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According to the Smoluchowski-Kramers approximation, the solution qµ,ε
t , also

referred to as “Physical” Brownian motion, of the Langevin’s equation µq̈µ,ε
t =

−q̇µ,ε
t + b(qµ,ε

t ) +
√

εσ(qµ,ε
t )Ẇt, qµ,ε

0 = q, q̇µ,ε
0 = p, where Ẇt is Gaussian white noise,

converges to solution of the diffusion equation q̇ε
t = b(qε

t ) +
√

εσ(qε
t )Ẇt, qε

0 = q as

µ ↓ 0 uniformly on any finite time interval for each fixed ε > 0. This is the main

justification for describing the small particle motion by a diffusion equation. How-

ever, this relation is not sufficient for asymptotic problems when some parameter,

say ε, approaches 0.

We consider two asymptotic problems related to this approximation.

First, we study relations between large deviations for these processes qµ,ε
t and

qε
t as ε ↓ 0. In particular, we consider exit problems where relations between asymp-

totic exit position, asymptotic mean exit time and some other characteristics of

the first exit of the trajectories qµ,ε
t and qε

t from a bounded domain are of interest.

Under the framework of Freidlin-Wentzell, these asymptotics can be represented by



quasi-potential, defined as the infimum of action functional over some set. Action

functional and quasi-potentials for qµ,ε
t are calculated in this paper. We establish

that the asymptotics of qµ,ε
t and qε

t are close for small particles when 0 < µ ¿ 1.

We pay special attention to the case when b(q) is linear. Then the quasi-potentials

can be calculated explicitly and they coincide for qµ,ε
t and qε

t .

Second, we study the wavefront propagation for reaction-diffusion equations

with diffusion governed by the infinitesimal generator of process qµ,ε
t and qε

t and

reaction term governed by a nonlinear function of KPP-type. In this case, the

reaction-diffusion equation related to the process qµ,ε
t is degenerate in terms of vari-

able (p, q). When the diffusion coefficient and nonlinear term are space dependent

but only changing slowly in space, we know as t →∞, the solution of the reaction-

diffusion equation related to the process qε
t behaves like a running wave. Charac-

terization of the position of wavefront for equations related to qε
t is well studied. In

this work, we identify two characterizations of the position of the wavefront for the

degenerate reaction-diffusion equation related to the process qµ,ε
t . We analyze two

cases, under which we can obtain the convergence of the wavefronts of the degen-

erate reaction-diffusion equation related to qµ,ε
t to those of the non-degenerate one

related to qε
t , for small µ > 0.
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Chapter 1

Introduction

1.1 Smoluchowski-Kramers Approximation

The motion of a particle in the force field b(q) +
√

εσ(q)Ẇ with a friction

proportional to the velocity (let, for brevity, the friction coefficient be equal to 1) is

governed by the Newton law:

µq̈µ,ε
t = b(qµ,ε

t )− q̇µ,ε
t +

√
εσ(qµ,ε

t )Ẇt, (1.1)

qµ,ε
0 = q, q̇µ,ε

0 = p; p, q ∈ Rn.

Here µ > 0 is the particle mass, ε > 0 is a positive parameter, σ(q) is a non-

degenerate n× n-matrix, Ẇt is Gaussian white noise in Rn; the functions b(q) and

σ(q) are supposed to have continuous bounded derivatives.

This motion is also referred to as “Physical” Brownian motion that is defined

in Langevin’s model of Brownian motion after the construction of “Mathematical”

Brownian motion. Langevin’s model emphasizes that a particle moving due to ran-

dom collisions with, say, gas molecules does not actually experience independent

steps since its inertia tends to keep it moving roughly the same direction as its

previous steps. Thus, it is considered to be a more realistic model than “Mathemat-

ical” Brownian motion, which treats the process as a random walk with independent

identically distributed steps. Equation (1.1) due to Langevin’s work is also called
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Langevin’s equation.

The Smoluchowski-Kramers approximation (see [12]) consists of the statement:

For each T > 0, δ > 0 and (p, q) ∈ R2n,

lim
µ↓0

P{max
0≤t≤T

|qµ,ε
t − qε

t | > δ} = 0, (1.2)

where qε
t is the solution of the equation

q̇ε
t = b(qε

t ) +
√

εσ(qε
t )Ẇt, qε

0 = q. (1.3)

This statement is the main justification for describing small particle motion by the

first order diffusion equation (1.3).

However, an essential part of modern research related to equation (1.3) con-

cerns asymptotic problems. For example, for fixed ε = 1, one can study behavior of

stochastic process defined by (1.3) as t → ∞ and its stationary distribution. An-

other example is given by the homogenization problem for equation (1.3). Various

large deviation problems were considered in recent years: when ε ↓ 0, exit problems

and stochastic resonance for process qε
t are of interest. Wavefront propagation for

reaction-diffusion equation of KPP type related to the diffusion process defined by

(1.3) is widely studied from both the stochastic and PDE point of view. How are

these results for qε
t defined by (1.3) and qµ,ε

t defined by (1.1) related? In what cases

can we describe the asymptotic behavior of small particle motion by results obtained

for the diffusion equation (1.3)? Statement (1.2) concerning a finite time interval is

not sufficient for results of these asymptotic problems.

In this work, we will consider two kinds of asymptotic problems: exit prob-

lems and wavefront propagation of reaction-diffusion equation. We will investigate
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the relations between system (1.1) and (1.3) in exit problems for the general vec-

tor field b(q). In the problem of wavefront propagation, we’d like to compare the

move of the wavefront of reaction-diffusion equations related to process qµ,ε
t and qε

t .

Other asymptotic problems such as stationary distributions, homogenization prob-

lems and exit problems in the case when vector field b(q) is potential are treated in

M. Freidlin’s work [6].

1.2 Large Deviations: Exit from a Domain

1.2.1 Exit problem for the diffusion equation

The problem of diffusion exit from a domain for a process qε
t defined by (1.3)

is studied in [7]. Let G ⊂ Rn be a bounded domain with smooth boundary ∂G,

which is attracted to an asymptotically stable equilibrium K for the field b(q). The

unperturbed trajectories q0
t of the deterministic system q̇0

t = b(q0
t ) issuing from the

point q ∈ G go to the equilibrium K as t →∞ and can’t leave G. Due to the white

noise, the perturbed trajectories qε
t issuing from q ∈ G leave G with probability one

(and in this case for every ε 6= 0). The perturbed trajectory follows the unperturbed

trajectory (with small deviations) to a neighborhood of the asymptotically stable

equilibrium K in finite time, stays there for a dominating amount of time, making

excursions now and then, and finally leaves the domain G. Put τ ε = inf{t : qε
t /∈ G}.

The first exit time of the diffusion process qε
t from domain G, τ ε; the asymptotic

exit position qε
τε and some other characteristics of the first exit of the trajectory

from the domain G are of interest in exit problems.
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Let C0T be the collection of continuous functions on interval [0, T ]. Under the

framework of the Freidlin-Wentzell theory ([7]), the action functional, which gives

an estimate of the principal term of the logarithmic asymptotics of probabilities of

events concerning the process qε
t , can be introduced. The action functional for the

process qε
t , 0 ≤ t ≤ T , in C0T as ε ↓ 0 has the form (1/ε)S0T (ϕ), where

S0T (ϕ) =





1
2

∫ T

0
|σ−1(ϕs)(ϕ̇s − b(ϕs))|2ds, if ϕ ∈ C0T is absolutely continuous,

+∞, otherwise.

(1.4)

It has the following three properties ([7],[17]):

1. the set Φ(s) = {ϕ ∈ C0T : S0T (ϕ) ≤ s} is compact;

2. for any δ > 0, any γ > 0 and any ϕ ∈ C0T ,

P{‖qε
t − ϕ‖C0T

≤ δ} ≥ exp{−ε−1[S0T (ϕ) + γ]}

for ε ≤ ε0;

3. for any δ > 0, any γ > 0 and any s > 0, there exists an ε0 > 0 such that

P{‖qε
t − Φ(s)‖C0T

> δ} ≤ exp{−ε−1(s− γ)}

for all ε ≤ ε0 .

Here

‖ϕ(s)‖C0T
= sup{ϕ(s) : s ∈ [0, T ]}.

Introduce the quasi-potential V (q), q ∈ Rn, for the processes qε
t with respect to K:

V (q) = inf{S0T (ϕ) : ϕ ∈ C0T , ϕ0 = K, ϕT = q, T ≥ 0}. (1.5)
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The Hamilton-Jacobi equation for V (q) has the form

1

2
|∇V (q)|2 + (b(q),∇V ) = 0, V (q) > 0 for q 6= K, V (K) = 0.

In [7], it is shown that the asymptotics of the first exit of the trajectory

qε
t from the domain G can be expressed through the quasi-potential V (q). For

example, qε
τε → q0 in probability as ε ↓ 0, where V (q0) = minq∈∂G V (q), if q0 is

the only minimum of V (q) on ∂G. Moreover, τ ε is logarithmically equivalent to

exp{(1/ε)V (q0)} as ε ↓ 0, i.e. ε ln τ ε → V (q0). Some other characteristics of the

first exit can be expressed through the quasi-potential V (q). In the case when the

vector field b(q) = −∇B(q), V (q) = 2B(q) for q ∈ {q ∈ G : V (q) ≤ V (q0)}.

1.2.2 Exit problem for Langevin’s equation

We study the exit problem for the process qµ,ε
t using the same approach as

for the study of exit problem of process qε
t . The second order system (1.1) can be

written as the first order system

µṗµ,ε
t = b(qµ,ε

t )− pµ,ε
t +

√
εσ(qµ,ε

t )Ẇt, (1.6)

q̇µ,ε
t = pµ,ε

t ; pµ,ε
0 = p, qµ,ε

0 = q.

If K ∈ Rn is an equilibrium of the vector field b(q), then (0, K) ∈ R2n is an equi-

librium for (1.6) with ε = 0, and vice versa. Moreover, one can check that if K

is an asymptotically stable equilibrium for system (1.3) with ε = 0, then (0, K) is

asymptotically stable for (1.6) with ε = 0, at least, if µ > 0 is small enough. If

b(q) = −∇B(q), q ∈ Rn, and if K is asymptotically stable for the field b(q), then
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(0, K) is asymptotically stable for (pµ,0
t , qµ,0

t ) with any µ > 0. (See Section 2.1 of

Chapter 2)

Put τµ,ε = inf{t : qµ,ε
t /∈ G}. The asymptotic position qµ,ε

τµ,ε at the exit time

τµ,ε, the asymptotics of τµ,ε as ε ↓ 0 and some other characteristics of the first exit

of the trajectory from G are of interest.

The relation (1.2) concerns finite time intervals, so that it is not sufficient

for closeness of the asymptotics in the exit problems for processes qµ,ε
t and qε

t . But

taking into account that exit of qε
t from G occurs as a result of many trials and that in

each of these trials the trajectory spends a bounded time outside any neighborhood

of the equilibrium, one can expect that the asymptotics in exit problem for qε
t and

qµ,ε
t as ε ↓ 0 are close, at least for small µ.

To study large deviations of the process qµ,ε
t defined by the Langevin’s equa-

tion, one must first calculate the action functional for the process qµ,ε
t as ε ↓ 0.

Theorem 1.2.1 (Freidlin-Wentzell [7]). Let (1/ε)Sλ(x) be the action functional

for a family of measures λε on a space X (with metric ρX) as ε ↓ 0. Let F be a

continuous mapping of X into a space Y with metric ρY and let a measure νε on

Y be given by the formula νε(A) = λε(F−1(A)). The asymptotics of the family of

measures νε as ε ↓ 0 is given by the action function (1/ε)Sν(y), where Sν(y) =

min{Sλ(x) : x ∈ F−1(y)} (the minimum over the empty set is set equal to ∞).

By virtue of Theorem 1.2.1, we are able to calculate the action functional for

the Markov process (pµ,ε
t , qµ,ε

t ) and the process qµ,ε
t . We introduce the quasi-potential

V µ(q) for the processes qµ,ε
t and show that V µ(q) under certain wide conditions is
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close to V (q). This means that the Smoluchowski-Kramers approximation is good if

we are interested in the exit problems and also in the problems related to stochastic

resonance. Moreover, if b(q) = −∇B(q), the quasi-potentials V µ(q) and V (q), in a

sense, coincide for all µ > 0 (compare with [2]).

1.3 Wavefront Propagation in Reaction-Diffusion Equations

1.3.1 KPP-type Reaction-Diffusion Equation

In 1937, Fisher [2] and Kolmogorov, Petrovskii and Piskunov (KPP) [15]

started to study the existence of travelling waves of semi-linear reaction-diffusion

equations that arise in physics, chemical kinetics and biology, and to investigate

convergence of the solution of a Cauchy problem to a travelling wave as t → ∞.

The original equation is:

∂u(t, x)

∂t
=

D

2

∂2u(t, x)

∂x2
+ f(u(t, x)), in R× (0,∞) (1.7)

u(0, x) = χx<0, x ∈ R.

The nonlinear term f(u) characterizing the multiplication and killing of par-

ticles in the absence of diffusion is of KPP-type, if it is continuously differentiable

in u ∈ R1 such that f(0) = f(1) = 0, f(u) > 0 for 0 < u < 1, f(u) < 0 for u /∈

[0, 1] and sup0<u<1 u−1f(u) = f ′(0). Reaction-diffusion equations that have a KPP-

type nonlinear term f(u) are referred to as KPP equations.

It is proved in [15] that the solution u(t, x) of (1.7) tends to 1 as t →∞, and
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the region where u(t, x) is close to 1 is growing with speed 2
√

Df ′(0).

Since then, the KPP equation has been extensively studied. When the diffu-

sion coefficient and the nonlinear term depend on space and are slowly changing in

space, the first generalized result on the KPP equation using a probabilistic treat-

ment was given by Freidlin [9]. Freidlin separated the study of profile and speed of

the travelling wave by introducing a small parameter. He considered the following

Cauchy problem:

∂uε(t, x)

∂t
=

ε

2

n∑
i,j=1

∂2

∂xixj
aij(x)uε(t, x) +

n∑
i=1

bi(x)
∂uε(t, x)

∂xi
+

1

ε
f(x, uε(t, x)) (1.8)

= Lεuε +
1

ε
f(x, uε(t, x))

uε(0, x) = g(x) ≥ 0, x ∈ Rn, t > 0.

Here, the function f(x, ·) satisfies the KPP assumption for all x ∈ Rn. Put

c(x, u) = u−1f(x, u) for u > 0 and c(x, 0) = limu↓0 u−1f(x, u). The function

c(x, u), x ∈ Rn, u ≥ 0 is supposed to be continuous and satisfies a Lipschitz

condition in u. Let max0≤u≤1 c(x, u) = c(x, 0) = c(x). The aij(x) are bounded func-

tions having bounded second-order derivatives such that the form
∑n

i,j aij(x)λiλj

does not degenerate uniformly in Rn.

1.3.2 Characterization of Position of Wavefronts

In Freidlin [9], the first probabilistic methods for studying the generalized

KPP-type reaction-diffusion equation (1.8) is undertaken within the framework of
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large deviation theory for stochastic differential equations.

Consider the Markov diffusion process (Xε
t , Px) in Rn governed by the operator

Lε. It solves the following stochastic differential equation:

Ẋε
t = b(Xε

t ) + σ(Xε
t )Ẇt, Xε

0 = x. (1.9)

Here Wt is a Wiener process in Rn, σ(x) is a n × n matrix such that σ(x)σ∗(x) =

(aij(x)). Using the Feynman-Kac formula, the solution of problem (1.8) can be

represented as:

uε(t, x) = Exg(Xε
t ) exp

{
1

ε

∫ t

0

c(Xε
t , u(t− s,Xε

s ))ds

}
, (1.10)

where Xε
t is the solution of equation (1.9).

To examine the behavior of the solution of equation (1.8) as ε ↓ 0, he first

finds the asymptotic formula for expression of the form:

Exg(Xε
t ) exp

{
1

ε

∫ t

0

c(Xε
t )ds

}
, ε ↓ 0,

by introducing an action functional for the family of processes (Xε
t ,Px) as ε ↓ 0. The

action functional for process Xε
t , 0 ≤ s ≤ t, in C0t as ε ↓ 0 has the form (1/ε)S0t(ϕ),

where

S0t(ϕ) =





1
2

∫ t

0
|σ−1(ϕs)(ϕ̇s − b(ϕs))|2ds, if ϕ ∈ C0t is absolutely continuous,

+∞, otherwise.

