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According to the Smoluchowski-Kramers approximation, the solution ¢}"¢, also
referred to as “Physical” Brownian motion, of the Langevin’s equation ug"® =
—G"° + b(g") + e (@)W, ¢4 = q, 8 = p, where W, is Gaussian white noise,
converges to solution of the diffusion equation ¢¢ = b(q¢) + veo (¢E)Ws, ¢ = q as
i | 0 uniformly on any finite time interval for each fixed £ > 0. This is the main
justification for describing the small particle motion by a diffusion equation. How-
ever, this relation is not sufficient for asymptotic problems when some parameter,
say €, approaches 0.

We consider two asymptotic problems related to this approximation.

First, we study relations between large deviations for these processes ¢.*° and
q; as € | 0. In particular, we consider exit problems where relations between asymp-
totic exit position, asymptotic mean exit time and some other characteristics of
the first exit of the trajectories ¢,"° and ¢f from a bounded domain are of interest.

Under the framework of Freidlin-Wentzell, these asymptotics can be represented by



quasi-potential, defined as the infimum of action functional over some set. Action

functional and quasi-potentials for ¢/"° are calculated in this paper. We establish

)

that the asymptotics of ¢, and ¢; are close for small particles when 0 < p < 1.
We pay special attention to the case when b(q) is linear. Then the quasi-potentials
can be calculated explicitly and they coincide for ¢} and ¢;.

Second, we study the wavefront propagation for reaction-diffusion equations
with diffusion governed by the infinitesimal generator of process ¢.*° and ¢ and
reaction term governed by a nonlinear function of KPP-type. In this case, the
reaction-diffusion equation related to the process ¢, is degenerate in terms of vari-
able (p,q). When the diffusion coefficient and nonlinear term are space dependent
but only changing slowly in space, we know as t — oo, the solution of the reaction-
diffusion equation related to the process ¢f behaves like a running wave. Charac-
terization of the position of wavefront for equations related to ¢; is well studied. In
this work, we identify two characterizations of the position of the wavefront for the
degenerate reaction-diffusion equation related to the process ¢i*°. We analyze two
cases, under which we can obtain the convergence of the wavefronts of the degen-

erate reaction-diffusion equation related to ¢/"“to those of the non-degenerate one

related to ¢y, for small p > 0.
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Chapter 1
Introduction

1.1 Smoluchowski-Kramers Approximation

The motion of a particle in the force field b(q) + v/£o(¢)W with a friction
proportional to the velocity (let, for brevity, the friction coefficient be equal to 1) is

governed by the Newton law:

ud s = b(g) — " + Vea (g )Wy, (1.1)

" =4q, ¢4 =p; p,qg € R".

Here p > 0 is the particle mass, ¢ > 0 is a positive parameter, o(q) is a non-
degenerate n x n-matrix, W, is Gaussian white noise in R"; the functions b(q) and
o(q) are supposed to have continuous bounded derivatives.

This motion is also referred to as “Physical” Brownian motion that is defined
in Langevin’s model of Brownian motion after the construction of “Mathematical”
Brownian motion. Langevin’s model emphasizes that a particle moving due to ran-
dom collisions with, say, gas molecules does not actually experience independent
steps since its inertia tends to keep it moving roughly the same direction as its
previous steps. Thus, it is considered to be a more realistic model than “Mathemat-
ical” Brownian motion, which treats the process as a random walk with independent

identically distributed steps. Equation (1.1) due to Langevin’s work is also called



Langevin’s equation.
The Smoluchowski-Kramers approximation (see [12]) consists of the statement:

For each T'> 0, § > 0 and (p, q) € R*",

lim P{ max [gi" — ¢;| > 0} =0, (1.2)

where ¢; is the solution of the equation

i = b(qf) + VealgE)Ws, ¢§ = q. (1.3)

This statement is the main justification for describing small particle motion by the
first order diffusion equation (1.3).

However, an essential part of modern research related to equation (1.3) con-
cerns asymptotic problems. For example, for fixed € = 1, one can study behavior of
stochastic process defined by (1.3) as t — oo and its stationary distribution. An-
other example is given by the homogenization problem for equation (1.3). Various
large deviation problems were considered in recent years: when € | 0, exit problems
and stochastic resonance for process ¢; are of interest. Wavefront propagation for
reaction-diffusion equation of KPP type related to the diffusion process defined by
(1.3) is widely studied from both the stochastic and PDE point of view. How are
these results for ¢f defined by (1.3) and ¢, defined by (1.1) related? In what cases
can we describe the asymptotic behavior of small particle motion by results obtained
for the diffusion equation (1.3)7 Statement (1.2) concerning a finite time interval is
not sufficient for results of these asymptotic problems.

In this work, we will consider two kinds of asymptotic problems: exit prob-

lems and wavefront propagation of reaction-diffusion equation. We will investigate



the relations between system (1.1) and (1.3) in exit problems for the general vec-
tor field b(g). In the problem of wavefront propagation, we’d like to compare the
move of the wavefront of reaction-diffusion equations related to process ¢;"* and ¢;.
Other asymptotic problems such as stationary distributions, homogenization prob-

lems and exit problems in the case when vector field b(g) is potential are treated in

M. Freidlin’s work [6].

1.2 Large Deviations: Exit from a Domain

1.2.1 Exit problem for the diffusion equation

The problem of diffusion exit from a domain for a process ¢ defined by (1.3)
is studied in [7]. Let G C R™ be a bounded domain with smooth boundary 0G,
which is attracted to an asymptotically stable equilibrium K for the field b(q). The
unperturbed trajectories ¢ of the deterministic system ¢? = b(¢?) issuing from the
point ¢ € G go to the equilibrium K as t — oo and can’t leave G. Due to the white
noise, the perturbed trajectories ¢; issuing from ¢ € G’ leave G with probability one
(and in this case for every € # 0). The perturbed trajectory follows the unperturbed
trajectory (with small deviations) to a neighborhood of the asymptotically stable
equilibrium K in finite time, stays there for a dominating amount of time, making
excursions now and then, and finally leaves the domain G. Put 7¢ = inf{t : ¢ ¢ G}.
The first exit time of the diffusion process ¢; from domain G, 7¢; the asymptotic
exit position ¢¢. and some other characteristics of the first exit of the trajectory

from the domain G are of interest in exit problems.



