

core caprimulgids, with one clade comprising the majority of the Old World taxa and the 

other three clades being New World.  While the interrelationships among these groups 

remain unresolved, all analyses, except those based solely on cytb, indicate a radiation in 

the New World, from which a second Old World clade was derived.  While more data 

would be needed to fully support this conclusion, it is consistent with the study of 

Barrowclough et al (2006) based on RAG-1.  Those authors suggested a small genus, 

Eurostopodus, from Australasia, was sister to the rest of the family.  Those authors also 

suggested a second Old World clade was derived from a larger New World clade.   
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Character evolution 

Based on the results of this study, the characters used to define the traditional 

subfamilies are homoplasious (Figure 13).  Many of these characters appear to be 

tracking the trophic niches of the taxa more closely than phylogeny.  Rictal bristles, 

which Holyoak used to rearrange the traditional subfamilies, must have been gained and 

lost multiple times.  They are likely to be the result of trophic adaptation to aerial 

foraging by sallying from a perch that occurred in the common ancestor of core 

caprimulgids and C. enarratus.  Those lineages that forage by hawking insects on the 

wing (the nighthawk niche) have subsequently lost rictal bristles.  These lineages would 

include Nyctiprogne, Lurocalis and Chordeiles.  Nyctiprogne and Lurocalis are not 

strongly separated by the available genetic data.  Their morphological similarities suggest 

that they may be sister taxa rather than basally paraphyletic in NW3 as shown in Figure 

13.  If so, only one transition to a nighthawk niche would be required in NW3.  The 

Nacunda Nighthawk (Podager) is embedded within Chordeiles (NW2) yet has rictal 

bristles.  If gain or loss of bristles is equally probable, it is equally parsimonious to 

suppose that Podager regained them after loss in the ancestor of NW2, or that Podager 

retained them as the primitive state while they were lost independently by C. pusillus and 

the ancestor of the other three Chordeiles species.  However, if loss is more probable than 

gain, then the second explanation is more parsimonious. 

Many of the genera containing only one or two species are named for striking 

morphological features such as modified wing or tail feathers (Figure 13).  These traits 

are likely to be sexually selected and represent recent autapomorphies rather than deep 

phylogentic divergences.  Caprimulgus polyphyly indicates that these characters have  
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Figure 13:  Combined ML tree with traditional morphological and behavioral characters 
mapped on tree.   
Bars represent characters used to define the subfamilies.  Pictures on right represent 
morphological characters used to define genera 
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evolved multiple times from a basic body plan. The elongated tail feathers of H. torquata 

and Macropsalis spp. provide a good example.  Although all three fall in the same clade, 

they are separated by several robust nodes including taxa of normal tail length.  Thus 

elongated tail feathers must have been gained or lost on more than one occasion. 

Taxonomic conclusions 

The results from this study were not consistent with the division of the family into 

two subfamilies, Chordeilinae and Caprimulginae.  It would also be difficult to divide the 

family into two subfamilies, Eurostopodinae and Caprimulginae, as suggested by 

Barrowclough et al (2006), since monophyly of Eurostopodus is still uncertain.  

However, many monotypic genera can be reclassified and the species rich genus 

Caprimulgus can be subdivided.   

Although E. temminckii was not sampled, it is likely sister to E. macrotis since the 

two species share morphological similarities such as the presence of “ear tufts”.  Both E. 

temminckii and E. macrotis were previously classified as Lyncornis, and this genus 

should be resurrected for the two species.     

C. enarratus should be assigned to a new monotypic genus, while genus names 

within the core caprimulgids should be divided by the four major clades.  C. enarratus is 

as divergent from the core caprimulgids as each of the four major clades are from each 

other.  The OW clade should be assigned to the genus Caprimulgus, which would get rid 

of one genus, Macrodipteryx and possibly another, Veles.  NW2 should be assigned to the 

genus Chordeiles, which appears to have priority over the monotypic genus Podager 

(Peters 1940).  NW3 which has seven different genera would need to be assigned a genus 

name, possibly Hydropsalis, since it appears to have priority over other genera in the 
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clade (Peters 1940).  Within NW1, Siphonorhis, which appears to be basal to the rest of 

the clade, could remain, as could Nyctiphrynus, which appears sister to the rest of the taxa 

within this clade.  All other taxa would need to be assigned the genus Antrostomus, which 

was used previously for several taxa within this clade.   

This reclassification would decrease the total number of genera from fifteen to 

nine.  In addition, these generic designations would better reflect evolutionary history.  

The question remains of what to do with the remaining unsampled taxa.  Based on the 

current information, guesses could be made as to which of the major clades any 

remaining taxa would belong.  However, any of these unsampled taxa could turn out to 

form another major group, complicating the picture presented here. Until tissue samples 

of the remaining taxa become available, these results present a major advance in 

caprimulgid classification. 

