ABSTRACT

Title of Dissertation: Rhodium(II)-Stabilized Vinylcarbenes: Synthetic Applications in Ylide, Cyclopropanation, and C-H Insertion Reactions

Darren Bykowski, Doctor of Philosophy, 2006

Dissertation directed by: Dr. Michael P. Doyle
Professor
Department of Chemistry and Biochemistry

A previously unknown cascade reaction in which two units of a rhodium(II)-stabilized vinylcarbene obtained from methyl trans-styryldiazoacetate react with benzyldeneaniline is described; the products of the cascade reaction are complex bicyclic pyrrolidines. An evaluation of reaction conditions for the formation of bicyclic pyrrolidine determined that slow addition of two equivalents of methyl trans-styryldiazoacetate to a refluxing dichloromethane solution of benzyldeneaniline and 1 mol% Rh$_2$(OAc)$_4$ provided optimal yields of bicyclic pyrrolidine products. A study was initiated to determine the scope of this cascade process, it was found that the only metal vinylcarbene which amendable to the cascade reaction was trans-styryldiazoacetate.

A series of endocyclic vinyldiazocarbonyl compounds were synthesized using one of two synthetic protocols, direct diazo transfer reaction with an unsaturated cyclic carbonyl compound or a reduction-dehydration of a diazo β-dicarbonyl compound. The direct diazo transfer reaction with an unsaturated cyclic carbonyl was the most general and
commonly applied route to endocyclic vinyldiazocarbonyl compounds. Five endocyclic vinyldiazocarbonyl compounds were prepared using both strategies, including vinyldiazolactones of varying ring size and substitution, a cyclic vinyldiazoketone, and a vinyldiazolactam.

The endocyclic vinyldiazocarbonyl compounds which were prepared were evaluated as metal vinylcarbene precursors in asymmetric cyclopropanation and intermolecular C-H insertion reactions. The vinyldiazolactone derived from 5,6-dihydro-2H-pyran-2-one provided good enantioselectivities (>80% ee) in an intermolecular C-H insertion reaction with 1,4-cyclohexadiene and cyclopropanation reactions with styrene and terminal diene olefins using the catalyst Rh$_2$(S,R-MenthAZ)$_4$. The azetidinate ligated dirhodium catalysts were the only dirhodium catalysts surveyed which provided enantioselectivities >40% ee in either intermolecular C-H insertion or cyclopropanation reactions.
RHODIUM(II)-STABILIZED VINYL CARBENES:
SYNTHETIC APPLICATIONS IN YLIDE, CYCLOPROPANATION
AND C-H INSERTION REACTIONS

BY

DARREN BYKOWSKI

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2006

Advisory Committee:

Professor Michael P. Doyle, Chairman/Advisor
Professor Jeffery Davia
Assoc. Professor Andrei Vedernikov
Assoc. Professor Lyle Isaacs
Professor Marco Colombini
DEDICATION

TO MY WIFE

Alex Hatch
“Organic chemistry just now is enough to drive one mad. It gives me the impression of a primeval tropical forest...a monstrous and boundless thicket with no way of escape, and into which one may well dread to enter.”

Friedrich Wohler (1800 – 1882)
ACKNOWLEDGEMENTS

The acknowledgements section may be the most important part of this thesis. It is overwhelming to think of all the people who have guided, supported, and inspired me over the course of my studies in chemistry. Too many, in fact, for me to thank them all. However, to Jason’s dismay I’ll take a stab at it.

Of course, I would like to thank my graduate advisor, Professor Michael Doyle. When I was selecting a university and research group in which to pursue my PhD, my most important criteria was that I find an advisor who would allow me the independence to pursue ideas of my own. I don’t think I realized at the time just how difficult that could be, both for the graduate student and their advisor, who must patiently watch the student struggle down avenues they do not always agree with. Looking back, I am truly grateful for Mike’s support and patience over my graduate career. I have been provided with a great deal of freedom over my time in this group, and leave having gained valuable confidence in my ability to effectively develop my own research interests. This would not have been possible without Professor Doyle’s mentorship and support.

I would certainly not be in graduate school today if it were not for the exceptional experiences I had in chemistry as an undergraduate. Heading the list of my undergraduate mentors is Professor Rik Tykwinski of the University of Alberta. While still taking my first year organic courses, Rik gave me a position in his research group, which was just starting at that time. As an indication of how much I benefited from Rik’s teachings, years later in my graduate studies I found that I was able to easily pass many of my cumes in
my first year of graduate school simply by remembering the group meeting questions and cume advice I picked up as a second year undergraduate. I am forever indebted to Rik for advice in chemistry, my career, and letters of recommendation.

One letter of recommendation from Rik is of particular importance to me, in my third year he managed to pawn me off to Boehringer-Ingelheim for a one year internship. My year at BI and the guidance I received from my supervisors there continues to influence my career path. I had the excellent fortune to work with a number of excellent chemists, my direct supervisors as I moved through different groups were Eric Malenfant, Dr. Pierre Beaulieu, and Jim Gillard. I would particularly like to thank Pierre, who has provided me with excellent advice and letters of recommendation and support. And after Boehringer-Ingelheim, there was MethylGene. Over two summers, I had the pleasure to work with Dr. Oscar Moradei and Dr. Dave Llewellyn. In particular Oscar’s impressive knowledge of synthetic organic chemistry, enthusiasm for his research, and displeasure with any meeting or paperwork that distracted him from the bench made him a joy to work for.

Moving back to the present day, I would like to thank Professor Jeff Davis, Professor Lyle Isaacs, Professor Andrei Vedernikov, and Professor Larry Sita, and Professor Marco Colombini for serving on my defense committee. Professor Isaacs taught the only course I have taken at Maryland, and I still find myself referring back to a few pages of notes from that class on occasion. I would like to thank Professor Davis for his valuable mentorship during my independent proposal.

My fellow graduate students Art Catino, Jason Nichols, and Kousik Kundu have been around for most of my time in this group. When my
reactions have failed to yield anything but inseparable mixtures of tar (which was most of the time), and I was reconsidering my career choice, it was Art, Jason, and Kousik who provided me with encouragement to come in the next day and keep trying. Along with Dr. J. P. Morgan, whose humor and intelligence were valuable additions to our group. Success comes much easier when you’re surrounded by people who are as bright and motivated as they are; it has been my great fortune to be able to go through graduate school with them. I would like to add a special thanks to Art, whose apartment was always open and whose fridge was always stocked with beer. And Jason, my whitewater paddling partner and fellow hockey fan. Speaking of which, thanks to Jason and his wife, Rachel, for allowing me to watch the 2006 NHL playoffs in their home. Even though Oilers were playing 2-3 time zones behind us.

Much of my research has been conducted in collaboration with others, and I am very grateful to their contributions. In particular, I would like to thank Kou-Hui Wu for his considerable contributions to the vinyldiazolactone chemistry. I also had the good fortune to work with Dr. Ngozi Onyia, Sara Saba, Alicia Hajjar, and Benjamin von Hohenstaufen. Their contributions to my research, while not the subject of this thesis, are greatly appreciated by me. Dr. Neil Jacobsen, Dr. Wehao Hu, Dr. Ming Yan, Luisa Gronenberg, and John Colyer are gratefully acknowledged for their roles in the bicyclic pyrrolidine project discussed in Chapter 1. Dr. Chris Welch and his coworkers from the Merck analytical division are thanked for their participation in a dirhodium catalyst speciation study which shed new light upon the mechanism of catalyst formation.
My research could not have been performed without the assistance of the department NMR staff Dr. Yiu-fai Lam and Dr. Yinde Wang. I appreciate their patient instruction and assistance. Dr. Eugene Mazzola has been an excellent resource for all matters pertaining to NMR, and I would like to thank you for frequent discussions of NMR and the proper application of a number of NMR experiments. Noel Whittaker has always gotten my MS samples back quickly, and has been excellent in expediting samples when I've requested it. Our department crystallographer, Dr. Peter Zavalij, obtained the X-ray crystal structure described in this thesis. Again, I would like to thank all of your for your assistance. Performing reactions isn't of much use if you can't analyze the products.

I would also like to thank Doyle Group members Tom Weathers, Marcela Valenzuela, John Colyer, Christine Hedberg, Dr. Raymond Forslud, Dr. Hojae Choi, Dr. Albert Russell, and Dr. Penglin Huang. It has been a pleasure knowing each of you.

I would like to thank my family, in particular my parents Dennis and Marlene Bykowski. Besides providing moral support and encouragement over the years, they have always taught my sister and I that nothing good comes easily, and you should always finish what you start. This attitude and advice is worth more in getting through graduate than any technical knowledge. My younger sister, Alana, has been a good and valued friend. I enjoy our visits, which are all too rare, and I'm proud of her own accomplishments. She has not shied away from challenges in her own studies, and when the going gets tough she has always been a good confidante. I appreciate her encouragement, attitude, and the connection she provides to friends back home and the Edmonton Oilers.
Finally, I would like to thank my wife, Alex Hatch. Alex has put up with more than she ever should have had to deal with, and I don’t know how to thank her. If it was not for her encouragement and constant support, I don’t know if I could have made it through. As difficult as graduate studies can be, I don’t think being the spouse of a graduate student is easier. Alex has always unselfishly provided the support I have needed, and deserves more thanks than anyone.

Again, to everyone I have listed above, and to those whom I am sure I have neglected to include, thank-you for your support and assistance over the years.
TABLE OF CONTENTS

List of Tables..x

List of Figures..xi

List of Abbreviations..xii

Chapter 1: Synthetic Applications of
 Vinyldiazoacetates...1
 I. Background..1
 II. Results and Discussion...36
 III. Conclusion...45
 IV. Experimental..46

Chapter 2: Design and Synthesis of Endocyclic
 Vinyldiazocarbonyl Compounds...59
 I. Background..59
 II. Results and Discussion...68
 III. Conclusion...84
 IV. Experimental..88

Chapter 3: Asymmetric Cyclopropanation and C—H Insertion
 Reactions of Endocyclic Vinyldiazocarbonyl Compounds..................................122
 I. Background..122
 II. Results and Discussion...125
 III. Conclusion...163
 IV. Experimental..165
Table 3.1. Catalyst Screen for Cyclopropanation of Styrene with 1.
Table 3.2. Cyclopropanation of Styrene with Vinyldiazo Compounds 1-5.
Table 3.3. Cyclopropanation of Vinyldiazolactone 1.
Table 3.4. Preparation of Hydroazulenes from Cyclopropanes 23-25.
Table 3.5. Catalyst Screen for C-H Insertion of 1,4-Cyclohexadiene with 1.
Table 3.6. Reaction of 1,3-Cyclohexadiene with Vinyldiazolactone 1.
LIST OF FIGURES

Figure 1.1. Metal Carbene Resonance Structures.
Figure 1.2. Asymmetric Carboxylate Ligated Dirhodium Catalysts.
Figure 1.3. Asymmetric Carboxamidate Ligated Dirhodium Catalysts.
Figure 1.4. Stability of Diazoacetates versus Diazalkanes.
Figure 1.5. Classification of Diazo Compounds.
Figure 1.6. Proposed C-H Insertion/Cope Rearrangement.
Figure 2.1. trans-Vinyldiazoacetates.
Figure 2.2. Relative Reactivity of C-H versus Si-H.
Figure 2.3. Endocyclic Vinyldiazocarbonyl Compound.
Figure 2.4. Endocyclic Vinyldiazocarbonyl Compounds Synthesized.
Figure 3.1. Endocyclic Vinyldiazocarbonyl Compounds.
Figure 3.2. Asymmetric Dirhodium Catalysts.
Figure 3.3. Spiroyclic lactones 23-25.
Figure 3.4. X-ray Crystal Structure of Hydroazulene 39.
Figure 3.5. Natural Products Containing Seven-Membered Ring Carbocycle Cores.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-ABSA</td>
<td>para-Azetidobenznesulfonyl azide</td>
</tr>
<tr>
<td>Boc</td>
<td>tertiary-Butylcarbamate</td>
</tr>
<tr>
<td>n-Bu</td>
<td>normal-Butyl</td>
</tr>
<tr>
<td>t-Bu</td>
<td>tertiary-Butyl</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>normal-Butyllithium</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>meta-Chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-Dichloroethane</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-Dichloro-5,6-dicyano-p-benzoquinone</td>
</tr>
<tr>
<td>DMAP</td>
<td>Dimethylaminopyridine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>2,2-DMB</td>
<td>2,2-Dimethylbutane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>EDA</td>
<td>Ethyldiazoacetate</td>
</tr>
<tr>
<td>Et$_3$N</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>equiv</td>
<td>Equivalent</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium N,N-diisopropylamine</td>
</tr>
<tr>
<td>LHMDS</td>
<td>Lithium hexamethyldisilazide</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>MeCN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MsCl</td>
<td>Methanesulfonyl chloride</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>MsN₃</td>
<td>Methanesulfonyl azide</td>
</tr>
<tr>
<td>OAc</td>
<td>Acetate</td>
</tr>
<tr>
<td>OPiv</td>
<td>Pivalate</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>rt</td>
<td>Room temperature</td>
</tr>
<tr>
<td>TBS</td>
<td>tertiary-Butyldimethylsilyl</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>Triisopropylsilyl</td>
</tr>
</tbody>
</table>
CHAPTER 1

SYNTHETIC APPLICATIONS OF
VINYLDIAZOACETATES

I. BACKGROUND

Transition metal-stabilized carbenes have found widespread application in modern synthetic organic chemistry.1-6 Metal carbene intermediates are capable of performing a diverse array of reactions; the three most common reactions of carbenes include the [2+1] cycloaddition of olefins and alkynes,7,8 formation of ylides upon reaction with heteroatoms,9,10 and the insertion of metal carbenes into unactivated C—H bonds.11-14 Metal carbenes have gained widespread acceptance by the synthetic organic community, and are recognized as valuable tools in the construction of complex molecular architectures.15-18 In large part, this is due to the development of highly selective transition metal catalysts to mediate metal carbene reactions.19
Scheme 1.1

(1) [2+1] Cycloaddition

\[\text{Z} + \text{M=CR}_2 \rightarrow \text{Z} \]

(2) Insertion

\[\text{Z} - \text{C}-\text{H} + \text{M=CR}_2 \rightarrow \text{Z} - \text{C} - \text{CR}_2 \]

(2) Ylide formation

\[\text{Z} \cdot \text{O} + \text{M=CR}_2 \rightarrow \text{Z} \cdot \text{O} - \text{CR}_2 \]
The catalytic cycle of transition metal-stabilized carbene reactions is generally well accepted and is believed to be applicable to a wide range of processes involving transition metal catalyzed reactions of diazoacetates, including C-H insertion, cyclopropanation, and ylide formation.1,20 Scheme 1.2 illustrates the catalytic cycle in the context of a C—H insertion reaction.

\begin{scheme}
\centering
\includegraphics{scheme12.png}
\caption{Scheme 1.2}
\end{scheme}

$ML_n = \text{transition metal catalyst}$

Upon attack of the nucleophilic diazo carbon upon a metal catalyst, backbonding from the metal to carbon leads to extrusion of dinitrogen and formation of the metal carbene.1,20 The metal carbene may be represented by either a double bond to the metal catalyst (1a), or as a charge separated structure (1b). Although depiction of the metal carbene as a charge separated
structure deemphasizes the stabilizing backbonding from the metal atom onto the metal carbene, it does highlight the electrophilic character of the metal-carbene carbon. Reaction of the metal carbene carbon with a nucleophilic substrate results in the concomitant release of the transition metal catalyst.

Figure 1.1 Metal carbene resonance structures.

Metal carbenes readily react with adventitious water; and, therefore, care is taken to exclude water from the reaction by the use of flame-dried reaction apparatuses and anhydrous solvents. Deoxygenation of the system prior to addition of the diazo compound has been reported to increase isolated yields of metal carbene products, though this may be limited to specific reactions or processes. Consequently, the reaction apparatus is often degassed with a steady flow of nitrogen prior to addition of the reagents, and subsequent reactions are performed under a nitrogen atmosphere. The ability of metal carbenes to react with numerous functionalities does limit the solvents which may be used in metal carbene reactions. Polar protic solvents are used in rare instances. Ethereal solvents are rarely used in metal carbene reactions due to concerns of oxonium ylide formation upon reaction of the ethereal oxygen with the metal carbene. Early metal carbene reactions were often performed in refluxing benzene using copper catalysts such as CuSO₄; however, the
development of more active transition metal catalysts has allowed the formation and reaction of metal carbenes at lower temperatures. Simple hydrocarbons such as 2,2-dimethylbutane (2,2-DMB), cyclohexane, and the halogenated solvent dichloromethane are now commonly used as solvents at temperatures ranging from -78 to 40 °C.

Catalysts

Asymmetric variants of all three previously described metal carbene reactions have been reported using asymmetric transition metal catalysts. Numerous transition metal catalysts are capable of forming metal carbenes via reaction of a metal carbene precursor (typically a diazo compound); however, dirhodium complexes have proven to be the most broadly applicable catalysts. Asymmetric dirhodium catalysts have provided excellent enantioselectivities (>90% ee) in [2+1] cycloaddition, C—H insertion and select ylide reactions of diazoacetates. The most commonly used asymmetric dirhodium catalysts are comprised of four carboxylate or carboxamidate ligands bridging two dirhodium atoms. Asymmetric aryl phosphine and phosphonates ligated dirhodium catalysts have also been reported, however their synthetic applications have been quite limited and they will not be further described.

Carboxylate Ligated Dirhodium Catalysts. Dirhodium tetracarboxylates are comprised of several catalyst families. The most successful designs have been the \(N \)-sulfonylprolinates \((2a,b)\) and the \(N \)-pthalamido \(tert \)-leucine,
phenylalanine based catalysts (3a,b).30,31 The conformational flexibility of these carboxylate ligands has led to some uncertainty in the mode of asymmetric induction in metal carbene reactions; reactions models constructed of them assume D\textsubscript{2} symmetry.28,32 The carboxylate ligands are more electron withdrawing than the carboxamidate ligands, resulting in an electron deficient dirhodium core.28,33 Carboxylate ligated dirhodium catalysts are capable of forming metal carbenes with diazoacetates which are unreactive towards most other common transition metal catalysts (i.e., dirhodium tetracarboxamidate and some copper catalysts).34
Carboxamidate Ligated Dirhodium Catalysts. Carboxamidate ligated dirhodium catalysts have provided excellent enantioselectivities in [2+1] cycloaddition reactions, C-H insertion reactions, and ylide processes. The carboxamidate ligands are comprised of a bridging lactam with an adjacent ester as the stereodirecting group. Modifications of the lactam ring have given rise to four classes of carboxamidate ligands: pyrrolidinate (4), oxazolidinate (5), imidazolidinate (6a,b), and azetidinate (7a-e). Early studies in
carboxamidate ligand design established the use of esters as the optimal stereodirecting attachment; the use of aryl or alkyl groups led to significant losses in enantioselectivity.35,39

Figure 1.3. Carboxamide ligated dirhodium catalysts.

The azetidinate ligated catalysts (7a-d)40-42 provide a more reactive dirhodium catalyst than other carboxamidate ligand structures.33,41 The azetidinone based catalysts are the most reactive carboxamidate ligated dirhodium catalysts toward diazo compounds and are capable of reacting with
diazoacetates that are stable toward pyrrolidinate, oxazolidinate, and immidazolidinate ligated catalysts.¹⁴¹

Diazocompounds

Physical Properties of Diazocompounds. Metal stabilized carbenes are most frequently generated by the reaction of transition metal catalysts with diazocarbonyl compounds.¹ The diazo functionality is often regarded with trepidation by chemists due to perceptions of the risk of explosion upon thermal or shock induced decomposition of the diazo moiety. Many of these concerns arise from accumulated data for the instability of diazoalkanes; however the presence of an electron withdrawing functionality adjacent to the diazo moiety often provides considerable stabilization to the diazo functionality. Diazocompounds utilized in modern catalytic processes are often substituted with at least one electron withdrawing group. Carbonyl, phosphonic ester, and silyl compounds have all been used to stabilize the diazo functionality.

The physical properties of ethyl diazoacetate (8) illustrate the stability of diazo compounds possessing an electron withdrawing group adjacent to the diazo functionality.¹ Ethyl diazoacetate (8) is stable to protonic decomposition in glacial acetic acid, can pass through a GC column at temperatures below 120 °C, and may be purified by distillation at atmospheric pressure (bp 140-141 °C).¹ In mesitylene at 100 °C, the half life of 8 is 109 h.¹ In contrast, the thermal decomposition of 2-diazopropane (9) has a half-life of approximately 3 h in diethyl ether at 0 °C.¹ As evidenced by the extensive use of α-diazocarbonyl
compounds in synthesis, simple precautions such as the use of well ventilated fume hoods and avoidance of high temperatures are sufficient to ensure the safe handling and use of diazo compounds substituted by electron withdrawing groups. All diazo compounds described throughout the research that is the subject of this dissertation will be α-diazocarbonyl compounds.

![Figure 1.4. Stability of diazoacetates versus diazoalkanes.](image)

Most diazocarbonyl compounds (and the metal carbenes formed from them) may be classified according to the electron donating/accepting characteristics of their substituents: acceptor substituted, acceptor/acceptor substituted, and donor/acceptor substituted. This classification scheme encompasses diazocarbonyl compounds used in catalytic processes and has been found to be useful in describing the reactivity of the diazo compound and metal carbene \textit{(vide infra)}.4,11
Preparation of Diazocarbonyl Compounds. Diazocarbonyl compounds are commonly used as precursors to metal carbenes in large part to their ease of preparation. One of the most frequently used methods of preparing diazocarbonyl compounds is the diazo transfer reaction. Under standard conditions a carbonyl compound is treated with an amine base to form the corresponding enolate. This reacts with a diazo transfer agent (in almost all cases a sulfonyl azide) to provide the corresponding diazocarbonyl compound. Formation of the enolate almost always occurs with an amine base such as
triethylamine; stronger bases typically lead to substantially lowered yields of the diazocarbonyl product.1 This limits the diazo transfer methodology to substrates in which protons α to the carbonyl group are sufficiently acidic to undergo deprotonation by an amine base.

Scheme 1.3.

\[
\begin{align*}
\text{Ph} & \text{CO}_2\text{Me} \quad \text{p-ABSA (12)} \quad \text{DBU, MeCN} \\
\text{O} \quad \text{Et}_3\text{N, THF} \\
\text{NO}_2 & \text{MeCO}_2\text{Me}
\end{align*}
\]

Reactions of Donor/Acceptor Diazoacetates.

The study of the reactivity of metal carbenes generated from donor/acceptor diazoacetates has been a significant area of research in catalytic metal carbene chemistry over the past several years.4,12-14 Donor/acceptor substituted diazo compounds are largely comprised of vinyl diazoacetates and aryl diazoacetates (i.e., 10, 11). In a number of cases, the reactivity observed
with metal carbenes generated from vinyl and aryl diazoacetates has differed substantially from that observed with the more traditionally utilized acceptor and acceptor/acceptor substituted diazo compounds. As will be described, the unique reactivities and selectivities observed with metal carbenes generated from donor/acceptor substituted diazo compounds have facilitated the efficient construction of complex molecular architectures.

Donor/acceptor substituted diazo compounds are more stable than acceptor substituted diazo compounds toward reaction with transition metal catalysts.28,34 Consequently, donor/acceptor substituted diazo compounds are typically used in conjunction with the most reactive dirhodium catalysts, such as the previously described carboxylate or azetidinate ligated dirhodium catalysts (2, 3, 7).28,41 The kinetic activity of the catalyst takes on particular importance with the use of vinyldiazoacetates. Although vinyldiazoacetates do not extrude dinitrogen as readily as acceptor substituted diazo compounds, they are in fact less stable than other diazoacetates. Vinyldiazoacetates readily undergo a [1,5]-cyclization to yield pyrazoles, as is illustrated by the cyclization of 13 to 14.34,44 This cyclization is often competitive with catalyst promoted extrusion of dinitrogen and metal-carbene formation.34
Vinyldiazoacetates used throughout the course of our studies45 begin to cyclize to pyrazoles within several hours at room temperature. In my experience, chromatographic purification of vinyldiazoacetates is required immediately prior to use. Although the association constants of pyrazoles to dirhodium catalysts have not been determined, pyrazoles possesses a basic nitrogen which is expected to coordinate to dirhodium catalysts, substantially reducing catalyst efficiency. Typically, reactions of vinyldiazoacetates are performed with the reactive dirhodium tetracarboxylate catalysts (in particular 2\textit{a,b}), though the azetidinate ligated dirhodium catalysts (7\textit{a-d}) are also sufficiently active to react with vinyldiazoacetates.