(1.11)

From properties of the action functional, the asymptotic formula for

Exg(Xε
t ) exp

{
1

ε

∫ t

0

c(Xε
t )ds

}
, ε ↓ 0

9



is obtained as:

lim
ε↓0

ε ln Exg(Xε
t ) exp

{
1

ε

∫ t

0

c(Xε
t )ds

}
(1.12)

= sup{
∫ t

0

c(ϕs)ds− S0t(ϕ) : ϕ0 = x, ϕt ∈ supp g}

The proof of formula (1.12) and the properties of action functional can be found in

Freidlin [8] and Freidlin and Wentzell [7]. From KPP assumption, we know that the

relation for c(x, u):

c(x, u) = u−1f(x, u) ≤ c(x)

holds. From the asymptotic formula (1.12) and the Feynman-Kac representation of

solution (1.10), the following estimate is obtained:

0 ≤ uε(t, x) ≤ Exg(Xε
t ) exp{1

ε

∫ t

0

c(Xε
t )ds} (1.13)

³ exp

{
1

ε
[sup{

∫ t

0

c(ϕs)ds− S0t(ϕ) : ϕ ∈ C0t, ϕ0 = x, ϕt ∈ [G0]}]
}

, ε ↓ 0

where the “³” sign denotes logarithmic equivalence. Let

V (t, x) = sup

{∫ t

0

c(ϕs)ds− S0t(ϕ) : ϕ0 = x, ϕt ∈ [supp g] = [G0]

}

where [G0] denotes the closure of the support of the function g(x) in Rn. Freidlin

proved that, under a certain condition (N), from (1.13) it follows that limε↓0 uε(t, x) =

0 on the set {(t, x) : t > 0, x ∈ Rn, V (t, x) < 0}. This convergence is uniform on

every compactum lying in the region {(t, x) : t > 0, x ∈ Rn, V (t, x) < 0}, and

limε↓0 uε(t, x) = 1 for V (t, x) > 0. Then the manifold Σt = {x ∈ Rn : V (t, x) = 0}

can be considered as the position of the wavefront (i.e., the boundary between the
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excited and non-excited regions) at time t. Condition (N) is said to be fulfilled if

the following relation

V (t, x) = sup{
∫ t

0

c(ϕs)ds− S0t(ϕ) :

ϕ ∈ C0t, ϕ0 = x, ϕt ∈ [G0], V (t− s, ϕs) < 0 for 0 < s < t}

holds for any t > 0 and x ∈ Σt.

Theorem 1.3.1 (Freidlin [9]). Suppose that f(x, u) satisfies the KPP assumption

and let condition (N) be fulfilled. Then for the solution uε(t, x) of problem (1.8) the

following relation holds:

lim
ε↓0

uε(t, x) =





1, if V (t, x) > 0

0, if V (t, x) < 0.

This convergence is uniform on every compactum lying in the region {(t, x) : t >

0, x ∈ Rn, V (t, x) > 0} and {(t, x) : t > 0, x ∈ Rn, V (t, x) < 0}, respectively.

Therefore, the equation

V (t, x) = 0

defines the wavefront which divides the regions where uε(t, x) is close to 0 and is

close to 1 for small ε > 0.

Inspired by Freidlin’s work on reaction-diffusion equations, Evans and Sougani-

dis ([3], [4]) proved the wavefront propagation of solution of equation (1.8) using

analytical methods. They generalized Freidlin’s result to the case when condition

(N) is not satisfied. In their setup, the functional characterizing the wavefront is
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a viscosity solution of some variational inequality. Later Freidlin [10] and Freidlin

and Lee [11] obtained and generalized their results using probabilistic methods.

Without condition (N), the position of the wavefront can be characterized

by introducing a stopping time. A functional τ : C([0, t],Rn) → [0, t] is called a

stopping time if τ depends only on ϕs, 0 ≤ s ≤ u, when restricted to {τ ≤ u}. Let

Γt be the collection of all stopping times not greater than t. If F is a closed subset

of [0, t]× Rn and {0} × Rn ⊂ F , then

τF ≡ min{s : s ≥ 0 and (t− s, ϕs) ∈ F}

is clearly a stopping not greater than t. Let Θt be the collection of such τF . Let

V0(t, x) = inf
τ∈Γt

{ sup

∫ τ

0

c(ϕs)ds− S0τ (ϕ) : ϕ is absolutely continuous,

ϕ0 = x, ϕt ∈ G0},

V1(t, x) = inf
τ∈Θt

{ sup

∫ τ

0

c(ϕs)ds− S0τ (ϕ) : ϕ is absolutely continuous,

ϕ0 = x, ϕt ∈ G0}, t > 0, x ∈ Rn.

V ∗(t, x) = sup{ min
0≤a≤t

∫ a

0

c(ϕs)ds− S0a(ϕ) : ϕ is absolutely continuous,

ϕ0 = x, ϕt ∈ G0}, t > 0, x ∈ Rn.

Fredilin and Lee ([11]) proved that

V0 = V1 = V ∗,

and they characterized the position of the wavefronts.

12



Theorem 1.3.2 (Freidlin [10] and Freidlin and Lee [11]). Let uε(t, x) be the solution

of (1.8). Then limε↓0 uε(t, x) = 0 uniformly for (t, x) belonging to any compact set

F1 ⊂ {(s, y) : V ∗(s, y) < 0}. For any compact subset F2 of the interior of the set

{(s, y), s > 0, V ∗(s, y) = 0}, limε↓0uε(t, x) = 1 uniformly in (t, x) ∈ F2.

In 1999, Pradeilles [16], using representation of solutions with backward stochas-

tic differential equations driven by Brownian motion (also see Pardoux and Peng

[13], Pardoux,Pradeilles, Rao [14]) generalized the wavefront propagation result to

the case when the parabolic operator Lε is possibly degenerate. He established that

when the parabolic operator Lε satisfies a Hömander-type hypothesis, the wavefront

location is given by the same formula as that in Freidlin and Lee [11] or Barles, Evans

and Souganidis [4].

1.3.3 A Class of Degenerate Reaction-Diffusion Equation Related to

“Physical” Brownian motion

In this work, we consider a class of degenerate reaction-diffusion equation

related to the “Physical” Brownian motion qµ,ε
t with zero drift, i.e b(x) = 0. Let

x = (p, q) ∈ R2n, p ∈ Rn, q ∈ Rn. Here, q is the position of a particle, p is the

velocity of the particle. Consider the equation:

∂uε(t, x)

∂t
=

ε

2µ2

2n∑
i,j=1

Aij(x)
∂2uε(t, x)

∂xi∂xj
+

2n∑
i=1

bi(x)
∂uε(t, x)

∂xi
+

1

ε
f(x, uε(t, x)) (1.14)

u(0, x) = g(x), x = (p, q) ∈ R2n, g(x) ≥ 0,
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where diffusion matrix A(x) and vector b(x) are:

A(x) = A(p, q) =




(a(q))n×n 0n×n

0n×n 0n×n




, b(x) =




−(1/µ)p

p




, p =




p1

...

pn




Assume that f(x, u) = c(q, u)u satisfies the KPP assumption. We assume the n×n

matrix (a(q)) is uniformly non-degenerate.

As is known, in this case, the operator

Lµ,ε =
ε

2µ2

2n∑
i,j=1

Aij(x)
∂2

∂xi∂xj
+

2n∑
i=1

bi(x)
∂

∂xi

satisfies Hömander’s hypothesis and is hyperelliptic.

Let us rewrite equation (1.14) as:

∂uε(t, p, q)

∂t
=

ε

2µ2

n∑
i,j=1

aij(q)
∂2uε

∂pi∂pj
− 1

µ
p∇pu

ε + p∇qu
ε +

1

ε
c(q, uε)uε (1.15)

uε(0, p, q) = g(p, q).

The operator governing the diffusion

Lµ,ε =
ε

2µ2

n∑
i,j=1

aij(q)
∂2

∂pi∂pj
− 1

µ
p∇p + p∇q (1.16)

is degenerate in x = (p, q).

When, for example, we put the initial condition g(p, q) = δ(p)χ−1(q), where

δ(p) is a delta function centered at 0 and χ−1(q) is the indicator function with

support equal to the negative q-axis, by the maximum principle uε(t, p, q) is a func-

tion between 0 and 1. Equation (1.15) can be considered as the reaction-diffusion

14



equation to model the transition probability density of particles whose diffusion is

governed by Langevin’s equation and whose multiplication and killing is governed

by f(q, u). We consider the propagating wave type solution of (1.15) as ε ↓ 0. For

equations satisfying the Hömander hypothesis, from results of Pradeilles [16], we

know that for each µ > 0, the wave front location in the phase space (p, q) is given

by the same formula as in Theorem 1.2.

The corresponding reaction-diffusion equation related to the process qε
t defined

by diffusion equation (1.3) (with b(q) = 0) is defined as:

∂uε(t, q)

∂t
=

ε

2

n∑
i,j=1

aij(q)
∂2uε(t, q)

∂qi∂qj
+

1

ε
uεc(q, uε) (1.17)

uε(0, q) = g(0, q), q ∈ Rn

Equation (1.17) has been well studied. Our task in this part is to study equation

(1.15) and its relation to (1.17). We would like to show that under certain conditions,

as ε ↓ 0, for small µ, the wavefronts of equation (1.15) and (1.17) are close.

1.4 Outline of the thesis

The thesis is organized as follows. In Chapter 2, we study relations between

equations (1.1) and (1.3) in the exit problems. In particular, we investigate to obtain

closeness of the asymptotic quantities, such as asymptotic exit position, asymptotic

exit time for equations (1.1) and (1.3). We first study the relation between the

unperturbed systems when ε, which characterizes the intensity of perturbation, is

0. We prove that when either of the conditions in Proposition 2.1.1 is satisfied, the

15



equilibrium for the Langevin system is asymptotically stable. Then we calculate the

action functional (Proposition 2.2.1) and introduce the quasi-potential for equation

(1.1). It can be proved that the asymptotic exit position and time can be represented

in terms of the quasi-potential for (1.1). A major theorem is given in the second

section of this chapter, showing the convergence of the quasi-potential of (1.1) to that

of (1.3) under a certain wide condition. Special attention is paid to linear systems.

In this case, the corresponding quasi-potentials can be calculated explicitly.

In Chapter 3, we concentrate on the problem of wavefront propagation of

equation (1.15) and (1.17) and the relation between their wavefronts. We will give a

characterization of the position of the wavefronts for equation (1.15) in the general

case and under an assumption that we call condition (Nµ) (Theorem 3.1.4). Then

we show the convergence of the wavefronts of equations (1.15) and (1.17) in two

settings. When both condition (Nµ) and (N) are satisfied, the location of the

wavefront for the degenerate reaction-diffusion equation converges to that of the

non-degenerate one, for each bounded initial position q and velocity p. An example

is considered when the function c(q) is linearly growing. When only condition (N)

is satisfied, the wavefront of the degenerate reaction-diffusion equation is within a δ

neighborhood of the non-degenerate one, here δ depends on µ. An example is given

when c(q) is a constant function.
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Chapter 2

Large Deviations: Exit from a Domain

2.1 Relations between the Unperturbed Systems

In this section, relations between systems (1.3) and (1.6) for ε = 0 are con-

sidered. We will investigate some sufficient conditions such that if K ∈ Rn is an

asymptotically stable equilibrium of system (1.3) with ε = 0, then (0, K) ∈ R2n is

asymptotically stable for system (1.6) with ε = 0.

Without loss of generality, one can assume that K is the origin. It is under-

stood that the nonlinear system of (1.3) with ε = 0 can be expressed with a linear

and nonlinear part as

q̇0
t = Aq0

t + N(q0
t )

for which q̇0
t = Aq0

t is the linear approximation to this equation in the vicinity of

the equilibrium K. From the assumption on b(q), we know N(q) is continuous for

small |q| and N(q) = o(|q|) as |q| → 0. Let A be stable: that is, all eigenvalues of

A have negative real part. Then K is an asymptotically stable equilibrium position.

Similarly, the linear approximation to (1.6) with ε = 0 is





µṗµ,0
t = −pµ,0

t + Aqµ,0
t , pµ,0

0 = p;

q̇µ,0
t = pµ,0

t , qµ,0
0 = q.
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It has an asymptotically stable equilibrium position at (0, K) ∈ R2n when the matrix

Aµ =



−(1/µ)E (1/µ)A

E 0




is stable, where E is the n× n identity matrix.

Proposition 2.1.1. Assume that A is stable. Let at least one of the following

conditions hold:

i. All eigenvalues of A are real.

ii. The inequality 0 < µ < µ0 = min{−ak/b
2
k, k = 0, 1, · · · ,m, m ≤ n} holds,

where ak + ibk, ak < 0, bk 6= 0, k = 0, 1, · · · ,m, m ≤ n are all complex

eigenvalues of A.

Then Aµ is stable.

Proof. Let λµ be an eigenvalue of Aµ. Since

det(Aµ − λµE) = det




(λµ + 1/µ)E −(1/µ)A

−E λµE


 = 0

is equivalent to

det(λµ(µλµ + 1)E − A) = det(λE − A) = 0,

so that λµ(µλµ + 1) = λ is an eigenvalue of A. Then we have

λµ =
−1±√1 + 4λµ

2µ
.

Since A is stable, Re(λ) < 0. Consider the following two cases:
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i When λ is real, then Re(λµ) < 0 for any µ > 0, i.e. Aµ is stable;

ii When λ = a + bi, a < 0, b 6= 0,

λµ =
−1±√z

2
, (2.1)

where

z = (1 + 4aµ) + 4bµi.

Formula (2.1) implies that λµ has negative real part if and only if |Re(
√

z)| < 1,

which is equivalent to

1 + 4aµ +
√

(1 + 4aµ)2 + (4bµ)2 < 2.

This implies that

µ < − a

b2
.

Let ak + bki, k = 0, 1, · · · , m, m ≤ n, be all complex eigenvalues of A, where

ak < 0, bk 6= 0 for each k. Then if

0 < µ < µ0 = min{−ak

b2
k

, k = 0, 1, · · · ,m, m ≤ n},

all eigenvalues of Aµ have negative real part, which means Aµ is stable.

Assumption: From now on, we will assume that either of the two conditions

in Proposition 2.1.1 is satisfied and we study the relation of the corresponding

perturbed systems.
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2.2 Action Functional and Convergence of Quasi-potentials

Consider the process qµ,ε
t defined by the system (1.6). We assume b(q) and σ(q)

are smooth enough and bounded, and det(a(q)) ≥ a0 > 0, where a(q) = σ(q)σ∗(q).

In order to study the exit problems of qµ,ε
t , we will first find the action functional

for qµ,ε
t as ε ↓ 0.

Proposition 2.2.1. The action functional for qµ,ε
t in C0T for fixed µ as ε ↓ 0 has

the form ε−1Sµ
0T (ϕ), where

Sµ
0T (ϕ) =





1
2

∫ T

0
|σ−1(ϕs)(µϕ̈s + ϕ̇s − b(ϕs))|2ds if ϕ̇ is absolutely continuous

ϕ0 = q, ϕ̇0 = p;

+∞, otherwise.

(2.2)

Proof. First, note that since q̇µ,ε
t = pµ,ε

t is continuous, system (1.6) can be written

as follows:

µ(pµ,ε
t −p) =

∫ t

0

b(qµ,ε
s )ds−

∫ t

0

pµ,ε
s ds+

√
εWtσ(qµ,ε

t )−√ε

∫ t

0

Ws
d

ds
[σ(qµ,ε

s )]ds, (2.3)

qµ,ε
t − q =

∫ t

0

pµ,ε
s ds.

Let ψt be a continuous function on [0, T ] with values in Rn. Consider the operator

F : ψ → X, where X = Xt = (pt, qt) ∈ R2n is the solution of the system

µ(pt − p) =

∫ t

0

b(qs)ds−
∫ t

0

psds + ψtσ(qt)− ψ0σ(q)−
∫ t

0

ψs
d

ds
[σ(qs)]ds, p0 = p,

qt − q =

∫ t

0

psds, q0 = q,
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t ∈ [0, T ]. Let X1 = X1(t) = (p1(t), q1(t)) = Fψ1, X2 = X2(t) = (p2(t), q2(t)) =

Fψ2. Since b(q) and σ(q) are Lipschitz continuous, for any t ∈ [0, T ], the norm of

the difference will satisfy the the following inequality

‖X1(t)−X2(t)‖ ≤ K1

∫ t

0

‖X1(s)−X2(s)‖ds + K2T‖ψ1 − ψ2‖C0T
,

where ‖ψ‖C0T
= maxt∈[0,T ] |ψ(t)|, K1, K2 are some constants. From Gronwall’s

inequality,

‖X1(t)−X2(t)‖ ≤ eK1T K2T‖ψ1 − ψ2‖C0T
,

which implies the continuity of operator F . Hence, the transformation F̃µ : ψ → qt

is also continuous, where by definition qt solves the equation

qt = F̃µψt = q + (1− e−t/µ)[µp− σ(q)ψ0] +

∫ t

0

(1− e(s−t)/µ)b(qs)ds

−
∫ t

0

ψs
d

ds
[σ(qs)]ds + e−(t/µ)

∫ t

0

ψs
d

ds
[σ(qs)e

s/µ]ds.

Moreover, F̃µ has the inverse

(F̃−1
µ q)t = ψt = ψ0 +

∫ t

0

σ−1(qs)(µq̈s + q̇s − b(qs))ds.

It follows from (2.3) that

qµ,ε
t = F̃µ(

√
εWt).

By theorem 1.2.1, the action functional for the family of the process qµ,ε
t has the

form ε−1Sµ
0T (ϕ) where

Sµ
0T (ϕ) = min{Sw

0T (ψ) : F̃µψ = ϕ} = min{1

2

∫ T

0

|ψ̇s|2ds : F̃µψ = ϕ}

=
1

2

∫ T

0

| d
dt

F̃−1
µ ϕ|2dt =

1

2

∫ T

0

|σ−1(ϕs)(µϕ̈s + ϕ̇s − b(ϕs))|2dt
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if ψt is absolutely continuous, and Sµ
0T (ϕ) = +∞ otherwise in C0T . Since

ϕ̇t = ϕ̇0e
−(t/µ) +

1

µ
e−(t/µ)

∫ t

0

e(s/µ)b(ϕs)ds +
1

µ
e−(t/µ)[e(s/µ)σ(ϕs)ψs]|t0

− 1

µ
e−(t/µ)

∫ t

0

ψs
d

ds
[e(s/µ)σ(ϕs)]ds,

absolute continuity of ψt implies that ϕ̇t is absolutely continuous.

