
ABSTRACT

Title of Document: ROBUST DESIGN OF WIRELESS NETWORKS

Abhishek Kashyap, Ph.D., 2006

Directed By: Professor Mark Shayman

Electrical and Computer Engineering

We consider the problem of robust topology control, routing and power control

in wireless networks. We consider two aspects of robustness: topology control for

robustness against device and link failures; routing and power control for robust-

ness against traffic variations. The first problem is more specific to wireless sensor

networks.

Sensors typically use wireless transmitters to communicate with each other.

However, sensors may be located in a way that they cannot even form a connected

network (e.g, due to failures of some sensors, or loss of battery power). Using power

control to induce a connected topology may not be feasible as the sensors may be

placed in clusters far apart. We consider the problem of adding the smallest num-

ber of relay nodes so that the induced communication graph is k-connected. We

consider both edge and vertex connectivity. The problem is NP -hard. We de-

velop approximation algorithms that find close to optimal solutions. We consider

extension to higher dimensions, and provide approximation guarantees for the algo-

rithms. In addition, our methods extend with the same approximation guarantees to

a generalization when the locations of relays are required to avoid certain polygonal



obstacles. We also consider extension to networks with non-uniform transmission

range, and provide approximation algorithms.

The second problem we consider is of joint routing and transmission power

assignment in multi-hop wireless networks with unknown traffic. We assume the

traffic matrix, which specifies the traffic load between every source-destination pair

in the network, is unknown, but always lies inside a polytope. Our goal is to find a

fixed routing and power assignment that minimizes the maximum total transmission

power in the network over all traffic matrices in a given polytope. In our approach,

we do not need to monitor and update paths to adapt to traffic variations. We

formulate this problem as a non-convex semi-infinite programming problem. We

propose an efficient algorithm that computes a routing and power assignment that

is schedulable for all traffic matrices in the given polytope. We perform extensive

simulations to show that the proposed algorithm performs close to algorithms that

adaptively optimize their solution to the traffic variations.



ROBUST DESIGN OF WIRELESS NETWORKS

by

Abhishek Kashyap

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Professor Mark Shayman, Chair/Advisor
Professor Alexander Barg
Professor Samir Khuller
Professor Richard La
Professor Aravind Srinivasan



c© Copyright by
Abhishek Kashyap

2006



Dedication

To my parents for their love, encouragement and support

ii



Acknowledgments

I would like to thank my advisor, Prof. Mark Shayman, and Prof. Samir

Khuller for their guidance and help through my PhD. Their guidance and insight

has helped me accomplish the work being published in this dissertation, along with

other research projects. I would also like to thank them for other professional advice,

which has been really helpful in shaping my PhD.

I would like to thank Prof. Richard La and Prof. Bobby Bhattacharjee for

their guidance on the last chapter of this dissertation, and on other research projects.

I would like to thank Prof. Mark Shayman, Prof. Alexander Barg, Prof.

Richard La, Prof. Samir Khuller and Prof. Aravind Srinivasan for serving on the

dissertation committee.

I would like to thank my colleagues, Vahid Tabatabaee, Anuj Rawat, Mehdi

Kalantari, Tuna Güven and Fangting Sun for their suggestions and help with the

research projects I worked on during my PhD.

I would like to thank my friends at University of Maryland, specifically Amrit

Bandyopadhyay, Ravi Tandon, Rahul Ratan, Manish Shukla, Vishal Khandelwal,

Rajat Ahuja; for helpful discussions on my research problems, and related logistics.

iii



Table of Contents

List of Tables vi

List of Figures vi

1 Introduction 1
1.1 Robustness Against Failures . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Robustness Against Traffic Variation . . . . . . . . . . . . . . . . . . 7
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 12
2.1 Topology Control for Connectivity . . . . . . . . . . . . . . . . . . . . 12
2.2 Traffic-Oblivious Joint Routing and Power Control . . . . . . . . . . 18

3 Robustness Against Node and Link Failures 23
3.1 Network Model and Problem Statement . . . . . . . . . . . . . . . . . 23
3.2 Vertex Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Proof of Approximation Ratio . . . . . . . . . . . . . . . . . . 27
3.2.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . 42

3.3 Edge Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Proof of Approximation Ratio . . . . . . . . . . . . . . . . . . 46
3.3.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . 49

3.4 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . 50

4 Generalizations for Connectivity Problems 56
4.1 Full k-Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Vertex Connectivity . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Edge Connectivity . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Generalization to Restricted Relay Placement . . . . . . . . . . . . . 59
4.2.1 Proof of Approximation Ratio . . . . . . . . . . . . . . . . . . 60

4.3 Generalization to other Metric Spaces . . . . . . . . . . . . . . . . . . 61
4.3.1 2-Vertex Connectivity . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Edge Connectivity . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Generalization to Heterogeneous Networks . . . . . . . . . . . . . . . 76
4.4.1 Vertex Connectivity . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.2 Edge Connectivity . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.3 Networks in Three Dimensional Euclidean Space . . . . . . . . 89

5 Movement of Relay Nodes for Topology Reconfiguration 100
5.1 Placement and Movement Algorithms . . . . . . . . . . . . . . . . . . 101

5.1.1 Framework for Minimizing Distance . . . . . . . . . . . . . . . 101
5.1.2 Minimum Relays Algorithm (MRA) . . . . . . . . . . . . . . . 105
5.1.3 Individual Matching based Algorithm (IMA) . . . . . . . . . . 105
5.1.4 Same Terminal Pair Algorithm (STPA) . . . . . . . . . . . . . 107

iv



5.1.5 Group Matching based Algorithm (GMA) . . . . . . . . . . . 107
5.1.6 Enhanced Group Matching based Algorithm (EGMA) . . . . . 109
5.1.7 Computational Complexity . . . . . . . . . . . . . . . . . . . . 109

5.2 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . 110
5.2.1 Variation with Movement of Terminals . . . . . . . . . . . . . 111
5.2.2 Variation with Number of Terminals . . . . . . . . . . . . . . 114

6 Joint Traffic-Oblivious Routing and Power Control 116
6.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 Interference Model . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Joint Routing and Power Assignment . . . . . . . . . . . . . . . . . . 121

6.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.2 Replacement of Infinite Constraints . . . . . . . . . . . . . . . 122
6.2.3 Iterative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2.4 Static Routing, Centralized Rate Change . . . . . . . . . . . . 128
6.2.5 Static Routing, Distributed Rate Change . . . . . . . . . . . . 129
6.2.6 Traffic Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2.7 Extension to other Interference Models . . . . . . . . . . . . . 130

6.3 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . 131
6.3.1 Traffic Specific Routing and Rates . . . . . . . . . . . . . . . . 133

7 Conclusion and Future Work 138
7.1 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1.1 Relay Placement . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.1.2 Traffic-Oblivious Cross-Layer Design . . . . . . . . . . . . . . 142

Bibliography 144

v



List of Tables

3.1 Bead charging for example of Figure 3.1 . . . . . . . . . . . . . . . . 34

4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 132

List of Figures

1.1 Example application - Storm Petrel monitoring . . . . . . . . . . . . 2

3.1 Example elimination of Steiner nodes, and cycle construction . . . . . 30

3.2 DFS paths of different lengths . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Example construction of Harary graph for k = 3 . . . . . . . . . . . . 37

3.4 Example decomposition of a Harary graph for k = 3 . . . . . . . . . . 37

3.5 Approximation ratio tightness example . . . . . . . . . . . . . . . . . 48

3.6 Lower bound on TSP performance . . . . . . . . . . . . . . . . . . . . 51

3.7 Mean number of relays for 2-edge connectivity, ∆ = 0.2 . . . . . . . . 52

3.8 Max. number of relays for 2-edge connectivity, ∆ = 0.2 . . . . . . . . 52

3.9 Mean number of relays for 3-edge connectivity, ∆ = 0.2 . . . . . . . . 53

3.10 Max. number of relays for 3-edge connectivity, ∆ = 0.2 . . . . . . . . 53

3.11 Mean number of relays needed for varying transmission range, N = 30 54

3.12 Max. number of relays needed for varying transmission range, N = 30 55

4.1 Example for removal of Steiner nodes and addition of beads . . . . . 65

vi



4.2 Types of edge pairs charged to Steiner node sti . . . . . . . . . . . . 71

4.3 DFS paths of different lengths . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Order of DFS traversal around a Steiner node in a heterogeneous
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Minimum angle covered by a long edge of Type II/III/IV . . . . . . . 85

4.6 Order of DFS traversal around a Steiner node in a heterogeneous
network in three dimensions . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Total relay movement, varying R, N = 20, k = 2 . . . . . . . . . . . . 112

5.2 Number of relays needed, varying R, N = 20, k = 2 . . . . . . . . . . 112

5.3 Total relative relay movement in EGMA, varying R, N = 20, k = 2 . 112

5.4 Relative number of relays in EGMA, varying R, N = 20, k = 2 . . . . 113

5.5 Total relative relay movement in STPA, varying R, N = 20, k = 3 . . 113

5.6 Relative number of relays in STPA, varying R, N = 20, k = 3 . . . . 113

5.7 Total relative relay movement in STPA, varying N , R = 1500, k = 2 . 115

5.8 Relative number of relays in STPA, varying N , R = 1500, k = 2 . . . 115

6.1 Iterative algorithm for (6.14) . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Network used for simulations . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Worst case (traffic matrix T ∗) total transmission power for static
routing and rate assignment . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Relative performance for static routing and rates for traffic matrix T ∗ 136

6.5 Relative performance for centralized traffic specific rates with static
routing for traffic matrix T ∗ . . . . . . . . . . . . . . . . . . . . . . . 136

6.6 Relative performance for distributed traffic specific rates with static
routing for traffic matrix T ∗ . . . . . . . . . . . . . . . . . . . . . . . 137

vii



Chapter 1

Introduction

Robustness is a desired feature of wireless networks due to their dynamic character-

istics. We consider the problem of robust design of wireless networks. We work with

two aspects of robustness: robustness against wireless node and link failures, which

is critical for networks in harsh conditions; and robustness against traffic variations

in the network, which is important for providing desired Quality of Service to the

end-users. The first aspect is more relevant to wireless sensor networks [1] since

they may exist in harsh network conditions. The second problem is applicable to

wireless mesh networks, where a high volume of changing traffic is expected, and the

application is to provide Internet access [2], that requires good Quality of Service.

We introduce the problems in the following sections.

1.1 Robustness Against Failures

A wireless sensor network is a group of sensor nodes with sensing, processing and

communication capabilities, deployed to achieve a certain objective (Akyildiz et

al. [1]). Typical applications of sensor networks are habitat monitoring, environ-

mental monitoring, object tracking etc. Sensor networks may exist in harsh net-

work conditions, thus the network must be designed so that failure of some sensor

nodes or some communication links between them does not disrupt the network.

1



Figure 1.1: Example application - Storm Petrel monitoring

We consider the problem of forming a fault-tolerant network topology.

Figure 1.1 shows an example sensor network (Mainwaring et al. [55]) our work

targets. The network was deployed for monitoring of birds (Storm Petrel), with

patches of sensor nodes deployed around and inside burrows, each patch having

a gateway (or multiple so it is not a single point of failure). The gateways are

connected to a base station through a transit network. A user (sink) can get the

sensed data by connecting to the base station (static sink) through the Internet

or by physically going to a gateway and connecting directly to it (mobile sink).

In this application, our work concerns design of a fault-tolerant transit network

between the gateways. We will call the nodes on which a fault-tolerant topology is

desired as terminal nodes, which are the gateways in this example. This example

demonstrates the typical application of our work: the design of fault-tolerant sensor

network topology, where sensors are deployed in distant areas of interest. Sensor

nodes have very limited energy. Thus, they transmit at low power levels, and have

2



a limited transmission range. We assume a fixed transmission range for each sensor

node (gateway in the application of Figure 1.1). It may not be feasible to construct

even a connected topology among the sensor nodes due to their short transmission

range and deployment in far-away regions. We propose the use of additional relay

nodes, whose position we can control, to achieve the desired level of fault-tolerance.

The relay nodes are cheaper than sensor nodes as they do not have any sensing

capabilities.

We define fault-tolerance as the existence of multiple internally vertex-disjoint

(or edge-disjoint) paths between each pair of terminal nodes. If k vertex (edge)

disjoint paths exist between each pair of nodes, the network is said to be k-vertex

(edge) connected. A k-vertex (edge) connected graph has the property that the

failure of any set of (k − 1) nodes (edges) cannot disconnect the network. We also

consider the problem where fault-tolerance is desired between both terminal and

relay nodes. We call this objective as full k-connectivity, and the objective of

achieving k-connectivity among terminal nodes as partial k-connectivity.

We consider two models: one where we assume all relay and sensor nodes have

the same communication capabilities (homogeneous network); and the other where

we assume the communication capabilities of sensor nodes are different, and the

relay nodes have the same communication capabilities, which can be different from

those of sensor nodes (heterogeneous network).

The contributions of this work are the following:

1. We provide algorithms for placement of relays to achieve partial k-vertex and

3



k-edge connectivity among terminals in a homogeneous network.

2. We prove the partial k-vertex connectivity algorithm to be a c(3�k/2�(�k/2�+

1)−1)-approximation1 with respect to the optimal, for terminals distributed in

the Euclidean plane. Here, c is the approximation ratio of the best algorithm

for computing a minimum-weight k-vertex connected spanning subgraph of a

k-vertex connected graph.

3. We prove the partial k-edge connectivity algorithm to be a 10�k/2�-approximation

with respect to the optimal, for terminals distributed in the Euclidean plane.

4. We prove the full k-vertex connectivity algorithm of Bredin et al. [14] is a

3c(3�k/2�(�k/2� + 1) − 1)k-approximation.

5. We provide a full k-edge connectivity algorithm, and prove the algorithm to

be a 30�k/2�2-approximation.

6. We consider extensions to other metric spaces2. We prove the partial k-vertex

connectivity algorithm is a 2M -approximation for k = 2, and the full k-vertex

1Approximation ratio of an algorithm is defined as the worst case ratio of the performance of

the algorithm to the performance of an optimal algorithm. An algorithm with approximation ratio

α is called an α-approximation.
2We consider metric spaces which have a known MST number. MST number is defined as the

maximum node degree in a minimum-degree Minimum Spanning Tree (MST) spanning points from

the space. MST number for the Euclidean plane is 5 (Monma and Suri [58]), three-dimensional

Euclidean space is 12, and rectilinear plane (two-dimensional space with metric defined by L1

norm) is 4 (Robins and Salowe [65]).

4



connectivity algorithm is a 12M -approximation for k = 2, where M is the

MST number of the metric space.

7. We prove the partial k-edge connectivity algorithm is a 2M�k/2�-approximation

and full k-edge connectivity algorithm is a 6M�k/2�-approximation for termi-

nals distributed in other metric spaces.

8. We prove the approximation analysis is tight for partial 2-edge connectivity,

i.e., the lower bound on the worst case performance relative to the optimal is

equal to the upper bound provided by our analysis.

9. We extend our algorithms to the generalization where the relays cannot be

placed in certain polygonal regions (obstacles) and show the same approxima-

tion ratios hold for this generalization as well, for terminals distributed in the

Euclidean plane.

10. We consider heterogeneous networks with non-uniform transmission range of

terminal and relay nodes. We provide algorithms for partial and full k-vertex

and k-edge connectivity. We prove the partial vertex connectivity algorithm to

be a 2(5+11�log√
3(min{α, γ})�+5I�log√3 γ�>�log√3 α�)-approximation for k = 2,

and full vertex connectivity algorithm to be a 12(5 + 11�log√
3(min{α, γ})� +

5I�log√3 γ�>�log√3 α�)-approximation for k = 2, for terminals distributed in Eu-

clidean plane. Here, Ix is the indicator function, which is 1 if condition

x is true, else it is 0. We prove the edge connectivity algorithms to be

2(5+11 �log√
3(min{α, γ})�+5I�log√3 γ�>�log√3 α�)�k/2�-approximation for par-

5



tial k- connectivity, and 6(5+11�log√
3(min{α, γ})�+5I�log√3 γ�>�log√3 α�)�k/2�2

- approximation for full k-connectivity.

11. We consider networks in the three dimensional space using Euclidean met-

rics. We prove the partial vertex connectivity algorithm to be a 2(12 +

37�log1.5(min{α, γ})� + 13I�log1.5 γ�>�log1.5 α�)-approximation for k = 2, and

full vertex connectivity algorithm to be a 12(12 + 37�log1.5(min{α, γ})� +

13I�log1.5 γ�>�log1.5 α�)-approximation for k = 2, for terminals distributed in the

Euclidean plane. We prove the edge connectivity algorithms to be 2(12 +

37�log1.5(min{α, γ})�+13I�log1.5 γ�>�log1.5 α�)�k/2�-approximation for partial k-

connectivity, and 6(12 + 37�log1.5(min{α, γ})� + 13I�log1.5 γ�>�log1.5 α�)�k/2�2 -

approximation for full k-connectivity.

We also consider application to networks with node mobility. In such net-

works, we can use the proposed algorithms to add relays to establish a fault-tolerant

topology between network nodes. But as the network nodes move, the desired fault-

tolerance might be lost due to their limited transmission range. We propose algo-

rithms to reconfigure the topology by moving the existing relay nodes a minimum

amount and adding the minimum number of additional relay nodes.

The main application of these algorithms is in battlefield communication net-

works, which are networks of mobile nodes, communicating with each other using

wireless links. The nodes in the battlefield refer to soldiers, army vehicles, UAVs,

robots, etc. The network may also be a team of nodes engaged together to perform

a large scale reconnaissance mission. The capability of a device to communicate

6



with all nodes (using single or multiple hops) is very critical for the collaborative

missions to succeed. In these applications, the nodes are in hostile conditions, and

the nodes or communication links between nodes may fail. Thus, it is critical for the

communication network between the nodes to be connected even after a few fail-

ures. Since the nodes are mobile, it is necessary to re-configure the communication

topology as it changes substantially.

We assume the network nodes move at a slow time scale. Thus, once their lo-

cations have changed significantly, we would like to re-establish the desired topology

using minimum number of relays. Since some relays already exist in the network

(used in the topology on previous terminal locations), the secondary objective is to

move the existing relay nodes a minimum distance to the new relay positions so that

the topology is constructed quickly. We propose algorithms to achieve the above

stated objectives.

1.2 Robustness Against Traffic Variation

A wireless mesh network [2] is a multi-hop wireless network, consisting of both static

and mobile devices. In these networks, it is crucial to control and minimize the

transmission power because, (1) nodes in wireless networks generally have limited

power and bandwidth, and (2) transmissions can interfere with other wireless devices

in the area and degrade the performance.

Joint routing, power control and scheduling schemes are effective mechanisms

to control power consumption in wireless multi-hop networks. The common ap-

7



proach is to assume the traffic load in the network is known or can be measured, and

to provide provable optimal solutions (Cruz and Santhanam [22], Lin and Cruz [51],

Bhatia and Kodialam [12], Neely et al. [60]). However, in practice, since traffic

demands in the network are hard to measure, and they change continuously, de-

ployment of these algorithms result in sub-optimal routing that has to be updated

continuously. Frequent path updates can cause further problems, e.g., communica-

tion overhead which consumes power and bandwidth, temporal route instability due

to asynchronous information exchange, and disruption in traffic flow.

In this dissertation, we propose a joint fixed routing and power control al-

gorithm that does not assume exact knowledge of the traffic matrix, but gives a

performance guarantee for an ensemble of traffic matrices that are inside a poly-

tope. Since we fix the routing we do not need to update the paths once they are

established in the network. We also ensure that the obtained transmission rates

satisfy the sufficient conditions introduced by Kodialam and Nandagopal [43] for

schedulability. Therefore, using local traffic information, a distributed online algo-

rithm can be used for scheduling. Similar to Cruz and Santhanam [22], Lin and

Cruz [51], Bhatia and Kodialam [12], our goal is to minimize the total transmission

power in the network. However, in our framework, since we are not dealing with a

single traffic matrix, we minimize the maximum total transmission power over all

traffic matrices in the traffic region.

For the traffic demand region, we assume some restrictions on the network

traffic do exist. The first set of restrictions is on the total traffic originating either

at a source node, or sinking at a destination node. These constraints are called

8



hose model constraints (Duffield et al. [25]), and usually represent the capacity

constraints of the ingress/egress nodes. The second set of constraints is on the in-

dividual commodities (pipe model constraints), and can normally be inferred from

the traffic history, Service Level Agreements (SLAs), etc. These two sets of con-

straints constitute a polytope in which the traffic matrices lie. Our objective is to

minimize the worst case total transmission power over the traffic matrix polytope,

subject to the constraint that the computed routing and link rates (inferred from

link transmission power) are schedulable for all traffic matrices in the polytope.

There has been recent work in wireline networks for computing a static routing

with good performance for a traffic matrix polyhedron, Azar et al. [6], Applegate

and Cohen [3], Kodialam et al. [42], Tabatabaee et al. [70]. The problem in wireline

networks is different since the link capacities are fixed. In wireless networks, the

link transmission power specifies the achievable capacity (rate) of each link.

The dependence of link capacities on transmitting powers in wireless networks

gives an additional degree of freedom (power control) that does not exist in wireline

networks. Therefore, the optimal routing solutions proposed for wireline systems

are generally not directly applicable for wireless systems. In fact, the non-linear

relation between capacity and transmission power in wireless systems results in a

non-convex optimization problem, which is fundamentally harder than the linear

optimization problem of wireline systems. There has been recent work on oblivious

routing in wireless networks, Li et al. [49]. However, the authors assume fixed link

capacity, neglecting the non-linear relation between capacity and transmission power

of wireless networks. To summarize, the contributions of our work are as follows:

9



1. We formulate the problem of joint routing and power control (without the

knowledge of exact end-to-end traffic matrix) as a non-convex semi-infinite

programming problem.

2. We propose an efficient algorithm that yields a fixed set of paths and trans-

mission powers, and is schedulable for all traffic matrices within a specified

polytope.

3. We propose centralized and distributed extensions of the basic algorithm that

trade off complexity for better performance. The extended algorithms still

use fixed routing, but adapt the transmission powers to the traffic matrix

variations in the network.

4. We perform extensive simulations to show that the performance of our static

algorithm is comparable to an existing more complex dynamic algorithm, Bha-

tia and Kodialam [12], that continuously optimizes both routes and power

assignment for the given traffic matrix.

1.3 Organization

The dissertation is organized as follows: Chapter 2 discusses the related work. Chap-

ter 3 presents the algorithms and analysis for partial k-vertex (edge) connectivity.

Chapter 4 discusses generalizations of the k-connectivity problems. The general-

izations considered are: providing full k-vertex/edge connectivity; algorithms and

analysis for providing k-connectivity in presence of obstacles in the network; analysis

10



for terminal nodes distributed in other metric spaces; and algorithms and analysis

for providing k-connectivity in heterogeneous networks. Chapter 5 presents algo-

rithms for movement of relay nodes for topology reconfiguration. Chapter 6 presents

algorithms for joint routing and power control in wireless networks with unknown

traffic. Chapter 7 concludes the dissertation, and presents some future research

directions.

11



Chapter 2

Related Work

We first present the related work on topology control for design of fault-tolerant

wireless networks. We later present the related work on traffic-oblivious joint routing

and power control.

2.1 Topology Control for Connectivity

There has been a considerable amount of work on relay placement in sensor net-

works for topology control. Corke et al. [19, 20] present algorithms for deployment

and connectivity repair of sensor networks using helicopters and flying robots. They

use flying robots to automatically deploy sensor nodes at target locations, and re-

pair connectivity by deploying additional nodes when the network becomes discon-

nected. Bredin et al. [14] propose O(k4)-approximation algorithms for achieving full

k-vertex connectivity using minimum number of relays. Their analysis is for nodes

distributed in the Euclidean plane. Their algorithms use a similar approach as ours

and their analysis for partial k-vertex connectivity gives an approximation ratio of

O(k3), while our analysis proves the approximation ratio to be O(k2). We prove

the approximation ratio of their full vertex connectivity algorithm to be O(k3). We

also provide an O(k)-approximation algorithm for partial k-edge connectivity, and

O(k2)-approximation algorithm for full k-edge connectivity. We also analyze our

12



algorithms for terminal nodes distributed in other metric spaces.

Han et al. [33] consider the problem of placing minimum number of relay

nodes for achieving partial and full k-vertex connectivity in a heterogeneous wireless

sensor network. They assume the transmission range of the sensor nodes is in

the range [Tmin, Tmax], and the transmission range of relay nodes is Trelay. They

provide algorithms for two models: only uni-directional links are allowed between

nodes; only bi-directional links are allowed between nodes. In this second model,

a link exists between two nodes only if both are within each other’s transmission

range. They provide algorithms with approximation ratio of c((8β2 + 1
4
)k2 + 3

2
k +

2) for partial k-vertex connectivity for the bi-directional link model. Here, c is

the approximation ratio of the best algorithm for computing a k-vertex connected

subgraph of a graph, and β = �Trelay/Tmin�. The authors also provide approximation

analysis for nodes distributed in metric spaces with dimension d. For homogeneous

networks, with the transmission range being the same for all nodes, their algorithms

are identical to our algorithms for k-vertex connectivity. For homogeneous networks,

their approximation ratios are of the same order as our analysis provides, but the

constants are very large. As an example, for partial 2-vertex connectivity, c = 2,

and their analysis yields an approximation ratio of 76, while our analysis yields a

ratio of 10. We also analyze their full and partial vertex connectivity algorithms for

2-vertex connectivity in heterogeneous networks in the Euclidean plane and three

dimensional Euclidean space, and our analysis is much tighter. For partial 2-vertex

connectivity, our analysis gives an approximation ratio of O(log(min{α, γ})), where

α = Tmax/Tmin, γ = Trelay/Tmin, while their algorithm gives an approximation ratio

13



of O(β2). As an example, for the Euclidean plane, if Tmax = 2Tmin and Trelay = Tmax,

the approximation ratio for partial 2-vertex connectivity proved by their analysis is

274, while our analysis yields an approximation ratio of 37.76. We also propose and

analyze algorithms for partial and full k-edge connectivity.