Intermolecular cyclopropanation reactions of carbenes.
Cyclopropanes are frequently found as components of biologically active compounds; consequently, the development of stereoselective routes to functionalized cyclopropanes remains an active area of research.7,8,46 Several methodologies may be used to construct a wide range of cyclopropanes, one of the more popular being the cyclopropanation of olefins by metal stabilized
carbenes.7,8 Asymmetric cyclopropanation reactions comprise some of the earliest examples of asymmetric catalysis; initial homogenous asymmetric catalysts for cyclopropanation reactions were copper based.47-49 More recently, dirhodium complexes have also been reported to catalyze the cyclopropanation of olefins with high stereoselectivities.5,28 Cyclopropanation reactions are arguably the best studied metal carbene transformations, and a wide range of asymmetric catalysts have enjoyed success in this area, including copper, dirhodium, ruthenium, and cobalt based catalysts.1

The cyclopropanation of donor/acceptor substituted diazo compounds have been reported to proceed with high stereoselectivities using dirhodium catalysts (Scheme 1.5).4,28 A study of the cyclopropanation of styrene with \textbf{11} demonstrates the applicability of different dirhodium catalyst systems to donor/acceptor metal-carbene cyclopropanations.50 Common dirhodium carboxamidate catalysts such as \textit{Rh}_2(MEPY)_4 (4) and \textit{Rh}_2(MEOX)_4 (5) provide poor enantioselectivities. An increase in enantiomeric excess of \textbf{15} was observed upon the use of the carboxamidate ligated catalyst \textit{Rh}_2(S-TBOIM)_4 (6b), providing \textbf{15} with 77% ee when the reaction was conducted in dichloromethane. The use of pentanes as the reaction solvent did not affect the enantioselectivity to an appreciable degree. A pronounced solvent effect is observed with the prolinate derived dirhodium catalyst \textit{Rh}_2(S-TBSP)_4 (2a), pentanes proves to be the optimal solvent for the enantioselective cyclopropanation, providing 85% ee of \textbf{15}. The asymmetric induction provided by \textit{N}-sulfonylprolinate ligated dirhodium catalysts has been demonstrated on
several occasions to have a substantial dependence on solvent, providing optimal levels of enantioselectivity in nonpolar hydrocarbons.28

\begin{scheme}
\begin{center}
\includegraphics[width=\textwidth]{scheme15.png}
\end{center}
\end{scheme}

<table>
<thead>
<tr>
<th>Rh\textsubscript{2}L\textsubscript{4}</th>
<th>solvent</th>
<th>yield</th>
<th>%ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Rh\textsubscript{2}(S-MEPY)\textsubscript{4}</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>27</td>
<td>49</td>
</tr>
<tr>
<td>5 Rh\textsubscript{2}(S-MEOX)\textsubscript{4}</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>6b Rh\textsubscript{2}(S-TBOIM)\textsubscript{4}</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>63</td>
<td>77</td>
</tr>
<tr>
<td>6b Rh\textsubscript{2}(S-TBOIM)\textsubscript{4}</td>
<td>pentanes</td>
<td>69</td>
<td>75</td>
</tr>
<tr>
<td>3a Rh\textsubscript{2}(S-PTPA)\textsubscript{4}</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>95</td>
<td>34</td>
</tr>
<tr>
<td>2a Rh\textsubscript{2}(S-TBSP)\textsubscript{4}</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>77</td>
<td>61</td>
</tr>
<tr>
<td>2a Rh\textsubscript{2}(S-TBSP)\textsubscript{4}</td>
<td>pentanes</td>
<td>73</td>
<td>85</td>
</tr>
</tbody>
</table>

The observation that nonpolar hydrocarbons such as pentanes were optimal solvents for asymmetric metal carbene reactions catalyzed by 2a led to further development of the N-sulfonylprolinate ligand to provide prolinate based catalysts which were readily soluble in nonpolar solvents.27,28 Incorporation of a dodecyl chain upon the N-sulfonylaryl ligand [Rh\textsubscript{2}(S-DOSP)\textsubscript{4} (2b)] increases the catalyst solubility in nonpolar solvents. As will be demonstrated, Rh\textsubscript{2}(S-DOSP)\textsubscript{4} (2b) has proven to be a highly effective catalyst for reactions of donor/acceptor substituted diazo compounds; it is the most commonly utilized catalyst in asymmetric reactions of donor/acceptor diazo compounds, providing excellent levels of stereoselectivity over a range of processes.4
Davies has applied the cyclopropanation of vinyl diazoacetates toward the synthesis of cyclopropane analogs of phenylalanine (18a,b).27 Cyclopropane amino acids have seen extensive use in peptidomimetics, however their uses are often limited by complex asymmetric syntheses.51 The cyclopropanation of styrene by vinyl diazoacetate 13 provides cyclopropane 16 in excellent yield and stereoselectivity. Oxidative cleavage of the olefin provides the carboxylic acid 17, which has been used as a common intermediate in the synthesis of both diastereomers of the cyclopropane phenylalanine analog 18a,b.
Corey has also utilized the previously described cyclopropanation in an elegant and concise stereoselective formal synthesis of sertraline (22), the active component of the antidepressant Zoloft®. Oxidative cleavage of the olefin and esterification of the resulting carboxylic acid provide the malonic ester 20, which upon treatment with an arylcuprate, decarboxylation and acid promoted cyclization, yields 21. A stereoselective reductive amination of 21 provides sertraline (22).
Intermolecular C—H insertion reactions of carbenes. The selective functionalization of unactivated carbon-hydrogen (C-H) bonds is a significant challenge to synthetic organic chemists. The development of effective means of doing so possesses obvious advantages, providing rapid access to complex materials from simple hydrocarbons. The insertion of dirhodium-stabilized
carbenes into C—H bonds generally occurs with high regio- and stereoselectivity.11 For many years, synthetically practical examples of C—H insertion reactions were limited to intramolecular variants.11 Optically active dirhodium catalysts have provided high enantioselectivities in intramolecular C—H insertion reactions of diazoacetates (i.e., 23).11 Previous research within this group has described the asymmetric synthesis of several lignan lactones using this methodology.16,54

![Scheme 1.8.](image)

Initial research in C—H insertion reactions focused upon the intramolecular C—H insertion reactions of acceptor and acceptor/acceptor substituted diazo compounds. The dimerization of acceptor substituted diazo compounds (as previously described) has been implicated as a competitive reaction pathway to intermolecular C—H insertion reactions of acceptor substituted diazo compounds.11 In some cases, slow addition of the diazo compound to a stirred solution of catalyst and C—H insertion substrate sufficiently supresses dimerization of the diazo compound to allow intermolecular C—H insertion to occur. However, in these instances poor selectivities have
been obtained for the insertion of acceptor substituted metal carbenes into C—H bonds (as exhibited by the reaction of 25, 28).11,55

\textbf{Scheme 1.9.}

\[
\begin{align*}
\text{EtO} + \text{CO}_2\text{Et} & \xrightarrow{\text{Rh}_2(\text{OAc})_4, \text{CH}_2\text{Cl}_2} \text{EtO}_2\text{CO}_2\text{Me} + \text{CO}_2\text{Et} \\
25 & \quad 8 & 26 \quad (73) \quad 27 \quad (27)
\end{align*}
\]

\[
\begin{align*}
\text{C} & + \text{CO}_2\text{Et} \xrightarrow{\text{Rh}_2(\text{OAc})_4, \text{CH}_2\text{Cl}_2} \text{CO}_2\text{Et} + \text{CO}_2\text{Et} \\
28 & \quad 8 & 29 \quad (16\%) \quad 30 \quad (64\%)
\end{align*}
\]

Carbon-hydrogen bonds are activated toward insertion by adjacent functionalities which stabilize the developing positive charge during insertion of the metal carbene.56-58 Early studies of the regioselectivity of C—H insertion noted a general trend of reactivity toward metal carbene insertion to be methine>methylene>methyl C—H bonds.57,59 Allylic and benzylic C—H bonds are highly activated toward insertion by metal-carbenes,21,60-62 as are C—H bonds adjacent to heteroatoms.21,63 However, acceptor substituted metal-carbenes do not readily undergo intermolecular insertion into C—H bonds activated by olefins or heteroatoms, but preferentially react with these functionalities in cyclopropanation or ylide forming reactions.55
substituted metal-carbenes are often highly reactive toward the activating functionalities, rather than toward the adjacent C—H bonds. No C—H insertion products were observed in the reaction of allyl ether 25 with 8 (Scheme 1.9); the dominant reaction pathway was ylide formation and a rearrangement leading to 26.55 Likewise, cyclohexene provides cyclopropane 30 as the dominant product, the C—H insertion product 29 is obtained in 16% yield.61,64 In the examples described, intermolecular C—H insertion of the acceptor substituted diazocompound 8 shows greater reactivity towards olefins and ethereal oxygen than the C—H bonds adjacent to these functionalities.

In the limited examples reported to date, acceptor/acceptor substituted metal carbenes provide intermolecular C—H insertion reactions with superior yields than acceptor substituted metal carbenes. The metal carbene generated from 9 undergoes insertion into cyclohexane C—H bonds using the Rh\textsubscript{2}(S-DOSP)\textsubscript{4} (2b) catalyst, however the enantiomeric excess of 31 is negligible.64 In the studies that have been reported, superior chemoselectivities for C—H insertion are observed with acceptor/acceptor substituted metal carbenes as compared to acceptor substituted metal carbenes. The reaction of 32 with 28 favors the formal20 C—H insertion product 33 over cyclopropane 34, though significant amounts of 34 are observed.61 The limited reports of intramolecular C—H insertion of acceptor/acceptor substituted metal carbenes have indicated that these metal carbene species have appreciably superior efficiencies in intermolecular C—H insertion than acceptor substituted metal carbenes. However, chemoselectivity does remain an issue, and the only reported attempt
to perform an asymmetric intermolecular C—H insertion reaction resulted in a negligible degree of enantioselectivity for C—H insertion product 31.64 These issues have discouraged further investigations of acceptor/acceptor substituted metal carbenes in intermolecular C—H insertion reactions.

Scheme 1.10.

Donor/acceptor substituted metal carbenes, in contrast to acceptor substituted and acceptor/acceptor substituted metal carbenes, have been demonstrated to be highly effective reagents in asymmetric intermolecular C—H insertion reactions.12-14,65 Over the last several years, numerous reports have described the intermolecular C—H insertion reactions of aryl- and vinyldiazoacetates.21,64,66-69 Unlike the acceptor substituted diazo compounds,
metal carbenes derived from aryl- and vinyldiazoacetates are capable of undergoing high yielding insertion reactions into C—H bonds of substrates possessing other functionalities which may be reactive toward metal carbenes (olefins and heteroatoms). As will be described, examples of donor/acceptor substituted metal carbene insertions into C—H bonds have been reported with a wide variety of substrates and have found applications in the stereoselective syntheses of natural products and pharmaceutical agents.15,67,69,70

Donor/acceptor substituted metal carbenes undergo insertion into unactivated alkyl C—H bonds to provide C-H insertion products in good yield. Addition of vinyldiazoacetate 13 to a solution of Rh\textsubscript{2}(DOSP)\textsubscript{4} (2b) in cyclohexane provides the C—H insertion product 35 in 50% isolated yield and with 83% ee.64

Scheme 1.11.

![Scheme 1.11](image)

Benzylic C—H bonds are activated for metal carbene insertion, the reaction of 36 with vinyldiazoacetate 37 provides 38 with excellent enantiomeric excesses using Rh\textsubscript{2}(R-DOSP)\textsubscript{4} (2b) catalyst.70 In two further steps, 38 provides the naturally occurring phenol (+)-imperanene (39). The same insertion reaction,
however using $\text{Rh}_2(\text{S-DOSP})_4$ (2b), provides ent-38, which may be used to prepare (-)-conidendrin (39) in only three further steps.

Scheme 1.12.

37

$$\text{MeO}_2\text{C} \quad \text{N}_2$$

36

$$\text{MeO} \quad \text{CH}_3$$

38

$$\text{MeO}_2\text{C} \quad \text{MeO} \quad \text{OTBS}$$

39 (+)-imperanene

$\text{Rh}_2(\text{R-DOSP})_4$ (2b)

2,2-DMB, 50°C

2 steps
Aryldiazoacetates and vinyldiazoacetates have been shown to readily undergo insertion reactions α to heteroatoms. The $\text{Rh}_2(\text{S-DOSP})_4 \ (2b)$ catalyzed reaction of 11 with piperidine 40 provides a concise preparation of 41a, the active component of Ritalin®.\(^6\) An enhancement in the stereoselectivity of this reaction was reported by Winkler using the catalyst $\text{Rh}_2(\text{S-MEPY})_4 \ (4)$,\(^6\) this is a rare example of a dirhodium carboxamidate catalyst providing higher levels of enantioselectivity than $\text{Rh}_2(\text{S-DOSP})_4 \ (2b)$ in the reaction of a donor/acceptor substituted diazo compound.
The Rh$_2$(DOSP)$_4$ (2b) catalyzed insertion reaction of vinyldiazoacetate 11 with tetraethoxysilane provides the syn-aldol type product 43 with good stereoselectivity.71
Insertion into allylic position often occurs readily with vinyldiazoacetates, however the products that are observed do not correspond to those expected from direct C—H insertion.15,67,72 The reaction of vinyldiazoacetate 13 with 1,3-cyclohexadiene (44) provides not the expected product 44, but instead 46.67

Scheme 1.15.

![Scheme 1.15](image)

Insertion into allylic position often occurs readily with vinyldiazoacetates, however the products that are observed do not correspond to those expected from direct C—H insertion.15,67,72 The reaction of vinyldiazoacetate 13 with 1,3-cyclohexadiene (44) provides not the expected product 44, but instead 46.67

Scheme 1.16.

![Scheme 1.16](image)

The most readily apparent mechanism for the formation of 46 would appear to be the expected C—H insertion to yield 45, followed by a Cope rearrangement to 46, with 46 being the thermodynamically favoured product.67,72 This hypothesis was shown not to be valid, however, as heating 46 in refluxing hexane promoted the Cope rearrangement to yield 45.67 As 45 is, in fact, the thermodynamic product of the Cope rearrangement, 45 would have been
recovered under the C—H insertion reaction conditions. This led to the proposal that the reaction of diene 44 with the metal carbene of 13 proceeds through an concomitant C—H insertion/Cope rearrangement, as indicated by the proposed transition state 47.72

Figure 1.6. Proposed C-H insertion/Cope rearrangement.

Formation and Reactivity of Azomethine Ylides. Our own work with donor/acceptor metal-carbene species came about during investigations in the formation of azomethine ylides via reaction of imines with metal carbenes.45,73-75 Azomethine ylides are commonly used as intermediates in the synthesis of nitrogen containing heterocycles. Azomethine ylides are capable of undergoing intramolecular cyclization to form nitrogen heterocycles or acting as a 1,3-dipole in [3+2] cycloadditions (Scheme 1.17).9,76 The reaction of metal carbenes with imines is a highly convergent means of generating azomethine ylides, imines and diazoacetates are easily prepared and a wide variety of ylides may be generated by the transition metal catalyzed reaction of diazoacetates to easily prepared imines.
Azomethine ylides generated from acceptor substituted versus donor/acceptor substituted metal carbenes have been shown to react along different reaction pathways.45,73,77,78 As is demonstrated in the following examples, the azomethine ylides generated from the reaction of imines with acceptor substituted metal carbenes are prone to undergo [3+2] cycloaddition reactions,77,78 while azomethine ylides generated from donor/acceptor substituted metal-carbenes instead proceed along intramolecular cyclization pathways.45,73

Recent reports from the laboratories of Che78,79 and Scheidt77 have described the efficient construction of pyrrolidine ring systems upon 1,3-dipolar cycloadditions of azomethine ylides. Using copper(I) triflate as a catalyst, Scheidt trapped azomethine ylides generated by the reaction of ethyl diazoacetate (8) (an acceptor substituted diazo compound) and benzylideneanilines with a series of dipolarophiles. As is demonstrated by the
formation of pyrrolidine 49, the cycloaddition proceeded in good diastereoselectivity to provide 2,5-trans diastereomers exclusively. This stereoisomer is believed to arise from reaction of trans-azomethine ylide 48. Studies by Che examined the use of a ruthenium-porphyrin catalyst under similar conditions, the reported stereoselectivities and yields of pyrrolidine products were not significantly different than those reported by Scheidt. The catalyst used to form the metal carbene does not have a significant bearing on the reactivity of the resulting azomethine ylide, implying dissociation of the metal catalyst from the azomethine ylide prior to reaction of the ylide. No aziridine products resulting from intramolecular cyclization of the azomethine ylide prior to cycloaddition were reported by either Scheidt or Che.

Scheme 1.18.

Jacobsen has reported the formation of aziridines 49a,b arising from the reaction of the acceptor substituted diazo compound ethyl diazoacetate (8) and benzyldieneanilines catalyzed by an asymmetric copper catalyst. Yields were reported to be low, however, with typical isolated yields below 30%. Modest enantioselectivities were observed for the aziridine products, implying that the
reacting azomethine ylide species was associated with the catalyst. Aziridine formation by Lewis acid catalyzed reaction of imines and diazo compounds is well known (aza-Darzens reaction);81-83 however, this process does not involve the formation of azomethine ylides. To date, the formation of aziridines from cyclization of azomethine ylides generated with acceptor substituted metal carbenes has not been demonstrated to provide synthetically useful yields.

\textbf{Scheme 1.19.}

In recent years, our research group has become interested in the reactivity of donor/acceptor substituted diazo compounds with imines and the resulting azomethine ylides.73-75 Using one molar equivalent of methyl phenyldiazoacetate (11) relative to the imine 50, the aziridine 51 was obtained in 81\% isolated yield, with E-51 observed as the exclusive diastereomer. Presumably, the high level of diastereoselectivity arises from the preference for ylide structure \textit{52b versus 52a}, with steric interactions of the aryl rings disfavouring \textit{52a}. Ring-closure of azomethine ylides is controlled by frontier molecular orbital interactions, the cyclization of \textit{52b} occurs in a conrotatory fashion to yield E-51.86-88
Further study of the reaction of imines with donor/acceptor diazoacetates led to the reaction of imines with vinyldiazoacetates. Reaction of the metal carbene derived from vinyldiazoacetate 13 with imine 50 provides the azomethine ylide 53, which undergoes [1,5] cyclization to provide dihydropyrrole 54.\(^{85}\) Cyclization of the azomethine ylide 53 results in formation of 54 with excellent diastereoselectivity (>95%).
While studying the formation of 54, an unexpected byproduct was isolated. Mass and NMR spectroscopies demonstrated that this byproduct was in fact two isomeric compounds comprised of the benzylidineaniline and two units of the metal-carbene derived from 13. Previous literature describing the reactivity of azomethine ylide and metal carbene chemistry did not indicate what such a product might be; and the structure of this byproduct was not determined until an X-ray crystal structure was obtained of one of the byproducts, which identified it as the bicyclic pyrrolidine 55a. NMR spectroscopy determined that the second compound was the diastereomer 55b.

Excited by the unprecedented reaction of two carbene units with an imine to form the stereochemically complex heterocycles 55a and 55b, attempts were undertaken to optimize this reaction pathway, the mechanism of which was unknown at the time. The molar ratio of vinyldiazoacetate 13 to imine was
increased from 1:1 to 2:1, and a variety of benzylideneanilines was used. The reaction of vinyl diazoacetate 13 with benzylideneanilines which did not possess an electron deficient \(N \)-aryl group provided bicyclic pyrrolidines 56-58 to the exclusion of dihydropyrrole.

Scheme 1.22.

![Reaction Scheme](image)

<table>
<thead>
<tr>
<th>Ar</th>
<th>Product</th>
<th>a:b</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p-\text{NO}_2\text{C}_6\text{H}_4)</td>
<td>58</td>
<td>54:56</td>
<td>18</td>
</tr>
<tr>
<td>Ph</td>
<td>59</td>
<td>54:46</td>
<td>70</td>
</tr>
<tr>
<td>(p-\text{MeOC}_6\text{H}_4)</td>
<td>60</td>
<td>61:39</td>
<td>38</td>
</tr>
</tbody>
</table>
II. RESULTS AND DISCUSSION

The development of methods for constructing complex products by a reaction between multiple components to form several carbon-carbon bonds in a single operation has been the subject of considerable research.10,89-97 The reactions of ylides have been a fruitful area of investigation in this regard. The previously discussed dipolar cycloaddition reactions are a well studied and effective methods of rapidly preparing stereochemically complex heterocycles.10,77-79,98-102 The previously described study of the reaction of benzylideneanilines and vinyldiazoacetate 13 resulted in the discovery of an three component reaction which forms stereochemically complex bicyclic pyrrolidines. An understanding of the mechanism for the formation of bicyclic pyrrolidines may allow the further development of novel strategies utilizing azomethine ylides in the concise preparation of complex heterocycles, as such this became the focus of our study.

The mechanism by which bicyclic pyrrolidines form was a subject of considerable interest to us upon elucidation of the structure 55a.45 An early hypothesis was that dihydropyrrole was formed as the initial product: reaction of the dihydropyrrole with a second vinylcarbene provided bicyclic pyrrolidine 55b. However, the hypothesis failed to explain the reduced stereoselectivity observed for bicyclic pyrrolidine formation relative to dihydropyrrole.
Despite these misgivings, the mechanistic hypothesis in which dihydropyrrole was an intermediate in the formation of bicyclic pyrrolidines was tested by subjecting dihydropyrroles 54, and 59 to the standard reaction conditions used for the preparation of 55a, 56a (Scheme 1.23). Solutions of 54 or 59 and Rh$_2$(OAc)$_4$ were refluxed in dichloromethane, vinyldiazoacetate 13 was added in a solution of dichloromethane over 1 hour. Analysis of the reaction mixture by 1H NMR showed none of the corresponding bicyclic pyrrolidines to be present, demonstrating that dihydropyrroles are not intermediates in the formation of bicyclic pyrrolidines.

With our initial hypothesis refuted, we considered the possibility that the azomethine ylide 53 possessed a sufficient lifetime to react with the metal-carbene generated from 13. According to this mechanism, the azomethine ylide 53 reacts with metal vinylcarbene 60 in a vinylogous fashion to provide 61, a charge separated intermediate. Cyclization generates the bicyclic pyrrolidines 55a,b.
Searching the available literature on the reactivity of metal vinylcarbenes, we were struck by a series of accounts discussing the reactivity of enol ethers with rhodium-stabilized carbenes generated from vinyldiazoacetates.103-105 As proposed by Davies, enol ethers may react with vinylcarbenes in a direct fashion, providing the cyclopropane 62, or in a vinylogous manner, to provide cyclopentene 63 via the putative intermediate 64.104 The vinylogous reactivity of metal vinylcarbenes toward enol ethers is consistent with the reaction described in our proposed mechanism of azomethine ylide 53 and metal vinylcarbene 60.
Asymmetric catalyst study. The catalyst Rh$_2$(S-DOSP)$_4$ (2b) provides an enantiomeric excess of 25% of the bicyclic pyrrolidine 56b, enantiomeric excess of the diastereomer 56a could not be determined by HPLC. Surprisingly, a very small amount of the dihydropyrrole 59 was also isolated. Dihydropyrrole 59 proved to be an unstable species; substantial decomposition was observed over several hours at room temperature. This was the only instance dihydropyrrole 59 was isolated from a reaction of vinylidiaoacetate 13 with benzyldeneaniline. The enantiomeric excess of 59 could not be determined (attempted to measure by HPLC), however previous research with azomethine ylides leads us to expect that the precursor ylide 53 will not be catalyst associated73 and, therefore, no asymmetric induction is expected to occur.
Attempted trapping of azomethine ylide intermediate. As was previously discussed, azomethine ylides derived from acceptor substituted metal-carbenes are commonly utilized as 1,3-dipoles in [3+2] cycloaddition reactions. Trapping azomethine ylides with dipolarophiles results in the formation of substituted pyrrolidines. As numerous nitrogen containing heterocycles possess pharmaceutically valuable properties, the development of convergent routes to nitrogen containing heterocycles using azomethine ylides in cycloaddition reactions is of considerable interest. Trapping the azomethine ylide 53, proposed to be a key intermediate in the formation of bicyclic pyrrolidines, would provide access to an expanded range of functionalized pyrrolidines (65). Additionally, trapping the ylide in a dipolar cycloaddition reaction would confirm that azomethine ylide 53 is an intermediate in the formation of bicyclic pyrrolidines.

Trapping experiments were conducted by stirring the benzylideneaniline and Rh₂(OAc)₄ in a solution of dichloromethane with 10 equivalents of a
dipolarophile. Vinyl diazoacetate 13 (1 equivalent) was added over 1 hour. Upon completion of addition of 13, the reaction mixture was refluxed for an additional hour, then the solvent was removed under reduced pressure. The reaction mixtures were analyzed by 1H NMR spectroscopy, the region from 5-7 ppm was searched for the existence of doublets exhibiting a coupling constant greater than 12 Hz that would be diagnostic of the trans-styryl vinyl hydrogens of 65. To our surprise, no pyrrolidine 65 was observed in any reaction, the only identifiable components were bicyclic pyrrolidines 56a,b and unreacted benzylideneaniline and dipolarophile.

The failure of azomethine ylide 53 to react with dipolarophiles may be due to a decreased reactivity of the ylide 53 with dipolarophiles relative to the
azomethine ylide 48 (Scheme 1.18), due to steric or electronic effects. Alternatively, the carbene 60 (Scheme 1.24) may react with 53 at a much faster rate than the dipolarophiles evaluated (Scheme 1.27).

Scope of vinyldiazoacetates in formation of bicyclic pyrrolidines. In our attempts to explore the scope of the formation of bicyclic pyrrolidines, a variety of vinyldiazoacetates other than 13 were examined. The vinyldiazoacetates 66-70 were prepared according to literature procedures and subjected to the reaction conditions used in the preparation of bicyclic pyrrolidines 56a,b (Scheme 1.22). To our considerable surprise, neither the corresponding bicyclic pyrrolidine or, indeed, any imine reaction product, was observed. Vinyldiazoacetates 66-70 failed to react in any appreciable degree with benzylidineaniline. Upon completion of the reaction, \(^1\text{H}\) NMR spectroscopic analysis showed no substantial component of the reaction mixture other than the unreacted imine.
The surprising failure of metal vinylcarbenes other than that derived from 13 to react with benzylideneaniline to any appreciable extent provided the possibility of performing a selective three-component coupling of three distinct species to provide 71, rather than the three-component coupling of two species that provide bicyclic pyrrolidines 55-58. Although the metal vinylcarbenes resulting from 66-70 do not undergo addition to benzylideneaniline, as occurs with the metal vinylcarbene 13, they may still be susceptible to vinylogous reaction with azomethine ylide 53. This would allow a diverse array of substituted bicyclic pyrrolidines to be accessed. Unfortunately, upon addition of
a 1:1 solution of vinyl diazoacetate 13 and 66-70 to benzylideneaniline and Rh$_2$(OAc)$_4$ in refluxing dichloromethane, bicyclic pyrrolidines 56a,b were the only observed reaction products (isolated yields were not determined).

Scheme 1.29.
III. CONCLUSION

Studies of the reaction of benzylideneanilines and vinyldiazoacetate 13 resulted in the discovery of a novel three-component reaction between one molecule of benzylideneaniline and two equivalents of 13. The reaction of benzylideneaniline and two equivalents of 13 provides complex bicyclic pyrrolidines. The preparation of complex heterocycles in a stereoselective manner from easily prepared starting materials is of great value to synthetic organic chemists. Our study of the mechanism and optimization of conditions of bicyclic pyrrolidine formation was prompted by the desire to further expand scope three-component reaction to provide a wider variety of complex heterocycles. Ultimately, however, this reaction appears limited to methyl trans-styryldiazoacetate, 13. All other vinyldiazoacetates failed to react with benzylideneaniline or the ylide formed by the reaction of 13 and benzylideneaniline.
IV. EXPERIMENTAL

General Information: NMR spectra were recorded on a Bruker DRX-400 MHz instrument and obtained as solutions in deuterochloroform unless otherwise noted. Chemical shifts of 1H NMR are quoted relative to internal Me$_4$Si (0.00 ppm), those of 13C NMR are quoted relative to residual solvent (77.0 ppm). High-resolution mass spectra were obtained on a JEOL SX102a spectrometer. IR spectra obtained on a JASCO FT/IR-4100. Thin layer chromatography was performed on Merck Silica Gel 40 F$_{254}$ glass backed plates, visualization was achieved with UV or KMnO$_4$ stain. Column chromatography was performed on 40-63 µm, 230-400 mesh, 60 A silica gel. Benzyldieneaniline was prepared by condensation of aniline and benzaldehyde.107 Vinylidiazooacetate 69 was provided by Kousik Kundu.108 All other reagents were purchased from Aldrich unless otherwise specified. Anhydrous dichloromethane and tetrahydrofuran were obtained by dried by nitrogen forced-flow over activated alumina as described by Grubbs.109

Synthesis of vinylidiazooacetates 13, 67, 70 via direct diazo transfer.

Representative procedure, 13: To a solution of methyl trans-styrylacetate (0.22 g, 1.3 mmol) in acetonitrile (8 mL), p-ABSA (12) (0.37 g, 1.5 mmol) and DBU (0.23 mL, 1.5 mmol) are added. After 3 h, the solvent is evaporated under reduced pressure and the resulting brown oil is purified by silica gel column chromatography on silica gel (4:1 hexanes/ethyl acetate) to provide 13 as an
orange oil (0.18 g, 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.13 (comp, 5H), 6.44 (d, J = 16.2 Hz, 1H), 6.13 (d, J = 16.2 Hz, 1H), 3.79 (s, 3H); IR (neat) 2950, 2081, 1704 cm⁻¹. ¹H NMR and IR match reported spectra.⁷⁵

67: Orange oil, 18%; ¹H NMR (400 MHz, CDCl₃) δ 5.74 (dd, J = 16.0, 1.9 Hz, 1H), 5.31 (d, J = 16.0 Hz, 1H), 3.81 (s, 3H), 1.81 (dd, J = 6.6 Hz, 1.9 Hz, 3H); IR (neat) 2088, 1702 cm⁻¹. ¹H NMR and IR match reported spectra.⁷⁵

70: Orange oil, 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 16.0 Hz, 1H), 5.74 (d, J = 16.0 Hz, 1H), 3.85 (s, 3H), 3.75 (s, 3H); IR (neat) 2950, 2084 cm⁻¹. ¹H NMR and IR match reported spectra.⁷⁵

Synthesis of vinyldiazoacetates 66, 68.