Let Cyr be the collection of continuous functions on interval [0, 7). Under the
framework of the Freidlin-Wentzell theory ([7]), the action functional, which gives
an estimate of the principal term of the logarithmic asymptotics of probabilities of
events concerning the process ¢f, can be introduced. The action functional for the

process ¢;, 0 <t < T, in Cyr as € | 0 has the form (1/¢)Sor(p), where

%fOT |07 () (D5 — b(s))|?ds, if ¢ € Cor is absolutely continuous,
Sor(e) =
400, otherwise.
(1.4)

It has the following three properties ([7],[17]):

1. the set ®(s) = {p € Cor : Sor(p) < s} is compact;

2. for any 0 > 0, any v > 0 and any ¢ € Cyr,

P{llg; — ¢llcyr < 0} = exp{—e""[Sor(¢) + 11}

for e < gg;

3. for any 0 > 0, any v > 0 and any s > 0, there exists an gy > 0 such that

P{llg; — ®(s)lloor > 0} < exp{—e"'(s =)}
for all e < ¢y .

Here
le(s)llcor = sup{e(s) : s € [0,T7}.
Introduce the quasi-potential V(q), ¢ € R", for the processes ¢; with respect to K:

V(g) = inf{Sor(v) : ¢ € Cor, po =K, pr=gq, T > 0}. (1.5)
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The Hamilton-Jacobi equation for V'(¢) has the form
1
5IVV(@)P + (b(a), VV) = 0, V(g) > 0 for ¢ # K, V(K) =0.

In [7], it is shown that the asymptotics of the first exit of the trajectory
¢ from the domain G can be expressed through the quasi-potential V(g). For
example, ¢¢. — ¢ in probability as € | 0, where V(gy) = mingeoe V(q), if qo is
the only minimum of V(q) on 0G. Moreover, 7¢ is logarithmically equivalent to
exp{(1/e)V(q)} as € | 0, i.e. eln7® — V(qo). Some other characteristics of the
first exit can be expressed through the quasi-potential V(¢). In the case when the

vector field b(q) = =V B(q), V(q) =2B(q) for g€ {g € G : V(q) < V(qo)}-

1.2.2  Exit problem for Langevin’s equation

We study the exit problem for the process ¢/"° using the same approach as
for the study of exit problem of process ¢;. The second order system (1.1) can be

written as the first order system

upis = b(gl) — pi° + Veo (gl )W, (1.6)

@ =" " =D @ =4
If K € R" is an equilibrium of the vector field b(q), then (0, K) € R?*" is an equi-
librium for (1.6) with ¢ = 0, and vice versa. Moreover, one can check that if K
is an asymptotically stable equilibrium for system (1.3) with € = 0, then (0, K) is
asymptotically stable for (1.6) with e = 0, at least, if © > 0 is small enough. If
b(q) = =V B(q), q € R, and if K is asymptotically stable for the field b(q), then
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(0, K) is asymptotically stable for (pi°, ¢/") with any p > 0. (See Section 2.1 of
Chapter 2)

Put 7¢ = inf{t : ¢/"° ¢ G}. The asymptotic position ¢/ at the exit time
TH< the asymptotics of 7 as € | 0 and some other characteristics of the first exit
of the trajectory from G are of interest.

The relation (1.2) concerns finite time intervals, so that it is not sufficient
for closeness of the asymptotics in the exit problems for processes ¢.*° and ¢¢ . But
taking into account that exit of ¢; from G occurs as a result of many trials and that in
each of these trials the trajectory spends a bounded time outside any neighborhood
of the equilibrium, one can expect that the asymptotics in exit problem for ¢; and
¢;"" as € | 0 are close, at least for small p.

To study large deviations of the process ¢/ defined by the Langevin’s equa-

tion, one must first calculate the action functional for the process ¢/ as ¢ | 0.

Theorem 1.2.1 (Freidlin-Wentzell [7]). Let (1/£)S*(x) be the action functional
for a family of measures A\* on a space X (with metric px) as e | 0. Let F be a
continuous mapping of X into a space Y with metric py and let a measure v on
Y be given by the formula v°(A) = N(F~Y(A)). The asymptotics of the family of
measures v as € | 0 is given by the action function (1/¢)S”(y), where S¥(y) =

min{S*(z) : x € F~'(y)} (the minimum over the empty set is set equal to o).

By virtue of Theorem 1.2.1, we are able to calculate the action functional for
the Markov process (p}°, ¢*°) and the process ¢;"°. We introduce the quasi-potential

V*#(q) for the processes ¢ and show that V*#(q) under certain wide conditions is



close to V' (¢). This means that the Smoluchowski-Kramers approximation is good if
we are interested in the exit problems and also in the problems related to stochastic
resonance. Moreover, if b(q¢) = —V B(q), the quasi-potentials V#(gq) and V(g), in a

sense, coincide for all y > 0 (compare with [2]).

1.3 Wavefront Propagation in Reaction-Diffusion Equations

1.3.1 KPP-type Reaction-Diffusion Equation

In 1937, Fisher [2] and Kolmogorov, Petrovskii and Piskunov (KPP) [15]
started to study the existence of travelling waves of semi-linear reaction-diffusion
equations that arise in physics, chemical kinetics and biology, and to investigate
convergence of the solution of a Cauchy problem to a travelling wave as ¢ — oo.

The original equation is:

Ou(t,z) D *ult, )

ot 5 a2 + f(u(t,z)), in R x (0,00) (1.7)

u(0,2) = Xz<0, T € R.

The nonlinear term f(u) characterizing the multiplication and killing of par-
ticles in the absence of diffusion is of KPP-type, if it is continuously differentiable
in u € R! such that f(0) = f(1) =0, f(u) >0for 0 <u <1, f(u) <O for u ¢
0,1] and supg_,<; u ' f(u) = f'(0). Reaction-diffusion equations that have a KPP-
type nonlinear term f(u) are referred to as KPP equations.

It is proved in [15] that the solution u(¢,z) of (1.7) tends to 1 as ¢ — oo, and
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the region where u(t, z) is close to 1 is growing with speed 2\/W.