Now let K ∈ Rn be an asymptotically stable equilibrium for the dynamical

system q0
t in Rn defined by the Equation (1.3) with ε = 0. The quasi-potential for

the process qε
t with respect to the equilibrium K ∈ Rn is defined by (1.5), where

the action functional assumes the form (1.4). Then (0, K) ∈ R2n is asymptotically

stable for system (1.6). We can define the quasi-potential V µ(q) in a similar way as

V µ(q) = inf{Sµ
0T (ϕ) : ϕ0 = K, ϕ̇0 = 0, ϕT = q, T ≥ 0, ϕ ∈ C0T}. (2.4)

Theorem 2.2.2. Let V µ(q) and V (q) be defined as above. Let G ⊂ Rn be compact.

Then V µ(q) → V (q) for each q ∈ G as µ → 0.

Proof. Introduce the following quantities:

V µ(q, T ) = inf{Sµ
0T (ϕ) : ϕ ∈ C0T , ϕ0 = K, ϕT = q, ϕ̇0 = 0, q ∈ G}

V (q, T ) = inf{S0T (ϕ) : ϕ ∈ C0T , ϕ0 = K, ϕT = q, q ∈ G}

V µ(q) = inf
T≥0

V µ(q, T ), V (q) = inf
T≥0

V (q, T )

First, we show that for each q ∈ G,

lim
µ↓0

V µ(q, T ) = V (q, T ). (2.5)
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This is equivalent to the following inequalities:

V (q, T ) ≥ lim sup
µ↓0

V µ(q, T ) (2.6)

V (q, T ) ≤ lim inf
µ↓0

V µ(q, T ). (2.7)

To show (2.6), let ϕ∗ be an extremal of S0T (ϕ) such that

V (q, T ) = S0T (ϕ∗).

The Euler-Lagrange equations for extremals of S0T (ϕ) imply that they are in C2([0, T ]).

Therefore

V µ(q, T ) ≤ Sµ
0T (ϕ∗) ≤ S0T (ϕ∗) +

1

2
µ2

∫ T

0

|σ−1(ϕ∗s)ϕ̈
∗
s|2ds = V (q, T ) + o(µ).

This implies the limsup inequality (2.6).

To show (2.7), let ϕ̂ be an extremal of Sµ
0T (ϕ) for fixed µ > 0 such that

V µ(q, T ) = Sµ
0T (ϕ̂). Similarly, extremals of Sµ

0T (ϕ) are in C4([0, T ]). Let a(x) =

σ(x)σ∗(x), x ∈ Rn be strictly positive definite. Assume b(x), σ(x) have bounded

derivatives. Then

Sµ
0T (ϕ̂) =

1

2

∫ T

0

|σ−1(ϕ̂s)(µ ¨̂ϕs + ˙̂ϕs − b(ϕ̂s))|2ds

=
1

2

∫ T

0

|σ−1(ϕ̂s)µ ¨̂ϕs|2ds + S0T (ϕ̂) + µ

∫ T

0

(σ−1(ϕ̂s) ¨̂ϕs, σ
−1(ϕ̂s)[ ˙̂ϕs − b(ϕ̂s)])ds

≥ S0T (ϕ̂) +
µ

2

∫ T

0

n∑
i=1

n∑
j=1

a−1
ij (ϕ̂s)d( ˙̂ϕj

s
˙̂ϕi
s)− µ

∫ T

0

(a−1(ϕ̂s)b(ϕ̂s), d ˙̂ϕs)

= S0T (ϕ̂) +
µ

2
(a−1(ϕ̂T ) ˙̂ϕT , ˙̂ϕT )− µ(a−1(ϕ̂T )b(ϕ̂T ), ˙̂ϕT ) +

µ

2
(a−1(ϕ̂T )b(ϕ̂T ), b(ϕ̂T ))

− µ

2
(a−1(ϕ̂T )b(ϕ̂T ), b(ϕ̂T ))− µ

2

∫ T

0

n∑
i=1

n∑
j=1

˙̂ϕj
s
˙̂ϕi
sd[a−1

ij (ϕ̂s)]
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+ 2( ˙̂ϕs, d[a−1(ϕ̂s)b(ϕ̂s)])

= S0T (ϕ̂) +
µ

2
|σ−1(ϕ̂T )( ˙̂ϕT − b(ϕ̂T ))|2 − µI

where

I =
1

2
|σ−1(ϕ̂T )b(ϕ̂T )|2 +

1

2

∫ T

0

n∑
i=1

n∑
j=1

˙̂ϕj
s
˙̂ϕi
sd[a−1

ij (ϕ̂s)]−
∫ T

0

( ˙̂ϕs, d[a−1(ϕ̂s)b(ϕ̂s)])

Since a(x) and b(x) have bounded derivatives and ‖ϕ̂‖W 1,2([0,T ]) = (
∫ T

0
|ϕ(s)|2 +

|ϕ̇(s)|2ds)1/2 is uniformly bounded, I is uniformly bounded for all µ > 0. Therefore,

V µ(q, T ) = Sµ
0T (ϕ̂) ≥ S0T (ϕ̂) + o(µ) ≥ V (q, T ) + o(µ)

=⇒ lim inf
µ↓0

V µ(q, T ) = V (q, T ).

Thus, (2.5) is proved. It can be easily checked that the limit (2.5) is uniform in

T ≥ T0 > 0.

It’s easy to see that V µ(q, T ), and V (q, T ) are all decreasing functions in T .

Therefore

V µ(q) = lim
T→∞

V µ(q, T ) (2.8)

V (q) = lim
T→∞

V (q, T ). (2.9)

From (2.8), and (2.9), we know V µ(q) and V (q) can be arbitrarily close as long as

µ is small enough, thus

V µ(q) −→ V (q) for each q ∈ G, as µ → 0.
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2.3 Quasi-potentials for Linear Systems

In this section, we pay special attention to perturbations of processes defined

by (1.6), when b(q) = Aq and A is a constant stable matrix. We will see that

quasi-potentials for the second order linear system and its Smoluchowski-Kramers

approximation actually coincide for any µ > 0 if the eigenvalues of A are real and

for any stable A when µ is small enough.

2.3.1 Quasi-potential for the diffusion equatioin

Let us find an explicit formula for the quasi-potential of the first order linear

systems defined as:

q̇ε
t = Aqε

t +
√

εσẆt, qε
0 = q. (2.10)

We assume A is an n × n matrix, having the real parts of all eigenvalues negative;

σ is a non-degenerate n × n constant matrix, qε
t ∈ Rn. We eliminate the diffusion

matrix σ by making a change of variable Yt = σ−1qt. Then

d

dt
σ−1qt = (σ−1Aσ)σ−1qt +

√
εẆt

Ẏt = (σ−1Aσ)Yt +
√

εẆt.

Since σ−1Aσ has the same eigenvalues as A, any system of the form (2.10) can be

reduced to a system of the form

q̇ε
t = Aqε

t +
√

εẆt, qε
0 = q. (2.11)

Thus the unperturbed linear system q̇t = Aqt ∈ Rn has an asymptotical stable

equilibrium position O, the origin of the coordinate system.
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As is known ([7]), the action functional for the family qε
t in C[0, T ] as ε ↓ 0

has the form ε−1S(ϕ), where

S(ϕ) =





1
2

∫ T

0
|ϕ̇t − Aϕt|2dt, ϕ(0) = O, ϕ(T ) = q, ϕ is absolutely continuous

+∞, otherwise.

The quasi-potential for the process qε
t with respect to O is

V (q) = inf{S(ϕ) : ϕ ∈ C[0, T ], ϕ(0) = O, ϕ(T ) = q ∈ Rn, T ≥ 0}

and the Hamilton-Jacobi equation for V (x) is:

1

2
(∇V,∇V ) + (Aq,∇V ) = 0, V (0) = 0, V (q) > 0 for q 6= 0. (2.12)

Lemma 2.3.1. If there exists a symmetric positive definite matrix B solving the

equation

(B2q, q) = −(Aq,Bq), (2.13)

then V (q) = (Bq, q), q ∈ Rn.

Proof. We can simply check that if (2.13) holds and B = B∗, then V (q) = (Bq, q)

satisfies the Hamilton-Jacobi equation (2.12). Since B is positive definite, V (q) =

(Bq, q) > 0, for q 6= 0.

Example 2.3.2. When the matrix A is normal, that is, A∗A = AA∗ (see [7]), let
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B = −1
2
(A + A∗), which is symmetric and positive definite. Then we have

B + A = −1

2
(A∗ − A), and B = −1

2
(A∗ + A);

((B + A)q, Bq) =

(
−1

2
(A∗ − A)q,−1

2
(A∗ + A)q

)

=
1

4
[(A∗q, Aq) + (A∗q, A∗q)− (Aq, A∗q)− (Aq,Aq)]

=
1

4
[(A∗q, A∗q)− (Aq, Aq)]

= 0.

Therefore,

((B + A)q, Bq) = (Bq, Bq) + (Aq, Bq) = 0

(B2q, q) = −(Aq,Bq).

Thus B is the solution of (2.13). Then quasi-potential is

V (q) = −1

2
((A + A∗)q, q).

In order to solve (2.13) for general, not necessarily normal A, we need the

following result from matrix theory (see [18] for the proof).

Lemma 2.3.3. Let A be a given matrix whose eigenvalues have negative real parts.

Then the equation AX + XA∗ = Y has a unique solution X for every Y , and the

solution can be expressed as

X =

∫ ∞

0

eAt(−Y )eA∗tdt.

Theorem 2.3.4. The quasi-potential V (q) for the processes qε
t defined by equation

(2.11) is given by the formula:

V (q) =
1

2
((

∫ ∞

0

eAteA∗tdt)−1q, q).
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Proof. Because of Lemma 2.3.1, we can look for the quasi-potential V (q) in the form

V (q) = (Bq, q), where B satisfies Eq. (2.13). Since

(Aq,Bq) = (Bq, Aq) =
1

2
[(Aq,Bq) + (Bq, Aq)] = (

1

2
(B∗A + A∗B)q, q),

Eq. (2.13) becomes

(B2q, q) = −(
1

2
(B∗A + A∗B)q, q).

The matrix 1
2
(B∗A + A∗B) is symmetric, therefore

B2 = −1

2
(B∗A + A∗B). (2.14)

From the symmetry and non-degeneracy of B, (2.14) can be simplified to the fol-

lowing matrix equation

A(
1

2
B−1) + (

1

2
B−1)A∗ = −E.

From (2.14), solution of the simplified equation is

X =
B−1

2
=

∫ ∞

0

eAteA∗tdt.

So

B =
1

2

(∫ ∞

0

eAteA∗tdt

)−1

.

For any nonzero vector y ∈ Rn,

y∗Xy = y∗
∫ ∞

0

eAteA∗tdty

=

∫ ∞

0

(eA∗ty)∗E(eA∗ty)dt

is positive, so B is positive definite. We get V (q) = (Bq, q) > 0 for q 6= 0.
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Example 2.3.5. Consider a general 2 × 2 Jordan matrix A =




λ 1

0 λ


, λ < 0.

The quasi-potential can be calculated explicitly and is equal to

V (q) = − 2λ

4λ2 + 1
[2λ2q2

1 + 2λq1q2 + (2λ2 + 1)q2
2],

where q = (q1, q2).

From results in [7], an extremal ϕt solves the system of first order differential

equations

ϕ̇t = (A + 2B)ϕt,

where

B = − 2λ

4λ2 + 1




2λ2 λ

λ 2λ2 + 1




is the symmetric matrix of the quadratic form V (q).

From the Figure 2.1, one can see that the trajectories of the system q̇t = Aqt

are logarithmic spirals winding in to the origin in the clockwise direction, while the

trajectories of the extremal are also logarithmic spirals winding in to the origin but

in the anti-clockwise direction. The level sets of the quasi-potential are ellipses.

Proposition 2.3.6. The quasi-potential V (q) for process qε
t defined by (2.10) is

given by the formula

V (q) =
1

2

(
(

∫ ∞

0

eAtσσ∗eA∗tdt)−1q, q

)
.
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Figure 2.1: Solid lines : trajectories of the unperturbed system. Dashed and doted

lines : trajectories of extremal of action functional. Ellipses : level sets of the quasi-

potential.

Proof. Let yε
t = σ−1qε

t , yε
0 = σ−1qε

0 = σ−1q = y. Then

V (y) =
1

2

(
(

∫ ∞

0

σ−1eAtσσ∗eA∗t(σ−1)∗dt)−1y, y

)

V (q) =
1

2

(
σ∗(

∫ ∞

0

eAtσσ∗eA∗tdt)−1σσ−1q, σ−1q

)

V (q) =
1

2

(
(

∫ ∞

0

eAtσσ∗eA∗tdt)−1q, q

)
.

Since σσ∗ is positive definite, V (q) > 0 for q 6= 0.

2.3.2 Quasi-potential for Langevin’s equation

To find an explicit representation of the quasi-potential for the second order

linear system describing particle motion, let us first consider the case when the

diffusion matrix σ is an identity matrix.
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Consider the system





µṗµ,ε
t = −pµ,ε

t + Aqµ,ε
t +

√
εẆt, pµ,ε

0 = p;

q̇µ,ε
t = pµ,ε

t , qµ,ε
0 = q.

(2.15)

As we know, (0, O) is an asymptotically stable equilibrium position for the system

qµ,0
t under the assumption in section 2.1.

From Proposition 2.2.1, the action functional for the family qµ,ε
t in C0T as ε ↓ 0

has the form ε−1Sµ(ϕ), where

Sµ(ϕ) =





1
2

∫ T

0
|µϕ̈t + ϕ̇t − Aϕt|2dt, ϕ̇ is absolutely continuous

ϕ0 = q, ϕ̇0 = p;

+∞, otherwise.

Introduce the quasi-potential of qµ,0
t with respect to the equilibrium O:

V µ(q) = inf{Sµ(ϕ) : ϕ ∈ C0T , ϕ0 = O, ϕ̇0 = 0, ϕT = q, T > 0}

= inf
p∈Rn

Vµ(p, q)

= inf
p∈Rn

inf{Sµ(ϕ) : ϕ ∈ C0T , ϕ0 = O, ϕ̇0 = 0, ϕT = q, ϕ̇T = p, T > 0}.

Let z = (p, q). Then Vµ(z) = Vµ(p, q). Let

∇Vµ =



∇pVµ

∇qVµ


 =




∂Vµ

∂p

∂Vµ

∂q


 .

The Hamilton-Jacobi equation for Vµ(p, q) has the form:

(∇Vµ, Kz) +
1

2
(Eµ∇Vµ,∇Vµ) = 0, (2.16)
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where

K =



−(1/µ)E (1/µ)A

E 0


 ∈ R2n×2n, Eµ =




(1/µ2)E 0

0 0


 ∈ R2n×2n,

E is the n× n identity matrix (see [19]).

Lemma 2.3.7. Let the matrices K and Eµ and the vector z be defined as above.

Let there exist a symmetric positive definite matrix D solving the equation

(Dz, Kz) = −(DEµDz, z). (2.17)

Then Vµ(z) = (Dz, z), for all z = (p, q) ∈ R2n.

Proof. Similar to the proof of Lemma 2.3.1, we can simply check that if (2.17) holds

and D = D∗, Vµ(z) = (Dz, z) satisfies the Hamilton-Jacobi equation (2.16). Since

D is positive definite, Vµ(z) = (Dz, z) > 0, for z 6= 0.

Theorem 2.3.8. The quasi-potential for the process qµ,ε
t defined by (2.15) is given

by the formula:

V µ(q) =
1

2
((

∫ ∞

0

eAteA∗tdt)−1q, q).

Proof. Since

V µ(q) = inf
p∈Rn

Vµ(p, q),

the proof is done if we can calculate Vµ(z) = Vµ(p, q). Because of Lemma 3, we can

look for the quasi-potential Vµ(z) in the form Vµ(z) = (Dz, z), where D satisfies

Eq. (2.17). Since

(Dz, Kz) = (Kz,Dz) =
1

2
[(Dz, Kz) + (Kz, Dz)] =

(
1

2
(D∗K + K∗D)z, z

)
,
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by symmetry of D, we have

(Dz,Kz) =

(
1

2
(D∗K + K∗D)z, z

)
.

By Eq. (2.17)
(

1

2
(D∗K + K∗D)z, z

)
= −(DEµDz, z).

Since the matrix 1
2
(D∗K + K∗D) is symmetric,

1

2
(D∗K + K∗D) = −DEµD.

This is equivalent to

KD−1 + D−1K∗ = −2Eµ. (2.18)

By our assumption in Section 2, K is stable. From Lemma 2, we know that there

exists a unique D−1 that solves (2.18). We show that the unique solution is given

by the matrix:

D−1 = X =




1
µ
E 0

0 G


 ,

where

G = 2

∫ ∞

0

eAteA∗tdt.

This can be done simply by checking that X solves Eq. (2.18). We calculate the

left-hand side of (2.18) and obtain

KX + XK∗ =



− 1

µ
E 1

µ
A

E 0


 ·




1
µ
E 0

0 G


 +




1
µ
E 0

0 G


 ·



− 1

µ
E E

1
µ
A∗ 0




=




− 2
µ2 E

1
µ
(AG + E)

1
µ
(GA∗ + E) 0
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From Lemma 2, we know that G = 2
∫∞
0

eAteA∗tdt is the unique solution of matrix

equation

AG + GA∗ = −2E. (2.19)

Since KX + XK∗ is symmetric,

1

µ
(AG + E) =

1

µ
(GA∗ + E). (2.20)

Equation (2.19) and (2.20) implies that

AG = GA∗ = −E.

Therefore,

KX + XK∗ =



− 2

µ2 E 0

0 0


 = −2Eµ,

which means that X = D−1 is the unique solution of matrix equation (2.18).

By inverting X, one can find D as:

D = X−1 =




µE 0

0 1
2
(
∫∞
0

eAteA∗tdt)−1


 .