66: To a stirring solution of diazoacetoacetate 9 (0.70 g, 4.9 mmol) in methanol (30 mL) at 0 °C was added NaBH₄ (0.45 g, 12 mmol) portionwise over 10 minutes, after which the solution was stirred for an additional hour. This solution was added to saturated NaHCO₃(aq) (30 mL) at 0 °C and extracted three times with diethyl ether (80 mL each). The combined organic extract was washed with ice-water and dried over anhydrous Na₂SO₄. Upon filtration, the solvent was removed under reduced pressure and the crude alcohol was used without further purification. The resulting yellow oil was stirred in anhydrous dichloromethane (15 mL) at 0 °C and triethylamine (0.77 mL, 5.5 mmol) was added. A solution of POCl₃ (0.20 mL, 2.1 mmol) in dichloromethane (2 mL) was added over 30
minutes by syringe pump and the reaction mixture was allowed to warm to room
temperature overnight. The solvent was removed under reduced pressure and
the residue was purified by column chromatography on silica gel (5:1
hexanes/diethyl ether) to provide 66 as a yellow oil (0.16g, 1.3 mmol, 10% yield);
1H NMR (400 MHz, CDCl$_3$) δ 6.17 (dd, $J = 17.3$, 10.9 Hz, 1H), 5.12 (d, $J = 10.9$
Hz, 1H), 4.87 (d, $J = 17.3$ Hz, 1H), 3.82 (s, 3H); IR (neat) 2082, 1700 cm$^{-1}$. 1H
NMR and IR match reported spectra.110

Ethyl 2-diazo-2-(1-cyclohexenyl)ethanoate (68): A solution of ethyl
diazoacetate (8) (1.0 mL, 10 mmol) and cyclohexanone (1.0 mL, 10 mmol) in
anhydrous THF (10 mL) was cooled to -78 °C, a THF solution of LDA (10 mL, 10
mmol, 1.0 M) was added dropwise, and the resulting solution was stirred for one
hour. Warming to 0 °C, the reaction mixture was quenched with water and
extracted three times with diethyl ether (60 mL each). The organic extract was
washed with ice-water, then dried over anhydrous Na$_2$SO$_4$. Upon filtration of the
mixture, the solvent was removed under reduced pressure, and the resulting
brown oil was filtered through a silica gel plug (4:1 hexanes/ethyl acetate) to yield
the crude alcohol as a yellow oil (0.28 g). The crude alcohol was stirred in
anhydrous dichloromethane (15 mL) with triethylamine (0.74 mL, 5.4 mmol) at 0
°C. A solution of POCl$_3$ (0.20 mL, 2.2 mmol) in dichloromethane (2 mL) was
added over 30 minutes by syringe pump and the reaction mixture was allowed to
warm to room temperature overnight. The reaction mixture was quenched by
pouring the mixture over ice-water, and was extracted three times with
dichloromethane (30 mL each). The combined organic layer was washed with brine (20 mL) and dried over anhydrous MgSO₄. Upon filtration, the solvent was removed under reduced pressure and the residue purified by column chromatography on silica gel (5:1 hexanes/diethyl ether) to provide 68 as a yellow oil (0.08 g, 0.4 mmol, 6% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.13-5.93 (m, 1H), 4.21 (q, J = 6.9, 2H), 2.50-1.41 (m, 8H), 1.25 (t, J = 6.9 Hz, 3H); IR (neat) 2956, 2091, 1711 cm⁻¹. ¹H NMR and IR match reported spectra.¹¹¹

Scheme 1.22. Representative procedure of Rh₂(OAc)₄ catalyzed addition of 13 to benzylideneaniline.

A solution of 13 (0.40 g, 2.0 mmol) in CH₂Cl₂ (2 mL) was added via a syringe pump over one hour to a solution of Rh₂(OAc)₄ (4 mg, 0.01 mmol) and benzylideneaniline (0.20 g, 1.0 mmol) in refluxing CH₂Cl₂ (8 mL). After complete addition, the solution was allowed to reflux for an additional hour. The reaction mixture was filtered through a short silica gel plug and then washed with CH₂Cl₂ (50 mL). The solvent was removed under reduced pressure to leave a residue that was analyzed by ¹H NMR spectroscopy to determine the ratio of product diastereomers, comparing the integration of signals at 5.48 ppm (56a) and 5.00 ppm (56b). Column chromatography (5:1 hexanes/ethyl acetate) on silica gel afforded bicyclic product.

56a: ¹H NMR (CDCl₃, 500 MHz): δ 7.79 (d, J = 8.7 Hz, 2H), 7.50-6.81 (comp, 18H), 5.48 (d, J = 7.2 Hz, 1H), 4.70 (t, J = 2.5 Hz, 1H), 4.45 (t, J = 2.8 Hz, 1H), 3.94 (d, J = 7.1 Hz, 1H), 3.88 (s, 3H), 3.00 (s, 3H), full characterization has been reported.⁴⁵
56b: 1H NMR (CDCl$_3$, 500 MHz): δ 7.24-6.76 (comp, 20H), 6.57 (t, $J = 7.2$ Hz, 1H), 6.19 (br s, 1H), 5.34 (d, $J = 3.2$ Hz, 1H), 5.00 (d, $J = 10.2$ Hz, 1H), 4.30 (t, $J = 10.4$ Hz, 1H), 4.16 (d, $J = 10.8$ Hz, 1H), 4.00 (s, 3H), 3.32 (s, 3H); full characterization has been reported.45

Scheme 1.26. Rh$_2$(S-DOSP)$_4$ catalyzed addition of 13 to benzylideneaniline.

A solution of 13 (0.49 g, 2.4 mmol) in CH$_2$Cl$_2$ (2 mL) was added via a syringe pump over one hour to a solution of Rh$_2$(S-DOSP)$_4$ (42 mg, 0.02 mmol) and benzylideneaniline (0.22 g, 1.2 mmol) in refluxing CH$_2$Cl$_2$ (8 mL). After complete addition, the solution was allowed to reflux for an additional hour. The reaction mixture was filtered through a short silica gel plug and then washed with CH$_2$Cl$_2$ (50 mL). The solvent was removed under reduced pressure to leave a residue that was analyzed by 1H NMR spectroscopy to determine the ratio of product diastereomers, comparing the integration of signals at 5.48 ppm (56a) and 5.00 ppm (56b). Column chromatography (5:1 hexanes/ethyl acetate) on silica gel afforded bicyclic product 56b and 59. Upon isolation, the enantiomeric excess of 56b was measured by HPLC as described below.

56b: White crystalline solid (38 mg, 0.07 mmol, 6% yield). HPLC: (Chiralpak-OD, hexanes/isopropyl alcohol 90:10, 1.0 mL/min, 220 nm, retention times of 3.2 min (major) and 4.3 min (minor), 25% ee; $[\alpha]_D^{27} +62.9^o$ (c = 0.20, CH$_2$Cl$_2$).

59: Yellow oil (9 mg, 0.02 mmol, 2% yield). 1H NMR (CDCl$_3$, 400 MHz): δ 7.42-7.15 (m, 12H), 6.95 (t, $J = 7.2$ Hz, 1H), 6.76 (d, $J = 7.6$ Hz, 2H), 6.04 (d, $J = 3.2$ Hz, 1H), 4.66 (d, $J = 5.2$ Hz, 1H), 3.85 (dd, $J = 5.2$ Hz, 3.6 Hz), 3.80 (s, 3H); 13C NMR (CDCl$_3$, 100 Hz): δ 162.9, 147.5, 144.6, 142.6, 140.2, 129.1, 129.06, 129.0,
HRMS (FAB⁺) calcd. for C₂₄H₂₁NO₂ (M⁺ + 1): calcd 356.1651, found: 356.1651.

Scheme 1.27. Representative example of attempted reaction of azomethine ylide with dipolarophile dimethyl maleate.

A solution of 13 (0.08 g, 0.4 mmol) in CH₂Cl₂ (1 mL) was added via a syringe pump over one hour to a refluxing solution of Rh₂(OAc)₄ (1 mg, 2E-3 mmol), benzylideneaniline (0.04 g, 0.2 mmol), and dimethyl maleate (0.25 mL, 2.0 mmol) in heated at reflux for one hour. The reaction mixture was filtered through a short silica gel plug, washed with CH₂Cl₂ (50 mL). The solvent was removed under reduced pressure and a ¹H NMR was taken to determine if the cycloadduct 65 had formed. The region of the ¹H NMR from 5-7 ppm was searched for the existence of doublets exhibiting a coupling constant greater than 12 Hz, which would be diagnostic of the trans-styryl vinyl hydrogens of 65. No signals indicative of the cycloadduct 65 were observed, consequently no further workup was performed upon the reaction solution, which was discarded.

Scheme 1.28. Representative example of attempted reaction of benzylideneaniline with vinyldiazoacetate 66.

A solution of 66 (0.14 g, 1.1 mmol) in CH₂Cl₂ (2 mL) was added via a syringe pump over one hour to a refluxing solution of Rh₂(OAc)₄ (2 mg, 0.01 mmol) and benzylideneaniline (0.10 g, 0.6 mmol). After heating at reflux for one hour upon completion of addition of 66, the reaction mixture was filtered through a short silica gel plug and washed with CH₂Cl₂ (50 mL). The solvent was removed under
reduced pressure and a 1H NMR was taken, the only observable material by 1H NMR is unreacted benzylideneaniline. No evidence is observed for products of any reaction of 66. As no evidence is observed for the products of any reaction of 66, or unreacted 66, the reaction was not worked up further and was discarded.

Scheme 1.29. Representative example of attempted reaction of benzylideneaniline with vinyldiazoacetate 13 and 66.

A solution of 66 (0.07 g, 0.6 mmol) and 13 (0.10 g, 0.6 mmol) in CH$_2$Cl$_2$ (2 mL) was added via a syringe pump over one hour to a refluxing solution of Rh$_2$(OAc)$_4$ (2 mg, 0.01 mmol) and benzylideneaniline (0.10 g, 0.6 mmol). After heating at reflux for one hour upon completion of addition of the solution of 66 and 13, the reaction mixture was filtered through a short silica gel plug and washed with CH$_2$Cl$_2$ (50 mL). The solvent was removed under reduced pressure and a 1H NMR was taken, bicyclic pyrrolidine product 56a,b is observed as the major product. Minor byproducts were not isolated and identified, the reaction solution was discarded.
References:

(108) Kundu, K., University of Maryland, 2006.
DESIGN AND SYNTHESIS OF ENDOCYCLIC VINYLDIAZOCARBONYL COMPOUNDS

I. BACKGROUND

As was described in the preceding chapter, vinyldiazoacetates are versatile synthetic reagents. Metal carbenes formed from donor/acceptor diazo compounds, such as vinyldiazoacetates, possess unique reactivities in relation to other metal carbenes generated from acceptor and acceptor/acceptor substituted diazo compounds.\(^1,2\) The ability of vinyldiazoacetate and aryl diazoacetate derived metal carbenes to undergo intermolecular C–H insertion\(^3-6\) and highly stereoselective cyclopropanation reactions\(^7,8\) has provided efficient routes to complex molecules which possess biologically interesting properties. The propensity of azomethine ylides generated from metal vinylcarbenes and aryl analogues to undergo intramolecular cyclization allows for the stereoselective construction of nitrogen containing heterocycles.\(^9-12\) As our investigations with metal vinylcarbenes have proceeded, however, it became apparent that limitations exist with this technology.
In the examples of ylide formation, cyclopropanation, and C—H insertion reactions of vinyl diazoacetates which were previously shown (Chapter 1), all vinyl diazoacetates possessed trans-vinyl substitution. In Davies’ studies of cyclopropanation and C—H insertion reactions of vinyl diazoacetates using asymmetric dirhodium catalysts, trans-disubstituted vinyl diazoacetates (1) are used to the exclusion of other substitution patterns.\(^1\,^3\) The substituents trans to the diazoacetate includes aryl, alkyl, and vinyl groups.

Figure 2.1. Trans-vinyl diazoacetates.

\[
\begin{align*}
R & \quad \text{alk} \\
\text{O} & \\
\text{N}_2 & \\
\text{O} & \\
\text{R} & = \text{alkyl, aryl, vinyl}
\end{align*}
\]

Few examples of reactions of vinyl diazoacetates possessing substitution patterns exist other than those with 1. The vinyl group of vinyl diazoacetate 2 is itself susceptible to cyclopropanation; in reported attempts to perform intermolecular C—H insertion reactions with vinyl diazoacetate 2, only oligomerization was observed.\(^13\) The putative initial cyclopropanation product 3 is not isolated, but is consumed in a series of reactions involving carbonyl ylide rearrangement, cyclopropanation and a Cope rearrangement to provide 4, which comprised of three units of 2. Due to the propensity for oligomerization, mono-
substituted 2 is not used as frequently as trans-vinyl diazoacetates (1), and then only in cycloaddition reactions with highly reactive olefins.14,15

Scheme 2.1.

Examples of transition metal catalyzed reactions of disubstituted cis-vinyl diazoacetates are virtually nonexistent, and there are no examples of such vinyl diazoacetates being used in intermolecular C—H insertion or cyclopropanation reactions.3 An explanation for the paucity of reactions utilizing cis-vinyl diazoacetates has been provided by Davies’ report of the effects of carbene structure upon metal carbene reactivity.13 In this study, several vinyl diazoacetates were added to a solution of the catalyst Rh$_2$(OPiv)$_4$ in cyclohexane. The metal carbene generated from trans-styryldiazoacetate 5a undergoes C—H insertion into a cyclohexane C—H bond providing the intermolecular insertion product 6. No intermolecular C—H insertion product was obtained with the analogous cis-styryldiazoacetate 5b, however. Instead, the corresponding metal carbene undergoes intramolecular electrophilic aromatic substitution into the phenyl ring, resulting in the isolated indene 7. Although other cis-vinyl diazoacetates were not reported in this study, it is reasonable to
infer that other intramolecular reactions could be observed when the metal carbene is located cis to functionalities other than a phenyl ring.

Scheme 2.2.

Examples of intermolecular metal carbene reactions using vinyldiazoacetates possessing substitution cis to the metal carbene are limited. The most noteworthy of these are intermolecular Si—H reactions of the cis-vinyldiazoacetates 8a,b by Landais. In these examples, an intermolecular metal carbene reaction is made favourable by selecting a highly reactive Si—H substrate for insertion.
The relative reactivity of donor/acceptor substituted metal carbenes toward alkyl C—H and Si—H bonds is known from a series of competition experiments performed by Davies for reactions of methyl phenyldiazoacetate (11) and Rh₂(S-DOSP)₄ (11) with C—H and Si—H insertion substrates. The Si—H insertion substrate Ph₂BuSi—H was measured to be 24,000 times more reactive with the metal carbene formed from 11 than the simple alkyl C—H bonds in cyclohexane.
Rainier has used vinyldiazoacetates possessing substitution cis to the metal carbene in thio-Claisen rearrangements to provide access to complex indole alkaloids. The metal carbene generated from trisubstituted vinyldiazoacetate 13 reacts with 12 to provide, upon thio-Claisen rearrangement, 14. Intramolecular cyclization of the metal carbene generated from 13 is disfavoured due to high ring strain of the resulting cyclobutene product.
Further limiting the utilization of vinyldiazoacetates in synthetic applications, vinyldiazo compounds are unstable and readily undergo [1,5]-cyclizations to yield pyrazoles (i.e. 15).²,²⁰ When vinyldiazoacetates are used in catalytic processes, pyrazole formation is particularly problematic as the basic nitrogen of pyrazoles may coordinate to transition metal catalysts. This would be expected to reduce catalyst efficiency, requiring increased catalyst loadings or preventing catalytic activity altogether. In our experience, it was critical to purify vinyldiazoacetates by column chromatography immediately prior to use; within hours of purifying 5a, pyrazole formation was observed with 15 crystallizing as a white solid. Storing vinyldiazoacetates in a freezer at 4 °C does extend the lifetime of styryldiazoacetate 5a, which could be kept overnight under these
Pyrazole formation by vinyl diazoacetates is competitive with metal carbene formation from reactions with many transition metal catalysts. This was effectively shown in early attempts to perform asymmetric cyclopropanation reactions upon vinyl diazoacetates; 5a failed to undergo extrusion of dinitrogen and metal carbene formation with the catalysts Rh\(_2\)(MEPY)\(_4\) (16)\(^{21}\) and the Masamune copper catalyst 17\(^{22}\), but instead cyclized to pyrazole 15\(^{23}\). Their failure to react with vinyl diazoacetates led Davies to develop the more reactive carboxylate ligated dirhodium catalyst Rh\(_2\)(S-DOSP)\(_4\) (11).\(^8\) The instability of vinyl diazoacetates sharply limits the range of transition metal catalysts which may be used in conjunction with them.
The previously described intramolecular cyclizations of vinyl diazoacetates (Scheme 2.5, 2.6) and the metal carbenes formed from cis-vinyl diazoacetates (Scheme 2.2) occur due to the ability of the vinyl diazoacetate or corresponding metal vinylcarbene to attain the correct conformation for cyclization. Endocyclic vinyl diazocarbonyl compounds (22) and their resulting metal carbenes, however, would not be susceptible to these intramolecular cyclization reactions. Pyrazole formation is impossible with such structures, requiring formation of an anti-Bredt olefin. Likewise, intramolecular C—H insertion reactions would be unlikely. The
two intramolecular cyclization pathways which are problematic in vinylid diazoacetates (Scheme 2.5) and metal cis-vinylcarbenes (Scheme 2.2) are unavailable to endocyclic vinylidiazocarbonyl compounds. It was envisioned that endocyclic vinylidiazocarbonyl compounds of the general structure 22 would act as donor/acceptor substituted diazo compounds, similar to vinylidiaoacetates and aryldiazoacetates. Intrigued by the possibility for expanding applicable substitution pattern available to metal vinylcarbenes, and providing a more operationally convenient vinylidiazocarbonyl compound, we turned to the challenge of synthesizing endocyclic vinylidiazocarbonyl species.

Figure 3. Endocyclic vinylidiazocarbonyl compound.

![Figure 3](image)

II. RESULTS AND DISCUSSION

Two synthetic strategies have been used in the construction of acyclic vinylidiazocarbonyl compounds, a reduction-dehydration of diazo \(\beta \)-dicarbonyl compounds\(^{24}\) or, in a more direct route, diazo transfer to vinylcarbonyl
compounds. Each of these proved to be viable means of accessing endocyclic vinylidiazocarbonyl compounds.

Diazo β-dicarbonyl compounds such as 23 are readily prepared from the corresponding β-dicarbonyl precursor. Relatively weak amine bases (typically triethylamine) may be used, and mesyl azide acts as an efficient diazo transfer agent. The ketone of 23 is selectively reduced to an alcohol with NaBH₄; treatment of the alcohol with a dehydrating agent such as POCl₃ forms the desired vinylidiazocetate 2. This reduction-dehydration protocol, and variations of it, are frequently employed in the synthesis of vinylidiazocetates, and may provide a suitable means of accessing endocyclic vinylidiao compounds.

Scheme 2.7

An alternative, and more concise, means of synthesizing vinylidiazocetates is to perform a diazo transfer reaction on the vinylacetate substrate. The direct formation of vinylidiazocetates and aryldiazocetates from their vinyl- and arylacetate precursors has been reported to be a convenient means of accessing these diazo species when p-ABSA (19) is used as the
nitrogen transfer agent. Sulfonyl azides other than 19, such as mesyl azide, are not as effective in the synthesis of vinyl- and aryldiazoacetates.25

Scheme 2.8.

\[
\text{Ph} = \text{MeCO}_2 \xrightarrow{\text{DBU, } \rho-\text{ABSA (19)}} \text{Ph} = \text{MeN}_2 \text{CO}_2 \MeCN \]

5a (89%)

The direct formation of vinyldiazoacetates from corresponding vinylacetates offers the obvious advantage of requiring a single step as opposed to the three steps used by the previously described reduction-dehydration protocol. However, in our experience,26 the formation of vinyldiazoacetates and aryldiazoacetates by direct diazo transfer is highly substrate dependant. In a number of instances, the workup and purification of vinyldiazoacetates is straightforward, accomplished by filtration through a short column of silica gel. This approach, however, not infrequently suffers from low or negligible yields of the vinyldiazoacetate and the formation of byproducts whose separation from the diazoacetate is laborious.

To evaluate the scope of endocyclic vinyldiazocarbonyl compounds in asymmetric carbene transformations, several endocyclic vinyldiazocarbonyl compounds were synthesized using both the reduction-dehydration and direct diazo transfer protocols. To evaluate the use of a variety of endocyclic vinyldiazocarbonyl structures, a diverse selection of endocyclic
vinyl diazocarbonyl compounds which varied in the electronics of the carbonyl (lactones, ketone, lactam) and the size and substitution of the ring system were prepared. Described herein is the synthesis of several endocyclic vinyl diazocarbonyl compounds, and the construction of their dione (24) or unsaturated carbonyl (25) precursors.

Scheme 2.9.

3-Diazo-3,6-dihydro-2H-pyran-2-one (31). The β-ketolactone 28 was conveniently prepared according to the procedure reported by Weiler and coworkers from the carboxylic acid 26.27 The diazo compound 29 was easily prepared under mild diazo transfer conditions. Initial attempts to reduce the ketone of 29 using the hydride reducing agents sodium borohydride, sodium cyanoborohydride, and L-Selectride provided none of the desired alcohol 30. Byproducts of these reductions were polar materials which were not readily isolable and were not identified. The reducing agent LiHAl(O-tBu)₃ was found to provide alcohol 30, albeit in low and somewhat capricious yield. Little consistency was observed in this reduction, yields of the crude mixture of 30 were consistently less than 20%, and in some instances none of the desired
alcohol was recovered. Dehydration of alcohol 30 proceeded smoothly to provide 31 (12% yield from 28). Although the reduction-dehydration protocol is a viable route to vinyldiazolactone 31, the unpredictable and low-yielding reduction step makes this an unreliable method of accessing 31.

Requiring a more reliable and convenient means of preparing 31, we turned our attention to direct diazo transfer of lactone 32 (Scheme 2.11). We were delighted to observe that using diazo transfer conditions for the preparation
of vinyl diazoacetates, vinyl diazolactone 31 was obtained in 47% yield from 32 (available from commercial sources). Vinyl diazolactone 31 is conveniently isolated from the reaction mixture by flash chromatography, eluting as a bright yellow band. Vinyl diazolactone 31 is conveniently accessed by the direct diazo transfer reaction of 32, and as such was used extensively in our subsequent study of the reactions of endocyclic vinyl diazocarbonyl compounds.

![Scheme 2.11.](image)

As was previously described, we expected the endocyclic vinyl diazocarbonyl compounds to be considerably more stable than acyclic vinyl diazocarbonyl compounds such as vinyl diazoacetates. Vinyl diazolactone 31, unable to undergo [1,5] cyclization of the vinyl diazo functional group, was stored in a freezer at 4 °C for weeks without substantial decomposition as measured by 1H NMR. Slow decomposition of vinyl diazolactone 31 is observed when exposed to light and kept at room temperature over several days. In later studies of the reactivity of endocyclic vinyl diazocarbonyl compounds (described in Chapter 3), observed selectivities and yields of reactions for 31 which had been stored for up to one week at 4 °C and material purified before use showed
no significant difference. All endocyclic vinyl diazocarbonyl compounds described herein possess similar stabilities.

3-Diazo-6,7-dihydrooxepin-2(3H)-one (35). Lactone 34 was prepared from 33 using a known selenation/oxidation protocol, albeit in low yield.28 Diazo transfer was accomplished using the conditions described with 32 and provided 35 with similar yield to that obtained with 31.

Scheme 2.12.

\[
\begin{align*}
33 & \xrightarrow{1) \text{LDA, PhSeBr}} \xrightarrow{\text{THF, } -78^\circ \text{C } \rightarrow \text{rt}} \xrightarrow{2) \text{m-CPBA, } \text{CH}_2\text{Cl}_2} 34 (10\%) \xrightarrow{\text{DBU, } \rho\text{-ABSA (19)} \text{MeCN}} 35 (44\%)
\end{align*}
\]
3-Diazo-2-oxo-2,3-dihydrofuran-3-ide (38), and 3-Diazo-5-methyl-2-oxo-2,3-dihydrofuran-3-ide (39). Lactone 36, and the related lactone 37, provided none of the desired diazo lactones 38 or 39 upon treatment under diazo transfer conditions. A large number of products were observed, none of which could be isolated and characterized.

Scheme 2.13.

3-Diazo-5-phenyl-3,6-dihydro-2H-pyran-2-one (44). To prepare vinyl diazolactone 44, the lactone precursor 43 was synthesized by ring closing metathesis of diene 41, obtained by esterification of the homoallylic alcohol 40 with acrylic acid. Ring closing metathesis with Grubb’s catalyst 42 provided lactone 43 in excellent yield. Treatment of the lactone 43 with the diazo transfer agent p-ABSA (19) and DBU provided the vinyl diazolactone 44 in 39% yield.
6,6-Dimethyl-2-oxo-3,6-dihydro-2H-pyran-3-diazo (45). We anticipated that vinyl diazolactone 45 could be prepared from the β-lactone 47 using the reduction-dehydration protocol. As was demonstrated with the synthesis of vinyl diazolactone 31 from 28, a diazo transfer to 47 followed by reduction of the ketone and dehydration would be expected to provide 35. However, as the previously described reduction-dehydration protocol proceeded in poor yield and was unreliable in the preparation of 31, this was not attempted. Instead, the
The synthesis of unsaturated lactone 46 from 47 was pursued, with the aim of subsequently synthesizing vinyl diazolactone 45 by direct diazo transfer to 46.

Scheme 2.15.

\[\text{45} \quad \text{N}_2 \quad \text{46} \quad \text{47} \]

\(\beta \)-Ketolactone 47 was easily prepared in one pot by sequential enolization of methyl acetoacetate with NaH and LDA, followed by the addition of acetone. Upon treatment of the reaction mixture with NaOH\(_{(aq)}\), 47 was isolated by recrystallization in 37\% yield.