 

54  



 

Appendices 
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Appendix A:  Synopsis of Caprimulgiform systematics 

Sclater (1866a;  1866b) subdivided the Caprimulgidae into Steatornithinae, 

Podarginae (consisting of Podargus, Batrachostomus, Nyctibius, and Aegotheles), and 

Caprimulginae.  This subdivision was followed by Beddard (1886) who recognized four 

subfamilies based on the syrinx and other morphological characters.  Steatornis was 

placed into its own subfamily, Podargus and Batrachostomus into a second subfamily, 

Aegotheles into a third subfamily and Caprimulgus, Chordeiles, and Nyctidromus into a 

fourth subfamily.  Wetmore (1918) recognized Nyctibiidae as being a distinct group 

intermediate between Podargidae and Caprimulgidae based on morphological traits.  

Peters (1940), in his Checklist of the Birds of the World, following Wetmore, recognized 

five families, Aegothelidae, Podargidae, Steatornithidae, Nyctibiidae, and Caprimulgidae. 

He further subdivided Caprimulgidae into two subfamilies:  Caprimulginae and 

Chordeilinae.  This arrangement continues to be used today.   

While most ornithologists recognize these five families as being each others’ 

closest relatives, disagreements continue to exist at the ordinal level.  Although they have 

been linked to other groups of birds in the past, Caprimulgiformes are most commonly 

treated as relatives of either owls (Strigiformes) or swifts and hummingbirds 

(Apodiformes), or both (Cleere 1998; Cleere 1999; Holyoak 2001) with some families 

more closely allied to Apodiformes and others to Strigiformes.  DNA-DNA hybridization 

studies (Sibley and Ahlquist 1990; Bleiweiss et al. 1994) suggest that owls, and not 

swifts, are the closest living relatives of Caprimulgiformes.   

More recently, monophyly of the order has been questioned.  A study of 

osteological characters (Mayr 2002) found evidence of paraphyly in Caprimulgiformes.  
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Their results indicated Aegothelidae formed a monophyletic clade with Apodiformes and 

were sister to a monophyletic clade comprising of Caprimulgidae and Nyctibiidae.  All 

four of these groups formed a monophyletic group with respect to the other 

Caprimulgiformes.  Further molecular studies using cytochrome b and c-myc (Braun and 

Huddleston unpublished data), while confirming monophyly of each of the five families, 

failed to confirm monophyly of the order.  Aegothelidae was found to be sister to 

Apodiformes.   
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Appendix B:  Laboratory Methods 

DNA Extraction 

Tissues were either minced or ground under liquid nitrogen and digested at 60°C 

overnight in a shaking incubator with 50 µL of Proteinase K (20mg/mL), 75 µL of 20% 

Sodium Dodecyl Sulfate (SDS) and 1 ml of DNA Extraction Buffer (50 mM Tris-HCl pH 

7.5, 100 mM NaCl, 1 mM disodium EDTA).  The solution was then extracted twice with 

1 ml of PCI (phenol:chloroform:isoamyl alcohol, 25:24:1 v/v) using Phase-Lock gel 

(Eppendorf) to maximize separation of the organic and aqueous phases.  The resulting 

solution was then extracted twice with 1 ml of CI (chloroform:isoamyl alcohol, 24:1 v/v) 

to remove trace phenol.  The DNA was precipitated with 1/10 the volume of 3 M NaOC 

(sodium acetate) and 2.5 volumes of ice-cold 95% ethanol (EtOH) and placed at −20°C 

overnight.   The solution was frozen at −80°C for one hour, then the DNA was spun 

down in a 4°C centrifuge (Eppendorf Centrifuge 5415D) at maximum speed. The 

resulting pellet was rinsed twice with 1 mL of 70% ethanol.  The DNA samples were 

dried to remove any traces of ethanol and re- suspended with 300 µL of TLE (10 mM 

Tris, 0.1 mM EDTA).  Genomic DNA was visualized on a 1.5% agarose gel to check for 

quality and RNA.  RNase was added if necessary.  Concentrations were checked using a 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies).     

PEG Precipitation 

Excess nucleotides and primers were removed from PCR products by PEG 

precipitation.  An equal volume of a solution of 20% PEG 8000, 2.5 M NaCl was added 

to the PCR product and incubated for 15 min at 37°C.  The solution was spun for 15 min 

58  



 

in a cold centrifuge (Eppendorf Centrifuge 5415D) at maximum speed and the resulting 

supernatant removed.  The pellet was then washed twice with 150 µL of 80% cold EtOH 

and centrifuged for five min between each wash.  The pellet was dried to remove EtOH 

and re-suspended with 25-50 µL of dH2O.   

Sequencing 

Cycle sequencing reactions were carried out in 10µL reactions with 0.5 µL Big 

Dye v.3.1 chemistry (Applied Biosystems) and 1.75 µL 5x Sequencing Buffer (Applied 

Biosystems).  Sequencing conditions were as follows:  96°C for 1 min (90 seconds for 

GH); 45 cycles (40 cycles for GH) of 96°C for 10 sec, 50°C for 5 sec, and 60°C (55°C 

for GH) for 4 min.  