Since then, the KPP equation has been extensively studied. When the diffu-
sion coefficient and the nonlinear term depend on space and are slowly changing in
space, the first generalized result on the KPP equation using a probabilistic treat-
ment was given by Freidlin [9]. Freidlin separated the study of profile and speed of
the travelling wave by introducing a small parameter. He considered the following

Cauchy problem:

Our(t,x)  ex~ 0% . . S O0wE(ta) 1 .
o 22 gept PO 2 V@) g + It o) (18)

v é Flo e (¢, )

u®(0,2) =g(x) >0, z € R", ¢t > 0.

Here, the function f(x,-) satisfies the KPP assumption for all z € R". Put
c(z,u) = u'f(z,u) for v > 0 and c(x,0) = lim,jou"f(z,u). The function
c(x,u), © € R" w > 0 is supposed to be continuous and satisfies a Lipschitz
condition in u. Let maxg<,<; ¢(x,u) = ¢(x,0) = ¢(x). The a”(x) are bounded func-
tions having bounded second-order derivatives such that the form 77" a™”(z) A\

does not degenerate uniformly in R".

1.3.2 Characterization of Position of Wavefronts

In Freidlin [9], the first probabilistic methods for studying the generalized
KPP-type reaction-diffusion equation (1.8) is undertaken within the framework of

8



large deviation theory for stochastic differential equations.
Consider the Markov diffusion process (X5, P,) in R™ governed by the operator

L. Tt solves the following stochastic differential equation:
Xf = b(XE) + o(XOW,, X = (1.9)

Here W, is a Wiener process in R", o(x) is a n X n matrix such that o(x)o*(x) =
(a¥(x)). Using the Feynman-Kac formula, the solution of problem (1.8) can be

represented as:

u(t,z) = E,9(X;) exp {% /Ot o X5, u(t — s7X§))ds} : (1.10)

where X7 is the solution of equation (1.9).
To examine the behavior of the solution of equation (1.8) as € | 0, he first

finds the asymptotic formula for expression of the form:

E.q(X[)exp {é/o c(Xf)ds} , €10,

by introducing an action functional for the family of processes (X5, P,) ase | 0. The
action functional for process X7, 0 < s <, in Cy as € | 0 has the form (1/¢)Sn(¢),
where

%fot |07 (0s) (s — b(ps))|?ds, if ¢ € Cy; is absolutely continuous,
Soi(p) =

+00, otherwise.
(1.11)

From properties of the action functional, the asymptotic formula for

FLg(XE) exp {1 / t c<Xf>ds} 210

9



is obtained as:

1 t
lig)lslnExg(Xf)exp{—/ c(Xf)ds} (1.12)
£ 9 0

t
= sup{/ c(ps)ds — Soi() : o =, ¢y € supp g}
0

The proof of formula (1.12) and the properties of action functional can be found in
Freidlin [8] and Freidlin and Wentzell [7]. From KPP assumption, we know that the
relation for ¢(z, u):

c(z,u) = u ' f(z,u) < c(x)

holds. From the asymptotic formula (1.12) and the Feynman-Kac representation of

solution (1.10), the following estimate is obtained:

0 < (1) < Eug(X)expl / () ds) (1.13)

= exp {é[sup{/ c(ps)ds — Sor(p) = p € Cop, 00 = x, 4 € [GO]}]} ,el0
0

2

where the “<” sign denotes logarithmic equivalence. Let

V(t,z) = sup {/Ot c(ps)ds — Soi(@) 1 o = x, 0, € [supp g] = [GO]}

where [Gy] denotes the closure of the support of the function g(x) in R™. Freidlin
proved that, under a certain condition (N), from (1.13) it follows that lim. o u® (¢, z) =
0 on the set {(t,z) : t > 0,2 € R", V(¢t,z) < 0}. This convergence is uniform on
every compactum lying in the region {(¢t,z) : t > 0,z € R™, V(t,x) < 0}, and
lim.jgu®(t,z) = 1 for V(¢,2) > 0. Then the manifold ¥; = {z € R" : V(t,z) = 0}
can be considered as the position of the wavefront (i.e., the boundary between the
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excited and non-excited regions) at time ¢. Condition (N) is said to be fulfilled if

the following relation

Vit,z) = sup{/O c(ps)ds — Sor(p) -

© € Coty 00 =, € [Go|, V(t—s,05) <0 for 0 <s <t}
holds for any t > 0 and x € ¥;.

Theorem 1.3.1 (Freidlin [9]). Suppose that f(x,u) satisfies the KPP assumption
and let condition (N) be fulfilled. Then for the solution u(t,x) of problem (1.8) the

following relation holds:

1, if V(t,z) >0

lim (¢, z) =
im v (t,x)

0, if V(t,x) <O.
This convergence is uniform on every compactum lying in the region {(t,z) : t >

0,z € R, V(t,z) >0} and {(t,x) : t > 0,z € R", V(t,x) < 0}, respectively.

Therefore, the equation

V(t,z) =0

defines the wavefront which divides the regions where u®(t,x) is close to 0 and is
close to 1 for small € > 0.

Inspired by Freidlin’s work on reaction-diffusion equations, Evans and Sougani-
dis ([3], [4]) proved the wavefront propagation of solution of equation (1.8) using
analytical methods. They generalized Freidlin’s result to the case when condition

(N) is not satisfied. In their setup, the functional characterizing the wavefront is
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a viscosity solution of some variational inequality. Later Freidlin [10] and Freidlin
and Lee [11] obtained and generalized their results using probabilistic methods.

Without condition (N), the position of the wavefront can be characterized
by introducing a stopping time. A functional 7 : C([0,¢],R") — [0,t] is called a
stopping time if 7 depends only on ¢, 0 < s < u, when restricted to {T < u}. Let
I'; be the collection of all stopping times not greater than ¢. If F'is a closed subset
of [0,t] x R" and {0} x R™ C F, then

7 =min{s: s> 0and (t — s,p;) € F'}
is clearly a stopping not greater than t. Let O, be the collection of such 7p. Let
Vo(t,z) = inrf { sup/ c(ps)ds — Sor () : ¢ is absolutely continuous,
Tely 0

Po =T, Pt € G0}7

Vi(t,z) = ing {sup/ c(ps)ds — Sor(p) = is absolutely continuous,
TEO: 0

wo =z, € Go}, t >0, z € R".

