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Several topics were studied in the interaction of intense laser pulses with droplet 

and cluster sources. Laser pulse-formatting that can enhance laser-to-EUV conversion 

efficiency in the 13.5nm band for next generation lithography was first explored, 

using droplet sources as the laser target. Xenon droplets size distribution was 

measured, and the droplet plasma spectrum irradiated by various laser energies was 

scanned. A 2-pulse heater setup and a 4-pulse stacker scheme were built and studied. 

Results suggest that, unlike droplets of argon (Ar) and krypton (Kr), the ionization- 

state distribution in xenon may be much more transient. The decay timescales for 

13.5nm emissions are approximately 0.5-1.5ns, a timescale intermediate to the results 



  

from excitation and recombination emission in Ar and Kr droplet targets. Comparing 

xenon’s results with argon’s, the argon droplets generated a more robust ionization- 

stage distribution, while the xenon droplets generated a more transient ionization- 

stage distribution.  

The second topic studied was an investigation of plasma waveguides 

generated in clustered gases, using 100ps long pump pulses axicon-generated Bessel 

beam. The plasma waveguide space and time evolution was measured, using 

picosecond interferometry. The resulting waveguides have both central densities as 

low as ~1018cm-3 and small diameters, a desirable but hard to achieve combination for 

either hydrodynamic shock waveguides using conventional gases or for other 

techniques, such as discharge capillaries. Extremely efficient absorption of laser 

pulses by cluster targets was shown to extend to pulses significantly longer than the 

timescale for cluster explosive disassembly. These long pulse absorption efficiencies 

can be more than a factor of 10 greater than those in unclustered gas targets of the 

same volume average atomic density. The maximum long pulse absorption observed 

in cluster jets under our range of conditions was 35%.  

A third topic explored was resonant pulse-shortening of Bessel beams in the 

under-dense (Ne is ~10-2 Ncr) plasma channels formed by 100ps Nd:YAG laser pulses. 

Pulse shortening was seen at two pressures under our range of conditions: 340torr and 

460torr. 
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Chapter 1:  Research Motivation and Introduction to EUV 
Lithography and EUV sources 
 

 

 

1.1 Overview 

Thirty years ago the calculation speed of a state-of-the-art computer was very 

slow, compared to today’s desktop machines, and the space it occupied was as large 

as several rooms. Today’s computers are more compact and powerful because of 

integrated circuits (ICs). One of the key technologies for making ICs ever smaller is 

lithography. Lithography is a photographic process used in the manufacturing of ICs 

to transfer circuit patterns from a mask to the silicon surface by imaging the pattern 

on the mask onto a semiconductor wafer covered with light-sensitive photoresist. The 

traditional imaging system for those tasks has employed transmissive optics (lenses). 

Creating circuits with even smaller features has required ever finer resolution; the 

resolution of the imaging system is proportional to the wavelength of the light used. 

Therefore, shorter and shorter wavelengths are desirable. Historically, several 

different wavelengths have been used. Currently, high-volume lithography techniques 

use, as a mask illumination source, KrF excimer laser light at a wavelength of 248nm 

and ArF excimer laser light at 193nm; both are in the deep ultraviolet range (150nm 

to 300nm). The feature size on a chip they are capable of printing is 350- to 130-nm 

for KrF lasers and 130- to 65-nm for ArF lasers, respectively. Another candidate light 

source is 157nm F2 excimer lasers, but light is strongly absorbed instead of 
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transmitted by conventional lens imaging systems. A historical development diagram 

is shown in Fig. 1.1. There has been considerable recent interest in exploring 

wavelengths in the extreme ultraviolet (EUV) range (5nm to 50nm)” [1], which is 

approximately ten to twenty times shorter in wavelength. Such light can be produced, 

for example, by synchrotrons, laser-produced plasmas, or plasma discharges. The 

consideration of using this wavelength range has been motivated by the development 

of mirrors with high-reflection efficiency that operate in that range [2]. The reflective 

optics are multilayer mirrors, composed of alternating λ/2 thickness layers of high Z 

(atomic number) and low Z materials. The mirror of choice for EUV, which is the 

best one developed and understood [2], has alternating molybdenum and silicon 

layers (MoSi multilayer mirror). So, while the reduction imaging paradigm for 

lithography is intact, both the light source and the imaging system have changed 

radically, from excimer lasers to hot plasma; and from lenses to multilayer mirrors. 

Semiconductor manufacturers are currently deciding which lithographic technique to 

use in the next generation of microchip manufacturing. Currently, there are five 

possible choices: EUV lithography (EUVL) [3], x-ray (0.1nm to 5nm) lithography 

[4], maskless lithography (ML) [5], electron-beam projection lithography (EPL) [6], 

and ion-beam projection lithography (IPL) [7]. In many respects, EUVL is similar to 

optical lithography, as practiced today [8]. EUV lithography can achieve good depth 

of focus and linearity to provide for sufficient process control and to yield the desired 

control of critical dimensions within a tolerable process window [8]. Now, the EUV-

based technique is considered the most promising and feasible for a feature size of 

45nm and below [9]. Most of industry money is being used to investigate such 
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systems. Currently, each world region has an independent program to development 

EUVL. In Europe, a MEDEA-sponsored program (Microelectronics Development for 

European Applications 1997-2000, MEDEA+ 2000-present)—the industry-initiated 

pan-European program for advanced co-operative research and development in 

microelectronics—focuses on “system innovation on silicon for the e-economy”. In 

Japan, ASET’s (the Association of Super-Advanced Electronics Technologies) EUVL 

program has begun studying EUVL technology since 1998. A consortium (EUV-

LLC) consisting of Intel®, AMD®, IBM®, Motorola®, Infineon® and Micron 

Technology® was founded in United States.  Basic research on the scheme is 

underway and all elements of EUVL technology were successfully demonstrated in a 

full-field "proof of concept" lithography tool called the Engineering Test Stand (ETS) 

at Sandia National Laboratories in Livermore, California in 2001 [10]; this tool is 

capable of printing feature-size resolution of 70-nm. In late 2004, Intel® installed the 

world’s first commercial EUV lithography tool, called a Micro Exposure Tool 

(MET), which is capable of printing feature-size resolution of 30-nm but only has a 

very small field size of 600μm x 600μm (a full field size is 26mm x 32mm). An EUV 

alpha-demo tool with larger commercial-scaled field-of-view brought by Zeiss and 

ASML corporations in Europe is currently under assembly and will be delivered to 

the Interuniversity Microelectronics Center (IMEC) in Belgium in 2006 for testing. It 

will have sufficient throughput and imaging capability for a feature size of 45-nm 

[11]. 

Although many achievements and much progress have been accomplished, 

many challenges still lie ahead. The biggest challenges and risks for the EUVL, as the 
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next generation of lithography systems, involve sufficient source power to achieve 

high-throughput systems [9]. Laser-driven plasma is one of the leading candidates for 

the EUV source in EUVL. Condensed xenon gas, in the form of droplet sprays and 

liquid jet filaments, has emerged as one of the most promising laser targets to generate 

the EUV source. However, source efficiency, with respect to laser pulse energy, of 

EUV emission in the 13.5nm acceptance band of Mo:Si multilayer optics is still as low 

as ~1% with condensed xenon targets. Therefore to obtain higher conversion 

efficiency (to EUV source power) is crucial. The details will be discussed in Sections 

1.2.5 and 1.2.6. 

Many factors determine source efficiency. The main factors under experimental 

control are target design, laser focusing geometry, laser pulse energy, laser wavelength, 

and pulse temporal structure. 

We conducted an experiment to help determine the optimum conditions for 

EUV source efficiency with laser-heated xenon droplet plasmas. In particular we 

controlled the laser pulse temporal as well as the focal structure. In parallel we 

continued 1D calculation to simulate laser interaction with droplets. The calculations 

provided (1) physical insight into designing our pulse-formatting experiments and (2) 

guidelines for general source design. The details are discussed in Sections 1.3 and 1.4 

and in Chapters 2 and 3.  

This chapter is organized as follows: the next section (Section 1.2) introduces 

the entire EUVL system, where each component of the system is addressed. Emphasis 

is given to the EUVL source and source targets. Section 1.3 describes the research 

motivation. In Section 1.4 the research scope and objectives are specified.    
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1.2 Engineering Test Stand (ETS) - EUV Lithography prototype system 

In 1997, three Department of Energy national laboratories—Lawrence 

Livermore, Lawrence Berkeley, and Sandia—formed the Virtual National Laboratory 

(VNL), funded by EUV-LLC, to research and develop an EUV lithography prototype 

system. In 2001, the first full-scale prototype EUVL machine, called the Engineering 

Test Stand (ETS) located at the Sandia National Laboratories, was completed. The 

ETS consisted of six subsystems: a laser-produced plasma EUV source, condenser 

optics, projection optics, a mask, precision scanning stages, and a vacuum enclosure. 

Laser-produced xenon plasma supplied the extreme ultraviolet radiation at the 

wavelength of 13.5nm with bandwidth of 2%, and the radiation was collected by a 

complex condenser optics system whose purpose was to bring as much light as 

possible to the lithographic mask. The mask was then imaged by projection optics 

onto a semiconductor wafer with a reduction of 4:1 or 6:1, depending on the design of 

projection optics. The optical layout is shown in Fig. 1.2. 

 

1.2.1 Condenser optics sub-system 

Traditionally optics concentrates a light source onto a small area, using a lens 

or combination of lenses. However, in EUVL systems, EUV radiation is strongly 

absorbed in virtually all materials, even gases. Therefore, EUVL imaging systems 

must be entirely reflective. On one hand, because the more light delivered, the shorter 

exposure time needed, this translates a greater chip-manufacturing rate. So, the EUV 

condenser system consists of multilayer-coated concave mirrors; it collects as much 

EUV light as possible from the source and directs it onto the mask. On the other hand, 
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in lithography, it is also extremely important that the image characteristics are 

invariant across the imaging field. The condenser optics sub-system plays a critical 

role here, too. Several different designs were proposed [12-15].  

  

1.2.2 Multilayer coating 

The reflectivity of a single mirror-surface for EUV light is very small, which 

depends on the choice of mirror material, the angle of incidence θ, and the 

wavelength λ. The model of a complex refractive index of mirror material is 

described as βδ in −−= 1 , where δ is the decrement of the real part of the refractive 

index and β is the absorption index. The amplitude reflectivity is calculated by 

Fresnel equation [16]. The Molybdenum has a normal incidence amplitude 

reflectivity of about 0.04 for 13.5nm radiation. Ignoring the effects of absorption, this 

means if we can arrange to get the reflections from 25 molybdenum-vacuum 

interfaces to add with the correct phase relationship, then one can achieve a 

reflectivity close to 1. Based on this principle, even though materials with zero 

absorption at EUV wavelengths do not exist, it is still possible to choose pairs of real 

materials with satisfactory optical constants. By depositing a stack of ultra-thin films 

with alternately high and low values of δ , where the thickness of the individual film 

is adjusted so that the reflections from each interface add in phase at the top of the 

stack, usefully high reflectivity at normal incidence can be achieved through the use 

of such multilayer interference coatings. The coatings, largely amorphous or 

polycrystalline in nature, consist of alternating high and low Z materials. The 
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response of those multi-layers is strongly wavelength-selective. The peak of the 

reflectivity of the stack is given by Bragg’s law [17]. 

mλ=2dsin(θ)                                               (1.2) 

 Where m=1, 2, 3… is the order of the reflection, the first order (m=1) is commonly 

used for EUV and x-rays. λ is the wavelength of incident light, d is the thickness of 

one bi-layer pair of the multilayer coating, and θ is the incident angle between the 

EUV beam and the plane of the multilayer. For normal incidence (θ =900), a 

periodicity d equals λ/2 of the illumination light, for EUV of interest at ~13.5nm, the 

total thickness of one bi-layer pair of such coating  is ~6.7nm. A side view of such a 

coating is shown in Fig. 1.3. The reflectivity of a multilayer coating depends on a 

number of factors. By taking absorption into account, the contrast in β is also 

important for achieving optimum reflectivity [18]. Typically, high-absorption layers 

are thinner than low-absorption layers for optimum reflectivity. Importantly, the 

reflection bandpass of such mirrors can be made narrower by making the absorber 

layers thinner than optimum while the peak reflectivity will be reduced [19]. The final 

reflectivity of a multilayer coating also depends on the roughness of the interfaces 

[20]. Normal incidence reflectivity of approximately 70% has been achieved [21-23] 

in the EUV with Mo/Si corresponding to 13.5nm. The spectral bandpass for those 

mirrors is of the order 1/N, where N is the number of layer pairs, typically between 30 

and 50 for high reflectivity.  The deposition of up to 100 or more ultrathin layers 

having constant and uniform thickness requires special technology. Multilayer 

coatings are most commonly made by a vacuum-deposition process, such as 
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evaporation [24] or sputtering [20, 25-29]. Both methods can yield good multilayer 

coatings [20]. Sometimes the coating is topped by an oxidation-resistant capping 

layer, such as Ru, to extend its lifetime [30]. A great advantage of multilayer 

interference coatings is that they can be applied to curved substrates [31] for use in 

imaging applications, such as microscopes and telescopes [32]. Multilayers have been 

used to coat optical elements for instruments, such as EUV optics, spectrometers and 

monochromators at synchrotron radiation beamlines. In EUV lithography, a 

multilayer coating is used not only on the projection mirrors and condenser mirrors 

but also on the masks to enhance the EUV power reflectivity on those EUVL 

components. EUVL would be impossible without multilayer coating. 

 

1.2.3 Projection optics sub-system 

Projection optics plays the core role in the lithographic exposure system. It 

determines the resolution of the imaging system. The two fundamental characteristics 

of an imaging system are governed by the following two equations:  

                                                    Resolution = k1λ/ NA                                           (1.3) 

 Depth of Focus = k2 λ / (NA)2                                                  (1.4) 

Depth of focus (DOF) is a measurement of how much distance exists wherein the 

photoresist plane will remain sharply in focus. In lithography, DOF is the total range 

of focus that can be tolerated; that is, the range of focus that keeps the resulting 

printed feature within a variety of specifications.  NA denotes the numerical aperture 

of the lithographic imaging system, and λ represents the wavelength of the radiation 

light used in lithography, corresponding to 13.5nm for EUVL. k1 is a constant that is 
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a figure of merit for the lithography process, indicating how cleverly the lithographer 

used the light source. k2 is also a constant. For lithographic application, k1 and k2 are 

dependent not only upon optical system, but also upon the photoresist recording and 

processing. The smaller the value of k1 is, the better the resolution is. A value of k1 

lower than 0.5 requires advanced resolution-enhancement technologies, which bring 

more constraints on shape design and a significant cost increase. Those technologies 

include alternating phase-shift masks [33], double-exposure dipole [34], and others.  

Historically, values for k1 and k2 had to be greater than 0.6 for use in high-volume 

manufacturing [35]. Those equations show that there is significant trade-off between 

resolution and DOF. Better resolution can be achieved by reducing λ and increasing 

NA while DOF is decreased.  The requirement for DOF that was used in high-volume 

manufacturing already exceeded 0.5μm [35]. In the earlier ETS implementation for 

the purpose of acquiring experience in the development of EUV high-volume 

manufacturing tools, the four multilayer mirrors of the ETS projection optics system 

(POB1) were installed in the ETS [36]. It had a 4x reduction and an NA of 0.1 at the 

wafer [37]. With the POB1 design, the resolution of 70nm was achieved at a k1 value 

of 0.52 [38].  

There are two main characteristics of mirrors under major scrutiny because of 

the effects on the image quality.  They are wavefront quality [39] and intrinsic flare 

[40-41]. Flare is unwanted light that reaches the photoresist by scattering from the 

optical components of a lithography tool system [42-43]. The light that was supposed 

to shine on an area of an image intended to be bright was redirected to those regions 

of the image intended to be dark by scattering, which results in background 
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illumination within the image field. Intrinsic flare can reduce image contrast, lead to 

critical dimension (CD) variations, and shrink the process window. Where CD is the 

width of a line or space that has been identified as critical to the device operating 

properly and measured on the wafers in lithography, and process window is a contour 

plot of the high and low CD specifications as a function of focus and exposure. Mid-

spatial frequency roughness of the imaging mirror surfaces creates the flare. The flare 

for a given feature size is measured as the ratio of the dose to clear the bright region 

to the dose to clear the dark feature. POB1 offered wavefront error of ~ λ/14 rms and 

50% flare [37]. However, it is shown that the required range of flare must be 

controlled to be within 11% for commercial EUV optics [42]. So a higher-quality 

projection system with the similar design, the second projection optics box (POB2), 

has been fabricated. Measured wavefront error and flare are ~ λ/20 rms and 18%, 

respectively [44-45]. For installation of POB2 in the ETS, lithographic 

characterization was experimentally explored [38]. However, such design has very 

small NA (=0.1), which is only suitable for 70-nm resolution. In order to extend 

EUVL down to 45-nm resolution, the NA is expected to be approximately 0.25. To 

achieve that goal, another high NA small-field exposure system was developed with 

an NA of 0.3 [46] and imaging field of 300μm x 500μm [47]. In that design, the 

projection optics consists of two aspherical mirrors that achieved wavefront error of 

1.9nm rms corresponding to ~ λ/7.  