Scheme 2.16.

\[\text{CO}_2\text{Me} \quad 1) \text{NaH, THF, 0 }^\circ\text{C} \quad 2) \text{LDA} \quad 3) \text{acetone} \quad 4) \text{NaOH}_{aq} \quad \text{47 (37\%)} \]

Initial attempts to prepare the unsaturated lactone 46 from the \(\beta \)-ketolactone 47 involved the reduction of the ketone using hydride reducing agents, followed by dehydration of the alcohol. However, standard hydride reducing agents NaBH\(_4\), L-Selectride, and LiHAl(O-\(t \)-Bu)\(_3\) were unsuccessful in
the selective reduction of the ketone functionality of 46, providing unreacted lactone and numerous byproducts. This is consistent with previous reports of attempts to reduce the ketone functional group of β-ketolactones using borohydride and aluminum hydride reducing agents, from which enolization of the dicarbonyl is believed to complicate the use of hydride reducing agents.31,32 Amino-borane reducing agents have been reported to effectively reduce the ketone of β-ketolactones to the corresponding alcohols; treatment of ketone 47 with BH\textsubscript{3}-tBuNH\textsubscript{2} using conditions described by Knight31 did result in consumption of 47 and formation of the desired alcohol. Dehydration of the unpurified mixture using POCl\textsubscript{3} provided the desired lactone 46. Unfortunately, 46 could not be readily separated from byproducts of the reaction, and the mass of the unpurified reaction mixture was <10% of the theoretical yield of 46. Consequently, it was decided that the reduction-dehydration of 47 was not a promising route to the lactone 46.

![Scheme 2.17.](image)

With the decision not to continue developing a reduction-dehydration conditions for the conversion of 46 to 47, we considered conversion of the ketone
to a vinyl halide 48. Subsequent reduction of 48 would provide the desired lactone 46.

The conversion of ketones to vinyl chlorides is accomplished by the treatment of the ketone substrate with PCl$_5$ in refluxing dichloromethane.33 Although 47 reacted cleanly and with complete conversion under these conditions, the reaction product was not lactone 48. Analysis of the 1H and 13C NMR spectra of the reaction product indicated that the lactone likely opens under the reaction conditions to provide carboxylic acid 49 as the major product.

Scheme 2.18.

Scheme 2.19.

tert-Butyl 3-diazo-2-oxo-3,6-dihydropyridine-1(2H)-carboxylate (52).

The N-Boc lactam 51 was prepared in good yields by selenylation of the
saturated lactam 50, followed by oxidation with \(m \text{-CPBA} \). Diazo transfer under using DBU and \(p \text{-ABSA} \) provided the desired vinyldiazolactam 52.

Scheme 2.20.

1-Methyl-3-diazo-2-oxo-3,6-dihydropyridine-1(2\(H \))-carboxylate (56).

The synthesis of the \(N \)-methylvinyl Diazolactam 56 proved to be more challenging than the preparation of 51. After several unsuccessful attempts to prepare the selenylated lactam 54, it was determined that two equivalents of the base LHMDS were essential, in contrast to the one equivalent of base used in selenylation of 33 and 50. Previous studies of the analogous sulfonylation of 53 have noted that one equivalent of base leads to recovery of unreacted 53 and a bis-sulfonlated lactam, whereas two equivalents of base provide mono-sulfonlated lactam.\(^{34} \) Oxidation of the selenylated lactam 54 with \(m \text{-CPBA} \) provided the unsaturated lactam 55.
Unfortunately, attempts to affect diazo transfer to 55 using the reagents DBU and p-ABSA (19) failed to provide the vinyldiazolactam 56. No reaction was observed with 55, even after 24 h. This was not surprising, the N-methyllactam 55 is expected to possess a much less electrophilic carbonyl, and consequently less acidic vinylogous protons, than that of the previously described lactone systems or lactam 51. It became necessary, therefore, to explore conditions in which stronger bases were utilized.

The guanidine amine base 57 was explored as an alternative to DBU; reactions were run in deuterated DMSO or acetonitrile and monitored by 1H NMR spectroscopy. The unsaturated lactam 55 was observed to react in each solvent,
albeit slowly. After 24 hours, \(^1\)H NMR shows 55 to be largely unreacted; however, uncharacterized reaction products are also observed.

Scheme 2.23.

![Scheme showing diazo transfer reaction](image)

Early reports of diazo transfer preparations of vinyl diazoacetates had in some cases used strong bases such as LDA in conjunction with an HMPA additive and the diazo transfer species tosyl azide.\(^{15,24}\) Unfortunately, these conditions were not successful in providing significant amounts of 56. Analysis of the reaction mixture by \(^1\)H NMR spectroscopy indicated that the desired vinyl diazolactam 56 was formed, but only as a very minor product. Additional reactions without the use of the additive HMPA were also unsuccessful, resulting in the formation of numerous byproducts and no observable vinyl diazolactam 56.

The use of diazo transfer agent \(p\)-ABSA (19) with LDA appeared to provide vinyl diazolactam 56 by \(^1\)H NMR spectroscopic analysis of the reaction upon work up. However, significant amounts of an unknown reaction byproduct always contaminated 56. Despite a significant effort to develop chromatography
conditions using several solvent systems, in all cases the uncharacterized byproduct co-eluted with 56.

Scheme 2.24.

\[
\begin{align*}
55 & \xrightarrow{1) \text{LDA, THF, } -78^\circ\text{C}} 56 \\
& \xrightarrow{2) \text{LDA, } p-\text{ABSA (19)}} + \text{inseperable byproduct}
\end{align*}
\]

2-Diazocyclohex-3-en-1-one (59). Synthesis of vinyldiazoketone 59 was not viable under the direct diazo transfer conditions applied to the preceding lactones and lactams. Standard diazo transfer conditions applied to the enone 58 did provide 59; however numerous byproducts were also observed. Due to several unidentified byproducts which co-eluted with 59 using column chromatography on silica gel, purification of 59 from the reaction mixture could not be achieved and an alternative preparation of the vinyldiazoketone 59 was pursued.

Scheme 2.25.

\[
\begin{align*}
58 & \xrightarrow{\text{DBU, } p-\text{ABSA (19) } \text{MeCN}} 59 + \text{complex mixture}
\end{align*}
\]
Following the protocol of Mueller and coworkers, the vinyldiazoketone 61 was formed in good yield from β-diketone 60. Selective monoreduction of a ketone was performed using NaBH₄, as described by Korobitsyna and coworkers.³⁵ Dehydration of the resulting alcohol using POCl₃ provided the desired vinyldiazoketone 59, albeit in poor yield. The low overall yield of 59 from 61 is attributable to the hydride reduction step, upon aqueous workup a very low yield of the crude alcohol is obtained.

Scheme 2.26.

III. CONCLUSION

Rhodium(II)-stabilized vinylcarbenes are valuable synthetic intermediates capable of undergoing a wide range of metal carbene reactions; their synthetic versatility has been described by us and other research groups in applications directed to the construction of complex molecular architectures.¹,⁹,¹⁰,¹⁹,³⁶-³⁸ Despite the recognized utility of metal vinylcarbenes, however, limitations with the acyclic vinyldiazoacetates which are most commonly used as vinylcarbene
precursors have limited the application of vinylcarbenes. Vinyl diazoacetates that are typically used as metal vinylcarbene precursors undergo a spontaneous [1,5]-cyclization reaction to form pyrazoles. This limits the operational convenience of vinyl diazoacetates and the scope of dirhodium catalysts with which they may be used in conjunction with to the most reactive catalysts. The substitution pattern of the majority of vinyl diazoacetates used in synthesis is limited to disubstituted trans-vinyl diazoacetates (1). The metal vinylcarbenes generated from cis-vinyl diazoacetates are vulnerable to intramolecular carbene reactions. It was our expectation that the endocyclic vinyl diazocarbonyl compounds whose syntheses have been described in this chapter would not be susceptible to intramolecular cyclization of the diazo functionality or metal carbene. The increased stability of each the diazo functionality and metal carbene of endocyclic vinyl diazocarbonyl compounds will enhance the operational convenience of the vinyl diazocarbonyl compound and range of intermolecular reactions which the metal vinylcarbene is capable of, relative to corresponding acyclic species.
Five endocyclic vinylidiazocarbonyl compounds (31, 35, 44, 52, 59) were prepared. To evaluate the scope of endocyclic vinylidiazocarbonyl compounds in asymmetric metal carbene reactions, the structures were varied so that the reactivity of electronically and structurally variable endocyclic vinylidiazocarbonyls could be compared. To vary the carbonyl electronics, the analogous six-membered rings lactone 31, lactam 52, and ketone 59 were prepared. The seven-membered ring lactone 35 and substituted lactone 44 were also readily obtained for comparison to 31.

The preparation of 31 was used to evaluate the efficiency of two common methods of vinylidiazoacetate synthesis toward the synthesis of endocyclic vinylidiazocarbonyl compounds, a reduction-dehydration protocol and the direct diazo transfer reaction. The results of this study indicated that a direct diazo
transfer reaction performed upon an unsaturated carbonyl compound was the most efficient means of generating the corresponding endocyclic vinylidiazocarbonyl compounds. Using this strategy, 31, 35, 44, and 52 were obtained from corresponding unsaturated lactones and lactam. However, direct diazo transfer was unsuccessful in the preparation of 59. The synthesis of 59 could be achieved using the reduction-dehydration protocol, albeit in poor yield. As we anticipated, the endocyclic vinylidiazocarbonyls 31, 35, 44, 52 and 59 possessed a greater stability than acyclic vinylidiazo compounds. The endocyclic vinylidiazocarbonyl compounds could be kept in a freezer at 4 °C for a period of weeks with only minor decomposition. In the study of dirhodium catalyzed reactions of these vinylidiazocarbonyl compounds (described in Chapter 3), we found no appreciable difference in yields and selectivities for 31 in reactions run with freshly purified 31 and 31 that had been stored for up to a week at 4 °C.
IV. EXPERIMENTAL

General Information: NMR spectra were recorded on a Bruker DRX-400 MHz instrument and obtained as solutions in deuterochloroform unless otherwise noted. Chemical shifts of 1H NMR spectra are quoted relative to internal Me$_4$Si (0.00 ppm); those of 13C NMR spectra are quoted relative to solvent (77.0 ppm). NMR spectra of 31, 35, 52 and 59 were obtained using deuterated acetonitrile; chemical shifts of the 1H NMR spectra are quoted relative to residual solvent (1.94 ppm), chemical shifts of the 13C NMR spectra are quoted relative to solvent (1.2 ppm). NMR spectra of 44 were obtained in deuterated acetone; chemical shifts of the 1H NMR spectrum are quoted relative to residual solvent (2.05 ppm), and chemical shifts of the 13C NMR spectrum are quoted relative to solvent (30.8 ppm). High-resolution mass spectra were obtained on a JEOL SX102a spectrometer. IR spectra obtained on a JASCO FT/IR-4100. Thin layer chromatography was performed on Merck Silica Gel 40 F254 glass backed plates, visualization was achieved with UV or KMnO$_4$ stain. Column chromatography was performed on 40-63 μm, 230-400 mesh, 60 A silica gel. Mesyl azide was prepared by a previously published procedure.39 All reagents were purchased from Aldrich unless otherwise specified. Anhydrous dichloromethane and tetrahydrofuran were obtained by dried by nitrogen forced-flow over activated alumina as described by Grubbs.40 This work was performed in collaboration with Kuo-Hui Wu, who is gratefully acknowledged for the preparation of 27-31.
5-[3-(Benzyloxy)propanoyl]-2,2-dimethyl-1,3-dioxane-4,6-dione (27): Carboxylic acid 26 (7.5 g, 42 mmol) was dissolved in oxalyl chloride (7.5 mL, 86 mmol) in a round bottom flask and stirred for 4 hours, at which point excess oxalyl chloride was removed under reduced pressure. The crude oil was then dissolved in anhydrous dichloromethane and the solution was added slowly to a solution of Meldrum’s acid (5.0 g, 35 mmol) and pyridine (8.5 mL, 110 mmol) in anhydrous dichloromethane (40 mL). The reaction solution was allowed to stir overnight, then washed with 1M HCl(aq) (40 mL), water (40 mL), and brine (40 mL). The organic phase was dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure to a dark red oil. Purification of the oil by column chromatography on silica gel (4:1 hexanes/ethyl acetate) provided 27 as a yellow oil (8.0 g, 32 mmol, 76% yield). The ¹H NMR spectrum [(400 MHz, CDCl₃) δ 7.35-7.26 (comp, 5H), 4.54 (s, 2H), 3.86 (t, J = 4.0 Hz, 2H), 3.43 (t, J = 4.0 Hz, 2H), 1.70 (s, 6H)] matched the previously reported ¹H NMR spectrum.²⁷

Dihydro-2H-pyran-2,4(3H)-dione (28): The Meldrum’s acid adduct 27 (8.0 g, 26 mmol) was stirred in a solution of ethyl acetate (25 mL) and ethanol (25 mL). 10% Pd/C (0.8 g) was added, the flask was placed under a hydrogen filled balloon, and the mixture was stirred overnight. The black suspension was then filtered through a Celite plug, the filtered solution was washed with ethyl acetate, and the solution was evaporated under reduced pressure to provide a light yellow oil. The oil was then dissolved in anhydrous THF (50 mL) and this solution was added to a refluxing solution of anhydrous THF (500 mL) over ten hours to effect
intramolecular cyclization. Upon completion of addition, the reaction was refluxed for an additional two hours, then allowed to cool to room temperature and concentrated to a yellow oil. Column chromatography on silica gel (1:1 hexanes/ethyl acetate) afforded 28 as a colourless oil (1.57 g, 16.1 mmol, 62%). The 1H NMR spectrum [(400 MHz, CDCl$_3$): δ 4.59 (t, $J = 6.0$ Hz, 2H), 3.57 (s, 2H), 2.73 (t, $J = 6.0$ Hz, 2H)] matched the previously reported 1H NMR spectrum.27

3-Diazo-3,6-dihydro-2H-pyran-2-one (31) [Scheme 2.10]: A solution of 28 (0.23 g, 2.0 mmol) and mesyl azide (0.24 g, 2.0 mmol) in acetonitrile (20 mL) was cooled to 0 °C, after which triethylamine (0.28 mL, 2.0 mmol) was added, causing the reaction mixture to turn dark red. Twenty minutes after addition of triethylamine, the reaction mixture was concentrated under reduced pressure and filtered through a plug of silica gel (1:1 hexanes/ethyl acetate) to afford 29 as a yellow oil (0.19 g, 1.8 mmol, 90%). 1H NMR (400 MHz, CDCl$_3$): δ 4.49 (t, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H); IR cm$^{-1}$. A solution of 29 (0.19 g, 1.8 mmol) in anhydrous THF (10 mL) was stirred at 0 °C, and a THF solution of LiAlH(tBuO)$_3$ (1.8 mL, 1 M, 1.8 mmol) was slowly added. The resulting solution was warmed to room temperature and stirred overnight, after which it was cooled to 0 °C and quenched by the addition of water (10 mL). The reaction mixture was extracted three times with dichloromethane, the combined organic layer was dried over anhydrous MgSO$_4$ and filtered, then the organic solution was concentrated under reduced pressure to afford the alcohol 30 (40 mg) as a crude yellow oil. The unpurified alcohol was dissolved in anhydrous dichloromethane (5 mL),
triethylamine (1.2 mL, 8.0 mmol) was added, and the solution was cooled to 0 °C. A solution of POCl₃ (0.28 mL, 3.0 mmol) in anhydrous dichloromethane (2 mL) was added to the solution over 30 min, after which the solution was allowed to warm to room temperature overnight. The reaction was poured onto ice-water and the aqueous phase was extracted three times with dichloromethane. The combined organic extract was washed with brine and dried over anhydrous MgSO₄. Column chromatography on silica gel (1:1 ethyl acetate/hexanes) afforded 31 as an orange solid (27 mg, 0.22 mmol, 14% yield from 29): mp 60 °C; ¹H NMR (400 MHz, CD₂Cl₂): δ 6.30 (dt, J = 9.8, 1.8 Hz, 1H), 5.41 (td, J = 9.8, 3.5 Hz, 1H), 4.96 (dd, J = 3.5, 1.8 Hz, 2H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 165.2, 115.0, 113.8, 70.8 (C=N₂ missing); IR (neat) 3073, 2882, 2098, 1668 cm⁻¹; HRMS (EI) calcd for C₅H₄N₂O₂ 124.0273, found 124.0275 (M+).

3-Diazo-3,6-dihydro-2H-pyran-2-one (31) [Scheme 2.11]: A solution of 3,5-dihydro-pyran-2-one (0.38 mL, 4.1 mmol) in acetonitrile (25 mL) was stirred in a round bottom flask at 0 °C. p-ABSA (19) (1.23 g, 5.1 mmol) and DBU (0.77 mL, 5.1 mmol) were added to the stirred solution. After three hours, the resulting brown solution was evaporated to a thick oil, which was purified via flash chromatography on silica gel (2:1 hexanes/ethyl acetate), eluting 31 as a bright yellow band. Fractions were evaporated and dried under vacuum to yield 31 as an orange solid (0.24 g, 1.9 mmol, 47%). Characterization data for 31 described in experimental of Scheme 2.10.
6,7-Dihydrooxepin-2(5H)-one (34): N,N-Diisopropylamine (4.8 mL, 34 mmol) was stirred in anhydrous THF (100 mL) at -78 °C under a nitrogen atmosphere in a flame dried round bottom flask. A hexane solution of nBuLi (12 mL, 31 mmol, 2.5 M) was slowly added, and the solution was stirred for 15 minutes. ε-Caprolactone 33 (3.0 mL, 28 mmol) in a solution of THF (10 mL) was slowly added. Upon completion of addition, the resulting yellow solution was stirred for 30 minutes. A solution of phenylselenyl bromide (6.67 g, 28 mmol) in THF (10 mL) was then quickly added, and the yellow solution was stirred for 15 minutes, at which time it was removed from the bath, allowed to warm to room temperature, and quenched by the addition of water (10 mL). Approximately two thirds of the solvent was removed under reduced pressure, and diluted with water (100 mL). The reaction mixture was extracted three times with diethyl ether (60 mL), then the combined organic extract was washed with brine (30 mL) and dried over anhydrous MgSO₄. The solution was concentrated to a red oil and purified by column chromatography on silica gel (2:1 hexanes/ethyl acetate) to provide the selenide as a clear oil (2.57 g, 9.5 mmol, 34% yield). The ¹H NMR spectrum [(400 MHz, CDCl₃) δ 7.63-7.58 (comp, 2H), 7.34-7.28 (comp, 3H), 4.60-4.54 (m 1H), 4.32-4.21 (comp, 2H), 2.20-1.60 (comp, 6H)] matched that previously reported. The selenide (2.57 g, 9.6 mmol) was then stirred in dichloromethane (25 mL) at 0 °C, and m-CPBA (3.28 g, 14.3 mmol) in a solution of dichloromethane (10 mL) was added. The reaction mixture was allowed to warm to room temperature and stir for 3 h, over which time a white solid precipitated. Saturated NaHCO₃(aq) (30 mL) was added, the phases were
separated, and the aqueous phase was extracted two times with dichloromethane (30 mL each). The combined organic extract was washed with water (40 mL) and brine (30 mL), then dried over anhydrous MgSO₄. The mixture was filtered and evaporated under reduced pressure to a yellow oil which was purified via column chromatography on silica gel (1:1 hexanes/ethyl acetate) to provide 34 as a clear oil (0.30 g, 2.7 mmol, 28% yield from selenide). The ¹H NMR spectrum [(400 MHz, CDCl₃) δ 6.42 (dt, J = 12.5, 4.7 Hz, 1H), 6.00 (td, J = 12.5, 1.6 Hz, 1H), 4.31-4.27 (comp, 2H), 2.55-2.49 (comp, 2H), 2.16-2.10 (comp, 2H)] matched that previously reported.²⁸

3-Diazo-6,7-dihydrooxepin-2(3H)-one (35): Prepared following the general procedure in experimental of Scheme 2.11: orange oil (0.13 g, 0.93 mmol, 44%); mp 63-65 °C; ¹H NMR (400 MHz, CD₃CN) δ 5.79 (dt, J = 11.5, 1.8 Hz, 1H), 5.50 (dt, J = 11.5, 4.8 Hz, 1H), 4.45-4.33 (comp, 2H), 2.53-2.47 (comp, 2H); ¹³C NMR (100 MHz, CD₃CN) δ 170.7, 123.4, 113.3, 68.2, 31.0 (C=N₂ missing); IR (neat) 2900, 2089, 1658 cm⁻¹. HRMS-EI [M]⁺ calcd for C₆H₆N₂O₂ 138.0429, found 138.0436.

2-Phenylbut-3-en-1-ol (40): Styrene oxide (3.0 mL, 26 mmol) was stirred in anhydrous THF (80 mL) in a flame dried round bottom flask under a nitrogen atmosphere at 0 °C. A THF solution of vinylmagnesium bromide (30 mL, 27 mmol, 0.87 M) was added over 30 minutes, and the resulting brown solution was
allowed to warm to room temperature. Four hours after addition of vinylmagnesium bromide was complete, the reaction mixture was cooled to 0 °C and quenched with 1M HCl(aq) (10 mL). Approximately two-thirds of the solvent was removed under reduced pressure, then the solution was diluted with water (80 mL) and extracted three times with diethyl ether (50 mL). The combined organic extract was washed with water (40 mL), brine (40 mL), and dried over anhydrous MgSO₄. The mixture was filtered and concentrated to a brown oil under reduced pressure, column chromatography on silica gel (5:1 hexanes/ethyl acetate) provided the alcohol 40 as a clear oil (0.86 g, 5.7 mmol, 22%). The 1H NMR spectrum [(400 MHz, CDCl₃) δ 7.35-7.15 (comp, 5H), 5.99 (ddd, $J = 17.9, 10.3, 7.6$ Hz, 1H), 5.21-5.10 (comp, 2H), λ 3.79 (dd, $J = 7.2, 1.2$ Hz, 2H), 3.50 (q, $J = 7.6$ Hz, 1H) 1.76 (br s, 1H)] matched that previously reported.⁴¹

2-Phenylbut-3-en-1-yl acrylate (41): Alcohol 40 (0.86 g, 5.8 mmol), acrylic acid (0.62 mL, 8.9 mmol), and several crystals of DMAP were stirred in anhydrous dichloromethane (60 mL) under a nitrogen atmosphere in a flame-dried round bottom flask at 0 °C. A solution of DCC (1.68 g, 7.1 mmol) in dichloromethane (10 mL) was added over 30 minutes, and the reaction was allowed to warm the room temperature overnight. The white suspension which had formed was filtered through a Celite filter pad, washing three times with dichloromethane (20 mL). The filtrate was washed with saturated NaHCO₃(aq) (40 mL), water (40 mL), brine (30 mL) and dried over anhydrous MgSO₄. The combined organic extract
was concentrated to a clear oil under reduced pressure and purified by column chromatography on silica gel (6:1 hexanes/ethyl acetate), providing 41 as a clear oil (0.52 g, 2.6 mmol, 57%). 1H NMR (400 MHz, CDCl$_3$) δ 7.33-7.20 (comp, 5H), 6.34 (dd, $J = 17.2$, 1.4 Hz, 1H), 6.06 (dd, $J = 17.4$, 10.5 Hz, 1H); 6.00 (ddd, $J = 17.2$, 10.4, 7.3 Hz, 1H), 5.76 (dd, $J = 10.4$, 1.5, 1H), 5.18-5.10 (comp, 2H), 4.43 (dd, $J = 10.9$, 7.7 Hz, 1H), 4.37 (dd, $J = 10.9$, 6.9 Hz, 1H), 3.72 (fortuitous q, $J = 7.3$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 166.0, 140.3, 137.8, 130.9, 128.7, 128.4, 128.0, 127.0, 116.8, 67.0, 48.7; IR (neat) 3030, 2983, 1722 cm$^{-1}$; HRMS (EI) calcd for C$_{13}$H$_{14}$O$_2$ 202.0994, found 202.0990 (M+).

5-Phenyl-5,6-dihydro-2H-pyran-2-one (43): A solution of 41 (0.30 g, 2.9 mmol) in anhydrous dichloromethane (100 mL) was stirred under a nitrogen atmosphere. Grubbs' catalyst 42 (24 mg, 0.04 mmol) was added, and the reaction mixture was heated to reflux. After 6h, the light brown solution was concentrated under reduced pressure and purified by column chromatography on silica gel (4:1 hexanes/ethyl acetate), providing 43 as a clear oil (0.23 g, 2.6 mmol, 91%); 1H NMR (400 MHz, CDCl$_3$) δ 7.39-7.22 (comp, 5H), 6.98 (ddd, $J = 9.9$, 3.4, 1.3 Hz, 1H), 6.16 (dd, $J = 9.9$, 2.3 Hz, 1H), 4.56 (ddd, $J = 11.2$, 5.5, 1.3 Hz, 1H), 4.31 (dd, $J = 11.2$, 9.0 Hz, 1H), 3.89-3.84 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 163.2, 148.8, 137.1, 129.0, 127.9, 127.7, 121.2, 72.1, 40.2; IR (neat) 3030, 2893, 1730 cm$^{-1}$. 43 was submitted for HRMS, however no signals could be obtained which correspond to the expected m/z.
3-Diazo-5-phenyl-3,6-dihydro-2H-pyran-2-one (44): Prepared following general procedure described in experimental of Scheme 2.11: orange oil (0.15 g, 0.74 mmol, 39%); 113-115 °C; 1H NMR [400 MHz, (CD$_3$)$_2$CO] δ 7.60-7.30 (comp, 5H), 6.99 (t, $J = 1.2$ Hz, 1H), 5.42 (d, $J = 1.2$ Hz, 2H); 13C NMR [100 MHz, (CD$_3$)$_2$CO] δ 165.1, 137.1, 130.4, 129.3, 125.8, 125.3, 110.3, 71.9 (C=N 2 missing); IR (neat) 2924, 2085, 1685 cm$^{-1}$; HRMS-EI: [M]$^+$ calcd. for C$_{11}$H$_8$N$_2$O$_2$ 200.0516, found 200.0586.