V*(t, z) = sup{ Oriligt/ c(ps)ds — Soa(p) :  is absolutely continuous,
>axt /o
wo =, € G}, t >0, z € R".
Fredilin and Lee ([11]) proved that

Vo=V =V",

and they characterized the position of the wavefronts.
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Theorem 1.3.2 (Freidlin [10] and Freidlin and Lee [11]). Let u®(t, x) be the solution
of (1.8). Then lim. o u®(t,z) = 0 uniformly for (t,z) belonging to any compact set
Fy C {(s,y) : V*(s,y) < 0}. For any compact subset Fy of the interior of the set

{(s,y), s >0, V*(s,y) =0}, limeous(t,x) =1 uniformly in (t,z) € F.

In 1999, Pradeilles [16], using representation of solutions with backward stochas-
tic differential equations driven by Brownian motion (also see Pardoux and Peng
[13], Pardoux,Pradeilles, Rao [14]) generalized the wavefront propagation result to
the case when the parabolic operator L is possibly degenerate. He established that
when the parabolic operator L° satisfies a Homander-type hypothesis, the wavefront
location is given by the same formula as that in Freidlin and Lee [11] or Barles, Evans

and Souganidis [4].

1.3.3 A Class of Degenerate Reaction-Diffusion Equation Related to
“Physical” Brownian motion

In this work, we consider a class of degenerate reaction-diffusion equation
related to the “Physical” Brownian motion ¢ with zero drift, i.e b(z) = 0. Let
r = (p,q) € R™ peR" ¢qec R" Here, q is the position of a particle, p is the

velocity of the particle. Consider the equation:
Outr) _ & NN gy Pwta) du(t.x) | 1
— = AV b'(x - (¢ 1.14
ot Z/L ( 8;(;263;3 Z axz 8f(x,u ( 7$)) ( )

i,7=1

u(0,2) = g(z), © = (p.q) € R*, g(x) >0,
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where diffusion matrix A(x) and vector b(x) are:

P

Pn
Assume that f(x,u) = ¢(q, u)u satisfies the KPP assumption. We assume the n x n
matrix (a(g)) is uniformly non-degenerate.

As is known, in this case, the operator

satisfies Homander’s hypothesis and is hyperelliptic.

Let us rewrite equation (1.14) as:

ous(t, p,q) _ & 2 (q) 92us
ot 242 optopi

1,j=1

1 1
- ;pvpu‘E +pVaus + gc(q, u®)u’ (1.15)

u®(0,p,q) = 9(p, q)-

The operator governing the diffusion

c N 0? 1
i,7=1

is degenerate in = (p, q).

When, for example, we put the initial condition g(p,q) = d(p)x *(q), where
d(p) is a delta function centered at 0 and x~'(q) is the indicator function with
support equal to the negative g-axis, by the maximum principle u®(t, p, ¢) is a func-
tion between 0 and 1. Equation (1.15) can be considered as the reaction-diffusion
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equation to model the transition probability density of particles whose diffusion is
governed by Langevin’s equation and whose multiplication and killing is governed
by f(q,u). We consider the propagating wave type solution of (1.15) as ¢ | 0. For
equations satisfying the Hémander hypothesis, from results of Pradeilles [16], we
know that for each p > 0, the wave front location in the phase space (p, q) is given
by the same formula as in Theorem 1.2.

The corresponding reaction-diffusion equation related to the process g; defined

by diffusion equation (1.3) (with b(q) = 0) is defined as:

ot 2

ij=1

€ n 2, €

u(0,q) = 9(0,q), g € R"

Equation (1.17) has been well studied. Our task in this part is to study equation
(1.15) and its relation to (1.17). We would like to show that under certain conditions,

as € | 0, for small p, the wavefronts of equation (1.15) and (1.17) are close.

1.4 Outline of the thesis

The thesis is organized as follows. In Chapter 2, we study relations between
equations (1.1) and (1.3) in the exit problems. In particular, we investigate to obtain
closeness of the asymptotic quantities, such as asymptotic exit position, asymptotic
exit time for equations (1.1) and (1.3). We first study the relation between the
unperturbed systems when e, which characterizes the intensity of perturbation, is
0. We prove that when either of the conditions in Proposition 2.1.1 is satisfied, the
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equilibrium for the Langevin system is asymptotically stable. Then we calculate the
action functional (Proposition 2.2.1) and introduce the quasi-potential for equation
(1.1). It can be proved that the asymptotic exit position and time can be represented
in terms of the quasi-potential for (1.1). A major theorem is given in the second
section of this chapter, showing the convergence of the quasi-potential of (1.1) to that
of (1.3) under a certain wide condition. Special attention is paid to linear systems.
In this case, the corresponding quasi-potentials can be calculated explicitly.

In Chapter 3, we concentrate on the problem of wavefront propagation of
equation (1.15) and (1.17) and the relation between their wavefronts. We will give a
characterization of the position of the wavefronts for equation (1.15) in the general
case and under an assumption that we call condition (N*) (Theorem 3.1.4). Then
we show the convergence of the wavefronts of equations (1.15) and (1.17) in two
settings. When both condition (N*) and (V) are satisfied, the location of the
wavefront for the degenerate reaction-diffusion equation converges to that of the
non-degenerate one, for each bounded initial position ¢ and velocity p. An example
is considered when the function ¢(q) is linearly growing. When only condition ()
is satisfied, the wavefront of the degenerate reaction-diffusion equation is within a §
neighborhood of the non-degenerate one, here 6 depends on u. An example is given

when ¢(q) is a constant function.
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Chapter 2
Large Deviations: Exit from a Domain

2.1 Relations between the Unperturbed Systems

In this section, relations between systems (1.3) and (1.6) for ¢ = 0 are con-
sidered. We will investigate some sufficient conditions such that if K € R" is an
asymptotically stable equilibrium of system (1.3) with e = 0, then (0, K) € R*" is
asymptotically stable for system (1.6) with ¢ = 0.

Without loss of generality, one can assume that K is the origin. It is under-
stood that the nonlinear system of (1.3) with € = 0 can be expressed with a linear

and nonlinear part as

@) = Aq) + N(q})

for which ¢ = Aq? is the linear approximation to this equation in the vicinity of
the equilibrium K. From the assumption on b(q), we know N(q) is continuous for
small || and N(q) = o(|q|) as |¢g| — 0. Let A be stable: that is, all eigenvalues of
A have negative real part. Then K is an asymptotically stable equilibrium position.

Similarly, the linear approximation to (1.6) with e = 0 is
b 10 70 ,0 70 .
pp” = —pi" + A, py =

'M?O — %0 M70 —
4G =Dt do = 4q.