    

1.2.4 EUV masks 

The EUVL mask consists of 5 layers: substrate, the Mo/Si multilayer 
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(reflecting EUV at 13.5nm), buffer layer (protecting Mo/Si multilayer when repairing 

absorber layer), absorber layer (absorbing EUV at 13.5nm) and EUV photo resist. 

The EUV substrate is made from the 6" x 6" x 0.25" low thermal expansion material 

(LTEM) such as ULE® or Zerodur® [48] which must have low spatial variation in 

thermal expansion. High reflectivity of the multi-layer coating requires a very smooth 

substrate. Usually 80-100 pairs of multi-layers are deposited on the LTEM substrates 

serving as the reflection part of EUV masks. Absorber layer then serves as absorption 

part of EUVL masks. A buffer layer between multi-layers and absorber layer on 

EUVL masks plays a role of protecting the multi-layers during absorber layer repair. 

A key breakthrough in this area was the development of an Ultra Clean Ion Beam 

Sputter Deposition System about 5 years ago [49]. Significant progress has also been 

achieved in both multilayer smoothing [50] and defect repair [51]. The first ETS 

mask with minimum features 30nm has been successfully fabricated by Intel® and 

ensured the successful ETS demonstration [52].  

 

1.2.5 EUV sources 

As discussed earlier, one of the main obstacles in the realization of EUV 

lithography is that no source of EUV radiation is currently available that meets all the 

specifications for a commercial tool. To enable the throughput of 100 wafer/hour and 

achieve uniform dosage control, next-generation semiconductor chip manufacturing 

using EUVL requires a brilliant radiation source with an output power ~115 W at 

13.5nm within 2% bandwidth (BW) at the entrance of the EUV illuminator system 

(intermediate focus IF) and a pulse energy stability of ±0.3% (3σ, integral over 50 
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pulses) [53]. The diagram of IF is illustrated in Fig. 1.4. To date, only a maximum of 

~50 W at IF in 2% BW of 13.5nm with gas-discharge produced plasma from tin 

sources has been reported [54]. The development of a suitable source for the 

generation of EUV energy remains the primary barrier to the introduction of an 

EUVL system in the Intel®-planned 2009 time frame. Several source concepts have 

been proposed and are under development; they are all based on hot plasmas. They 

include electrically driven gas-discharge produced plasmas (GDPP), such as z-pinch 

[55-57], dense plasma focus [58-59], capillary discharge [60-66], and hollow cathode 

triggered (HCT) discharge [67-68], as well as laser-produced plasma (LPP) [69] 

concepts.  

From the continuum spectrum-emission perspective, assuming the plasma as a 

black-body radiator, the plasma should maintain a temperature of ~20eV or 

~220000K [70] in order to provide the maximum yield of EUV light source at 

wavelength around 13.5nm, according to Wien’s law [71]:  

                                            
eT

eVnm •=  250
maxλ                                                 (1.5)  

On the other hand, from the specific line-emission perspective, maxλ  is 

dependent on target species and on whichever ionization stage of the target is 

dominant among all ionization stages in the produced plasma.  

Such EUV light is then collected by the condenser and focused to an 

intermediate point (IF), where it serves as the entrance of EUV illumination for 

EUVL system shown in Fig. 1.4. For estimating the power requirement at the location 

of the plasma source, based on the power requirement at IF, the power losses between 

the plasma source and the IF have to be taken into account. they are (a) the loss of the 
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condenser resulting from reflectivity of the condenser optics and solid angle of 

collection and (b) the loss resulting from the absorption of the debris-mitigation 

system and spectral-purity filter. The debris mitigation system mitigates debris 

particles that are formed during production of EUV radiation for the long operational 

lifetime of EUV optics, and the spectral purity filter is used to reduce out-of-band 

radiation in the ultraviolet, visible, and infrared, which also propagates through the 

optical system and degrades the image or heats the wafer stage. From the point of 

view of solid angle of collection, the larger the size of the produced plasma, the 

smaller the collecting angle is.  

In a Z-pinch setup, a column of plasma in pre-filled gas is generated by a 

current driven in the axial (z) direction by an electrical power source producing an 

azimuthally directed magnetic field that tends to confine the plasma [72]. During the 

typical dynamic Z pinch process, a high-voltage pulse is applied to two electrodes 

from a capacitor bank. The current passes through the initial load gas, a column of 

conducting plasma is formed, having an axial current channel through the process of 

breakdown, rapid ionization (dominant avalanche ionization), and heating of an 

initially cold gas. The resulting plasma is propelled rapidly toward the axis by the 

pressure of the azimuthal magnetic field produced by the current flowing in the 

plasma. The plasma is compressed and heated. At stagnation, the thermal pressure of 

the plasma is balanced by plasma inertia and by the magnetic pressure. The 

discharge’s electrical energy is converted first to the kinetic energy of the imploding 

plasma, then to its thermal energy after its stagnation at the axis, and part of the 

energy is then radiated away from the plasma volume in the EUV and x-ray spectral 
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ranges [72]. That is the goal of the whole process. Some of the energy is consumed as 

ohmic and compressional heating of the plasma during implosion and stagnation. 

Generally, compact, uniform pinches on the axis produce the high plasma densities 

and temperatures that are needed to achieve a large EUV power. The widely used 

working gas is xenon (Xe) gas from 4d-5p transitions [73] of Xe10+ corresponding to 

near 13.5nm EUV emission of interest. 

The dense plasma focus has the similar principle as Z-pinch, except for an 

unusual electrode design. Two main types of plasma-focus devices are widely used: 

the Filippov [74] type and the Mather [75] type. The main difference is the aspect 

ratio of D/L, where D is the anode diameter and L is its height. The Filippov type has 

D/L >1 while the Mather type has D/L <1. The discharge is initiated at one end of the 

electrodes and a current sheet is formed because of the initial axially non-uniform 

shape of a pinch resulting from the special designs of the electrodes. During the 

propagation of the current sheet to the axis before the final pinch compression, part of 

the energy stored in the capacitor bank is converted into kinetic and thermal energy of 

the imploding plasma. Then the current sheet converges to the axis, further 

compressing the imploding plasma, and most of energy is transformed into thermal 

energy, just as the Z-pinch plasma method does. Eventually part of the thermal 

energy is radiated in the form of EUV and/or soft x-rays. The conversion efficiency 

from the energy stored in the capacitors to EUV at a wavelength of 13.5nm within 2% 

BW is sensitive to many factors, such as the energy stored in the capacitor bank, the 

shape of the electrodes, the material of the anode, filling gas species, filling gas 

pressure, and the insulating walls [76].  Currently, the conversion efficiency from the 
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energy stored in the capacitors to EUV at a wavelength of 13.5nm within 2% BW is 

up to 1% with xenon gas [77].  

The electric capillary discharge source is one of the smallest, simplest, and 

most economically attractive. The typical setup is described as follows: A several-

hundreds- of-a-micron diameter hole is drilled, centered on the axis in a several-tens-

of-millimeter diameter and ~0.5-3cm long ceramic disk; two metal electrodes are 

attached on the two end surfaces of the ceramic disk. The anode is hollow to allow 

xenon gas to flow into the capillary. The discharge is initiated by supplying high 

voltage across the electrodes. A surface discharge is formed in the hole. The 

discharge is confined by the capillary, and a high density, local thermodynamic 

equilibrium plasma is formed [78]. Previous work on the EUV electric capillary 

discharge source has shown a consistent increase in power generation and a reduction 

in debris generation over the past several years [78-80]. The recent development in 

this scheme achieved >9W of EUV power within 2% BW of 13.5nm at IF in burst 

mode at 1kHz [81]. 

 The hollow-cathode triggered (HCT) source has electrodes with central bore 

holes opposite each other, connecting to a capacitor bank that is charged to a high 

voltage. Additionally, a trigger electrode is inserted into the hollow cathode and put 

on a positive voltage of a few hundred volts with respect to the cathode potential. Its 

basic function is to remove the initial electrons in the hollow cathode prior to a 

breakdown, hence preventing the breakdown altogether. Switching the trigger to off 

immediately moves the system into breakdown when the capacitor is charged to a 

specific voltage. Breakdown occurs spontaneously when increasing the voltage 
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because of this special design. Therefore, no external switch or solid insulator in the 

vicinity of the discharge region is needed. That is the key advantage of the HCT 

source. The effect of the trigger is a widening of the operation margins. In particular, 

it allows operation over a wide pressure range. More importantly, timing of the pulses 

is now entirely determined by the timing of a low-power trigger pulse. The recent 

advances in this area have been reported in reference [82]. Approximately 3W EUV 

power at 13.5nm in 2% BW at the IF is achieved.  

However, the hot plasmas generated by all the above GDPP concepts are very 

close (<several mm) to the discharge electrodes. The generated debris may easily 

contaminate the discharge electrodes. Moreover, the GDPP has electrode mass loss 

because of excessive heating, which causes condensation of target on optics. Thermal 

management of the electrode discharge region—because it is very close to the 

discharge electrodes—prevents the GDPP sources from achieving the high-power 

levels required for high-volume manufacturing. The size of the typical GDPP source 

is generally ~1mm x 1-3mm.     

Laser-produced plasmas (LPP) are one of the leading candidates for the EUV 

source in next-generation EUV lithography. In a typical setup, a pulsed Nd:YAG 

laser with moderate power (~1010-1012W) and high repetition rate (>1kHz) heats the 

target, such as xenon, and generates the plasma, which generates the EUV of interest. 

The leading edge of the laser pulse generates some free electrons via multi-photon 

ionization (MPI) [83]. If the peak laser focus intensity is higher than ~1013W/cm2, 

field ionization may take place in the case of a xenon target. The initial seed free 

electrons will be further heated by absorbing energy from the remaining part of the 
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laser pulse through inverse bremsstrahlung [84-86], in which many electron-ion 

collisions occur. Absorption occurs as the quiver energy of electrons in the laser field 

is converted into random thermal energy. The process is also called collisional 

heating [84-85]. When electrons are heated to energies greater than the ionization 

potentials of the atoms and ions, the collisional ionization [84] arises and frees more 

electrons to be heated. Some of the absorbed energy is then radiated via line emission 

after ion excitation by collisions or via continuum emission by recombination or 

scattering. Most of the absorbed energy is converted into kinetic energy of expansion 

of the plasma. Condensed xenon gas, in the form of droplet sprays and liquid jet 

filaments, has emerged as one of the most promising laser targets. The resulting 

interaction plasma produces EUV light at 13.5nm, consistent with the highest 

reflectivity of MoSi mirrors (approximately 70%). The identified strongest line 

corresponding to ~13.5nm is the band of 4d8-4d75p transitions in Xe10+ [87]. Xenon 

droplets or liquid jet filaments are typically generated through a gas jet with high 

backing pressure such that the laser-droplet/laser-filament interaction area can be far 

away (~several mm to several cm) from the jet opening. Compared with GDPP, the 

distance of the nearest hardware for LPP (gas jet) from the plasma can be roughly as 

10 times far as that for GDPP (electrodes).Therefore, components of laser-plasma 

sources are less likely to be damaged. Also, cooling requirements are ~100X relaxed 

for laser plasma. Moreover, the typical size of the laser-produced plasma (depending 

on both the target size and laser focus size, generally ~100μm x several hundred μm) 

is smaller than that of the gas-discharge-produced plasma, more EUV power 

generated from LPP is useable, compared with GDPP from the point of view of solid 
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angle of collection. The typical geometry for GDPP is discussed in reference [70] and 

the typical geometry for LPP is discussed in reference [88] and shown in Fig. 1.5. 

Generally, the transmission into the IF is likely to approach 50% for LPP and is lower 

for GDPP because of a smaller solid angle of collection. However, only ~15W of 

power at IF is achieved with LPP to date, compared with ~50W of power at the IF 

achieved with a GDPP running with xenon gas [77]. To increase the drive efficiency 

into EUV power remains the biggest challenge for LPP. Nevertheless, the significant 

portion of energy transformed into dissipated heat for GDPP is a big issue [88]. At the 

end of 2004, Cymer Inc., located in San Diego, California, announced that they have 

chosen to focus on LPP because of the ever-increasing challenge of GDPP after their 

long-time research and development on GDPP [88].  

 

1.2.6 Source targets 

Because high conversion efficiency (CE) from input laser power to output 

EUV power at the wavelength of 13.5nm in a 2% BW (FWHM 0.53nm) is very 

important, a number of laser-plasma source targets have been investigated for EUVL. 

There are some materials that have been considered efficient spectral emitters in the 

13-14nm range including oxygen (O2) [89], gold (Au), tin (Sn) [90-91], lithium (Li) 

[88, 92-93], and xenon (Xe) [94-97]. However, the long lifetime of collector optics is 

required to minimize the operation cost. As discussed earlier, the performance of the 

collector optics is strongly dependent on its multi-layer (ML) coating, which can be 

degraded by deposition of the source element and debris. Both GDPP and LPP 

generate debris, which cause erosion and deposition of materials on mirrors. This 
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causes the diffusion of source materials into the ML structure and the interaction of 

the energetic ions with the collector optics in the source chamber. Ultimately, those 

debris mechanisms degrade mirror reflectivity. Oxygen-based targets result in the 

oxidation of the collector mirror capping layer, which reduces reflectivity and 

increases the replacement costs for this mirror [98]. Predominantly, 4d-4f transitions 

in tin ion stages (Sn8+-Sn13+) producing unresolved transition arrays (UTAs) [99] 

makes it a very promising high CE target and the CE of 3% in 2% BW of 13.5nm has 

been achieved [100]. In that experiment, a pulse-duration of 1.2ns, wavelength of 

1.05μm, peak intensity of 0.5-1 x 1011W/cm2 laser pulse was used to heat a 1μm thick 

tin layer coated on a spherical plastic target with a diameter of 300-750μm. 

Simulations of laser-produced plasmas formed from a spherical solid Sn predicted CE 

as high as 3.5-6% could be obtained [91]. However, the metal vapor and particulates 

generated in Sn LPPs remains a big issue. Gold has the same problem. In December 

2004, Cymer Inc. announced that they had have achieved a CE of >2.5% with lithium 

droplets [88]. The collector lifetime might be extended by using a capping layer on 

the ML and heating system to evaporate any deposited lithium because of its lower 

evaporation point [88]. Nevertheless, to minimize contamination, it is preferable to 

use a target consisting of inert gas atoms [101] because such gases will not react 

chemically with the multilayer mirrors. Xenon, which does not condense on surfaces 

at room temperature and emits broadband radiation (10-14nm from Xe9+-Xe17+ ions 

[102]), became very attractive and now is one of several promising primary LPP 

targets for the goals of intense EUV emission and clean operation. Additionally, by 

recycling xenon gas, with filtering and periodic re-injection, a xenon target system 
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can be operated indefinitely at low operating cost. The highest CE achieved with 

xenon to date is 1.2 % in the form of solid targets [103] and 1% with frozen xenon 

droplets [70].  

To fully realize the potential of xenon LPP sources in high-volume 

manufacturing EUV tools, a xenon target system must be developed—one that 

achieves high laser power to EUV power CE, and minimum collector-mirror 

degradation. In the xenon target-development history, xenon targets in the form of gas 

were initially used. However, laser to EUV CE in the 2% BW at 13.5nm was very 

low because of the low number-density of atoms. Therefore, high-density xenon is 

essential and desirable for high CE. Several different approaches and 

implementations of xenon targets have been evaluated with the goals of achieving 

high CE: pulsed, or continuous Xe cluster targets [104], planar solid Xe targets [105], 

spray of liquid Xe aerosols [106], liquid Xe filaments [107], liquid Xe jets [108], and 

liquid Xe droplets [109]. There is no xenon target concept that meets all the EUV 

light-source requirements. A LPP using a solid xenon target can realize high CE 

~1.2% [103], but solid-xenon replenishment has the associated debris, which will be a 

challenge for high pulse-rate systems. Among them, the xenon droplet targets have 

demonstrated extended operating lifetimes without significant debris contamination 

[110]. For the longer term, filament and droplet sources seem to have the greatest 

potential for high power and high repetition-rate operation [106], where the filament 

is typically formed by pressurizing xenon behind an orifice at a temperature of about  

-100C and ejecting a continuous jet of the liquid into a vacuum, and the droplets are 
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typically formed by a spontaneous break-up mechanism because of the minimization 

of surface energy, while ejecting a jet of the liquid into vacuum. 