Hao et al. [34] consider the problem of placing the minimum number of back-

bone nodes (relays) among a set of candidate locations such that each sensor node

has paths to at least two backbone nodes, and the backbone nodes have at least

two vertex-disjoint paths between them. They provide an approximation algorithm

having an O(D log n) approximation ratio, where D depends on the diameter of

the network and n is the number of sensor nodes in the network. Liu et al. [52]

consider the problem of placing relays in a network of sensor nodes so that they

cover the sensor nodes (i.e., each sensor node is connected to at least one relay) and

the network is 2-vertex connected. They provide a (6 + ε)-approximation algorithm

for connectivity and two approximation algorithms for 2-vertex connectivity with

ratios (24 + ε) and (6/T + 12 + ε), where T is the ratio of relays needed for con-

nectivity to the number of sensor nodes. Tang et al. [71] consider the problem of

placement of relay nodes to cover a set of sensor nodes such that each sensor node

can reach two relay nodes and the topology is 2-vertex connected. They provide 6

and 4.5-approximation algorithms for the problem. They also consider the problem

of covering the sensor nodes and providing a connected topology, and provide 8 and

4.5-approximation algorithms. Their problem is different from ours as they want

the set of relays to be a dominating set among the sensor nodes, i.e., each sensor

node should be directly connected to at least one relay node.

14



Recall that we defined terminal nodes as nodes on which a fault-tolerant topol-

ogy is desired. The problem of constructing a connected network on terminal nodes

using minimum number of relay nodes has been considered in Lin et al. [50], Mǎndoui

and Zelikovsky [56], and Chen et al. [15]. Lin et al. [50] prove the problem to be

NP -Hard, and propose an approximation algorithm for constructing a tree using re-

lay nodes. They prove the algorithm to be a 5-approximation for nodes distributed

in the Euclidean plane. The algorithm restricts the placement of relay nodes on

lines joining pairs of terminal nodes. It then assigns a weight function to each pair

of terminal nodes according to the number of relay nodes needed to connect them

directly. They find a minimum spanning tree (MST) on this graph. Mǎndoui and

Zelikovsky [56] and Chen et al. [15] prove the algorithm to be a 4-approximation, and

the bound is proved to be tight. Mǎndoui and Zelikovsky [56] prove the approxima-

tion ratio to be M − 1 for nodes distributed in metric spaces with MST number M .

Chen et al. [15] also provide a 3-approximation algorithm for the problem. Cheng

et al. [16] provide a 2.5-approximation randomized algorithm for placement of relay

nodes to connect a given set of terminal nodes.

There has been work on probabilistic analysis of number of nodes required

and their transmission range required for achieving k-connectivity among randomly

distributed nodes. Bettstetter [11] studies the node degree properties of nodes dis-

tributed randomly in a network, and the connectivity and k-connectivity properties

of the network. The author gives probabilities of having isolated nodes and approx-

imates the probability of having a connected network to be equal to the probability

of having no isolated node. Similar approximations are done for k-connectivity as

15



well. Li et. al. [48] prove that for sufficiently large number of nodes in the network,

there is a critical power level after which the network is k-connected with a certain

non-zero probability. None of the frameworks seems to extend to the case of adding

additional nodes in the network for achieving connectivity, as achieving connectivity

by increasing power level of all nodes is not similar in spirit to achieving connectivity

by adding relay nodes. Also, if terminal nodes are not located close to each other,

addition of relay nodes is a more practical solution to achieving desired connectivity

levels.

Basu and Redi [9] consider the problem of moving the terminal nodes (robots

in their setting) to bi-connect the topology on terminal nodes. They assume the posi-

tion of all terminal nodes is controllable. Their objective is to minimize the total dis-

tance travelled by the terminal nodes. They provide optimal polynomial time solu-

tions using linear programming for terminals distributed in a one-dimensional space,

and provide heuristic algorithms for terminals distributed in a two-dimensional

space. Shields et al. [68] consider the problem of placement of relay nodes to keep

the topology on base stations in a wireless network connected. They assume the

movement trajectory of base stations is given. They provide upper and lower bounds

on the number of relays needed, and propose heuristic algorithms to place them.

Another area of recent work has been on power control algorithms for achiev-

ing connectivity and k-vertex connectivity in wireless networks. Ramanathan and

Rosales-Hain [63] consider the problem of power control to achieve connectivity

and bi-connectivity in multi-hop wireless networks. They consider the problem

of minimizing the maximum power used in the network, and provide greedy opti-

16



mal algorithms for static networks. For mobile networks, they provide heuristics

that adaptively adjust power to achieve connectivity in the network. Rodoplu and

Meng [66] propose distributed power control algorithms for minimizing the total

transmission energy used in the network while achieving connectivity. Wattenhofer

et. al. [74] propose a distributed cone based topology control (CBTC) algorithm for

power control at each node to achieve connectivity in the network. The algorithm is

local at each node, and works by having each node increase its transmission power

enough to have at least one neighbor in every cone of angle α around it. Wattenhofer

and Zollinger [75] propose a topology control algorithm called XTC. XTC computes

a connected topology without using any node location information; it uses link

quality indicators to establish the topology using only two-hop information. Lloyd

et al. [53] propose an 8-approximation algorithm for computing a minimum total

power 2-connected topology among wireless nodes. Li et al. [47] propose localized

algorithms for construction of a bounded-degree connected topology among wireless

nodes with non-uniform transmission range.

Hajiaghayi et al. [32] propose approximation algorithms for achieving k-vertex

connectivity in wireless networks. The objective is to minimize the sum of the maxi-

mum power levels of all nodes. The authors propose O(k)-approximation centralized

algorithms for general graphs, and O(k)-approximation distributed algorithms for

achieving k-vertex connectivity in geometric graphs, i.e., graphs where edge lengths

satisfy triangle inequality. Li and Hou [46] propose algorithms for computing a

k-vertex connected topology that minimizes the maximum node power in the net-

work. They provide an optimal centralized algorithm, and a localized algorithm

17



that is proved to be optimal among all algorithms that use only local information.

Thallner and Moser [73] propose clustering-based algorithms for localized computa-

tion of a k-vertex connected topology on wireless nodes. They recursively construct

clusters of size k, such that total power used in the network is low. Bahramgiri et

al. [7] extend the Cone Based Topology Control (CBTC) algorithm of Wattenhofer

et al. [74] to provide k-vertex connectivity in two and three dimensional Euclidean

spaces.

2.2 Traffic-Oblivious Joint Routing and Power Control

Distributed algorithms for transmission power assignment have been proposed for

cellular networks, Zander [78], Foschini and Miljanic [28], Yates [77], where the data

transfers are between mobile nodes and a base station. The objective is to transmit

at a power such that the signal to interference and noise ratio is above the reception

threshold for all transmitting links (in different cells) which may interfere with each

other.

Based on these algorithms, Elbatt and Ehpremides [26] proposed an algorithm

for joint scheduling and power control in ad-hoc networks. The authors provide a

set of medium access rules that makes the power control problem similar to the

problem of power control in cellular networks. They propose a greedy centralized

scheme to construct sets of links which can transmit together and schedule each

set in one slot at the start of each TDMA frame. Power control is done using the

algorithms proposed for cellular networks. The authors assume that the routing is

18



given and do not consider routing optimization, which has a critical effect on the

performance.

The problem of joint routing and scheduling of a given traffic matrix for fixed

transmission power has been studied in Hajek and Sasaki [31], Wieselthier et al. [76],

Kodialam and Nandagopal [43, 44]. Hajek and Sasaki [31] provide polynomial time

algorithms to compute a minimum-length schedule and routing for traffic in a net-

work. They use ellipsoid algorithm with a separation oracle, thus the running time,

as the authors mention, is not practical. Wieselthier et al. [76] propose neural net-

works based heuristics that compute a single path per traffic demand, with a cost

function that prefers a smaller length schedule. Kodialam and Nandagopal [43, 44]

study the problem of schedulability of a traffic matrix according to the schedul-

ing constraints, and propose an approximation algorithm to compute a routing and

schedule for a given traffic matrix.

There has been recent work on the problem of joint routing, scheduling and

power control for minimizing total transmission power for a given traffic demand.

Cruz and Santhanam [22], Lin and Cruz [51] propose optimal algorithms for the

problem, but the algorithms consider an exponential number of transmission sce-

narios. Thus, the algorithms take exponential time to run, and cannot be executed

each time the traffic in the network changes. Bhatia and Kodialam [12] propose a

polynomial-time 3-approximation algorithm for the problem. Their work is differ-

ent from ours, since they use the exact end-to-end traffic information, whereas we

assume that traffic demand lies inside a region.

Neely et al. [60] consider the problem of dynamic routing and power assign-

19



ment for wireless networks of power constrained nodes with time varying channels.

The authors provide a region of traffic matrices a network can support and a cen-

tralized algorithm for computing an adaptive routing and power assignment in each

TDMA slot that guarantees system stability for all traffic in that region. The au-

thors prove that the algorithm has bounded delays for certain channel and traffic

processes. In their algorithm they have to solve a non-convex optimization problem.

Therefore, the authors also propose a distributed heuristic algorithm for solving

the non-convex optimization problem. The problem we consider is finding a fixed

solution that minimizes worst case total transmission power consumption for traf-

fic matrices inside a polytope. The worst case occurs at a vertex of the polytope.

However, the number of vertices is exponential, and there are infinite number of

non-convex constraints. We propose algorithms that solve a few convex quadratic

optimization problems (there are very fast algorithms for solving convex quadratic

programs). We show via simulations that the algorithms have performance compa-

rable to more complex algorithms that continuously optimize and update routing

as the traffic matrix varies. Also, we compute routing and power assignment just

once, rather than once every time slot.

There has been recent work in wireline networks for computing a static rout-

ing with good performance for a traffic matrix polyhedron. Oblivious routing (Azar

et al. [6], Applegate and Cohen [3]) is a routing that minimizes maximum ratio of

the maximum link load to the maximum link load of the optimal routing for any

arbitrary traffic matrix in the polyhedron (bounded or unbounded)1. The problem

1Considering bounds on the polyhedron actually makes their problem more complicated.

20



of providing absolute bounds on the performance to all traffic in a polytope (as we

do), and not relative bounds (as oblivious routing does), has been considered in

Kodialam et al. [42], Tabatabaee et al. [70]. The problem in wireline networks is dif-

ferent since the link capacities are fixed. In wireless networks, the link transmission

power specifies the achievable capacity (rate) of each link. The dependence of link

capacities on transmitting powers in wireless networks gives an additional degree

of freedom (power control) that does not exist in wireline networks. Therefore, the

optimal routing solutions proposed for wireline systems are generally not directly

applicable for wireless systems. In fact, the non-linear relation between capacity

and transmission power in wireless systems results in a non-convex optimization

problem, which is fundamentally harder than the linear optimization problem of

wireline systems.

Li et al. [49] consider the problem of oblivious routing for wireless networks.

Their objective is to minimize the maximum node energy consumption relative to

the maximum per node energy consumption of the optimal policy for each traffic

matrix in a polyhedron. They assume static link capacities in the network (thus

uncontrollable transmission power at each link). Their model is very similar to a

wireline network and does not reflect the relation between transmission power and

link capacity in wireless networks. Also, the scheduling constraints they have in

their formulation are on the optimal routing (that is used for normalizing in the

objective function) for each traffic demand, but not on the oblivious routing that

they compute. In fact, they consider all traffic matrices that are schedulable using

some routing. But, their computed routing may not be schedulable for all those

21



traffic matrices, and thus the performance guarantees will not hold. As an example,

let there be two traffic matrices T1 and T2 for which we need to compute single

routing for given capacity (if each can be scheduled by some routing, that may be

different). The algorithm checks for the existence of a routing that is schedulable

for T1, and another routing that is schedulable for T2. However, the algorithm does

not constrain its output routing to be schedulable for any of T1 and T2. Thus,

the output routing might not be able to schedule any of them under the given

capacity constraints, while a routing that can schedule both might exist. They

provide linear programs similar to those of wireline oblivious routing for computing

the optimal routing. Incorporating scheduling constraints in their output routing

would make the problem non-convex, and thus harder to solve. In our formulation,

we consider the relation between power and rate in wireless networks, and guarantee

that the output of our algorithm is schedulable for all traffic matrices in the given

traffic matrix polytope. Due to these additions, the problem becomes much more

complicated. Another difference is that we minimize the total power value rather

than relative value to the optimal for each traffic demand.

22



Chapter 3

Robustness Against Node and Link Failures

In this chapter, we consider the problem of designing a network that is robust to

node and link failures. We first describe the network model and problem statement.

We then present algorithms and analysis for network topology design that is tolerant

against node and link failures. We present some simulation results to conclude the

chapter.

3.1 Network Model and Problem Statement

We model the network as a graph G = (V,E), where V is the set of sensor nodes,

which we call terminal nodes, and E is the set of links between them. We assume

each node has a limited transmission range, which we normalize to one. It is assumed

that a node can connect to all nodes within its transmission range. A link e = (x, y)

belongs to E if nodes x and y are within unit distance of each other. The links

can be either omnidirectional RF, directional RF or Free Space Optical (without

obscuration).

Our objective is to construct a network topology that is k-vertex or k-edge

connected on the terminals. A network is said to be k-vertex (edge) connected if

k vertex (edge) disjoint paths exist between each pair of nodes. A k-vertex (edge)

connected graph has the property that the failure of any set of (k−1) nodes (edges)

23



does not disconnect the network.

Due to the limited transmission range of terminal nodes, it may not even be

possible to form a connected topology. We assume we have relay nodes and we have

control over their location. We place the relay nodes in the network so that the

desired level of connectivity is achieved. We assume the relay nodes are identical

to the terminal nodes in terms of their transmission range and type of links. The

problem can be stated as follows:

Partial k-connectivity: Given a graph G = (V,E), find the minimum

number of relay nodes (denoted by set R) needed (and their locations) such that

the set of nodes V is k-vertex (edge) connected (k ≥ 2) in the resulting graph

G′ = (V + R,E ′), E ⊆ E ′. The objective is to construct a graph such that

∀ u, v ∈ V, λ(u, v) ≥ k; where λ(u, v) is the number of internally vertex-disjoint

(or edge-disjoint) paths between u and v in G′.

3.2 Vertex Connectivity

We first consider the problem of providing k-vertex connectivity. We follow the

relay placement framework of the connectivity algorithm of [50]. To connect two

terminal nodes outside each other’s transmission range, the relay nodes are placed

on the straight line connecting the two nodes. The algorithm proceeds by forming

a complete graph Gc on the terminal nodes. Equation 3.1 gives the weight function

used for the edges, where |e| is the length of an edge. The weight represents the

number of relay nodes required to form an edge. We do not allow the relay nodes

24



to have edges other than the ones required to form the edge they are placed on.

ce = �|e|� − 1 (3.1)

Next, we compute an approximate minimum cost spanning k-vertex connected

subgraph (G′
c) of Gc. The problem of finding the minimum cost spanning k-vertex

connected subgraph of a graph is NP -Hard (Garey and Johnson [30]). Thus, we

use the 2-approximation algorithm of Khuller and Raghavachari [40] for k = 2,

and the k-approximation algorithm of Kortsarz and Nutov [45] for k > 2. For

k ≤ 7, we can use the improved approximation algorithms proposed by Auletta et

al. [5], and Dinitz and Nutov [24]. It is worth noting that the weight function of

Equation 3.1 is not a metric as it does not satisfy the triangle inequality. In the

resulting k-vertex connected subgraph, the relay nodes are placed to form the edges

(of length greater than one) of the subgraph. We later prove that this algorithm has

an approximation ratio of O(k2). The solution is then improved by removing some

relays. The relays are allowed to form edges with all nodes in their transmission

range and sequentially removed if k-vertex connectivity is preserved. We call this

step the sequential removal step. Algorithm 3.2.1 describes the algorithm.

25



Algorithm 3.2.1 Relay placement for k-vertex connectivity

1: Construct a complete graph Gc = (V,Ec) by adding an edge between each pair

of vertices of graph G.

2: Weight the edges of the graph as follows. |e| represents the length of edge e.

ce = �|e|� − 1

3: Compute an approximate minimum cost spanning k-vertex connected subgraph

from this graph Gc. Let the resulting graph be G′
c.

4: Place relay nodes (number equal to the weight of the edge) on the edges in G′
c

with link costs greater than zero.

5: For all pairs of nodes (including the relay nodes) in G′
c within each other’s

transmission range, form an edge.

6: For the relay nodes sorted arbitrarily, do the following (starting at i = 1):

• Remove node i (and all adjacent edges).

• Check for k-vertex connectivity between the terminals.

• If the graph is k-vertex connected, repeat for i = i + 1, else put back the

node i and corresponding edges, and repeat for i = i + 1.

• Stop when all relay nodes have been considered.

7: Output the resulting graph.

26



3.2.1 Proof of Approximation Ratio

We now analyze the algorithm to provide with approximation guarantees. We pro-

vide the analysis for terminals distributed in the Euclidean plane.

We start with some notation. Let T be the set of terminals, and S be the set of

optimally placed Steiner nodes (relay nodes) needed to achieve k-vertex connectivity

among the terminal nodes. Let s be the number of Steiner nodes needed when we

place them optimally, i.e, s = |S|. In the proof, we will call the relay nodes placed

on straight lines between terminals (as in our algorithm) beads and the optimally

placed relay nodes Steiner nodes.

As a recap of our algorithm, it forms a k-vertex connected network among the

terminal nodes by placing additional links between them, and if two terminal nodes

are more than unit distance apart, it adds beads (relay nodes) to form that link.

When we add such a link of length l, it consists of �l� − 1 beads.

We first prove the following lemma, and then present the main result of this

section.

Lemma 3.2.1 A partial k-vertex connected network using the minimum number of

beads contains at most (3�k/2�(�k/2� + 1) − 1)s beads, where s is the minimum

number of Steiner nodes needed.

Proof : Let G0 = (V0, E0) be the optimal k-vertex connected network on terminals

(having the minimum number of Steiner nodes).

We follow the procedure of Algorithm 3.2.2 to construct a graph with zero

Steiner nodes that is k-vertex connected on the terminals, and has bounded number

27



of beads. We will prove that this network contains at most (3�k/2�(�k/2�+1)−1)s

beads.

Algorithm 3.2.2 starts by finding the connected components (SCi) of Steiner

nodes in the graph constructed on the Steiner nodes. It constructs a minimum-

degree minimum spanning tree (MST) on Steiner nodes for each connected compo-

nent, starting with any Steiner node in that component as the root. Let the trees be

ST1, .., STm. The algorithm then removes Steiner nodes of a connected component

SCj from Gj−1 and adds beads between the terminals connected to those Steiner

nodes to get Gj, which is also k-vertex connected on terminal nodes (Step 4). The

process is repeated for all connected components, and the resulting graph has zero

Steiner nodes.

28



Algorithm 3.2.2 Construction of k-vertex connected graph with beads

1: Define GS = (S,ES), where e = (u, v) ∈ ES if e ∈ E0.

2: Find all the connected components (SCi) in GS.

3: Construct a minimum-degree MST in each connected component, and call the

trees ST1, .., STm.

4: Set j = 1. While j ≤ m:

1. Remove the Steiner nodes contained in STj from Gj−1.

2. Add beads between terminals to get the graph Gj, which is also k-vertex

connected on the terminals. The procedure for adding beads and removing

Steiner nodes is explained later.

3. Set j = j + 1.

5: Output the resulting graph Gm.

29



A

B

C

D E

F

 1

2

3

4

5
6

7

8
9

10

11

(a) Tree on Steiner

and terminal nodes

A

B

11

10

9

8

7

6
5

4

3

2

 1

F

ED

C

(b) Depth first traversal

and cycle creation

 1

2

3

4

5
6

7

8

9

10

11

(c) Cycle after removal

of Steiner nodes

Figure 3.1: Example elimination of Steiner nodes, and cycle construction

We first mention two useful properties that hold for each of the trees ST1, .., STm,

which will be used in proving the approximation bound:

Property 3.2.2 The maximum degree of any Steiner node in the trees is bounded

by five [58]. This property comes from the fact that the maximum degree of a node

in a minimum-degree MST on nodes distributed in a Euclidean plane is bounded by

five, and is called the MST number of the Euclidean plane.

Property 3.2.3 The angle between any pair of neighbors of a Steiner node in its

tree STi is at least 60 degrees [15]. This can be seen from the fact that if the angle

between two neighbors (x, y) at a Steiner node j were less than 60 degrees, the MST

could be shortened by deleting an edge (j − x or j − y) and forming the edge x − y.

Let us now explain the procedure to construct Gj from Gj−1 by adding beads

between the terminal nodes to construct a cycle (2-vertex connected graph), and

removing the Steiner nodes. Consider the graph formed by the Steiner nodes in STj

and the terminal nodes within the transmission range of these Steiner nodes. Denote

30



this graph by Hj. Algorithm 3.2.3 describes the algorithm for construction of a cycle

between terminal nodes in Hj. We later add edges to this cycle to make it k-vertex

connected on terminals in Hj. The algorithm works as follows: Start at the root of

STj (assign any Steiner node in STj as the root; call the root st1, dropping subscript

j for simplicity). Connect to st1 all terminal nodes within its transmission range,

and mark them. Construct a tree Tj, with the vertex set as the Steiner nodes in

STj and a leaf vertex corresponding to each marked terminal vertex. The edges are

the edges of STj and the edges between each Steiner node and the marked terminal

vertices connected to it. Start a Depth First Search (DFS) traversal of the tree Tj

(rooted at st1), starting with any child of st1. The children (both Steiner nodes

and terminals) of a node are traversed in an anti-clockwise manner, i.e., the next

child to traverse is the first child encountered in an anti-clockwise sweep around

the Steiner node, starting from the last child traversed. If no child of the Steiner

node has been traversed yet, the child traversed is the one encountered in the sweep

starting from the parent node. Whenever a new Steiner node stj is encountered in

the traversal, mark all unmarked terminal nodes in the Steiner node’s transmission

range and connect them to it in Tj. Figure 3.1(a) shows an example tree constructed

using this procedure for k = 3. While doing the DFS traversal, add required number

of beads to form a link between each terminal with the next terminal encountered

in the DFS traversal. Complete the cycle by connecting the last added terminal

to the first terminal encountered in the DFS traversal1. Figure 3.1(b) shows the

1Note that there will be at least two terminals connected to the Steiner nodes of STj . If there

were only one terminal node, the Steiner nodes of STj could be deleted from the optimal Steiner

31



cycle constructed between the terminal nodes in the example, starting at terminal

1. Remove the Steiner nodes. The edges longer than unit length are added using the

required number of beads. Figure 3.1(c) shows the constructed cycle after removal

of Steiner nodes.

Algorithm 3.2.3 Removal of Steiner nodes and construction of a cycle in STj

1: Start at root st1 of STj.

2: Connect to it all terminals within its transmission range, and mark them.

3: Construct a tree Tj, with the vertex set as the Steiner nodes in STj and a leaf

vertex corresponding to each marked terminal vertex. The edges are the edges of

STj and the edges between each Steiner node and the marked terminal vertices

connected to it.

4: Do a Depth First Search (DFS) traversal of Tj rooted at st1, starting with any

child of st1. For each node, traverse its children in an anti-clockwise manner.

5: Each time a new Steiner node sti is encountered, connect it to all unmarked

terminal vertices in its range, and mark them. Update Tj by adding these

terminal vertices, and continue DFS traversal around sti from the edge between

sti and its parent.

6: Connect the terminal vertices in order of their DFS traversal and complete the

cycle between them.

7: Add beads to all added edges of length greater than one.

graph without affecting the connectivity. In case of two terminal nodes, adding one edge between

the two makes it a complete graph, which suffices, as we show later.

32



We now prove that the cycle constructed in Algorithm 3.2.3 contains at most

5sj beads for each Steiner component STj with sj Steiner nodes. Lemma 3.2.4 states

the result.

Lemma 3.2.4 For each Steiner component SCj with sj Steiner nodes, the cycle

constructed in Algorithm 3.2.3 contains at most 5sj beads.

Proof : We first define our charging scheme, i.e., how we charge the beads to

the Steiner nodes in STj. We charge one bead to a Steiner node sti each time one

of the following ordered pair of edges is traversed:

• Type I: Steiner-sti-Steiner.