Thus,

Vµ(p, q) = (Dz, z) = µ|p|2 +
1

2
((

∫ ∞

0

eAteA∗tdt)−1q, q),

V µ(q) = inf
p∈Rn

Vµ(p, q) =
1

2
((

∫ ∞

0

eAteA∗tdt)−1q, q).

Obviously, the infimum is obtained when ϕ̇T = p = 0. 2

Let us now consider the general particle motion defined by



µṗµ,ε
t = Aqµ,ε

t − pµ,ε
t +

√
εσẆt, pµ,ε

0 = p;

q̇µ,ε
t = pµ,ε

t , qµ,ε
0 = q,

(2.21)
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where the diffusion matrix σ is not necessarily the identity. Let V µ(q) be the quasi-

potential for the process qµ,ε
t defined by (2.21). Then

V µ(q) = inf{Sµ(ϕ) : ϕ ∈ C0T , ϕ0 = O, ϕ̇0 = 0, ϕT = q, T > 0},

where (1/ε)Sµ(ϕ) is the action functional for process qµ,ε
t as ε ↓ 0. From proposition

1, Sµ(ϕ) has the form:

Sµ(ϕ) =





1
2

∫ T

0
|σ−1(µϕ̈t + ϕ̇t − Aϕt)|2dt, if ϕ̇ absolutely continuous

ϕ0 = q, ϕ̇0 = p;

+∞, otherwise.

By making a change of variable, Pt = σ−1pµ,ε
t , Qt = σ−1qµ,ε

t , (2.21) becomes



µṖt = −Pt + σ−1AσQt +
√

εẆt, P0 = σ−1p;

Q̇t = Pt, Q0 = σ−1q,

(2.22)

which is a system with identity diffusion matrix. So quasi-potential V µ(q) can also

be defined in the following way:

V µ(q) = inf{S̄µ(ϕ) : ϕ ∈ C0T , ϕ0 = O, ϕ̇0 = 0, ϕT = σ−1q, T > 0},

where (1/ε)S̄µ(ϕ) is the action functional for process Qt as ε ↓ 0 and

S̄µ(ϕ) =





1
2

∫ T

0
|µϕ̈t + ϕ̇t − σ−1Aσϕt|2dt, if ϕ̇ absolutely continuous

ϕ0 = σ−1q, ϕ̇0 = σ−1p;

+∞, otherwise.

Proposition 2.3.9. The quasi-potential V µ(q) for the process qµ,ε
t defined by system

(2.21) is given by the formula:

V µ(q) =
1

2
((

∫ ∞

0

eAtσσ∗eA∗tdt)−1q, q).
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Proof. From Theorem 3,

V µ(q) =
1

2
((

∫ ∞

0

eσ−1Aσte(σ−1Aσ)∗tdt)−1σ−1q, σ−1q)

=
1

2
((σ−1

∫ ∞

0

eAtσσ∗eA∗tdt(σ∗)−1σ−1q, σ−1q)

=
1

2
((σ−1)∗σ∗(

∫ ∞

0

eAtσσ∗eA∗tdt)−1σσ−1q, q)

=
1

2
((

∫ ∞

0

eAtσσ∗eA∗tdt)−1q, q).

2

The coincidence of V µ(q) for system (2.21) and V (q) for system (2.10) is

obvious from Propositions 3 and 4. With our assumptions made in Section 2, it

occurs for all µ > 0 if A has all eigenvalues real, and only for small µ, if A has some

complex eigenvalues.
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Chapter 3

Wavefront Propagation in the Reaction-Diffusion Equation

3.1 Wave Front Propagation for the Degenerate KPP-equation

3.1.1 General characterization of wavefronts

To study the wavefront propagation of equation (1.15), we first note that the

operator Lµ,ε defined by equation (1.16) is the infinitesimal generator of the Markov

process (pµ,ε
t , qµ,ε

t ) defined by the system

µṗµ,ε
t = −q̇µ,ε

t + σ(qµ,ε
t )Ẇt, pµ,ε

0 = p ∈ Rn (3.1)

q̇µ,ε
t = pµ,ε

t , qµ,ε
0 = q ∈ Rn.

This is equivalent to Langevin’s equation defined by:

µq̈µ,ε
t = −q̇µ,ε

t + σ(qµ,ε
t )Ẇt, qµ,ε

0 = q, pµ,ε
0 = p, p, q ∈ Rn (3.2)

where µ is the particle mass, qµ,ε
t is the position of particle at time t, pµ,ε

t is the

velocity of the particle at time t and −q̇µ,ε
t is the friction exerted on the particle.

We assume the diffusion coefficient σ(qµ,ε
t ) is continuously differentiable and positive

definite. Let a(q) = σ(q)σ∗(q).

Lemma 3.1.1. The action functional for the Markov process (pµ,ε
t , qµ,ε

t ) in C0t for
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fixed µ > 0 as ε ↓ 0 has the form ε−1Sµ
0t(φ), φ = (φ1, φ2) where

Sµ
0t(φ

1, φ2) =





1
2

∫ t

0
|σ−1(φ2

s)(µφ̇1
s + φ1

s)|2ds, φ̇2
s = φ1

s, φ1
s absolutely continuous.

φ1
0 = p ∈ Rn, φ2

0 = q ∈ Rn

+∞, otherwise.

Proof. Rewrite equation (3.1) as :




ṗµ,ε
t = − 1

µ
pµ,ε

t +
√

ε
µ

σ(qµ,ε
t )Ẇt, pµ,ε

0 = p;

q̇µ,ε
t = pµ,ε

t , qµ,ε
0 = q.

Let Xµ,ε
t =




pµ,ε
t

qµ,ε
t


. Then the equation for Xµ,ε

t is:

Ẋµ,ε
t =




ṗµ,ε
t

q̇µ,ε
t


 =



− 1

µ
pµ,ε

t

pµ,ε
t


 +




√
ε

µ
σ(qµ,ε

t ) 0

0 0







Ẇt

Ẇ 1
t


 .

Let ψt = (ψ1
t , ψ2

t )
T , the transpose of vector (ψ1

t , ψ2
t ), be a continuous function on

[0, T ] with value on R2n. For each fixed µ > 0, consider the transformation

J : ψ −→ X =




pt

qt


 ∈ R2n

defined by the system

pt − p = − 1

µ

∫ t

0

psds +
1

µ
[ψ1

t σ(qt)− ψ1
0σ(q)]− 1

µ

∫ t

0

ψ1
s

d

ds
[σ(qs)]ds,

qt − q =

∫ t

0

psds.

Let X1 = Jψ1 = (p1(t), q1(t))
T , X2 = Jψ2 = (p2(t), q2(t))

T . For any t ∈ [0, T ], the

norm of the difference satisfies the inequality:

‖X1(t)−X2(t)‖ ≤ K1

∫ t

0

‖X1(s)−X2(s)‖ds + K2T‖ψ1 − ψ2‖C0T
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where ‖ψ‖C0T
= maxt∈[0,T ] |ψ(t)|, K1, K2 are some constants. From Gronwall’s

inequality:

‖X1(t)−X2(t)‖ ≤ eK1T K2T‖ψ1 − ψ2‖C0T
.

which implies that the operator J is continuous.

From Theorem 1.2.1, the action functional for the process (pµ,ε
t , qµ,ε

t ) has the

form ε−1Sµ
0t(φ) where

Sµ
0t(φ) = min{SW

0t (ψ) : Jψ = ϕ}

= min{1

2

∫ t

0

|ψ̇s|2ds :




φ1

φ2


 =




p + 1
µ
[ψ1

t σ(φ2
t )− ψ1

0σ(q)]

q


 +

∫ t

0



− 1

µ
φ1

s − 1
µ
ψ1

s
d
ds

[σ(φ2
s)]

φ1
s


 ds}

= min{1

2

∫ t

0

|ψ̇s|2ds :

φ =




φ1

φ2


 =




p

q


 +

∫ t

0



− 1

µ
φ1

s

φ1
s


 ds +

1

µ

∫ t

0




σ(φ2
s) 0

0 0







ψ̇1
s

ψ̇2
s


 ds}

if ψ1
s is absolutely continuous. When ψ̇1

s = σ−1(ϕ2
s)(µφ̇1

s + φ1
s), ψ2

s = 0, ψ2
s = ψ1

s ,

1
2

∫ t

0
|ψ̇s|2ds attains its the minimum. Thus the normalized action functional is given

by:

Sµ
0t(φ

1, φ2) =





1
2

∫ t

0
|σ−1(φ2

s)(µφ̇1
s + φ1

s)|2ds, φ̇2
s = φ1

s, φ1
s absolutely continuous

φ1
0 = p ∈ Rn, φ2

0 = q ∈ Rn

+∞, otherwise.

Let the functional τ : C([0, t],R2n) → [0, t] be a stopping time which depends

only on φs = (φ1
s, φ2

s), 0 ≤ s ≤ u when restricted to {τ ≤ u}. Let Γt be the collection
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of all stopping times not greater than t. If F is a closed subset of [0, t] × R2n and

{0}×R2n ⊂ F , then τF ≡ min{s : s ≥ 0 and (t− s, φs) ∈ F} is a stopping time not

greater than t. Let Θt be the collection of such τF . Define:

V µ
0 (t, p, q) = inf

τ∈Γt

sup{
∫ τ

0

c(φs)ds− Sµ
0t(φ) :

φ is abs. cont, φ0 = (p, q), φt ∈ [Gµ
0 ]}

= inf
τ∈Γt

sup{
∫ τ

0

c(ϕs)− 1

2
|σ−1(ϕs)(µϕ̈s + ϕ̇s)|2ds : ϕ̇s abs. cont.

ϕ0 = q, ϕ̇0 = p, (ϕt, ϕ̇t) ∈ [Gµ
0 ]}.

Similarly, define:

V µ
1 (t, p, q) = inf

τ∈Θt

sup{
∫ t

0

c(φs)− Sµ
0t(φ) :

φ abs. cont., φ0 = (p, q), φt ∈ [Gµ
0 ]}

= inf
τ∈Θt

sup{
∫ t

0

c(ϕs)− 1

2
|σ−1(ϕs)(µϕ̈s + ϕ̇s)|2ds : ϕ̇s abs. cont.

ϕ0 = q, ϕ̇0 = p, (ϕt, ϕ̇t) ∈ [Gµ
0 ]}

and

V ∗,µ(t, p, q) = sup min
0≤a≤t

{
∫ a

0

c(φs)− Sµ
0t(φ) :

φ abs. cont., φ0 = (p, q), φt ∈ G0}

= sup min
0≤a≤t

{
∫ a

0

c(ϕs)− 1

2
|σ−1(ϕs)(µϕ̈s + ϕ̇s)|2ds :

ϕ̇s abs. cont., ϕ0 = q, ϕ̇0 = p, (ϕt, ϕ̇t) ∈ [Gµ
0 ]}

It can be proved (Lemma 2.4 of [11]) that

V µ
0 = V µ

1 = V ∗,µ.
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Theorem 3.1.2 ([16]). The solution of equation (1.15) satisfies the following rela-

tion:

lim
ε↓0

uε(t, p, q) = 0,

uniformly on any compact subset of {(t, p, q) : V ∗,µ(t, p, q) < 0}. There exists h > 0

such that

lim inf
ε↓0

uε(t, p, q) ≥ h

uniformly on any compact subset of {(t, p, q) : V ∗,µ(t, p, q) = 0}.

3.1.2 Characterization of Wavefronts under Condition (Nµ)

We will investigate in this section another characterization of wavefronts of

equation (1.15) when it satisfies a certain condition (Nµ). To establish this charac-

terization, we would first like to obtain an asymptotic formula similar to (1.12) as

a lemma.

As is shown in Lemma 2.1, the action functional for the process (pµ,ε
t , qµ,ε

t )

as ε ↓ 0 is ε−1Sµ
0t(φ). By the definition of action functional, the following estimates

hold:

i. for any function φ = (φ(1), φ(2)) ∈ C0t(R2n), φ
(1)
0 = p, φ

(2)
0 = q and arbitrary

γ, δ > 0, there exists ε0 > 0 such that for 0 < ε < ε0:

Pµ,ε
p,q{ρ0t(X

µ,ε
s , φs) < δ} ≥ exp{−1

ε
(Sµ

0t(φ) + γ)};

ii. for any r < ∞, the set Φs = {φ ∈ C0t(R2n) : φ0 = x = (p, q), Sµ
0t(φ) ≤ r}

is compact in C0t(R2n). Also for arbitrary γ, δ > 0 one can find ε0 > 0 such
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that for 0 < ε < ε0

Pµ,ε
p,q{ρ0t(X

µ,ε
s , Φs) ≥ δ} ≤ exp{−(1/ε)(r − δ)}.

Lemma 3.1.3. Assume g(x) = g(p, q), x = (p, q) ∈ R2n, is a non-negative, bounded

function and denote its support of {x ∈ R2n : g(x) > 0} by Gµ
0 . Let c(q), q ∈ Rn,

be bounded and uniformly continuous. Let φ = (φ(1), φ(2)) and

Rµ
0t(φ) =

∫ t

0

c(φ(2)
s )− 1

2
|σ−1(φ(2)

s )(µφ̇(1)
s + φ(1)

s )|2ds.

Then

lim
ε↓0

ε ln Eµ,ε
p,q g(pµ,ε

t , qµ,ε
t ) exp{1

2

∫ t

0

c(qµ,ε
s )ds}

= sup{Rµ
0t(φ) : φ0 = x, φt ∈ [Gµ

0 ]}

Proof. Let m = sup{Rµ
0t(φ) : φ0 = x, φt ∈ [Gµ

0 ]}. Since c(q) is bounded, g is

nonnegative and bounded and m < +∞. The functional Rµ
0t(φ) is upper semi-

continuous. Thus, for any γ > 0, one can find φ̂ ∈ C0t(R2n) such that

φ̂0 = x, ρ0t(φ̂s, R2n \G0) = δ1 > 0 and Rµ
0t(φ̂) > m− γ.

Let κ > 0 such that
∫ t

0

|c(qµ,ε
s )− c(φ̂(2)

s )|ds <
γ

2

provided

ρ0t(X
µ,ε
s , φ̂s) < κ, δ2 = κ ∧ δ1

2
.

Then we have estimates:

Eµ,ε
x g(pµ,ε

t , qµ,ε
t ) exp{1

ε

∫ t

0

c(qµ,ε
s )ds}

42



≥Eµ,ε
x χ{ρ0t(X

µ,ε
s ,φ̂s)<δ2}g(Xµ,ε

t ) exp{1

ε

∫ t

0

c(qµ,ε
s )ds}

≥ min
{x:ρ0t(x,φ̂)<δ2}

|g(x)| exp{1

ε

∫ t

0

c(φ̂(2)
s )ds− γ

2ε
} × Pµ,ε

x {ρ0t(X
µ,ε
s , φ̂s) < δ2}

From estimate (i) the inequalities continue as

≥ min
{x:ρ0t(x,φ̂)<δ2}

|g(x)| exp{1

ε

∫ t

0

c(φ̂(2)
s )ds− γ

2ε
} exp{−1

ε
(Sµ

0t(φ̂) + γ)}

≥ min
{x:ρ0t(x,φ̂)<δ2}

|g(x)| exp{1

ε
(

∫ t

0

c(φ̂(2)
s )ds− Sµ

0t(φ̂))− 2γ

ε
} · exp{ γ

2ε
}

≥ exp{1

ε
(

∫ t

0

c(φ̂(2)
s )ds− Sµ

0t(φ̂))− 2γ

ε
}

≥ exp{ε−1(m− 3γ)}.

Considering all estimates above, we get

Eµ,ε
x g(pµ,ε

t , qµ,ε
t ) exp{1

ε

∫ t

0

c(qµ,ε
s )ds} ≥ exp{1

ε
(m− 3γ)}. (3.3)

To derive an upper bound, put s = |m|+ t supq∈Rn |c(q)|+ 1. Then

Eµ,ε
x g(pµ,ε

t , qµ,ε
t ) exp{1

ε
c(qµ,ε

s )ds} = e1 + e2 (3.4)

where

e1 = Eµ,ε
x g(pµ,ε

t , qµ,ε
t )χ{ρ0t(X

µ,ε
s ,Φr)≥κ

2
} · exp{1

ε

∫ t

0

c(qµ,ε
s )ds}

e2 = Eµ,ε
x g(pµ,ε

t , qµ,ε
t )χ{ρ0t(X

µ,ε
s ,Φr)< κ

2
} · exp{1

ε

∫ t

0

c(qµ,ε
s )ds}

e1 ≤ sup
{x:ρ0t(x,Φr)≥κ

2
}
exp{1

ε
t sup

q∈Rn

|c(q)|} · Pµ,ε
x {ρ0t(X

µ,ε
s , Φr) ≥ κ

2
}
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≤ exp{1

ε
t sup

q∈Rn

|c(q)| − 1

ε
(s− γ)}

≤ exp{−1

ε
(|m|+ 1− γ)}.

Choose a finite γ
2
-net: φ1, φ2, . . . , φn. Then

e2 ≤ sup
x∈R2n

|g(x)|
N∑

i=1

Eµ,ε
x χ{ρ0t(φi, Xµ,ε

s )<κ} exp{1

ε

∫ t

0

c(qµ,ε
s )ds}

≤ sup
x∈R2n

|g(x)|
N∑

i=1

exp{1

ε
(

∫ t

0

c(φis)ds +
γ

2
)}Pµ,ε

x {ρ0t(X
µ,ε
s , φi) < κ}.