 

1.3 Research Motivation 

As discussed above, laser-driven plasma is one of the leading candidates for the 

EUV source in next-generation EUV lithography. Condensed xenon gas, in the form of 

droplet sprays and liquid-jet filaments, has emerged as one of the most promising laser 

targets to generate the EUV source. However, source efficiency, with respect to laser 

pulse energy, of EUV emission in the 13.5nm acceptance band of Mo:Si multilayer 

optics is currently 1%, using a liquid xenon filament [111] and frozen xenon droplets 

[70]. This is a significant increase over previous efficiencies of <0.5% with droplet 

spray jets [112], but it still remains too low to achieve CE >4% [88] for a cost-effective 

EUV stepper.  

Different laser wavelengths have been used to explore the laser-to-EUV 

conversion efficiency at 13.5nm within 2% BW by using different lasers, such as CO2  

lasers, Nd:YAG lasers, and Nd:YLF lasers [113] and by higher harmonics of a Nd: 

YAG lasers [114-115]. In the industrial setups of EUV source suppliers, only Q-

switched pulses of duration ~6.5-10ns have been used to drive those targets. 

Many factors affect source efficiency. The main ones under experimental 

control are: target design, laser focusing geometry, laser pulse energy, laser 

wavelength, and pulse temporal structure. 

Compared with liquid-filament targets, droplet sources provide a good test 

case for exploring source-efficiency issues.  
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(a) Matching of spatial and therefore temporal scales: Average droplet diameters are 

controllable in the range 5-50 μm through jet temperature, backing pressure, and 

jet orifice diameter [116]. Current liquid continuous-filament targets are of 

diameter <30 μm, so that droplet conditions can be found, and so that the spatial 

scales are matched.  Thus, hydrodynamic timescales for laser-driven plasma 

evolution from filaments and droplets of similar diameter should be comparable.  

(b) Droplets form a simple system with which to understand basic efficiency issues: 

Droplets can be completely consumed by the laser pulse; while, in laser interaction 

with continuous filament, one must consider thermal and mechanical interaction of 

the plasma with the undisturbed filament material above and below the focused 

laser spot. 

(c) Flexibility for pulse formatting: Spray droplet streams can be made as thin as ~ 

1mm with slits or skimmers [116-118], so that laser pulse propagation time through 

the droplet stream can take as little as ~3ps for 100ps laser pulses. For single 

droplets, propagation time is not an issue. Thus, experiments testing pulse shape, 

width, multiple pulses, or pre-pulse are not sensitive to the fact that the droplets are 

spatially distributed throughout a portion of the laser focal volume. 

(d) Ease of use: In spray jets, as many (10-100) droplets will occupy the focal volume 

so that highly accurate laser focal spot alignment is not required. Furthermore, 

because the jet is pulsed, much less gas is consumed than with liquid filaments. 

Chamber background pressures are easily maintained by small pumping systems, 

and gas recovery systems are not needed.  
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As some industry efforts utilize a liquid-filament source [112], investigations 

of conversion efficiency in that geometry would ideally use a liquid-filament jet. 

Ultimately, for the best fit benchmarking with industry results, a liquid-filament jet is 

desirable because there is no temporal synchronization problem between the laser 

pulses and the liquid-xenon filament targets. 

We conducted an experiment to assist in the determination of optimum 

conditions for EUV-source efficiency in condensed xenon droplet targets. In 

particular, we controlled the laser pulse temporal structure, as well as the focal 

structure. In parallel, we continued 1D calculations in radial and planar geometry 

(both thin-film and semi-infinite slab) to simulate laser interaction with droplets and 

liquid filaments. Those calculations provided (1) physical insight into designing our 

pulse formatting experiments and (2) guidelines for general source design. 

  

1.4 Research Scope and Objective   

The goal of the experiment was to explore laser pulse formatting and condensed 

xenon-target characteristics that can enhance laser-to-EUV conversion efficiency in the 

13.5nm band appropriate to MoSi multilayer optics. The approach was one in which the 

fundamental physics basis for enhanced EUV emission is elucidated.  

One of the critical time scales for laser droplet plasma interaction is the time 

critτ  for the plasma to expand below critical density, where the laser droplet-plasma 

coupling drops significantly. Critical density is defined as 22 4/ emNcr πω= , where m  

is the electron mass, ω is the laser frequency, and e  is the electron charge. For 
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1064nm laser pulses used in this experiment, 32110 −≈ cmNcr . In our earlier group 

work, We proposed 3
1

0 )(
cr

e

s
crit N

N
c
R≈τ , where R  is the droplet radius, 0eN  is the pre-

expansion electron density, sc  is the plasma sound speed given by 
i

eB
s m

TZkc γ=  

[119], and γ  is the ratio of the specific heats at constant pressure and constant 

volume for electrons. For an ideal gas of electrons and ions, 
3
5=γ , Z  is the average 

ionization, im  is the ion mass, eT is the electron temperature, and Bk is Boltzmann’s 

constant. For typical values ,10,102 321323
0

−− =×= cmNcmN cre  and scmcs /107≈ (for 

a plasma temperature of several tens eV), ≈critτ  200ps for 7 -μm krypton droplets, 

and ≈ 280ps for 10 -μm krypton droplets [120]. We have found in previous 

experiments, using fixed energy and variable-width laser pulses (100fs-10ns), that 

EUV generation from micron-sized krypton droplets is most efficient for pulse 

durations of ~200-300ps [118]. The model is in reasonable agreement with the 

experiments. Therefore, ≈critτ 100ps to ~1ns for the xenon droplets with size range of 

5-50μm discussed above seem most likely.  

As a good starting point, we concentrated exclusively on the ~100ps to ~10ns 

timescale regime. In that process, we developed time-resolved diagnostics appropriate 

to the picosecond timescales of target disassembly for spray jets.  
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Figure 1.1: Schematic diagram of historical development of illumination wavelength used in 
lithography 
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Figure 1.2: Block diagram of optical layout of the Engineering Test Stand (ETS) 
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Figure 1.3: Side view of a multilayer interference coating. In this example there are 12 layer of 
molybdenum (white) and silicon (black). The d-spacing, the thickness of one layer pair of Mo 
and Si, is 6.7nm. Sometimes, a capping layer made of Ru is applied.  
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Figure 1.4: Schematic of an intermediate focus generated by an EUV source with collector 
module, (a) schematic view with forward collector, (b) schematic view with backward collector. 
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Figure 1.5: Typical schematic of laser produced EUV plasma (LPP) setup with xenon jet target. 
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Chapter 2: Laser System, Cryogenic Droplet Source, and 
Experimental Chamber  
   

 

      

2.1 Nd:YAG Laser System 

The high-power laser used in this experiment is a 100ps pulse duration 

Nd:YAG (Neodymium doped Yttrium Aluminum Garnet)-based system that is 

comprised of a Coherent ‘Antares’ 100ps 76MHz active mode-locking oscillator, a 

regenerative amplifier (RGA), and Power Amplifiers PA1 and PA2. Figure 2.1 is a 

block diagram that shows the output beam energies at each level. Each functional 

block and the intermediate optical path will be described in the following subsections. 

The overall optics layout showing the detail construction of our Nd:YAG system is in 

Fig. 2.2.  

 

2.1.1 Oscillator and pulse down-sampling 

The output of the oscillator is a 76MHz train of 100ps pulses with an average 

power ~20W. Such output serves as the short-pulse seed beam to our cascaded 

homemade Nd: YAG amplifier system. The mode-locker driver of this oscillator has 

two 38MHz synchronized signal outputs. One of them is frequency-divided down to 

10Hz to trigger a pulse slicer (PS) and downstream amplifiers in the Nd:YAG laser 

system, and to externally trigger the pockels cell (PC1) in our homemade regenerative 

amplifier. 5W out of the ~20W beam is picked up from the Nd:YAG oscillator output 
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by a half-wave plate (HW1) and thin-film polarizer (TFP1) combination and then 

injected to the PS. The PS consists of a pockel cell (PC) and a polarizer. Without 

applying high voltage (HV), the PS allows vertical-polarized laser beams to pass 

through it and blocks horizontal-polarized laser beams. Whenever the 2/λ HV 

electric pulse is applied to the PC, the PC acts like a half-wave plate that rotates the 

beam polarization by 90 degrees from horizontal-polarization to vertical-polarization. 

The PS is triggered so that only 10 pulses per second in the 76 MHz pulse train from 

the oscillator are allowed to continue to the RGA. All the other pulses are dumped. 

This switch is completed within ~4ns, which is fast enough to pick up a single laser 

pulse from the 76MHz oscillator pulse train. The measured transmission contrast of 

this PS for vertical-polarized vs. horizontal-polarized laser beams is greater than 

500:1.  

 

2.1.2 Regenerative amplifier  

The 10Hz signal seed beam is then directed into the flash-lamp pumped 

Nd:YAG regenerative amplifier (RGA), which is of a self-filtering unstable resonator 

design[1-2]. The RGA cavity contains a gain medium (a flash-lamp pumped Nd:YAG 

crystal rod), a quarter-wave ( 4/λ ) plate, and a pockels cell (PC1). The self-filtering 

unstable resonator is designed as follows: the cavity length is equal to (f1+ f2), where 

f1 and f2 are the focal lengths of the cavity end mirrors M1 and M2, respectively (both 

concave), and f1> f2. A spatial filtering aperture is put at the common focal position of 

M1 and M2 to eliminate sensitivity to the seed pulse spatial mode and to generate a 

near Gaussian RGA output mode. The aperture size is a = (0.61f2 λ )1/2. The beam 
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propagation process in the RGA is a repeatable sequential process of focusing, 

filtering, and re-collimating. The effective magnification is given by Meff  = 1.5 f1/f2. 

To maximize energy extraction from the rod and at the same time minimize the 

diffraction rings in the far field caused by aperture effect of the rod edges,  f1 and f2 

were selected as 1500mm and 375mm, respectively, to ensure that the output beam 

diameter D = 1.5(f1/f2)2a is equal to the rod diameter of 1/4". An optical switch 

consisting of PC1 and a 4/λ  plate was used to allow the pump energy to build up a 

population inversion in the gain medium before the seed beam arrives. When the 

switch is open, approximately 15 roundtrips of amplification would occur. Finally, 

the input of ~5nJ 100ps single seed-pulse can be amplified to have an energy of 

~10mJ. The output beam has a spatially smooth near-Gaussian beam profile.  

 

2.1.3 PA1 and PA2 

The 10mJ laser pulse output from the RGA is further directed to and amplified 

by the first and second power amplifiers (PA1 and PA2). PA1 is a ring-amplifier. The 

final output energy of PA1 is approximately 200mJ. Typically, in short-pulse power 

amplifiers, self-focusing and gain saturation must be considered. As for self-focusing, 

the rod diameter and length of PA1 were chosen as 3/8" and 3" (10mm x 75mm), 

respectively, which can accept over 20 times the power of RGA, with the beam size 

in PA1 over twice its size in RGA. Considering gain saturation and optimal energy 

extraction, the pulse energy density (J/cm2) prior to the final pass should be close to 

the saturation energy density, and the beam size should fill the rod cross-section as 

much as possible. The saturation energy density for Nd:YAG at line center is 
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0.370J/cm2 [3], which implies that an energy of about 230mJ will saturate on the final 

pass for the beam size of ~9mm. For the same considerations, and avoiding the 

potential damage to PA2 rod, only 50mJ output beam energy of 200mJ is directed 

into PA2; all the remaining 150mJ is dumped either by a thin-film polarizer (TFP4) 

and half-wave plate (HW6) combination or by a following vacuum spatial filter 

(VSF). Before it reaches PA2, the pulse is directed into a VSF, which smoothes the 

beam profile by eliminating local modulations of its intensity through a Fourier 

transform mechanism. The size of the PA2 rod is 9.52mm X 104mm. After the PA2, 

the Nd:YAG laser system provides up to 1J/pulse, which could be split into multiple 

output beam pulses for applications. To eliminate the hot spots and fringes caused by 

clipping at the rod edges and the uneven temperature profile of the PA2 rod, a 

vacuum-relay imaging tube is used. Such vacuum-relay imaging tube performs two 

tasks: 1) It expands the laser beam to a larger diameter to avoid the potential damage 

to the following optics, and 2) It relays the image of the output aperture of PA2 to the 

entrance of the target chamber, essentially projecting the near-field of the beam to the 

experiment. The goal is to geometrically transfer the beam-intensity distribution onto 

a desired plane located in the target chamber, impeding development of far-field 

diffraction fringes that would otherwise distort the spatial profile of the laser beam if 

it were left to propagate in free space.  

 

2.2 Cryogenic droplet source  

As discussed in Chapter 1, a droplet source has some advantages over other 

EUV sources. Our experiment used a droplet source only.   



 

 34 
 

Droplets are formed by the injection of a liquid into a vacuum. The formation 

process varies depending on conditions such as jet velocity, nozzle geometry, liquid 

supply pressure, liquid turbulence, and temperature, etc [4-12]. There are many ways 

to generate droplets. One is by directly connecting a liquid supply to the nozzle, when 

the substances are liquids at room temperature. If the substances are gases at room 

temperature, another approach is by cooling the gas valve at high pressure, where a 

gas-to-liquid phase transition is induced, creating a liquid supply in the local gas 

reservoir. Droplets form when the liquid is injected out of the nozzle attached to the 

valve body. Such is the case in our laboratory. 

The Weber number is used to describe the different flow conditions. It is the 

ratio of the inertial force to surface tension force calculated by  

                         
σ
ρdvWe

2= ,                              (2.1) 

where v is the flow velocity (m/s), d is the nozzle orifice diameter(m), ρ  is the liquid 

density (kg/m3), and σ  is the surface tension (N/m) [4], which contains the combined 

effects of inertial forces, gravity, surface tension, and viscosity. Four main breakup 

regions are categorized according to their Weber number. They are 1≈eW  (dripping 

regime) [4], 10≥eW  (Rayleigh regime) [4, 8], 310≈eW  (second wind-induced 

breakup regime) [4], and 510≥eW  (atomization regime [12]). For the conditions of 

argon-droplet formation in our laboratory, d = 500 μ m, Argonν ~ 200m/s [13], Argonρ = 

1400kg/m3, Argonσ = 0.012N/m [14], and We is around 2 x 106. For the conditions of 

xenon-droplet formation in our experiments,  d = 500 μ m,  Xenonν  is ~200m/s 

estimated from the sound speed in liquid Xe at 190K is 353m/s [15], Xenonρ = 
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3060kg/m3, Xenonσ = 0.019N/m [14], giving We ~3 x 106. Both, having 510≥eW , are 

well within the atomization breakup regime. In that regime the liquid fragmentation  

is a spray that diverges immediately from the nozzle exit and contains droplets that 

have an average diameter much smaller than the nozzle diameter [13].  

Our droplet source is driven by a standard commercial stainless-steel solenoid 

valve (General Valve Corporation series 9). It consists of a shell, body, poppet, O-

ring, main spring, buffer spring, and armature. Its mechanical structure is shown in 

Fig. 2.3. The solenoid valve is actuated and synchronized with the arrival of the laser 

pulses, using a high-speed high voltage pulser (General Valve IOTA ONE) with a 

minimum valve-opening time of several hundred microseconds and external trigger of 

10Hz laser pulses. The high-voltage pulser provides a ~300 volt pulse for actuation 

and 28 volt holding voltage for keeping the valve open. The valve seals are optimized 

for high-pressure cryogenic operation. Instead of standard gasket seals made of 

stainless steel, copper seals are used to minimize leakage. That has the advantage of 

reducing the background gas pressure in the vacuum chamber in order to minimize 

EUV photo absorption. The maximum backing pressure used in our experiments is 

~1000psi. The standard Teflon poppet was replaced with a harder Kel-F one; that 

increases the poppet’s longevity by minimizing deformation over time.  

At the valve backing pressures and temperatures of the experiments, the 

supply gas liquefies in the gas reservoir behind the poppet shown in Fig. 2.3. When 

the valve opens, liquid is ejected into the vacuum and fragments into droplets [13, 

16]. The phase diagram for xenon, argon, and krypton is shown in Fig. 2.4. The black 

circle and squares show the locations of the liquid argon operating region on the 
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argon phase diagram and liquid xenon operating region on the xenon phase diagram, 

respectively, for our spray jet.  