• Type II: Steiner-sti-Terminal, if the Euclidean distance between the end-

nodes is greater than one.

• Type III: Terminal-sti-Steiner, if the Euclidean distance between the end-

nodes is greater than one.

• Type IV: Terminal-sti-Terminal, if the Euclidean distance between the end-

nodes is greater than one.

In a DFS traversal, each ordered pair of neighboring edges around a node is

traversed once. Notice that for the beads charged by the pair of edges of Type II, III,

IV, the angle between the edges at the Steiner node sti is greater than 60 degrees.

For the pair of Type I, the angle is at least 60 degrees (by Property 3.2.3). The

pairs of Type I around a Steiner node is bounded by five (by Property 3.2.2). Also,

33



Table 3.1: Bead charging for example of Figure 3.1

Edge (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10) (10,11) (11,1)

Charged To A,B B,C C,D D D,C,E E,C C,B B,F F F,B,A A

No. of Beads 1 0 0 1 1 1 0 0 0 1 1

as the traversal is anti-clockwise always, the angles subtended by all these pairs of

edges at sti are non-overlapping. Thus, it can be easily shown that the total pairs

of such edges around the Steiner node sti in the tree Tj is within five as the total

angle traversed by these edges is bounded by 360 degrees.

Table 3.1 gives an example charging for the example of Figure 3.1.

For each edge added to connect two terminal nodes in Tj, we claim that the

number of beads required (given by Equation 3.1) can be charged to the Steiner

nodes encountered in the DFS traversal between the two terminal nodes using our

charging scheme. Let the two terminal nodes be tx and ty, and let there be l > 0

Steiner nodes on the DFS path between them. Renumber the Steiner nodes on the

DFS path as st1, .., stl. We consider the following cases and prove that the charging

scheme charges the required number of beads to the Steiner nodes:

• Case 1: l = 1: This case is depicted in Figure 3.2(a). If both the terminals

are connected to the same Steiner node st1, a bead is needed only if they are

more than distance one apart. In that case, the pair of edges tx − st1 − ty is of

Type IV and thus the Steiner node st1 can be charged for the bead required.

34



• Case 2: l = 2: This case is depicted in Figure 3.2(b). Let the two Steiner

nodes in the DFS path be st1 and st2, with st1 being the parent of st2 in the

tree, i.e., the first encounter of st1 in the DFS traversal is before st2. Let tx

be connected to st1 and ty to st2. Since st1 is the parent of st2, we connected

all unmarked neighboring terminal nodes to st1 first. Thus, ty is more than

distance one apart from st1. If two beads are needed between tx and ty, the

distance between tx and st2 is more than one and between st1 and ty is more

than one. Thus the pairs of edges tx − st1 − st2 and st1 − st2 − ty are Type

III and II for Steiner nodes st1 and st2 respectively. Thus, one bead can be

charged to each Steiner node. If we need one bead between tx and ty, that can

be charged to st2 as the pair of edges st1 − st2 − ty is always Type II for st2.

The explanation for the case where st2 is the parent of st1 is similar.

• Case 3: l > 2: This case is depicted in Figure 3.2(c). The total number of

beads required is upper bounded by the number of Steiner nodes on any path

between tx and ty. One bead can be charged to each of the nodes st2, .., stl−1

as the pair of edges involving them in the path are of Type I. If the distance

between tx and st2 is less than one, the path can be modified by connecting tx

directly to st2, and there is a path with l − 1 Steiner nodes, and thus st1 can

be removed. If it is greater than one, then a bead can be charged to st1 as the

pair of edges tx − st1 − st2 is of Type III. Similarly, stl can either be removed

from the path between tx and ty, or it can be charged because of the pair of

edges stl−1 − stl − ty being Type II. Thus, there is a path of l − 2, l − 1 or

35



t x

t y

st1

(a) One Steiner

node, l = 1

t y
t x

st1
st2

(b) Two Steiner nodes, l = 2

t y

st1

st2
stlt x

(c) More than two Steiner

nodes, l > 2

Figure 3.2: DFS paths of different lengths

l Steiner nodes between tx and ty (which is the upper bound for the number

of beads required), and there are enough Steiner nodes that can be charged

once.

We have shown that the charging scheme charges the required number of beads

to the Steiner nodes, and each Steiner node is charged maximum of five times. �

We now add edges to the cycle constructed in Algorithm 3.2.3 to make the

cycle k-vertex connected, for each Steiner component SCj. We form a Harary graph,

Harary [35], by connecting each terminal to preceding and successive �k/2� vertices

on the cycle. This graph is k-vertex connected if n ≥ k + 1, Harary [35]. We form

a complete graph if there are less than k + 1 terminals. The edges longer than unit

length are added using the required number of beads. Figures 3.3(a) and 3.3(b)

show the cycle and corresponding Harary graph constructed on terminal nodes, for

k = 3. The graph at the end of execution of Algorithm 3.2.3 along with Harary

graph construction on Steiner component SCj is Gj. The final k-vertex connected

graph is represented by Gm.

We now prove that the graph Gm constructed using the procedure described

above is k-vertex connected on the terminals. Lemma 3.2.5 states the desired result.

36



 1

2

3

4

5
6

7

8

9

10

11

(a) Cycle after removal of Steiner

nodes

 1

2

3

4

5
6

7

8

9

10

11

(b) Constructed Harary graph

Figure 3.3: Example construction of Harary graph for k = 3

E

DC

B

A

(a) Harary graph

A

B

C D

E

(b) First cycle

A

C

E

(c) Second cycle

A

B

D

(d) Third cycle

B E

(e) Fourth cycle

Figure 3.4: Example decomposition of a Harary graph for k = 3

37



Lemma 3.2.5 The graph Gm is k-vertex connected on terminals.

Proof : The proof is based on mathematical induction and is similar to the

proof of k-vertex connectivity in Bredin et al. [14].

G0 is the optimal Steiner graph, that is k-vertex connected on the terminals.

Let Gi−1 be k-vertex connected on the terminals. Thus, removal of any set C of

k− 1 vertices does not disconnect the terminals in Gi−1. We prove by contradiction

that all terminals are connected in Gi −C as well. Let u and v be the two terminals

which are disconnected in Gi −C. All terminal pairs (u, v) have a path in Gi−1−C.

If the path does not use more than one terminal connected to component SCi, u

and v are connected in Gi−C as well. If the path uses at least two terminal vertices

connected to SCi (u1, v1 being the first and last terminals connected to SCi on the

path), that path exists as well if there are at least k +1 terminals connected to SCi,

since we form a Harary graph (that is k-vertex connected) between all terminals

connected to SCi. If there are less than k + 1 terminals (which will be u1, v1), a

direct edge exists between them (since we formed a complete graph in that case)

and thus a path exists between u and v in Gi − C. Thus, Gi is k-vertex connected

on terminals. Therefore, by induction, Gm is k-vertex connected on terminals. �

We now prove the upper bound on number of beads in G′
m with respect to

the optimal number of Steiner nodes, s. Let the number of terminal nodes in Hj

(connected to the Steiner component in consideration) be N . We consider the

case N ≥ k + 1, so that we can construct the Harary graph2. We decompose the

2Else, we construct a complete graph, which is a subset of the set of edges in the Harary graph

(since N < k + 1). Thus, the analysis for Harary graph is an upper bound for this case.

38



constructed Harary graph into complete and incomplete cycles (we call all of them

cycles), and use Lemma 3.2.4 to compute its cost. Let us explain it with an example

of Figure 3.4. Figure 3.4(a) shows the Harary graph constructed for k = 3, with

each terminal connecting to preceding and successive two nodes on the cycle. We

decompose the graph into multiple cycles as follows:

• Type I cycle: First cycle is the cycle formed between all the terminals,

constructed using Algorithm 3.2.3.

• Type II cycles: We now consider the edges needed to connect nodes with

preceding and successive nodes i hops away (number of edges between the

nodes in the Type I cycle) on the Type I cycle. We start with any terminal

node (node A in the example of Figure 3.4), and form a complete or incomplete

cycle by starting with the node and traversing edges that connect nodes i hops

away, in an anti-clockwise manner. The cycle ends before or at the node we

started at. Figure 3.4(c) shows the constructed cycle for i = 2. We repeat the

procedure for the i − 1 nodes successive to the node we started at (node B in

the example, for i = 2), obtaining one complete or incomplete cycle in each

case. Figure 3.4(d) shows the second Type II cycle for the example. Each cycle

contains 	N/i
 edges, and there are i Type II cycles. Each node is connected

to one preceding node and one successive node i hops away. Thus, N edges

are required to connect all nodes with neighbors i hops away on the Type I

cycle. The total edges covered by Type II cycles is i	N/i
. Thus, to cover the

N − i	N/i
 uncovered edges, we form Type III cycles, which are just single

39



edges.

• Type III cycles: These cycles are single edges, each pertaining to one of the

N − i	N/i
 uncovered edges. Figure 3.4(e) shows the cycle for the example.

There is one Type I cycle in the Harary graph, and i Type II and N − i	N/i


Type III cycles for each i = 2, 3, .., �k/2�. These cycles cover all the edges in the

Harary graph, and thus the number of beads needed for these cycles is the same as

needed for the Harary graph. According to Lemma 3.2.4, the Type I cycle uses at

most 5sj beads. The following lemma bounds the number of beads needed for the

Type II edges.

Lemma 3.2.6 A Type II cycle constructed from edges connecting nodes i hops apart

requires at most 5sj beads.

Proof : Let the set of terminals in the Harary graph be Tj. Let the set of terminals

in the Type II cycle be T ′
j ⊂ Tj. Consider another instance of the problem, in

which only the terminals of T ′
j are connected to the Steiner node MST STj. Follow

Algorithm 3.2.3 on this instance to form a cycle. According to Lemma 3.2.4, this

cycle has at most 5sj beads. The only difference between this instance and the orig-

inal instance is that the terminals Tj\T ′
j have been removed. The order of children

traversal in the DFS traversal is anti-clockwise. Removing the terminals Tj\T ′
j does

not change the order in which the terminals T ′
j are encountered (compared to the

original instance). Thus, the cycle constructed is the same as the Type II cycle in

consideration (or has one extra edge if the Type II cycle is not complete). Thus,

the Type II cycle has at most 5sj beads. �

40



Now, we consider the Type III cycles. Each Type III cycle is just an edge.

Thus, the required number of beads is at most the number of Steiner nodes in the

DFS path between the end-terminals of this edge. Thus, a Type III edge requires

at most sj beads.

Thus, the total number of beads (bj) required by the Harary graph is as given

in Equation 3.2.

bj ≤ 5sj +

�k/2�∑
i=2

(5i + N − i	N/i
)sj

= 5sj +

�k/2�∑
i=2

(5i + i(N/i − 	N/i
))sj

≤ 5sj +

�k/2�∑
i=2

(6i)sj

= (6

�k/2�∑
i=1

i − 1)sj

= (3�k/2�(�k/2� + 1) − 1)sj (3.2)

Since the Steiner components SCj do not have common Steiner nodes, sum-

ming over all SCj, the number of beads in Gm is at most (3�k/2�(�k/2�+ 1)− 1)s.

Thus, a solution with minimum number of beads requires at most (3�k/2�(�k/2� +

1) − 1)s beads. �

Theorem 3.2.7 states the main result of this section.

Theorem 3.2.7 If the optimal network uses s Steiner nodes so that terminals dis-

tributed in the Euclidean plane are k-vertex connected, Algorithm 3.2.1 forms a

network with maximum of c(3�k/2�(�k/2� + 1) − 1)s beads and zero Steiner nodes,

in which the terminals are k-vertex connected.

41



Proof : The algorithm for finding a k-vertex connected subgraph is a c-approximation

(cost of each edge being number of beads required to form it). Thus, according to

Lemma 3.2.1, the number of beads required is at most c(3�k/2�(�k/2�+1)−1)s. The

last step of Algorithm 3.2.1 (sequential removal step) removes beads from the net-

work by allowing them to connect to all nodes within the transmission range, so the

resulting network after sequential removal also has maximum of c(3�k/2�(�k/2� +

1) − 1)s relay nodes. �

3.2.2 Computational Complexity

We discuss the time complexity of Algorithm 3.2.1 in this section. For general k, we

use the k-approximation algorithm of Kortsarz and Nutov [45] for computing a k-

vertex connected subgraph of a graph. The algorithm takes O(k2N3M) time, where

N is the number of terminals and M is the number of edges in the graph (which is

N(N − 1) for a complete graph, as in our case). Thus, Steps 1-4 of Algorithm 3.2.1

take O(k2N5) time. The sequential removal step checks for k-vertex connectivity of

the network N ′ times, where N ′ is the number of relays before the sequential removal

step (at the end of Step 4 of Algorithm 3.2.1). There are a number of algorithms

for checking the k-vertex connectivity of a graph, Esfahanian [27]. We can use the

algorithm of Cheriyan and Thurimella [17], which takes O(k3(N +N ′)2) time. Thus,

the sequential removal step takes O(k3N ′(N + N ′)2) time. Thus, Algorithm 3.2.1

takes O(k2N5 + k3N ′(N + N ′)2) time.

42



3.3 Edge Connectivity

We now consider the problem of providing k-edge connectivity to terminal nodes.

The algorithm framework to achieve edge connectivity between terminals is similar

to the framework for vertex connectivity. To connect two terminal nodes outside

each other’s transmission range, the relay nodes are placed on the straight line

connecting the two nodes. The algorithm proceeds by forming a multi-graph Gc on

the terminal nodes. There are k edges between each pair of terminal nodes in Gc.

We use the weight function of Equation 3.1 (number of relays required on the edge)

to weight the edges. We do not allow the relay nodes to have edges other than the

ones required to form the edge they are placed on. Then we compute an approximate

minimum cost spanning k-edge connected subgraph (G′
c) of the multi-graph Gc.

The problem of finding the minimum cost spanning k-edge connected subgraph

of a graph is NP -Hard (Garey and Johnson [30]). Thus, we use an approximation

algorithm for the problem, proposed by Khuller and Vishkin [41]. The algorithm

achieves an approximation ratio of 2 for the problem, and takes O((kn)2) time for

a graph with n nodes. The algorithm uses the matroid intersection based algorithm

of Gabow [29], which finds k edge-disjoint spanning trees from a root vertex in

a directed graph. It is worth noting that the weight function of Equation 3.1 is

not a metric as it does not satisfy triangle inequality. Thus, the approximation

algorithm of Khuller and Vishkin [41] is the best known for the problem. In the

resulting subgraph from the approximation algorithm of Khuller and Vishkin [41],

the relay nodes are placed to form the links (of length greater than one) of the

43



subgraph. In the next section, we prove that this algorithm has an approximation

ratio of 10�k/2� for nodes distributed in the Euclidean plane. The solution is then

improved by removing some relays. The relays are allowed to form edges with all

nodes in their transmission range and sequentially removed if k-edge connectivity is

preserved. We call this step the sequential removal step. Algorithm 3.3.1 describes

the algorithm.

44



Algorithm 3.3.1 Relay placement for k-edge connectivity

1: Construct a multi-graph Gc = (V,Ec) by adding k edges between each pair of

vertices of graph G.

2: Weight the edges of the graph as follows. |e| represents the length of edge e.

ce = �|e|� − 1

3: Compute an approximate minimum cost spanning k-edge connected subgraph

from this graph Gc using the approximation algorithm proposed by Khuller and

Vishkin [41]. Let the resulting graph be G′
c.

4: Place relay nodes (number equal to the weight of the edge) on the edges in G′
c

with link costs greater than zero.

5: For all pairs of nodes (including the relay nodes) in G′
c within each other’s

transmission range, form an edge.

6: For the relay nodes sorted arbitrarily, do the following (starting at i = 1):

• Remove node i (and all adjacent edges).

• Check for k-edge connectivity between the terminals.

• If the graph is k-edge connected, repeat for i = i + 1, else put back the

node i and corresponding edges, and repeat for i = i + 1.

• Stop when all relay nodes have been considered.

7: Output the resulting graph.

45



3.3.1 Proof of Approximation Ratio

We now analyze the algorithm to provide with approximation guarantees. We prove

that the algorithm is a 10�k/2�-approximation for nodes distributed in the Euclidean

plane.

We start with some notation. Let T be the set of terminals, and S be the set of

optimally placed Steiner nodes (relay nodes) needed to achieve k-edge connectivity

among the terminal nodes. Let s be the number of Steiner nodes needed when we

place them optimally, i.e, s = |S|. In the proof, we will call the relay nodes placed

on straight lines between terminals (as in our algorithm) beads and the optimally

placed relay nodes Steiner nodes.

We first prove the following lemma, and then the main result of this section.

Lemma 3.3.1 A partial k-edge connected network using minimum number of beads

contains at most 5�k/2�s beads, where s is the minimum number of Steiner nodes

needed.

Proof : Let G0 = (V0, E0) be the optimal k-edge connected network on termi-

nals (having the minimum number of Steiner nodes).

We follow a procedure similar to Algorithm 3.2.2 to construct a graph with

zero Steiner nodes that is k-edge connected on the terminals, and has bounded

number of beads. We will prove that this network contains at most 5�k/2�s beads.

The algorithm starts by finding the connected components (SCi) of Steiner

nodes in the graph constructed on the Steiner nodes. It constructs a minimum-

degree minimum spanning tree (MST) on Steiner nodes for each connected compo-

46



nent, starting with any Steiner node in that component as the root. Let the trees be

ST1, .., STm. The algorithm then removes Steiner nodes of a connected component

SCj from Gj−1 and adds beads between the terminals connected to those Steiner

nodes to get Gj which is also k-edge connected between terminal nodes. The process

is repeated for all connected components, and the resulting graph has zero Steiner

nodes and is k-edge connected on the terminals.

Let us now explain the procedure to construct Gj from Gj−1 by adding beads

between the terminal nodes and removing Steiner nodes. Consider the graph formed

by the Steiner nodes in STj and the terminal nodes within the transmission range

of these Steiner nodes. Denote this graph by Hj. We form a cycle among the

terminals in Hj using Algorithm 3.2.33, and replicate the edges to have �k/2� copies

of each. We use beads to form the edges longer than unit length. The terminals in

Hj are k-edge connected since deleting any set of k−1 edges does not disconnect the

terminals from each other. This procedure maintains k-edge connectivity between

the terminal nodes that were k-edge connected because of the Steiner nodes in STj.

As we do this for all trees ST1, .., STm
4, and do not create any (k − 1)-edge cut in

any step, the resulting network is k-edge connected on the terminals.

For each Steiner component STj with sj Steiner nodes, the constructed cycle

3There is one change for edge connectivity: if there are only two terminals in Hj , we add two

edges between them to form the cycle. However, this charges the Steiner nodes on the DFS path

only twice, which is less than 5, thus it does not affect the approximation bound.
4If two terminal nodes are adjacent in multiple cycles formed while removing the Steiner com-

ponents, we form at most k beaded links between them. This suffices for maintaining k-edge

connectivity.

47



(a) Optimal Steiner network (b) Optimal beaded network

Figure 3.5: Approximation ratio tightness example

contains at most 5sj beads, according to Lemma 3.2.4. We replicate the edges to

include �k/2� − 1 additional copies of each edge, and thus the graph uses 5�k/2�sj

beads. Since the Steiner components do not have common Steiner nodes, total

number of beads required is bounded by 5�k/2�s. �

The bound of Lemma 3.3.1 is tight for k = 2, i.e., it can be shown that the

lower bound on the number of beads required is 5s if the optimal Steiner network

uses s Steiner nodes. Consider the network in Figure 3.5(a). The circular nodes

are terminal nodes, which are 2-edge connected using a single Steiner node in the

middle of the circle in the optimal Steiner node solution. If we remove the Steiner

node, the optimal network with beads will have a beaded link between every pair of

consecutive terminal nodes to form a cycle, and that would require five beads. The

resulting network is shown in Figure 3.5(b).

Theorem 3.3.2 states the main result of this section.

Theorem 3.3.2 If the optimal network uses s Steiner nodes so that terminals dis-

tributed in the Euclidean plane are k-edge connected, Algorithm 3.3.1 forms a net-

48



work with maximum of 10�k/2�s beads and zero Steiner nodes, in which the termi-

nals are k-edge connected.

Proof : The algorithm of Khuller and Vishkin [41] is a 2-approximation for

finding the minimum cost (cost of each edge being number of beads required to

form it) k-edge connected subgraph. Thus, the number of beads required is at most

10�k/2�s. The last step of Algorithm 3.3.1 (sequential removal step) removes beads

from the network by allowing them to connect to all nodes within the transmission

range, so the resulting network after sequential removal also has at most 10�k/2�s

relay nodes. �

3.3.2 Computational Complexity

We discuss the time complexity of Algorithm 3.3.1 in this section. We use the

k-approximation algorithm of Khuller and Vishkin [41] for computing a k-edge con-

nected subgraph of a graph. The algorithm takes O((kN)2) time, where N is the

number of terminals in the graph. Thus, Steps 1-4 of Algorithm 3.3.1 take O((kN)2)

time. The sequential removal step checks for k-edge connectivity of the network N ′

times, where N ′ is the number of relays before the sequential removal step (at the

end of Step 4 of Algorithm 3.3.1). There are a number of algorithms for checking

the k-edge connectivity of a graph, Esfahanian [27]. We can use the algorithm of

Matula [57], which takes O(k(N + N ′)2) time. Thus, the sequential removal step

takes O(kN ′(N + N ′)2) time, and Algorithm 3.3.1 takes O((kN)2 + kN ′(N + N ′)2).

For a network in a cuboid of length L, the maximum number of relays on any edge

49



in Gc is O(L), and the number of edges in the graph at the output of Step 3 of

Algorithm 3.3.1 (G′
c) is k(N − 1), thus, N ′ = O(kNL). Therefore, the algorithm

takes O(k4N3L3) time.

3.4 Simulation Results and Discussion

We generate a random network in a unit length square in the Euclidean plane.

The nodes are located uniformly and randomly in the network. We simulate the

algorithm for k-edge connectivity for k = 2, 3. We note the results for number of

relays required both at the output of Khuller and Vishkin’s approximation algo-

rithm [41], and after sequential removal of relays ensuring k-edge connectivity (see

Algorithm 3.3.1). We propose another algorithm that formulates the problem as

travelling salesperson problem (TSP), and compare the results with that. The al-

gorithm constructs a complete graph with edge weights defined as in Equation 3.1,

and finds a TSP tour on the graph. The total weight of the tour represents the

number of relays required. The tour is 2-vertex (and thus edge) connected on ter-

minal nodes. For higher values of k, we replicate the edges of the tour �k/2� times.

We use Concorde [18] to compute the optimal TSP tour.

We first fix the transmission range of the nodes at 0.2 and vary the number

of terminal nodes in the network. We randomly generate terminal node locations

10 times. Figures 3.7 and 3.8 show the average and maximum number of relays

required (over 10 simulations) for 2-edge connectivity for varying number of terminal

nodes. The average number of relays required increases with the number of terminal

50



1−c

1+c

(a) Terminal node network (b) Optimal two-edge con-

nected network

(c) Optimal TSP network

Figure 3.6: Lower bound on TSP performance

nodes, and then decreases as the number of terminal nodes goes beyond a threshold.

The performance of Algorithm 3.3.1 is nearly the same as the TSP output. The

performance of Algorithm 3.3.1 gets slightly better than the TSP performance as

the number of terminals is increased. Although the TSP algorithm works almost

as well as our algorithm, it can be shown that it has an approximation ratio of

infinity for 2-edge connectivity. Consider the example terminal node network of

Figure 3.6(a), with the constant 0 < c << 1. Figure 3.6(b) shows the optimal

2-edge connected network, that uses zero relays. Figure 3.6(c) shows the optimal

TSP tour, that uses one relay. Thus the lower bound on the approximation ratio of

the TSP based algorithm is infinity, and it may work very bad on certain instances

of the problem. The approximation ratio of the TSP based algorithm for 2-vertex

connectivity can be very high as well, though it is not easy to give an example to

prove the lower bound of the ratio to be infinity. The lower bound can in fact be

finite, but examples with high performance ratios can be constructed.

Figures 3.9 and 3.10 show the average and maximum number of relays required

(over 10 simulations) for 3-edge connectivity for varying number of terminal nodes.

51



5 10 15 20 25 30 35 40 45 50
3

4

5

6

7

8

9

10

11

12

13

#Terminal Nodes

M
ea

n 
#R

el
ay

s

Before Sequential Removal
After Sequential Removal
TSP

Figure 3.7: Mean number of relays for 2-edge connectivity, ∆ = 0.2

5 10 15 20 25 30 35 40 45 50
4

6

8

10

12

14

16

18

#Terminal Nodes

M
ax

im
um

 #
R

el
ay

s

Before Sequential Removal
After Sequential Removal
TSP

Figure 3.8: Max. number of relays for 2-edge connectivity, ∆ = 0.2

52



5 10 15 20 25 30 35 40 45 50
6

8

10

12

14

16

18

20

22

24

#Terminal Nodes

M
ea

n 
#R

el
ay

s

Before Sequential Removal
After Sequential Removal
TSP

Figure 3.9: Mean number of relays for 3-edge connectivity, ∆ = 0.2

5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

#Terminal Nodes

M
ax

im
um

 #
R

el
ay

s

Before Sequential Removal
After Sequential Removal
TSP

Figure 3.10: Max. number of relays for 3-edge connectivity, ∆ = 0.2

53



0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
0

50

100

150

200

250

Transmission Range

M
ea

n 
#R

el
ay

s

Before Sequential Removal,k=2
After Sequential Removal,k=2
TSP,k=2
Before Sequential Removal,k=3
After Sequential Removal,k=3
TSP,k=3

Figure 3.11: Mean number of relays needed for varying transmission range, N = 30

The number of relays required follows the same pattern as for 2-edge connectivity,

and the gains achieved by sequential relay removal step are more than in the 2-edge

connectivity case. This is because there are many more relays in the vicinity of each

other in the output before sequential removal in the case of 3-edge connectivity.