Put ai = inf{Sµ
0t(φ) : ρ0t(φ, φi) < κ} − γ/4, i = 1, . . . , N. Since Sµ

0t(φ) is semi-

continuous, one can find α > 0 such that ρ0t(Φai
, φi) > κ + α. Since

ρ0t(X
µ,ε, φi) ≥ −ρ0t(X

µ,ε, Φai
) + ρ0t(φi, Φai

)

Pµ,ε
x {ρ0t(X

µ,ε, ϕi) < κ} ≤ Pµ,ε
x {ρ0t(ϕi, Φai

)− ρ0t(X
µ,ε, Φai

)} ≤ κ}

= Pµ,ε
x {ρ0t(X

µ,ε, Φai
) ≥ ρ0t(ϕi, Φai

)− κ}

= Pµ,ε
x {ρ0t(X

µ,ε, Φai
) ≥ κ + α− κ}

= Pµ,ε
x {ρ0t(X

µ,ε, Φai
) ≥ α},

we have

Pµ,ε
x {ρ0t(X

µ,ε, φi) < κ} ≤ Pµ,ε
x {ρ0t(X

µ,ε, Φai
) ≥ α}

≤ exp{−1

ε
(ai − γ

4
)}
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This implies that

e2 ≤ sup
x∈R2n

|g(x)|
N∑

i=1

exp{1

ε
(

∫ t

0

c(φis)ds +
γ

2
)} · exp{−1

ε
(ai +

γ

4
)}

= sup
x∈R2n

|g(x)|
N∑

i=1

exp{1

ε

∫ t

0

c(φis)ds− 1

ε
(ai +

γ

4
)}

= sup
x∈R2n

|g(x)|
N∑

i=1

exp{1

ε
[sup{Rµ

0t(φ) : ρ0t(φ, φi) < κ}+ 2γ]}

From equation (3.4), we obtain

Eµ,ε
x g(pµ,ε

t , qµ,ε
t ) exp

{
1

ε

∫ t

0

c(qµ,ε
s )ds} ≤ exp{1

ε
(m + 3γ)

}
(3.5)

Since γ is arbitrarily small, from estimate (3.3) and (3.5), we prove

lim
ε↓0

ε ln Eµ,ε
x g(pµ,ε

t , qµ,ε
t ) exp{1

ε

∫ t

0

c(qµ,ε
s )ds}

= sup{Rµ
0t(φ) : φ0 = x, φt ∈ [supp g(p, q)] = [Gµ

0 ]}.

Let ϕ = φ(2) be the second component of vector φ = (φ(1), φ(2)) ∈ R2n. Define

V µ(t, p, q) as:

V µ(t, p, q) = sup{Rµ
0t(φ) : φ0 = (p, q), φt ∈ [Gµ

0 ]}

= sup{
∫ t

0

c(φs)ds− Sµ
0t(φ) : φ0 = (p, q), φt ∈ [Gµ

0 ]}

= sup{
∫ t

0

c(ϕs)− 1

2
|σ−1(ϕ)(µϕ̈s + ϕ̇s)|2ds :

ϕ0 = q, ϕ̇0 = p, (ϕt, ϕ̇t) ∈ [Gµ
0 ]}
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The Feynman-Kac formula implies that the function uε(t, p, q) obeys the rela-

tion

uε(t, p, q) = Eµ,ε
(p,q)g(pµ,ε

t , qµ,ε
t ) exp{1

ε
c(qµ,ε

s , uε(t− s, pµ,ε
s , qµ,ε

s )ds} (3.6)

where c(q, u) = u−1f(q, u), c(q) = c(q, 0) ≥ c(q, u). Let

Ωµ
− = {(t, p, q) : V µ(t, p, q) < 0}.

We say that condition (Nµ) is fulfilled if

(Nµ) : V µ(t, p, q) = sup{
∫ t

0

c(ϕs)ds− Sµ
0t(ϕ) :

ϕ0 = q, ϕ̇0 = p, (ϕt, ϕ̇t) ∈ [Gµ
0 ], (t− s, ϕ̇s, ϕs) ∈ Ωµ

− for 0 < s < t}

holds for any t > 0 and (p, q) ∈ Σt = {(p, q) ∈ R2n : V µ(t, p, q) = 0}.

Theorem 3.1.4. Suppose f(q, u) satisfies the KPP assumption for q ∈ Rn and let

condition (Nµ) be fulfilled. Then for the solution uε(t, p, q) of the Cauchy problem

(1.15) the following relation holds:

lim
ε↓0

uε(t, p, q) =





1, for Ωµ
+ = {(t, p, q) : V µ(t, p, q) > 0}

0, for Ωµ
− = {(t, p, q) : V µ(t, p, q) < 0}

This convergence is uniform on every compactum lying in the region

{(t, p, q) : t > 0, p, q ∈ Rn, V µ(t, p, q) < 0}

and

{(t, p, q) : t > 0, p, q ∈ Rn, V µ(t, p, q) > 0}

respectively.
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Proof. From the KPP assumption, we know c(q, u) ≤ c(q, 0) = c(q). It follows that

0 ≤ uε(t, p, q) ≤ Eµ,ε
(p,q)g(pµ,ε

t , qµ,ε
t ) exp{1

ε

∫ t

0

c(qµ,ε
s )ds}

³ exp{V µ(t, p, q)

ε
}.

Thus when (t, p, q) ∈ Ωµ
−, that is, V µ(t, p, q) < 0,

lim sup
ε↓0

ε ln uε(t, p, q) ≤ V µ(t, p, q) < 0.

Therefore

lim
ε↓0

uε(t, p, q) = 0.

This convergence is uniform on the set Ωδ ∩ Ωµ
− where Ωδ = {(t, p, q) : t ∈

[0, T ], |(p, q)| < T, |V µ(t, p, q)| ≥ δ}.

To show limε↓0 uε(t, p, q) = 1 whenever V µ(t, p, q) > 0, consider the strong

Markov process

(Y µ,ε
s = (ts, p

µ,ε
s , qµ,ε

s ) = (t− s, pµ,ε
s , qµ,ε

s ), Pµ,ε
(t,p,q))

corresponding to the operator Lµ,ε − ∂/∂t. First we show that if (Nµ) holds, then

for any δ > 0, T > 0 there exists ε0 such that when 0 < ε < ε0, for (p, q) ∈ Σt, 0 <

t < T , we have

uε(t, p, q) > exp{−δ/ε}. (3.7)

By virtue of condition (Nµ), let ϕ̂ ∈ C0t(Rn), ϕ̂0 = q, ˙̂ϕ0 = p, (ϕ̂, ˙̂ϕ) ∈ [Gµ
0 ]. For

some small number θ > 0, suppose that when s ∈ [θ, t− θ], the point (t− s, ˙̂ϕs, ϕ̂s)

is at a positive distance κ from the complement of Ωµ
− and Rµ

0t(ϕ̂) =
∫ t

0
c(ϕ̂s)ds −
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Sµ
0t(ϕ̂) > −δ/4. Since

0 ≤ uε(t, p, q) ≤ exp{V µ(t, p, q)

ε
}

0 ≤ uε(t− s, p, q) ≤ exp{V µ(t− s, p, q)

ε
}

0 ≤ uε(t− s, ˙̂ϕs, ϕ̂s) ≤ exp{V µ(t− s, ˙̂ϕs, ϕ̂s)

ε
} < 1,

for small ε > 0, uε(t− s, ˙̂ϕs, ϕ̂s) is close to 0, except for small parts near s = 0 and

s = t. Therefore

sup
θ<s<t−θ

[c(ϕ̂s)− c(ϕ̂s, u
ε(t− s, ˙̂ϕs, ϕ̂s))] <

δ

4

provided ε > 0 is small enough. Then one can find θ and κ0 so small such that that

uε(t, p, q) = Eµ,ε
(p,q)g(pµ,ε

t , qµ,ε
t ) exp{1

ε

∫ t

0

c(qµ,ε
s , uε(t− s, pµ,ε

s , qµ,ε
s ))ds}

≥ Eµ,ε
(p,q)g(pµ,ε

t , qµ,ε
t )χρ0t((ϕ̂, ˙̂ϕ),(qµ,ε,pµ,ε))<κ0

× exp{1

ε

∫ t

0

c(qµ,ε
s , uε(t− s, pµ,ε

s , qµ,ε
s ))ds}

≥ Pµ,ε
(p,q){ρ0t((ϕ̂, ˙̂ϕ), (qµ,ε, pµ,ε)) < κ0} exp{1

ε
(

∫ t

0

c(ϕ̂s)ds− δ

4
)}

≥ exp{−1

ε
(Sµ

0t(ϕ) +
δ

2
)} exp{1

ε
(

∫ t

0

c(ϕ̂s)ds− δ

4
)}

= exp{1

ε
(

∫ t

0

c(ϕ̂s)ds− Sµ
0t(ϕ̂))− δ

4ε
− 2δ

4ε
}

= exp{1

ε
(Rµ

0t(ϕ̂)− 3δ

4
)}

48



> exp{−δ

ε
}.

Next we establish the inequality

lim inf
ε↓0

uε(t, p, q) ≥ 1.

Let λ be a small positive number. Introduce Markov times:

τ ε,λ
1 = τ1 = inf{s : uε(ts, p

µ,ε
s , qµ,ε

s ) ≥ 1− λ}

τ ε,λ
2 = τ2 = inf{s : V µ(ts, p

µ,ε
s , qµ,ε

s ) = 0}

τ ε,λ = τ = τ ε,λ
1 ∧ τ ε,λ

2 = τ1 ∧ τ2.

The strong Markov property and the Feynman-Kac formula imply:

uε(t, p, q) = Eµ,ε
(t,p,q)u

ε(tτ , p
µ,ε
τ , qµ,ε

τ ) exp{1

ε

∫ τ

0

c(qµ,ε
s , uε(t− s, pµ,ε

s , qµ,ε
s ))ds}

= A1 + A2

where

A1 = Eµ,ε
(t,p,q)χτ=τ1u

ε(tτ1 , p
µ,ε
τ1

, qµ,ε
τ1

) exp{1

ε

∫ τ1

0

c(qµ,ε
s , uε(ts, p

µ,ε
s , qµ,ε

s ))ds}

A2 = Eµ,ε
(t,p,q)χτ=τ2u

ε(tτ2 , p
µ,ε
τ2

, qµ,ε
τ2

) exp{1

ε

∫ τ2

0

c(qµ,ε
s , uε(ts, p

µ,ε
s , qµ,ε

s ))ds}.

Since c(q, u) ≥ 0 when 0 ≤ u ≤ 1− λ,

A1 ≥ (1− λ)Eµ,ε
(t,p,q)χτ=τ1 = (1− λ)Pµ,ε

(t,p,q){τ = τ1}. (3.8)
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To bound A2, let V0 = V µ(t, p, q) > 0, choose h > 0 such that

inf{V µ(s, y, x) : |s− t| < h, |y − p| < h, |x− q| < h} >
1

2
V0.

Select δ ∈ (0, α/2), where

α = h · min
|x−q|≤h, 0≤u≤1−λ

c(q, u).

By (3.7), for ε small enough

uε(tτ2 , p
µ,ε
τ2

, qµ,ε
τ2

) > exp

{
−δ

ε

}
.

We denote τ3 = inf{s : |qµ,ε
s − q| = h}. Let D = {x : |x− q| ≤ h}. Then

P{τ3 ≤ t} = P{qµ,ε
s exits from D for some s ∈ [0, t]}

³ exp(−1

ε
inf{Sµ

0t(ϕ) : ϕ0 = q, ϕ̇0 = p, (ϕs, ϕ̇s) ∈ ∂D,

for some s ∈ [0, t]})

= exp{−C1

ε
} for some C1 > 0.

Therefore, as ε ↓ 0, P{τ3 ≤ t} → 0 for any t > 0. Then A2 can be bounded from

below as follows

A2 = Eµ,ε
(t,p,q)χτ=τ2u

ε(tτ2 , p
µ,ε
τ2

, qµ,ε
τ2

) exp{1

ε

∫ τ2

0

c(qµ,ε
s , uε(ts, p

µ,ε
s , qµ,ε

s ))ds}

≥ Eµ,ε
(t,p,q)χτ2<τ3 exp{−δ

ε
} · exp(

α

h
· τ2

ε
)− Eµ,ε

(t,p,q)χτ2≥τ3 .

Since τ2 > h,

A2 ≥ exp{α− δ

ε
}Pµ,ε

(t,p,q){τ = τ2 < τ3} − Pµ,ε
(t,p,q){τ2 ≥ τ3}
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≥ exp{ α

2ε
}Pµ,ε

(t,p,q){τ2 < τ3} − o(ε). (3.9)

Collecting estimates (3.8) and (3.9), we obtain

uε(t, p, q) ≥ (1− λ)Pµ,ε
(t,p,q){τ = τ1}+ exp{ α

2ε
}Pµ,ε

(t,p,q){τ2 < τ3},

which implies that

uε(t, p, q) > 1− λ, for ε small enough.

This is true for any λ > 0, so

lim inf
ε↓0

uε(t, p, q) ≥ 1 (3.10)

Finally we show that

lim sup
ε↓0

uε(t, p, q) ≤ 1.

Pick a small λ > 0. Denote Dε = {(t, p, q) : t ≥ 0, uε(t, p, q) ≥ 1 + λ}, and let

τ4 = τµ,ε,λ
4 = inf{s : Y µ,ε

s /∈ Dε}, the first exit time of the process Y µ,ε
s from Dε.

Then

uε(t, p, q) = Eµ,ε
(t,p,q)u

ε(t− τ4, p
µ,ε
τ4

, qµ,ε
τ4

) exp{1

ε

∫ τ4

0

c(qµ,ε
s , uε(ts, p

µ,ε
s , qµ,ε

s ))ds}

= Eµ,ε
(t,p,q)χτ4<tu

ε(Y µ,ε
τ4

) exp{1

ε

∫ τ4

0

c(qµ,ε
s , uε(Y µ,ε

s ))ds}

+ Eµ,ε
(t,p,q)χτ4=tg(pµ,ε

t , qµ,ε
t ) exp{1

ε

∫ t

0

c(qµ,ε
s , uε(Y µ,ε

s ))ds}

When u < 1 + λ, the KPP assumption implies that c(q, u) = u−1f(q, u) > 0.

Therefore
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uε(t, p, q) ≤ (1 + λ)Pµ,ε
(t,p,q){τ4 < t}+ ‖g‖ exp{−−t

ε
min

1+λ≤u≤2+‖g‖,|x−q|≤h
|c(x, u)|}

× Pµ,ε
(t,p,q){τ4 = t}+ Pµ,ε

(t,p,q){inf{s : |qµ,ε
s − q| = h < t}}

If we choose ε small enough, uε(t, p, q) ≤ 1 + 2λ, thus

lim sup
ε↓0

uε(t, p, q) ≤ 1. (3.11)

From (3.10) and (3.11), we get

lim
ε↓0

uε(t, p, q) = 1, when (t, p, q) ∈ Ωµ
+

3.2 Convergence of the Wavefronts

We first summarize the characterization of the wavefronts of equations (1.15)

and (1.17). Let

Gµ
0 = {(p, q) : g(p, q) > 0}

and let [Gµ
0 ] denote the closure of Gµ

0 ; let

G0 = {(0, q) : g(0, q) > 0}

and let [G0] denote the closure of G0.

For the degenerate reaction-diffusion equation (1.15):

i. When condition (Nµ) is satisfied, i.e.

(Nµ) :
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V µ(t, p, q) = sup{Rµ
0t(ϕ) =

∫ t

0

c(ϕs)− 1

2
|σ−1(ϕs)(µϕ̈s + ϕ̇s)|2ds :

ϕ0 = q, ϕ̇0 = p, (ϕt, ϕ̇t) ∈ [Gµ
0 ], V µ(t− s, ϕ̇s, ϕs) < 0 for 0 < s < t}

the function

V µ(t, p, q) = sup{Rµ
0t(ϕ) =

∫ t

0

c(ϕs)− 1

2
|σ−1(ϕs)(µϕ̈s + ϕ̇s)|2ds :

ϕ0 = q, ϕ̇0 = p, (ϕt, ϕ̇t) ∈ [Gµ
0 ]}

determines the position of the wavefront. In this case, the manifold

Σµ
t = {(p, q) ∈ R2n : V µ(t, p, q) = 0}

separates the regions of Ωµ
+ and Ωµ

−.

In

Ωµ
+ = {(t, p, q) : V µ(t, p, q) > 0}

the solution uε(t, p, q) converges to 1 as ε ↓ 0 uniformly in any compact subset

of Ωµ
+.

In

Ωµ
− = {(t, p, q) : V µ(t, p, q) < 0}

the solution uε(t, p, q) converges to 0 as ε ↓ 0 and converges uniformly in any

compact subset of Ωµ
−.

ii. When condition (Nµ) is not satisfied, we know the function

V ∗,µ(t, p, q) = sup min
0≤a≤t

{Rµ
0a(ϕ) =

∫ a

0

c(ϕs)− 1

2
|σ−1(ϕs)(µϕ̈s + ϕ̇s)|2ds :
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ϕ0 = q, ϕ̇0 = p, (ϕt, ϕ̇t) ∈ [Gµ
0 ]}

characterizes the position of the wavefronts. In this case, the solution uε(t, p, q)

converges to 1 as ε ↓ 0 and converges uniformly in any compact subset of Ω∗,µ
+

defined as

Ω∗,µ
+ = {(t, p, q) : V ∗,µ(t, p, q) = 0}.

The solution uε(t, p, q) converges to 0 as ε ↓ 0 uniformly in any compact subset

of Ω∗,µ
− defined as

Ω∗,µ
− = {(t, p, q) : V ∗,µ(t, p, q) < 0}.

iii. From the definition of V µ(t, p, q) and V ∗,µ(t, p, q), we know the following rela-

tion holds:

V ∗,µ(t, p, q) ≤ V µ(t, p, q) ∧ 0.