Dihydro-2H-pyran-2,4(3H)-dione (47): An oven dried 500 mL round bottom flask under a nitrogen atmosphere was charged with a 60 wt% mineral suspension of NaH (3.61 g, 90 mmol). The mineral suspension was washed with pentanes three times (10 mL), each time removing the solvent via cannula filtration. Anhydrous THF (200 mL) was added to the flask, which was then cooled to 0 °C. The white suspension was stirred vigorously, and methyl acetoacetate (8.6 mL, 80 mmol) was added dropwise. Upon completion of addition the reaction mixture was stirred for a further 10 minutes, during which time the white suspension turned to a clear light yellow solution. A hexane solution of n-BuLi (32 mL, 80 mmol, 2.5 M) was added dropwise, the reaction mixture turned to a dark red colour. After stirring a further ten minutes, acetone (5.9 mL, 80 mmol) was added all at once, causing the reaction solution to rapidly turn to a dark yellow solution. After ten minutes, NaOH aq (80 mL, 200 mmol, 2.5 M) was added and the reaction solution was warmed to room temperature and allowed to stir overnight. The rapidly stirring biphasic reaction mixture was acidified with 2.5 M
HCl\textsubscript{aq} to pH 7. Diethyl ether (200 mL) was added, and the layers were separated. Two further extractions with diethyl ether (200 mL each) were performed upon the aqueous layer, the combined organic phases were washed with brine (80 mL) and dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}. The mixture was filtered and evaporated under reduced pressure to an orange oil. Recrystallization was performed by dissolving the crude oil in a minimal volume of dichloromethane and slowly adding pentanes. After cooling in a fridge overnight, the resulting crystals were isolated by filtration, washing three times with pentanes (10 mL) to provide 47 as a light yellow crystalline solid (4.21 g, 36 mmol, 37%). The 1H NMR spectrum [(400 MHz, CDCl\textsubscript{3}) δ 3.43 (s, 2H), 2.70 (s, 2H), 1.51 (s, 6H)] matched the previously reported 1H NMR spectrum.30

Reaction of 47 with PCl\textsubscript{5}: To a flame dried round bottom flask was added anhydrous dichloromethane (15 mL), followed by PCl\textsubscript{5} (0.91 g, 4.4 mmol). The solution was stirred at 0 °C under a nitrogen atmosphere, and ketone 47 (0.26 g, 1.8 mmol) was added. The yellow solution was removed from the ice bath and heated to reflux. After one hour, the light yellow solution was cooled to 0 °C, and water (10 mL) was added to quench the reaction. The solvent layers were separated, and the organic phase was washed with water (10 mL), brine (10 mL), and dried over anhydrous MgSO\textsubscript{4}. The mixture was filtered, and the filtrate was evaporated to a yellow oil by rotary evaporation. The resulting yellow oil was filtered through a short plug of silica gel (2:1 hexanes/ethyl acetate) to provide a white crystalline solid tentatively identified by 1H and 13C NMR spectroscopy as
tert-Butyl 6-oxo-3,6-dihydropyridine-1(2H)-carboxylate (51): N-Boc valerolactam 50 (1.50 g, 7.5 mmol) was added to stirring anhydrous THF (50 mL) in a flame dried round bottom flask under a nitrogen atmosphere at -78 °C. A THF solution of LHMDS (8.3 mL, 8.3 mmol, 1.0 M) was added dropwise and stirred for an additional 30 minutes, at which point a solution of phenylselenyl bromide (1.42 g, 8.5 mmol) in THF (10 mL) was rapidly added. The resulting clear orange reaction solution was stirred 15 minutes, then warmed to room temperature and quenched with water. Approximately two-thirds of the solvent was removed under reduced pressure, and the solution was diluted with water (60 mL). The solution was extracted three times with diethyl ether (50 mL each), and the combined organic extract was washed with water (40 mL), brine (40 mL), and dried over anhydrous MgSO₄. The mixture was filtered and concentrated under reduced pressure to produce an orange oil. Column chromatography on silica gel (4:1 hexanes/ethyl acetate) provided the desired selenide as a yellow oil (2.15 g, 6.07 mmol, 81%). The ¹H NMR spectrum (400 MHz, CDCl₃) δ 7.66-7.62 (comp, 2H), 7.33-7.22 (comp, 3H), 3.98 (t, J = 5.8 Hz, 1H), 3.72-3.57 (comp, 2H), 2.27-2.73 (comp, 4H), 1.53 (s, 9H) is consistent with the desired selenide.

The selenide (2.09 g, 5.9 mmol) was then stirred in dichloromethane (15 mL) at 0 °C, m-CPBA (2.02 g, 9.0 mmol) in a solution of dichloromethane (10 mL) was
added, and the solution was allowed to warm to room temperature and stir for 3 h, over which time a white solid precipitated. Saturated NaHCO$_3$(aq) (30 mL) was added, the aqueous and organic phases were separated and the aqueous layer was extracted a further two times with dichloromethane (30 mL each). The combined organic extract was washed with water (40 mL) and brine (30 mL), then dried over anhydrous MgSO$_4$. The solution was filtered and evaporated under reduced pressure to produce a colorless oil, which was purified via column chromatography on silica gel (4:1 hexanes/ethyl acetate) to provide 51 as a clear oil (0.80 g, 4.1 mmol, 69% yield from selenide). The 1H NMR spectrum [(400 MHz, CDCl$_3$) δ 6.78 (dt, $J = 9.9$, 4.2 Hz, 1H), 5.98 (dt, $J = 9.9$, 1.8 Hz, 1H), 3.86 (t, $J = 6.4$ Hz, 2H), 1.55 (s, 9H)] matched the previously reported 1H NMR spectrum.42

tert-Butyl 3-diazo-2-oxo-3,6-dihydropyridine-1(2H)-carboxylate (52):

Prepared following the general procedure described for Scheme 2.11: orange oil (0.18 g, 0.42 mmol, 52%); 1H NMR (400 MHz, CD$_3$CN) δ 6.21 (dt, $J = 9.9$, 1.9 Hz, 1H), 5.35 (dt, $J = 9.9$, 3.9 Hz, 1H), 4.30 (dd, $J = 3.9$, 1.9 Hz, 2H), 1.48 (s, 9H); 13C NMR (100 MHz, CD$_3$CN) δ 163.9, 152.4, 115.2, 113.5, 83.4, 48.2, 28.1 (C = N$_2$ missing); IR (neat) 2979, 2086, 1717, 1674 cm$^{-1}$; HRMS-ES [M+H]$^+$ calcd for C$_{10}$H$_{14}$N$_3$O$_3$ 224.1035, found 224.1029.

1-Methyl-5,6-dihydropyridin-2(1H)-one (55): The lactam 53 (1.5 mL, 13 mmol) was added to anhydrous THF (120 mL) stirring in a flame dried round bottom
flask under a nitrogen atmosphere at -78 °C. A THF solution of LHMDS (31 mL, 31 mmol, 1.0 M) was added dropwise and stirred for 30 minutes, at which point a solution of phenylselenyl chloride (1.42 g, 8.5 mmol) in THF (20 mL) was quickly added. The resulting clear orange reaction solution was stirred 15 minutes, then warmed to room temperature, and water was added. Approximately two-thirds of the solvent was removed by reduced pressure and solution was diluted with water (100 mL). The mixture was extracted three times with diethyl ether (70 mL each); and the combined organic extract was washed with water (60 mL), brine (40 mL), and dried over anhydrous MgSO₄. The mixture was filtered and concentrated under reduced pressure to an orange oil. The orange oil was purified by column chromatography on silica gel (2:1 hexanes/ethyl acetate) provided the desired selenide 54 as a colourless oil (3.30 g, 12.3 mmol, 90%). The ¹H NMR spectrum of selenide 54 [(400 MHz, CDCl₃) δ 7.69-7.66 (comp, 2H), 7.31-7.26 (comp, 3H), 4.02 (t, J = 5.0 Hz, 1H), 3.27 (t, J = 5.7 Hz, 2H), 2.93 (s, 3H), 2.13-1.69 (comp, 4H)] is consistent with the desired selenide. The selenide (3.25 g, 12.1 mmol) was then stirred in dichloromethane (50 mL) at 0 °C, m-CPBA (4.08 g, 77 wt%, 18.3 mmol) in a solution of dichloromethane (10 mL) was added; and the reaction was allowed to warm to room temperature and stir for three hours, over which time a white suspension formed. Saturated NaHCO₃(aq) (60 mL) was added and the phases were separated; the aqueous phase was extracted two times with dichloromethane (60 mL each). The combined organic extract was washed with water (50 mL) and brine (30 mL), then dried over anhydrous MgSO₄. The mixture was filtered and evaporated under reduced
pressure to a clear oil, which was purified via column chromatography on silica gel (1:1 hexanes/ethyl acetate) to provide 55 as a light yellow oil (1.20 g, 10.8 mmol, 89% yield from 54). The 1H NMR spectrum [(400 MHz, CDCl$_3$) δ 6.54 (dt, J = 9.9, 4.2 Hz, 1H), 5.92 (dt, J = 9.9, 1.8 Hz, 1H), 3.42 (t, J = 7.4 Hz, 2H), 2.99 (s, 3H), 2.42-2.37 (comp, 2H)] matched the previously reported 1H NMR spectrum.42

2-Diazocyclohexane-1,3-dione (61): Following a procedure reported by Moriarty and coworkers,43 a THF (80 mL) solution of 60 (13.50 g, 120 mmol), mesyl azide (15.96 g, 132 mmol) was stirred in a round bottom flask at 0 $^\circ$C. Triethylamine (18 mL, 130 mmol) was added in one portion, rapidly turning the light yellow solution dark red. After 20 min, the resulting dark brown suspension was diluted with water (150 mL) and extracted three times with diethyl ether (80 mL). The combined organic extract was washed with brine (50 mL) and dried over anhydrous MgSO$_4$. The mixture was filtered and concentrated under reduced pressure to a brown oil, then passed through a plug of silica gel (2:1 hexanes/ethyl acetate). The diazo compound 61 eluted as a yellow band (14.23 g, 103 mmol, 86%). The 1H NMR spectrum [(400 MHz, CDCl$_3$) δ 6.20 (dt, J = 10.0, 1.8 Hz, 1H), 5.38 (td, J = 3.3, 10.0 Hz, 1H), 4.99 (dd, J = 3.3, 1.8 Hz, 2H)] matches that previously reported.

2-Diazocyclohex-3-en-1-one (59): The diazo compound 61 (4.12 g, 30 mmol) was vigorously stirred in methanol (75 mL), and a solution of NaBH$_4$ (0.39 g, 10
mmol) in water (10 mL) was added rapidly. After 5 minutes, the reaction solution was diluted with water (200 mL) and extracted three times with diethyl ether (80 mL each). The combined organic extracts were washed with water (50 mL), brine (50 mL), and dried over anhydrous MgSO₄. The mixture was filtered and concentrated by reduced pressure to a yellow oil (0.22 g). The crude alcohol was not further purified, but immediately subjected to dehydration conditions. The yellow oil (0.22 g) was stirred in anhydrous dichloromethane (30 mL each) with triethylamine (0.90 mL, 6.4 mmol) in a flame dried round bottom flask at 0 °C under a nitrogen atmosphere. A solution of POCl₃ (0.22 mL, 2.4 mmol) in anhydrous dichloromethane (5 mL) was added over 30 min, after which the reaction mixture was allowed to warm to room temperature overnight. The resulting brown reaction solution was quenched by pouring the reaction solution onto ice-water. After extracting three times with dichloromethane (30 mL each) from the aqueous phase, the combined extract was washed with brine (20 mL) and dried over anhydrous MgSO₄. Column chromatography on silica gel (2:1 ethyl acetate/hexanes) afforded 59 as an orange oil (0.13 g, 1.1 mmol, 3% yield from 61): ¹H NMR (400 MHz, CD₃CN) δ 6.24 (br d, J = 9.8 Hz, 1H), 5.55-5.50 (m, 1H), 2.48-2.44 (comp, 4H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 194.7, 120.6, 114.5, 37.0, 23.8 (C = N₂ missing); IR (neat) 3056, 2958, 2086, 1684 cm⁻¹. No m/z consistent with 59 observed in HRMS.
References:

(26) Personal communication with Ming Yan and Yuanhua Wang.
CHAPTER 3

ASYMMETRIC CYCLOPROPANATION AND C-H INSERTION REACTIONS OF ENDOCYCLIC VINYLDIAZOCARBONYL COMPOUNDS

I. BACKGROUND

As was described in the preceding chapter, a series of endocyclic vinyldiazocarbonyls (1-5) were prepared to evaluate their utility in asymmetric carbene reactions. Having secured a supply of endocyclic vinyldiazocarbonyl compounds, we turned our attention to evaluating their utility in catalytic asymmetric metal carbene chemistry. Intermolecular C—H insertion and cyclopropanation reactions have formed associated products in good yields and high enantiomeric excess with acyclic metal vinylcarbenes.1-4 Our investigations of endocyclic metal vinylcarbenes were therefore focused upon cyclopropanation and C—H insertion reactions. Of particular interest to us was whether the catalyst \(\text{Rh}_2(S\text{-DOSP})_4 \) (6)5 would provide similar levels of enantioselectivity in reactions with endocyclic vinylcarbenes as is observed with acyclic vinyldiazoacetates (commonly >90% ee in intermolecular cyclopropanation and
C—H insertion reactions). Preliminary results of this study have recently been accepted for publication.\(^6\)

Figure 3.1. Endocyclic vinyl diazocarbonyl compounds.

1. \[\text{Structure 1} \]
2. \[\text{Structure 2} \]
3. \[\text{Structure 3} \]
4. \[\text{Structure 4} \]
5. \[\text{Structure 5} \]
Figure 3.2. Asymmetric dirhodium catalysts.

\[
\text{Ar} = \rho-(C_{12}H_{25})C_6H_4 \\
\text{Rh}_2(S-\text{DOSP})_4 \quad (6)
\]

\[
\text{Rh}_2(S-\text{PTPA})_4 \quad (7)
\]

\[
\text{CO}_2\text{Me}
\]

\[
\text{X} = \text{CH}_2 \quad \text{Rh}_2(S-\text{MEPY})_4 \quad (8a) \\
\text{X} = \text{O} \quad \text{Rh}_2(S-\text{MEOX})_4 \quad (8b) \\
\text{X} = \text{NCOCH}_2\text{Bn} \quad \text{Rh}_2(S-\text{MPPIM})_4 \quad (8c)
\]

\[
\text{OR}
\]

\[
\text{R=Me} \quad \text{Rh}_2(S-\text{MEAZ})_4 \quad (9a) \\
\text{R=\text{i-}Bu} \quad \text{Rh}_2(S-\text{IBAZ})_4 \quad (9b) \\
\text{R=\text{i-}menthyl} \quad \text{Rh}_2(S,S-\text{MenthAZ})_4 \quad (9c) \\
\text{R=\text{d-}menthyl} \quad \text{Rh}_2(S,R-\text{MenthAZ})_4 \quad (9d)
\]
II. RESULTS AND DISCUSSION

Asymmetric Cyclopropanation of Endocyclic Vinyl Diazocarbonyl Compounds

Catalyst screening in the cyclopropanation of styrene by 1. Initial studies of the reactivity of endocyclic vinyl Diazocarbonyl compounds focused on screening asymmetric dirhodium catalysts in the cyclopropanation of styrene by the endocyclic vinyl Diazocarbonyl compounds. Carboxylate5,7 and carboxamidate$^{8-11}$ ligated asymmetric dirhodium catalysts, which have provided high levels of enantioselectivity in metal carbene cyclopropanation and C—H insertion reactions, were selected for this purpose. All reactions were run in dichloromethane; carboxamidate ligated catalysts were used in refluxing dichloromethane, while reactions of the more reactive carboxylate ligated catalysts were performed at room temperature. Reaction solutions were degassed with N$_2$(g) prior to addition of 1 in all cases. In the initial catalyst screen, a dichloromethane solution of the vinyl Diazolactone 1 was added to five equivalents of styrene and 1 mol% of catalyst over eight hours. The diastereoselectivity and enantioselectivity of the cyclopropanation reactions were determined by 1H NMR and GC, respectively, upon filtration of the reaction solution over silica gel and evaporation of the solution to an oil. Upon purification of 10, NOE experiments (see experimental) show the major diastereomer of 10 to be E-10. Analysis of each reaction by 1H NMR spectral analysis prior to
purification of \textit{E-10} showed \textit{E-10} to be the only observable cyclopropane diastereomer, leading us to assign the diastereomeric ratio of \textit{10} as >20:1.

\begin{table}[h]
\centering
\caption{Catalyst Screen for Cyclopropanation of Styrene with 1.a}
\begin{tabular}{llll}
\hline
Rh\textsubscript{2}L\textsubscript{4} & Temperature & Yield (%) & ee (%)b \\
\hline
Rh\textsubscript{2}(OAc)\textsubscript{4} & rt & 60 & - \\
Rh\textsubscript{2}(S-DOSP)\textsubscript{4} (6) & rt & 60 & 14 \\
Rh\textsubscript{2}(S-PTPA)\textsubscript{4} (7) & rt & 78 & 23 \\
Rh\textsubscript{2}(S-MEPY)\textsubscript{4} (8a) & reflux & 69 & 10 \\
Rh\textsubscript{2}(S-MEOX)\textsubscript{4} (8b) & reflux & 63 & 6 \\
Rh\textsubscript{2}(S-MPPIM)\textsubscript{4} (8c) & reflux & 55 & 10 \\
Rh\textsubscript{2}(S-MEAZ)\textsubscript{4} (9a) & reflux & 76 & 64 \\
Rh\textsubscript{2}(S-IBAZ)\textsubscript{4} (9b) & reflux & 78 & 65 \\
Rh\textsubscript{2}(S,S-MenthAZ)\textsubscript{4} (9c) & reflux & 71 & 82 \\
Rh\textsubscript{2}(S,R-MenthAZ)\textsubscript{4} (9d) & reflux & 80 & 84 \\
\hline
\end{tabular}
a To a dichloromethane solution of 5 equiv styrene and 1 mol\% catalyst at the indicated temperature was added a solution of 1 over 8 h. \\
b %ee of 10 determined by GC.
\end{table}

It was immediately apparent that the carboxylate ligated catalyst Rh\textsubscript{2}(S-DOSP)\textsubscript{4} (6), in almost all cases the optimal catalyst in asymmetric reactions of donor/acceptor substituted diazo compounds,5 does not provide good levels of
asymmetric induction in the cyclopropanation of 1 by styrene. Only a low level of
asymmetric induction was obtained, with 14% ee being measured for
cyclopropane 10. Although dichloromethane is not the optimal solvent for
obtaining high levels of enantiomeric excess with Rh₂(S-DOSP)₄ (6),
vinyldiazolactone 1 is insoluble in nonpolar solvents such as pentanes and
cyclohexanes. The inability to perform the cyclopropanation under solvent
conditions generally recognized as optimal for Rh₂(S-DOSP)₄ (6) lends
uncertainty to how direct a comparison may be drawn between the performance
of Rh₂(S-DOSP)₄ (6) in reactions of acyclic vinyldiazoacetates versus
vinyldiazolactone 1. The carboxylate ligated catalyst Rh₂(S-PTPA)₄ (7) also
provided 10 with poor enantioselectivity.

The commonly used carboxamidate ligated catalysts Rh₂(S-MEPY)₄ (8a),
Rh₂(S-MEOX)₄ (8b), and Rh₂(S-MPPIM)₄ (8c) provided low levels of
enantioselectivity. Upon use of the azetidinate ligated catalyst Rh₂(S-MEAZ)₄
(9a), however, a substantial increase in enantioselectivity was observed;
cyclopropane 10 was obtained with 66% ee. The increase in enantioselectivity
obtained using the azetidinate ligated catalyst Rh₂(S-MEAZ)₄ (9a) in comparison
to Rh₂(S-MEPY)₄ (8a) was surprising to us in view of previous studies of
asymmetric dirhodium catalysts. In a previous study of intramolecular
cyclopropanation and C—H insertion reactions of the diazoacetate 11, the
azetidinate ligated catalyst Rh₂(S-IBAZ)₄ (9b) provided 12 in 50% ee, in
comparison to the 95% ee obtained with Rh₂(S-MEPY)₄ (6a).
With the increased enantioselectivity of \(10\) obtained with \(\text{Rh}_2(\text{S-MEAZ})_4\) (9a), we investigated other azetidinate ligated dirhodium catalysts available to us. The azetidinate ligated catalyst \(\text{Rh}_2(\text{S-IBAZ})_4\) (9b) provided an enantiomeric excess comparable to that of \(\text{Rh}_2(\text{S-MEAZ})_4\) (9a). The diastereomeric catalysts \(\text{Rh}_2(\text{S,S-MenthAZ})_4\) (9c) and \(\text{Rh}_2(\text{S,R-MenthAZ})_4\) (9d), however, increased the enantioselectivity of \(10\) to 80% and 84% ee, respectively. The isolated yields obtained with catalysts \(\text{Rh}_2(\text{S,S-MenthAZ})_4\) (9c) and \(\text{Rh}_2(\text{S,R-MenthAZ})_4\) (9d) were comparable to all other catalysts utilized. Previous studies of asymmetric cyclopropanation reactions of diazoacetates catalyzed by \(\text{Rh}_2(\text{S,S-MenthAZ})_4\) (9c) and \(\text{Rh}_2(\text{S,R-MenthAZ})_4\) (9d) have shown the diastereomer \(\text{Rh}_2(\text{S,R-MenthAZ})_4\) (9d) typically provides the highest levels of enantioselectivity, though the differences in enantioselectivities were modest. In the cyclopropanation of \(1\) with styrene, there is no appreciable difference in asymmetric induction between the two catalysts.
The study of the asymmetric cyclopropanation of styrene with vinylidiazolactone 1 using a series of dirhodium catalysts demonstrated that only the azetidinate ligated dirhodium catalysts provided useful levels of asymmetric induction (>80% ee for 10). The results of the catalyst screen in Table 3.1 have been reproduced within our research group by a colleague, Kou-Hui Wu.14 Further asymmetric cyclopropanation reactions of endocyclic vinylidiazocarbonyl compounds 1-5 and a range of olefins focused upon the use of the catalyst Rh\textsubscript{2}(S,R-MenthAZ\textsubscript{4}) (9d).

Reaction conditions for cyclopropanation of styrene with vinylidiazolactone 1. In the initial catalyst screen, a dichloromethane solution of the vinylidiazolactone 1 was added over eight hours to a solution of styrene and catalyst in refluxing dichloromethane. Throughout the course of the catalyst screening study and in subsequent reactions, exposure of the reaction mixture to air was observed to cause a rapid color change in the reaction solution. A reaction solution of the dirhodium catalyst Rh\textsubscript{2}(S,R-MenthAZ\textsubscript{4}) (9d), for example, turns rapidly from a light purple solution to a brown solution within minutes if the reaction is unsealed. If vinylidiazolactone 1 is added subsequent to this color change, further reaction of 1 with the catalyst does not occur, despite refluxing for several hours. All reactions were therefore degassed with nitrogen prior to addition of the vinylidiazolactone and sealed under a nitrogen atmosphere.

The reaction conditions for the cyclopropanation of 1 with styrene had not been optimized for the catalyst screen (Table 3.1). Upon identifying Rh\textsubscript{2}(S,R-
MenthAZ\textsubscript{4} (9d) as providing the cyclopropane 10 in good enantioselectivity and yield, we turned our attention to further investigation of the reaction conditions. In an effort to further increase the enantioselectivity of the cyclopropanation reaction, we repeated the Rh\textsubscript{2}(S,R-MenthAZ)\textsubscript{4} (9d) catalyzed reaction at room temperature and 0 °C. All other variables were identical to the conditions described in the catalyst screen. When a dichloromethane solution of vinyldiazolactone 1 was added to a reaction solution at room temperature over ten hours, cyclopropane 10 formed in low, highly variable yields (less than 30%). In several instances, the formation of 10 was not observed, and vinyldiazolactone 1 failed to react with the catalyst. Cooling the solution at 0 °C resulted in no reaction of 1 with the dirhodium catalyst.

The slow addition of the diazo compound to a reaction solution is commonly used in reactions of acceptor substituted diazo compounds to prevent the reaction of the diazo compounds and carbene intermediates. Donor/acceptor substituted diazo compounds do not readily dimerize, and the use of slow addition of the diazo compound to the catalyst solution is typically not required,15 although exceptions do exist.16-18 All reactions to this point were performed by slow addition of a dichloromethane solution of vinyldiazolactone 1 to the reaction solution; however, it was not known if this was in fact required. A cyclopropanation reaction of 1 and styrene was performed with Rh\textsubscript{2}(S,R-MenthAZ)\textsubscript{4} (9d) in refluxing dichloromethane in which a dichloromethane solution of 1 was added all at once, as opposed to over eight hours. When 1 was added all at once, even after ten hours the vinyldiazolactone 1 remained the major
component of the reaction mixture. Analysis of the reaction mixture by 1H NMR and thin layer chromatography showed substantial amounts of 1, with the formation of several minor products (including 10). Components of the reaction solution other than 1 and 10 could not be identified. These results would indicate that if the diazo 1 is not added via slow addition, a reaction product occurs which suppresses the active catalyst species. It is not apparent what this may be, and further attempts were not made to investigate this. All subsequent reactions were performed using the initial conditions (Table 3.1) of slow addition of a diazo compound to a solution of dirhodium catalyst and substrate.

![Scheme 3.2](image)

In evaluating the effect of temperature and rate of addition of 1 to the reaction solution, the initial conditions (Table 3.1) provided the highest yields of 10, with good enantioselectivity obtained using the catalyst $\text{Rh}_2(S,R$-$\text{MenthAZ})_4$ (9d). For all subsequent reactions of endocyclic vinyl diazocarbonyl compounds with olefins, slow addition of the diazo compound to a solution of catalyst and substrate in refluxing dichloromethane as described in the catalyst screen are used as standard reaction conditions.
Cyclopropanation of styrene with endocyclic vinyl diazocarbonyl compounds 1-5. The Rh$_2$(S,R-MenthAZ)$_4$ (9d) catalyzed cyclopropanation of styrene with diazo compounds 1-5 was used to evaluate the generality of endocyclic vinyl diazocarbonyl compounds in asymmetric metal carbene reactions. Reaction conditions used in the cyclopropanation of 1-5 were identical to those described for the catalyst screening of the cyclopropanation of 1 (Table 3.1). As has been previously described, cyclopropane 10 is formed with high diastereoselectivity (>20:1 E:Z) in the reaction of styrene and 1 with Rh$_2$(S,R-MenthAZ)$_4$ (9d), as determined by 1H NMR spectral analysis of the reaction mixture prior to purification of 10. In the reaction of endocyclic vinyl diazocarbonyl compounds 2-5 with styrene, only a single cyclopropane compound was identified by 1H NMR spectral analysis of the reaction mixtures. By analogy to the reaction of 1 and styrene, the diastereoselectivity of the cyclopropane compounds obtained from diazo compounds 2-5 was assigned to be E.
Table 3.2. Cyclopropanation of Styrene with Vinyldiazo Compounds 1-5.a

\[
\text{O} = \text{N}_2 + \text{Ph} = \text{C} \quad \overset{\text{Rh}_2(S,\text{R-MenthAZ})_5 (9\text{d})}{\text{(1 mol\%)} \quad \text{CH}_2\text{Cl}_2, \text{reflux}} \quad \text{O} = \text{C} \quad \overset{\text{Ph}}{\text{10, 13-16}}
\]

<table>
<thead>
<tr>
<th>Diazo</th>
<th>Product</th>
<th>Yield (%)</th>
<th>ee (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O} = \text{N}_2)</td>
<td>(\text{O} = \text{C} \quad \overset{\text{Ph}}{\text{10}})</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>(\text{O} = \text{N}_2)</td>
<td>(\text{O} = \text{C} \quad \overset{\text{Ph}}{\text{13}})</td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>(\text{BocN} = \text{N}_2)</td>
<td>(\text{BocN} = \text{O} \quad \overset{\text{Ph}}{\text{14}})</td>
<td>61</td>
<td>37</td>
</tr>
<tr>
<td>(\text{O} = \text{N}_2)</td>
<td>(\text{O} = \text{C} \quad \overset{\text{Ph}}{\text{15}})</td>
<td>61</td>
<td>39</td>
</tr>
<tr>
<td>(\text{O} = \text{N}_2)</td>
<td>(\text{O} = \text{C} \quad \overset{\text{Ph}}{\text{16}})</td>
<td>30</td>
<td>14</td>
</tr>
</tbody>
</table>

a To a dichloromethane solution of 5 equiv styrene and 1 mol\% catalyst at the indicated temperature was added a solution of diazo compound over 8 h.

b %ee of cyclopropane product determined by GC or HPLC, as described in experimental.
As has been previously described, the $\text{Rh}_2(S,R\text{-MenthAZ})_4$ (9d) cyclopropanation reaction of 1 with styrene proceeds with high isolated yield and enantioselectivity (84% ee). Reaction of vinyldiazoketone 2 under identical reaction conditions provided the cyclopropane 13 in 26% ee,19 indicating that the asymmetric cyclopropanation is highly sensitive to the carbonyl adjacent to the metal carbene.