Cloning 

Cloning reactions followed manufacturer’s protocol but were reduced to ¼ 

volumes of those specified by the manufacturer (0.25 µL Vector, 0.25 µL Salt Solution, 1 

µL PCR product).  Only cells with insertions were ampicillin resistant and could grow on 

the agar plate, eliminating the need for blue-white screening.  Eight to ten colonies were 

selected from each plate and double checked for insertion using PCR and standard M13 

primers.  Test reactions were performed in 10 µL volumes.  Final concentrations were: 1x 

PCR Buffer (GeneChoice), 1.5 mM MgCl2 (included with Buffer), 0.15 mM each dNTP, 

0.5 µM each M13 forward and reverse primers, to which was added 1 unit Taq 

polymerase (GeneChoice), and cloned cells.  The PCR test for insert cycling conditions 

were as follows:  Initial denaturation at 95°C for 3 min; followed by 30 cycles of 95°C 

for 15 sec, 50°C for 15 sec and 72°C for 1 min; and a final extension at 72°C for 10 min.  
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Products were visualized on a 1.5% agarose gel.  Two positive colonies were selected 

from each plate and grown overnight in LB liquid culture. 
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Appendix C:  MP and MB trees for all genes combined 

1.  All genes MP. Strict consensus of one tree. Length = 6319; CI = 0.343; RI = 0.563.  
Numbers indicate bootstrap >50%. 
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Appendix C:  cont’d 
2.  All genes MB.  Numbers indicate posterior probability (PP) >0.50. 
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Appendix D:  MP and MB trees for Cytb 

1.  Cytb MP.  Strict consensus of two trees.  Length = 4212; CI = 0.228; RI = 0.491.  
Numbers indicate bootstrap >50%. 
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Appendix D cont’d 

2.  Cytb MB.  Numbers indicate posterior probability (PP) >0.50. 
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Appendix E:  MP and MB trees for c-myc 

1.  C-myc MP. Strict consensus of 189,670 trees.  Length = 692; CI = 0.572; RI = 0.753. 
Numbers indicate bootstrap >50%. 
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Appendix E:  cont’d 

2.  C-myc MB.  Numbers indicate posterior probability (PP) >0.50. 
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Appendix F:  MP and MB trees for GH 

1.  GH MP.  Strict consensus of 96 trees.  Length = 1318; CI = 0.616; RI = 0.737.  
Numbers indicate bootstrap >50%. 
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APPENDIX F:  CONT’D 

2.  GH MB.  Numbers indicate posterior probability (PP) >0.50. 
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APPENDIX G:  MP AND MB TREES FOR CYTB + C-MYC 

1.  Cytb + c-myc MP. Strict consensus of 5 trees. Length = 4948; CI = 0.274; RI = 0.527.  
Numbers indicate bootstrap >50%. 
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APPENDIX G:  CONT’D 

2.  Cytb + c-myc MB.  Numbers indicate posterior probability (PP) >0.50. 
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APPENDIX H:  NUCLEAR GENE ANALYSES 

1.  Phylogenetic methods 

The two nuclear genes (c-myc and GH) were analyzed using parsimony, 

maximum likelihood and Bayesian inference methods.  For parsimony analysis, 1000 

random addition replicates and TBR branch swapping was initially performed with 

parsimony as the optimality criterion, saving only one of the best trees found 

(MULTREES=NO) per replicate.  An additional search using TBR branch swapping on 

the saved trees was then performed saving all minimal trees (MULTREES=YES).  To 

test the robustness of the tree, 100 bootstrap replicates were performed with 20 random 

sequence additions per pseudo-replicate.  A limit of 100 trees (NCHUCK=100 

CHUCKSCORE=1) was placed on the number of trees retained for swapping in each 

random addition replicate.   

The model and parameters used for ML analysis was selected by Modeltest in a 

successive-approximations approach described earlier in Materials and Methods.   The 

transversional model was used for analysis, with invariable sites and a gamma 

distribution (TVM + I + Γ) (see Table 3).  A heuristic search was performed with 10 

random sequence additions and TBR branch swapping using likelihood as the optimality 

criterion. Confidence in the hypothesized tree was estimated using 100 bootstrap 

replicates with one random sequence addition per bootstrap replicate.   

MB analyses were performed using MrBayes.  Four chains were run 

simultaneously for 10,000,000 generations and sampled every 500 generations.  A GTR 

model was used for analysis.  The dataset was analyzed with two partitions, one for each 

gene. 
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APPENDIX H:  CONT’D 

2.  Nuclear ML.  (-ln L = 16426.60).  Numbers indicate bootstrap >50%. 
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APPENDIX H:  CONT’D 

3.  Nuclear MP.  Strict consensus of 60 trees.  Length = 2045; CI = 0.591; RI = 0.732.  
Numbers indicate bootstrap >50%. 
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APPENDIX H:  CONT’D 

4.  Nuclear MB.  Numbers indicate posterior probability (PP) >0.50. 
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