The precise and stable temperature control of the valve (so as to fix the 

operating point on the working gas phase diagram) is combined by a cooling supply 

of liquid nitrogen and two Omega Engineering CSS-10150 solid-state cartridge 

heaters. A copper-jacketed cooling block was designed to clamp to the valve body in 

the center, and the liquid nitrogen supply feeds the cooling block, while the heaters 

are clamped on the sides of the block. A type-T thermocouple and an Omega 

Engineering CN77324 electronic temperature controller are used to measure and 

monitor the temperature of the valve. The jet with this cooling-block setup together is 

mounted onto a single vacuum flange through which passes a tube for the working 

gas, the valve body, the liquid nitrogen cooling line, electrical feedthroughs, and a 

thermocouple sensor feedthrough. This arrangement is shown in the photograph in 

Fig. 2.5. 

An elevated liquid-nitrogen-filled dewar supplies the liquid nitrogen to the 

block via a gravity feed. By carefully adjusting the power (0-55W) of the heaters, the 

temperature is well controlled within ±0.25K at any given set point within the range 

of 100-300K [13]. The valve backing pressure is controlled by the gas regulator 

connected at the output of the working gas cylinder. To have the laser interact with as 

few droplets as possible—which can help us understand the laser-droplet interaction 

more easily, but can still allow detection of acceptable EUV and x-ray signals—a 

1mm diameter skimmer is used to narrow and collimate the stream of droplets as 
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shown in Fig. 2.6. It is located 1cm below the valve orifice and 4.5cm above the 

laser-droplet interaction region [13].  

 

2.3 Pulse-temporal formatting 

To maximize EUV and x-ray emissions from the droplet for a given laser-

pulse energy, an intrinsic limitation on laser-coupling efficiency is the droplet 

lifetime, after which the laser-heated droplet plasma expands to an electron density 

below plasma critical density [17], whereupon laser-light absorption will decrease 

significantly. That suggests that the EUV/x-ray emissions from laser-heated droplets 

should be a strong function of pulse-temporal structure. Therefore, we conducted our 

experiments to explore the laser-droplet coupling efficiency by varying laser-pulse 

temporal structure.  

 

2.3.1 Schemes for variable pulse width 

A well known way to obtain variable pulse widths is to use a grating stretcher 

[18]. However, in the case of our Nd: YAG laser, the output bandwidth of our mode-

locked oscillator is around ~1 Å. To stretch such a pulse with a grating stretcher from 

100ps to 1ns, a length of free propagation of the beam would be approximately 1 km 

that is not feasible in our laboratory environment. Another approach is to make a 

pulse stacker. Several types of pulse stacker have been investigated [19-23]. The 

basic concept of a pulse stacker is to divide an initial laser pulse into a number of 

pulses, then delay and attenuate each pulse and finally recombine the modified pulses 
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to form the desired pulse shape. In reference [19], two mirrors and two beam splitters 

were used to generate N stacked pulses. In that scheme the pulse is injected onto the 

beam splitter at an angle, the reflection from the beam splitter propagates to a mirror, 

which then reflects the beam back onto the beam splitter. Subsequent reflections from 

this beam splitter produce a train of transmitted pulses that are delayed in time and 

separated in space. Individual attenuators were placed in each of these beams to shape 

the pulse. A second beam-splitter-and-mirror combination was then used to 

recombine the pulses into one beam. The advantage of such a system was that the 

construction was very simple and able to provide a wide variety of pulse shapes for 

use. Nevertheless, even with optimum reflectivity, the over-all efficiency would be on 

the order of 1-5% which is not acceptable for our intense pulse applications.  

Another design uses several parallel-sided glass plates at normal incidence 

with individual multi-layer dielectric coatings [22]. The reflections from each surface 

are separated in time by the difference in their optical path lengths. Only three or four 

plates (six to eight surfaces), having 150ps delay between reflections, are needed to 

generate the ~1ns pulse from the 100ps short pulse. The disadvantage of that design is 

that the reflectivity of the individual multi-layer coating on each plate has to be preset 

before the stacker is assembled for a particular pulse width. In reference [23], basic 

triangle multiple optical-ring cavities utilizing partially transmitting beam splitters 

were used to stretch a laser pulse. The optical delay time between the adjacent 

leakage pulses was controlled by the optical propagation path length (L) in the optical 

cavity, and the pulses’ energy distribution was determined by the intra-cavity leakage 

rate. The pulses leaving one cavity could then be further stretched out in temporal 
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profile by injecting them into other cavities. A 100ps delay between the adjacent 

pulses is equivalent to a 3cm space separation. It requires that our pulse-stretcher 

system with such a design to be very compact; for our laser system, it can only be 

implemented before RGA because of the very small beam size requirement of this 

design. Our approaches are different. Two schemes were designed by using the half- 

wave plate and thin-film polarizer combination and beam splitters. In Section 2.3.2-3, 

our implementations are described.  

  

2.3.2 Pump-probe scheme  

The simplest method of temporal-pulse formatting is to create two adjustable- 

amplitude pulses with variable delay between them. The optical scheme for doing that 

is shown in Fig. 2.7. The beam is first split into two beams by a thin-film polarizer 

(TFP1) and half-wave plate combination. One, a vertical-polarized beam, goes to the 

second thin-film polarizer (TFP2) directly by two reflective mirrors (M3 and M4) 

coated at 1064nm. The other is directed to a variable optical-delay line before it reaches 

TFP2. At TFP2 the two beams are recombined collinearly to the same direction again, 

but the original Nd:YAG beam is split into two 100ps pulses, which can be temporally 

separated by 0 to 14ns. The object of the experiment is to heat the droplet with the first, 

or pump pulse, producing the ion stages responsible for the EUV emission of interest. 

The variably delayed second, or probe pulse then further heats the droplet plasma. We 

expected that the additional EUV emission contributed by that pulse was dependent on 

the pump-probe delay. The inference from this measurement was the degree to which a 
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pulse of fixed energy but variable width can sustainably produce efficient EUV 

emission. 

 

2.3.3 4-pulse stacker scheme 

To obtain greater flexibility in pulse design, we built a 4-pulse stacker that can 

provide four pulses of variable energy and variable inter-pulse separation. The optics 

setup is shown in Fig. 2.8. The original Nd:YAG beam is split into two beams after 

the first beam splitter (BS1); one beam goes directly to the second beam splitter 

(BS2), and the other one is directed to an 0~8ns optical-delay line, after which it goes 

to splitter BS2. At BS2 each beam is split again. One beam is directed to a 0-5ns 

optical-delay line and the other passes through a half-wave plate (HW2), which 

changes the beam polarization to vertical. After BS2, two beams in the same direction 

with a specific time delay go through HW2 without further time delay. However, the 

other two beams are directed to the second optical-delay line. All four beams are then 

recombined at a thin-film polarizer (TFP), after which they proceed collinearly to the 

experimental chamber. To have a variable energy distribution among the four pulses, 

different neutral-density filters were used in each beam path.  

 

2.4 Experimental Chamber 

The Nd:YAG pulses are focused collinearly with f/3 optics into a spray-droplet 

jet located in a vacuum chamber. The schematic diagram of the experimental vacuum 

chamber is shown in Fig. 2.9. The vacuum chamber is normally maintained at a 
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vacuum of 10-3torr with the spray jet off and at 10-1torr with the spray jet on, using a 

high-speed displacement (351cfm) roots pump (Leybold RUVAC WS/WSU 501) 

backed by a mechanical rotary pump. The pressure inside the chamber was measured 

using a Baratron absolute-pressure transducer (MKS  Instruments Model 626A). The 

laser-plasma interaction region is roughly equivalent to the cylindrical volume, whose 

length and width are the confocal parameter and focal spot diameter of the laser, 

respectively [16].  In our case, the focal spot radius is w0 =16.2 μ m, and the confocal 

parameter is 2z0 = 2π
0

2
0

λ
nw  ~1.5mm, where n  is the refractive index of the medium, 0λ  

is the vacuum wavelength, and 0w  is the laser beam minimum waist. The peak 

intensity of the laser pulse is in the range of 1013 to 1.5 x 1015 W/cm2 corresponding to 

pulse energy in the range 4mJ to 600mJ. The hot plasma emits the EUV and soft-x-ray 

sources in all directions. The central wavelength of the emission spectrum and the 

emission time duration are strongly dependent on the laser pulse formatting, laser 

energy, laser wavelength, target species, as well as target geometry.  

The laser-droplet plasma is diagnosed with an x-ray detector, a grazing-

incidence EUV spectrometer, weak laser-probe pulses, and visible-imaging diagnostics. 

The x-ray detector was located at an angle of 1350 with respect to the laser-propagation 

direction and 12.5cm from the interaction region; it is used to monitor any x-ray signal 

with an energy higher than 1.5keV. EUV emission from the laser-heated target is 

collected by a rhodium-coated paraboloidal condenser at 90 degrees from the laser 

axis shown in Fig. 2.10 and focused onto the entrance slit of a grazing-incidence EUV 

spectrometer. The details of the spectrometer are given in the next sub-section (Section 
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2.4.1). By using such a condenser, the effective collective solid angle of the 

spectrometer is increased by a factor of as much as 1600 [16]. To ensure that all the 

pulses from the 2-pulse or 4-pulse trains are collinear through the target region, we set 

up a side-imaging system and an end-imaging system for beam alignment. 

 

2.4.1 EUV Spectrometer 

In the EUV range, we recorded spectra with a grazing-incidence vacuum 

spectrometer (Acton GIMS-551.5), that gives us access to the wavelength range of 2 

to 44nm with fine resolution better than 0.015nm (given 10 μ m wide slits). It 

operates as follows: a concave diffraction grating with a grazing-incidence angle of 

88 degrees, 1.5m radius and 1200grooves/mm, diffracts and images the spectrum 

from the entrance slit onto the grating focal surface, or Rowland circle [24]. A 

windowless electron-multiplier tube (PMT) (Thorn EMI EM226) with a BeCu first 

dynode is mounted on the exit-slit housing, which is driven by a stepper motor along 

the Rowland circle. Spectra are obtained by scanning the exit slit. A photograph of 

the spectrometer is shown in Fig. 2.11. A vacuum-isolation valve is located in the 

entrance-slit assembly to isolate the slit chamber from the main vacuum chamber. A 

separate turbo-molecular high-vacuum pump is used to maintain the vacuum as low 

as 5 x 10-8torr with the entrance slit closed and 9 x 10-5torr with the entrance slit open 

and the droplet jet operating at 10Hz for this spectrometer.  
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2.4.2 Imaging 

To ensure the precise overlap of the beam paths of the experimental laser 

pulses, side imaging of laser scattering from the plasma and end imaging of the focal 

spots of laser pulses were monitored and captured, using two separate CCD cameras. 

The optical layout of the side-imaging system is shown in Fig. 2.12(a). It was set up 

as follows: an f/3 lens was located at 900 from the laser-propagation direction and 

275mm away from the laser-droplet interaction area, and the CCD camera sat 350mm 

away from the lens. The linear magnification was 1.27. A light bulb with ~1.5mm 

long filament was used at the object position to align the side CCD image system. To 

precisely align the laser pulses collinearly, an end imaging system was set up to 

monitor the overlap of the focal points of the pulses. The optical layout is shown in 

Fig. 2.12(b). The laser-droplet interaction area was relayed to the CCD camera with a 

f/3 and f/6 lens pair, the f/3 lens was oriented along the beam axis and 150mm behind 

the target object. The second lens was positioned to have the common focus point 

position with and 450mm away from the first one, the CCD camera was sitting 

300mm away from the second lens. A 20X magnification microscope was used to 

align the overlap of the pulses extremely precisely. The total effective magnification 

is 40X.  

 

2.4.3 X-ray detector  

The laser-droplet interaction not only generates the EUV, but also x-rays 

(wavelengths <10nm). To better understand the physics behind the laser-droplet 

interaction mechanism, the emission of x-ray photons was also monitored. A 1cm2 
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silicon photodiode (IRD AXUV-100) coated with a 150nm-thick aluminum (Al) filter 

performs as a high-pass photon filter to eliminate visible background light and IR 

background light from the laser itself and the plasma source. The diode output was 

amplified by a current-to-voltage amplifier. The setup was enclosed in an aluminum 

can to shield against electromagnetic-noise pulses induced by the laser-plasma 

generation. A 25μm-thick beryllium (Be) filter formed the front window of the can, 

which acted as a high-pass filter for x-rays above ~1.5keV, and also completed the 

electrical shielding. Fig. 2.13 shows plots of the effective transmission curve as a 

function of incident-photon energy for the Be filter and Al filter, respectively. The 

transmission characteristics are predominantly those of the Be filter with the small 

sharp feature at 1.49keV because of Kα edge from thin Al coating on the photodiode.  
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Figure 2.1: Block diagram of output energy of our 10Hz 1064nm 100ps Nd:YAG intense pulsed 
laser system. 
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Figure 2.2: Detailed optical layout of our 10Hz 1064nm 100ps Nd:YAG intense pulsed laser 
system. 
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Figure 2.3: Schematic diagram of cryogenic ultra high vacuum solenoid valve. 
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Figure 2.4: Argon, krypton and xenon phase diagrams laid over the pressure and temperature 
range of our nozzle system. The black dot corresponds to our experimental condition for argon 
droplets. The black solid rectangles correspond to our experimental conditions for xenon 
droplets. 
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Figure 2.5: Photograph of the gas jet assembles showing all the components arrangements. 
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Figure 2.6: Photograph of skimmer with its supporter along with condenser and X-ray detector. 
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Figure 2.7: Experimental setup of optical layout of pump probe scheme. 
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Figure 2.8: Experimental setup of optical layout of 4-pulse stacker scheme. 
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Figure 2.9: Schematic diagram of top view and side view of experimental vacuum chamber. 
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Figure 2.10: Photograph of rhodium-coated paraboloidal condenser. 
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Figure 2.11: Photograph of Acton (GIMS-551.5) grazing incidence spectrometer. 

 



 

 56 
 

 

350 mm275 mm

Plasma source f/3 Lens CCD camera

150 m
m

Plasma source

150 m
m

CCD camera

f/3 lens

f/6 lens
y1

y2

y1+y2 = 300 mm

300 mmmirror

(a)

(b)

350 mm275 mm

Plasma source f/3 Lens CCD camera

350 mm275 mm

Plasma source f/3 Lens CCD camera

150 m
m

Plasma source

150 m
m

CCD camera

f/3 lens

f/6 lens
y1

y2

y1+y2 = 300 mm

300 mmmirror

150 m
m

Plasma source

150 m
m

CCD camera

f/3 lens

f/6 lens
y1

y2

y1+y2 = 300 mm

300 mmmirror

(a)

(b)

 
 
Figure 2.12: (a) Schematic optical layout of side imaging system with magnification of 1.27. (b) 
Schematic optical layout of end imaging system with total effective magnification of 40X. 
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Figure 2.13: The transmission curve versus photon energy for (a) 25μm Beryllium filter and (b) 
150nm Aluminum filter. 
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Chapter 3: EUV Efficiency Experimental Results  
 

 

 

3.1 Results with Argon Droplets 

As there is no gas recirculation system on our setup, argon gas was used mainly 

to reduce the cost of the experiment and to allow extensive streamlining of our data 

acquisition and analysis. More importantly, it provided a good comparison and physical 

insight to understand the xenon-droplet experiments. 

The earliest work by our group was performed with argon-liquid droplets, using 

the well-characterized cryogenic droplet-source discussed in Chapter 2. The laser-

droplet plasma is diagnosed with an x-ray detector, a grazing incidence EUV 

spectrometer, weak laser-probe pulses, and visible imaging diagnostics. A more 

complete description of the diagnostics can also be found in Chapter 2. We found that 

argon droplets present a special case in which the ionization stage distribution is 

“robust” [1]. In argon, for example, the ionization potential of Ar7+ is about 140eV, 

while for Ar8+, it is ~420eV. Thus, providing sufficient laser power to heat the plasma 

to the 8+ ion stage of argon is relatively easy (it requires approx. 50eV thermal electron 

temperature). Supplying excess power, however, does not lead to a large onset of Ar9+ 

population because of the large gap in ionization potential. Thus, an ionization 

distribution dominated by Ar8+ can be achieved over a wide range of laser powers and 

temporal/spatial laser-power distributions. In fact, no Ar10+ emission lines were 

observed in our experiments. The “robust” population of Ar8+ ions serves as a reservoir 
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from which either recombination proceeds to Ar7+, with resulting recombination 

emission, or from which electron collisional excitation or ionization results in relatively 

weaker emission from either Ar8+ or Ar9+ excited states [1]. The situation is similar for 

krypton, except that the “reservoir” ion is Kr10+ [1]. So, at least for species that achieve 

stable or robust ionization distributions, maximizing spectral yields from features 

associated with an excitation process requires laser heating to occur when the droplet is 

at or above the critical electron density—when heating efficiency is greatest. Under 

those conditions, the optimal laser-pulse duration is set mainly by droplet size, and is 

less than a few hundred picoseconds for a ~10μm droplet [1-2]. If the desired spectral 

feature is associated with recombination, the condition is relaxed, and the most EUV-

efficient laser-pulse duration is generally longer. In that case, it is determined by 

achieving at least several recombination cycles, and it can be in the few-nanosecond 

range [1]. 