The observation that the cyclopropanation of vinyldiazoketone 2 proceeds with poor enantioselectivity is consistent with previous research by our group and others in asymmetric intramolecular cyclopropanation reactions of diazocarbonyl compounds.2,20,21 The development of catalytic systems which provide high enantiomeric excesses for metal carbenes derived from diazoketones has proven to be more difficult than the development of effective asymmetric catalysts for metal carbenes generated from diazoacetates.20 A wide variety of asymmetric catalysts (i.e., 6, 8, 9) promote cyclopropanation and C—H insertion reactions with diazoacetates in excellent enantiomeric excesses.22-25 In contrast, asymmetric cyclopropanation and C—H insertion reactions with diazoketones that proceed in good enantiomeric excess are rare (i.e. Scheme 3.3). Although catalyst systems have been reported which provide good levels of enantioselectivity in the asymmetric cyclopropanation and C—H insertion reactions of diazoketone compounds, they have only been shown to be applicable to limited diazoketone compounds and the further examples of their use have not been described since the initial reports.26-31
The general failure of metal carbenes derived from diazoketones to undergo reactions with good levels of enantiomeric excess has been the subject of some speculation.2,21,32 Conformational factors have been implicated in the low levels of enantioselectivity that are typically observed in cyclopropanations of diazoketones. As shown in the proposed transition states \textbf{19a} and \textbf{19b}, carbenes derived from diazoacetates (i.e. \textbf{17a}) are believed to orient the carbonyl \textit{anti} to the metal carbene bond (\textbf{19a}), as opposed to a \textit{syn} orientation with carbenes derived from diazoketones (\textbf{19b}).32 The conformation of carbene \textbf{19b}
results in cyclopropanation occurring at a greater distance from the catalyst as compared to 19a, consequently the catalyst ligands exert considerably less enantiocontrol over 19b. An alternative explanation of the superior enantioselectivities typically obtained with diazoacetate derived metal carbenes proposes that heteroatom resonance with the carbonyl stabilizes the electrophilic metal carbene, leading to improved selectivity.

Cyclopropanation of the lactam 3 also proceeded with poor enantioselectivity; only 37% ee was obtained. Previous research has established that diazoacetamides provide higher enantioselectivities in intramolecular cyclopropanation reactions than analogous diazoacetates (i.e., 20a versus 20b); in view of this, we found the lowered enantioselectivity in the reaction of lactam 3 in comparison to lactone 1 to be surprising. However, all examples of asymmetric diazoacetamide cyclopropanations that we are aware of utilize N,N-dialkyl diazoacetamides such as 20b; the carbamate protecting group of 3 will reduce potential for resonance stabilization of the electrophilic carbene, which may lead to low enantioselectivity.
The vinyldiazolactone 4 is the only substituted endocyclic vinyldiazocarbonyl compound which was used in this study. \(\text{Rh}_2(\text{S-ME} \text{P} \text{Y})_4 \) (9d) catalyzed cyclopropanation of 4 by styrene yields cyclopropane 15 in 39% ee. Purification of the cyclopropane compound 15 was complicated by several reaction byproducts; despite considerable efforts to isolate 15 by column chromatography, analytically pure 15 could not be obtained. Due to the difficulty in the isolation of 15 and the low enantiomeric excess of the cyclopropane product, further reactions with 4 were not carried out.

An enantiomeric excess of 14% was obtained for the cyclopropanation of the seven-membered lactone 5, the reaction of which provided a significant number of uncharacterized byproducts and a low isolated yield of 16. Several
byproducts were observed by 1H NMR of the reaction solution prior to purification. As the cyclopropane product 16 of the vinyl diazolactone 5 was formed in low yield and enantiomeric excess, further investigations of the vinyl diazolactone 5 were not performed.

Scope of olefins in asymmetric cyclopropanation of 1. Having determined that the optimal catalyst in the cyclopropanation of 1 with styrene was Rh$_2$(S,R-MenthAZ)$_4$ (9d), we applied this catalyst to the cyclopropanation of 1 with an expanded series of olefins. Reaction conditions were slightly modified from the conditions used in the catalyst screen of the cyclopropanation of 1 (Table 3.1), the olefin substrates were used at 2.5 equivalents instead of 5 equivalents. Upon completion of the reaction of 1 and an olefin, the reaction solution was filtered through a short plug of silica gel, eluting with dichloromethane, and evaporated to an oil. Analysis of the unpurified oil by 1H NMR allowed the determination of the E:Z selectivity of the cyclopropanation, and analysis by GC or HPLC was used to determine the enantiomeric excess of the cyclopropane product. Isolated yields of the cyclopropane compounds were obtained by purification using column chromatography on silica gel.
Table 3.3. Cyclopropanation of vinylidiazolactone 1.

\[
\text{O} \quad \text{N}_2 + \quad \begin{array}{c} \text{R} \end{array} \quad \begin{array}{c} \text{R} \end{array} \quad \xrightarrow{\text{ Rh}_2(S,R-\text{MenthAZ})_4 (9e)} \quad (1 \text{ mol\%}) \quad \text{CH}_2\text{Cl}_2, \text{ reflux} \quad \text{O} \quad \text{R}'
\]

\[\begin{array}{cccc}
1 & \text{Product} & \text{Yield} & \% \text{ ee (E)} \\
\text{R}^* & & & \\
\text{Ph} & \text{Ph} & 80 & >20:1 & 84 \\
\text{22} & & 68 & >20:1 & 40 \\
\text{Ph} & \text{Ph} & 86 & 5:1 & 73 \\
\text{23} & & 81 & 8:1 & 86 \\
\text{Ph} & \text{Ph} & 74 & >20:1 & 80 \\
\text{25} & & & \\
\end{array}\]

\[\text{To a dichloromethane solution of 5 equiv styrene and 1 mol\% catalyst at the indicated temperature was added a solution of 1 over 8 h.} \quad \text{b Determined by} \quad ^1\text{H NMR spectroscopy.} \quad \text{c Determined by GC or HPLC, as described in experimental.}\]
The reaction of 2.5 equivalents of styrene forms cyclopropane 10 with an enantioselectivity and yield that is comparable to that obtained with 5 equivalents (Table 3.1). The cyclopropanation of indene provides 22 in good yield, although the enantioselectivity is only 40%. Only a single diastereomer of 22 was observed in 1H NMR spectroscopic analysis of the reaction prior to purification. The relative stereochemistry of 22 was determined by NOE (see experimental).

Cyclopropanation of 1-phenyl-1,3-butadiene provides 23 in a 5:1 E:Z ratio, with the enantioselectivity of E-23 measured to be 73% ee. Only the terminal olefin reacted with the metal carbene derived from 1, no cyclopropane products resulting from the reaction of the internal olefin of 1-phenyl-1,3-butadiene were observed by 1H NMR prior to purification of 23. Increasing the steric bulk of the substituent adjacent to the reacting olefin (cyclopropanes 24 and 25) led to increases in enantioselectivity and diastereoselectivity of the cyclopropanation. Although the cyclopropane E,Z diastereomers of 23 and 24 could be separated, the use of multiple columns of silica gel were required.

\[
\textbf{Scheme 3.5.}
\]

Simple alkenes such as 1-hexene are not as reactive toward metal carbenes as are electron rich olefins.34 Consequently, the number of equivalents
of olefin to the diazo compound (1) was increased to ten; despite this, the cyclopropanation reaction with 1-hexene proceeded in low yield. Byproducts were formed that were inseparable from 26 by column chromatography with silica gel, and attempts to purify 26 were discontinued when it became apparent that the yield of 26 would be less than 20%.

Synthetic applications of vinylcyclopropanes. Cis-divinylcyclopropanes are well known to undergo Cope rearrangement to hydroazulenes, a reaction which had seen use in the construction of seven-membered ring carbocycles in the synthesis of natural products. The reaction of vinyl diazoacetates with dienes has provided the most general approach to the construction of cis-divinylcyclopropanes. The use of asymmetric catalysts which can provide the cyclopropane intermediate in an enantioselective fashion result in the formation of the corresponding hydroazulene without loss of enantioselectivity. As is demonstrated by the reaction of 1-phenylbutadiene with vinyl diazoacetate 27, the Cope-rearrangement of the cyclopropane intermediate 28 occurs following cyclopropanation. In some cases, the Cope-rearrangement proceeds at sufficiently slow rates that the cis-divinylcyclopropane intermediate is isolated and subjected to elevated temperatures to promote the Cope rearrangement. For example, in the synthesis of tremulenolide A (33), cyclopropane 31 was isolated upon reaction of 30; only upon heating to 140 °C did the Cope rearrangement proceed to generate the key intermediate 32.
Scheme 3.6.

\[
\text{Ph} - \text{Me} \quad \text{CO}_2\text{Me} \\
\text{Ph} \quad \text{Me} \\
\text{N}_2 \\
\xrightarrow{\text{Rh}_2(\text{S-DOSP})_4 (6)} \quad \text{hexanes, } -78 \, ^\circ\text{C} \\
\text{MeO}_2\text{C} \\
\text{H} \\
\text{MeO}_2\text{C} \\
\text{Ph} \quad \text{Ph} \\
\xrightarrow{\text{140 } \circ\text{C}} \\
\text{CO}_2\text{Me} \\
\text{Ph} \quad \text{Ph} \\
\text{29 (83%)} \quad 98\% \text{ ee}
\]

\[
\text{CO}_2\text{Me} \\
\text{Ph} \quad \text{Ph} \\
\text{N}_2 \\
\xrightarrow{\text{Rh}_2(\text{OOct})_4 \text{ hexanes}} \\
\text{MeO}_2\text{C} \\
\text{OAc} \\
\text{31} \\
\xrightarrow{\text{140 } \circ\text{C}} \\
\text{MeO}_2\text{C} \\
\text{OAc} \\
\text{AcO} \\
\text{32 (49%)}
\]

\[
\text{O} \\
\text{33 (68%)} \\
(+/-) \text{- Tremulenolide A}
\]
In a demonstration of this by Davies, the diastereomeric dienes 34a and 34b are reacted with trans-styryldiazoacetate 27 to provide the hydroazulene diastereomers 35a and 35b, respectively. However, stereoselective preparation of two olefin diastereomers is not always practical or possible (i.e., 1-vinylcyclohexene), limiting the hydroazulene diastereomers which may be obtained with trans-vinyldiazoacetates. Control of the olefin geometry of the vinyldiazoacetate would have the same effect as control of that of the diene; but, as was previously discussed (Chapter 2), reactions of vinyldiazoacetates are generally limited to the trans-vinyldiazoacetate diastereomer. Cope rearrangement of cis-divinylcyclopropanes derived from 1 would provide a diastereoselective substitution at the 3,4-position of the hydroazulene core that is complimentary to that available with trans-vinyldiazoacetates.

Scheme 3.7.

\[
\begin{align*}
\text{Ph-} & \text{C} & \text{H}_2 & \text{C} & \text{O}_2\text{Me} & \stackrel{\text{34a}}{\rightarrow} & \text{CO}_2\text{Me} \\
\begin{array}{c}
\begin{array}{c}
\text{N}_2 \\
\text{27}
\end{array}
\end{array}
\text{Rh}_2(\text{S-DOSP})_4 (6) & \text{hexanes, -78 °C} \\
35a \text{ (51%)} & 98\% \text{ ee}
\end{align*}
\]

\[
\begin{align*}
\text{Ph-} & \text{C} & \text{H}_2 & \text{C} & \text{O}_2\text{Me} & \stackrel{\text{34b}}{\rightarrow} & \text{CO}_2\text{Me} \\
\begin{array}{c}
\begin{array}{c}
\text{N}_2 \\
\text{27}
\end{array}
\end{array}
\text{Rh}_2(\text{S-DOSP})_4 (6) & \text{hexanes, -78 °C} \\
35b \text{ (47%)} & 96\% \text{ ee}
\end{align*}
\]
The cis-divinylcyclopropanes 23-25 prepared by cyclopropanation of dienes with vinyl diazolactone 1 are stable and do not undergo a spontaneous Cope rearrangement. This is easily understood upon consideration of the conformation of cis-divinylcyclopropanes 23-25. The olefins of 23-25 are locked into an arrangement that prevents effective overlap of the π-orbitals, and consequently prevents Cope rearrangement. Cleavage of the lactone ring, however, should permit the Cope rearrangement to proceed.

Figure 3.3. Spiro cyclic lactones 23-25.

Lactone 23 was treated with LiAlH$_4$ in refluxing THF to effect reductive cleavage of the lactone. The Cope rearrangement proceeded in refluxing THF to yield hydroazulene 39-41. As the E,Z diastereomers of 23 were not readily separated by column chromatography on silica gel, the unseparated E,Z diastereomers (5:1) were used in the hope that the resulting cyclopropane diol Z-36 and the hydroazulene 39 obtained upon Cope rearrangement of E-36 would be separable. Fortunately, hydroazulene 39 proved to be a highly crystalline material, and could be crystallized from the reaction mixture in good yield. An X-ray crystal structure of 39 was obtained, and confirmed the relative
stereochemistry. Crystallization leads to an enrichment of the enantiomeric excess of 39; measurement of the enantiomeric excess of crystallized 39 by GC demonstrated it to be 92% ee.
Table 3.4. Preparations of Hydrozulenes.

\[
\begin{align*}
\text{H} & \overset{\text{LiAlH}_4, \text{THF, reflux}}{\longrightarrow} \left[\begin{array}{c}
\text{HO} \\
\text{HO} \\
\text{HO} \\
\text{HO} \\
\text{R}^1 \\
\text{R}^2 \\
\end{array} \right] \\
\text{R}^1 & = \text{Ph}, \text{R}^2 = \text{H} \\
\text{R}^1 & = \text{Ph}, \text{R}^2 = \text{Me} \\
\text{R}^1 & = (\text{CH}_2)_4, \text{R}^2 = - \\
\text{recrystallize} & \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Cyclopropane</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>39 (53%) 92% ee</td>
</tr>
<tr>
<td>73% ee</td>
<td>5:1 $E:Z$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>40 (40%) % ee n.d.</td>
</tr>
<tr>
<td>86% ee</td>
<td>8:1 $E:Z$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>41 (73%) 94% ee</td>
</tr>
<tr>
<td>80% ee</td>
<td></td>
</tr>
</tbody>
</table>
Similarly, treatment of $E,Z\text{-24}$ and $E\text{-25}$ with LiAlH$_4$ in refluxing THF provides the corresponding hydroazulenes upon crystallization. Hydroazulene 41 showed a enantiomeric excess of 94% upon crystallization, however the enantiomeric excess of 40 could not be determined despite considerable efforts to develop GC or HPLC conditions that allowed the separation of enantiomers. Recrystallization of the hydroazulenes 39-41 from the reaction mixture allows a convenient preparation of hydroazulenes from the cyclopropane products of 1 and dienes.
The development of a concise, asymmetric route to hydroazulenes has excellent promise as a future application of asymmetric cyclopropanation reactions of 1. A wide range of biologically active natural products which possess a seven-membered carbocycle core similar to that present in hydroazulenes 39-41 has been described. The Cope rearrangement of cyclopropanes 23-25 has the potential to be utilized as a convenient approach to seven-membered rings of a variety of natural products or their structural analogues.
Asymmetric C-H Insertion of Endocyclic Vinylidiazocarbonyl Compounds

Catalyst screening of C—H insertion of 1,4-cyclohexadiene with 1.

The ability of donor/acceptor substituted diazo compounds to undergo intermolecular C—H insertion reactions has been the subject of considerable research over the past several years. The ability to perform catalytic asymmetric C—C bond formation by insertion of carbenes into unactivated C—H bonds offers considerable synthetic value. Our initial investigations into the intermolecular C—H insertion reaction of endocyclic vinylidiazocarbonyl compounds focused upon the screening of dirhodium catalysts in the reaction of 1 with the C—H insertion substrate 1,4-cyclohexadiene. Although 1,4-cyclohexadiene has been reported as an effective C—H insertion substrate in reactions with aryldiazoacetates, no examples have been reported with vinylidiazooacetates. Reactions of the aryldiazoacetate 42 with 1,4-cyclohexadiene and Rh$_2$(S-DOSP)$_4$ (6) are known to proceed with excellent chemoselectivity. Carbon-hydrogen insertion into the allylic methylene C—H bond is significantly favored over cyclopropanation.
The addition of a dichloromethane solution of vinyldiazolactone 1 over eight hours to dichloromethane solution of 1,4-cyclohexadiene and Rh$_2$(OAc)$_4$ provided the C—H insertion product 44a and cyclopropane 44b in a 2:3 ratio, as measured by 1H NMR spectrum of the reaction solution prior to purification.

In the subsequent catalyst screen, the relative ratios of 44a:b were determined by 1H NMR spectroscopy prior to purification via column chromatography, and the enantiomeric excess of 44a was determined by GC. The catalyst screen of the C—H insertion reaction was performed in a manner similar to that of the catalyst screen described for the cyclopropanation of styrene.
by 1 (Table 3.1). As with the catalyst screen in the cyclopropanation reaction, the more reactive carboxylate ligated dirhodium catalysts 6-7 were used at room temperature, while carboxamidate ligated dirhodium catalysts 8-9 were used in refluxing dichloromethane.

Table 3.5. Catalyst Screen for C–H Insertion of 1 with 1,4-Cyclohexadiene.\(^a\)

<table>
<thead>
<tr>
<th>Rh(_2)L(_4)</th>
<th>Temperature</th>
<th>Yield (%)</th>
<th>44a:b(^b)</th>
<th>%ee (44a)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh(_2)(S-DOSP)(_4) (6)</td>
<td>rt</td>
<td>56</td>
<td>1:9</td>
<td>18, R</td>
</tr>
<tr>
<td>Rh(_2)(S-PTPA)(_4) (7)</td>
<td>rt</td>
<td>46</td>
<td>1:4</td>
<td>26, S</td>
</tr>
<tr>
<td>Rh(_2)(S-MEPY)(_4) (8a)</td>
<td>reflux</td>
<td>47</td>
<td>4:1</td>
<td>8, R</td>
</tr>
<tr>
<td>Rh(_2)(S-MEOX)(_4) (8b)</td>
<td>reflux</td>
<td>34</td>
<td>9:1</td>
<td>10, R</td>
</tr>
<tr>
<td>Rh(_2)(S-MPPIM)(_4) (8c)</td>
<td>reflux</td>
<td>40</td>
<td>4:1</td>
<td>7, R</td>
</tr>
<tr>
<td>Rh(_2)(S-MEAZ)(_4) (9a)</td>
<td>reflux</td>
<td>43</td>
<td>9:1</td>
<td>60, R</td>
</tr>
<tr>
<td>Rh(_2)(S-IBAZ)(_4) (9b)</td>
<td>reflux</td>
<td>52</td>
<td>9:1</td>
<td>66, R</td>
</tr>
<tr>
<td>Rh(_2)(S,S-MenthAZ)(_4) (9c)</td>
<td>reflux</td>
<td>42</td>
<td>9:1</td>
<td>79, R</td>
</tr>
<tr>
<td>Rh(_2)(S,R-MenthAZ)(_4) (9d)</td>
<td>reflux</td>
<td>50</td>
<td>9:1</td>
<td>80, R</td>
</tr>
</tbody>
</table>

\(^a\) To a dichloromethane solution of 5 equiv diene and 1 mol% catalyst at the indicated temperature was added a solution of 1 over 8 h. \(^b\) Determined by \(^1\)H NMR spectroscopy prior to purification. \(^c\) Determined by GC analysis as described in experimental.

Considering the well documented chemoselectivity exhibited by metal vinylcarbenes formed with Rh\(_2\)(S-DOSP)\(_4\) (6) for C–H insertion,\(^1\)-\(^3,\(^42\) it was with
surprise that we observed that formation of cyclopropane $44b$ was the dominant reaction pathway using the catalyst $\text{Rh}_2(\text{S-DOSP})_4$ (6). The small amount of $44a$ which was observed was formed with only 18% ee. The preferential formation of cyclopropane $44b$ was observed to be general for reactions catalyzed by the carboxylate ligated dirhodium catalysts $\text{Rh}_2(\text{OAc})_4$, $\text{Rh}_2(\text{S-DOSP})_4$ (6), and $\text{Rh}_2(\text{S-PTPA})_4$ (7).

Fortunately, C—H insertion proved to be the dominant reaction pathway when carboxamide ligated catalysts were used. $\text{Rh}_2(\text{S-MEPY})_4$ (8a) provided a 4:1 ratio of $44a:b$; however, the enantiomeric excess of $44a$ was only 8%. The catalysts $\text{Rh}_2(\text{S-MEOX})_4$ (8b) and $\text{Rh}_2(\text{S-MPPIM})_4$ (8c) also provided $44a$ as the major product, but the observed enantioselectivities were similarly low. A significant increase in enantioselectivity of $44a$ was observed upon use of the azetidinate ligated catalysts $\text{Rh}_2(\text{S-MEAZ})_4$ (9a) and $\text{Rh}_2(\text{S-IBAZ})_4$ (9b). Optimal levels of enantioselectivity and chemoselectivity were obtained with $\text{Rh}_2(\text{S,S-MenthAZ})_4$ (9c) and $\text{Rh}_2(\text{S,R-MenthAZ})_4$ (9d), providing $44a$ with 79% ee and 80% ee respectively. It is notable that the enantioselectivities associated with all asymmetric catalysts used in the C—H insertion catalyst screen closely mirrored those observed for the cyclopropanation of styrene by 1 (Table 3.1).
The absolute stereochemistry of 44a was readily determined by chemical conversion to the known compound 45.43 A sample of 44a, obtained in 80% ee by the Rh\textsubscript{2}(S,R-MenthAZ)\textsubscript{4} (9d) catalyzed C—H insertion reaction was treated with DDQ to effect oxidative aromatization of the diene. Subsequent hydrogenation of the lactone olefin provided the known lactone 45; the optical rotation was measured to be $[\alpha]_D^{23} +14.1^\circ$ (c = 0.28, CHCl\textsubscript{3}). The optical rotation of (R)-45 in 72% enantiomeric excess has been reported to be $[\alpha]_D^{22} +32.6^\circ$ (c = 0.424, CHCl\textsubscript{3}),43 allowing us to assign the absolute stereochemistry of 44a formed by reaction of Rh\textsubscript{2}(S,R-MenthAZ)\textsubscript{4} (9d) to be R. The reduced optical rotation observed for our sample of 45 relative to the literature value may have resulted from racemization during the process of converting 44a to 45, likely due to transposition of the lactone olefin upon aromatization of the diene.44 Additionally, catalytic hydrogenation is known to result in racemization of stereocenters adjacent to carbonyls.45

Based on previous allylic C—H insertion reactions of metal vinylcarbenes we would not expect to obtain the direct C—H insertion product from a reaction
of 1,4-cyclohexadiene and a vinylcarbene.46-48 Instead, the product of a C—H insertion/Cope rearrangement (46) should be formed. As has been previously discussed (Chapter 2), the insertion of acyclic metal vinylcarbenes into an allylic C—H bond occurs with concomitant Cope rearrangement.46 The failure to undergo concomitant Cope rearrangement, as is observed with acyclic vinylcarbenes, indicates that the transition state structure for C—H insertion (47) places the olefin π orbitals of the lactone and diene orthogonal to each other, and not aligned to undergo the Cope rearrangement.

Scheme 3.11.

\[\text{Rh}_2L_4 \]
Scope of C—H insertion substrate in reaction of 1. Having demonstrated that the intermolecular C—H insertion reaction of 1 with 1,4-cyclohexadiene could be accomplished in good yield and enantioselectivity using dirhodium azetidinate ligated catalysts (9), we turned our attention to investigating the substrate scope of the C—H insertion reaction. As is indicated in the proposed transition state 47, the C—H insertion reaction is believed to proceed through a transition state in which positive charge is developed at the reacting carbon of the C—H bond.49,50 Consequently, substitution on the C—H insertion substrate which stabilizes the developing positive charge significantly increases the susceptibility of the C—H bond toward insertion by a metal carbene. Allylic and benzylic positions are activated toward C—H insertion, as are positions adjacent to heteroatoms.50

Reactions used in evaluating the scope of C—H insertion were performed using the general procedure which has been outlined for the catalyst screen of the C—H insertion reaction of 1 and 1,4-cyclohexadiene (Table 3.5). As a significant catalyst effect was observed for chemoselectivity in the reaction of 1,4-cyclohexadiene, the catalysts Rh\(_2\)(OAc)\(_4\) and Rh\(_2\)(S-MEAZ)\(_4\) (9a) were utilized in the evaluation of all C—H insertion substrates. Though Rh\(_2\)(S-MEAZ)\(_4\) (9a) does not provide optimal enantioselectivities in the reaction of 1,4-cyclohexadiene, the chemoselectivity for C—H insertion as opposed to cyclopropanation of the diene matches or exceeds that of all other catalysts evaluated, and large quantities of Rh\(_2\)(S-MEAZ)\(_4\) (9a) were readily available for screening purposes.
The use of cyclohexane as a C—H insertion substrate was investigated, however the insolubility of the diazo 1 and catalyst in cyclohexanes prevent the reaction of 1 with catalyst. Solubilizing 1 and the catalyst by the addition of dichloromethane as a co-solvent allowed diazo decomposition of 1 to occur, but failed to provide appreciable amounts of 48; a large number of products were formed, none in sufficient yield to be readily isolated and characterized.

Tetrahydrofuran (THF) is a viable C—H insertion substrate for reactions with aryl diazoacetates; activation by the oxygen of THF directs insertion of the metal carbene into the C—H bond α to oxygen.15 Vinyldiazolactone 1 was added to a THF solution of dirhodium catalyst at room temperature or reflux. The C—H insertion product 49 could not be identified in any reaction; 1H NMR analysis of the unpurified reaction indicated that several reaction products were formed. No product was formed with sufficient selectivity to be isolated and characterized.
The evaluation of C—H insertion substrates was expanded to encompass substrates 50-56. The intermolecular C—H insertion reactions of substrates 50-56 have been previously reported to occur with aryl diazoacetates and vinyl diazoacetates at the indicated C—H bond.1,2 In no instance could C—H insertion products be identified in reactions of 50-56; analysis of the reaction solutions by 1H NMR spectroscopy and GC-MS showed that no major products were formed in the reactions of 50-55. In all instances, a significant number of products were observed, although some C—H insertion products may be present none were. Olefins 51 and 54 not only failed to undergo C—H insertion with 1, but cyclopropanation of the olefin was also not observed. This corresponds to prior reports of the scope of cyclopropanation reactions with aryl diazoacetates and vinyl diazoacetates; olefins possessing trans substitution are too sterically hindered to undergo cyclopropanation reaction with the metal carbenes of aryl diazoacetates and vinyl diazoacetates.51,52
Diene 56 has been used as a C–H insertion substrate in reactions with vinylidiazooacetates; cyclopropanation of the diene does not effectively compete with C–H insertion at the allylic position by vinylidiazooacetates. In the reaction of vinylidiazolactone 1 with 56, however, cyclopropane 57a is the exclusive product observed in reactions catalyzed by the catalysts Rh₂(OAc)₄ or Rh₂(S-MEAZ)₄ (9a). The relative stereochemistry of 57a was assigned by analogy to the relative stereochemistry determined for cyclopropanes previously prepared from cis disubstituted olefins (22 and 44b). Attempts to measure the
enantiomeric excess of 57a were unsuccessful, separation of the enantiomers was not achieved by GC.