Thus, when allowed to form links in the neighborhood, the fraction of redundant

relays (which can be removed) is much more for k = 3 than k = 2. Also, the

performance of Algorithm 3.3.1 is now better than the TSP-based algorithm, since

for k = 3, the TSP-based algorithm duplicates all relays that were used for k = 2

for all instances, leading to some performance loss.

We now fix the number of terminal nodes at 30, and vary the transmission

range from 0.02 to 0.4. The set of locations of the terminal nodes is generated

randomly 10 times, and simulations for each transmission range are run on each

of those networks. Figures 3.11 and 3.12 show the mean and maximum number of

relays required over the simulations for 2- and 3-edge connectivity. The number of

54



0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4

50

100

150

200

Transmission Range

M
ax

im
um

 #
R

el
ay

s

Before Sequential Removal,k=2
After Sequential Removal,k=2
TSP,k=2
Before Sequential Removal,k=3
After Sequential Removal,k=3
TSP,k=3

Figure 3.12: Max. number of relays needed for varying transmission range, N = 30

relays required decreases exponentially with the transmission range of the nodes.

Also, the performance of our algorithm is similar to the TSP output. Kashyap et

al. [39] showed that the maximum number of relays required for an MST based algo-

rithm, Lin et al. [50], for connectivity decreases exponentially with the transmission

range of the nodes. The simulations show a similar behavior for 2-edge and 3-edge

connectivity.

It is worthwhile to note that the results presented in this section will show

similar behavior for larger network area or higher number of terminal nodes.

55



Chapter 4

Generalizations for Connectivity Problems

In this chapter, we discuss a few generalizations of the problems presented in Chap-

ter 3. We first extend the results for partial k-connectivity to full k-connectivity,

i.e., k-vertex (edge) connectivity is desired for both terminal and added relay nodes.

We then consider the scenario with polygonal obstacles present in the network area,

where relay nodes cannot be placed. We extend the algorithms and prove they have

the same approximation guarantees as in the case of no obstacles. We then con-

sider an extension in which nodes are distributed in any metric space, e.g., a three

dimensional Euclidean space. We provide approximation guarantees for the algo-

rithms presented in Chapter 3 for this generalization. Finally, we consider extensions

to heterogeneous networks, where the terminal and relay nodes have different trans-

mission range. We present and analyze approximation algorithms for this network

model.

4.1 Full k-Connectivity

We now present the algorithms and analysis for achieving k-vertex (edge) connec-

tivity between terminals and added relays, which we call full k-vertex (edge) con-

nectivity. We first discuss full k-vertex connectivity.

56



4.1.1 Vertex Connectivity

We use the algorithm proposed in Bredin et al. [14] for constructing a full k-vertex

connected topology. The algorithm adds relays to find a subgraph on terminals that

is k-vertex connected on terminals using the algorithm presented in Section 3.2.

Then, for each edge of the k-connected subgraph with weight greater than zero,

i.e., with at least one relay, the algorithm places additional k − 1 relays at each

of the end terminal vertices of the edge, and additional k − 1 relays along with

each relay used on the edge. In the resulting graph, all terminals and relays have

k-vertex connectivity, Bredin et al. [14]. The algorithm has been proved to have an

approximation ratio of O(k4) for terminals in the Euclidean plane. We improve the

analysis, and prove the algorithm to be an O(k3)-approximation. Theorem 4.1.1

states the result. Here, c is the approximation ratio of the best algorithm for finding

a minimum-weight k-vertex connected subgraph of a k-vertex connected graph.

Theorem 4.1.1 If the optimal network uses s Steiner nodes so that terminals and

Steiner nodes are k-vertex connected, the algorithm of Bredin et al. [14] forms a

network with at most 3c(3�k/2�(�k/2�+ 1)− 1)ks relays and zero Steiner nodes, in

which the terminal and relay nodes are k-vertex connected.

Proof : The optimal network that is k-vertex connected only on terminals uses

s′ ≤ s Steiner nodes. Thus, according to Theorem 3.2.7, the intermediate graph

that is k-vertex connected on terminals has at most c(3�k/2�(�k/2� + 1) − 1)s′ ≤

c(3�k/2�(�k/2�+1)−1)s relays. As shown in Bredin et al. [14], for each edge between

terminals with w ≥ 1 relays, we duplicate them to have a total of kw+2(k−1) < 3kw

57



relays on the edge. Thus, the total number of relays in the final fully k-vertex

connected graph is bounded by 3c(3�k/2�(�k/2� + 1) − 1)ks, which is an O(k3)-

approximation, an O(k) improvement over the bounds proved by Bredin et al. [14].

�

4.1.2 Edge Connectivity

For edge connectivity, we use the algorithm presented in Section 3.3. We use the

algorithm to construct a k-edge connected subgraph on terminals, and then duplicate

the relays needed on the edges of that subgraph. For each edge of weight greater

than zero, we place additional �k/2� − 1 relays at each end terminal vertex of the

edge, and each relay location on that edge. The resulting graph is k-edge connected

on both terminals and relays. We prove the algorithm is an O(k2)-approximation.

Theorem 4.1.2 states the result.

Theorem 4.1.2 If the optimal network uses s Steiner nodes so that terminals and

Steiner nodes are k-edge connected, our algorithm forms a network with at most

30�k/2�2s relays and zero Steiner nodes, in which the terminal and relay nodes are

k-edge connected.

Proof : The optimal network that is k-edge connected only on terminals uses

s′ ≤ s Steiner nodes. Thus, according to Theorem 3.3.2, the intermediate graph

that is k-edge connected on terminals has at most 10�k/2�s′ ≤ 10�k/2�s relays.

Then, for each edge between terminals with w ≥ 1 relays, we duplicate them to

have a total of �k/2�w+2(�k/2�−1) < 3�k/2�w relays on the edge. Thus, the total

58



number of relays in the final full k-edge connected graph is bounded by 30�k/2�2s.

�

4.2 Generalization to Restricted Relay Placement

We extend our results for terminals distributed in a Euclidean plane to the scenario

where relays cannot be placed in certain polygonal regions of the network. We

call these regions forbidden regions. We assume that two nodes can communicate

if they are within each other’s transmission range even when there is a forbidden

region between them. We modify the edge and vertex connectivity algorithms to

work with the same approximation guarantees for this generalization.

We follow the same algorithms as before for both edge connectivity and vertex

connectivity. It may not be possible to connect two terminals by placing relay nodes

on the straight line between them due to the forbidden regions. Thus, Equation 3.1,

which represents the number of relays needed to connect two terminals by placing

relays on the line between them, cannot be used to weight the edges of the net-

work formed on terminal nodes in our algorithms. Arkin et al. [4] have proposed a

polynomial time algorithm for placing the minimum number of relay nodes needed

to form a link between two nodes with the presence of polygonal forbidden regions

between them. The problem is called the puddle-jumper problem. We modify our

edge weights by running the algorithm of Arkin et al. [4] on each pair of terminals

in the network to find the minimum number of relay nodes needed for each link,

and using that as the weight of each edge. We then run our edge connectivity and

59



vertex connectivity algorithms on a network with these edge weights. Then, for the

selected links, we place the relays according to the algorithm of Arkin et al. [4].

4.2.1 Proof of Approximation Ratio

We first prove that the approximation ratio for the partial k-vertex connectivity

algorithm is O(k2) for terminals distributed in the Euclidean plane. We follow the

same construction as before, the only change being that beads (relay nodes) are

not placed on straight lines between terminal nodes now; instead they are placed

optimally taking forbidden regions into account. The only part of the proof that

needs reconsideration to take forbidden regions into account is when Steiner nodes

on a tree (STj) are removed from the optimal Steiner solution and beads are placed

to construct the cycle (and the Harary graph) between terminal nodes connected to

tree STj (see Algorithm 3.2.3). We argue that the number of relays needed to form a

beaded link between two terminals is still upper bounded by the number of Steiner

nodes encountered in the depth first traversal between the two terminals: Take

any two terminals being connected using beads, and let a be the number of Steiner

nodes on the DFS path between them. Thus, there is a placement of Steiner nodes to

connect the two terminal nodes using a Steiner nodes. As even Steiner nodes could

not be placed in forbidden regions, and we connect the terminals using beads placed

according to the optimal algorithm of Arkin et al. [4], the number of beads required is

upper bounded by a. Thus, each bead can still be charged to a different Steiner node

on the DFS path between the terminals. According to Lemma 3.2.1, each Steiner

60



node is charged at most (3�k/2�(�k/2�+1)−1) times , so the total number of beads

required for replacing the Steiner node tree STj is still (3�k/2�(�k/2� + 1) − 1)sj,

sj being the number of Steiner nodes in STj. Thus the total number of beads

required in the network is at most (3�k/2�(�k/2�+ 1)− 1)s for the beaded network

using minimum number of beads, s being the number of optimal Steiner nodes.

As our algorithm uses c-approximations for finding the optimal beaded network,

the algorithm is c(3�k/2�(�k/2� + 1) − 1)-approximation. Also, the full k-vertex

connectivity algorithm is a 3c(3�k/2�(�k/2� + 1) − 1)k-approximation.

The same arguments can be used to prove that the partial k-edge connectivity

algorithm is a 10�k/2�-approximation, and full k-edge connectivity algorithm is a

30�k/2�2-approximation.

4.3 Generalization to other Metric Spaces

In this section, we consider the case of achieving k-connectivity (edge or vertex) be-

tween terminal nodes placed in any metric space with MST number M , Robins and

Salowe [65]. MST number is defined as the maximum node degree in a minimum-

degree Minimum Spanning Tree (MST) spanning points from the space. MST num-

ber for the Euclidean plane is 5 (Monma and Suri [58]), three-dimensional Euclidean

space is 12, and rectilinear plane (two-dimensional space with metric defined by L1

norm) is 4 (Robins and Salowe [65]). The approximation ratio for the MST based

algorithm of Lin et al. [50] for connecting terminals using minimum relays has been

shown to be M − 1 by Mǎndoui and Zelikovsky [56]. We analyze the worst-case

61



performance of our algorithms and prove a performance bound of the algorithm

with respect to the optimal solution. We first prove that the algorithm proposed for

2-vertex connectivity is a 2M -approximation.

4.3.1 2-Vertex Connectivity

We start with some notation. Let T be the set of terminals, and S be the set of

optimally placed Steiner nodes (relay nodes) needed to achieve 2-vertex connectivity

among the terminal nodes. Let s be the number of Steiner nodes needed when we

place them optimally, i.e, s = |S|. In the proof, we will call the relay nodes placed

on straight lines between terminals (as in our algorithm) beads and the optimally

placed relay nodes Steiner nodes.

As a recap of our algorithm (Algorithm 3.2.1), it computes a 2-vertex con-

nected subgraph of a complete graph between terminals using the 2-approximation

algorithm of Khuller and Raghavachari [40]. If two terminal nodes are more than

unit distance apart, it adds beads (relay nodes) to form that link. A link of length

l consists of �l� − 1 beads.

We first prove the following lemma, followed by the main result of this section.

Lemma 4.3.1 A partial 2-vertex connected network using minimum number of

beads contains at most Ms beads, where s is the number of Steiner nodes in an

optimal partial 2-vertex connected network.

Proof : Let G0 = (V0, E0) be the optimal 2-vertex connected network on

terminals (having the minimum number of Steiner nodes).

62



We follow the procedure of Algorithm 4.3.1 to construct a 2-vertex connected

network that has beads and no Steiner nodes. We will prove that this network does

not contain more than Ms beads.

Algorithm 4.3.1 starts by finding the connected components (SCi) of Steiner

nodes in the graph constructed on the Steiner nodes. It constructs a Breadth

First Search (BFS) spanning tree1 on Steiner nodes for each connected component,

starting with any Steiner node in that component as the root. Let the trees be

ST1, .., STm. The algorithm then removes Steiner nodes of a connected component

SCj from Gj−1 and adds beads between the terminals connected to those Steiner

nodes to get Gj which is also 2-vertex connected between terminal nodes (Step 4).

The process is repeated for all connected components, and the resulting graph has

zero Steiner nodes and is 2-vertex connected on the terminals.

1Note that we constructed a minimum degree MST in the proof for the Euclidean plane.

63



Algorithm 4.3.1 Construction of 2-vertex connected network with beads

1: Define a graph GS = (S,ES) on the Steiner nodes, where an edge (u, v) is in ES

if it is an edge between the Steiner nodes u, v in G0.

2: Find all the connected components (SCi) in GS.

3: Construct a BFS spanning tree in each connected component, and call the trees

ST1, .., STm.

4: Set j = 1. While j ≤ m:

1. Remove the Steiner nodes contained in STj from Gj−1.

2. Add beads between terminals to get the graph Gj, which is also k-vertex

connected on the terminals. The procedure for adding beads and removing

Steiner nodes is explained later.

3. Set j = j + 1.

5: Output the resulting graph Gm.

64



 1

B

C

D E

F
3

2A

4

5

6
7

8

9

10

11

(a) Tree on Steiner

nodes and terminals

 1

B

11

10

9

8

7
6

5

4

A
2

3
F

ED

C

(b) Depth first traversal

and cycle creation

 1
2

3

4

5

6
7

8

9

10

11

(c) Graph after removal

of Steiner nodes

Figure 4.1: Example for removal of Steiner nodes and addition of beads

Let us now explain the procedure to construct Gj from Gj−1 by adding beads

between the terminal nodes to construct a cycle (2-vertex connected graph), and

removing the Steiner nodes. Consider the graph formed by the Steiner nodes in

STj and the terminal nodes within the transmission range of these Steiner nodes.

Denote this graph by Hj. We add a cycle using beaded (and direct) links between

the terminals contained in Hj in Gj−1 and delete the Steiner nodes of STj to get

Gj. If there are only two terminals in Hj, then we connect the terminals using a

single edge. According to Lemma 3.2.5, Gj is 2-vertex connected.

Algorithm 4.3.2 describes the algorithm for construction of the cycle between

terminal nodes connected to the Steiner nodes of STj. The algorithm works as fol-

lows: Start at the root of STj (call the root st1, dropping subscript j for simplicity).

Connect to st1 all terminal nodes within its transmission range, and mark them. Let

the set of marked terminal nodes be {t1, .., tl}. Start a Depth First Search (DFS)

traversal of the tree formed by STj ∪ {t1, .., tl} (rooted at st1, denote it by Tj),

starting with any child of st1. The children of a node are traversed in the order of

65



their distance from each other, i.e., the next child to traverse is the one closest to

the current child being traversed and the first to traverse is the one closest to the

parent node2. Whenever a new Steiner node stj is encountered in the traversal, all

unmarked terminal nodes in its transmission range are connected to it, and added to

the set of marked terminal nodes (thus l increases at this step). Figure 4.1(a) shows

an example tree constructed using this procedure. While doing the DFS traver-

sal, add required number of beads to form a link between each terminal with the

next terminal encountered in the DFS traversal. Complete the cycle by connecting

the last added terminal to the first terminal encountered in the DFS traversal. If

there are only two terminals in Tj, then connect the terminals using a single edge.

The edges longer than unit length are added using the required number of beads.

Figure 4.1(b) shows the cycle created between the terminal nodes in the example,

starting at terminal 1. Finally, remove the Steiner nodes. Figure 4.1(c) shows the

final topology on these terminals nodes.

2Note that the order of traversal was anti-clockwise in the proof for the Euclidean plane.

66



Algorithm 4.3.2 Removal of Steiner nodes and addition of beads in STj

1: Start at root st1 of STj.

2: Connect to it all terminals within its transmission range, and mark them.

3: Construct a tree Tj, with the vertex set as the Steiner nodes in STj and a leaf

vertex corresponding to each marked terminal vertex. The edges are the edges of

STj and the edges between each Steiner node and the marked terminal vertices

connected to it.

4: Do a Depth First Search (DFS) traversal of Tj rooted at st1, starting with any

child of st1. For each node, traverse its children according to their distance from

each other, i.e, the next child traversed is the child closest to the current child

being traversed. The first child to be traversed at a Steiner node (except st1) is

the one closest to the parent node.

5: Each time a new Steiner node sti is encountered, connect it to all unmarked

terminal vertices in its range, and mark them. Update Tj by adding these

terminal vertices, and continue DFS traversal around sti from the edge between

sti and its parent.

6: Connect all the terminal vertices in order of their DFS traversal and complete

the cycle between them.

7: Add beads to all added edges of length greater than one.

67



We now give a bound on the number of beads added while constructing Gj

from Gj−1. The condition in Equation 4.1 states the bound, where bj is the number

of beads added and sj is the number of Steiner nodes in STj. Then, Equation 4.2

bounds the total number of beads required, which proves Lemma 4.3.1.

bj ≤ Msj (4.1)

b =
m∑

j=1

bj ≤
m∑

j=1

Msj = Ms (4.2)

We now prove the bound. We first prove a property of the nearest-neighbor

traversal of neighbors around a node. The property is stated in Lemma 4.3.2.

Lemma 4.3.2 Let there be an arbitrary set of points P = {x1, .., xl}, l > 0 dis-

tributed in a unit ball centered at a point x0 in a metric space. We form a cycle C

consisting of the points in P : Add x1 to C. From the last point added to C, add an

edge to the closest point in P\C, add the new point to C, and repeat. Finally, add

an edge to x1 when P = C. The maximum number of edges of length greater than

one is bounded by M , the MST number of the space.

Proof : Rename the points in P such that xi is the ith point being added

to C. Start constructing C, and each time an edge of length greater than one is

encountered, mark the end-point of the edge that was already in C, call it yi (i = 1

for first such edge) and increase i by one. Let the set of marked points be P ′.

Remove the unmarked points of P (xi /∈ P ′) from the unit ball. The ball now

contains x0 and the marked points yi ∈ P ′. When a point in P was added to P ′,

68



it was more than unit distance from all the points not in C, thus the distance of

yi, i ≥ 1 is greater than one from all points yj, j > i. Thus, the distance of each yi is

greater than one from all points in P ′\{yi}. Thus, the only possible tree spanning

the set of points in P ′ ∪ x0 is a star with x0 directly connected to all points yi ∈ P ′.

The degree of x0 in this MST is equal to the number of points in P ′, which is equal

to the number of edges of length greater than one in C. As the degree of a minimum

degree MST in the space is bounded by M , there cannot be more than M edges of

length greater than one in C. �

We now define our charging scheme, i.e., how we charge the beads to the

Steiner nodes in STj. We call the parent Steiner node of a Steiner node as PS, the

child Steiner nodes as CS, and terminal node as T. When a node in consideration

can be any one of CS or T, we refer to it as CS/T. We classify the ordered pairs of

edges traversed around a Steiner node sti during a DFS traversal of the tree into

six types. Figure 4.2 shows the types of ordered pair of edges, where the arrows

represent the order of traversal among the edges. We charge one bead to a Steiner

node sti each time one of the six types of ordered pair of edges is traversed. The six

types of edge pairs of interest are listed below:

• Type I: PS-sti-CS/T (Figure 4.2(a)). The distance between the parent Steiner

node and the node at the other end is always greater than one. If the node

at the other end is a Steiner node, the distance is greater than one as the tree

STj is a BFS tree (nodes two levels away in the tree cannot have distance less

than or equal to one). If the other end is a terminal node, the distance is

69



greater than one due to the construction procedure of Tj (if the distance were

less than one, the terminal would be a child of the PS node).

• Type II: CS/T-sti-PS (Figure 4.2(b)). The distance between the parent

Steiner node and the node at the other end is always greater than one, reason

being the same as explained for Type I edge pair.

• Type III: CS-sti-T (Figure 4.2(c)), if the distance between the end-nodes is

greater than one.

• Type IV: T-sti-CS (Figure 4.2(d)), if the distance between the end-nodes is

greater than one.

• Type V: T-sti-T (Figure 4.2(e)), if the distance between the end-nodes is

greater than one.

• Type VI: CS-sti-CS (Figure 4.2(f)), if the distance between the end-nodes is

greater than one.

As all ordered pairs of edges are traversed once during the traversal, and the

ones for which a bead is charged have the end-points more than distance one apart,

the maximum number of times a Steiner node is charged for a bead is M (using

Lemma 4.3.2, since all neighbors of a Steiner node are contained in a unit ball

centered at it).

We need to prove that this charging scheme charges the required number of

beads in the construction of the cycle among terminals. Every time we add an edge

to connect two terminal nodes in Tj, we claim that the number of beads required

70



sti

PS

CS / T

(a) Type I

sti

PS

CS / T

(b) Type

II

sti

CS T

(c) Type III

sti

T CS

(d) Type IV

sti

TT

(e) Type V

sti

CS CS

(f) Type VI

Figure 4.2: Types of edge pairs charged to Steiner node sti

(given by Equation 3.1) can be charged to the Steiner nodes encountered in the

DFS traversal between the two terminal nodes using our charging scheme. Let the

two terminal vertices be tx and ty, and let there be l > 0 Steiner nodes on the DFS

path between them. Renumber the Steiner nodes on the DFS path as st1, .., stl. We

consider the following cases and prove that the charging scheme charges the required

number of beads to the Steiner nodes:

• Case 1: l = 1: This case is depicted in Figure 4.3(a). If both terminals are

connected to the same Steiner node st1, a bead is needed only if they are more

than distance one apart. In that case, the pair of edges tx − st1 − ty is of Type

V and thus the Steiner node st1 can be charged for the bead required.

• Case 2: l = 2: This case is depicted in Figure 4.3(b). Let the two Steiner

nodes in the DFS path be st1 and st2, with st1 being the parent of st2 in the

tree. Let tx be connected to st1 and ty to st2. Since st1 is the parent of st2,

we connected all unmarked neighboring terminal nodes to st1 first. Thus, ty

71



is more than distance one apart from st1. If two beads are needed between tx

and ty, the distance between tx and st2 is more than one and between st1 and

ty is more than one. Thus the pairs of edges, tx−st1−st2 and st1−st2−ty are

Type IV and I respectively for Steiner nodes st1 and st2 respectively. Thus,

one bead can be charged to each Steiner node. If we need one bead between tx

and ty, that can be charged to st2 as the pair of edges st1 − st2 − ty is always

Type I for st2. The explanation for the case where st2 is the parent of st1 is

similar.

• Case 3: l > 2: This case is depicted in Figure 4.3(c). The total number of

beads required is upper bounded by the number of Steiner nodes on any path

between tx and ty. There are two cases to be considered:

1. The DFS path stays on one branch of the DFS tree. Let sti be the parent

of sti+1 for i ∈ {1, .., l−1}. One bead can be charged to each of the nodes

st2, .., stl as the pair of edges involving them in the path are of Type I. If

the distance between tx and st2 is less than one, the path can be modified

by connecting tx directly to st2, and there is a path with l − 1 Steiner

nodes, and thus st1 can be removed. If it is greater than one, then a

bead can be charged to st1 as the pair of edges tx − st1 − st2 is of Type

IV. Thus, there is a path of l − 1 or l Steiner nodes between tx and ty

(which is the upper bound for the number of beads required), and there

are enough Steiner nodes that can be charged once. The case of going

up a DFS branch, i.e., when sti is the parent of sti−1 for i ∈ {2, .., l} is

72



t x

t y

st1

(a) One Steiner

node, l = 1

t y
t x

st1
st2

(b) Two Steiner nodes, l = 2

t y

st1

st2
stlt x

(c) More than two Steiner nodes,

l > 2

Figure 4.3: DFS paths of different lengths

similar.

2. The DFS path moves between two branches of the DFS tree. Let stk be

the Steiner node at which the two branches start. In this DFS path, sti

is the parent node of sti−1, i ∈ {2, .., k}, and sti is the parent node of

sti+1, i ∈ {k, .., l − 1}. One bead can be charged to each of the nodes

st1, .., stk−1 as the pair of edges involving them in the path are of Type

II. Similarly, one bead can be charged to each of the nodes stk+1, .., stl as

the pair of edges involving them in the path are of Type I. If the distance

between stk−1 and stk+1 is less than one, the path can be modified by

connecting stk−1 directly to stk+1, and there is a path with l − 1 Steiner

nodes, and thus stk can be removed. If it is greater than one, then a bead

can be charged to stk as the pair of edges stk−1 − stk − stk+1 is of Type

VI. Thus, there is a path of l − 1 or l Steiner nodes between tx and ty

(which is the upper bound for the number of beads required), and there

are enough Steiner nodes that can be charged once.