This implies Ω∗,µ
+ ⊆ Ωµ

+ and Ω∗,µ
− ⊇ Ωµ

−.

For the non-degenerate reaction-diffusion equation (1.17):

i. When condition (N) is satisfied, i.e.

(N) :

V (t, q) = sup{R0t(ϕ) =

∫ t

0

c(ϕs)− 1

2
|σ−1(ϕs)ϕ̇s|2ds :

ϕ0 = q, ϕt ∈ [G0], V (t− s, ϕs) < 0 for 0 < s < t},

the functional

V (t, q) = sup{R0t(ϕ) =

∫ t

0

c(ϕs)− 1

2
|σ−1(ϕs)ϕ̇s|2ds :
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ϕ0 = q, ϕt ∈ [G0]}

determines the position of the wavefront. In this case, the manifold

Σt = {q ∈ Rn : V (t, q) = 0}

separates the region of Ω+ and Ω−.

In

Ω+ = {(t, q) : V (t, q) > 0}

the solution uε(t, q) converges to 1 as ε ↓ 0 and converges uniformly in any

compact subset of Ω+.

In

Ω− = {(t, q) : V (t, q) < 0}

the solution uε(t, q) converges to 0 as ε ↓ 0 and converges uniformly in any

compact subset of Ω−.

ii. When condition (N) is not satisfied, we know the function

V ∗(t, q) = sup min
0≤a≤t

{R0a(ϕ) =

∫ a

0

c(ϕs)− 1

2
|σ−1(ϕs)ϕ̇s|2ds :

ϕ0 = q, ϕt ∈ [G0]}

characterizes the position of the wavefronts. In this case, the solution uε(t, q)

converges to 1 as ε ↓ 0 uniformly in any compact subset of Ω∗
+ defined as

Ω∗
+ = {(t, q) : V ∗(t, q) = 0}.
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The solution uε(t, q) converges to 0 as ε ↓ 0 uniformly in any compact subset

of Ω∗
− defined as

Ω∗
− = {(t, q) : V ∗(t, q) < 0}.

iii. From the definition of V (t, q) and V ∗(t, q), we know the following relation

holds:

V ∗(t, q) ≤ V (t, q) ∧ 0.

Thus Ω∗
+ ⊆ Ω+ and Ω∗

− ⊇ Ω−.

3.2.1 Convergence of Wavefronts Under Condition (Nµ) and N

In this section, we consider the convergence when both condition Nµ and

condition N are satisfied for problem (1.15) and (1.17). In this case, the manifold

Σµ
t = {(p, q) ∈ R2n : V µ(t, p, q) = 0}

can be considered as the position of the wave front for equation (1.15), and

Σt = {q ∈ Rn : V (t, q) = 0}

can also be considered for equation (1.17).

Theorem 3.2.1. Assume f(q, u) = uc(q, u) satisfies the KPP assumption for q ∈

Rn. Let conditions (Nµ) and (N) be fulfilled and let Dp ⊂ Rn and Dq ⊂ Rn be

compact. Then for each p ∈ Dp, q ∈ Dq,

lim
u↓0

V µ(t, p, q) = V (t, q)

for each 0 ≤ t ≤ T < ∞.
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Proof. It is equivalent to show that for each p ∈ Dp ⊂ Rn, the following inequalities

hold:

V (t, q) ≥ lim sup
µ↓0

V µ(t, p, q) (3.12)

V (t, q) ≤ lim inf
µ↓0

V µ(t, p, q). (3.13)

To show (3.13), take ϕ∗ be an extremal of the functional

R0t(ϕ) =

∫ t

0

c(ϕs)− 1

2
|σ−1(ϕs)ϕ̇s|2ds

such that

V (t, q) = R0t(ϕ
∗) = sup{R0t(ϕ) : ϕ0 = q, ϕt ∈ [G0]}.

The Euler-Lagrange equation for extremals of R0t(ϕ) implies that they are in C2([0, t]).

Let a(q) = σ(q)σ∗(q), q ∈ Dq be strictly positive definite. Assume σ(q), q ∈ Dq,

have bounded derivatives. Then

V µ(t, p, q) ≥ Rµ
0t(ϕ

∗)

=

∫ t

0

c(ϕ∗s)−
1

2
|σ−1(ϕ∗s)(µϕ̈∗s + ϕ̇∗s)|2ds

=

∫ t

0

c(ϕ∗s)−
1

2
|σ−1(ϕ∗s)µϕ̈∗s|2 −

1

2
|σ−1(ϕ∗s)ϕ̇∗s|2

− (σ−1(ϕ∗s)µϕ̈∗s, σ−1(ϕ∗s)ϕ̇∗s)ds

=

∫ t

0

c(ϕ∗s)−
1

2
|σ−1(ϕ∗s)ϕ̇∗s|2ds− µ2

2

∫ t

0

|σ−1(ϕ∗s)ϕ̈∗s|2ds

− µ

∫ t

0

(a−1(ϕ∗s)ϕ̇∗s, ϕ̈∗s)ds

= R0t(ϕ
∗)− µ2

2

∫ t

0

|σ−1(ϕ∗s)ϕ̈∗s|2ds− µ

∫ t

0

n∑
i=1

n∑
j=1

a−1
ij (ϕ∗s)ϕ̇∗s

i
ϕ̈∗s

j
ds
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= R0t(ϕ
∗)− µ2

2

∫ t

0

|σ−1(ϕ∗s)ϕ̈∗s|2ds− µ

2

∫ t

0

n∑
i=1

n∑
j

a−1
ij (ϕ∗s)d(ϕ̇∗s

j
ϕ̇∗s

i
)

= R0t(ϕ
∗)− µ

2

n∑
i=1

n∑
j=1

a−1
ij (ϕ∗s)ϕ̇∗s

j
ϕ̇∗s

i|t0 −
µ

2

∫ t

0

n∑
i=1

n∑
j=1

ϕ̇∗s
j
ϕ̇∗s

i
d(a−1

ij (ϕ∗s))

− o(µ)

= R0t(ϕ
∗)− µ

2
[(σ−1(ϕ∗t )ϕ̇

∗
t , σ

−1(ϕ∗t )ϕ̇
∗
t )− (σ−1(ϕ∗0)ϕ̇

∗
0, σ

−1(ϕ∗0)ϕ̇
∗
0)]

− µ

2

∫ t

0

n∑
i=1

n∑
j=1

ϕ̇∗s
j
ϕ̇∗s

i
d(a−1

ij (ϕ∗s))− o(µ)

= R0t(ϕ
∗)− µ

2
[|σ−1(ϕ∗t )ϕ̇

∗
t |2 − |σ−1(q)ϕ̇∗0|2]

− µ

2

∫ t

0

n∑
i=1

n∑
j=1

ϕ̇∗s
j
ϕ̇∗s

i
d(a−1

ij (ϕ∗s))− o(µ).

Since ϕ∗s ∈ C2([0, t]), the derivatives in

A = −µ

2
[|σ−1(ϕ∗t )ϕ̇

∗
t |2 − |σ−1(q)ϕ̇∗0|2]−

µ

2

∫ t

0

n∑
i=1

n∑
j=1

ϕ̇∗s
j
ϕ̇∗s

i
d(a−1

ij (ϕ∗s))

are bounded. Thus A ∼ o(u) as µ ↓ 0, which implies that

V µ(t, p, q) ≥ R0t(ϕ
∗)− o(µ) = V (t, q)− o(µ).

When µ ↓ 0, we have the following estimate:

lim inf
µ↓0

V µ(t, p, q) ≥ V (t, q).

To prove (3.12), for each fixed µ > 0 let ϕ̂ be an extremal of the functional

Rµ
0t(ϕ) =

∫ t

0

c(ϕs)− 1

2
|σ−1(ϕs)(µϕ̈s + ϕ̇s)|2ds

such that V µ(t, p, q) = Rµ
0t(ϕ̂). Similarly, extremals of Rµ

0t(ϕ) are in C4([0, t]). Then

Rµ
0t(ϕ) =

∫ t

0

c(ϕ̂s)− 1

2
|σ−1(ϕ̂s)(µ ¨̂ϕs + ˙̂ϕs)|2ds
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=

∫ t

0

c(ϕ̂s)− 1

2
|σ−1(ϕ̂s) ˙̂ϕs|2ds− 1

2

∫ t

0

µ2|σ−1(ϕ̂s) ¨̂ϕs|2ds

− µ

∫ t

0

(σ−1(ϕ̂s) ¨̂ϕs, σ
−1(ϕ̂s) ˙̂ϕs)ds

= R0t(ϕ̂)− µ2

2

∫ t

0

|σ−1(ϕ̂s) ¨̂ϕs|2ds− µ

2

∫ t

0

n∑
i=1

n∑
j=1

a−1
ij (ϕ̂s)d(ϕ̂i

sϕ̂
j
s)

= R0t(ϕ̂)− o(µ)− µ

2
[(a−1(ϕ̂t) ˙̂ϕt, ˙̂ϕt)− (a−1(ϕ̂0) ˙̂ϕ0, ˙̂ϕ0)]

+
µ

2

∫ t

0

n∑
i=1

n∑
j=1

˙̂ϕi
s
˙̂ϕj
sd[a−1

ij (ϕ̂s)]

= R0t(ϕ̂)− o(µ)− µ

2
[|σ−1(ϕ̂t) ˙̂ϕt|2 − |σ−1(q)p|2]

+
µ

2

∫ t

0

n∑
i=1

n∑
j=1

˙̂ϕi
s
˙̂ϕj
sd[a−1

ij (ϕ̂s)]

≤ R0t(ϕ̂) +
µ

2

∫ t

0

n∑
i=1

n∑
j=1

˙̂ϕi
s
˙̂ϕj
sd[a−1

ij (ϕ̂s)]

− µ

2
[|σ−1(ϕ̂t) ˙̂ϕt|2 − σ−1(q)p|2].

Since p ∈ Dp ⊂ Rn, q ∈ Dq ⊂ Rn, Dp, Dq are compact and σ(q) has bounded

derivatives, the derivatives in the quantity

B =
µ

2

∫ t

0

n∑
i=1

n∑
j=1

˙̂ϕi
s
˙̂ϕj
sd[a−1

ij (ϕ̂s)]− µ

2
[|σ−1(ϕ̂t) ˙̂ϕt|2 − σ−1(q)p|2]

are all bounded. Therefore, B ∼ o(µ) as µ ↓ 0. Summarizing the above inequalities,

we obtain

R0t(ϕ̂) ≤ R0t(ϕ̂) + o(µ) ≤ V (t, q) + o(µ).

Thus,

lim sup
µ↓0

V µ(t, p, q) ≤ V (t, q).
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From (3.12) and (3.13) we find that for fixed p ∈ Dp ⊂ Rn, for each t ∈ [0, T ], 0 <

T < ∞, q ∈ Dq ⊂ Rn, we have

lim
µ↓0

V µ(t, p, q) = V (t, q). (3.14)

Example 3.2.2. Consider the following example in R1. Recall that if the function

f(q, u) satisfies the KPP assumption, then it fulfills the relation

f(q, u) = uc(q, u), max
0≤u≤1

c(q, u) = c(q, 0) = c(q).

Assume that the function c(q) is a linear function with slope of k > 0 for q > 0 and

is 0 when q < 0, i.e.

c(q) = c(q, 0) =





kq, q > 0

0, q < 0

We study the relation between the wavefront propagation of the following two equa-

tions. The first is

∂uε(t, p, q)

∂t
=

ε

2µ2

∂2uε

∂p2
− 1

µ
p
∂uε

∂p
+ p

∂uε

∂q
+

1

ε
uεc(q, uε) (3.15)

uε(0, p, q) = δ(p)χ−1(q), q, p ∈ R1

where δ(p) is the delta function centered at 0, taking value 1 at 0 and 0 otherwise

and χ−1(q) is the indicator function such that

χ−1(q) =





1, q < 0

0, q ≥ 0

The second equation is

∂uε(t, q)

∂t
=

ε

2

∂2uε

∂q2
+

1

ε
uεc(q, uε) (3.16)
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uε(0, q) = χ−1(q), q ∈ R1.

We will prove in what follows that both condition (Nµ) and condition (N) are ful-

filled when c(q) is linearly growing as kq. Thus we can use the functionals V µ(t, p, q)

to characterize the wave front propagation for equation (3.15) and V (t, q) for equa-

tion (3.16). Let

V µ(t, p, q) = sup{
∫ t

0

c(ϕs)− 1

2
|µϕ̈s + ϕ̇s|2ds, ϕ0 = q, ϕ̇0 = p, ϕt = ϕ̇t = 0}

V (t, q) = sup{
∫ t

0

c(ϕs)− 1

2
|ϕ̇s|2ds, ϕ0 = q, ϕt = 0}.

For the functional V (t, q), the Euler-Lagrange equation has the form

ϕ̈s = −k, ϕ0 = q, ϕt = 0.

There exists a unique solution ϕ̃s, s ∈ [0, t], on which the supremum is attained. It

has the form

ϕ̃s = −1

2
ks2 − (

q

t
− kt

2
)s + q (3.17)

and its derivative has the form

˙̃ϕs = −ks− q

t
+

kt

2
. (3.18)

The functional V (t, q) has the expression

V (t, q) =

∫ t

0

c(ϕ̃s)− 1

2
| ˙̃ϕs|2ds

= − 1

2t
q2 +

1

2
kqt +

1

24
k2t3. (3.19)
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By setting V (t, q) = 0, we calculate the front position as

q(t) =
1

6
(3 + 2

√
3)t2k, q > 0. (3.20)

Since the front position q(t) is a convex function and the extremal ϕ̃s is concave,

condition (N) is satisfied. Thus characterization of the wave front position using

function V (t, q) is verified. Moreover, we also obtain the wave front position and

extremals.

For equation (3.15), we will approach the functional V µ(t, p, q) in the same

way as we treat the functional V (t, q). It is more complicated, but we can simplify

the analysis somewhat by considering small µ.

Let

F (ϕs, ϕ̇s, ϕ̈s) = c(ϕs)− 1

2
|µϕ̈s + ϕ̇s|2.

The Euler-Lagrange equation for the functional F (ϕ, ϕ̇, ϕ̈) is calculated as

d

dϕ
F − d

ds

d

dϕ̇
F +

d2

ds2

d

dϕ̈
F = c′(ϕs)− d

ds
[−(µϕ̈s + ϕ̇s)] +

d2

ds2
[−µ(µϕ̈s + ϕ̇s)]

= c′(ϕs) + (µϕ(3)
s + ϕ̈s)− (µ2ϕ(4)

s + µϕ(3)
s )

= c′(ϕs) + ϕ̈s − µ2ϕ(4)
s = 0

The Euler-Lagrange equation is

µ2ϕ(4)
s − ϕ̈s = c′(ϕs) = k.

Let ϕ̂µ
s , s ∈ [0, t] be the solution of the Euler-Lagrange equation :

µ2ϕ̂µ,(4)
s − ϕ̈µ

s = k, ϕ̂µ
0 = q > 0, ˙̂ϕµ

0 = p, ϕ̂t = ˙̂ϕµ
t = 0. (3.21)
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It’s easy to check that all solutions of (3.21) satisfy the equation

¨̂ϕµ(s) = c1 exp

(
− s

µ

)
+ c2 exp

(
s− t

µ

)
− k.

Integrating with respect to s and using the boundary condition ϕ̂µ
t = ˙̂ϕµ

t = 0 we

find:

ϕ̂µ(s) = −k(
s2

2
− ts +

t2

2
) + µc1

[
µ(exp(− s

µ
)− exp(− t

µ
)) + exp(− t

µ
)(s− t)

]

(3.22)

+ µc2[µ(exp(
s− t

µ
)− 1) + t− s]

˙̂ϕµ(s) = −k(s− t) + µc1( exp(− t

µ
)− exp(− s

µ
)) + µc2(exp(

s− t

µ
)− 1) (3.23)

From ϕ̂µ(0) = q, we have

q = −kt2

2
+ µc1[µ(1− exp(− t

µ
))− t exp(− t

µ
)] + µc2[µ(exp(− t

µ
)− 1) + t],

which is equivalent to

µc1[µ

(
1− exp(− t

µ
)

)
− t exp(− t

µ
)]+µc2[µ

(
exp(− t

µ
)− 1

)
+ t] = q +

kt2

2
. (3.24)

From ˙̂ϕµ(0) = p, we have

˙̂ϕµ(0) = kt + µc1

(
exp(− t

µ
)− 1

)
+ µc2

(
exp(− t

µ
)− 1

)
= p,

which implies that

(µc1 + µc2)

(
exp(− t

µ
)− 1

)
= p− kt. (3.25)

Solve (3.24) and (3.25) for µc1 and µc2, we obtain

µc1 =
(exp(− t

µ
)− 1)(q + k

2
t2)− [µ(exp(− t

µ
)− 1) + t](p− kt)

(exp(− t
µ
)− 1)[2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t]

(3.26)
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µc2 =
[µ(1− exp(− t

µ
))− t exp(− t

µ
)](p− kt)− (q + k

2
t2)(exp(− t

µ
)− 1)

(exp(− t
µ
)− 1)[2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t]

. (3.27)

Notice that when µ ↓ 0,

µc1 −→ kt

2
− p− q

t
(3.28)

µc2 −→ kt

2
+

q

t
(3.29)

Thus, µc1 ∼ O(1), µc2 ∼ O(1) as µ ↓ 0.