The 16.6nm and 26.0nm EUV-emission yields in argon-droplet target 

corresponding to Ar9+ transition of 2s22p5-2s2p6 [3] and Ar7+ transition of 2p63d-

2p64f [3], respectively, are reported in this dissertation. We focused on those two 

lines because in our laser-power range, Ar8+ is the main ionization stage as discussed 

above, therefore the two lines that are primary emission lines from Ar9+ and Ar7+ will 

be the direct reflection of the two different types of emission of interest: excitation 

emission and recombination emission. In our case, a valve temperature of 138K and 

backing pressure of 600psi were chosen to run for argon droplets. Under those 

conditions, the average argon-droplet size is ~4.8μm [4]. Figure 3.1 shows the 

location on the argon phase-diagram of the liquid operating region for our spray jet. A 
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single laser-pulse with an energy of 600mJ generated a sample EUV spectrum 

ranging from 2-44nm spaced by 0.05nm as shown in Fig. 3.2. Fifty shots were 

averaged for each data point along the spectrum. The peak emission in the spectrum 

occurs at 26.0nm. The emission of the 16.6nm line was also observed but relatively 

weaker. No Ar10+ emission lines were observed. This implies that the large onset of 

Ar9+ population did not occur but an ionization distribution dominated by Ar8+ was 

achieved under these conditions. With a fixed total energy of 600mJ, two-pulse heater 

experiments were studied to explore whether heating from the second pulse at a 

different arrival time can enhance laser-to-EUV conversion efficiency. The EUV yields 

versus pulse temporal separation with each pulse 300mJ are shown in Fig. 3.3-3.4, 

corresponding to the 16.6nm line emission and 26.0nm line emission with bandwidth 

of 0.1nm, respectively. At each delay, the total EUV yields integrated over time from 

pump plus probe together were captured first corresponding to EUV yield from pump 

+ probe in the figures. Then at the same delay, probe was blocked, the EUV yields 

integrated over time from pump alone were collected corresponding to EUV yield 

from pump alone in the figures. The EUV yield from extracted probe in the figures 

corresponds to the total EUV signal from pump plus probe subtracted from that from 

pump alone. Five hundred shots were averaged for each data point. The negative 

values of EUV yield from extracted probe for delays > 1ns could due to the high-

power laser-energy fluctuation shot by shot in the experiment. In Fig. 3.3 the peak 

yields produced by the second pulse occurs at 400ps delay. In Fig. 3.4 the peak yields 

produced by the second pulse occurs at 200ps delay. The results suggest that different 

pulse temporal structure with the same fixed total laser energy can generate different 
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total EUV yields for argon droplets. That encouraged us to continue the pulse-

formatting experiment with xenon droplets. Especially ~200-400ps separation 

between first pulse and second pulse produced more EUV yield at the 16.6nm and 

26.6nm lines, compared with 0ps separation (two pulses temporally overlap, which is 

equivalent to a single pulse with double energy) under our experimental conditions. 

In the 4-pulse-stacker experiment with argon droplets, the 16.6nm and 26.0nm EUV 

yields from the three following pulses together versus the inter-pulse temporal 

separation are plotted in Fig. 3.5. In that experiment, the four pulses carried equal 

energy. By increasing the total laser energy from 100mJ (each pulse 25mJ) to 400mJ 

(each pulse 100mJ), we found that the peak EUV yields over various inter-pulse 

temporal separations always occurred at 200ps rather than at 0ps, and the total 

absolute EUV yields increased for all the inter-pulse temporal separations <0.4ns 

when total laser energy increased. Those results show that different pulse temporal 

structures could enhance the laser-to-EUV conversion efficiency by heating droplet 

plasma at an appropriate time point when more laser energy could be absorbed by 

droplet plasma.  

In the next experiment, two pulses proceeding collinearly, each with 300mJ, 

were used to heat the argon droplets but with two different time-separation settings 

between the first pulse and the second pulse: 0ps and 200ps, respectively. Two 

separate sets of EUV spectra in the 2-44nm range, produced by double-laser-pulse 

heated argon-droplet plasma corresponding to the above two time delays, were 

acquired. The two sets of EUV spectra are plotted in Fig. 3.6. The dashed line is the 

argon-droplet spectrum corresponding to the case of separation of 200ps between the 
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first pulse and the second, and the solid line is the argon-droplets spectrum 

corresponding to the case of 0ps. The results show that more EUV yield is produced 

at the 200ps time delay than at the 0ps time delay for the full spectra range of 2-

44nm. The averaged enhancement is approximately 1.5 times. That implies that laser 

energies from consecutive pulses are more efficiently coupled into argon droplets.   

 

3.2 Xenon-Droplet Size and the EUV Spectrum 

We first measured the sizes of xenon droplets under selected experimental 

conditions (valve backing-pressure and temperature: 100psi/190K and 500psi/240K). 

The measurements were made using the dark-field shadowgraphy technique shown in 

Fig. 3.7. In our experiment the optical technique was accomplished using a two f/3 

lens pair and an obstacle located at the mutual focus of the lens pair. Low-intensity 

collimated third-harmonic laser pulses (355nm, 60ps) from the Nd:YAG laser system 

were shined on the droplet target, a portion of the laser light passed through the 

droplets without scattering and was focused by the first lens, and therefore, 

completely blocked by the obstacle. The remaining light was scattered by the target. 

The scattered light, which carried the information of the target, was collimated by the 

first lens and was then refocused by the second lens to form an image. The obstacle at 

the mutual focus did not perturb the scattered light very much. The image of the 

droplets was then magnified and relayed to a CCD camera with a microscope lens. 

The goal was to backlight and photograph the droplets-object while suppressing the 

strong background light. The contrast of the image was greatly enhanced by removing 

the low-order Fourier components, corresponding to the unscattered portions of the 
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irradiating laser pulses. The resulting images show the droplets as bright objects 

against a dark background. A skimmer with a 0.5mm-diameter orifice 2mm below the 

jet was used to isolate a thin (~2mm diameter) droplet stream in order to avoid 

multiple scatterings. The laser-droplet interaction region was a total distance of 63mm 

downstream from the valve orifice. The system’s resolution limit (defined as the 

distance for a 10-90% intensity change in the image of a hard edge) was ~1.5μm 

(determined by using a resolution target). As a result, the smallest resolvable droplet 

diameter was about 3μm [5]. The experimental valve temperature and backing-

pressure conditions, corresponding to our xenon-droplet size-measurement 

experiment, are marked on the xenon phase-diagram shown in Fig. 3.8(a). The insets 

are side-scattered images of a droplet stream, corresponding to two different 

conditions on the phase-diagram. The droplet-size distribution is plotted in Fig. 

3.8(b). The scale is from several μm to ~10μm. In general, we have demonstrated the 

control of average droplet sizes through feedback control of our valve backing-

pressure and temperature [2]. Typical xenon-droplet diameters under our conditions 

range from ~5-20μm. A valve backing-pressure of 100psi and a temperature of 190K 

were used for the following experiments for the sake of saving xenon. Under such 

conditions, the average xenon-droplet size is ~7.4μm. 

A single pump-pulse induced EUV spectrum near 13.5nm is shown in Fig. 3.9 

for pulse energy of 200mJ. Fifty shots were averaged for each data point in the 

spectrum with Δλ of 0.05nm. It can be seen that the peak emission is near 11nm. In 

the range from Xe4+ to Xe13+, which could be the main ion species relevant to EUV 

process in the 10-14nm spectral range [6], the peak emission of around 11nm 
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corresponds to 4f-4d transition arrays of Xe9+~Xe12+ and 4d-4p transition arrays of 

Xe7+~Xe12+ [7-9]. That implies that higher-order ionized xenon-ions (Xe11+, Xe12+) 

rather than the expected ions (Xe10+), corresponding to 13.5nm emission [10], could 

be the dominant ions. To investigate how the spectrum is dependent on the laser 

energy, the pulse energy was varied. A plot of the xenon-droplets EUV spectrum 

versus laser-pulse energy is shown in Fig. 3.10. The dashed baselines are the signal 

levels with the laser pulse off. The total spectral yields increase when the laser energy 

increases.  

 

3.3 Pulse-Formatting Results with Xenon Droplets and Discussion 

In successive experiments to look into pulse-formatting, we first used the 2-

pulse heater scheme. The plot of the EUV yields at the 13.5nm-line emission with 

bandwidth (BW) of 0.27nm (2%) from the pump (200mJ) plus probe (200mJ) 

together, pump alone, and extracted probe versus the delay time between the pump 

and probe pulse is shown in Fig. 3.11. The pulse-to-pulse EUV yield from the pump 

alone was almost constant, having very small fluctuation (~5%) during the 

experiment. That indicated that experiment conditions—such as laser energy of each 

shot, valve temperature, backing pressure of the gas reservoir, and the average droplet 

properties—were stable during the experiment. From the plot, the EUV yields at the 

emission line of 13.5nm produced by the probe are always greater than that produced 

by the pump for delays shorter than 4ns. That implies that to efficiently generate 

13.5nm EUV in the 2% BW, the single 400mJ 100ps pulse is less optimal than the 

two 200mJ pulses separated with <4ns delay. The peak emission occurs at 1ns delay. 
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At that delay, the yield from the extracted probe is approximately double that from 

the pump alone.  

Next, we compared the EUV yields by varying the total energies of the pump 

and the probe, while keeping their energy equal. The comparison of the EUV yields 

from the extracted probe—between the case of a total energy of 200mJ (pump 100mJ 

and probe 100mJ) and the case of a total energy of 400mJ (pump 200mJ and probe 

200mJ) —is plotted in Fig. 3.12. It is clearly seen that the peak emission vs. delay is 

shifted to earlier times when the laser energy decreases. For the case of a 100mJ 

pump and 100mJ probe, the peak emission occurs at ~200ps time delay, much shorter 

than the 1ns delay that was optimum for the case of a 200mJ pump plus a 200mJ 

probe. Thus, the emission peak is dependent not only on the delay time, but also on 

the total energy of the split pulses. For both cases, the probe always produces more 

EUV yield (13.5nm) at their optimum delays than at the delay of 0ns. The averaged 

enhancement is ~1.74 times for the case of a 100mJ pump and 100mJ probe and is 

~1.63 times for the case of a 200mJ pump and a 200mJ probe. The efficiency of the 

EUV yield of 13.5nm drops slightly (from 1.74X to 1.63X) while the energy 

increases from 100mJ/100mJ to 200mJ/200mJ. Because the cooler plasma is more 

absorptive, the later case (100mJ/100mJ) cools sooner compared with the first case 

(200mJ/200mJ), since there is less heating.  

We next explored EUV-emission efficiency with a more complex 4-pulse-

stacker scheme. The four pulses were arranged with a uniform energy distribution and 

with the same time delay between successive pulse pairs. The total laser energies used 

in this experiment were 100mJ, 200mJ, and 400mJ, respectively. The plots of the 
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total EUV yields at 13.5nm from the three following pulses (subtracting the 

contribution from the first pulse) versus the inter-pulse time-separation for various 

total energies are shown in Fig. 3.13. With a total laser energy of 100mJ, the EUV 

yield decreases as the inter-pulse time separation increases. With the total laser 

energy of 200mJ, the peak EUV yield occurs at 200ps of inter-pulse separation; while 

it occurs at 0.8ns when the total laser energy is 400mJ. Our results for the 2-pulse and 

4-pulse cases suggest that, unlike earlier experiments with argon and krypton droplets, 

the ionization-state distribution in Xe may be much more transient. The decay 

timescale for 13.5nm line emission is approximately 0.5-1.5ns, a timescale intermediate 

to the results from excitation and recombination emission in Ar and Kr droplet targets.  

Compared with argon, the ion stage responsible for emission at 13.5nm, Xe10+ 

[10], is in a very transient state in the plasma. That is because, unlike the relatively 

robust ions Ar8+ , Xe10+ is close in ionization potential to surrounding 8+, 9+ and 11+, 

12+ ions. For example Xe9+ Xe10+ requires ~20eV, and Xe10+ Xe11+ requires 

~30eV [6]. At typical plasma temperatures of a few 10s of eV, it is easy to pass 

through Xe10+. So, while laser overheating in Ar is tolerated, because the distribution 

tends to stabilize with an accumulation at the 8+ stage, the Xe ionization distribution 

will be much more sensitive to laser parameters. In addition, local plasma spatial and 

temporal variations in temperature would influence the ionization distribution to a 

greater extent than in a robust system. While the ideal situation would be to have a 

steady state population of Xe10+, that fills a large fraction of the source volume, in 

practice that condition may be difficult to engineer.  
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3.4 Conclusions and Future Work 

In this experiment, we explored laser-pulse formatting for enhancing laser-to-

EUV conversion efficiency in the 13.5nm band. Droplet sources were studied as the 

laser target. First, we measured the xenon-droplet size distribution, and we scanned the 

droplet-plasma spectra with various laser energies under our experimental conditions. 

In successive experiments with pulse-formatting, we used 2-pulse and 4-pulse heater 

setups. We found that two laser pulses separated in time by several hundred 

picoseconds are more suitable for efficient generation of EUV at the 13.5nm line than 

a single pulse of the same energy. Our results suggest that, unlike earlier experiments 

with argon and krypton droplets, the ionization-state distribution in Xe may be much 

more transient. The decay timescales for 13.5nm emission are approximately 0.5-1.5ns, 

a timescale intermediate to the results from excitation and recombination emission in 

Ar and Kr droplet targets.  

One approach in a next phase of work will be to try to maximize the lifetime of 

Xe10+ by repeatedly producing it in the interaction of a formatted laser pulse with a 

cryogenic Xe target. That is, even though plasma conditions may be difficult to attain 

for the long time steady appearance of Xe10+ , repetitive pulsing within the controlled 

substructure of a formatted laser pulse might transiently cycle the ion stage distribution 

repeatedly through Xe10+ , and at high enough density that the accumulated EUV 

emission at 13.5nm is significant. 

It will be useful to continue to add pulses to the pulse stacker in order to have a 

wider flexibility in pulse design. A new 15ps pulse system with some grating-based 

geometric pulse stretching (with uncompensated transverse spatial chirp) will be 
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desirable to allow even more flexible use of pulse stackers than the current system. In 

order to have the most direct overlap with LPP source suppliers, it would be helpful to 

obtain or borrow a liquid-filament jet. Also, in order to be able to use multi-shot time 

resolved pump probe diagnostics, a cryogenic single-droplet source will be developed 

in the future, which can produce single constant-sized droplets at high repetition rates. 

Having such a source will drastically reduce our consumption of Xe. 