17



It has an asymptotically stable equilibrium position at (0, K') € R?*" when the matrix

—(/pE (1/p)A

E 0

A, =

is stable, where F is the n X n identity matrix.

Proposition 2.1.1. Assume that A is stable. Let at least one of the following

conditions hold:
i. All eigenvalues of A are real.

ii. The inequality 0 < p < po = min{—ax/b3, k = 0,1,--- ,m, m < n} holds,
where ay + ibg, ar < 0, by # 0, k. =0,1,--- ,m, m < n are all complex

eigenvalues of A.
Then A, is stable.

Proof. Let )\, be an eigenvalue of A,,. Since

O+ 1/)E —(1/0)A
det(A, — A\ E) = det =0

—E A E

is equivalent to
det(A (uA, +1)E — A) = det(AE — A) =0,

so that A\, (puA, + 1) = X is an eigenvalue of A. Then we have

I =R VA IS OV

2p

Au

Since A is stable, Re(\) < 0. Consider the following two cases:

18



i When A is real, then Re(),) < 0 for any p > 0, i.e. A, is stable;

it When A=a+bi, a <0, b#0,

where

z = (1+4ap) + 4bui.

Formula (2.1) implies that A\, has negative real part if and only if |Re(y/2)| < 1,

which is equivalent to

L+ dap + /(1 + dap)? + (4bu)? < 2.

This implies that

a
Let ap + bii, K = 0,1,--- ,m, m < n, be all complex eigenvalues of A, where
ap < 0, by # 0 for each k. Then if
. ay,
O<u<u0:mln{—g, k=0,1,---,m, m<n},
all eigenvalues of A, have negative real part, which means A, is stable. O]

Assumption: From now on, we will assume that either of the two conditions
in Proposition 2.1.1 is satisfied and we study the relation of the corresponding

perturbed systems.
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2.2 Action Functional and Convergence of Quasi-potentials

Consider the process ¢.*° defined by the system (1.6). We assume b(q) and o(q)
are smooth enough and bounded, and det(a(q)) > ap > 0, where a(q) = o(q)o*(q).
In order to study the exit problems of ¢/"°, we will first find the action functional

for ¢"“ ase | 0.

Proposition 2.2.1. The action functional for ¢i"* in Cor for fived p as e | 0 has

the form 1Sk (), where

(

%fOT |07 (0s) (1ps + s — b(ps))[Pds if ¢ is absolutely continuous

Sor(p) = o =q, Yo ="D;

~+00, otherwise.
(2.2)

1€

Proof. First, note that since ¢" = p}"® is continuous, system (1.6) can be written

as follows:

1€

ot ) = [ Waeyts— [ pisisevaWieta ) Ve [ W otat s, 0

t
qéL’E —q = / pg’ads.
0

Let ¢, be a continuous function on [0, 7] with values in R™. Consider the operator

F:¢y — X, where X = X; = (ps, ¢;) € R?" is the solution of the system
t t
p(pr —p) = / b(gs)ds — / psds + 1o (q) — thoo(q / s —-lo(as)lds, po=p,
0 0

t
qt—qz/psds, q = q,
0
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€ [0,T]. Let Xy = Xy(t) = (pr(t), (1)) = Fibr, Xy = Xo(t) = (p2(t), 2(t)) =
Fy. Since b(q) and o(q) are Lipschitz continuous, for any ¢ € [0, 7], the norm of

the difference will satisfy the the following inequality

X1 () = Xo()]| < Kl/o 1X1(s) = Xa(s)llds + KoT' ||y = 42l cor,

where [|1)]|c,, = maxcor [¥(t)|, K1, K, are some constants. From Gronwall’s
inequality,

1X0(t) = Xa(t)]] < TR T |l — Y2l o,

which implies the continuity of operator F. Hence, the transformation F, P

is also continuous, where by definition ¢; solves the equation

@ =Fav= q+1—e ") up—oa)vo] + /O (1 —®"9)b(g,)ds

s lo(g:)lds + e Cw | ap—[o(qs)e*/M]ds.
[ R

Moreover, F), has the inverse

t
(B 'y = e =vo+ [ o7 (a)(ud+ d. ~ bla.))ds.
0
It follows from (2.3) that
- Fu(\/EWt)-

By theorem 1.2.1, the action functional for the family of the process ¢;"° has the

form e=15%,(¢) where

. 1 [T .
St () = min{ S () Fyt = o} = min(5 [ 1 Pds: By = o)

L[ pepa=L [N @+ 6. e P
_QOdt” 5 [, 1o @b+ b= b
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if 1/, is absolutely continuous, and S§,(¢) = +oo otherwise in Cor. Since

. .= 1 — ! s 1 - s
oy = oe—tm) 4 L=t / /() ds + e [l (o, )]
i 1
1
—(t/w) / a9 5 (10, s,
u
absolute continuity of ¢/, implies that ¢, is absolutely continuous. O]

Now let K € R" be an asymptotically stable equilibrium for the dynamical
system ¢! in R" defined by the Equation (1.3) with ¢ = 0. The quasi-potential for
the process ¢; with respect to the equilibrium K € R™ is defined by (1.5), where
the action functional assumes the form (1.4). Then (0, K) € R?" is asymptotically

stable for system (1.6). We can define the quasi-potential V#(q) in a similar way as
V*(q) = inf{Si(p) : o = K, $9 =0, or =¢, T >0, v € Cor}. (2.4)

Theorem 2.2.2. Let V*(q) and V(q) be defined as above. Let G C R™ be compact.

Then V#(q) — V(q) for each q € G as pn — 0.

Proof. Introduce the following quantities:

VM(Q,T) = lnf{S(l.)LT(go) v € COTa Yo = Kv YT = (g, 9570 - 07 q € G}

V(g,T) = inf{Sor(¢):¢ € Cor, po=K, pr=4q, ¢ € G}

V#(q) = inf V¥(q,T), V(q) = inf V(q,T)

T>0 T>0

First, we show that for each ¢ € G,

lim V#(q,T) =V (g, T). (2.5)

w10
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This is equivalent to the following inequalities:

V(g,T) > limsup V*(q,T) (2.6)
w10

Vg, T) < limlionf VH(q,T). (2.7)
m

To show (2.6), let ¢* be an extremal of Syr(¢) such that
V(g,T) = Sor(¢").