Table 3.6. Reaction of 1,3-Cyclohexadiene with Vinyldiazolactone 1.

![Reaction diagram]

<table>
<thead>
<tr>
<th>Rh$_2$L$_4$</th>
<th>Temperature</th>
<th>Yield (%)</th>
<th>57a:bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh$_2$(OAc)$_4$</td>
<td>rt</td>
<td>70</td>
<td>>20:1</td>
</tr>
<tr>
<td>Rh$_2$(S-MEAZ)$_4$ (9a)</td>
<td>reflux</td>
<td>63</td>
<td>>20:1</td>
</tr>
</tbody>
</table>

a To a dichloromethane solution of 10 equiv diene and 1 mol% catalyst at the indicated temperature was added a solution of 1 over 8 h. b Determined by 1H NMR prior to purification.

Of the compounds evaluated as intermolecular C—H insertion substrates in reactions with vinyldiazolactone 1, only 1,4-cyclohexadiene provides appreciable yields of C—H insertion product. The allylic C—H bond of 1,4-cyclohexadiene is highly activated toward insertion as it is activated by two olefins. At this point, no other compounds have been identified as viable intermolecular C—H insertion substrates in the reaction of vinyldiazolactone 1.
Asymmetric Cyclopropanation of Endocyclic Vinyl Diazocarbonyl Compounds

Previous studies by our group of metal carbene cyclopropanation reactions have led to the development of reaction models to explain the product stereochemistry obtained with carboxamidate ligated dirhodium catalysts. Modeling studies of methyl diazoacetate bound to the catalyst Rh$_2$(S-MEPY)$_4$ (8a) identified four conformational energy minima in which the carbene carboxyl moiety is placed in one of the four quadrants of the catalyst formed by the carboxamidate ligands.53 Scheme 3.21 shows the analogous conformations of the carbene derived from the vinyl diazolactone 1 about a generic carboxamidate ligated dirhodium catalyst.

A close correspondence of enantiomeric excesses in the asymmetric cyclopropanation and C—H insertion of 1 over a broad spectrum of dirhodium catalysts (Table 3.1 and Table 3.5) was observed. This indicated to us that asymmetric induction in both reactions could be described by a single model, as well as emphasizing the reproducibility of asymmetric cyclopropanation and C—H insertion reactions of 1. As was earlier described, the catalyst Rh$_2$(S,R-MenthAZ)$_4$ (9d) provides the C—H insertion product 44a as the R enantiomer. All other S-configured carboxamidate ligated catalysts also provided (R)-44a.

The rhodium-bound carbene of 1 is depicted in Scheme 3.21 looking down the Rh—Rh bond axis; the bridging carboxamidate ligands define four quadrants. Four conformers are shown as the vinylcarbene rotates about the Rh—C bond (conformers A-D), in each conformer the carbene is shown bisecting the
carboxamidate ligands. Attack of a substrate (i.e. 1,4-cyclohexadiene) upon the carbene is blocked by the ligand esters positioned in quadrants 1 and 4, leaving quadrants 2 or 3 open to attack. The absolute stereochemistry which would be obtained by attack of 1,4-cyclohexadiene upon the carbene is indicated below the depiction of each conformer. The putative transition state of the C—H insertion reaction of 1,4-cyclohexadiene (47) is depicted in Scheme 3.11.
It is unlikely that a large population of the rhodium-bound carbene would exist as conformers A or D; electrostatic interactions between the ligand ester and lactone oxygen atoms would disfavor these conformers relative to conformers B or C. Conformers B and C are therefore expected to be the major conformers accessed by the rhodium-bound carbene. The observed absolute stereochemistry of the C—H insertion product (R)-44a indicates B is the major reacting conformer; the same conclusion was reached in the previous model of the carboxamidate ligated dirhodium catalyzed cyclopropanation of diazoacetates.53

III. CONCLUSION

The objective of this study was to evaluate the suitability of endocyclic vinylidiazocarbonyl compounds in asymmetric metal carbene reactions which are known to be viable with vinylidiaoacetates. Endocyclic vinylidiazocarbonyl species were expected to be a stable class of vinylidiazocarbonyl compounds, unable to undergo the intramolecular cyclization to pyrazoles that vinylidiaoacetates are prone to. Over the course of this study, endocyclic vinylidiazocarbonyl compounds were observed to have good stability, over several days very little decomposition was observed if the endocyclic vinylidiazocarbonyl was stored at 4 °C.
Good levels of enantioselectivity was observed for cyclopropanation and C—H insertion reactions with vinylidiazolactone 1, Rh₂(S,R-MenthAZ)₄ (9d) provided cyclopropanation and C—H insertion products with enantioselectivities of 80% ee and greater. The use of endocyclic vinylidiazocarbonyl compounds 2-5 did not proceed with comparable levels of enantioselectivity, indicating that the ultimate scope of endocyclic vinylidiazocarbonyl compounds in catalytic asymmetric reactions may be limited. These substrates were not investigated as thoroughly as vinylidiazolactone 1, however, due to their more involved preparations (Chapter 2). A broad catalyst screen of reactions of 2-5 may yet demonstrate synthetically useful levels of enantioselectivity with these substrates.

The development of a model to explain the observed asymmetric induction obtained in the reaction of rhodium-bound carbenes generated from 1 has begun to be developed. An issue which this model should address as it is further developed is the selectivity difference observed in reaction of 1 with azetidinate ligated dirhodium catalysts and all other dirhodium catalysts investigated. Understanding the elements leading to good enantioselectivities with these catalysts may ultimately allow further catalyst development, and increase the scope of endocyclic vinylidiazocarbonyl compounds which may be used to provide good levels of enantioselectivity.
IV. EXPERIMENTAL

General Information: NMR spectra were recorded on a Bruker DRX-400 MHz instrument and obtained as solutions in deuterochloroform unless otherwise noted. Chemical shifts of 1H NMR are quoted relative to internal Me$_4$Si (0.00 ppm), those of 13C NMR are quoted relative to residual solvent (77.0 ppm). High-resolution mass spectra were obtained on a JEOL SX102a spectrometer. IR spectra were obtained on a JASCO FT/IR-4100 spectrometer. Thin layer chromatography was performed on Merck Silica Gel 40 F$_{254}$ glass backed plates, visualization was achieved with UV or KMnO$_4$ stain. Column chromatography was performed on 40-63 µm, 230-400 mesh, 60 Å silica gel. All reagents were purchased from Aldrich unless otherwise specified. Preparation of diazo compounds 1-5 detailed in Chapter 2. Substrates 1-phenyl-1,3-butadiene,54 1-phenyl-3-methylbutadiene,54 1-vinylcyclohexene,55 5056 and 5157 were prepared by previously published procedures. C—H insertion substrate 59 was provided by Jason Nichols. Anhydrous dichloromethane and tetrahydrofuran were obtained by dried by nitrogen forced-flow over activated alumina as described by Grubbs.58

General Procedure for Table 3.1: To a flame dried flask containing anhydrous dichloromethane (20 mL) dirhodium catalyst (.013 mmol) and olefin (6.6 mmol) were added. The apparatus was degassed and heated to reflux under nitrogen. A solution of 1 (160 mg, 1.29 mmol) in 10 mL dichloromethane was added over
eight hours. Upon completion of addition, the reaction mixture was refluxed for an additional one hour, then filtered through a short plug of silica gel to remove the dirhodium catalyst. Diastereomer E-10 was the only observable cyclopropane by 1H NMR spectroscopy, allowing the E:Z diastereomeric ratio to be assigned as >20:1, gas chromatography was used to determine the enantiomeric excess of 10. Silica gel column chromatography (6:1 hexanes/ethyl acetate) of the reaction mixture provided:

(1S,3S)-1-Phenyl-5-oxaspiro[2.5]oct-7-en-4-one (10): white solid (189 mg, 0.95 mmol, 80%); mp 97-99 °C; GC: (B-DM, 30m x 0.25 mm; 0.25 µm film, 140 °C/10 min, 1 °C/min ramp to 160 °C), retention times of 45.3 min (-) and 47.3 min (+);

1H NMR (400 MHz, CDCl$_3$) δ 7.35-7.20 (comp, 5H), 5.72 (dt, $J = 10.0, 2.8$ Hz, 1H), 5.01 (dd, $J = 2.8, 1.8$ Hz, 2H), 4.96 (dt, $J = 10.0, 1.8$ Hz, 1H), 3.26-3.23 (m, 1H), 2.14 (dd, $J = 9.0, 4.8$ Hz, 1H), 1.56 (dd, $J = 7.7, 4.8$ Hz, 1H);

13C NMR (100 MHz, CDCl$_3$) δ 171.9, 135.5, 129.1, 128.4, 127.2, 124.7, 121.2, 69.2, 35.2, 26.8, 22.7; IR (neat) 3021, 2885, 1716 cm$^{-1}$; HRMS (El) calcd for C$_{13}$H$_{12}$O$_2$ 200.0837, found 200.0834 (M)$^+$.

General Procedure for Table 3.2: General procedure described in Table 3.1 was followed, enantiomeric excesses of 13-17 determined prior to purification by silica gel column chromatography by GC or HPLC as indicated.

(1S,3S)-1-Phenylspirop[2.5]oct-7-en-4-one (13): (6:1 hexanes/EtOAc) clear oil (93 mg, 0.47 mmol, 52%); GC: (B-DM, 30m x 0.25 mm; 0.25 µm film, 180 °C), retention times of 17.7 min (major) and 18.7 min (minor), 26% ee; $[\alpha]_D^{21} +35.1$ (c
\(^1H \text{ NMR (400 MHz, CDCl}_3 \delta 7.32-7.15 \) (comp, 5H), 5.83 (dt, \(J = 10.2, \ 4.2 \text{ Hz, 1H}), 4.96 (dt, J = 10.2, \ 1.5 \text{ Hz, 1H}), 3.05-3.01 \) (m, 1H), 2.63-2.2.05 (m, 4 H), 2.07 (dd, \(J = 9.0, \ 4.3 \text{ Hz, 1H}), 1.48 (dd, J = 6.8, \ 4.3 \text{ Hz, 1H}); ^13C \text{ NMR (100 MHz, CDCl}_3 \delta 209.3, 136.5, 128.3, 129.1, 127.7, 126.9, 126.4, 38.7, 36.8, 23.2, 23.7; IR (neat) 2845, 1697 cm\(^{-1}\); HRMS (ESI\(^+\)) calc. for C\(_{14}\)H\(_{14}\)O: 198.1045, found 298.1055 (M+H\(^+\)).

tert-Butyl (1S,3S)-4-oxo-1-phenyl-5-azaspiro[2.5]oct-7-ene-5-carboxylate (14):
(8:1 hexanes/EtOAc) clear oil (142 mg, 0.47 mmol, 61%); HPLC [OD, 98:2 hexanes/2-propanol, 1 mL/min] retention times of 13.7 min and 15.7 min 37% ee; \([\alpha]_D^{23} +21.9 \) (c = 0.13, CHCl\(_3\); \(^1H \text{ NMR (400 MHz, CDCl}_3 \delta 7.29-7.21 \) (comp, 5H), 5.62 (dt, \(J = 10.3, \ 3.4 \text{ Hz, 1H}), 4.90 (dt, J = 10.3, \ 1.9 \text{ Hz, 1H}), 4.35 \) (ddd, \(J = 17.9, \ 3.4, \ 1.9 \text{ Hz, 1H}), 4.29 (ddd, J = 17.9, \ 3.4, \ 1.9 \text{ Hz, 1H}), 3.24-3.20 \) (m, 1H), 1.56 (s, 9H), 1.46 (dd, \(J = 7.5, \ 4.5 \text{ Hz, 1H}); \(^{13}C \text{ NMR (100 MHz, CDCl}_3 \delta 171.4, 152.8, 136.9, 129.6, 128.8, 127.4, 125.6, 120.5, 83.7, 47.9, 35.5, 31.2, 28.5, 23.1; IR (neat) 2988, 1766, 1716 cm\(^{-1}\); HRMS (FAB\(^+\)) calcd for C\(_{18}\)H\(_{21}\)NO\(_3\)Li 306.1681, found 306.1679 (M+Li\(^+\)).

(1S,3S)-1,7-Diphenyl-5-oxaspiro[2.5]oct-7-en-4-one (15): (5:1 hexanes/EtOAc) clear oil (94 mg, 0.34 mmol, 61%); HPLC [OD-H, 98:2 hexanes/2-propanol, 1 mL/min] retention times of 42.3 min and 46.5 min 39% ee; \(^1H \text{ NMR (400 MHz, CDCl}_3 \delta 7.25-7.05 \) (comp, 10H), 5.38 (dd, \(J = 15.3, \ 1.2 \text{ Hz, 1H}), 5.32 (dd, J = 15.3, \ 1.2 \text{ Hz, 1H}), 5.25 \) (br s, 1H), 3.35-3.31 \) (m, 1H), 2.23 (dd, \(J = 9.1, \ 4.8 \text{ Hz,
1H), 1.68 (dd, J = 7.9, 4.8 Hz, 1H); HRMS (ESI\(^+\)) calc. for C\(_{19}\)H\(_{17}\)O\(_2\): 277.12285, found 277.12241 (M+H)\(^+\).

(1S,3S)-1-Phenyl-5-oxaspiro[2.6]non-8-en-4-one (16): (6:1 hexanes/EtOAc) white solid (57 mg, 0.27 mmol, 30%); mp 138-139 °C, GC: (G-TA, 30m x 0.25 mm; 0.25 µm film, 140 °C), retention times of 50.2 min (minor) and 53.8 min (major), 14% ee; \([\alpha]_D^{21}\) +8.9 (c = 0.50, CHCl\(_3\)); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34-7.17 (comp, 5H), 5.65 (dddd, J = 11.8, 4.5, 3.2, 1.0 Hz, 1H), 4.91 (dt, J = 11.8, 2.0 Hz, 1H), 4.62 (dd, J = 11.8, 9.8, 2.0 Hz, 1H), 4.44 (dddd, J = 12.0, 5.5, 3.2, 1.0 Hz, 1H), 2.83 (dd, J = 9.5, 7.3 Hz, 1H), 2.58-2.49 (m, 1H), 2.36-3.28 (m, 1H), 2.17 (dd, J = 9.5, 5.0 Hz, 1H), 1.53 (dd, J = 7.3, 5.5 Hz, 1H); 4.5, 3.2, 1.010.3, 3.4 Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 175.8, 136.4, 130.6, 128.9, 128.9, 127.5, 125.2, 65.9, 34.7, 32.2, 30.5, 21.9; IR (neat) 3061, 2845, 1697 cm\(^{-1}\); HRMS (EI) calcd. for C\(_{14}\)H\(_{14}\)O\(_2\) 214.0994, obs. 214.0991 (M)\(^+\).

General Procedure for Table 3.3: General procedure described in Scheme 1 was followed, enantiomeric excess of 22-25 determined prior to purification by silica gel column chromatography by GC or HPLC as indicated. Relative stereochemistry of 22 determined by NOE.

22: (6:1 hexanes/EtOAc) pale yellow solid (205 mg, 0.96 mmol, 68%); mp 100-101 °C; GC: (G-TA, 30m x 0.25 mm; 0.25 µm film, 160 °C isotherm) retention times of 47.1 min (minor) and 51.5 min (major), 40% ee; \([\alpha]_D^{23}\) 17.5 (c = 0.19, CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34-7.19 (m, 5H), 5.80 (dt, J = 10.3, 3.0
Hz, 1H), 4.99 (dt, J = 16.5, 2.1 Hz, 1H), 4.89 (ddd, J = 16.5, 3.0, 1.8 Hz, 1H), 4.71 (dt, J = 16.3, 2.1 Hz, 1H), 3.51 (dd, J = 6.8, 2.1 Hz, 1H), 3.33 (dd, J = 17.9, 6.8 Hz, 1H), 2.90 (d, J = 17.9 Hz), 2.83 (t, J = 6.8 Hz, 1H); ^13^C NMR (100 MHz, CDCl\textsubscript{3}) δ 171.5, 143.6, 139.7, 127.1, 126.9, 125.3, 124.1, 123.2, 120.4, 68.7, 42.6, 34.8, 32.5, 28.3; IR (neat) 2887, 1717 cm-1; HRMS (EI) calcd for C\textsubscript{14}H\textsubscript{12}O\textsubscript{2} 212.0837, obs 212.0843 (M+).

23: (6:1 hexanes/EtOAc) clear oil (209 mg, 0.92 mmol, 86%); 5:1 mixture of E,Z-23 diastereomers. Diastereomeric ratio determined by ^1^H NMR prior to chromatography (E-23 1.28 ppm, Z-23 1.45 ppm). Enantiomeric excess of E-23 determined below performed prior to isolation of reaction solution. Isolated yield of E,Z-23 obtained upon initial column chromatography (6:1 hexanes/EtOAc). Diastereomers separated by further chromatography (dichloromethane).

(1R,3S)-1-[(E)-2-Phenylvinyl]-5-oxaspiro[2.5]oct-7-en-4-one (Z-23): Clear oil, ^1^H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.36-7.19 (comp, 5H), 6.59 (d, J = 15.9 Hz, 1H), 6.34 (dd, J = 15.9, 9.1 Hz, 1H), 5.84 (ddd, J = 9.9, 3.6, 2.4 Hz, 1H), 5.31 (ddd, J = 9.9, 2.4, 1.2 Hz, 1H), 5.03 (dt, J = 16.5, 2.4, 1H), 4.95 (ddd, J = 16.5, 3.6, 1.2 Hz, 1H), 2.16-2.10 (m, 1H), 2.05 (dd, J = 7.6, 4.8 Hz, 1H), 1.45 (dd, J = 8.5, 4.8 Hz, 1H); ^13^C NMR (100 MHz, CDCl\textsubscript{3}) δ 169.3, 136.9, 132.3, 128.7, 128.5, 127.3, 126.10, 126.06, 120.8, 69.1, 36.6, 28.8, 24.9; IR (neat) 3020, 1722 cm-1; HRMS (EI) calcd for C\textsubscript{15}H\textsubscript{14}O\textsubscript{2} 226.0994, found 226.0989 (M+).

(1S,3S)-1-[(E)-2-Phenylvinyl]-5-oxaspiro[2.5]oct-7-en-4-one (E-23): Clear oil, HPLC (OD-H, 90:10 hexanes/2-propanol, 1 mL/min) retention times of 15.0 min.
(minor) and 18.9 min (major), 73% ee; \([\alpha]_D^{22} +59.3\) (c = 0.69, CHCl₃). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 7.36-7.21 (comp, 5H), 6.60 (d, \(J = 15.8\) Hz, 1H), 5.96 (dd, \(J = 15.8, 8.3\) Hz, 1H), 5.86 (dt, \(J = 10.0, 2.9\) Hz, 1H) 5.46 (dt, \(J = 10.0, 2.1\) Hz, 1H), 5.02-5.01 (comp, 2H), 2.76-2.70 (m, 1H), 2.11 (dd, \(J = 8.9, 4.6\) Hz, 1H), 1.28 (dd, \(J = 7.3, 4.6\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 171.6, 136.6, 133.7, 128.6, 127.6, 126.0, 125.7, 125.9, 121.7, 69.1, 34.4, 27.4, 25.0; IR (neat) 3024, 1721 cm\(^{-1}\); HRMS (EI) calcd for C\(_{15}\)H\(_{14}\)O\(_2\) 226.0994, found 226.0989 (M⁺).

24: (6:1 hexanes/EtOAc) 81%, clear oil, 8:1 mixture \(E,Z\)-24 diastereomers. Diastereomeric ratio determined by \(^1\)H NMR prior to chromatography (\(E\)-24 6.38 ppm, \(Z\)-24 6.47 ppm). Enantiomeric excess of \(E\)-24 determined below performed prior to isolation of reaction solution. Isolated yield of \(E,Z\)-24 obtained upon initial column chromatography (6:1 hexanes/EtOAc). Diastereomers isolated by further silica gel column chromatography (dichloromethane).

(1S,3S)-1-[(\(E\))-1-Methyl-2-phenylvinyl]-5-oxaspiro[2.5]oct-7-en-4-one (\(E\)-24):
Clear oil, HPLC: (AD-H, 98:2 hexanes/2-propanol, 1 mL/min) retention times of 11.8 min (major) and 13.2 min (minor), 86% ee; \([\alpha]_D^{21} +77.8^\circ\) (c = 0.73, CHCl₃);
\(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 7.36-7.23 (comp, 5H), 6.38 (s, 1H), 5.84 (dt, \(J = 10.2, 2.8\) Hz, 1H), 5.33 (br d, \(J = 10.2\) Hz, 1H), 5.05-5.03 (comp, 2H), 2.72 (fortuitous t, \(J = 7.9\) Hz, 1H), 1.96 (dd, \(J = 8.7, 4.7\) Hz, 1H), 1.91 (s, 3H), 1.47 (dd, \(J = 7.4, 4.7\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 172.2, 137.1, 133.6, 128.6, 128.2, 128.0, 126.6, 124.6, 121.2, 69.1, 39.7, 25.8, 23.1, 19.1; IR (neat) 3050, 2884, 1722 cm\(^{-1}\); HRMS (EI) calcd for C\(_{16}\)H\(_{16}\)O\(_2\) 240.1150, found 204.1141 (M⁺).
(1S,3S)-1-Cyclohex-1-en-1-yl-5-oxaspiro[2.5]oct-7-en-4-one (25): (6:1 hexanes/EtOAc) 77%, clear oil, GC: (B-DM, 30 m x 0.25 mm; 0.25 µm film, 160 °C isotherm) retention times of 82.4 min (minor) and 96.0 min (major), 80% ee; [α]_D^{22} +68.2 (c = 0.63, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 5.80 (dt, J = 10.2, 2.8 Hz, 1H), 5.57-5.42 (m, 1H), 5.26 (dt, J = 10.2, 2.0 Hz, 1H), 5.01-4.99 (comp, 2H), 2.47-2.43 (m, 1H), 2.10-1.45 (comp, 9H), 1.27 (dd, J = 7.4, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 133.0, 125.1, 125.0, 120.6, 69.1, 37.5, 29.5, 25.2, 25.1, 22.7, 22.31, 22.25; IR (neat) 3020, 2879, 1716 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₆O₂ 204.1150, found 204.1148 (M⁺).

Representative Procedure for Table 3.4, preparation of 39: Unseparated E,Z- 23 (5:1 E:Z) (203 mg, 0.90 mmol) was stirred in anhydrous THF (10 mL) at 0 °C. LiAlH₄ (93 mg, 2.7 mmol) was added portionwise, and the reaction mixture was heated to reflux under nitrogen. After 36 h the mixture was cooled to 0 °C and quenched via dropwise addition of water until gas was no longer observed evolving. An aqueous solution of NaOH (0.5 mL, 50 wt%) was added, and the mixture was allowed to stir for 10 min. Anhydrous Na₂SO₄ was added and the mixture stirred 2h. The resulting aluminium salts were removed by filtration through Celite, washing with Et₂O five times (20 mL each). Solvent was removed from the filtrate by rotary evaporation, and the residue was crystallized from a minimal amount of dichloromethane and hexanes to yield [(3S,4S)-4-Phenylcyclohepta-1,5-diene-1,3-diyl]dimethanol (39) (110 mg, 53% yield, 92%
ee) as a white crystalline solid: mp 114 °C, GC: (B-DM, 30m x 0.25 mm; 0.25 μm film, 140 °C/10 min, 1 °C/min ramp to 160 °C) retention times of 68.7 min (minor) and 70.5 min (major), 92% ee; $[\alpha]_D^{20} = -60.6 \ (c = 0.34, \text{CHCl}_3)$; 1H NMR (400 MHz, CDCl$_3$) δ 7.30-7.20 (comp, 5H), 5.80-5.73 (comp, 2H), 5.61-5.57 (m, 1H), 4.05 (s, 2H), 3.58-3.53 (m, 1H), 3.43 (dd, $J = 10.4$, 4.9 Hz, 1H), 3.37 (dd, $J = 10.4$, 6.2 Hz, 1H), 3.13-3.08 (m, 1H), 2.95-2.89 (m, 1H), 2.77 (dd, $J = 18.9$, 6.5 Hz, 1H), 1.99 (br s, 1H), 1.67 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 144.0, 142.9, 133.8, 128.5, 128.2, 126.8, 126.5, 126.2, 68.0, 65.0, 45.6, 45.0, 28.6. Structure confirmed by X-ray crystallography.

[(3S,4R)-5-Methyl-4-phenylcyclohepta-1,5-diene-1,3-diyl]dimethanol (40): 40%, white crystalline solid, mp 90-91 °C; $[\alpha]_D^{20} = -64.4 \ (c = 0.44, \text{CHCl}_3)$; 1H NMR (400 MHz, CDCl$_3$) δ 7.30-7.17 (comp, 5H), 5.67-5.58 (comp, 2H), 3.98 (s, 2H), 3.57 (d, $J = 6.9$ Hz, 1H), 3.38-3.36 (m, 1H), 3.09-3.04 (m, 1H), 2.93-2.86 (m, 1H), 2.69 (dd, $J = 19.3$, 6.7 Hz, 1H), 2.06 (br s, 2H), 1.52 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 143.6, 143.5, 136.9, 128.3, 126.3, 124.9, 122.3, 67.9, 65.0, 50.0, 45.6, 29.3, 26.4; HRMS (FAB$^+$) calcd for C$_{16}$H$_{20}$O$_2$Li 251.1623, obs 251.1629 (M+Li)$^+$.

(4aR,5S)-2,3,4,4a,5,8-Hexahydro-1H-benzo[7]annulene-5,7-diyl]dimethanol (41): 70%, white crystalline solid, mp 83-85 °C; GC: (B-DM, 30m x 0.25 mm; 0.25 μm film, 170 °C) retention times of 53.5 min (major) and 57.9 min (minor), 94% ee; $[\alpha]_D^{20} = -42.9 \ (c = 0.73, \text{CHCl}_3)$; 1H NMR (400 MHz, CDCl$_3$) δ 5.68-5.65 (m, 1H), 5.45-5.40 (m, 1H), 4.02 (s, 2H), 3.79 (dd, $J = 10.5$, 4.6 Hz, 1H), 3.75 (dd, $J =
10.5, 7.0 Hz, 1H), 2.97-2.89 (m, 1H), 2.61-2.54 (m, 1H), 2.44 (dd, $J = 17.3, 7.2$
Hz, 1H), 2.28 (br s, 2H), 2.14-1.99 (comp, 2H), 1.93-1.70 (comp, 4H), 1.45-1.16
(comp, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 145.1, 143.7, 125.8, 118.1, 67.3, 64.1,
43.7, 41.1, 39.9, 33.2, 28.9, 27.7, 26.7; HRMS (FAB+) calcd for C$_{13}$H$_{20}$O$_2$Li
215.1623, obs 215.1625 (M+Li)$^+$.