By substituting for ϕ̂µ
s ,

˙̂ϕµ
s ,

¨̂ϕµ
s , we calculate V µ(t, p, q) as

V µ(t, p, q) =

∫ t

0

c(ϕ̂µ
s )− 1

2
|µ ¨̂ϕµ

s + ˙̂ϕµ
s |2ds

= 2µ2(exp(− t

µ
)− 1)c2K2 + kµ3(1− exp(− t

µ
))c1 +

1

2
t2K3 + tK1 − 1

3
k2t3

+ [aµ3(exp(− t

µ
)− 1) + 2kµ2t]c2 + µ3(exp(−2t

µ
)c2

2 −
1

2
tK2

2 +
1

2
kt2K2

where

K1 = −k2t2

2
+ kµc1 exp(− t

µ
) (µ + t)− kµc2(µ− t),

K2 = µc1 exp(− t

µ
)− µc2 − k(µ− t),

K3 = k(µc1 exp(− t

µ
)− µc2 + kt).

We would like to solve V µ(t, p, q) = 0 for p, q to find the position of the wave front.

In order to simplify the problem, it’s helpful to write V µ(t, p, q) as a function of p, q

and find the dominating terms for small µ. First we write

µc1 = l1q − l2p + l12, (3.30)
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where l1, l2, l12 are quantities not depending on p, q. From (3.26), we know

l1 =

[
2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t

]−1

−→ −1

t
as µ ↓ 0

l2 =
µ(exp(− t

µ
)− 1) + t

(exp(− t
µ
)− 1)[2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t]

−→ 1 as µ ↓ 0

l12 =
l1k

2
t2 + l2kt

−→ kt

2
as µ ↓ 0

Similarly,

µc2 = l3p− l4q + l34, (3.31)

where l3, l4, l34 are quantities not depending on p, q. From (3.27) we know

l3 =
µ(1− exp(− t

µ
))− t exp(− t

µ
)

(exp(− t
µ
)− 1)[2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t]

−→ 0, as µ ↓ 0

l4 =

[
2µ

(
1− exp(− t

µ
)

)
− t exp(− t

µ
)− t

]−1

−→ −1

t
, as µ ↓ 0

l34 = −l3kt− l4kt2

2

−→ kt

2
, as µ ↓ 0.
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For the quantities K1, K2, K3, we can write:

K1 = l̄1q + l̄2p + l̄12, (3.32)

where

l̄1 = k(µ− t)l4 − k exp(− t

µ
)(µ + t)l1

−→ k, as µ ↓ 0

l̄2 = k exp(− t

µ
)(µ + t)l2 − k(µ− t)l3

−→ 0, as µ ↓ 0

l̄12 = −k2t2

2
− l12k exp(− t

µ
)(µ + t)− k(µ− t)l34

−→ 0, as µ ↓ 0.

Also

K2 = l̄3q + l̄4p + l34, (3.33)

where

l̄3 = l1 exp(− t

µ
) + l4

−→ −1

t
, as µ ↓ 0

l̄4 = −(l3 + l2 exp(− t

µ
))

−→ 0, as µ ↓ 0
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l̄34 = −k(µ− t) + l12 exp(− t

µ
)− l34

−→ kt

2
, as µ ↓ 0.

Finally

K3 = l̄5q + l̄6p + l̄56, (3.34)

where

l̄5 = k(exp(− t

µ
)l1 + l4)

−→ −k

t
, as µ ↓ 0

l̄6 = −k(l3 + l4 exp(− t

µ
))

−→ 0, as µ ↓ 0

l̄56 = k exp(− t

µ
)l12 − kl34 + k2t

−→ k2t

2
, as µ ↓ 0.

Summarizing (3.32), (3.33), (3.34) we calculate the following asymptotics when µ ↓

0:

K1 −→ kq (3.35)

K2 −→ −1

t
q +

kt

2
(3.36)

K3 −→ −k

t
q +

k2t

2
. (3.37)
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Collecting (3.26), (3.27), (3.32), (3.33), (3.34), we calculate V µ(t, p, q) as

V µ(t, p, q) = m1q
2 + m2q + m3p + m4 (3.38)

where

m1 =
µ(exp(− t

µ
)− 1)2

t2
− 1

2t
,

m2 =
1

2
kt− 2kµ2

t
+ kµ +

2kµ2

t
exp(− t

µ
) + kµ exp

(
−2t

µ

)
,

m3 = kµ2

(
exp(− t

µ
)− 1

)
,

m4 =
1

4
µk2t2

(
exp(− t

µ
) + 1

)2

+
1

24
k2t3.

Notice that when µ ↓ 0, the following limits hold for these quantities:

m1 −→ − 1

2t

m2 −→ 1

2
kt

m3 −→ 0

m4 −→ 1

24
k2t3.

When q > 0, there exists a µ1 > 0, such that whenever 0 < µ < µ1, the wave front

for q has the same concavity as:

q̂(t) =
2 +

√
3

2
√

3
kt2; (3.39)

and there exists a µ2 > 0 such that whenever 0 < µ < µ2, the wave front for p has

the same concavity as:

p̂(t) =
− 1

24
k2t3 − 1

2
qkt− 1

2t
q2

kµ2(exp(− t
µ
)− 1)
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Therefore, there exists a µ12 = µ1 ∧ µ2, when 0 < µ < µ12 the wavefronts pµ(t) and

qµ(t) are close to the convex functions p̂(t) and q̂(t) respectively.

The extremals ϕ̂µ
s and ˙̂ϕµ

s can be approximated in the same way. By plugging

in the approximate quantities µc1 and µc2 for small µ into equations (3.22) and

(3.23), we obtain:

ϕ̂µ(s) ≈− k

2
(
s2

2
− ts +

t2

2
)

+ (
kt

2
− p− q

t
)[µ(exp(− s

µ
)− exp(− t

µ
)) + exp(− t

µ
)(1− t)]

+ (
kt

2
+

q

t
)[µ(exp(

s− t

µ
)− 1) + t− s].

Its second derivative has the form:

¨̂ϕµ(s) ≈ −k

2
+

(kt
2
− p− qt) exp(− s

µ
)

µ
+

(kt
2

+ qt) exp( s−t
µ

)

µ
.

For small µ, ¨̂ϕµ
s is close to −k/2 which is negative, and thus there exists a µ3 > 0

such that when 0 < µ < µ3, ϕ̂µ
s , s ∈ [O(µ3), t − O(µ3)], has the same concavity as

its limit

ϕ̂s = −1

2
ks2 − (

q

t
− kt

2
)s + q.

For ˙̂ϕµ(s), we have:

˙̂ϕµ(s) = −k(s− t) + (
kt

2
− p− q

t
)(exp(− t

µ
)− exp(− s

µ
))

+ (
kt

2
+

q

t
)(exp(

s− t

µ
)− 1),

and thus there exists a µ4 > 0 such that when 0 < µ < µ4, ˙̂ϕµ(s), s ∈ [O(µ4), t −

O(µ4)] has the same linearity as its limit

˙̂ϕ(s) = −ks− q

t
+

kt

2
.
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Therefore, there exists µ34 = µ3 ∧ µ4 > 0 such that when 0 < µ < µ34, the extremal

ϕ̂µ
s is concave, and ˙̂ϕµ

s is linear on the interval s ∈ [O(µ34), t−O(µ34)].

Take µ0 = µ12 ∧ µ34. Then for 0 < µ < µ0, the wave front pµ(t), qµ(t)

is convex, the extremal ϕ̂µ(s) is concave, and ˙̂ϕµ(s) is linear on the interval s ∈

[O(µ0), t − O(µ0)]. Therefore condition (Nµ) is satisfied for 0 < µ < µ0. Now we

have justified the use of the functional V µ(t, p, q) as a characterization of the wave

front for equation (3.15).

From the above calculation of (3.19) and (3.38), we have proven V µ(t, p, q) −→

V (t, q) for each bounded p ∈ R1. Moreover, from (3.20) and (3.39), we see that the

asymptotic wave front positions are the same as µ ↓ 0. Therefore, we can use the

wave front of equation (3.16) to approximate that of (3.15).

3.2.2 Convergence of Wavefronts in the General Case

Convergence of the wavefronts when neither (Nµ) nor (N) is satisfied so far

can not be proved in general. However, we can still deal with some of the cases.

In this section, we will consider a special case of equations (1.15) and (1.17) when

the diffusion matrix σ(q) is a unit matrix. For simplicity, let the initial condition

be g(0, p, q) = δ(p)χ−1(q), g(0, q) = χ−1(q), where δ(p) and χ−1(q) are defined the

same way as in the example of the previous section. We will study the relation

between equations:

∂uε(t, p, q)

∂t
=

ε

2µ2
4p uε − 1

µ
p∇pu

ε + p∇qu
ε +

1

ε
uεc(q, uε) (3.40)
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uε(0, p, q) = δ(p)χ−1(q), q, p ∈ Rn;

and

∂uε(t, q)

∂t
=

ε

2
4q uε +

1

ε
uεc(q, uε) (3.41)

uε(0, q) = χ−1(q), q ∈ Rn.

Assume that for the given function c(q, u), condition (Nµ) is not fulfilled for equation

(3.40), while condition (N) is fulfilled for equation (3.41). Then functional

V ∗,µ(t, p, q) = sup min
0≤a≤t

{Rµ
0a(ϕ) : ϕ0 = q, ϕ̇0 = p, ϕt = ϕ̇t = 0},

where

Rµ
0a(ϕ) =

∫ a

0

c(ϕs)− 1

2
|µϕ̈s + ϕ̇s|2ds,

is used to characterize position of the wavefronts for equation (3.40). Recall that

the functional V µ(t, p, q) is defined as:

V µ(t, p, q) = sup{Rµ
0t(ϕ) : ϕ0 = q, ϕ̇0 = p, ϕt = ϕ̇t = 0}

where

Rµ
0t(ϕ) =

∫ t

0

c(ϕs)− 1

2
|µϕ̈s + ϕ̇s|2ds.

The following result can be generalized for any p ∈ D ⊂ Rn where D is compact.

For simplicity, fix p = 0. Define

Ω∗,µ
+ = {(t, q) : V ∗,µ(t, 0, q) = 0}

Ω∗,µ
− = {(t, q) : V ∗,µ(t, 0, q) < 0}
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We know that the solution of (3.40) converges to 1 as ε ↓ 0 uniformly in any compact

subset of Ω∗,µ
+ , and converges to 0 as ε ↓ 0 uniformly in any compact subset of Ω∗,µ

− .

Similarly, define:

Ωµ
+ = {(t, q) : V µ(t, 0, q) > 0}

Ωµ
− = {(t, q) : V µ(t, 0, q) < 0}

In general V ∗,µ(t, p, q) ≤ V µ(t, p, q) ∧ 0. When condition (Nµ) is not satisfied, the

inequality is strict:

V ∗,µ(t, p, q) < V µ(t, p, q) ∧ 0. (3.42)

It implies that

Ω∗,µ
+ ⊂ Ωµ

+

Ω∗,µ
− ⊃ Ωµ

−

Since we assume condition (N) is satisfied for equation (3.41), the characteri-

zations using functionals V ∗(t, q) and V (t, q) are equivalent. Let

V ∗(t, q) = sup min
0≤a≤t

{R0a(ϕ) : ϕ0 = q, ϕt = 0}

= sup min
0≤a≤t

{
∫ a

0

c(ϕs)− 1

2
|ϕ̇s|2 : ϕ0 = q, ϕt = 0}

V (t, q) = sup{R0t(ϕ) : ϕ0 = q, ϕt = 0}

= sup{
∫ t

0

c(ϕs)− 1

2
|ϕ̇s|2ds : ϕ0 = q, ϕt = 0}

Define:

Ω∗
+ = {(t, q) : V ∗(t, q) = 0}
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Ω∗
− = {(t, q) : V ∗(t, q) < 0}

Ω+ = {(t, q) : V (t, q) > 0}

Ω− = {(t, q) : V (t, q) < 0}.

The functionals V ∗(t, q) and V (t, q) are related by the equation

V ∗(t, q) ≤ V (t, q) ∧ 0

in general. When condition (N) is satisfied, the inequality becomes the equality

V ∗(t, q) = V (t, q) ∧ 0. (3.43)

This implies

Ω∗
+ = Ω+

Ω∗
− = Ω−

As we know, the solution of (3.41) converges uniformly to 1 as ε ↓ 0 in any compact

subset of Ω∗
+ = Ω+, and converges uniformly to 0 as ε ↓ 0 in any compact subset of

Ω∗
− = Ω−.

Lemma 3.2.3. Given 0 ≤ t ≤ T < ∞, assume that the function c(q) is sufficiently

smooth. Let ϕ̂µ
s , s ∈ [0, t], be an extremal of V µ(t, p, q) and let ϕ̃s, s ∈ [0, t], be an

extremal of V (t, q). Then

ϕ̂µ
s −→ ϕ̃s

˙̂ϕµ
s −→ ˙̃ϕs

as µ ↓ 0 for each s ∈ [0, t].
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Proof. Since ϕ̂µ
s and ϕ̃s, s ∈ [0, t] are extremals, they solve the Euler-Lagrange

equations:

µ2ϕ̂µ,(4)
s − ¨̂ϕµ

s = ∇c(ϕ̂µ
s ), ϕ̂µ

0 = q, ˙̂ϕµ
0 = p, ϕ̂t = ˙̂ϕt = 0 (3.44)

¨̃ϕs = −∇c(ϕ̃s), ϕ̃0 = q, ϕ̃t = 0. (3.45)

Consider equation (3.44) without boundary conditions. It can be written as the

following system:

˙̂ϕµ = v, v̇ = x, µẋ = y, µẏ = x +∇c(ϕ̂µ).

Let h(s) = ∇c(ϕ̂µ
s ). Since x(s) = ¨̂ϕµ

s , equation (3.44) can be written as

µ2ẍ(s)− x(s) = h(s), s ∈ [0, t]. (3.46)

It can be calculated that for all h ∈ C1([0, t]), any solution of (3.46) is given by

x(s) = exp(− s

µ
)c1 + exp(

s− t

µ
)c2 + H(s) (3.47)

where

H(s) =
1

2

∫ s

0

exp

(
r − s

µ

)
ḣ(r)ds− 1

2

∫ t

s

exp

(
s− r

µ

)
ḣ(r)dr − h(s).

Notice that the integral terms

1

2

∫ s

0

exp

(
r − s

µ

)
ḣ(r)ds− 1

2

∫ t

s

exp

(
s− r

µ

)
ḣ(r)dr −→ 0, as µ ↓ 0.

Since ¨̂ϕµ(s) = x(s), replace x(s) in (3.47) we find

¨̂ϕµ(s) = exp(− s

µ
)c1 + exp(

s− t

µ
)c2 + H(s).
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Integrate both sides of the equation using the boundary condition

ϕ̂µ
t = ˙̂ϕµ

t = 0

to get

ϕ̂µ(s) =

∫ t

s

∫ t

r

H(z)dzdr + µc1[µ(exp(− s

µ
)− exp(− t

µ
)) + exp(− t

µ
)(s− t)];

(3.48)

+ µc2[t− s + µ(exp(
s− t

µ
)− 1)]

˙̂ϕµ(s) = −
∫ t

s

H(r)dr + µc1(exp(− t

µ
)− exp(− s

µ
)) + µc2(exp(

s− t

µ
)− 1). (3.49)

From ϕ̂µ(0) = q, ˙̂ϕµ(0) = p, we get

µc1[µ(1− exp(− t

µ
))− t exp(− t

µ
)] + µc2[t + µ(exp(− t

µ
)− 1)] (3.50)

= q −
∫ t

0

∫ t

r

H(z)dzdr,

µc1(exp(− t

µ
)− 1) + µc2(exp(− t

µ
)− 1) = p +

∫ t

0

H(r)dr. (3.51)

By solving (3.50) and (3.51) for µc1, µc2, we find

µc1 = K1

[
q −

∫ t

0

∫ t

r

H(z)dzdr

]
+ K2

[
p +

∫ t

0

H(r)dr

]

µc2 = K3

[
p +

∫ t

0

H(r)dr

]
−K1

[
q −

∫ t

0

∫ t

r

H(z)dzdr

]

where

K1(µ, t) =

[
2µ

(
1− exp(− t

µ
)

)
− t exp(− t

µ
)− t

]−1

,

K2(µ, t) = −
µ(exp(− t

µ
)− 1) + t

(exp(− t
µ
)− 1)[2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t]

,
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K3(µ, t) =
µ(1− exp(− t

µ
))− t exp(− t

µ
)

(exp(− t
µ
)− 1)[2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t]

.

When µ ↓ 0, we see that µc1 ∼ O(1), µc2 ∼ O(1), moreover,

µc1 −→ −1

t

(
q −

∫ t

0

∫ t

r

H(z)dzdr

)
−

(
p +

∫ t

0

H(r)dr

)

µc2 −→ 1

t

(
q −

∫ t

0

∫ t

r

H(z)dzdr

)

as µ ↓ 0.

We note that as µ ↓ 0

K1(µ, t) ∼ [o(µ)− t]−1 −→ −t−1

K2(µ, t) ∼ −o(µ) + t

o(µ)− t
−→ −1

K3(µ, t) ∼ o(µ) −→ 0

H(s) ∼ o(µ)− h(s) = o(µ)−∇c(ϕ̂µ(s)).

Substituting H(s), µc1, µc2 into equations (3.48) and (3.49), we can rewrite the

boundary value problem as a fixed point problem:

ϕ = T (µ, ϕ), ϕ ∈ C1([0, t]) (3.52)

where the operator T : [0,∞)×C1([0, t]) −→ C1([0, t]) is defined by the right hand

side of equation (3.48). When µ ↓ 0,

T (µ, ϕ) −→ T (0, ϕ)
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where

T (0, ϕ) = −
∫ t

s

∫ t

r

∇c(ϕ(z))dzdr +
t− s

t

(
q +

∫ t

0

∫ t

r

∇c(ϕ(z))dzdr

)
.