The Euler-Lagrange equations for extremals of Syr () imply that they are in C*([0, T7).

Therefore

* * 1 g — Y ok
VHaT) < Siple") < Sunle) + 30 [ o (DS = V(@ D) + o).
0

This implies the limsup inequality (2.6).

To show (2.7), let ¢ be an extremal of Sh.(¢) for fixed p > 0 such that
Vi(q,T) = Shp(¢). Similarly, extremals of Sh (o) are in C*([0,T]). Let a(z) =
o(xz)o*(z), © € R" be strictly positive definite. Assume b(z), o(x) have bounded

derivatives. Then

1

T
508 = 5 | I @b+ b = )

1

T T
= 5/ |J_1(¢S>M@s|2d8 + SOT(()Z)) + N/ (0-_1(@8)927& 0_1<¢8)[¢8 - b(@S)Dds
0 0

> Sor($) + 5 /0 DD i (@)d(@El) — u /0 (! (2)b(2), i)

i=1 j=1

= Sor(¢) + 5™ (pr)ér, fr) = ula™ (@r)b(¢r), ér) + 50 (@r)b(@r), b(er)
2@ (@r)bler) bigr) - 5 / D3 Al @)



+2(ps, dla”(94)b(¢4)])

— Sor(8) + Llo (@r)(ér — b(gn) - I

where
Lo )2+ j T 18 \i(,s
F= Yo ernenit g [ 503 s e~ [ Gudl™ @)
=1 j=1
Since a(x) and b(x) have bounded derivatives and ||@||w12(om) = (fOT lo(s)|?

|o(s)|?ds)"/? is uniformly bounded, I is uniformly bounded for all ;1 > 0. Therefore,
Vi, T) = Syr(@) = Sor(@) +o(p) = V(g,T) + o(n)
= liml%nf VH(q,T)=V(q,T).
I

Thus, (2.5) is proved. It can be easily checked that the limit (2.5) is uniform in
T>1Ty>0.

It’s easy to see that V*(q,T), and V(q,T) are all decreasing functions in 7.

Therefore

Vi(g) = lim V*(q,T) (28)
Vig) = Jim V(g,T). (2.9)

From (2.8), and (2.9), we know V#(q) and V(g) can be arbitrarily close as long as

4 is small enough, thus

VH#(q) — V(q) for each q € G,as u — 0.
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2.3 Quasi-potentials for Linear Systems

In this section, we pay special attention to perturbations of processes defined
by (1.6), when b(q) = Aq and A is a constant stable matrix. We will see that
quasi-potentials for the second order linear system and its Smoluchowski-Kramers
approximation actually coincide for any p > 0 if the eigenvalues of A are real and

for any stable A when p is small enough.

2.3.1 Quasi-potential for the diffusion equatioin

Let us find an explicit formula for the quasi-potential of the first order linear
systems defined as:

i = Ag; +VeaW,, ¢;=q. (2.10)

We assume A is an n X n matrix, having the real parts of all eigenvalues negative;

o is a non-degenerate n x n constant matrix, g; € R". We eliminate the diffusion

matrix o by making a change of variable Y; = 07 '¢,.. Then

d .
d—ta_lqt = (c7'Ao)o g +VEW,

Y, = (O'_IAO')Yt—i-\/EWt.

Since 07! Ao has the same eigenvalues as A, any system of the form (2.10) can be

reduced to a system of the form
G = A + VWL, g5 =q. (2.11)

Thus the unperturbed linear system ¢; = Ag; € R™ has an asymptotical stable
equilibrium position O, the origin of the coordinate system.
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As is known ([7]), the action functional for the family ¢f in C[0,7] as e | 0

has the form £~ 15(), where
%foT |1 — Agi|?dt, »(0) = O, p(T) = q, ¢ is absolutely continuous

400, otherwise.

The quasi-potential for the process ¢; with respect to O is
V(g) = mf{S(p) : ¢ € C0,T], 9(0) = O, ¢(T) = ¢ €R", T >0}
and the Hamilton-Jacobi equation for V(z) is:
%(VV, VV)+ (Aq,VV) =0, V(0) =0, V(q) >0 for g #0. (2.12)

Lemma 2.3.1. If there exists a symmetric positive definite matrix B solving the
equation

(B%q,q) = —(Aq, Bq), (2.13)
then V(q) = (Bq,q), q € R".

Proof. We can simply check that if (2.13) holds and B = B*, then V(q) = (Bgq,q)

satisfies the Hamilton-Jacobi equation (2.12). Since B is positive definite, V(q) =

(Bq,q) >0, for q#0. O

Example 2.3.2. When the matrix A is normal, that is, A*A = AA* (see [7]), let
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B = —3(A+ A*), which is symmetric and positive definite. Then we have

B+ A = —%(A*—A), andB:—%(A*-i—A);
(B+A)q,Bq) = (—%(A*_A)q,—%(A*—l—A)Q)
- Zll[(A*q, Aq) + (A%q, A%q) — (Aq, A”q) — (Agq, Ag)]

_ Z%[(A*Q, A*q) — (Aq, Ag)]

Therefore,

((B+ A)q,Bq) = (Bq, Bq) + (Aq, Bq) = 0

(B%q,q) = —(Aq, Bq).

Thus B is the solution of (2.13). Then quasi-potential is

V(g) = ~5((A+ A)g,0).

In order to solve (2.13) for general, not necessarily normal A, we need the

following result from matrix theory (see [18] for the proof).

Lemma 2.3.3. Let A be a given matriz whose eigenvalues have negative real parts.
Then the equation AX + XA* =Y has a unique solution X for every Y, and the

solution can be expressed as
X = / (=Y )eMdt.
0

Theorem 2.3.4. The quasi-potential V(q) for the processes ¢; defined by equation

(2.11) is given by the formula:



Proof. Because of Lemma 2.3.1, we can look for the quasi-potential V' (¢) in the form

V(q) = (Bq, q), where B satisfies Eq. (2.13). Since
1 1
(Ag, Bq) = (Bg, Aq) = 5[(Aq, Bq) + (Bg, Ag)] = (5(B"A+ A"B)q, q),

Eq. (2.13) becomes

1
(B,4) = =(5(BA+ A"B)q,q).
The matrix §(B*A + A*B) is symmetric, therefore
2 1 * *
B* = —§(B A+ A*B). (2.14)

From the symmetry and non-degeneracy of B, (2.14) can be simplified to the fol-

lowing matrix equation

From (2.14), solution of the simplified equation is
B! o .
X=—= / eMteA .
2 0

So

1/ [ -1
B=— (/ eAteA*tdt) .
2 \Jo

For any nonzero vector y € R",

y*Xy — y*/ eAteA*tdty
0

— / (e ) E(eXy)dt
0
is positive, so B is positive definite. We get V(q) = (Bgq,q) > 0 for ¢ # 0. O
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Example 2.3.5. Consider a general 2 x 2 Jordan matrix A = , A< 0.