The development of single-shot and multi-shot pump probe diagnostics for the 

plasma is also desirable. A single-shot diagnostic is needed for the spray jet, which has 

shot-to-shot fluctuations in the spatial distribution of droplets local to the probe and in 

the droplet-size distribution.  The objective will be to use multiple probe pulses split 

from the main pulse. The probe pulses will be successively delayed with inter-pulse 

separations of no less than the laser pulse-width (100ps), and each pulse will be viewed 

with its own interferometric imaging system. In that way, a sequence of “framing” 

images can be collected in a single shot. We already have considerable experience with 

single-shot diagnostics in the femto-second regime [11]. For the single-droplet source, a 

standard multi-shot pump-probe interferometer will be used, as we have done in both 

the picosecond [12] and femtosecond regimes [13].  
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Figure 3.1: Argon, krypton and xenon phase diagrams laid over the pressure and temperature 
range of our nozzle system. The black dot corresponds to our experimental condition for argon 
droplets. The black solid rectangles correspond to our experimental conditions for xenon 
droplets. 
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Figure 3.2: Sample spectrum of argon droplets plasma in the range of 2-44nm with space of 
0.05nm irradiated by 600mJ 100ps 1064nm Nd:YAG laser pulse under temperature of 138K and 
backing-pressure of 600psi. Fifty shots were averaged for each data point. 
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Figure 3.3: EUV yields of argon 16.6nm-line emission irradiated by 300mJ pump + 300mJ probe 
versus pulse separation under temperature of 138K and backing-pressure of 600psi. Each data 
point was averaged over five hundred shots. 
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Figure 3.4: EUV yields of argon 26.0nm-line emission irradiated by 300mJ pump + 300mJ probe 
versus pulse separation under temperature of 138K and backing-pressure of 600psi. Each data 
point was averaged over five hundred shots. 
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Figure 3.5: Comparison of EUV yields of 16.6nm-line emission and 26.0nm-line emission for 
argon droplets irradiated by various total laser energies versus inter-pulse separation under the 
temperature of 138K and backing-pressure of 600psi from the following three pulses (subtracted 
the amount contributed from the first pulse) with 4-pulse-stacker scheme. Each data point was 
averaged over three thousand shots. 
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Figure 3.6: Comparison of total spectra yields from argon droplets in the range of 2-44nm under 
pump probe scheme for two different time delay between pump and probe irradiated by 300mJ 
pump and 300mJ probe 100ps 1064nm Nd:YAG laser under temperature of 138K and backing-
pressure of 600psi. 
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Figure 3.7: Schematic of dark-field shadowgraphy of droplet sources irradiated by 60ps 355nm 
laser pulses. Inset (a) shows a sample of shadowgraphy image of the tip of a pin used for jet 
center alignment with laser pulse.   
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Figure 3.8: (a): Phase diagram of xenon, two dots correspond to experiment running conditions: 
500psi/240K and 100psi/190K, respectively. Insets are the side images of the droplets assemble 
from our droplets jet under these two running conditions. (b): The droplet-size distribution 
under these two experiment running conditions. 
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Figure 3.9: A single pump-pulse induced EUV spectrum near 13.5nm with space of 0.05nm from 
xenon-droplet plasma irradiated by 200mJ, 10Hz, 100ps, 1064nm Nd:YAG laser pulse under 
backing-pressure of 100psi and temperature of 190K. 
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Figure 3.10: Xenon-droplet spectrum versus laser-pulse energy under backing-pressure of 100psi 
and temperature of 190K. 
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Figure 3.11: EUV yields at 13.5nm from xenon droplets under temperature of 190K and 
backing-pressure of 100psi versus time delay between pump and probe with laser-pulse energy 
of 200mJ each from pump probe scheme. 
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Figure 3.12: Comparison of extracted EUV yields of 13.5nm from various probe laser energy for 
xenon droplets under temperature of 190K and backing pressure of 100psi with pump probe 
scheme versus time delay between pump and probe. 
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Figure 3.13: Comparison of EUV yields of 13.5nm from xenon droplets generated by the 
following three pulses (subtracted the amount produced by the first pulse contribution) by 
varying total laser energy versus inter-pulse separation with 4-pulse-stacker scheme under 
temperature of 190K and backing-pressure of 100psi.  
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Chapter 4: Resonant pulse-shortening of high intensity Bessel beams 
in self-generated under-dense plasmas 

 
 

 

4.1 Introduction 

The guiding of intense laser pulses over a distance much longer than the 

Rayleigh length z0 = π 2
0w /λ has many applications, such as laser-driven electron 

accelerators [1-2], guided nonlinear optics [3], nonlinear short wavelength generation 

[4], generation of high harmonics [5], and soft x-ray amplification [6].  Plasma 

waveguides formed through hydrodynamic shock expansion is one way to achieve 

intense pulse guiding over distances >> z0 [7-13]. The evolution of electron-density 

forming the waveguide channel plays the key role for the above applications.  It is 

strongly dependent on many parameters, such as neutral gas density of the initial gas 

target, gas species, channel breakdown energy, and laser parameters [14].   

In the case of Bessel-beam generation of plasma waveguides, a new type of 

resonance absorption was explored by our group [15-16]. Those experiments found 

that the Bessel beam produced by axicon-focusing of an incident 100ps, 1064nm 

pump pulse, could experience enhanced absorption for certain ranges of gas pressure. 

The enhanced absorption corresponded to the condition where the Bessel beam side 

coupled some of its energy into a guided mode of the plasma waveguide [15-16]. 

Figure 4.1 shows absorption of the pulse as a function of pressure [16]. Two strong 

resonant-absorption peaks versus pressure occur. It was found that enhanced 
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absorption occurs only for specific backing pressures [15-16]. The resonant 

absorption results from the resonant self-trapping of Bessel beams [15-16]. The self-

trapping of the Bessel beam versus the gas fill pressure is plotted in Fig. 4.2 [16]. The 

pressure dependence of the self-coupling corresponds well to that of the absorption 

resonance in Fig. 4.1, with a clear peak at ~300torr for the 0,0 == mp  resonance 

and less well-defined peak at ~460torr for 0,1 == mp  resonance, where mp  and  are 

radial and azimuthal mode indices [16]. The findings strongly suggest that a temporal 

slice of the pulse is trapped and guided through the generated waveguide, only under 

the resonant backing-pressures.  

In this experiment we injected the scattered-out portion of laser pulses 

(transmitted beams/conical beam) into a streak camera with a time resolution of 5ps, 

which allows us to experimentally explore and characterize the temporal structure of 

the conical beam. We demonstrated that resonant pulse-shortening occurs, consistent 

with the earlier experiments [16]. Two dips were observed at ~340torr and 460torr, 

respectively. A 1-D simulation result of Bessel-beam-plasma interaction is also given 

for comparison. The details are discussed in Section 4.2-4.3. 

 

4.2 Background 

In the presence of plasma, a generalized Bessel beam solution for the electric 

field of a propagating laser pulse, in a medium invariant along the optical axis z, can 

be found, which has ),(~ ωβ
⊥= rueE zi r , where ω  is the laser angular frequency, β  is 
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the propagation wave-number along z axis, ⊥r
r  is the transverse coordinate, and 

),( ω⊥ru r  satisfies the Fourier transformed wave equation 

0),(22 =+∇ ⊥⊥ uru ωκ r                                                       (1) 

where 2
⊥∇  is the Laplacian in the transverse coordinate ⊥r

r , 2222 βκ −= nk , κ  is the 

transverse wave-number, ck /ω=  is the vacuum wave-number, n  is the refractive 

index of plasma given by ),(),(41),(2 ωδωπχω ⊥⊥⊥ ++= rrrn plasma
rrr , χ is the sum of 

atomic and ionic susceptibilities, and plasmaδ  is the contribution from plasma. We used 

a Drude model to describe the plasma dielectric response which 

gives creplasma NrNir /)()/1(,/),( 122 −+=+−= ωνξωξνξωδ , where r  is transverse 

radius, )(rNe  is the transverse electron-density, and 22 4/ emN ecr πω=  is the critical 

density. )(rνν =  is the collision frequency that takes account of electron-ion and 

electron-neutral collisions.  Under our typical experimental conditions (300torr argon 

gas heated by 100ps, 350mJ 1064nm laser pulse), 11511312 10,1010 −− ≈−≈ ss ων .   

For a stationary profile, well outside the plasma boundary ( brr >>  

and 10 >>rκ ), the asymptotic solution of Eq. (1) gives  

         2/1
0

0)2/1(0 )2/(][),,( reeeeeEzrE imrimirizi
i πκηω φκπκβ ×+≈ +−−

⊥
r                      (2), 

where iE  is the peak electric field, m  is an azimuthal 

index, 2/12
0

222
0 )/4()( ckrr b χπωβκκ +−=>= , )(0 brr >= χχ , and η  is the 

complex scattering coefficient of the outgoing wave, which depends on the specific 

plasma structure. In the stationary limit the fractional plasma absorption of the Bessel 

beam is given by 21 η− . 
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For a given plasma channel )( ⊥rNe
r , the solutions to Eq. (1) can be categorized 

into several modes, depending on the behavior of ),(2 ωκ ⊥r
r . When 02 <κ for all mrr >  

and 02 >κ for all mrr < , where mr is a radial location in the plasma, solutions of Eq. (1) 

give the bound modes, which is the ideal case. However, in reality, beyond the plasma 

boundary, 02 >κ  occur again. Thus, strictly, bound modes do not occur. Excluded 

modes exist when 02 <κ  for mrr <  and 02 >κ  for mrr > . If 02 >κ  for all r , it gives 

the solutions of radiation modes. For some particular cases, the region of interest 

here, if 02 >κ  for 1rr < , 02 <κ  for ,21 rrr <<  and 02 >κ  again for 2rr > , 

where 21 rr < , some confinement of the wave within the interior channel region occurs, 

but leaking to freely propagating waves at 2rr >  is allowed, such modes are called 

“leaky”. During the plasma evolution, excluded modes, radiation modes, and leaky 

modes are possible modes.  In the early stage of the avalanche-driven electron-density 

growth, electron density has peak on the axis and keeps growing; only the radiation 

modes or excluded modes are present. When the shock wave develops and a plasma 

channel forms, the leaky modes are possible. For idealized bound modes, only 

discrete values of β  are allowed because no field exists outside the channel. For the 

leaky mode solutions to Eq. (1), where the solutions extend beyond the plasma 

boundary, narrow continuous ranges of β , labeled as chβ , are allowable [15-16]. 

Generally, for a given radial plasma-profile, chβ  must be calculated numerically [20]. 

In our experiment, the Bessel beams have been produced using an axicon lens on 

which a Gaussian laser-beam is normally incident. The beam is bent toward the 

axicon axis with the angle γ  with respect to the axis of the axicon, as shown in Fig. 
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4.3. The rays interfere with each other on the axis, such that the transverse profile of 

the beam is invariant along the axis for a finite range. A Bessel-function-shaped-field 

profile with the axial wave number γβ cosk=  is formed. After the line focus, the 

beam diverges as a cone of rays (conical beam) also shown in Fig. 4.3. When the 

leaky modes chβ  of an evolving plasma waveguide matches the axial wave-number 

γβ cosk= , the laser field can tunnel into the waveguide and excite the quasi-guided 

modes, and resonant self-trapping occurs.   

The modeling of the Bessel-beam plasma interaction is a quasi-stationary 

calculation, in which the time-independent Eq. (1) is coupled to a model of the time-

dependent plasma hydrodynamics. The reason for that is the much shorter transit time 

(<1ps) for light across the plasma channel (maximum diameter ~100μm) compared 

with the plasma-hydrodynamics time-scales (~50ps for avalanche-driven electron 

density growth, ~100ps for shock development, and ~1ns for radial evolution of the 

plasma column) and the laser pulse duration (100ps) [17]. Because the plasma is 

cylindrically symmetric [18], the model is further simplified by using a 1-D radial 

Lagrangian hydrocode. The calculation includes field ionization [19], collisional 

ionization, gradient-based and flux-limited thermal conduction, and a collisional-

radiative ionization package.  

In this experiment we fixed the laser energy, the laser wavelength, and the 

laser pulse-width and used the same axicon Bessel-beam parameters, while varying 

the gas density. Resonant pulse-shortening versus the initial gas density is 

demonstrated.  
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4.3 Experimental setup 

Figure 4.4 shows the experimental setup. The laser system used in this 

experiment was 10Hz Nd:YAG laser pulse with a wavelength of 1064nm, pulse 

duration of ~100ps, and energy of 350mJ. Laser beams are normally incident on the 

axicon with respect to its plane surface. The axicon used has a base angle of =α 25°, 

corresponding to a ray-approach angle of =γ 15° with respect to the optical axis. The 

resulting J0 beam produces a ~1.5cm-long plasma column in the ambient mixed gases 

consisting of 20-torr N2O and variable pressure of argon. The beam transverse-profile 

is invariant along the line focus, the longitudinal intensity-distribution along the 

axicon’s line-focus peaks at about the axial mid-range of the axicon focus and 

decreases toward the two ends. The envelope is shown in Fig. 4.4. The peak intensity 

of the laser pulse is approximately 5 x 1013W/cm2. To remove electrons from neutral 

atoms through optical-field ionization, the ionization potential required for argon gas 

is UI =15.8eV, The Keldysh parameter [21] γ = ( UI / 2Up  )1/2  is used to describe the 

ratio of the ionization time to the laser period, where UI  is the ionization potential of 

the atom or ion and Up is the ponderomotive potential which is given by Up = 

e2E2/4me
2ω .  For our case, Up = 5eV corresponding to nm1064=λ  gives γ ≈ 1. The 

ADK tunneling theory [22] has been shown experimentally [23] to well predict the 

ionization rate for γ ≈ 1. The laser initially produces seed free-electrons via tunnel 

ionization, which depends on the laser’s peak intensity. The liberated electrons are 

further heated by absorbing energy from the laser field through inverse 

bremsstrahlung [24-26]. The plasma waveguide formed is longitudinally uniform 

(except at the ends, where the plasma tapers [17] over a distance of ~ a few hundred 
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μ m [17]) and cylindrically symmetrical about the optical axis [17-18]. To more 

easily generate the uniform avalanche breakdown in argon gas, seed electrons were 

provided by the N2O component, which can be field ionized at ~1013W/cm2 lower 

than that of argon [17]. In the event of self-trapping, the pump laser-pulse is quasi-

confined in the plasma channel. A portion of the incident laser beam is trapped and 

guided along the plasma axis during self-trapping (denoted as trapped beam here), 

and the remaining part of the incident laser beam (the un-trapped axicon rays) 

transmits through the plasma and forms a ring (conical beam), which diverges quickly 

(denoted as transmitted beam here). To separate the trapped pulses (trapped beam) 

from the measurement of the ring beam (transmitted beam), a 45-degree reflective 

mirror with a hole in the center, coated at 1064nm wavelength, was used. The trapped 

beam passed through the hole and was captured by a CCD camera that monitored the 

mode profile at the exit-plane of the plasma-waveguide channel.  The transmitted 

beam was then reflected by a mirror and redirected to a streak camera, which 

explicitly gave the temporal profile of the un-trapped ring. The pulse-shortening of 

the Bessel beam by its self-generated plasma was measured by the streak camera. 

Since the camera is not sensitive to infrared light, a KDP crystal was used to double 

the frequency of the laser pulses to the wavelength of 532nm, appropriate to the 

streak camera photocathode. The streak camera was calibrated with equal-paced 

pulses in the time domain generated by using a variable optical-delay line. The 

resulting resolution is 3.2ps per pixel along the axis. 
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4.4 Experimental results and discussion 

The signals averaged over 50 shots (laser on) were extracted by subtracting 

the 50-shot averaged background (laser off). Figure 4.5(a) shows one sample of the 

extracted results. To minimize the noise, the extracted signal pulses were then fitted 

to a polynomial curve. A sample of the fitting results is shown in Fig. 4.5(b). From 

there, the full width at half maximum (FWHM) of signals was calculated. The pulse-

width of the transmitted beam versus the initial gas pressure is plotted in Fig. 4.6.   

At low pressure, the pulse width is almost 100ps which is the same as that of 

our incident laser pulse. It implies that the plasma is transparent to the pulse. The 

typical pulse shape under pressure of 220torr is shown on the inset (1). That is 

because when the initial gas pressure is too low, γ2sincre NN <  all the time, only 

radiation modes are allowed, almost all the incident pulse transmit through the 

plasma without trapping, except that only the front edge (<=50ps) of the incident 

pulse is absorbed to heat the gas and form the plasma. As the pressure increases, the 

pulse-width of the transmitted beam decreases very quickly, and the first dip appears 

around 340torr. At slightly higher pressures the pulse-width increases back sharply, 

implying a resonant pulse-shortening at ~340torr. This implies that a temporal slice of 

the incident-pulse envelope is trapped by the evolving plasma channel, which appears 

as the pulse-width of the transmitted beam is shortened. Inset (2) shows the typical 

pulse shape under the resonant pressure of 340torr. This is because, as the pressure 

increases, γ2sincre NN >  could occur during the plasma evolution, and self-trapping 

of the beam is allowed. When the incident Bessel beam has the axial wave number 

γβ cosk= match to chβ  for the evolving channel, strong resonant coupling of the 
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beam can occur. A significant portion of the middle temporal slice of the incident 

pulse is trapped in the plasma, rather than being transmitted through it. When the 

pressure is increased a little bit higher than 400torr, the pulse resonantly shortens 

again, with the second dip occurring at ~460torr. Inset (3) shows the typical pulse 

shape under that pressure. It is seen that the corresponding pulse width is 68ps. 

Beyond that pressure, the pulse-width did not change significantly because, when the 

pressure is high enough, many higher-order modes are able to be self-trapped in the 

more rapidly evolving and larger-diameter waveguides. Portions of the middle 

temporal slice and even the tail part of the incident pulse are trapped in the plasma at 

those high pressures. Inset (4) is a sample of the pulse trace at 660torr.  