General Procedure for Table 3.5: To a flame-dried flask containing anhydrous
dichloromethane (20 mL), dirhodium catalyst (.013 mmol) and 1,4-
cyclohexadiene (0.61 mL, 6.5 mmol) were added. The apparatus was degassed
and heated to reflux under nitrogen. A solution of 1 (160 mg, 1.29 mmol in 10 mL
dichloromethane) was added over eight hours. Upon completion of addition, the
reaction mixture was refluxed for an additional hour, then filtered through a short
silica gel plug to remove the dirhodium catalyst. Integration of diagnostic 1H NMR
signals of 44a (4.80 ppm) and 44b (4.98 ppm) were used to determine the
relative ratios of 44a,b. GC was used to determine the enantiomeric excess of
44a prior to column chromatographic purification. Silica gel column
chromatography (3:1 hexanes/ethyl acetate) of the reaction mixture provided an
unseparated mixture of 44a,b from which isolated yields were calculated from the
mass of the product. Pure samples of 44a and 44b were obtained by subsequent
silica gel chromatography (10:1 hexane/ethyl acetate), but only partial separation
was achieved. Relative stereochemistry of 44b was determined by NOE.

(3R)-3-Cyclohexa-2,5-dien-1-yl-3,6-dihydro-2H-pyran-2-one (44a) [from Rh$_2$(S,R-
MenthAZ)$_4$ catalyzed reaction]: Clear oil, GC: Chiraldex G-TA (30m x 0.25 mm),
140 °C/10 min, 1 °C/min ramp to 160 °C), retention times 26.2 min (R) and 29.2 min (S), 80% ee R; \([\alpha]_D^{21} +29.5\) (c = 0.31, CHCl₃). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 5.97-5.76 (comp, 4H), 5.65-5.50 (comp, 2H), 4.83-4.78 (comp, 2H), 3.62-3.55 (m, 1H), 3.09-3.04 (m, 1H), 2.64-2.58 (comp, 2H); \(^1^3\)C NMR (100 MHz, CDCl₃) 170.6, 127.5, 127.1, 125.87, 124.0, 122.9, 68.8, 44.4, 38.1, 26.2; IR (neat) 3018, 1733 cm\(^{-1}\); HRMS (EI) calcd for C\(_{11}\)H\(_{12}\)O\(_2\) 176.0837, found 176.0835 (M+).

6′H-spiro[bicyclo[4.1.0]hept-3-ene-7,3′-pyran]-2′-one (44b) [from Rh\(_2\)(S-DOSP)\(_4\) catalyzed reaction]: Clear oil, \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 5.95 (dt, \(J = 10.5, 2.9\) Hz, 1H), 5.63 (m, 2H), 5.42 (dt, \(J = 10.5, 1.9\) Hz, 1H), 4.98 (dd, \(J = 2.9, 1.9\) Hz, 2H), 2.54-2.42 (comp, 2H), 2.19-2.16 (m, 2H), 2.09-2.01 (m 2H); \(^1^3\)C NMR (100 MHz, CDCl₃) \(\delta\) 172.5, 124.2, 122.9, 121.1, 68.5, 28.0, 26.1, 19.6; IR (neat) 2988, 1712 cm\(^{-1}\); HRMS (EI) calcd for C\(_{11}\)H\(_{12}\)O\(_2\) 176.0837, found 176.0837 (M+).

Determination of absolute stereochemistry of 44a: A sample of 44a,b (9:1, 84 mg, 0.48 mmol) obtained from the Rh\(_2\)(4S,R-MenthAZ) catalyzed C-H insertion (80% ee as measured by GC) was stirred in toluene (10 mL). 2,3-Dichloro-5.6-dicyano-1,4-benzoquinone (216 mg, 0.96 mmol) was added. After 2 h, the toluene was evaporated and the reaction mixture was quickly passed through a short silica gel plug (3:1 hexane/ethyl acetate) to remove a bright red baseline impurity. The resulting solution was evaporated to a yellow oil. Ethyl acetate (5 mL) was added, followed by 10% Pd/C (10 mg). The flask was then placed under a balloon of hydrogen gas. After stirring 12 h, the mixture was filtered through a Celite pad, washing with ethyl acetate, and evaporated.
Column chromatography (4:1 hexane:ethyl acetate) provided 2-phenyl-δ-valerolactone (71 mg, 86% yield). The optical rotation of 2-phenyl-δ-valerolactone was measured: \([\alpha]_D^{23} +14.1 \) (\(c = 0.28 \), CHCl\(_3\)). A previous report lists the optical rotation of the \(R \) enantiomer (72% ee) to be: \([\alpha]_D^{22} +32.6 \) (\(c = 0.424 \), CHCl\(_3\)), indicating the absolute stereochemistry of the predominant enantiomer of 44a to be \(R \).

Representative procedure for Scheme 3.14 and Table 3.6: To a flame-dried flask containing anhydrous dichloromethane (10 mL), \(\text{Rh}_2(\text{OAc})_4 \) (4 mg, 1.0 mmol) and 1,3-cyclohexadiene (0.45 mL, 4.8 mmol) were added. The apparatus was degassed with nitrogen, after which a solution of 1 (120 mg, 0.97 mmol in 2 mL dichloromethane) was added over two hours. Upon completion of addition, the reaction mixture was stirred for an additional one hour, then filtered through a short silica gel plug to remove the dirhodium catalyst and concentrated under reduced pressure to a yellow oil. Analysis of the residue by \(^1\)H NMR spectroscopy shows excess 1,3-cyclohexadiene and 57a as the only observable components of the mixture. Purification of the residual oil by column chromatography on silica gel provided 57a: clear oil (118 mg, 0.68 mmol, 70%); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 5.97-5.88 (comp, 2H), 5.83-5.78 (m, 1H), 5.51 (ddd, \(J = 16.3, 3.5, 1.4 \) Hz, 1H), 5.00 (dt, \(J = 16.3, 2.4 \) Hz, 1H), 4.92 (ddd, \(J = 16.3, 3.5, 1.4 \) Hz, 1H), 2.47 (dd, \(J = 8.9, 4.4 \) Hz, 1H), 2.25-2.69 (comp, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 171.7, 129.3, 122.7, 122.0, 121.7, 68.3, 31.9, 29.0, 27.4, 21.4,
15.8; IR (neat) 2988, 1712 cm$^{-1}$; HRMS (EI) calcd for C$_{11}$H$_{12}$O$_2$ 176.0837, found 176.0837 (M+).
Determination of relative stereochemistry of 2b, 3a:

nOe experiments were performed on a Bruker AM-400 instrument. Observed correlations were used to assign the relative stereochemistry of 2b, 3a as those shown.

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Irradiated Signal (ppm)/H_x</th>
<th>Correlated Signals (ppm)/H_x</th>
<th>% Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.96/H_a</td>
<td>1.56/H_c</td>
<td>1.3</td>
</tr>
<tr>
<td>7.21 (d, J = 7.3 Hz)/H_d</td>
<td>3.25/H_b</td>
<td>0</td>
</tr>
<tr>
<td>3.25/H_b</td>
<td>7.21 (d, J = 7.3 Hz)/H_e</td>
<td>1.1</td>
</tr>
<tr>
<td>1.56/H_c</td>
<td>4.96/H_a</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>7.21 (d, J = 7.3 Hz)/H_d</td>
<td>2.1</td>
</tr>
<tr>
<td>Irradiated Signal (ppm)/H_x</td>
<td>Correlated Signals (ppm)/H_x</td>
<td>% Correlation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>5.63/H_d</td>
<td>5.42/H_a</td>
<td>0.1</td>
</tr>
<tr>
<td>5.42/H_a</td>
<td>5.63/H_d</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>2.09-2.01/H_c</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>2.19-2.16/H_b</td>
<td>0</td>
</tr>
<tr>
<td>2.09-2.01/H_c</td>
<td>5.42/H_a</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irradiated Signal (ppm)/H_x</th>
<th>Correlated Signals (ppm)/H_x</th>
<th>% Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.71/H_a</td>
<td>2.90/H_d</td>
<td>1.2</td>
</tr>
<tr>
<td>3.51/H_c</td>
<td>No correlation</td>
<td></td>
</tr>
<tr>
<td>2.90/H_d</td>
<td>4.71/H_a</td>
<td>1.5</td>
</tr>
</tbody>
</table>
22

O

O

22
$57a$
Table 1. Crystal data and structure refinement for UM#1361.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray lab book No.</td>
<td>1361</td>
</tr>
<tr>
<td>Crystal ID</td>
<td>Doyle/Bykowsky DBX-35-1</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{22}H_{20}O_{12}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>230.29</td>
</tr>
<tr>
<td>Temperature</td>
<td>220(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71075 Å</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.47 x 0.45 x 0.08 mm³</td>
</tr>
<tr>
<td>Crystal habit</td>
<td>colorless plate</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_1/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 15.6008(15) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 8.1638(8) Å, β = 103.468(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 10.3918(11) Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1287.1(2) Å</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density, ρcalc.</td>
<td>1.188 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient, μ</td>
<td>0.072 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>496 e</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Bruker Smart1000 CCD area detector</td>
</tr>
<tr>
<td>Radiation source</td>
<td>fine-focus sealed tube, MoKα</td>
</tr>
<tr>
<td>Generator power</td>
<td>50 kV, 30 mA</td>
</tr>
<tr>
<td>Detector distance</td>
<td>4.939 cm</td>
</tr>
<tr>
<td>Detector resolution</td>
<td>8.33 pixels/mm</td>
</tr>
<tr>
<td>Total frames</td>
<td>4230</td>
</tr>
<tr>
<td>Frame size</td>
<td>512 pixels</td>
</tr>
<tr>
<td>Frame width</td>
<td>0.3</td>
</tr>
<tr>
<td>Exposure per frame</td>
<td>23 sec</td>
</tr>
<tr>
<td>Total measurement time</td>
<td>35.45 hours</td>
</tr>
<tr>
<td>Data collection method</td>
<td>0 and 0 scans</td>
</tr>
<tr>
<td>Range for data collection</td>
<td>2.69 to 27.50°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>0 ≤ h ≤ 20, -10 ≤ k ≤ 0, -13 ≤ l ≤ 13</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>18602</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4042</td>
</tr>
<tr>
<td>Observed reflection, I-2σ(I)</td>
<td>3450</td>
</tr>
<tr>
<td>Coverage of independent reflections</td>
<td>99.5%</td>
</tr>
<tr>
<td>Variation in check reflections</td>
<td>0.05%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>SADABS (Sheldrick, 1996)</td>
</tr>
<tr>
<td>Structure solution technique</td>
<td>direct</td>
</tr>
<tr>
<td>Structure solution program</td>
<td>SHELXS-97 (Sheldrick, 1990)</td>
</tr>
<tr>
<td>Refinement technique</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Refinement program</td>
<td>SHELXL-97 (Sheldrick, 1997)</td>
</tr>
<tr>
<td>Function minimized</td>
<td>Σ[w(F₂ - F journalist)]</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4042 / 2 / 180</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.001</td>
</tr>
<tr>
<td>Δσmax</td>
<td>0.000</td>
</tr>
<tr>
<td>Final R indices: R₁, I-2σ(I)</td>
<td>0.0381</td>
</tr>
<tr>
<td>wR₂, all data</td>
<td>0.0762</td>
</tr>
<tr>
<td>R₁, all data</td>
<td>0.0320</td>
</tr>
<tr>
<td>Rₐ₁</td>
<td>0.0136</td>
</tr>
<tr>
<td>Weighting scheme</td>
<td>w = 1/[(σ²(F₂) + (0.01P)² + 0.579P)]</td>
</tr>
<tr>
<td></td>
<td>P = [max(F₂,0)² + 2F₂] / 3</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.0131(6)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.139 and -0.133 Å</td>
</tr>
</tbody>
</table>

R₁ = Σ|F₁ - F₂|/Σ|F₁|, wR₂ = [Σw(F₂² - Fₐ₁²)/Σw(F₂²)]¹/².
Table 2. Atomic coordinates and equivalent * isotropic atomic displacement parameters (Å²) for UM#1361.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x/a</th>
<th>y/b</th>
<th>z/c</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.29134(9)</td>
<td>0.30942(17)</td>
<td>0.34076(15)</td>
<td>0.0368(3)</td>
</tr>
<tr>
<td>C2</td>
<td>0.19085(8)</td>
<td>0.33976(15)</td>
<td>0.30906(14)</td>
<td>0.0327(3)</td>
</tr>
<tr>
<td>C3</td>
<td>0.14691(8)</td>
<td>0.21731(16)</td>
<td>0.38197(13)</td>
<td>0.0340(3)</td>
</tr>
<tr>
<td>C4</td>
<td>0.13893(9)</td>
<td>0.65930(16)</td>
<td>0.35226(14)</td>
<td>0.0340(3)</td>
</tr>
<tr>
<td>C5</td>
<td>0.16885(10)</td>
<td>-0.00835(18)</td>
<td>0.23461(15)</td>
<td>0.0430(4)</td>
</tr>
<tr>
<td>C6</td>
<td>0.26507(11)</td>
<td>0.01845(18)</td>
<td>0.24241(17)</td>
<td>0.0486(4)</td>
</tr>
<tr>
<td>C7</td>
<td>0.31527(10)</td>
<td>0.14630(19)</td>
<td>0.28767(18)</td>
<td>0.0486(4)</td>
</tr>
<tr>
<td>C8</td>
<td>0.16882(9)</td>
<td>0.51446(16)</td>
<td>0.34339(16)</td>
<td>0.0384(3)</td>
</tr>
<tr>
<td>O1</td>
<td>0.07567(7)</td>
<td>0.52903(13)</td>
<td>0.31216(15)</td>
<td>0.0589(4)</td>
</tr>
<tr>
<td>C9</td>
<td>0.10268(9)</td>
<td>-0.05951(17)</td>
<td>0.43647(16)</td>
<td>0.0398(3)</td>
</tr>
<tr>
<td>O2</td>
<td>0.03491(7)</td>
<td>-0.16271(11)</td>
<td>0.36243(12)</td>
<td>0.0438(3)</td>
</tr>
<tr>
<td>C10</td>
<td>0.34170(9)</td>
<td>0.44686(17)</td>
<td>0.29221(15)</td>
<td>0.0362(3)</td>
</tr>
<tr>
<td>C11</td>
<td>0.39890(9)</td>
<td>0.54601(18)</td>
<td>0.37993(16)</td>
<td>0.0419(3)</td>
</tr>
<tr>
<td>C12</td>
<td>0.44608(10)</td>
<td>0.66985(19)</td>
<td>0.33609(18)</td>
<td>0.0478(4)</td>
</tr>
<tr>
<td>C13</td>
<td>0.43600(10)</td>
<td>0.69675(2)</td>
<td>0.20271(18)</td>
<td>0.0495(4)</td>
</tr>
<tr>
<td>C14</td>
<td>0.37875(11)</td>
<td>0.55962(2)</td>
<td>0.11355(17)</td>
<td>0.0538(4)</td>
</tr>
<tr>
<td>C15</td>
<td>0.33253(10)</td>
<td>0.47527(2)</td>
<td>0.15757(16)</td>
<td>0.0459(4)</td>
</tr>
<tr>
<td>H1A</td>
<td>0.3119</td>
<td>0.3055</td>
<td>0.4383</td>
<td>0.040(4)</td>
</tr>
<tr>
<td>H2A</td>
<td>0.1674</td>
<td>0.3233</td>
<td>0.2129</td>
<td>0.028(3)</td>
</tr>
<tr>
<td>H3</td>
<td>0.1239</td>
<td>0.2554</td>
<td>0.4524</td>
<td>0.043(4)</td>
</tr>
<tr>
<td>H5A</td>
<td>0.1505</td>
<td>-0.1262</td>
<td>0.2279</td>
<td>0.048(4)</td>
</tr>
<tr>
<td>H5B</td>
<td>0.1345</td>
<td>0.6436</td>
<td>0.1539</td>
<td>0.054(5)</td>
</tr>
<tr>
<td>H6</td>
<td>0.2939</td>
<td>-0.0683</td>
<td>0.2105</td>
<td>0.074(6)</td>
</tr>
<tr>
<td>H7</td>
<td>0.3751</td>
<td>0.1344</td>
<td>0.2869</td>
<td>0.064(5)</td>
</tr>
<tr>
<td>H8A</td>
<td>0.1928</td>
<td>0.5598</td>
<td>0.4377</td>
<td>0.034(4)</td>
</tr>
<tr>
<td>H8B</td>
<td>0.1944</td>
<td>0.5936</td>
<td>0.2921</td>
<td>0.038(4)</td>
</tr>
<tr>
<td>H1</td>
<td>0.0598(12)</td>
<td>0.6214(14)</td>
<td>0.319(2)</td>
<td>0.080(7)</td>
</tr>
<tr>
<td>H9A</td>
<td>0.1509</td>
<td>-0.1283</td>
<td>0.4852</td>
<td>0.048(4)</td>
</tr>
<tr>
<td>H9B</td>
<td>0.0790</td>
<td>0.0021</td>
<td>0.5014</td>
<td>0.048(4)</td>
</tr>
<tr>
<td>H2</td>
<td>-0.0028(9)</td>
<td>-0.1082</td>
<td>0.3095(14)</td>
<td>0.065(6)</td>
</tr>
<tr>
<td>H11</td>
<td>0.4061</td>
<td>0.5293</td>
<td>0.4713</td>
<td>0.056(5)</td>
</tr>
<tr>
<td>H12</td>
<td>0.4849</td>
<td>0.7356</td>
<td>0.3976</td>
<td>0.063(5)</td>
</tr>
<tr>
<td>H13</td>
<td>0.4678</td>
<td>0.7854</td>
<td>0.1727</td>
<td>0.054(5)</td>
</tr>
<tr>
<td>H14</td>
<td>0.3711</td>
<td>0.6180</td>
<td>0.0223</td>
<td>0.067(6)</td>
</tr>
<tr>
<td>H15</td>
<td>0.2944</td>
<td>0.4088</td>
<td>0.0957</td>
<td>0.056(5)</td>
</tr>
</tbody>
</table>

* Ueq is defined as one third of the trace of the orthogonalized U tensor.
Table 3. Anisotropic atomic displacement parameters * (Å²) for UM#1561.

<table>
<thead>
<tr>
<th>Atom</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U12</th>
<th>U13</th>
<th>U23</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.0319(7)</td>
<td>0.0243(7)</td>
<td>0.0431(8)</td>
<td>-0.0041(6)</td>
<td>0.0063(6)</td>
<td>0.0019(6)</td>
</tr>
<tr>
<td>C2</td>
<td>0.0327(7)</td>
<td>0.0239(6)</td>
<td>0.0400(7)</td>
<td>-0.0018(6)</td>
<td>0.0053(6)</td>
<td>0.0020(5)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0321(6)</td>
<td>0.0299(7)</td>
<td>0.0404(7)</td>
<td>-0.0019(6)</td>
<td>0.0093(6)</td>
<td>0.0026(5)</td>
</tr>
<tr>
<td>C4</td>
<td>0.0332(7)</td>
<td>0.0281(6)</td>
<td>0.0397(8)</td>
<td>0.0001(6)</td>
<td>0.0063(6)</td>
<td>0.0023(5)</td>
</tr>
<tr>
<td>C5</td>
<td>0.0551(9)</td>
<td>0.0281(7)</td>
<td>0.0483(9)</td>
<td>-0.0045(7)</td>
<td>0.0173(8)</td>
<td>-0.0007(7)</td>
</tr>
<tr>
<td>C6</td>
<td>0.0569(10)</td>
<td>0.0307(8)</td>
<td>0.0652(11)</td>
<td>0.0005(8)</td>
<td>0.0283(9)</td>
<td>0.0115(7)</td>
</tr>
<tr>
<td>C7</td>
<td>0.0376(8)</td>
<td>0.0376(8)</td>
<td>0.0732(11)</td>
<td>0.0058(8)</td>
<td>0.0184(8)</td>
<td>0.0114(6)</td>
</tr>
<tr>
<td>C8</td>
<td>0.0349(7)</td>
<td>0.0245(7)</td>
<td>0.0541(9)</td>
<td>-0.0042(7)</td>
<td>0.0070(7)</td>
<td>0.0007(5)</td>
</tr>
<tr>
<td>O1</td>
<td>0.0353(5)</td>
<td>0.0287(6)</td>
<td>0.1068(11)</td>
<td>-0.0192(7)</td>
<td>0.0047(6)</td>
<td>0.0054(4)</td>
</tr>
<tr>
<td>C9</td>
<td>0.0418(8)</td>
<td>0.0314(7)</td>
<td>0.0457(8)</td>
<td>0.0003(7)</td>
<td>0.0091(7)</td>
<td>-0.0023(6)</td>
</tr>
<tr>
<td>O2</td>
<td>0.0410(6)</td>
<td>0.0237(5)</td>
<td>0.0635(7)</td>
<td>-0.0001(5)</td>
<td>0.0056(6)</td>
<td>-0.0020(4)</td>
</tr>
<tr>
<td>C10</td>
<td>0.0303(7)</td>
<td>0.0346(7)</td>
<td>0.0437(8)</td>
<td>0.0018(7)</td>
<td>0.0086(6)</td>
<td>0.0026(6)</td>
</tr>
<tr>
<td>C11</td>
<td>0.0365(7)</td>
<td>0.0446(9)</td>
<td>0.0430(8)</td>
<td>-0.0019(7)</td>
<td>0.0061(7)</td>
<td>0.0000(6)</td>
</tr>
<tr>
<td>C12</td>
<td>0.0383(8)</td>
<td>0.0409(9)</td>
<td>0.0622(10)</td>
<td>-0.0050(8)</td>
<td>0.0074(8)</td>
<td>-0.0048(7)</td>
</tr>
<tr>
<td>C13</td>
<td>0.0398(8)</td>
<td>0.0425(9)</td>
<td>0.0689(11)</td>
<td>0.0079(9)</td>
<td>0.0180(8)</td>
<td>-0.0012(7)</td>
</tr>
<tr>
<td>C14</td>
<td>0.0537(10)</td>
<td>0.0611(11)</td>
<td>0.0485(10)</td>
<td>0.0084(9)</td>
<td>0.0157(8)</td>
<td>-0.0033(8)</td>
</tr>
<tr>
<td>C15</td>
<td>0.0461(9)</td>
<td>0.0476(9)</td>
<td>0.0430(8)</td>
<td>-0.0042(8)</td>
<td>0.0080(8)</td>
<td>-0.0070(7)</td>
</tr>
</tbody>
</table>

* The anisotropic atomic displacement factor exponent takes the form: -2π² [h^2a^2U_{11} + ... + 2hkab^cU_{12}]
Table 5. Bond lengths (Å) and angles (°) for UM#1361.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C7</td>
<td>1.521(2)</td>
<td></td>
</tr>
<tr>
<td>C1-H1A</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C2-H2A</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C4-C9</td>
<td>1.503(19)</td>
<td>1.5117(18)</td>
</tr>
<tr>
<td>C5-H5A</td>
<td>0.9800</td>
<td>C6-H6</td>
</tr>
<tr>
<td>C7-H7</td>
<td>0.9400</td>
<td>0.9400</td>
</tr>
<tr>
<td>C8-H8A</td>
<td>0.9800</td>
<td>C9-H9A</td>
</tr>
<tr>
<td>C9-H9B</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>O2-H2</td>
<td>0.833(9)</td>
<td>C10-C11</td>
</tr>
<tr>
<td>C11-C12</td>
<td>1.389(2)</td>
<td></td>
</tr>
<tr>
<td>C12-H12</td>
<td>0.9400</td>
<td>13.78(2)</td>
</tr>
<tr>
<td>C14-C15</td>
<td>1.384(2)</td>
<td>1.384(2)</td>
</tr>
<tr>
<td>C7-C1-C10</td>
<td>109.64(12)</td>
<td>112.68(12)</td>
</tr>
<tr>
<td>C7-C1-H1A</td>
<td>107.1</td>
<td>109.1</td>
</tr>
<tr>
<td>C3-C2-C8</td>
<td>110.32(11)</td>
<td>110.07(11)</td>
</tr>
<tr>
<td>C3-C2-H2A</td>
<td>108.2</td>
<td>108.2</td>
</tr>
<tr>
<td>C4-C3-C2</td>
<td>123.77(12)</td>
<td>118.1</td>
</tr>
<tr>
<td>C4-C4-C9</td>
<td>121.35(13)</td>
<td>120.94(13)</td>
</tr>
<tr>
<td>C6-C5-C4</td>
<td>113.37(13)</td>
<td>108.9</td>
</tr>
<tr>
<td>H9A-C9-H9B</td>
<td>110.3</td>
<td>112.2</td>
</tr>
<tr>
<td>C1-C10-C1</td>
<td>121.20(13)</td>
<td>121.03(14)</td>
</tr>
<tr>
<td>C10-C11-H11</td>
<td>119.3</td>
<td>119.3</td>
</tr>
<tr>
<td>C11-C12-H12</td>
<td>120.0</td>
<td>120.0</td>
</tr>
<tr>
<td>C12-C13-H13</td>
<td>120.3</td>
<td>120.3</td>
</tr>
<tr>
<td>C13-C14-H14</td>
<td>119.8</td>
<td>119.8</td>
</tr>
<tr>
<td>C14-C15-H15</td>
<td>119.5</td>
<td>119.5</td>
</tr>
<tr>
<td>C7-C1-C2-C3</td>
<td>66.09(16)</td>
<td>169.10(11)</td>
</tr>
<tr>
<td>C8-C2-C3-C4</td>
<td>46.10(17)</td>
<td>165.68(13)</td>
</tr>
<tr>
<td>C3-C4-C5-C6</td>
<td>173.88(12)</td>
<td>4.12(1)</td>
</tr>
<tr>
<td>C4-C5-C6-C7</td>
<td>-118.36(14)</td>
<td>-37.9(2)</td>
</tr>
<tr>
<td>C1-C10-C11</td>
<td>140.47(19)</td>
<td>13.9(3)</td>
</tr>
<tr>
<td>C1-C2-C8-O1</td>
<td>-179.38(13)</td>
<td>130.59(14)</td>
</tr>
<tr>
<td>C1-C7-C10-C11</td>
<td>-120.07(15)</td>
<td>113.47(15)</td>
</tr>
<tr>
<td>C2-C1-C10-C15</td>
<td>58.97(18)</td>
<td>67.50(18)</td>
</tr>
<tr>
<td>C1-C10-C11-C12</td>
<td>178.96(13)</td>
<td>0.4(2)</td>
</tr>
<tr>
<td>C2-C13-C14-C15</td>
<td>-0.7(3)</td>
<td>1.0(3)</td>
</tr>
<tr>
<td>C1-C10-C15-C14</td>
<td>-179.61(14)</td>
<td></td>
</tr>
</tbody>
</table>

214
<table>
<thead>
<tr>
<th>D—H⋯A*</th>
<th>d(D—H)</th>
<th>d(H⋯A)</th>
<th>d(D⋯A)</th>
<th>∠(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1—H1⋯O2#1</td>
<td>0.799(9)</td>
<td>1.885(10)</td>
<td>2.676(14)</td>
<td>171(2)</td>
</tr>
<tr>
<td>O2—H2⋯O1#2</td>
<td>0.833(9)</td>
<td>1.866(10)</td>
<td>2.694(16)</td>
<td>173.0(18)</td>
</tr>
</tbody>
</table>

Symmetry transformation codes: #1 x,y,z+1/z #2 -x,-y+1/2,-z+1/2
References:

(14) Summer 2005 research report of Kou-Hui Wu.

(19) Enantiomeric excess consistent with that reported by Kou-Hui Wu, see summer 2005 research report of Kou-Hui Wu.

(33) The reaction was repeated under identical conditions, providing 14 in 69% isolated yield, 32% ee.