We have shown that the charging scheme charges the required number of beads

to the Steiner nodes, and each Steiner node is charged at most M times. Summing

73



over all connected components of Steiner nodes in the network, the total number of

beads required is within M times the number of Steiner nodes. Thus, the relation

in Equation 4.2 holds for the beaded network we constructed. Hence, the relation

holds for the optimal 2-vertex connected beaded network as well. �

Theorem 4.3.3 states the main result of this section.

Theorem 4.3.3 If the optimal network uses s Steiner nodes so that terminals dis-

tributed in metric space of MST number M are 2-vertex connected, Algorithm 3.2.1

forms a network with maximum of 2Ms beads and zero Steiner nodes, in which the

terminals are 2-vertex connected.

Proof : The algorithm of Khuller and Raghavachari [40] is used to compute a

2-vertex connected subgraph of a graph, which is a 2-approximation. According to

Lemma 4.3.1, the optimal beaded network uses at most Ms beads. Thus, the number

of beads required by Algorithm 3.2.1 is at most 2Ms. The last step (sequential

removal) removes beads from the network by allowing them to connect to all nodes

within the transmission range, so the resulting network after sequential removal also

has at most of 2Ms relay nodes. �

For the Euclidean plane, for k = 2, the result of Theorem 4.3.3 matches that

of Theorem 3.2.7 since M = 5 for the Euclidean plane. The analysis also extends

the results of full 2-vertex connectivity. The algorithm can be proved to be a 12M -

approximation of the optimal.

74



4.3.2 Edge Connectivity

We now consider partial k-edge connectivity. We prove Algorithm 3.3.1 to be a

2M�k/2�-approximation. We first prove the following lemma, followed by the main

result.

Lemma 4.3.4 A partial k-edge connected network using minimum number of beads

contains at most M�k/2�s beads, where s is the number of Steiner nodes in an

optimal partial k-edge connected network.

Proof : We follow the Algorithm 4.3.1 to construct a cycle (2-edge connected

graph) with zero Steiner nodes. The only difference is that when there are only

two terminal nodes connected to a Steiner component, we connect them using two

edges3. Thus, this graph has at most Ms beads. We replicate the edges to get �k/2�

copies of each edge. Thus, the resulting network has at most M�k/2�s beads. We

showed in Section 3.3.1 that this procedure maintains the k-edge connectivity for

terminal nodes. Thus, a partial k-edge network with minimum number of beads

contains at most M�k/2�s beads. �

The bound of Ms for an optimal beaded network is tight for 2-edge connectiv-

ity. Here is an example that shows the lower bound on number of beads is Ms: let

there be M pairs of nodes (placed right next to each other) placed more than unit

distance apart around a Steiner node in an optimal Steiner solution. The optimal

beaded network will connect them in a cycle using M beads in place of one Steiner

3This charges the Steiner nodes on the DFS path only twice, which is less than M in general,

thus it does not affect the approximation bound.

75



node. The example is similar to the example to prove tightness of the analysis for

2-edge connectivity in the Euclidean plane in Section 3.3.

Theorem 4.3.5 states the main result of this section.

Theorem 4.3.5 If the optimal network uses s Steiner nodes so that terminals dis-

tributed in metric space of MST number M are k-edge connected, Algorithm 3.3.1

forms a network with maximum of 2M�k/2�s beads and zero Steiner nodes, in which

the terminals are k-edge connected.

Proof : The algorithm of Khuller and Vishkin [41] is used to compute a k-

edge connected subgraph of a graph, which is a 2-approximation. According to

Lemma 4.3.4, the optimal beaded network uses at most M�k/2�s beads. Thus, the

number of beads required by Algorithm 3.3.1 is at most 2M�k/2�s. The last step

(sequential removal) removes beads from the network by allowing them to connect

to all nodes within the transmission range, so the resulting network after sequential

removal also has maximum of 2M�k/2�s relay nodes. �

For the Euclidean plane, the result of Theorem 4.3.5 matches that of The-

orem 3.3.2 since M = 5 for the Euclidean plane. The analysis also extends the

results of full k-edge connectivity. The algorithm can be proved to be a 6M�k/2�2-

approximation of the optimal.

4.4 Generalization to Heterogeneous Networks

In this section, we consider networks with non-uniform transmission range of ter-

minal and relay nodes. We assume the sensor nodes have transmission range in

76



the range [Tmin, Tmax], and the relay nodes have a transmission range of Trelay. We

normalize the transmission range, and let Tmin = 1, Tmax = α, Trelay = γ. We

assume two nodes can communicate if both are within each other’s transmission

range. That is, for nodes i and j to communicate, the distance between them

should not be more than the minimum of their transmission ranges. We first con-

sider k-vertex connectivity for terminals distributed in the Euclidean plane, under

this heterogenous model. We later propose and analyze an algorithm for achieving

k-edge connectivity.

4.4.1 Vertex Connectivity

The algorithm for achieving partial k-vertex connectivity is similar to Algorithm 3.2.1,

and the same as proposed by Han et al. [33]. The only modification from Algo-

rithm 3.2.1 is the set of positions the relays are placed at, thus affecting the weight

function of Equation 3.1. In the algorithm for the heterogenous model, if two nodes

i, j with transmission ranges Ti, Tj are more than min{Ti, Tj} apart (let the distance

be lij), we use Algorithm 4.4.1 to place relays for connecting them. For each pair

of terminals, we assign the number of relays used as the edge weight that is used in

Step 2 of Algorithm 3.2.1.

Algorithm 4.4.1 Relay placement in heterogeneous networks

1: Let Ti ≤ Tj. Place one relay r at distance min{Ti, γ} from i.

2: If lrj > min{Tj, γ}, place one relay r′ at distance min{Tj, γ} from j.

3: Place �lrr′/γ� − 1 relays at equal spacing between the two relays r, r′.

77



We prove for k = 2, this algorithm has an approximation ratio of

2(5 + 11�log√
3(min{α, γ})� + 5I�log√3 γ�>�log√3 α�).

Here, Ix is the indicator function, which is 1 if condition x is true, else it is 0. We

still call the relays placed on straight line between terminals beads, and optimally

placed relays as Steiner nodes. We prove the following lemma, followed by the main

result.

Lemma 4.4.1 A heterogeneous network that is 2-vertex connected on terminal nodes

using the minimum number of beads contains at most (5 + 11�log√
3(min{α, γ})� +

5I�log√3 γ�>�log√3 α�)s beads, where s is the minimum number of Steiner nodes needed.

Proof : Let G0 = (V0, E0) be the optimal 2-vertex connected network on terminals

(having the minimum number of Steiner nodes).

We follow a procedure similar to Algorithm 3.2.2 to construct a graph with zero

Steiner nodes that is 2-vertex connected on the terminals, and has bounded number

of beads. We will prove that this network contains at most (5+11�log√
3(min{α, γ})�+

5I�log√3 γ�>�log√3 α�)s beads. Thus, the network with minimum number of beads has

at most (5 + 11�log√
3(min{α, γ})� + 5I�log√3 γ�>�log√3 α�)s beads.

The algorithm starts by finding the connected components (SCi) of Steiner

nodes in the graph constructed on the Steiner nodes. It constructs a minimum-

degree minimum spanning tree (MST) on Steiner nodes for each connected compo-

nent, starting with any Steiner node in that component as the root. Let the trees

be ST1, .., STm. The algorithm then removes Steiner nodes of a connected com-

ponent SCj from Gj−1 and adds beads between the terminals connected to those

78



Steiner nodes to get Gj which is also 2-vertex connected between terminal nodes.

The process is repeated for all connected components, and the resulting graph has

zero Steiner nodes and is 2-vertex connected on the terminals.

Let us now explain the procedure to construct Gj from Gj−1 by adding beads

between the terminal nodes and removing Steiner nodes. We first consider the case

γ ≥ 1, i.e., Trelay ≥ Tmin. Consider the graph formed by the Steiner nodes in

STj and the terminal nodes within the transmission range of these Steiner nodes.

Denote this graph by Hj. The algorithm is similar to Algorithm 3.2.3, but differing

in the order of traversal of children of a node in the DFS traversal. The algorithm

works as follows: Start at the root of STj (call the root st1, dropping subscript

j for simplicity). Connect to st1 all terminal nodes within its transmission range,

and mark them. Let the set of marked terminal nodes be {t1, .., tl}. Start a Depth

First Search (DFS) traversal of the tree formed by STj ∪ {t1, .., tl} (rooted at st1),

starting with any child of st1. The order of traversal of children of a Steiner node is

described in Algorithm 4.4.2, and explained next. Table 4.1 describes the notation

used in Algorithm 4.4.2.

Let the Steiner node in consideration be sta. We partition the area around

sta into concentric rings, with the radius of outer boundary of ring i being di−1,

where d is a constant we choose. The procedure was used for the analysis of size of

maximal independent sets in a heterogeneous network by Banerjee and Khuller [8].

The first ring is a circle of radius one. Since we only consider bi-directional links,

all neighbors of sta are within a distance γ from it. Thus, the last ring of interest is

such that di−1 = γ. Thus, i ≤ �logd γ�+ 1. If �logd γ� > �logd α�, only Steiner node

79



Table 4.1: Notation

Symbol Definition

sta Steiner node whose children to traverse

d Constant for calculating radius of rings

im First ring with non-zero number of nodes

iM Last ring with non-zero number of nodes

li Number of nodes in ring i

ni
j jth node in ring i

Ca Cycle among children and parent of sta

n2
1

n3
1

1

d

d
2

n1
2

n1
3

n

3n
3

2
3

n
4
3

stp(a)

1

sta

1
n

Figure 4.4: Order of DFS traversal around a Steiner node in a heterogeneous network

80



neighbors of sta are present beyond a distance α from sta. In this case, we construct

rings of outer boundary radius di−1 for i ≤ �logd α�+1, and one ring between circles

of radius d�logd α� and γ. Figure 4.4 shows an example ring division around node sta.

The circular nodes are Steiner nodes, and square nodes are terminals.

Let the number of nodes connected to sta (Steiner nodes and terminals, ex-

cluding sta) in ring i be li. Let the ring with the lowest index with non-zero nodes

be im, and the ring with the highest index with non-zero nodes be iM . For all rings

i, denote the node with the largest distance from next neighbor in the ring in a

clockwise sweep around sta by ni
1. Make an anti-clockwise sweep around sta, start-

ing at ni
1, and sequentially number the encountered nodes ni

2, n
i
3, .., n

i
li
. Start at ring

i = im. Make an incomplete cycle by forming the edges (ni
1, n

i
2),(n

i
2, n

i
3),..,(n

i
li−1, n

i
li
).

Connect node ni
li

with nj
1, such that j is the next higher ring with non-zero nodes.

Construct the incomplete cycle for ring i = j, and continue the procedure till i = iM .

Complete the cycle by connecting niM
liM

with nim
1 . If there is one node (li = 1) in

a ring, then ni
1 is connected to both ni−1

li−1
and ni+1

1 . Call the constructed cycle Ca.

Figure 4.4 shows the cycle constructed for the example.

Ca yields the order of traversal of children around the node sta. In the DFS

traversal, let the parent Steiner node of sta be stp(a). The first child of sta traversed

is the neighbor of stp(a) in the anti-clockwise direction in Ca. All children are then

traversed in the order they are encountered in an anti-clockwise traversal of Ca.

Figure 4.4 shows the order of traversal, starting at node stp(a).

81



Algorithm 4.4.2 DFS traversal order around a Steiner node

1: Partition the area around the Steiner node (sta) into concentric rings, with the

radius of outer boundary of ring i being di−1, 1 ≤ i ≤ �logd(min{α, γ})� + 1.

2: If �logd γ� > �logd α�, add a concentric ring between circles of radius d�logd α�

and γ.

3: Set i = im. While i ≤ iM :

1. Make a clockwise sweep in ring i around sta.

2. Index node with largest distance from next neighbor in the sweep as ni
1.

3. Make an anticlockwise sweep around sta in ring i, starting at ni
1.

4. Sequentially connect the nodes in order of traversal. Number them as

ni
2, n

i
3, ... Do not connect ni

li
with ni

1.

5. Set i = i + 1.

4: Set i = im. While i < iM :

1. Let j > i be the next higher ring with lj > 0. Connect ni
li

with nj
1.

2. Set i = j.

5: Connect niM
liM

with nim
1 to form cycle Ca.

6: DFS traversal order is anti-clockwise around Ca.

82



The rest of the algorithm is the same as Algorithm 3.2.3. When a new Steiner

node stj is encountered in the DFS traversal around sta, we mark all unmarked

terminal nodes in the Steiner node’s transmission range and connect them to it.

While doing the DFS traversal, use Algorithm 4.4.1 to add required number of

beads to form a link between each terminal with the next terminal encountered in

the DFS traversal. Complete the cycle by connecting the last added terminal to

the first terminal encountered in the DFS traversal4. We then remove the Steiner

nodes. Repeat this procedure to construct cycles for each STj to get the final beaded

graph Gm. According to Lemma 3.2.5, a beaded graph constructed by forming a

cycle between terminals connected to each STj is 2-vertex connected. Thus, Gm is

2-vertex connected.

We use the charging scheme used in Section 3.2.1 to charge each Steiner node

sta. We set d =
√

3 for computational ease in the Euclidean plane, Banerjee and

Khuller [8]. As a recap, we charge the following type of ordered edge pairs in the

cycle Ca:

• Type I: Steiner-sta-Steiner.

• Type II: Steiner-sta-Terminal, if the Euclidean distance between the end-

nodes is greater than minimum of the transmission range of the two end-nodes.

4Note that there will be at least two terminals connected to the Steiner nodes of STj . If there

were only one terminal node, the Steiner nodes of STj could be deleted from the optimal Steiner

graph without affecting the connectivity. In case of two terminal nodes, adding one edge between

the two makes it a complete graph, which suffices.

83



• Type III: Terminal-sti-Steiner, if the Euclidean distance between the end-

nodes is greater than minimum of the transmission range of the two end-nodes.

• Type IV: Terminal-sti-Terminal, if the Euclidean distance between the end-

nodes is greater than minimum of the transmission range of the two end-nodes.

We call an edge between the end-points of an ordered edge pair that we charge

a long edge. Since each pair of neighbors of sta could connect to each other through

sta, an edge between them would use at most one bead (since beads and Steiner

nodes have the same transmission range). Thus, each long edge charges sta one

bead (at most one for Type I edges). We first state the following result about the

number of long edges in each ring i around sta, that is an extension of a result by

Banerjee and Khuller [8]:

Lemma 4.4.2 The number of long edges in the anti-clockwise sweep in each ring

i, i > 1 is at most 11.

Proof : Type I edges are between Steiner nodes. Since each STj is a minimum

degree MST, we know from Property 3.2.3 that the angle covered by the sweep

between the two Steiner nodes is at least 60 degrees. We now consider the other

three types of long edges, each of which has the condition that the two neighbor

nodes cannot communicate directly. The transmission range of all nodes in ring i,

i > 1 is at least their distance from sta (which is at least di−2) since they can connect

to sta and bi-directionality of links is necessary for communication. Consider a pair

of nodes ni
j, n

i
j+1 such that ni

j is on the inner boundary of ring i, and ni
j+1 is on the

84



n
2

n
1

1

d
i−1

d
i−2

i

i
i−2

30+

d>l

30+

ast

Figure 4.5: Minimum angle covered by a long edge of Type II/III/IV

outer boundary of ring i. Let the transmission range of ni
j be di−2. Thus, the two

nodes cannot communicate with each other directly if the distance between them is

greater than di−2. In this case, for d =
√

3, the angle between the two edges ni
j −sta

and sta − ni
j+1 is more than 30 degrees. Figure 4.5 shows the scenario. If the node

ni
j is above the inner boundary, or the node ni

j+1 is inside the outer boundary, the

angle between the two edges for the same distance is higher. If the transmission

range of ni
j is more than di−2, the distance required for the two nodes to be outside

communication range increases, thus increasing the angle. Since the anti-clockwise

sweep around sta covers 360 degrees around it, the number of such pairs is bounded

by 	 2π
min{π

6
+ε, π

3
}
 = 	 2π

π
6
+ε

 = 11. �

The first ring is a circle of radius one, and the transmission range of all nodes

(including sta, since we are looking at the case γ ≥ 1) is at least one. Thus, the

number of long edges in the sweep in this ring is at most 5, as shown in Section 3.2.1.

If �log√
3 γ� > �log√

3 α�, then the last ring (between circles of radius d�log√3 α� and

γ) contains only Steiner nodes. According to Property 3.2.2, there are at most 5

85



Steiner nodes connected to sta in STj. Thus, there are at most 5 long edges (all

Type I) in the sweep in this ring.

In cycle Ca, we use all edges encountered in the anti-clockwise sweep of the

rings except the longest edge (between ni
li

and ni
1). Since we do not use the longest

edge, sta is charged at most 10 times for each cycle edges in each ring i > 1. For

the first ring, sta is charged at most 4 times. When we connect ni
li

with the first

node in the next higher ring (to ring im when i = iM), that edge uses at most

one bead (since they both were directly connected to sta, and beads have the same

transmission range as sta). Thus, we charge sta for one bead for each such cross-ring

edge. The number of such beads is equal to the number of non-empty rings. Thus,

each non-empty ring i charges sta for at most 11 beads for i > 1, and the first ring

charges sta for at most 5 beads. If �log√
3 γ� > �log√

3 α�, the last ring charges sta

for at most 5 beads.

Thus, sta is charged for at most 5 + 11�log√
3(min{α, γ})�+ 5I�log√3 γ�>�log√3 α�

beads. Here, Ix is the indicator function, which is 1 if condition x is true, else

it is 0. Thus, the final solution Gm uses at most (5 + 11�log√
3(min{α, γ})� +

5I�log√3 γ�>�log√3 α�)s beads.

We now consider the case γ < 1. In this case, the relay nodes have a trans-

mission range smaller than all terminal nodes. Since the communication topology

is bi-directional, all edges adjacent to the Steiner nodes in the optimal Steiner solu-

tion are at most of length γ. Therefore, all neighbors of a Steiner node are within

a circle of radius γ, and all have a transmission range at least γ. Thus, each long

edge of Type II, III or IV covers more than 60 degrees around a Steiner node, and

86



there are at most 5 Type I edges (Property 3.2.2), each pair covering at least 60

degrees. As proved in Section 3.2.1, each Steiner node is charged for at most 5

beads by the anti-clockwise DFS traversal in this case. Thus, Gm uses at most

(5 + 11�log√
3(min{α, γ})� + 5I�log√3 γ�>�log√3 α�)s beads. �

Theorem 4.4.3 states the main result of this section.

Theorem 4.4.3 If an optimal heterogeneous network uses s Steiner nodes so that

terminals distributed in the Euclidean plane are 2-vertex connected, Algorithm 3.2.1

(using Algorithm 4.4.1 for relay placement) forms a network with maximum of 2(5+

11�log√
3(min{α, γ})� + 5I�log√3 γ�>�log√3 α�)s beads and zero Steiner nodes, in which

the terminals are 2-vertex connected.

Proof : The algorithm of Khuller and Raghavachari [40] is used to compute a 2-

vertex connected subgraph of a graph, which is a 2-approximation. Thus, accord-

ing to Lemma 4.4.1, the number of beads required by our algorithm is at most

2(5 + 11�log√
3(min{α, γ})�+ 5I�log√3 γ�>�log√3 α�)s. The last step of Algorithm 3.2.1

(sequential removal step) removes beads from the network by allowing them to con-

nect to all nodes within the transmission range, so the resulting network after sequen-

tial removal also has maximum of 2(5+11�log√
3(min{α, γ})�+5I�log√3 γ�>�log√3 α�)s

relay nodes. �

For homogeneous networks (α = γ = 1), the result of Theorem 4.4.3 matches

that of Theorem 3.2.7 for 2-vertex connectivity. The analysis also extends the re-

sults of full 2-vertex connectivity. The algorithm can be proved to be a 12(5 +

11�log√
3(min{α, γ})� + 5I�log√3 γ�>�log√3 α�)-approximation.

87



4.4.2 Edge Connectivity

We now consider partial k-edge connectivity. The algorithm is similar to partial

vertex connectivity. We follow Algorithm 3.3.1, with one modification: we place

the relays using Algorithm 4.4.1. The difference from vertex connectivity is that we

allow for multiple edges between the same pair of nodes.

We first prove the following lemma, followed by the main result.

Lemma 4.4.4 A partial k-edge connected heterogeneous network using minimum

number of beads contains at most (5 + 11�log√
3(min{α, γ})� + 5I�log√3 γ�>�log√3 α�)

�k/2�s beads, where s is the number of Steiner nodes in an optimal partial k-edge

connected heterogeneous network.

Proof : We follow the same procedure as in the proof for 2-vertex connectivity

in heterogeneous networks to construct a 2-edge connected graph with zero Steiner

nodes. The only difference is that when there are only two terminal nodes connected

to a Steiner component, we connect them using two edges5. Thus, this graph has

at most (5 + 11�log√
3(min{α, γ})� + 5I�log√3 γ�>�log√3 α�)s beads. We replicate the

edges to get �k/2� copies of each edge. Thus, the resulting network has at most (5+

11�log√
3(min{α, γ})�+5I�log√3 γ�>�log√3 α�)�k/2�s beads. We showed in Section 3.3.1

that this procedure maintains the k-edge connectivity for terminal nodes. Thus,

a partial k-edge network with minimum number of beads contains at most (5 +

11�log√
3(min{α, γ})� + 5I�log√3 γ�>�log√3 α�)�k/2�s beads. �

5This charges the Steiner nodes on the DFS path only twice, thus it does not affect the approx-

imation bound.

88



Theorem 4.4.5 states the main result of this section.

Theorem 4.4.5 If an optimal network uses s Steiner nodes so that terminals dis-

tributed in the Euclidean plane are k-edge connected, Algorithm 3.3.1 (using Algo-

rithm 4.4.1 for relay placement) forms a network with maximum of 2(5 + 11�log√
3

(min{α, γ})�+5I�log√3 γ�>�log√3 α�)�k/2�s beads and zero Steiner nodes, in which the

terminals are k-edge connected.

Proof : The algorithm of Khuller and Vishkin [41] is used to construct a k-

edge connected subgraph of a graph, which is a 2-approximation. Thus, according

to Lemma 4.4.4, the number of beads required by our algorithm is at most 2(5 +

11�log√
3(min{α, γ})�+5I�log√3 γ�>�log√3 α�)�k/2�s. The last step (sequential removal)

removes beads from the network by allowing them to connect to all nodes within

the transmission range, so the resulting network after sequential removal also has

maximum of 2(5+11�log√
3(min{α, γ})�+5I�log√3 γ�>�log√3 α�)�k/2�s relay nodes. �

The analysis also extends the results of full k-edge connectivity. The algo-

rithm can be proved to be a 6(5+11�log√
3(min{α, γ})�+5I�log√3 γ�>�log√3 α�)�k/2�2-

approximation of the optimal.

4.4.3 Networks in Three Dimensional Euclidean Space

In this section, we consider the scenario where the heterogeneous network is in the

three dimensional Euclidean space. The algorithms for vertex and edge connectivity

are the same as for the Euclidean plane. The approximation guarantees are different.

We start with the following lemma for vertex connectivity.

89



d

d
2

n
3

n

n
3

3

n3

stp(a)
1

2

3

4

1n2

n
1
1

n1

3

2

1

1
n

ast

Figure 4.6: Order of DFS traversal around a Steiner node in a heterogeneous network

in three dimensions

Lemma 4.4.6 A partial 2-vertex connected heterogeneous network using the min-

imum number of beads contains at most (12 + 37�log1.5(min{α, γ})� + 13I�log1.5 γ�>

�log1.5 α�)s beads for terminals distributed in the three dimensional space using Eu-

clidean metrics , where s is the minimum number of Steiner nodes needed.

Proof : We construct a 2-vertex connected graph using a procedure similar to the

one used for the Euclidean plane. The only difference is in the DFS traversal order

around a Steiner node in the construction. We divide the area around a Steiner node

into spherical rings, outer boundary of ring i being of radius di−1. However, rather

than doing an anti-clockwise traversal inside each ring, we do a traversal based on

distance in each ring. We fix d = 1.5 for our construction.

90



We use Algorithm 4.4.3 to construct the order of traversal of children of a

Steiner node sta. We start with the ring ip that contains the parent node stp(a)

(we start with the first ring when sta is the root of the tree). We start with stp(a)

(mark it, call it n
ip
1 ), and connect it to the closest (using the Euclidean metric) child

of sta in ring ip. We mark this child, call it n
ip
2 , and connect it to the unmarked

child in ring ip closest it. This procedure is continued to connect and number all

children of sta in the ring ip. The last marked node in the ring is n
ip
lip

. For all rings

i �= ip, let ni
1 be the node with the largest distance from the node closest to it in its

ring. Connect n
ip
lip

with node nj
1, such that j is the next higher ring with at least

one node. Connect all nodes in ring j starting at nj
1, in the smallest distance order

used for ring ip, and connect the last node to the first node in the next higher ring.

Once we reach ring iM , we connect its last node to the first node in the next lower

ring j < ip. We then follow the above described procedure, now connecting the last

node in each ring with the first node in next lower non-empty ring. When we reach

ring im, we connect its last node to stp(a) to complete the cycle Ca. The order of

addition of nodes to the cycle is the order of their DFS traversal. Figure 4.6 shows

an example DFS traversal order around a Steiner node.