Comparing those results with the self-coupling efficiency of the incident pulse 

measured in our previous experiments with the same 250 base angle axicon 

corresponding to =γ 150 [15-16], the first dip occurs at ~300torr in that experiment, 

reasonably close to the result of pulse shortening. The second dip occurs at ~460torr 

in that experiment, which agrees with this experiment. At low pressure, the self-

coupling efficiency is almost zero. When the pressure increases, the first strong 

resonant coupling occurs at a pressure of 300torr, corresponding to the 0,0 == mp  

lowest order mode. Inset (1) shows the mode profile at that pressure. At slightly 

higher pressures, the coupling drops significantly, obviously indicating a resonant 

trapping at ~300torr. As pressure increases to higher than 400torr, the coupling 

efficiency increases again. The second strong coupling occurs at 460torr. Inset (2) 

shows that the dominant mode is the 0,1 == mp mode. That is quite consistent with 

the results of the pulse-width measurements of the transmitted beams. As pressure 
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increases further, many higher-order modes are allowed [16]; the coupling efficiency 

keeps increasing. In our pulse-width measurements of the transmitted beams, it is 

almost constant after 560torr. Figure 4.7 shows a simulation for total absorption  
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as a function of pressure for the conditions of Fig. 4.1: peak vacuum intensity of 

5x1013W/cm2, λ=1064nm, 100ps pulse-width laser incident on axicon with ray-

approach angle of γ =150 in an ambient gas of 20-torr N2O plus a variable pressure of 

argon. The result shows two main resonant peaks ( 0,0 == mp  mode and 

0,1 == mp  mode) at 300torr and 460torr, respectively. It is in agreement with the 

pulse-shortening experiment. Because the model assumes cylindrical symmetry, the 

coupling to 0>m  electromagnetic modes is not addressed, while coupling 

to 0>m modes is allowed for higher pressures in the experiment. We also observed 

and measured the pulse-width of the trapped beams, where we removed the CCD 

camera and injected the trapped beams to the streak camera with frequency doubled 

using the KDP crystal. When the pressure is below 300torr, the signal is too weak to 

observe well-defined pulses. Samples of such traces are shown in Fig. 4.8(a). At 

340torr, pulses with well-defined pulse-width occur, as shown in Fig. 4.8(b). It is seen 

that the width of pulses exiting from the plasma channel is ~49.6ps. That indicates 

that a certain temporal slice of the incident pulse is resonantly trapped and guided by 

the evolving plasma channel. Inset (1) shows the mode of exiting pulses. When the 

pressure increases again before reaching 460torr, either no pulses or only pulses with 
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widths not well-defined were observed, like the case of below 300torr. At 460torr, 

pulses with clear widths occur again, the averaged width is 54.4ps, as shown in Fig. 

4.8(c). Inset (2) shows the mode of exiting pulses. Another resonant pulse-shortening 

is indicated. At greater than 600torr, at the plasma-channel exit, pulses with well-

defined widths emerge out; the average width is 50.2ps. A sample trace is shown in 

Fig. 4.8(d). The results of pulse-width observations of trapped beams complement 

those of pulse-width measurements of transmitted beams. They show strong evidence 

that resonant pulse-shortening occurs.         

 

4.5 Conclusion 

We demonstrated resonant pulse-shortening in an under-dense (Ne ~10-2 Ncr) 

plasma channel. The findings are consistent with our earlier experiment results and 

simulations. Two strong resonant dips in the pulse widths of transmitted beams were 

observed at 340torr and 460torr.  
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Figure 4.1: Absorption efficiency versus pressure. 10Hz 100ps, 1064nm, 350mJ Nd:YAG laser 
pulse injected onto the axicon with base angle of 250. Gas fill was 20-torr N2O with variable 
pressure argon. Each point was averaged over five hundred shots. 
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Figure 4.2: Relative self-trapped energy measured at channel exit versus pressure; each point 
was averaged over ten shots. Insets are resonant mode images at different pressures 

 



 

 95 
 

 

100

r

λ =1064nm

ps

r

Intensity envelope along
the line focus

Bessel Beam

α
Ring

(Conical Beam)

Axicon

γ

Transmitted Beam

100

r

λ =1064nm

ps

r

Intensity envelope along
the line focus

Bessel Beam

α
Ring

(Conical Beam)

Axicon

γ

Transmitted Beam

 

 

Figure 4.3: The diagram of J0 Bessel beam generation using axicon with base angle of α=250. The 
injected laser pulse was from 10Hz, 100ps, 1064nm, 350mJ Nd:YAG laser pulse, After the line 
focus, The transmitted beam is a divergent ring (conical beam). 
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Figure 4.4: Experimental setup to measure Bessel-beam resonant pulse-shortening, laser beam 
was from a Nd:YAG laser system (10Hz 100ps, 1064nm, 350mJ). Axicon had a base angle of 
α=250 corresponding to γ=150. Gas fill was 20-torr N2O with variable pressure argon. The 
transmitted cone beam was directed into a streak camera after frequency doubling. 



 

 97 
 

 

400 800 1200 1600 2000

0

20

40

60

400 800 1200 1600 2000

0

10

20

30

40

50

60 Original
Polynomial fit

(a)

(b)

Time (ps)

S
ig

na
l (

A.
U

.)

400 800 1200 1600 2000

0

20

40

60

400 800 1200 1600 2000

0

10

20

30

40

50

60 Original
Polynomial fit

(a)

(b)

Time (ps)

S
ig

na
l (

A.
U

.)

 
Figure 4.5: (a) the extracted signal from the 50-shot averaged signal subtracted from 
background. (b) The dashed dot line represents polynomial fit of degree 4 of the extracted signal 
and the solid line denotes the extracted signal itself. The two big black dots represent the 
locations of the half magnitude which was used to calculate the full width at half maximum 
(FWHM).    
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Figure 4.6: The pulse-width of the untrapped portion (cone beam) from 10Hz, 100ps, 1064nm, 
350mJ Nd:YAG laser pulse versus pressure. Each point was 100 shots averaged. Insets are the 
streak images at different pressures. The streak camera was calibrated with 3.2ps/pixel. 
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Figure 4.7: Calculation of absorption efficiency versus pressure. Parameters used in the 
calculation are the same as in the experimental results of Figure 4.1 and 4.2. The two peaks in 
the absorption curve correspond to coupling to the p=0, m=0; p=1, m=0 modes. Peak vacuum 
intensity of 5 X 1013W/cm2, γ=150, 1064nm, 100ps. The pulse peak occurs at ~120ps. 
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Figure 4.8: Sample pulse traces of trapped beams under pressure of (a) 300torr, (b) 340torr, (c) 
460torr, and (d) 600torr. 
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Chapter 5: Plasma waveguides efficiently generated by Bessel beams 
in elongated cluster gas jets 

 
 

5.1 Introduction 

Plasma waveguides have been produced by electrical discharge in capillaries, 

both pre-filled with gas [1] and not [2], in imploding Z-pinches [3] and by plasma 

structures generated through laser-driven non-equilibrium radial shock waves in gas 

targets [4] and in variations of this technique [5-6]. In addition, short waveguides 

have been generated by ponderomotive force expulsion of electrons by relativistically 

self-guided pulses [7]. Most recently, highly ionized waveguides have been generated 

in clustered gases, with long waveguide plasmas generated through the plasma 

evolution following the self-guiding and strong coupling [8] of a pulse injected into 

the end of a long cluster gas jet [9]. In that experiment, plasma waveguides are 

efficiently generated with millijoule level femtosecond pulses, which experience 

absorptions up to 85%. 

In this chapter, we show that plasma waveguides can be also generated in 

clustered gases by line-focusing a much longer duration laser pulse into an extended 

clustered gas jet. Previously, the line-focus technique has been limited to heating 

unclustered backfill or gas jet targets with line-focused pulses produced by axicons 

(Bessel beam heating) [4, 6, 10] or by cylindrical lenses [5], but pump absorption 

efficiency in these targets is typically less than a few percent. For very high backfill 

gas densities at atmospheric pressure and beyond (>3x1019 atoms/cm-3) absorption 

can be ~10%, but the resulting electron densities can be much too high for some 
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applications such as laser-driven resonant wakefield acceleration [11].  As a special 

case for Bessel beams, there are some pressure ranges in non-clustered gases where 

absorption can be resonantly increased depending on axicon geometry, pump laser 

intensity, pulsewidth, and wavelength [10] as discussed in chapter 4, but absorption 

still remains below ~15%, and the choice of target gas density is limited by the 

resonance condition.  

In this chapter we show that using clustered gas targets and long 100ps 

heating pulses, absorption can be non-resonantly increased by as much as a factor of 

~10 compared to unclustered gases of the same volume average atomic density. We 

measure maximum long pulse absorptions of 35%, which is only 2 to 3 times less 

than the absorption levels of femtosecond pulses. Using clustered gas targets and long 

pulse irradiation, we can make small diameter plasma waveguides with on-axis 

electron densities near 1018cm-3, significantly lower than with non-clustered targets. A 

signature feature is that a 100ps pulse appears to be a surprisingly efficient heater of 

the cluster plasma despite the fact that individual clusters disassemble to below 

critical density on a timescale of only a few hundred femtoseconds, and thus are 

expected to be strongly absorbing only during that period [12]. 

In unclustered gas, efficient collisional breakdown for plasma waveguide 

generation requires high gas density N0 due to the early time exponential growth of 

electron density Ne(t) ~ Ne0exp(SN0t) where Ne0 is the initial electron density and S is 

the collisional ionization rate. Ne0 can be generated by optical field ionization (OFI) 

[13] in the main heating pulse, or through the use of a separate pre-pulse [5]. 

Alternatively, it can be provided by an auxiliary electrical discharge [6] in advance of 
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a laser heater pulse. In most practical cases, Ne0 constitutes only a very small pre-

factor such that Zinit=Ne0/N0 <<1, where Zinit is the initial effective degree of 

ionization. Under these conditions, after a few e-folding times of Ne growth, 

saturation begins and memory of Ne0 is lost, with N0 as the dominant factor in 

determining the end condition [14-15]. The requirement for large N0 results in typical 

minimum electron densities in plasma waveguides, after radial hydrodynamic 

expansion, higher than ~5x1018cm-3, which is not optimum for some applications, 

most notably resonant laser wakefield acceleration. For resonant excitation of 

wakefields, the goal is to match the laser pulse width to the plasma period. For 50-

100fs pulses, typical of today’s high power Ti:Sapphire laser systems, the desirable 

electron density is ~1018cm-3 or less [16]. Using clustered gas jet targets and 100ps 

axicon-focused Bessel beam pulses, we can achieve long, efficiently generated 

plasma waveguides at such low densities. The use of clusters strongly increases the 

effective level of preionization so that Zinit>>1. Since further growth in ionization 

over most of the laser envelope starts near saturation, sensitivity to Ne0 is no longer 

lost. This is discussed in more detail in section 5.5 below. 

The clusters in our experiment are assemblies of ~103 to 107 atoms held 

together by mutually-induced polarization forces, or van der Waals bonding [17].  

Such inter-atom forces become significant under sufficient gas cooling.  In our 

experiment, the cooling and collision processes leading to cluster formation occur 

when high pressure gas adiabatically expands into vacuum through a supersonic 

nozzle. Typical cluster radii a are in the range ~10−100Å such that ka<<1, where k is 

the laser vacuum wavenumber. For greater numbers of atoms and larger values of a 
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such that the assembly size approaches the laser wavelength, the convention has been 

to use the term droplet rather than cluster. 

 

5.2 Experimental setup 

Figure 5.1 shows the experimental setup. Cluster jets were produced using a 

pulsed valve and a slot nozzle with an exit orifice of dimension 0.5mm by 1.2cm. 

High valve backing pressures and low temperatures favor the formation of larger 

clusters. The pulsed valve body is encased in a liquid nitrogen-cooled copper jacket 

so that the pre-expansion gas can be cooled as low as -120C. Valve backing pressure 

and temperature ranged from 10 to 80bar and -120C to room temperature. The valve 

temperature was finely controlled to within ±0.2C of any set point in this temperature 

range by two solid-state cartridge heaters encased in the copper jacket, which operate 

in tandem with the liquid nitrogen cooling [18]. The density of the clusters in our jet 

occupies a wide range ~ 1012-1017 clusters/cm3, and the volume average electron 

density after heating by a laser pulse and subsequent cluster plasma expansion can be 

in the range 1016-1020cm-3. This density control is achieved by controlling the cluster 

size and density through the valve backing pressure and temperature.  

An all-optical method to measure cluster size and density was developed to 

characterize cluster jets [19]. The method uses measurements of Rayleigh scattering 

and interferometry in combination. Figure 5.2(a) shows an image of a weak 10ns 

duration 532nm probe beam propagating along the long axis of the jet and scattering 

from clusters. A sequence of Rayleigh scattering images are shown in Fig. 5.2(b)  for 

fixed backing pressure of 400psi and variable valve temperature, with lineouts of 
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these images seen in Fig. 5.2(c). It is seen that the cluster flow becomes quite uniform 

as the valve is cooled to 200K and lower, and a very sharp ~0.5mm falloff in 

scattering yield occurs the ends of the jet. Figures 5.3(a) and 5.3(b) show a sequence 

of plots, obtained using the method of reference [19], of average cluster size and 

cluster number density as a function of valve backing pressure for four different valve 

temperatures. The wide control provided for cluster size and cluster density is 

evident. 

The laser used in this experiment is a mode-locked Nd:YAG system with a 

wavelength of 1064nm, pulsewidth of 100ps and energy up to 800mJ. The detail is 

described in Chapter 2. The pump beam was focused by an axicon with a base angle 

=α 25°, generating a ~1.3cm long plasma column 2mm above and along the axis of 

the cluster nozzle orifice. The beam resulting from focusing by the axicon, also called 

a Bessel beam [10], has a transverse profile invariant along the optical axis, while the 

length L of the high intensity central maximum is determined by the beam radius a 

and the axicon base angle α according to )tantan/1( αγ −= aL , where γ = sin-

1(nsinα)−α is the angle of approach of the axicon rays to the beam axis [15]. In our 

case L=1.6cm for =α 25°, axicon BK-7 glass refractive index n=1.507 at λ=1064nm, 

and 2a=1cm. The longitudinal intensity distribution along the axicon line focus has a 

peak located near the axial mid-range and decreases toward the two ends. This occurs 

because the input beam profile is mapped onto the focal line with a radial weighting 

factor: the weighting factor is zero for the input beam center, which maps to a point 

closest to the axicon vertex, and the input beam periphery (where intensity decreases 

to zero) is mapped farthest from the axicon vertex [15]. In the experiment, the ends of 



 

 106 
 

the 1.6cm long line focus overlap the ends of the cluster jet (as defined in the 

Rayleigh scattering images of Fig. 5.2(b)) so that there is no section of the jet left un-

ionized. The peak vacuum intensity in the central maximum of the Bessel beam is ~ 6 

X 1013W/cm2 corresponding to the maximum energy used of 415mJ, although in 

practice the breakdowns were more uniform with less energy. The range of intensities 

used is sufficient for the optical field ionization (OFI) of neutral argon.  The OFI 

electrons act as a seed for the subsequent cascade avalanche ionization of the cluster. 

An image of the line breakdown in an elongated argon cluster jet is shown in Fig. 5.4. 

The ring on the screen at left is nonlinear fluorescence of the locus of rays from the 

axicon which heat the plasma and are transmitted through it, and the central spot is 

from the central part of the input beam which passes through a 2.5mm diameter hole 

in the centre of the axicon. (This hole is used in experiments where secondary 

delayed pulses are injected through the axicon and coupled into the plasma 

waveguide and optically guided [4, 15]). Visually, Bessel beam breakdowns of the 

clustered gas jet are significantly brighter than similar breakdowns in unclustered jets 

or in backfill targets. 

The time- and space-resolved evolution of the plasma waveguide is measured 

by a probe pulse directed perpendicularly to the waveguide axis and into a folded 

wavefront interferometer [20]. The probe was obtained by splitting off a 1mJ portion 

of the 100ps main pulse and directing it to an optical delay line, which provides the 

time resolution through pump-probe delays of -1ns through +11ns. The diameter of 

the probe beam is 1.6cm, which is big enough to fully contain the plasma channel. 

After passing through the plasma channel, the probe was directed to a lens pair 
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imaging system with the first lens of focal length f1 placed a distance f1 away from 

the plasma, the second lens (f2) placed a distance f1+f2 away from the first lens, and 

the probe image formed a distance f2 beyond the second lens with magnification 

f2/f1=2. An uncoated BK7 wedge in the probe beam path prior to the image plane 

was used to produce two angularly separated beams. At the image plane the two 

beams form complementary interferograms whereby a portion of the beam 

unperturbed by the plasma overlaps with a portion of the beam passing through the 

plasma to generate interference fringe shifts due to the plasma refractive index 

profile. At the image plane a 4X microscope objective coupled to CCD camera was 

used to capture the interferogram, for an overall system magnification of 8X. The 

phase information encoded in the interferogram was extracted with a fast Fourier 

transform technique, and the phase was further processed by Abel inversion, 

assuming cylindrical symmetry, to recover electron density profiles [20-22]. Insets to 

Figure 5.1 show typical interferograms of the central region of the waveguide and the 

end.  