The problem

ϕ = T (0, ϕ)

is equivalent to

ϕ̈s = −∇c(ϕs), s ∈ [0, t] (3.53)

ϕ(0) = q, ϕ(t) = 0.

Let ϕ̃s, s ∈ [0, t] be a non-degenerate solution of Euler-Lagrange equation (3.45).

By nondegeneracy we mean that the linearization of (3.53) is nonsingular. When

µ > 0 is small, from the implicit function theorem we know there exists a unique

solution of problem (3.52). From (3.48) and (3.49), we can write the solution of

problem (3.52) as

ϕ̂µ(s) = −
∫ t

s

∫ t

r

∇c(ϕ̂µ(z))dzdr +
t− s

t− o(µ)

(∫ t

0

∫ t

r

∇c(ϕ̂µ(z)dzdr + q

)
+ o(µ)

(3.54)

˙̂ϕµ(s) =

∫ t

s

∇c(ϕ̂µ(r))dr − 1

t− o(µ)

(∫ t

0

∫ t

r

∇c(ϕ̂µ(z))dzdr + q

)
+ o(µ) (3.55)

Thus, when µ ↓ 0, from (3.54) and (3.55) we obtain

ϕ̂µ
s −→ ϕ̃s

˙̂ϕµ
s −→ ˙̃ϕs

for each s ∈ [0, t].
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Theorem 3.2.4. Assume that condition (Nµ) is not satisfied for equation (3.40),

and condition (N) is satisfied for equation (3.41). Let V (t, q) and V ∗(t, q) have the

same extremals. Then there exists a µ0 > 0 such that when 0 < µ < µ0,

Ω∗,µ
+ ⊆ {(t, q) : |(t, q)− Ω+| < δ(µ0)} (3.56)

Ω∗,µ
− ⊆ {(t, q) : |(t, q)− Ω−| < δ(µ0)} (3.57)

where δ is some constant depending on µ0,

|(t, q)− A| = min{dist{(t, q), (s, y)} : for all (s, y) ∈ A ⊂ [0, T ]×D ⊂ Rn},

dist is the Euclidean distance in Rn and D is compact.

Proof. By the proof of Theorem 3.1, we obtain the following estimates:

i. if ϕ∗ is an extremal of R0t(ϕ), that is, V (t, q) = R0t(ϕ
∗), then

V µ(t, p, q) ≥ Rµ
0t(ϕ

∗) ≥ R0t(ϕ
∗)− o(µ); (3.58)

ii. if ϕ̂ is an extremal of Rµ
0t(ϕ), that is, V µ(t, p, q) = Rµ

0t(ϕ̂), then

V µ(t, p, q) = Rµ
0t(ϕ̂) ≤ R0t(ϕ̂) + o(µ) ≤ V (t, q) + o(µ) (3.59)

Let Ω−v ⊂ Ω− be the complement of the δ neighborhood of Ω+; that is,

Ω−v = {(t, q) : |(t, q)− Ω+| < δ}c (3.60)

= {(t, q) ∈ [0, T ]×D} \ {(t, q) : |(t, q)− Ω+| < δ}

Note that by the continuity of V (t, q) in (t, q) ∈ [0, T ] × D, we can choose the

number δ > 0 such that V (t, q) ≤ −v0 < 0 for some small number v0 > 0 and for
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all (t, q) ∈ Ω−v. Moreover, we have

−v0 < V (t, q) < 0 for (t, q) ∈ Ω−\ Ω−v.

Take (t1, q1) be any point in the set Ω−v and ϕ̂ be an extremal of V µ(t1, 0, q1) such

that V µ(t1, 0, q1) = Rµ
0t(ϕ̂). When condition (Nµ) is not satisfied, we have

V ∗,µ(t1, 0, q1) < V µ(t1, 0, q1) ∧ 0.

From inequality (3.59), we get

V ∗,µ(t1, 0, q1) < V µ(t1, 0, q1) = Rµ
0t(ϕ̂) ≤ R0t(ϕ̂) + o(µ) ≤ V (t1, q1) + o(µ).

Therefore

V ∗,µ(t1, 0, q1) < −v0 + o(µ).

Thus there exists a µ1 > 0 such that when 0 < µ < µ1, V µ(t1, 0, q1) < 0. Hence for

0 < µ < µ1,

Ω−v ⊆ Ω∗,µ
− (3.61)

Similarly, let Ω+v ⊂ Ω+ be the complement of the δ neighborhood of Ω+, that

is,

Ω+v = {(t, q) : |(t, q)− Ω−| < δ}c (3.62)

= {(t, q) ∈ [0, T ]×D} \ {(t, q) : |(t, q)− Ω−| < δ}.

Again by the continuity of V (t, q) in (t, q) ∈ [0, T ]×D, we can choose a number δ > 0

such that V (t, q) ≥ v1 > 0 for some small number v1 > 0 and for all (t, q) ∈ Ω+v.

Moreover, we have

0 < V (t, q) < v1 for (t, q) ∈ Ω+\ Ω+v.
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Take (t2, q2) be any point in the set Ω+v and let ϕ̃ be an extremal of R0t(ϕ) such

that

V (t2, q2) = R0t(ϕ̃) =

∫ t2

0

c(ϕ̃s)− 1

2
| ˙̃ϕs|2ds ≥ v1 > 0, ϕ̃0 = q2, ϕ̃t2 = 0.

When condition (N) is satisfied, we know V ∗(t2, q2) = V (t2, q2)∧ 0. By assumption,

ϕ̃s, s ∈ [0, t2] is also an extremal of functional V ∗(t2, q2). Therefore

V ∗(t2, q2) = 0 = sup min
a∈[0,t2]

{
∫ a

0

c(ϕ̃s)− 1

2
| ˙̃ϕs|2ds : ϕ̃0 = q2, ϕ̃t2 = 0},

which implies that

c(ϕ̃s)− 1

2
| ˙̃ϕs|2 ≥ C0 > 0, for all s ∈ [0, t2] (3.63)

for some positive constant C0. As is known, the extremal ϕ̃s solves the Euler-

Lagrange equation

¨̃ϕs = ∇c(ϕ̃s), ϕ̃0 = q2, ϕ̃t2 = 0, s ∈ [0, t2].

Let ϕ̂µ be an extremal of Rµ
0t(ϕ), that is

V µ(t2, 0, q2) =

∫ t2

0

c(ϕ̂s)− 1

2
|µ ¨̂ϕµ

s + ˙̂ϕµ
s |2ds, ϕ̂µ

0 = q2, ˙̂ϕµ
0 = 0, ϕ̂µ

t2 = ˙̂ϕµ
t2 = 0.

Then ϕ̂µ solves the Euler-Lagrange equation:

µ2ϕ̂µ,(4)
s − ¨̂ϕµ

s = ∇c(ϕ̂µ
s ), ϕ̂µ

0 = q2, ˙̂ϕµ
0 = 0, ϕ̂µ

t2 = ˙̂ϕµ
t2 = 0, s ∈ [0, t2].

Since ϕ̂µ
s ∈ C4([0, t2]), as µ ↓ 0, we have the following estimate:

c(ϕ̂µ
s )− 1

2
|µ ¨̂ϕµ

s + ˙̂ϕµ
s |2

= c(ϕ̂µ
s )− 1

2
|ϕ̂µ

s |2 −
1

2
µ2| ¨̂ϕµ

s |2 − (µ ¨̂ϕµ
s ,

˙̂ϕµ
s )
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= c(ϕ̂µ
s )− 1

2
| ˙̂ϕµ

s |2 − o(µ)

From the Lemma 3.2.3, we know that for each s ∈ [0, t],

ϕ̂µ
s −→ ϕ̃s, as µ ↓ 0

˙̂ϕµ
s −→ ˙̃ϕs, as µ ↓ 0.

Knowing c(q) is smooth, as µ ↓ 0, we have

|[c(ϕ̂µ
s )− 1

2
| ˙̂ϕµ

s |2]− [c(ϕ̃s)− 1

2
| ˙̃ϕs|2]|

= |c(ϕ̂µ
s )− c(ϕ̃s)− 1

2
( ˙̂ϕµ

s + ˙̃ϕs)( ˙̂ϕµ
s − ˙̃ϕs)|

≤ C(|ϕ̂µ
s − ϕ̃s|+ | ˙̂ϕs − ˙̃ϕs|)

≤ C o(µ).

for some constant C > 0. This is equivalent to

c(ϕ̃s)− 1

2
| ˙̃ϕs|2 − o(µ) ≤ c(ϕ̂µ

s )− 1

2
|ϕ̂µ

s |2 ≤ c(ϕ̃s)− 1

2
| ˙̃ϕs|2 + o(µ).

From (3.63), we conclude that there exists a µ2 > 0 such that when 0 < µ < µ2,

c(ϕ̂µ
s )− 1

2
|µ ¨̂ϕµ

s + ˙̂ϕs|2 = c(ϕ̂µ
s )− 1

2
| ˙̂ϕµ

s |2 − o(µ)

≥ c(ϕ̃s)− 1

2
| ˙̃ϕs|2 − o(µ)

≥ C0 − µ2 > 0.

Hence for any (t2, q2) ∈ Ω+v ⊂ Ω+, we have V ∗,µ(t2, 0, q2) = 0. This implies that

when 0 < µ < µ2,

Ω+v ⊆ Ω∗,µ
+ (3.64)
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Take µ0 = µ1 ∧ µ2. When 0 < µ < µ0, (3.61) and (3.64) hold. When 0 < µ < µ0,

from (3.60) and (3.61), for some fixed δ depending on µ0, we have the set inequalities

{(t, q) : |(t, q)− Ω+| < δ(µ0)}c ⊆ Ω∗,µ
−

({(t, q) : |(t, q)− Ω+| < δ(µ0)}c)c ⊇ (Ω∗,µ
− )c

{(t, q) : |(t, q)− Ω+| < δ(µ0)} ⊇ Ω∗,µ
+ .

Thus we have proved (3.56). By the same analysis, when 0 < µ < µ0, from (3.62)

and (3.64), for some fixed δ depending on µ0, we have the set inequalities

{(t, q) : |(t, q)− Ω−| < δ(µ0)}c ⊆ Ω∗,µ
+

({(t, q) : |(t, q)− Ω−| < δ(µ0)}c)c ⊇ (Ω∗,µ
+ )c

{(t, q) : |(t, q)− Ω−| < δ(µ0)} ⊇ Ω∗,µ
− .

Thus we have proved (3.57).

Example 3.2.5. Consider an example in R1 when the function f(q, u) = f(u)

depends only on u, that is

f(u) = uc(u), max
0≤u≤1

c(u) = c(0) = c.

where c > 0 is a constant not depending on q. We study the relation between the

wavefront propagation of the following two equations. The first equation is

∂uε(t, p, q)

∂t
=

ε

2µ2

∂2uε

∂p2
− 1

µ
p
∂uε

∂p
+ p

∂uε

∂q
+

1

ε
uεc(uε) (3.65)
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uε(0, p, q) = δ(p)χ−1(q), q, p ∈ R1

where δ(p) is the delta function centered at 0, taking value 1 at 0 and 0 otherwise

and χ−1(q) is the indicator function such that

χ−1(q) =





1, q < 0

0, q ≥ 0

The second equation is defined as:

∂uε(t, q)

∂t
=

ε

2

∂2uε

∂q2
+

1

ε
uεc(uε) (3.66)

uε(0, q) = χ−1(q), q ∈ R1.

We will see later that when c(q) = c > 0 is a constant not depending on q, condi-

tion (Nµ) for (3.65) is not fulfilled. As checked in Freidlin [8], we know condition

(N) is fulfilled for equation (3.66). Thus we can use the functional V ∗,µ(t, p, q) to

characterize the wave front propagation for equation (3.65) and V (t, q) for equation

(3.66). From the sections above, it’s easy to find that

V ∗,µ(t, p, q) = sup min
0≤a≤t

{∫ a

0

c− 1

2
|µϕ̈s + ϕ̇s|2ds, ϕ0 = q, ϕ̇0 = p, ϕt = ϕ̇t = 0

}

V (t, q) = sup

{∫ t

0

c− 1

2
|ϕ̇s|2ds, ϕ0 = q, ϕt = 0

}
.

Recall the definition of the functional V µ(t, p, q) as

V µ(t, p, q) = sup{
∫ t

0

c− 1

2
|µϕ̈s + ϕ̇s|2ds, ϕ0 = q, ϕ̇0 = p, ϕt = ϕ̇t = 0}.

It helps us to check that condition (Nµ) is not fulfilled.
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Let ϕ̂µ
s be an extremal of the functional V µ(t, p, q), such that

V µ(t, p, q) = ct−
∫ t

0

1

2
|µ ¨̂ϕµ

s + ˙̂ϕµ
s |2ds

with

ϕ̂µ
0 = q, ˙̂ϕµ

0 = p, ϕ̂µ
t = ˙̂ϕµ

t = 0.

Let ϕ̃s be an extremal of V (t, q) such that

V (t, q) = ct−
∫ t

0

1

2
| ˙̃ϕs|2ds, ϕ̃0 = q, ϕ̃t = 0.

Since the Euler-Lagrange equation for ϕ̃s, s ∈ [0, t], has the form

¨̃ϕs = 0, ϕ̃0 = q, ϕ̃t = 0,

the extremal ϕ̃s can be easily calculated as

ϕ̃s = −q

t
s + q. (3.67)

The functional V (t, q) has the form

V (t, q) = ct− q2

2t
.

So the wavefront is

q =
√

2c t, t ≥ 0. (3.68)

First, to check that condition (Nµ) for equation (3.65) is not satisfied, we

calculate the extremal ϕ̂µ
s , s ∈ [0, t]. It satisfies the Euler-Lagrange equation

µ2ϕ̂µ,(4)
s − ¨̂ϕµ

s = 0,

with

ϕ̂µ
0 = q, ˙̂ϕµ

0 = p, ϕ̂µ
t = ˙̂ϕµ

t = 0.
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By similar calculation as in Example 3.2, we find

¨̂ϕµ
s = c1 exp(− s

µ
) + c2 exp(

s− t

µ
)

ϕ̂µ
s = µc1[µ(exp(− s

µ
)− exp(− t

µ
)) + exp(− t

µ
)(s− t)]

+ µc2[µ(exp(
s− t

µ
)− 1) + t− s]

˙̂ϕµ
s = µc1[exp(− t

µ
)− exp(− s

µ
)] + µc2(exp(

s− t

µ
)− 1)

for some constants c1, c2. From ϕ̂µ(0) = q, ˙̂ϕµ(0) = p, we obtain the following

equalities:

q = µc1[µ(1− exp(− t

µ
))− t exp(− t

µ
)] + µc2[µ(exp(− t

µ
)− 1) + t]

p = µc1(exp(− t

µ
)− 1) + µc2(exp(− t

µ
)− 1).

We calculate the value of µc1 and µc2 from the above equations as:

µc1 = K1q −K2p, µc2 = K3p−K1q

where

K1 =
1

2µ(1− exp(− t
µ
))− t exp(− t

µ
)− t

µ↓0−→ −1

t

K2 =
µ(exp(− t

µ
)− 1) + t

(exp(− t
µ
)− 1)[2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t]

µ↓0−→ 1

K3 =
µ(1− exp(− t

µ
))− t exp(− t

µ
)

(exp(− t
µ
)− 1)[2µ(1− exp(− t

µ
))− t exp(− t

µ
)− t]

µ↓0−→ 0

Note that as µ ↓ 0, we have µc1 ∼ O(1) and µc2 ∼ O(1). Moreover

µc1 −→ −p− q

t
, µc2 −→ q

t
.
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Plugging the values of ¨̂ϕµ
s ,

˙̂ϕµ
s into functional V µ(t, p, q), and solving for the value

of p when V µ(t, p, q) = 0, we obtain the position of the wavefront of p. It has the

form

pµ(t) =
−(X ±√Y )

Z

where

X = µq(exp(−2t

µ
)− 2 exp(− t

µ
) + 1)

Y = −2µ(1− exp(− t

µ
))[(2µ− t)− (2µ + t) exp(− t

µ
)]

× [µct(1− 4 exp(− t

µ
) + 3 exp(−2t

µ
) + (2ct2 − q2) exp(−2t

µ
)

Z = µ(3µ exp(−2t

µ
)− 4µ exp(− t

µ
) + 2t exp(−2t

µ
) + µ)

Since terms of exp(−2t
µ
), exp(− t

µ
) are relatively small compared with terms of µ, q, t

when µ is small, the terms of µ, q, t dominate as µ ↓ 0. In this way, we can simplify

the representation of X, Y, Z to find an approximation formula of pµ(t) for small µ:

pµ(t) ≈ −µq ±
√
−2µ(2µ− t)µct

µ2
.

Differentiating twice we find

p̈µ(t) = − 4c2µ4

(−2ctµ2(−t + 2µ))
3
2

< 0.

This is a concave function for all t ≥ 0. However, when µ is small,

˙̂ϕµ
s = µc1[exp(− t

µ
)− exp(− s

µ
)] + µc2(exp(

s− t

µ
)− 1)

is close to the convex function exp( s−t
µ

)− 1, which implies that

V µ(t− s, ˙̂ϕµ
s , ·) > 0.
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Condition (Nµ) is not satisfied.

It’s easy to check that in this case, V (t, q) and V ∗(t, q) have the same extremals.

From the theorem, we conclude that the position of the wavefront of equation (3.65)

is with in the δ neighborhood of wavefront (3.68), where δ is a function depends on

µ.
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