The quasi-potential can be calculated explicitly and is equal to

2\

4)\2—“[2/\%% +2Mq1¢2 + (2X* + 1)g3],

Vig) = —

where ¢ = (q1, q2).

From results in [7], an extremal ¢; solves the system of first order differential

equations
gbt = (A "‘ 2B)g&t,
where
2
- 92\ 2\ A
AN 41
A 2202 +1

is the symmetric matrix of the quadratic form V' (q).

From the Figure 2.1, one can see that the trajectories of the system ¢, = Ag;
are logarithmic spirals winding in to the origin in the clockwise direction, while the
trajectories of the extremal are also logarithmic spirals winding in to the origin but

in the anti-clockwise direction. The level sets of the quasi-potential are ellipses.

Proposition 2.3.6. The quasi-potential V(q) for process qi defined by (2.10) is

given by the formula

1 o X
Vig) = 3 <(/ eMootet tdt)lq,q> )
0
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Figure 2.1: Solid lines: trajectories of the unperturbed system. Dashed and doted
lines: trajectories of extremal of action functional. Ellipses: level sets of the quasi-

potential.

Proof. Let y = o7 '¢f, y5 =07 '¢5 = 07'¢=y. Then

1 o0 *
v = 5 (([ o etoret o yan )
0
| R L N S|
V(q)zia( etoote’ tdt) oo q, 0 q
0
1 & X
Vig) = 5 ((/ eMooted 1tdt)_lq,q).
0
Since oo* is positive definite, V' (q) > 0 for ¢ # 0. O

2.3.2 Quasi-potential for Langevin’s equation

To find an explicit representation of the quasi-potential for the second order
linear system describing particle motion, let us first consider the case when the

diffusion matrix o is an identity matrix.
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Consider the system

byt = =i+ Agl - VEWL, 1 =
(2.15)

;" =pi, %”° =q.
As we know, (0,0) is an asymptotically stable equilibrium position for the system
¢"° under the assumption in section 2.1.

From Proposition 2.2.1, the action functional for the family ¢/ in Cor ase | 0

has the form e71S*(¢), where

(

% foT |ups + o — Apy|2dt, ¢ is absolutely continuous
S*(p) = Yo = q,%0 = p;

~+00, otherwise.

\

Introduce the quasi-potential of ¢’ ¥ with respect to the equilibrium O:

Vi(q) = inf{S"(p):p € Cor, ¢o=0, ¢o=0, pr=4¢q, T >0}

= i =
Jnf V(p,q)

- pierﬁl\’fn inf{S#(@) 0 €Cor, o=0, oo=0, pr=q, or =p, T > 0}~

Let z = (p,q). Then V*(z) = V¥*(p,q). Let

el
vvu B VPVM - (;;u
\YAYZ ave
Jq

The Hamilton-Jacobi equation for V*(p, q) has the form:
1
(V! K2) + 5(B, YV, VW) =0, (2.16)
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where

—(1/wE (1/pA (1/u*)E 0
K = c R2n><2n’ Eu — c R2n><2n7
E 0 0 0

E is the n x n identity matrix (see [19]).

Lemma 2.3.7. Let the matrices K and E,, and the vector z be defined as above.

Let there exist a symmetric positive definite matriz D solving the equation
(Dz,Kz) = —(DE,Dz, z). (2.17)
Then V*(z) = (Dz, 2), for all z = (p,q) € R*.

Proof. Similar to the proof of Lemma 2.3.1, we can simply check that if (2.17) holds
and D = D*, V¥(z) = (Dz, z) satisfies the Hamilton-Jacobi equation (2.16). Since

D is positive definite, V*(z) = (Dz,z) > 0, for z # 0. O

Theorem 2.3.8. The quasi-potential for the process ¢, defined by (2.15) is given

by the formula:

Proof. Since

V#(q) = inf V*(p,q),

pER™
the proof is done if we can calculate V*(z) = V¥(p, q). Because of Lemma 3, we can
look for the quasi-potential V¥(z) in the form V*(z) = (Dz, z), where D satisfies

Eq. (2.17). Since

(Dz,Kz) = (Kz,Dz) = %[(Dz,Kz) + (Kz,Dz)] = (%(D*K—i— K*D)z,z) ;
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by symmetry of D, we have
1 % *
(Dz,Kz) = (§(D K+ K D)z,z) .
By Eq. (2.17)

1
<§(D*K + K*D)z, z) = —(DE,Dz, z).

Since the matrix 1(D*K + K*D) is symmetric,
1
5(D'K + K*D) = ~DE,D.
This is equivalent to
KD '+ D 'K*=-2E,. (2.18)

By our assumption in Section 2, K is stable. From Lemma 2, we know that there
exists a unique D~! that solves (2.18). We show that the unique solution is given

by the matrix:

where
G = 2/ eMeAtdt.
0
This can be done simply by checking that X solves Eq. (2.18). We calculate the

left-hand side of (2.18) and obtain

—%E 514 /%E 0 1p 0 ~-rp FE
KX +XK* = . i
E 0 0 G 0 G La= 0

(GA* + E) 0



From Lemma 2, we know that G = 2 fooo eAteA"dt is the unique solution of matrix
equation

AG+ GA* = -2FE. (2.19)
Since KX + X K* is symmetric,
1 1,
—(AG+FE)=—(GA*+E). (2.20)
p p
Equation (2.19) and (2.20) implies that

AG =GA" = -F.