 

5.3 Experimental results 

Figure 5.5(a)-(c) shows grayscale images of the extracted electron density at 3 

probe delays for the case of argon at valve temperature -100C, backing pressure of 

800psi and pump laser energy of 150mJ. It is notable that for waveguides of similar 

electron density produced in non-clustered argon, the pump energy required was 

~500mJ and a seed gas (N2O at 10-20% partial pressure) was needed to provide OFI 

electrons to seed the avalanche breakdown [20]. In the present case, the lower laser 
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energy and lack of a seed gas means a much reduced OFI rate. But the much higher 

local atomic density in a cluster ensures that, even with the lower yields of first 

generation OFI electrons, the subsequent collisional breakdown is far more vigourous 

than in the seeded unclustered gas case. This will be seen in the later simulations. 

Figure 5.6 shows plots of electron density vs. radius, as a function of probe 

delay from the central region of the waveguide, for two settings of the argon cluster 

jet. In Fig 5.6(a), Pvalve=800psi, Tvalve= -100C and laser energy is 150mJ. By ~500ps, 

a hollow electron density profile develops, and a laser-induced shockwave propagates 

radially outward. By 2ns, the on-axis electron density has dropped below ~1018cm-3. 

The electron density falloff at radial distances beyond the shock is more extended 

than for laser-plasmas generated in unclustered targets, owing to both conduction and 

radiation precursors [23-24] and a reduced laser intensity threshold for strong 

ionization of clusters [12]. The latter effect means that subsidiary off-axis radial 

maxima of the Bessel beam are effective in plasma generation. In Fig. 5.6(b), Pvalve 

was reduced to 500psi, also with Tvalve= -100C. In order to make a stable, continuous 

channel, it was necessary to increase the pump laser energy to 230mJ. Under these 

conditions, it is seen that the peak electron density does not occur until ~500ps past 

the pump pulse, and the central electron density dip does not occur until ~1ns after 

the pump pulse. These results illustrate that cluster target control plays an extremely 

significant role in determining the amount of pump energy required for desired 

waveguide parameters. In this case, increasing the jet backing-pressure results in a 

very large pump-energy-savings. 
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We also generated plasma waveguides in a nitrogen cluster jet. Figure 5.7 

shows the evolution of the nitrogen cluster plasma under Pvalve= 900psi and Tvalve= -

100C with pump laser energy of 415mJ. These higher levels of backing pressure and 

pump energy were required for stable continuous channels. It shows a similar 

evolution as in the argon cluster plasma, with the density dip appearing at ~500ps, 

and the central density dropping to <1018cm-3 after ~ 2ns.  By comparison, in 

unclustered nitrogen, both from gas jets and in backfill targets, no breakdown 

occurred for the pure gas using axicons and 100ps pulses, and only with significant 

additional partial pressure of N2O (>20%) was breakdown possible. 

The results of this experiment show that clustered gases achieve breakdown to 

high degrees of ionization much more readily than unclustered gases. One would 

expect that an absorption measurement would be consistent with this observation. 

Such a measurement was performed by collecting the cone of rays transmitted by the 

plasma (shown in the schematic of Fig. 5.1 and shown projected onto the screen in 

Fig. 5.4 with a second axicon after the plasma breakdown, and delivering the light to 

an energy meter. The input beam energy was directed to the axicon by a 90 degree 

1064nm mirror with a central hole of slightly larger diameter than the hole in the 

axicon. Therefore, for this measurement the central beam spot shown in Fig. 5.4, 

which does not participate in plasma generation or heating, was not collected. Figure 

5.8(a) shows absorption vs. backing pressure of argon and nitrogen clusters for 

Tvalve=-100C and laser energy of 315mJ and Fig. 5.8(b) shows absorption as a 

function of pump energy for argon clusters (Pvalve=800psi and Tvalve=-100C) and for 

argon gas (Pvalve=800psi and Tvalve=25C). The level of absorption in unclustered 
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nitrogen jets was below the sensitivity level of the measurement. It is seen that the 

maximum absorption is approximately 35%. While not at the level of >80% 

absorption of femtosecond pulses in clustered gases [9] the absorption of these long 

100ps pulses is much greater than that achievable in unclustered gas jets. 

 

5.4 Calculations of long pulse breakdown of cluster jets 

We now discuss the result that the use of clustered gas significantly enhances 

pump pulse absorption and waveguide generation, even though the few hundred 

femtosecond cluster disassembly time is greatly exceeded by our 100ps pump pulses. 

Our earlier femtosecond time-resolved measurements showed that heating of few 

hundred angstrom diameter clusters by 1015W/cm2 , λ=800nm, 70fs pump pulses 

induces an ultrafast cluster plasma explosion, wherein the peak electron density drops 

from solid levels of ~1023cm-3 to subcritical levels below ~2x1021cm-3 within ~0.5ps 

[12], and the plasmas from nearby cluster explosions merge in ~10-100ps, depending 

on cluster density. The implication of this for the current experiment is that the 

majority of the 100ps pulse envelope will encounter low subcritical density, uniform 

plasma arrived at from expansion and merging of individual cluster explosions that 

are initiated very early in the pulse. Therefore, an explanation for the surprisingly 

high absorption efficiency in the current experiment resides in the cluster plasma 

dynamics in the leading edge of the 100ps pump pulse. Figure 5.9 shows results from 

our laser cluster hydrodynamic code [25], for a 200 Å argon cluster exposed to a 

100ps, λ=1064nm pulse over a range of intensity. The code solves the plasma 

hydrodynamic equations coupled to the equation ∇⋅(εE)=0  for the electric near field, 
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where ε(r,t) is the space- and time-dependent plasma dielectric function and E(r,t) is 

the self-consistent electric field from the laser and plasma. The near field model is 

well satisfied here for ka<<1, where k is the laser wavenumber and a is the cluster 

radius. The code accounts for OFI and collisional ionization and heating, thermal 

conduction and uses a time-dependent collisional radiative model for the ionization 

dynamics. The pulse temporal envelope is taken to be Gaussian. The figure plots the 

log of cluster peak electron density as a function of time for peak pulse intensities in 

the range 1013-1014W/cm2, corresponding to the range of experimental intensities in 

the central maximum of the Bessel beam. The pulse starts near t = -300ps at 1.5x10-11 

of peak intensity (for example, the starting intensity is 1500W/cm2 in the case of the 

peak 1014W/cm2 pulse), where the initial electron density is taken to be 2 

electrons/cm3, effectively zero over the cluster volume. The results are insensitive to 

this choice of negligible initial electron density. The pulse peaks at t=0. It is seen that 

extremely strong cluster ionization occurs in the far leading edge of the pulse, 

saturating to an average degree of ionization Zavg~8 corresponding to the Ne-like Ar8+ 

ion, which is quite stable against further ionization to the next higher stage. The 

ionization onset time varies over a ~40ps range as the peak intensity varies from 1013 

to 1014W/cm2, but the onset always remains in the far leading edge of the pulse. The 

other crucial occurrence is that an exploding cluster plasma, once it has dropped 

below critical density, can cool by expansion during the leading edge of the long 

pulse, well before the pulse intensity increases sufficiently to contribute to heating. 

During this phase, the expanding and merging cluster plasma is also cooled via 

thermal conduction to the neutrals and weakly pre-ionized gas on the periphery of the 
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main plasma. From single cluster calculations alone [25] (ignoring thermal 

conduction to the gas jet periphery), expansion cooling can drop the temperature from 

a peak of a few hundred eV down to a few eV. 

The conclusion from these calculations is that essentially the full 100ps pulse 

envelope encounters highly ionized, uniform, and relatively cold plasma as its 

effective initial target. From this perspective, the clustered gas can be viewed as 

enabling a supercharged pre-ionization scheme. In typical pre-ionization schemes, the 

initial ionization level per atom is much less than unity, Zeff <<1 [5, 6]. With clusters 

as the target, one can have Zeff>>1, as seen in Fig. 5.9.  The effects of this on the 

further breakdown and heating of the target can now be investigated by utilizing our 

self-consistent Bessel-beam plasma interaction code [10], which simulates axicon 

pulse heating of gas-density plasmas. In this calculation, the gas density plasma 

hydrodynamic equations are solved coupled to the equation for the z-propagating 

Bessel beam,  , where the electric field is given 

by ),(),,( ωω β
⊥⊥ = rr uezE zi , 222 )),(4),(1(),( βωπχωδωκ −++= ⊥⊥⊥ rrr plasmak  is 

the square of the local transverse wave number, χ  is the total atomic and ionic 

susceptibility and δplasma is the plasma contribution to the medium response. In the 

above equations,  is the Laplacian in the transverse coordinate r⊥ ,  k=ω/c is the 

vacuum wavenumber of the laser,  and β is the wavenumber along the propagation 

axis z. 

For this calculation, we use conditions corresponding to experimental 

parameters of Fig. 5.8: axicon ray approach angle γ=15°, λ=1064nm, a peak intensity 

of 2.5x1013W/cm2, and gas densities Nn= 0.7 x1019, 1.0 x1019 and 1.4x1019cm-3, 
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corresponding to backfill pressures of 200, 300, and 400torr, and shown in Figs. 5.10, 

5.11, and 5.12 respectively. The figures show the time dependent absorption for 

initial ionization levels in the range Zinit= 10-7 through Zinit=8. This corresponds to the 

initial plasma conditions encountered by a long pulse interacting with targets 

spanning the range of initially unclustered gas to a gas of large clusters. Overlaid on 

these curves is the incident pulse envelope, normalized to unity. The tables inset in 

the plots give the curve legend for the various values of Zinit and the total absorption 

fraction, η, which is the integral of each curve. It is seen for 200torr (Fig. 5.10) that 

absorption for the ‘clustered’ case of Zinit=8 (η=0.10) is ten times greater than for the 

‘unclustered’ case of Zinit= 10−7 (η=0.012). For 300torr (Fig. 5.11), the maximum 

absorption is η=0.33, while it decreases at 400torr (Fig. 5.12) to η=0.25. In both the 

latter cases, a high degree of initial ionization increases the subsequent absorption by 

approximately a factor of 3 compared to the low initial ionization case. In the higher 

density case, the absorption is somewhat less owing to the incipient exclusion of the 

axicon field from the plasma caused by the increase in the effective critical density 

Ncr,eff = Ncrsin2γ seen by the Bessel beam [10]. In general, low average density cluster 

gases show the greatest relative absorption enhancement over their non-clustered 

counterparts, while the largest absolute absorption takes place at intermediate 

pressures, before density is large enough to effect Bessel-beam field exclusion. In all 

cases the absorption in clustered gases, represented by the Zinit >>1 cases, is 

significantly greater than in neutral gases of equivalent density, where conventional 

pre-ionization Zinit << 1. 
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5.5 Conclusions 

We have demonstrated that clustered gases are an excellent medium for use in 

plasma waveguide generation using 100ps long pulse axicon-generated Bessel beam 

pump pulses. The plasma waveguide space and time evolution is measured using 

picosecond interferometry. The resulting waveguides can have both central densities 

as low as ~1018cm-3 and small diameter, a desirable but hard to achieve combination 

for hydrodynamic shock waveguides using conventional gases, or for other 

techniques such as discharge capillaries. A main advantage for which cluster targets 

are well known, namely extremely efficient absorption of femtosecond laser pulses, is 

shown to extend to pulses that are significantly longer than the timescale for cluster 

explosive disassembly. The long pulse absorption efficiencies can be more than a 

factor of 10 greater than in unclustered gas targets of the same volume average atomic 

density. The maximum long pulse absorption observed in cluster jets under our range 

of conditions was 35%. This is due to the fact that a clustered gas is very strongly 

preionized in the far leading edge of a long pulse; the subsequent pulse envelope acts 

to heat a locally uniform, cool plasma which is already near ionization saturation. 

From this perspective, the use of clustered gases is equivalent to a supercharged pre-

ionization scheme for long duration laser pulses. 
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Figure 5.1: Experimental setup, showing waveguide generating axicon with base angle α =250 
and folded wave front interferometer with variably delayed 1064nm, 100ps, ~1mJ probe pulse, 
imaging optics and reflection wedge. The collection axicon is used for pump absorption 
measurements. The insets show typical interferograms of the central region of the waveguide and 
the end. 
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Figure 5.2: Color online (a) Image of weak 532nm beam scattered by elongated cluster jet. (b) 
Image of scattering zone of cluster jet versus valve temperature, for valve backing pressure of 
400psi. (c) Central lineout of the scattering images of (b). It is seen that the uniformity of the 
cluster flow improves with valve cooling. 
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Figure 5.3: Argon cluster (a) size and (b) density versus valve backing pressure for several valve 
temperatures. The measurement is made using the technique of Ref. [19]. 
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Figure 5.4: An image of the Bessel beam-induced breakdown occurring in an elongated argon 
cluster jet. The ring on the screen at left is the nonlinear fluorescence of the locus of rays from 
the axicon transmitted through the plasma. The central spot is from the central part of the input 
beam that passes through a 3mm diameter central hole in the axicon. 
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Figure 5.5: Gray scale images of the extracted electron density near the center of the waveguide 
at probe delays (a) 200ps, (b) 2ns, and (c) 6ns for argon at a backing pressure of 800psi, valve 
temperature of 173K, and pump laser energy of 150mJ. 
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Figure 5.6: Extracted electron density versus radius near the central region of the waveguide as a 
function of probe delay for argon cluster jets with valve temperature 173K, backing pressure 
800psi, and pump laser energy 150mJ; (b) valve temperature of 173K, backing pressure 500psi, 
and pump laser energy 230mJ. 
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Figure 5.7: Electron density versus radius near the central region of the waveguide as a function 
of probe delay for clustered nitrogen cluster jets with (a) valve temperature 173K, backing 
pressure 900psi, and pump laser energy 415mJ.  



 

 122 
 

En
er

gy
 A

bs
or

pt
io

n

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Backing Pressure (psi)

Argon
Nitrogen

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pump laser energy (100mJ)

E
ne

rg
y 

Ab
so

rp
tio

n

Gas
Clusters

(b)

En
er

gy
 A

bs
or

pt
io

n

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Backing Pressure (psi)

Argon
Nitrogen

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pump laser energy (100mJ)

E
ne

rg
y 

Ab
so

rp
tio

n

Gas
Clusters

(b)

 
 
Figure 5.8: (a) Absorption efficiency versus backing pressure of clustered argon and nitrogen for 
temperature 173K and laser energy 315mJ; (b) absorption efficiency versus pump laser energy 
for clustered argon at backing pressure 800psi and temperature 173K, and unclustered argon at 
backing pressure 800psi and temperature 298K.  
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Figure 5.9: Calculation using laser-cluster interaction code [25] of the logarithm of electron 
density versus time for a 200 Å argon cluster under irradiation of 1064nm, 100ps pulses of 
intensity 1013, 2X1013, 5X1013, and 1014W/cm2. The effective degree of ionization saturates near 
Zinit~8 in the very early leading edge of the pulse. 
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Figure 5.10: Calculation using self-consistent Bessel-beam plasma interaction code [10] of time-
dependent Bessel beam absorption. The initial ionization state is varied from Zinit=10−7 to Zinit=8, 
corresponding to the conditions encountered by a long pulse interacting with a range of targets 
spanning initially unclustered gas to a gas of large clusters. The initial gas density is 
0.7X1019cm−3 (200torr). Total absorption is given by η. Here, the absorption for Zinit=8  
(“clustered”) is ~10 times greater than for Zinit~10−7 (“unclustered”). 
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Figure 5.11: Calculation using self-consistent Bessel-beam plasma interaction code [10] of time-
dependent Bessel beam absorption. The initial ionization state is varied from Zinit=10−7 to Zinit=8, 
corresponding to the conditions encountered by a long pulse interacting with a range of targets 
spanning initially unclustered gas to a gas of large clusters. The initial gas density is 
1.0X1019cm−3 (300torr). Total absorption is given by η. Here, the maximum absorption of ~35% 
is predicted for the Zinit=8 (“clustered”) case. 
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Figure 5.12: Calculation using self-consistent Bessel-beam plasma interaction code [10] of time-
dependent Bessel beam absorption. The initial ionization state is varied from Zinit=10−7 to Zinit=8, 
corresponding to the conditions encountered by a long pulse interacting with a range of targets 
spanning initially unclustered gas to a gas of large clusters. The initial gas density is 
1.4X1019cm−3 (400torr). Total absorption is given by η. Here, the absorption drops compared to 
the 1.0X1019cm−3 case (Fig. 5.11) because the Bessel beam experiences incipient exclusion from 
the central region of the plasma. 
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