91



Algorithm 4.4.3 DFS traversal order around a Steiner node

1: Partition the area around the Steiner node (sta) into concentric rings, with the

radius of outer boundary of ring i being di−1, 1 ≤ i ≤ �logd(min{α, γ})� + 1.

2: If �logd γ� > �logd α�, add a concentric ring between circles of radius d�logd α�

and γ.

3: Let stp(a) be in ring ip. Set n
ip
1 = stp(a), i = ip. While i < iM :

1. Mark ni
1, start at r = 1. While there are unmarked nodes in ring i:

• Connect ni
r to the closest unmarked node. Mark this node, call it

ni
r+1. Set r = r + 1.

2. Let j > i be the next higher ring with number of nodes lj > 0. Let nj
1

be the node with largest nearest neighbor (in its ring) distance in ring j.

Connect ni
li

with nj
1. Set i = j.

4: Set i = iM . While i ≥ im:

1. Mark ni
1, start at r = 1. While there are unmarked nodes in ring i:

• Connect ni
r to the closest unmarked node. Mark this node, call it

ni
r+1. Set r = r + 1.

2. Let j < ip be the next lower ring with number of nodes lj > 0. Let nj
1 be

the node with largest nearest neighbor distance. Connect ni
li

with nj
1. If

i = im, connect ni
li

with n
ip
1 = stp(a) to complete the cycle Ca. Set i = j.

5: The order in which the children get marked is the order of their DFS traversal.

92



We first consider the case γ ≥ 1, i.e., Trelay ≥ Tmin. We first prove the following

bound on the number of long edges in the cycle constructed in each ring (if we

connected first and last nodes in the ring). Recall that d = 1.5 in our construction.

Lemma 4.4.7 Let there be an arbitrary set of points P = {x1, .., xl}, l > 0 dis-

tributed in a ring between spheres of radius 1.5i and 1.5i+1, centered at a point x0 in

the three dimensional space using the Euclidean metric. We form a cycle C consist-

ing of the points in P : Add x1 to C. From the last point added to C, add an edge to

the closest point in P\C, add the new point to C, and repeat. Finally, add an edge

to x1 when P = C. The number of edges of length greater than 1.5i is at most 36.

Proof : Normalize the distances such that the radius of inner boundary of the ring

is 1, and outer boundary is 1.5. Thus, we are interested in the number of edges in

C of length greater than one (call these long edges). Rename the points in P such

that xi is the ith point being added to C. Start constructing C, and each time an

edge of length greater than one is encountered, mark the end-point of the edge that

was already in C, call it yi (i = 1 for first such edge) and increase i by one. Let the

set of marked points be P ′. The number of points in P ′ is the number of long edges

in C.

Remove the unmarked points of P (xi /∈ P ′) from the ring. The ring now

contains x0 and the marked points yi ∈ P ′. When a point in P was added to P ′,

it was more than unit distance from all the points not in C, thus the distance of

yi, i ≥ 1 is greater than one from all points yj, j > i. Thus, the distance of each

yi is greater than one from all points in P ′\{yi}. Thus, the number of long edges

93



in C is equal to the number of points more than unit distance apart that we can

have inside the spherical ring. If we have spheres of radius half centered at those

points, they are non-overlapping. Since the width of the ring is 0.5, and the spheres

are of radius 0.5, the maximum number of such points that can be placed so the

spheres do not overlap is when they are placed on the outer surface of the ring.

Since the width of the ring is 0.5, placing any other point in the ring will make its

sphere overlap with the spheres around the points placed on the surface. Thus, the

upper bound on total number of points more than unit distance apart is equal to

the upper bound on the maximum number of such points that can be placed on the

outer surface of the ring. Now we compute the maximum number of such outer ring

surface points. Consider a point x on the surface. The sphere of radius half around

x covers a certain area on the outer surface. The intersection of the half radius

sphere with the outer ring surface forms a cone at the center of the ring, covering

a certain solid angle. The half radius spheres are non-overlapping, thus dividing

the total solid angle in the sphere of radius d by the solid angle of each cone gives

an upper bound on the number of points that can be on the outer surface. The

solid angle of a cone is given by 2π(1 − cos a
2
), where a is the apex angle of a cone.

Consider the projection of the cone onto a plane passing through the center of its

base and perpendicular to the base. The result is a triangle with two sides of length

d = 1.5. The apex angle can be computed, and is a = 2 arccos(1 − 1
8d2 ). Thus,

the solid angle of the cone is π
4d2 . The solid angle of a sphere is 4π, thus the total

number of such cones is at most 16d2 = 36. Therefore, the number of points in P ′,

and thus the total number of long edges in the cycle C is at most 36. �

94



We now list the type of ordered edge pairs around a Steiner node that we

charge. As a recap from the proof for vertex connectivity in any metric space, we

charge the following six types of edge pairs around sta. Here, PS denotes the parent

Steiner node of sta, CS denotes a child Steiner node of sta, and T denotes a child

terminal node.

• Type I: PS-sta-CS/T (Figure 4.2(a)). The distance between the parent

Steiner node and the node at the other end is always greater than the trans-

mission range of either end-point. If the node at the other end is a Steiner

node, the distance is greater than the transmission range of either end-point

as the tree STj is a BFS tree (nodes two levels away in the tree cannot have

distance less than the transmission range of either end-point). If the other

end is a terminal node, the distance is greater than the transmission range of

either end-point due to the construction procedure of Tj (if the distance were

less than the transmission range of either end-point, the terminal would be a

child of the PS node).

• Type II: CS/T-sta-PS (Figure 4.2(b)). The distance between the parent

Steiner node and the node at the other end is always greater than the trans-

mission range of either end-point, reason being the same as explained for Type

I edge pair.

• Type III: CS-sta-T (Figure 4.2(c)), if the distance between the end-nodes is

greater than the transmission range of either end-point.

95



• Type IV: T-sta-CS (Figure 4.2(d)), if the distance between the end-nodes is

greater than the transmission range of either end-point.

• Type V: T-sta-T (Figure 4.2(e)), if the distance between the end-nodes is

greater than the transmission range of either end-point.

• Type VI: CS-sta-CS (Figure 4.2(f)), if the distance between the end-nodes is

greater than the transmission range of either end-point.

Note that the distance between the end-nodes is greater than the transmission

range of either end-point in all these cases. For the edges inside each ring, the number

of these edges is upper bounded by 36 for d = 1.5 according to Lemma 4.4.7. This

is because the transmission range of each node in a ring is at least the radius of the

inner sphere of the ring due to the bi-directionality of links (the nodes could connect

to sta). Also, each such edge charges for one bead since the two end-points could

connect using one Steiner node sta.

The first ring is a circle of radius one, and the transmission range of all nodes

(including sta, since we are looking at the case γ ≥ 1) is at least one. Thus, according

to Lemma 4.3.2, the number of long edges in the cycle in this ring is at most the

MST number of the space, which is 12. If �log1.5 γ� > �log1.5 α�, then the last ring

(between circles of radius 1.5�log
√

3 α� and γ) contains only Steiner nodes. Since the

transmission range of all Steiner nodes is the same (= γ), according to Lemma 4.3.2,

the number of long edges in the cycle in a circle of radius γ is at most 12. Thus,

the number of long edges in the last ring is at most 12.

96



In cycle Ca, we use all edges encountered in the cycle in each ring (that does

not contain the parent node stp(a)) except the longest edge (between ni
li

and ni
1).

Since we do not use the longest edge, sta is charged at most 35 times by edges in

each ring i > 1 (36 times if the ring contains stp(a)). For the first ring, sta is charged

at most 11 times if it does not contain stp(a), and 12 times if it contains stp(a). When

we connect two nodes in different rings, that edge uses at most one bead (since they

both were directly connected to sta, and beads have the same transmission range as

sta). Thus, we charge sta for one bead for each such cross-ring edge. The number

of such beads is equal to the number of non-empty rings. Thus, we add one to the

number of beads charged by each ring to take care of this case. If there is just one

ring (the first circle of radius one, or only this ring is non-empty), Ca is just a cycle

in that ring, and it charges sta for at most 12 beads. Otherwise, if stp(a) is in the

first ring, the first ring charges for 13 beads, and the other rings charge for 36 beads

(12 for the last ring if �log1.5 γ� > �log1.5 α�). Since there are at least one more

non-empty ring in this case, we can change the charging to charge the other rings

37 beads (13 for the last ring if �log1.5 γ� > �log1.5 α�), and the first ring 12 beads.

If stp(a) is not in the first ring, the first ring charges for 12 beads, and other rings

charge for at most 37 beads (13 for the last ring if �log1.5 γ� > �log1.5 α�). Thus,

each non-empty ring i charges sta for at most 37 beads for i > 1 (13 for the last

ring if �log1.5 γ� > �log1.5 α�), and the first ring charges sta for at most 12 beads.

Thus, sta is charged for at most (12 + 37�log1.5(min{α, γ})� + 13I�log1.5 γ�>

�log1.5 α�)s beads. Here, Ix is the indicator function, which is 1 if condition x is true,

else it is 0. Thus, the final solution Gm uses at most (12 + 37�log1.5(min{α, γ})� +

97



13I�log1.5 γ�>�log1.5 α�)s beads.

We now consider the case γ < 1. In this case, the relay nodes have a trans-

mission range smaller than all terminal nodes. Since the communication topology

is bi-directional, all edges adjacent to the Steiner nodes in the optimal Steiner solu-

tion are at most of length γ. Therefore, all neighbors of a Steiner node are within a

circle of radius γ, and all have a transmission range at least γ. Thus, according to

Lemma 4.3.2, each Steiner node is charged for at most 12 beads. Thus, Gm uses at

most (12 + 37�log1.5(min{α, γ})� + 13I�log1.5 γ�>�log1.5 α�)s beads. �

Theorem 4.4.8 states the approximation ratio of the algorithm.

Theorem 4.4.8 If an optimal heterogeneous network uses s Steiner nodes so that

terminals distributed in the three dimensional Euclidean space are 2-vertex con-

nected, Algorithm 3.2.1 (using Algorithm 4.4.1 for relay placement) forms a network

with maximum of 2(12+37�log1.5(min{α, γ})�+13I�log1.5 γ�>�log1.5 α�)s beads and zero

Steiner nodes, in which the terminals are 2-vertex connected.

Proof : The algorithm of Khuller and Raghavachari [40] is used to compute a 2-

vertex connected subgraph of a graph, which is a 2-approximation. Thus, accord-

ing to Lemma 4.4.6, the number of beads required by our algorithm is at most

2(12+37�log1.5(min{α, γ})�+13I�log1.5 γ�>�log1.5 α�)s. The last step of Algorithm 3.2.1

(sequential removal step) removes beads from the network by allowing them to con-

nect to all nodes within the transmission range, so the resulting network after sequen-

tial removal also has maximum of 2(12+37�log1.5(min{α, γ})�+13I�log1.5 γ�>�log1.5 α�)s

relay nodes. �

98



For homogeneous networks (α = γ = 1) in three dimensions, the result of The-

orem 4.4.8 matches that of Theorem 4.3.3 since MST number M = 12 for the three

dimensional Euclidean space. The analysis also extends the results of full 2-vertex

connectivity. The algorithm can be proved to be a 12(12 + 37�log1.5(min{α, γ})� +

13I�log1.5 γ�>�log1.5 α�)-approximation.

Similar arguments yields the following result for partial k-edge connectivity.

Theorem 4.4.9 If an optimal network uses s Steiner nodes so that terminals dis-

tributed in the three dimensional Euclidean space are k-edge connected, Algorithm 3.3.1

(using Algorithm 4.4.1 for relay placement) forms a network with maximum of

2(12 + 37�log1.5(min{α, γ})� + 13I�log1.5 γ�>�log1.5 α�)�k/2�s beads and zero Steiner

nodes, in which the terminals are k-edge connected.

For homogeneous networks (α = γ = 1) in three dimensions, the result of The-

orem 4.4.9 matches that of Theorem 4.3.5 since MST number M = 12 for the three

dimensional Euclidean space. The analysis also extends the results of full k-edge

connectivity. The algorithm can be proved to be a 6(12 + 37�log1.5(min{α, γ})� +

13I�log1.5 γ�>�log1.5 α�)�k/2�2-approximation of the optimal.

99



Chapter 5

Movement of Relay Nodes for Topology Reconfiguration

In this chapter, we consider the problem of topology reconfiguration, as an applica-

tion of the algorithms proposed in Chapter 3. We can use the algorithms proposed

in Chapter 3 to add relays to establish a fault-tolerant topology between network

nodes. But as the network nodes move, the desired fault-tolerance might be lost

due to their limited transmission range. We propose algorithms to reconfigure the

topology by moving the existing relay nodes a minimum amount and adding the

minimum number of additional relay nodes.

The main application of these algorithms is in battlefield communication net-

works, which are networks of mobile nodes, communicating with each other using

wireless links. The nodes in the battlefield refer to soldiers, army vehicles, UAVs,

robots, etc. The network may also be a team of nodes engaged together to perform

a large scale reconnaissance mission. The capability of a device to communicate

with all nodes (using single or multiple hops) is very critical for the collaborative

missions to succeed. In these applications, the nodes are in hostile conditions, and

the nodes or communication links between nodes may fail. Thus, it is critical for the

communication network between the nodes to be connected even after a few fail-

ures. Since the nodes are mobile, it is necessary to re-configure the communication

topology as it changes substantially.

100



We assume the network nodes move at a slow time scale. Thus, once their lo-

cations have changed significantly, we would like to re-establish the desired topology

using minimum number of relays. Since some relays already exist in the network

(used in the topology on previous terminal locations), the secondary objective is to

move the existing relay nodes a minimum distance to the new relay positions so that

the topology is constructed quickly.

We first present the algorithms, followed by the computational complexity and

simulation results.

5.1 Placement and Movement Algorithms

We first describe the framework followed by the proposed algorithms to minimize

the distance travelled by existing relays as a secondary objective. Table 5.1 lists

the notation used in the algorithms. We consider the objective of achieving k-

edge connectivity between the terminals, thus we will use Algorithm 3.3.1 in the

algorithms described next. To achieve k-vertex connectivity, Algorithm 3.2.1 can be

used instead.

5.1.1 Framework for Minimizing Distance

We use the current positions of the existing relay nodes along with the number of

new relays required to form an edge in the edge weight function ce used in Algo-

rithm 3.3.1. Algorithm 3.3.1 is executed to compute an approximately minimum

weight k-connected subgraph, followed by sequential removal of new relay nodes.

101



Table 5.1: Notation

Symbol Definition

T Set of terminal nodes

N Number of terminal nodes

k Desired level of edge or vertex connectivity

Ro Set of existing relay nodes

Go Topology on existing relays and terminals at old locations

Ro
i,j Set of relays associated with terminals i, j in Go

ri,j Number of relays associated with terminals i, j in Go

Ro
1 Set of vertices, one vertex per Ro

i,j∀i, j ∈ T

Gc Complete graph on terminals T at their new locations

Ec Set of edges of Gc

Rp Set of potential relay nodes on edges in Gc

Me Number of matched relay nodes on edge e in Gc

Rp
i,j Set of relays associated with terminals i, j in Gc

Rp
1 Set of vertices, one vertex per Rp

i,j∀i, j ∈ T

Gn Topology on relays and terminals at new locations

Rn Set of new relay nodes in Gn

102



We then use maximum weight matching (Lovász and Plummer [54]) to move the

existing relay nodes to the new relay positions such that the total movement is

minimized. If more relay nodes are needed, they are added to the network. The

framework is given in Algorithm 5.1.1. The initial weighting favors certain edges to

be included in the k-connected subgraph by giving them a lower weight. The weight

of each edge is reduced from the number of relays needed if existing relays can be

moved to the relay positions on that edge. The algorithms we propose differ in the

way they assign these edge weights, and thus lead to different total relay movement.

Steps 2, 3 and 4 are the same for all algorithms.

103



Algorithm 5.1.1 Framework for relay and distance minimizing algorithms

1: Execute Algorithm 3.3.1, with edge weights ce depending on the positions of

existing relays and the number of relays required to form edge e.

2: Move the existing relay nodes to the new relay positions (at the output of Step

1) according to the following:

• Construct a bipartite graph GM = (VM , EM), where VM = Ro ∪ Rn. EM

consists of edges between each pair of vertices (vo ∈ Ro, vn ∈ Rn).

• Set weight we of each edge e ∈ EM according to the distance between the

corresponding actual and new relay positions.

• Let W = maxe∈EM
we. Set we = W − we + 1,∀e ∈ EM .

• Perform maximum weight matching (Lovász and Plummer [54]) on this

graph to get a matching. A matching is a subgraph of pairs of vertices

connected to each other, such that no vertex is connected to more than

one vertex.

3: Move each existing relay node to the new relay position it is mapped to in the

solution. This minimizes the total movement of relay nodes.

4: Add new relays if there are unmatched new positions.

104



5.1.2 Minimum Relays Algorithm (MRA)

Minimum Relays Algorithm (MRA) uses the same weights ce as in Equation 3.1,

i.e., the number of relays needed to form an edge. Thus, the algorithm does not

consider the existing relay locations in computation of the k-connected subgraph.

5.1.3 Individual Matching based Algorithm (IMA)

Individual Matching based Algorithm (IMA) considers the existing relay locations

in the computation of weights ce of edges in Ec. The computation of edge weights

is described in Algorithm 5.1.2. The algorithm matches the existing relay locations

with the potential relay locations in Rp, such that the existing relays move a min-

imum distance. Then, the algorithm weights each edge in Ec by the number of

unmatched relays on the edge.

105



Algorithm 5.1.2 Computation of initial edge weights in IMA

1: Construct a complete graph Gc = (T,Ec) by forming edges between all termi-

nals.

2: Mark the positions of relays needed to form each edge in Ec. The number of

relays needed to form an edge e of length |e| is �|e|�−1. In a network in the first

quadrant of a Euclidean plane, the position (x, y) of relays for edge e of length

greater than one between vertices i and j can be computed as:

xm = xi + (xj − xi)m/�|e|�,m ∈ {1, ··, �|e|� − 1}

ym = yi + (yj − yi)m/�|e|�,m ∈ {1, ··, �|e|� − 1}

(5.1)

3: Construct a bipartite graph GM = (VM , EM), where VM = Ro∪Rp. EM consists

of edges between each pair of vertices (vo ∈ Ro, vp ∈ Rp).

4: Find a matching by inverting the weights and computing maximum weight

matching as in GM as in Step 2 of Algorithm 5.1.1.

5: For each edge e ∈ Ec with Me matched new relay positions, define weight

function ce as:

ce = �|e|� − 1 − Me,∀e ∈ Ec (5.2)

106



5.1.4 Same Terminal Pair Algorithm (STPA)

Same Terminal Pair Algorithm (STPA) tries to associate the existing relays to the

same terminal pair they were associated with before the terminals moved. The

weight function for initial weighting ce is as defined in Equation 5.3, where the

symbols are as defined in Table 5.1. ei,j represents the edge between terminals i

and j in Gc. The algorithm will favor the formation of the same edges as in the

topology Go by assigning them a lower weight than the number of relays required.

The algorithm is expected to work well if the terminal nodes do not move too far.

W (ei,j) = max{�|ei,j|� − 1 − ri,j, 0},∀ei,j ∈ Ec (5.3)

5.1.5 Group Matching based Algorithm (GMA)

Group Matching based Algorithm (GMA) is a hybrid of IMA and STPA. The algo-

rithm maps each set of existing relays associated with a single pair of terminals in

Go to potential relay positions, all of which are associated with a single terminal pair

in Gc. However, unlike STPA, the two terminal pairs can be different. We do not

consider sets with zero existing or potential relays. The algorithm uses minimum

weight matching as in Step 2 of Algorithm 5.1.1 to find minimum distances between

each such pair of sets of existing and potential relays. Then it uses the distances as

weights and uses matching again to map the sets of existing relays (Ro
1) to sets of

potential relays (Rp
1) such that minimum distance is travelled. Then, the algorithm

weights each edge as the number of unmatched relays among the relays needed on

each edge in Ec. Algorithm 5.1.3 describes the algorithm in more detail.

107



Algorithm 5.1.3 Computation of initial edge weights in GMA

1: Construct a complete graph Gc = (T,Ec) on terminals.

2: Mark the positions of potential relays needed to form each edge in Ec, as in Step

2 of Algorithm 5.1.2.

3: Make a vertex corresponding to Ro
i,j for all pairs of terminals (i, j) which have

at least one relay associated with them. Make a vertex corresponding to Rp
i,j

for all pairs of terminals (i, j) which are more than distance one apart at new

positions. Call the sets of vertices as Ro
1, R

p
1.

4: For each pair of vertices (vo ∈ Ro
1, v

p ∈ Rp
1):

• Construct a bipartite graph on the existing and potential relay nodes in

vo and vp with an edge between each (existing, potential) relay pair.

• Find a matching in GM as in Step 2 of Algorithm 5.1.1.

• Assign a weight to the pair of this set of existing relays and set of potential

relays as the sum of distances between matched vertices.

5: Construct a bipartite graph GM = (VM , EM), where VM = Ro
1∪Rp

1. EM consists

of edges between each pair of vertices (vo ∈ Ro
1, v

p ∈ Rp
1).

6: Weight each edge in EM as the weight assigned to that pair of vertices in Step

4 of this algorithm.

7: Find a matching in GM as in Step 2 of Algorithm 5.1.1.

8: For each edge e ∈ Ec, define weight function ce as:

ce = �|e|� − 1 − Me,∀e ∈ Ec (5.4)

108



5.1.6 Enhanced Group Matching based Algorithm (EGMA)

Enhanced Group Matching based Algorithm (EGMA) is a variation of GMA that

takes into account the difference between the number of relays in sets Ro
i,j and Rp

i,j

while assigning them weights for matching in Step 6 of Algorithm 5.1.3. Rather

than keeping the weight as the minimum distance needed to move the existing

relays in Ro
i1,j1 to Rp

i2,j2 for all (i1, j1), (i2, j2), the algorithm multiplies the weight

by max{|Ro
i1,j1|/Rp

i2,j2, |R
p
i2,j2|/Ro

i1,j1}. Here, |Ro
i,j| (|Rp

i,j|) denotes the number of

relays (> 0) in the set Ro
i,j (Rp

i,j). Thus, the algorithm favors matching two sets

which have less disparity in the number of relays.

5.1.7 Computational Complexity

We discuss the computational complexity for the objective of maintaining k-edge

connectivity between the terminals. Analysis for vertex connectivity is similar. Let

the number of terminal nodes be N , and the network area be a square of length L.

We showed in Section 3.3.2 that Algorithm 3.3.1 takes O(k4N3L3) time. Maximum

weight matching on a bipartite graph of n vertices takes O(n2.5) time. Thus, Step

2 of Algorithm 5.1.1 takes O((kNL)2.5) time. The algorithms differ in the time

required for computation of weight function ce for Step 1 of the framework. If that

time is O(f(k,N, L)) for an algorithm, the total time required is O(f(k,N, L) +

k4N3L3 + (kNL)2.5) = O(f(k,N, L) + k4N3L3). Thus, for MRA and STPA, the

total time is O(k4N3L3); for IMA, the total time is O((kNL + N2L)2.5 + k4N3L3);

and for GMA and EGMA, the total time is O(kN3L4.5+(kNL+N2L)2.5+k4N3L3).

109



5.2 Simulation Results and Discussion

The networks simulated were in a square region of side length 10km. The nodes

were assumed to have a transmission range of 1km. The mobility model used was

random waypoint, in which the nodes move to a point within a circle of a certain

radius (R) around their current location randomly. Each node independently picks

a distance between 0 and R uniformly randomly, an angle from 0 to 2π uniformly

randomly, and moves to a point at that distance and that angle. Whenever any

coordinate of the point to move to is outside the square network region, the point

is taken to be the boundary of the network region in that coordinate.

We implemented the algorithms for finding a k-edge connected network. The

initial node locations were chosen independently randomly with a uniform distri-

bution. A k-edge connected topology was formed using Algorithm 3.3.1, whose

objective is to minimize the number of relays. The relays were placed at the re-

quired positions and the terminals were moved using the mobility model described

above. Then, the algorithms were run to find the new relay positions to construct

the desired topology. The algorithms were compared for the number of relays they

require and the movement of the existing relays. We study the performance of the

algorithms for different values of R, and different number of terminal nodes (N)

in the network. The matching algorithm used is an implementation of Gabow’s

N-cubed weighted matching algorithm, Gabow [29].

110



5.2.1 Variation with Movement of Terminals

We first fixed the number of terminal nodes (N) at 20, and varied the amount

of movement of the terminal nodes. The network was formed with 10 different

randomly generated node locations, and for each set of node locations, 10 different

sets of node movements were generated. Thus, the algorithms were run a total of

100 times. The first set of results are for achieving 2-edge connectivity among the

terminal nodes. The maximum movement allowed (R) for each node was varied

from 500m to 5km. Figure 5.1 shows the average total distance moved by existing

relays in MRA, IMA, STPA, GMA and EGMA. Figure 5.2 shows the average total

number of relays required in the new topology formed by MRA, IMA, STPA, GMA

and EGMA. STPA and EGMA work better than GMA and IMA, which in turn

work better than MRA in terms of the total relay movement. MRA saves only a few

relays compared to the other methods. This savings is offset by the larger movement

distance it requires. STPA works slightly better than EGMA when the terminal

nodes do not move much, whereas EGMA works much better than STPA as the

terminal movement increases. This is expected as STPA tries to move the existing

relays to connect the same terminal pair they were associated with before, and thus

works well for small terminal node movements. For large movements, EGMA works

better as the terminals may move quite far from their original locations and thus

it may be better to move existing relays to connect terminal nodes other than the

ones they were associated with before.

Figures 5.3 and 5.4 show the ratio between EGMA and MRA of distance

111



500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Maximum Movement (m)

T
ot

al
 D

is
ta

nc
e 

(m
)

MRA
IMA
STPA
GMA
EGMA

Figure 5.1: Total relay movement, varying R, N = 20, k = 2

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
30

31

32

33

34

35

36

37

Maximum Movement (m)

T
ot

al
 R

el
ay

s 
N

ee
de

d

MRA
IMA
STPA
GMA
EGMA

Figure 5.2: Number of relays needed, varying R, N = 20, k = 2

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Maximum Movement (m)

R
el

at
iv

e 
T

ot
al

 D
is

ta
nc

e

EGMA

Figure 5.3: Total relative relay movement in EGMA, varying R, N = 20, k = 2

112



500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Maximum Movement (m)

R
el

at
iv

e 
T

ot
al

 R
el

ay
s 

N
ee

de
d

EGMA

Figure 5.4: Relative number of relays in EGMA, varying R, N = 20, k = 2

500 1000 1500 2000 2500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Maximum Movement (m)

R
el

at
iv

e 
T

ot
al

 D
is

ta
nc

e

STPA

Figure 5.5: Total relative relay movement in STPA, varying R, N = 20, k = 3

500 1000 1500 2000 2500
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Maximum Movement (m)

R
el

at
iv

e 
T

ot
al

 R
el

ay
s 

N
ee

de
d

STPA

Figure 5.6: Relative number of relays in STPA, varying R, N = 20, k = 3

113



moved by relays and of total number of relays required. EGMA leads to a savings

of 20% in the distance travelled by existing relays on an average, for all values of

R. Also, the number of relays required by EGMA is almost the same as in MRA

on an average. It is worthwhile to note than in some instances MRA may require

more relays because the algorithm for finding a minimum-relay k-edge connected

topology is not optimal. Thus, other algorithms may use less relays than MRA in

some instances, though that is not true on an average (as the results show).

We also simulated MRA and STPA (STPA works as well as EGMA for the

values of R used) for the objective of constructing a 3-edge connected topology. The

number of simulations were the same as before. Figures 5.5 and 5.6 show the ratio

between STPA and MRA of distance moved by relays and of total number of relays

required. Compared to MRA, STPA leads to a savings of 20-25% in total relay

movement on an average for varying values of R for k = 3 as well. Also, the number

of relays used is almost the same as in MRA on an average.

5.2.2 Variation with Number of Terminals

We now study the variation with respect to the number of terminal nodes in the

network. The simulation set up is the same as before, and they are done on 10

sets of network locations with 10 sets of random movements. The objective is to

construct a 2-edge connected topology among the terminal nodes. The number of

terminals is varied from 10 to 50. The maximum movement allowed (R) for each

node is fixed at 1500m. Figures 5.7 and 5.8 show the ratio between STPA and MRA

114



10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Terminals

R
el

at
iv

e 
T

ot
al

 D
is

ta
nc

e

STPA

Figure 5.7: Total relative relay movement in STPA, varying N , R = 1500, k = 2

10 15 20 25 30 35 40 45 50
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Number of Terminals

R
el

at
iv

e 
T

ot
al

 R
el

ay
s 

N
ee

de
d

STPA

Figure 5.8: Relative number of relays in STPA, varying N , R = 1500, k = 2

of distance moved by relays and of total number of relays required. STPA leads

to about 15-20% less movement of existing relays than MRA, and uses almost the

same number of relays on an average for all values of N considered.

Thus, STPA works much better than MRA for a wide range of number of

terminals and amount of movement of terminal nodes (R). If the amount of terminal

movement is very high, then EGMA performs better than STPA (and all other

algorithms), and thus should be used in those cases.

115



Chapter 6

Joint Traffic-Oblivious Routing and Power Control

In this chapter, we consider another aspect of robustness of a wireless network:

robustness against traffic variation. We assume the traffic in the network is variable,

and is constrained by a polytope defined by the limits on traffic between each ingress-

egress pair and on traffic originating/sinking at each ingress/egress node. We exploit

the cross-layer characteristics of wireless networks, and provide joint routing and

power control policies. The output of our algorithms is a fixed routing and power

control policy, that is schedulable for all traffic within the polytope. We further

enhance our algorithms to optimize the link transmission powers according to the

network traffic.

We first describe the network model, followed by the problem statement, al-

gorithms and simulation results.

6.1 Network Model

We model the given wireless network as a graph G = (V,E), where V represents

the set of nodes in the network, and E represents the set of (uni-directional) edges

between pairs of nodes. An edge exists from node i to node j if j is in the receiving

range of i, and hence i can transmit directly to j.

We explain the notation used in this chapter, listed in Table 6.1. For each

116



node v ∈ V , Ov and Iv represent the sets of outgoing and incoming edges at v,

respectively. Let Nv := Iv ∪Ov be the set of all edges incident at v. The end-to-end

traffic or flow between each pair of nodes is called a commodity, and the set of all

commodities in the network is denoted by C. For each commodity, the ingress node

is called its source, and the egress node is called its destination. S represents the

set of sources, and D represents the set of destinations in the network. The traffic

demand for commodity c is represented by tc, and its source and destination nodes

are represented by sc and dc, respectively. We assume that the exact value of tc is

not known, although the set {tc, c ∈ C} (called a traffic matrix) is constrained by a

polytope T . The polytope T is defined as follows:

T = {tc :
∑

c|sc=v

tc ≤ λv ∀v ∈ S, (6.1a)

∑
c|dc=v

tc ≤ ηv ∀v ∈ D, (6.1b)

tc ≤ ωc ∀c ∈ C} (6.1c)

Equations 6.1a and 6.1b represent constraints on the total traffic originating at a

source node and the total traffic sinking at a destination node, respectively. These

constraints are called hose model constraints, Duffield et al. [25], and limit total

incoming and outgoing traffic of source and destination nodes, respectively. Equa-

tion 6.1c represents pipe model constraints, which limit the traffic rate between

source-destination pairs.

The fraction of traffic for commodity c traversing edge e is denoted by fc(e),

and f denotes the routing in the network. The rate of transmission on link e is

represented by R(e) (R denotes the set of rates {R(e)|e ∈ E}), and the transmission

117



Table 6.1: Notation

Symbol Definition

V/E Set of nodes/edges

Ov/Iv Set of outgoing/incoming edges at node v

Nv Set of all edges incident at node v

C/S/D Set of commodities/sources/destinations

tc/sc/dc Traffic/source/destination for commodity c

T Traffic matrix polytope

λv, ηv Hose model bounds on traffic demands

ωc Pipe model bounds on traffic demands

f Routing (set of flows)

fc(e) Fractional traffic of commodity c traversing edge e

P (e) Transmission power for edge e

R(e) Rate of edge e

R Set of rates, {R(e)|e ∈ E}

B Schedulability constant (2/3 for sufficiency, 1 for necessity)

118



power is denoted by P (e). For the additive white Gaussian noise (AWGN) channel,

assuming no interference from other simultaneous transmissions, the achievable link

rate in bits/second for link e, R(e), is upper bounded by (Cover and Thomas [21]):

R(e) = W log(1 +
P (e)σ(e)

N0W
), (6.2)

where W is the link bandwidth, σ(e) the channel gain (that takes attenuation into

account as well) and N0 the noise spectrum density. We use the upper bound as the

achievable link rate.

A routing f is said to be valid if it satisfies the flow conservation laws given

below,

∑
e∈Osc

fc(e) = 1 ∀c ∈ C (6.3a)

∑
e∈Ov

fc(e) =
∑
e∈Iv

fc(e) ∀v ∈ V \{sc, dc}, ∀c ∈ C (6.3b)

Equation 6.3a states that total fractional traffic originating at the source should be

equal to one for each commodity. Equation 6.3b states that total fractional traffic

entering an intermediate node should be equal to total fractional traffic exiting it,

for each commodity.

6.1.1 Interference Model

We consider the “free of secondary interference” model, Hajek and Sasaki [31], Ko-

dialam and Nandagopal [43], Bhatia and Kodialam [12], Li et al. [49], Wieselthier

et al. [76]. In this model, transmissions on two links do not interfere with each

other as long as no end point of the links is common. The scheduling constraint

119



in this model is that a node cannot communicate (either transmit or receive) with

more than one node at any instance of time. Such an interference model is ap-

plicable to networks employing TDMA/CDMA MAC, in which different nodes use

different spread spectrum sequences for communication, and thus do not interfere

with each other. Such an interference model is also applicable to networks that use

highly directional antennas. Use of highly directional antennas can provide higher

throughput than omni-directional antennas (due to reduction in interference).

We assume that the time is divided into synchronized slots for communica-

tion between nodes, and all nodes have knowledge about the slot boundaries. The

scheduling constraint for this model can be expressed by the following equation

∑
e∈Nv

∑
c∈C

fc(e)

R(e)
tc ≤ B ∀v ∈ V (6.4)

Here, fc(e)tc/R(e) is the fraction of time needed to transmit the traffic for commod-

ity c on edge e at the data rate R(e). Kodialam and Nandagopal [43] proved that

for any set of routing and rates (f,R), the set is schedulable under the interference

model if for each node v, the sum of fc(e)tc/R(e) over all commodities and over all

links e adjacent to v is less than 2/3, and it is not schedulable if the sum is greater

than 1. Thus, setting B = 1 in Equation 6.4 defines the necessary constraint, and

setting B = 2/3 defines the sufficient constraint for feasibility.

The average transmission power at each link e is,

∑
c∈C

fc(e)tc
R(e)

N0W

σ(e)
(2

R(e)
W − 1) (6.5)

This expression is the sum (over commodities) of link transmission power needed

while transmitting (derived from Equation 6.2) multiplied with the fraction of time

120



it transmits for each commodity.

6.2 Joint Routing and Power Assignment

6.2.1 Problem Statement

We now formally state the problem we study in this chapter: Given a network graph

G = (V,E), find a routing and power assignment that minimizes the maximum

(over all traffic matrices t in T ) total transmission power used in the network. The

optimization formulation representing this problem is

min
f,R

max
tc∈T

∑
e∈E

∑
c∈C

fc(e)tc
R(e)

N0W

σ(e)

(
2

R(e)
W − 1

)
(6.6a)

s.t.

∑
e∈Osc

fc(e) = 1 ∀ c ∈ C (6.6b)

∑
e∈Ov

fc(e) =
∑
e∈Iv

fc(e) ∀ v ∈ V \{sc, dc}, ∀ c ∈ C (6.6c)

∑
e∈Nv

∑
c∈C

fc(e)

R(e)
tc ≤ B ∀v ∈ V, ∀ t ∈ T (6.6d)

0 ≤ fc(e) ≤ 1, 0 ≤ R(e) ∀ c ∈ C, ∀ e ∈ E. (6.6e)

The constraints on f and R are that f should be a valid routing (defined by the

conditions of Equation 6.3) and (f,R) should admit a valid scheduling (defined by

the conditions of Equation 6.4) for all traffic matrices in T . The flow constraints

on routing f are given in Equations 6.6b and 6.6c. Equation 6.6d represents the

scheduling constraints on the routing and rates. The variables f and R are bounded

as in Equation 6.6e.

The problem is a non-linear (neither convex nor concave) min-max problem,

121



with maximization over an infinite set of traffic matrices. The problem has infinite

non-linear constraints of Equation 6.6d, since there are infinite traffic matrices t =

{tc, c ∈ C} ∈ T .

If we introduce a new variable P , the problem could equivalently be written

by replacing the objective function with minf,R P , and adding the constraint:

∑
e∈E

∑
c∈C

fc(e)tc
R(e)

N0W

σ(e)

(
2

R(e)
W − 1

)
≤ P ∀ t ∈ T (6.7)

In this way, the total transmission power is always less than or equal to P , and

minimizing P would be equivalent to minimizing the maximum power. Thus, the

min-max problem is equivalent to a minimization problem with two sets of infinite

constraints, specified in Equations 6.6d and 6.7, respectively.

6.2.2 Replacement of Infinite Constraints

We first replace the infinite constraints induced by the maximization term of the

objective function with a finite number of constraints by adding some auxiliary

variables. To this end, we write an oracle that, for a given solution (f,R), computes

the maximum value of the objective function of Equation 6.6a over all traffic matrices

in T . The oracle is a linear program, as written in Equations 6.8a-6.8d. The

variables of the program are t = {tc, c ∈ C}, and the constraints are the hose and

122



pipe model constraints that define T .

max
t

∑
e∈E

∑
c∈C

fc(e)

R(e)
tc

N0W

σ(e)

(
2

R(e)
W − 1

)
(6.8a)

s.t.

∑
c|sc=v

tc ≤ λv ∀v ∈ S (6.8b)

∑
c|dc=v

tc ≤ ηv ∀v ∈ D (6.8c)

tc ≤ ωc ∀c ∈ C (6.8d)

The problem of Equations 6.8a-6.8d is a maximization problem, and thus it is hard

to replace the objective function of Equation 6.6a, which is a minimization problem,

with it. Let the variables αv, βv and γc be dual variables for the constraints in

Equations 6.8b, 6.8c and 6.8d respectively. We write the dual of Equations 6.8a-

6.8d:

min
α,β,γ

∑
v∈S

λvαv +
∑
v∈D

ηvβv +
∑
c∈C

ωcγc (6.9a)

s.t.

∑
e∈E

fc(e)

R(e)

N0W

σ(e)

(
2

R(e)
W − 1

)
≤ αsc + βdc + γc ∀c ∈ C (6.9b)

0 ≤ αv ∀v ∈ S, 0 ≤ βv ∀v ∈ D, 0 ≤ γc∀c ∈ C (6.9c)

The duality gap is zero (strong duality) for linear programs, Boyd and Vanden-

berghe [13]. Hence, the objectives of Equations 6.8a and 6.9a are equal at optimality.

Thus, for any (f,R), the max term in the objective function of Equation 6.6a can

be replaced by the objective function of Equation 6.9a, subject to the additional

constraints of Equations 6.9b and 6.9c. Therefore, the infinite constraints of the

objective function of Equation 6.6a have been removed.

123



There still are infinite constraints, which are the scheduling constraints of

Equation 6.6d. We follow the same trick as before, and replace the infinite con-

straints using auxiliary variables and a finite number of constraints. For a fixed

(f,R), we write an oracle, for each node v1 ∈ V , that maximizes the total fraction

of transmissions and receptions at that node,

max
t

∑
e∈Nv1

∑
c∈C

fc(e)

R(e)
tc (6.10a)

s.t.

∑
c|sc=v

tc ≤ λv ∀v ∈ S (6.10b)

∑
c|dc=v

tc ≤ ηv ∀v ∈ D (6.10c)

tc ≤ ωc ∀c ∈ C (6.10d)

Here, the variables are the traffic demands t = {tc : c ∈ C}, and the constraints are

the hose and pipe model constraints that define the traffic matrix polytope T . The

solution (f,R) is feasible if the objective of the oracle is less than B for all nodes v.

We again write the dual of this oracle to turn the maximization into a minimization

problem:

min
αv1 ,βv1 ,γv1

∑
v∈S

λvα
v1
v +

∑
v∈D

ηvβ
v1
v +

∑
c∈C

ωcγ
v1
c

s.t.

∑
e∈Nv1

fc(e)

R(e)
≤ αv1

sc
+ βv1

dc
+ γv1

c ∀c ∈ C

0 ≤ αv1
v ∀v ∈ S, 0 ≤ βv1

v ∀v ∈ D

0 ≤ γv1
c ∀c ∈ C (6.11)

The variables αv1
v , βv1

v and γv1
c are dual variables for the constraints of Equa-

124



tions 6.10b, 6.10c and 6.10d respectively. Since strong duality holds for linear pro-

grams, the objectives of Equations 6.10 and 6.11 are the same at their respective

solutions. Since the problem of Equation 6.11 is a minimization problem, we re-

place the infinite constraints of Equation 6.6d with the following constraints for all

v1 ∈ V :

∑
v∈S

λvα
v1
v +

∑
v∈D

ηvβ
v1
v +

∑
c∈C

ωcγ
v1
c ≤ B

∑
e∈Nv1

fc(e)

R(e)
≤ αv1

sc
+ βv1

dc
+ γv1

c ∀c ∈ C

0 ≤ αv1
v ∀v ∈ S, 0 ≤ βv1

v ∀v ∈ D

0 ≤ γv1
c ∀c ∈ C (6.12)

We now consider the term 2R(e)/W . The exponent R(e)/W represents the spectral

efficiency of the wireless links. In most practical systems, the term is less than one.

Thus, we replace 2R(e)/W by its Taylor series expansion, and take the first four terms

given below (Bhatia and Kodialam [12]):

2
R(e)
W � 1 +

ln 2

W
R(e) +

ln2 2

2W 2
R2(e) +

ln3 2

6W 3
R3(e) (6.13)

We now replace infinite constraints of Equation 6.6d with equivalent finite set of

constraints given in Equation 6.12. Further, we use the Taylor series expansion of

Equation 6.13 to get an approximate optimization problem. We also replace infinite

constraints in the objective function of Equation 6.6a with objective function in

Equation 6.9a and constraints of Equations 6.9b-6.9c. The optimization problem

125



becomes:

min
f,R,α,β,γ,αv ,βv ,γv

∑
v∈S

λvαv +
∑
v∈D

ηvβv +
∑
c∈C

ωcγc

s.t.

∑
e∈Osc

fc(e) = 1 ∀ c ∈ C

∑
e∈Ov

fc(e) =
∑
e∈Iv

fc(e) ∀ v ∈ V \{sc, dc}, ∀ c ∈ C

∑
e∈E

fc(e)
N0 ln 2

σ(e)

(
1 +

ln 2

2W
R(e) +

ln2 2

6W 2
R2(e)

)
≤ αsc + βdc + γc ∀c ∈ C

∑
v∈S

λvα
v1
v +

∑
v∈D

ηvβ
v1
v +

∑
c∈C

ωcγ
v1
c ≤ B ∀v1 ∈ V

∑
e∈Nv1

fc(e)

R(e)
≤ αv1

sc
+ βv1

dc
+ γv1

c ∀c ∈ C ∀v1 ∈ V

0 ≤ fc(e) ≤ 1, 0 ≤ R(e) ∀c ∈ C ∀e ∈ E

0 ≤ αv ∀v ∈ S, 0 ≤ βv ∀v ∈ D, 0 ≤ γc ∀c ∈ C

0 ≤ αv1
v ∀v ∈ S , 0 ≤ βv1

v ∀v ∈ D ∀v1 ∈ V

0 ≤ γv1
c ∀c ∈ C ∀v1 ∈ V (6.14)

We have now removed all infinite constraints from the optimization problem. But,

this problem is still not convex as the functions fc(e)/R(e), fc(e)R(e), fc(e)R
2(e)

are neither convex nor concave in (fc(e), R(e)). Due to non-convexity, even for small

size networks, it is not possible to find the optimal solution in a reasonable time

using current non-linear optimization tools. Thus, we propose heuristics to solve this

problem. The heuristics solve quadratic convex optimization problems iteratively,

which can be solved very fast using existing algorithms. In fact, in the simulations,

the algorithms converged in very few iterations (3-4 iterations in most instances).

The performance of the heuristics were close to the performance of an algorithm

126



Solve (6.14) to Solve (6.14) toSolve (6.14) to

N

Output the Rates
Compute RoutingCompute RatesCompute Routing

Set Initial Rates Y
and RoutingConvergence

  Check for

Figure 6.1: Iterative algorithm for (6.14)

for computing routing and link powers specific to each traffic matrix, Bhatia and

Kodialam [12] (which has been shown to perform close to the optimal for the specific

traffic matrix).

6.2.3 Iterative Algorithm

We propose an iterative algorithm to compute a solution to the optimization problem

(6.14). The algorithm is depicted in Figure 6.1, and explained below. We fix B = 2/3

so that the obtained solution is schedulable.

1: Set rates R(e) = B∆ maxu∈S,v∈D,c∈C{|S|λu, |D|ηv, |C|ωc}, where ∆ is the max-

imum node degree in the network. The value of R is chosen so that there is a

feasible solution to (6.14). It is easy to see that with these values for R, there

exists a solution that satisfies the constraints imposed by Equation 6.12. Set

k = 1 and Rk = R.

2: Set R = Rk, and fix fc(e) = 0 for all c ∈ C for all edges e such that R(e) = 0.

Solve (6.14) to compute f , which is a linear program for fixed R and can be

solved in polynomial time. Set fk = f .

127



3: Fix f = fk, and solve (6.14) to compute Rk = R, which is a separable convex

program for fixed f and can be solved in polynomial time.1 Increment k.

4: Repeat Steps 2 and 3 (call one execution of Steps 2 and 3 an iteration), and

stop when the objective value stops decreasing (this is the convergence criteria).

The transmission power to use on each edge e is then given by N0W/σ(e)(2R(e)/W

−1). In our experiments the algorithm usually converges in three to four iterations.

Since the algorithm stops execution when the objective function stops decreasing,

the algorithm always converges to a local minimum.

We next present some extensions to the fixed solution, which optimize the link

transmission powers for the current traffic, while using the static routing computed

above.

6.2.4 Static Routing, Centralized Rate Change

The first extension uses the routing computed by our algorithm, but uses optimal

link rates (power assignment) for a given traffic matrix tc. It is practical to assume

that rates can adapt to the changing traffic, as it does not have as disrupting an

impact as a change of routing has. The algorithm still suffers from the problem of

global traffic estimation at any point in time. The algorithm solves the following

1We do not fix rates to zero for edges carrying zero traffic as R(e) is in the denominator in the

scheduling constraints. We set those rates to zero after solving (6.14) for R.

128



optimization problem to find the rates:

min
R

∑
e∈E

∑
c∈C

fc(e)tc
N0ln2

σ(e)
(1 +

ln2

2W
R(e) +

ln22

6W 2
R2(e))

s.t.

∑
e∈Nv

∑
c∈C

fc(e)

R(e)
tc ≤ B ∀ v ∈ V

0 ≤ R(e) ∀ e ∈ E (6.15)

The optimization problem is a convex-constrained convex minimization problem

that can be solved in polynomial time, Bhatia and Kodialam [12]. The performance

of this algorithm is always better than that of the static routing/rates algorithm.

6.2.5 Static Routing, Distributed Rate Change

This algorithm also uses the static routing computed by the iterative algorithm, but

computes the traffic specific rates in a distributed manner, which is more practical for

a wireless network. The algorithm only needs to know the traffic using a particular

node, since all commodities can be ignored for which fc(e) = 0 for edges e adjacent

to the node. Each node solves the following optimization problem and each edge is

assigned the maximum of the rates assigned by its head and tail nodes:

min
R

∑
e∈Nv

∑
c∈C

fc(e)tc
N0ln2

σ(e)
(1 +

ln2

2W
R(e) +

ln22

6W 2
R2(e))

s.t.

∑
e∈Nv

∑
c∈C

fc(e)

R(e)
tc ≤ B

0 ≤ R(e) ∀ e ∈ Nv (6.16)

129



The algorithm has been proved to be a 2-approximation of the centralized algorithm

of (6.15) if only the first three terms of the Taylor series expansion of Equation 6.13

are used, Bhatia and Kodialam [12].

6.2.6 Traffic Scheduling

Each edge needs to transmit traffic for commodity c for a fraction fc(e)tc/R(e) of

the time. We assume a TDMA protocol among contending transmissions (which are

transmissions on edges at common nodes). The length of the time slots is usually

fixed, but mapping the time fraction to number of discrete slots in a frame produces

a very minute performance loss as the time slot length is very small (of the order

of milliseconds), as proved in Kodialam and Nandagopal [43]. Since the computed

routing/rate pair (f,R) is schedulable for all traffic matrices in T (we set B=2/3),

we can either use the optimal scheduling algorithm of Hajek and Sasaki [31] for small

networks, or faster heuristic algorithms like the ones proposed by Post et al. [62]

and Tassiulas et al. [72].

6.2.7 Extension to other Interference Models

The interference model can be extended to incorporate the restriction that no node

can transmit when its neighbor is transmitting or receiving (as in CSMA/CA with

RTS-CTS used in 802.11). This can be incorporated by adding a constraint on

routing and rates given in Kodialam and Nandagopal [43] to our formulation. We can

also incorporate the interference models studied in Kodialam and Nandagopal [44].

130



They consider two models: half-duplex, in which a node can either transmit to

one node or receive from up to Ω(v) nodes at any time. The other model is the

full-duplex model, in which a node v can simultaneously transmit to one node and

receive from up to Ω(v) nodes.

6.3 Simulation Results and Discussion

We implement the proposed algorithms (using MOSEK [59] for separable convex

optimization), and simulate them on the network shown in Figure 6.2, Kodialam

and Nandagopal [43]. The network has 15 nodes and 56 uni-directional edges. We

choose nodes 1,6,9,12,14 as ingress/egress nodes, and thus we have 20 commodities.

The particular nodes are chosen as ingress/egress to allow most edges to be used in

shortest paths between some ingress/egress pair. We use the values of W,N0 as in

Bhatia and Kodialam [12], and generate channel gains σ(e) uniformly randomly, of

the same order as in Bhatia and Kodialam [12]. We generate the hose model traffic

bounds according to a model similar to the gravity model, Roughan et al. [67]. For

each ingress/egress node v, the values of λv and ηv are proportional to their degrees

(δv). The values are scaled by a scaling factor (ts) to demonstrate performance

under different traffic loads. The commodity upper bounds (ωc) are then taken as

proportional to the minimum of λsc and ηdc , where sc and dc are the source and

destination nodes for commodity c respectively. The constant multiplier is chosen

so most of the pipe and hose model constraints are not redundant. Table 6.2 lists

the parameter values.

131



Table 6.2: Simulation Parameters

Parameter Value

Number of nodes, N 15

Number of edges, E 56

Channel Bandwidth, W 10MHz

Channel gain, σ(e) Uniform random, (5 − 10)x10−13

Noise spectral density, N0 4x10−18mW/Hz

Source (Ingress) Nodes, S {1, 6, 9, 12, 14}

Destination (Egress) Nodes, D {1, 6, 9, 12, 14}

Number of commodities, M 20

Traffic scaling factor, ts 1-10

Total outgoing traffic bound, λv 20δvts kbps

Total incoming traffic bound, ηv 20δvts kbps

Bound on each commodity, ωc 2 min{λsc , ηdc}/|S|

Schedulability constant, B 2/3

132



Figure 6.2: Network used for simulations

We compare our algorithms for specific traffic matrices in the traffic matrix

polytope T . The problem is too hard to compute an optimal solution for even a

very small size network. Thus, we compare our algorithm with an algorithm that

has been proposed for online traffic-specific routing and rate computation. We first

describe this algorithm.

6.3.1 Traffic Specific Routing and Rates

We compare our algorithms against the algorithm proposed by Bhatia and Kodi-

alam [12], that computes routing and rates specific to a traffic matrix. The algorithm

is a 3-approximation to the optimal, and has been shown to perform very close to op-

timal traffic-specific solution in practice. This algorithm needs global traffic matrix

information, and needs to change the routing and rates as traffic changes.

We compare the algorithms for a traffic matrix, T ∗, that leads to the maxi-

mum power consumption by our algorithm in the network. We compute the traffic

133



0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

T
ot

al
 P

ow
er

Traffic

Figure 6.3: Worst case (traffic matrix T ∗) total transmission power for static routing

and rate assignment

matrix, T ∗, by solving the oracle of (6.8) for the routing and rates computed by our

algorithm. We then execute the algorithms that do traffic-specific optimization. The

scaling factor ts is varied from 1 to 10 (thus scaling the polytope boundaries), and

the channel gains σ(e) are generated randomly 10 times (same sets of channel gains

are used for each value of ts). Different sets of channel gains lead to different paths

and rates for each commodity. Figure 6.3 shows the variation (average and range

over the 10 sets of channel gain values) of total transmission power consumption in

the network for traffic matrix T ∗, with respect to the traffic scaling factor, for the

static routing/rates algorithm. The worst case total power consumption increases

almost linearly with the traffic scaling factor ts, since the rate is less than W , and

thus the first few terms of the Taylor series expansion dominate.

Next, we demonstrate the relative performance of our algorithms to the per-

formance of the traffic specific routing and rate computation algorithm of Bhatia

and Kodialam [12]. The relative performance for each algorithm is total power of

134



the traffic specific routing and rate algorithm divided by total power of the corre-

sponding algorithm. Figure 6.4 shows the relative performance for the static routing

and rates algorithm, with respect to ts. For low traffic, the performance is better

than the traffic specific routing and rates algorithm of Bhatia and Kodialam [12]. As

traffic increases, the relative performance of the traffic-specific algorithm improves,

but is only marginally better than the static routing and rates algorithm. Figure 6.5

shows the relative performance for the static routing centralized rate change algo-

rithm. Results show that centralized rate optimization works slightly better than

the traffic specific routing and rates algorithm for almost all values of ts. Thus, just

modifying the transmission powers (rates) with static routing, which is not as dis-

ruptive as modifying both routing and rates, results in a performance slightly better

than the traffic specific routing and rates algorithm for the traffic values considered.

Figure 6.6 shows the relative performance for the static routing distributed rate

change algorithm. The performance is slightly worse than that for the centralized

traffic specific rate optimization, but is still slightly better the centralized traffic

specific routing and rates algorithm.

Thus, as the results show, computing a fixed routing and set of link rates

(transmission powers), that does not have the drawbacks of online traffic specific

routing and rate changes, has a comparable performance compared to a recent traf-

fic specific routing and rate optimization algorithm, Bhatia and Kodialam [12]. The

performance is further improved by using online traffic specific distributed or cen-

tralized rate changes with the fixed routing produced by our algorithm. All the

algorithms we propose do not have the disadvantage of disrupting current traffic

135



0 2 4 6 8 10 12
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

T
ot

al
 P

ow
er

 R
at

io

Traffic

Figure 6.4: Relative performance for static routing and rates for traffic matrix T ∗

0 2 4 6 8 10 12
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

T
ot

al
 P

ow
er

 R
at

io

Traffic

Figure 6.5: Relative performance for centralized traffic specific rates with static

routing for traffic matrix T ∗

136



0 2 4 6 8 10 12
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

T
ot

al
 P

ow
er

 R
at

io

Traffic

Figure 6.6: Relative performance for distributed traffic specific rates with static

routing for traffic matrix T ∗

flows or causing routing instabilities, as can be the case with the traffic specific

routing and rate change algorithm. Also, the routing can be computed off-line in a

centralized way, while the rates can be assigned in a distributed manner depending

only on the traffic flowing through each node, and the algorithm performs compa-

rable to the centralized online traffic specific routing and rate change algorithm.

137



Chapter 7

Conclusion and Future Work

We studied the problem of robust design of wireless networks. We first considered

the problem of relay placement in wireless sensor networks for design of a topol-

ogy that is tolerant to desired number of device and link failures. We proposed

approximation algorithms for the problem with various generalizations. We pro-

vided analysis for the algorithms for networks in the Euclidean plane, as well as for

networks in arbitrary metric spaces. We provided analysis for both homogeneous

and heterogeneous networks, i.e., networks with the same transmission range for all

nodes, as well as with different transmission range for each node. We also consid-

ered the generalization where there are obstacles in the network where relay nodes

cannot be placed. We show the algorithms have the same approximation guarantees

as for the case of no obstacles. We showed via simulations that the algorithms per-

form better than what the approximation results suggest. We also considered the

application of the algorithms to topology reconfiguration with minimal movement

of relay nodes. The application of the movement algorithms is to the backbone

of battlefield ad-hoc networks, which have low mobility and require high degree of

fault-tolerance.

The second problem we considered is of joint routing and power control in a

multi-hop wireless network with unknown traffic. We modelled the problem as a

138



semi-infinite non-linear optimization problem. We reduced the problem to a semi-

definite non-linear program, and provided efficient algorithms to solve it. We showed

via extensive simulation results that our algorithm has a performance slightly better

than a policy that continuously changes the routing and link transmission powers

with changing traffic. In practice, since traffic demands in the network are hard

to measure, and they change continuously, deployment of a traffic-dependent policy

results in sub-optimal routing that has to be updated continuously. Frequent path

updates can cause further problems, e.g., communication overhead which consumes

power and bandwidth, temporal route instability due to asynchronous information

exchange, and disruption in traffic flow. Our algorithm computes a static rout-

ing, that remains fixed for any traffic in the network, i.e., our routing is traffic-

oblivious. Thus, our policy does not have the above mentioned drawbacks. The

traffic-optimized algorithm we compare with is a 3-approximation of the optimal,

and has been shown to have a performance close to the optimal. Thus, our traffic-

oblivious algorithms perform close to optimal as well.

7.1 Future Research Directions

This dissertation leads to some interesting problems to work on in the future. We

list them in the following sections.

139



7.1.1 Relay Placement

The first set of problems is on proposing and analyzing improved algorithms for

relay placement. There is a considerable interest in the research community on

relay placement for connectivity and fault-tolerance in sensor networks. There are a

few directions that can be taken after understanding the analysis described in this

dissertation, and the algorithms can be improved.

Another interesting and challenging extension is to relax the assumption of

having circular transmission area around sensor and relay nodes. Although the

transmission range changes continuously depending on the fading and interference

from other nodes [64], it would be quite hard to propose algorithms for initial topol-

ogy design of sensor networks based on real-time fading and interference. It is easier

to take into account long-term effects, like those of the terrain and obstacles in

the networks. They lead to shadowing and excessive fading, inducing regions in

the area around each node where a receiving node might not be able to receive its

transmissions. Thus, the transmission area around each node may not be circu-

lar. The problem involves modelling these constraints, and proposing and analyzing

algorithms for relay placement in this scenario.

The problem of relay placement while taking into account the correlation

among sensor nodes is also interesting. Multiple sensors in a sensor network may

have correlated data, and thus it is not necessary to provide the same level of con-

nectivity between every pair of sensor nodes. The objective of a sensor network

is to communicate the sensed data to the sink. Thus, the problem is to provide

140



fault-tolerance to the sensed data, rather than to paths between sensor nodes. The

correlation between sensor nodes provides a degree of fault-tolerance, which may

lead to savings in the number of relays needed. The problem is to design relay

placement algorithms that take into account the correlation between sensor nodes,

and place relay nodes to provide the desired fault-tolerance. The correlation can be

modelled as distance-based as proposed by Pattem et al. [61]. This problem further

leads to the problem of integrating data aggregation (that saves energy consump-

tion at sensor nodes) with the relay placement algorithm. The algorithms can be

proposed for known correlation between sensor nodes, as well as for the scenario

where the correlation between each pair is known to lie in a certain range. The

last generalization makes the algorithms more application independent, and can be

termed as correlation-oblivious network design.

Relay placement can also help achieve load balancing in a sensor network, that

leads to energy balancing among sensor nodes, and thus network lifetime elongation.

The problem arises due to limited transmission range of sensor nodes, and non-

uniform placement of sensor nodes in the network. Relay nodes can be placed to

fill the holes created in the network due to non-uniform placement of sensor nodes,

and thus provide for the opportunity of load balancing. The problem can be further

extended to take care of the data correlation and aggregation among sensor nodes.

Finally, we propose an extension to the topology reconfiguration problem ad-

dressed in Chapter 5. The proposed algorithms are centralized. A useful problem

would be to propose distributed algorithms for topology reconfiguration as nodes

move. The algorithms can be based on reinforcement learning and dynamic pro-

141



gramming, Sutton and Barto [69], Bertsekas [10].

7.1.2 Traffic-Oblivious Cross-Layer Design

The first problem we propose is to provide theoretical guarantees for the proposed

algorithms. We show via simulations that the proposed algorithms for joint routing

and power control perform well, but do not provide approximation guarantees. An

algorithm with theoretical guarantees is a challenging area of future work.

The second problem is to consider more interference models. The network

may not be using CDMA codes, and thus transmissions can potentially interfere

with all transmissions in the network. In this model, since it is not practical to have

only one node transmit at a time in the network, power-rate relation needs to take

care of the Signal to Interference and Noise (SINR) ratio. Thus, the problem of

determining the sets of nodes which transmit simultaneously has to be integrated

with the routing and power control problem.

The last proposed problem is of optimizing the network topology along with

computing traffic oblivious routing and power assignments. A considerable amount

of work has been done for integrated topology design and routing in Free Space

Optical (FSO) networks, Kashyap et al. [38, 37], Kalantari et al. [36], Zhuang et

al. [79], and Desai and Milner [23]. The FSO links are very narrow point-to-point

links with very low interference. Effectively, there is no interference constraint in the

network. The results in these papers show that the topology and routing are inter-

related. Thus, the problem of determining the nodes to communicate with at each

142



node (in addition to computing the routing and transmission power) is important in

our problem as well, especially in the case of directional antennas, where the number

of interfaces is limited.

143



Bibliography

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.

[2] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,”
Computer Networks, vol. 47, no. 4, pp. 445–487, 2005.

[3] D. Applegate and E. Cohen, “Making intra-domain routing robust to changing
and uncertain traffic demands: understanding fundamental tradeoffs,” ACM
SIGCOMM, pp. 313–324, 2003.

[4] E. Arkin, E. Demaine, and J. Mitchell, “The puddle-jumper problem,” Personal
Communication, 2005.

[5] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente, “A 2-approximation algorithm
for finding an optimum 3-vertex connected spanning subgraph,” Journal of
Algorithms, vol. 32, pp. 21–30, 1999.

[6] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke, “Optimal oblivious
routing in polynomial time,” ACM Symposium of Theory of Computing, pp.
383–388, 2003.

[7] M. Bahramgiri, M. Hajiaghayi, and V. S. Mirrokni, “Fault-tolerant and 3-
dimensional distributed topology control algorithms in wireless multi-hop net-
works,” IEEE International Conference on Computer Communications and
Networks, 2005.

[8] S. Banerjee and S. Khuller, “A clustering scheme for hierarchical routing in
wireless networks,” IEEE INFOCOM, pp. 1028–1037, 2001.

[9] P. Basu and J. Redi, “Movement control algorithms for realization of fault-
tolerant ad hoc robot networks,” IEEE Network, pp. 36–44, July/August, 2004.

[10] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scien-
tific, 2005, vol. 1.

[11] C. Bettstetter, “On the connectivity of ad hoc networks,” The Computer Jour-
nal, vol. 47, no. 4, pp. 432–447, 2004.

[12] R. Bhatia and M. Kodialam, “On power efficient communication over multi-
hop wireless networks: joint scheduling, routing and power control,” IEEE
INFOCOM, 2004.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

144



[14] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and D. Rus, “Deploying sensor
networks with guaranteed capacity and fault tolerance,” ACM MobiHoc, pp.
309–319, 2005.

[15] D. Chen, D.-Z. Du, X.-D. Hu, G.-H. Lin, L. Wang, and G. Xue, “Approxima-
tions for Steiner trees with minimum number of Steiner points,” Theoretical
Computer Science, vol. 262, pp. 83–99, 2001.

[16] X. Cheng, D.-Z. Du, L. Wang, and B. Xu, “Relay sensor placement in wireless
sensor networks,” ACM Winet, 2004.

[17] J. Cheriyan and R. Thurimella, “Algorithms for parallel k-vertex connectivity
and sparse certificates,” SIAM Journal of Computing, vol. 22, no. 1, pp. 157–
174, 1993.

[18] Concorde, http://www.tsp.gatech.edu/concorde.html.

[19] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme, “Au-
tonomous deployment and repair of a sensor network using an unmanned aerial
vehicle,” IEEE International Conference on Robotics and Automation, 2004.

[20] ——, “Deployment and connectivity repair of a sensor net with a flying robot,”
IEEE International Symposium on Experimental Robotics, 2004.

[21] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Wiley
Series in Telecommunications and Signal Processing, Wiley-Interscience, 2006.

[22] R. L. Cruz and A. V. Santhanam, “Optimal routing, link scheduling and power
control in multi-hop wireless networks,” IEEE INFOCOM, 2003.

[23] A. Desai and S. Milner, “Autonomous reconfiguration in free-space optical sen-
sor networks,” IEEE JSAC Optical Communications and Networking Series,
vol. 23, no. 8, pp. 1556–1563, 2005.

[24] Y. Dinitz and Z. Nutov, “A 3-approximation algorithm for finding optimum
4,5-vertex connected spanning subgraphs,” Journal of Algorithms, vol. 32, pp.
31–40, 1999.

[25] N. G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K. K. Ramakrishnan,
and J. E. var der Merwe, “A flexible model for resource management in virtual
private networks,” ACM SIGCOMM, 1999.

[26] T. Elbatt and A. Ephremides, “Joint scheduling and power control for wireless
ad-hoc networks,” IEEE INFOCOM, 2002.

[27] A.-H. Esfahanian, Selected Topics in Graph Theory. Cambridge University
Press, ch. On the evolution of connectivity algorithms.

145



[28] G. Foschini and Z. Miljanic, “A simple distributed autonomous power control
algorithm and its convergence,” IEEE Transactions on Vehicular Technology,
vol. 42, no. 4, pp. 641–646, 1993.

[29] H. N. Gabow, “A matroid approach to finding edge connectivity and packing
arborescences,” IEEE Annual Symposium on Foundations of Computer Science,
pp. 812–822, 1991.

[30] M. Garey and D. Johnson, “Computers and intractability: A guide to the
theory of NP-Completeness,” 1979.

[31] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE Transac-
tions on Information Theory, vol. 34, no. 5, pp. 910–917, 1988.

[32] M. T. Hajiaghayi, N. Immorlica, and V. S. Mirrokni, “Power optimization
in fault-tolerant topology control algorithms for wireless multi-hop networks,”
ACM MobiCom, pp. 300–312, 2003.

[33] X. Han, X. Cao, E. L. Lloyd, and C.-C. Shen, “Fault-tolerant relay node place-
ment in heterogeneous wireless sensor networks,” Personal Communication,
2006.

[34] B. Hao, J. Tang, and G. Xue, “Fault-tolerant relay node placement in wireless
sensor networks: Formulation and approximation,” IEEE High Performance
Switching and Routing, pp. 246–250, 2004.

[35] F. Harary, “The maximum connectivity of a graph,” Proc. of the National
Academy of Sciences, vol. 48, no. 7, pp. 1142–1146, 1962.

[36] M. Kalantari, A. Kashyap, K. Lee, and M. Shayman, “Network topology con-
trol and routing under interface constraints by link evaluation,” Conference on
Information Sciences and Systems, 2005.

[37] A. Kashyap, M. Kalantari, K. Lee, and M. Shayman, “Rollout algorithms for
topology control and routing of unsplittable flows in wireless optical backbone
networks,” Conference on Information Sciences and Systems, 2005.

[38] A. Kashyap, S. Khuller, and M. Shayman, “Topology control and routing over
wireless optical backbone networks,” Conference on Information Sciences and
Systems, 2004.

[39] ——, “Relay placement for higher order connectivity in wireless sensor net-
works,” IEEE INFOCOM, 2006.

[40] S. Khuller and B. Raghavachari, “Improved approximation algorithms for uni-
form connectivity problems,” Journal of Algorithms, vol. 21, no. 2, pp. 434–450,
1996.

146



[41] S. Khuller and U. Vishkin, “Biconnectivity approximations and graph carv-
ings,” Journal of the ACM, vol. 41, no. 2, pp. 214–235, 1994.

[42] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Maximum throughput rout-
ing of traffic in the hose model,” IEEE INFOCOM, 2006.

[43] M. Kodialam and T. Nandagopal, “Characterizing achievable rates in multi-hop
wireless networks: the joint routing and scheduling problem,” ACM Mobicom,
2003.

[44] ——, “Characterizing achievable rates in multi-hop wireless mesh networks
with orthogonal channels,” IEEE/ACM Transactions on Networking, vol. 13,
no. 4, pp. 868–880, 2005.

[45] G. Kortsarz and Z. Nutov, “Approximating node connectivity problems via set
covers,” Algorithmica, vol. 37, pp. 75–92, 2003.

[46] N. Li and J. C. Hou, “FLSS: a fault tolerant topology control algorithm for
wireless networks,” ACM Mobicom, pp. 275–286, 2004.

[47] X.-Y. Li, W.-Z. Song, and Y. Wang, “Efficient topology control for wireless ad
hoc networks with non-uniform transmission ranges,” ACM Wireless Networks,
vol. 11, no. 3, 2005.

[48] X.-Y. Li, P.-J. Wan, Y. Wang, and C.-W. Yi, “Fault tolerant deployment and
topology control in wireless networks,” ACM MobiHoc, pp. 117–128, 2003.

[49] Y. Li, J. Harms, and R. Holte, “Traffic-oblivious energy-aware routing for mul-
tihop wireless networks,” IEEE INFOCOM, 2006.

[50] G.-H. Lin and L. Wang, “Steiner tree problem with minimum number of Steiner
points and bounded edge-length,” Information Processing Letters, vol. 69, pp.
53–57, 1999.

[51] Y.-H. Lin and R. L. Cruz, “Power control and scheduling for interfering links,”
IEEE Information Theory Wowrkshop, 2004.

[52] H. Liu, P. Wan, and X. Jia, “Fault-tolerant relay node placement in wireless sen-
sor networks,” International Computing and Combinatorics Conference, 2005.

[53] E. L. Lloyd, R. Liu, M. V. Marathe, R. Ramanathan, and S. S. Ravi, “Algorith-
mic aspects of topology control problems for ad hoc networks,” ACM MobiHoc,
2002.

[54] L. Lovász and M. D. Plummer, Matching Theory. North-Holland, 1986.

[55] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wire-
less sensor networks for habitat monitoring,” ACM International Workshop on
Wireless Sensor Networks and Applications, 2002.

147



[56] I. Mǎndoiu and A. Zelikovsky, “A note on the MST heuristic for bounded
edge-length Steiner trees with minimum number of Steiner points,” Information
Processing Letters, vol. 75, no. 4, pp. 165–167, 2000.

[57] D. W. Matula, “Determining edge connectivity in o(mn),” IEEE Annual Sym-
posium on Foundations of Computer Science, pp. 249–251, 1987.

[58] C. Monma and S. Suri, “Transitions in geometric minimum spanning tree,”
Discrete and Computational Geometry, vol. 8, pp. 265–293, 1992.

[59] Mosek optimization toolbox, http://www.mosek.com.

[60] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation and
routing for time varying wireless networks,” IEEE INFOCOM, 2003.

[61] S. Pattem, B. Krishnamachari, and R. Govindan, “The impact of spatial cor-
relation on routing with compression in wireless sensor networks,” ACM IPSN,
pp. 28–35, 2004.

[62] M. J. Post, A. S. Kershenbaum, and P. E. Sarachik, “Scheduling multi-hop
cdma networks in the presence of secondary conflicts,” Algorithmica, pp. 365–
393, 1989.

[63] R. Ramanathan and R. Rosales-Hain, “Topology control of multihop wireless
networks using transmit power adjustment,” IEEE INFOCOM, pp. 404–413,
2000.

[64] T. S. Rappaport, Wireless Communications: Principles and Practice. Prentice
Hall, 2002.

[65] G. Robins and J. S. Salowe, “Low-degree minimum spanning trees,” Discrete
Computational Geometry, vol. 14, pp. 151–165, 1995.

[66] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless networks,”
IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp. 1333–
1344, 1999.

[67] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and
Y. Zhang, “Experience in measring backbone traffic variability: Models, met-
rics, measurements and meaning,” International Teletraffic Congress, 2003.

[68] C. Shields, Jr., V. Jain, S. Ntafos, R. Prakash, and S. Venkatesan, “Fault
tolerant mobility planning for rapidly deployable wireless networks,” Workshop
on Fault-Tolerant Parallel and Distributed Systems, pp. 770–789, 1998.

[69] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

148



[70] V. Tabatabaee, A. Kashyap, S. Bhattacharjee, R. La, and M. Shayman, “Ro-
bust routing with unknown traffic matrices,” ISR Technical Report TR 2006-9,
University of Maryland, 2006.

[71] J. Tang, B. Hao, and A. Sen, “Relay node placement in large scale wireless
sensor networks,” Computer Communications, vol. 29, pp. 490–501, 2006.

[72] L. Tassiulas, A. Ephremides, and J. Gunn, “Solving hard optimization problems
arising in packet radio networks using hopfield nets,” Conference on Informa-
tions Sciences and Systems, pp. 603–608, 1989.

[73] B. Thallner and H. Moser, “Topology control for fault-tolerant communica-
tion in highly dynamic wireless networks,” IEEE International Workshop on
Intelligent Solutions in Embedded Systems, 2005.

[74] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed topology con-
trol for power efficient operation in multihop wireless ad hoc networks,” IEEE
INFOCOM, pp. 1388–1397, 2001.

[75] R. Wattenhofer and A. Zollinger, “XTC: a practical topology control algorithm
for ad-hoc networks,” IEEE International Parallel and Distributed Processing
Symposium, 2004.

[76] J. E. Wieselthier, C. M. Barnhart, and A. Ephremides, “A neural network
approach to routing without interference in multi-hop networks,” IEEE Trans-
actions on Communications, pp. 365–393, 1994.

[77] R. Yates, “A framework for uplink power control in cellular radio systems,”
IEEE Journal on Selected Areas of Communications, vol. 13, no. 7, pp. 1341–
1348, 1995.

[78] J. Zander, “Distributed cochannel interference control in cellular radio sys-
tems,” IEEE Transactions on Vehicular Technology, vol. 41, no. 3, pp. 305–311,
1992.

[79] J. Zhuang, M. J. Casey, S. D. Milner, S. A. Gabriel, and G. Baecher, “Multi-
objective optimization techniques in topology control of free space optical net-
works,” IEEE MILCOM, 2004.

149