Therefore,
—%E 0
KX+ XK= =-2E,,
0 0

which means that X = D! is the unique solution of matrix equation (2.18).
By inverting X, one can find D as:

J) 0
D=X"1=

0 %(fooo eAleAtdt) 1

Thus,
1 o0 .
V(o) = (D2,) =l + 5(( [ et at) g.q),
0
1 o .
Vi(g) = int Vi(p.a) = ([ Mt .0)
pER” 2 0
Obviously, the infimum is obtained when ¢ = p =0. O m

Let us now consider the general particle motion defined by

upls = Agl® — pit + EoWs, pi° = p;
(2.21)

e HHE e
Qt - pt ) QO =4q,
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where the diffusion matrix o is not necessarily the identity. Let V#(q) be the quasi-

potential for the process ¢.*° defined by (2.21). Then
V#(q) = inf{S"(¢) : p € Cor, po =0, ¢ =0, pr =g, T >0},

where (1/)S*(¢y) is the action functional for process ¢;"* as ¢ | 0. From proposition

1, S*(¢) has the form:

5 fo lo™(ups + or — Apy)|2dt, if ¢ absolutely continuous

S*(p) = Vo = 4,90 = D;

~+00, otherwise.
\

By making a change of variable, P, = o7 1p}"*, Q; = 07 1¢/"°, (2.21) becomes

MB =-P+ U_lAO'Qt + \/EWt, Py = O'_lp;
(2.22)

Qt = Pta QO = O-ilqv

which is a system with identity diffusion matrix. So quasi-potential V*(q) can also

be defined in the following way:
Vu(Q) = lnf{gu(gp) p e CUT; Yo = 07 SbO = 07 Yr = 071Q7 T> 0}7

where (1/£)S#(y) is the action functional for process Q; as € | 0 and
(

% foT \ups + o — o P Ao Adt, if ¢ absolutely continuous

S*(p) = 0o =0"1q, ¢o=0"1p;

~+00, otherwise.
\

Proposition 2.3.9. The quasi-potential V*(q) for the process qi"* defined by system

(2.21) is given by the formula:



Proof. From Theorem 3,

((/ 60'_1/-10'136(0_1Aa)*tdt)—lo_—lq7 a—lq)
0

N —

1 o *
((0_1/ eAtaa*eA tdt(a*)flo'flq,oflq)
0

DO |

5((01)*0*(/ eAtaa*eA*tdt)’laa’lq, q)
0
—((/ eMaatetdt) g, q).

0

]

The coincidence of V*#(q) for system (2.21) and V(q) for system (2.10) is

obvious from Propositions 3 and 4. With our assumptions made in Section 2, it

occurs for all > 0 if A has all eigenvalues real, and only for small p, if A has some

complex eigenvalues.

36



Chapter 3
Wavefront Propagation in the Reaction-Diffusion Equation

3.1 Wave Front Propagation for the Degenerate KPP-equation

3.1.1 General characterization of wavefronts

To study the wavefront propagation of equation (1.15), we first note that the
operator L*¢ defined by equation (1.16) is the infinitesimal generator of the Markov

process (pi, ¢i"°) defined by the system

pphs = — @i + o (gl Wa, Py =peR" (3.1)

¢ =", qh* =qeR"
This is equivalent to Langevin’s equation defined by:

pdls =~ + o(g )Wy, ¢ =q, py° =p, pg € R" (3.2)

where p is the particle mass, ¢/° is the position of particle at time t, p}*® is the

velocity of the particle at time ¢ and —¢}"® is the friction exerted on the particle.

We assume the diffusion coefficient o(¢,"°) is continuously differentiable and positive

definite. Let a(q) = o(q)o*(q).

Lemma 3.1.1. The action functional for the Markov process (p}”°, ¢;"%) in Co; for
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fized >0 as e | 0 has the form e 1Sk, (¢), ¢ = (¢*, ¢*) where
(

%fot 071 (¢?) (uo + 1)|2ds, ¢? = @L, ¢! absolutely continuous.

Si(@', ¢%) = pp=pER", ¢g=q€eR"

~+o00, otherwise.
\

Proof. Rewrite equation (3.1) as

B = =t Lo (@)W phT = ps

Gt =pi, @ =q
1,E
e 2 ) e
Let X = . Then the equation for X[ is

g

e | P e B A B I

Xt o= = +
i pie 0 0 Wy

Let ¢, = (¢}, ¥?)T, the transpose of vector (¢}, ¥?), be a continuous function on

[0, T] with value on R*". For each fixed p > 0, consider the transformation

Pt
Jip— X = € R*
G
defined by the system
1 t
= __ od _ =
p=p=—1 [ pds+ Lvlota) ~ slota) - = [0 iota
t
qt—qz/psd&
0
Let X1 = Jyy = (p1(t), i(t))", Xo = Jba = (po(t), q2(t))T. For any t € [0, T], the

norm of the difference satisfies the inequality:

X1 () = X ()] < Kl/ﬂ 1X1(s) = Xa(s)llds + K2T|[¢h1 — tallcor
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where ||¢|cy, = maxicpor [¢(t)|, K1, Ky are some constants. From Gronwall’s
inequality:

1X0(t) = Xa(t)]| < TR T [l — val -

which implies that the operator J is continuous.
From Theorem 1.2.1, the action functional for the process (p}*, ¢"%) has the

form 7158, () where

Shi(¢) = min{ Sy} (¥) : Jip = @}

. 1 t 112
=min{= | [|s|°ds:
2.Jo

o) _ [ itvioted - vio@l | / il
¢2 q ° Qﬁ;

1/t
:min{—/ |1 |?ds
2 Jo
¢! p o[ -1} 1o of [ 4
o= = +/ ds+—/ ds}
& "\ o S I R
if 4! is absolutely continuous. When ¢! = o= 1(¢?)(ud! + ¢1), 2 = 0, ¥2 = 1,

L Jo b |?ds attains its the minimum. Thus the normalized action functional is given

by:
( %fot |071(¢§)(N¢§ + ¢l)|2ds, gbz = ¢!, ¢! absolutely continuous
S0, %) = B=pER, G =qeR
~+00, otherwise.

]

Let the functional 7 : C([0,¢],R?") — [0,t] be a stopping time which depends
only on ¢ = (¢!, ¢?), 0 < s < u when restricted to {7 < u}. Let I'; be the collection
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of all stopping times not greater than ¢. If F is a closed subset of [0,¢] x R** and
{0} x R*" C F, then 77 = min{s : s > 0 and (¢ — s, d,) € F'} is a stopping time not

greater than t. Let ©,; be the collection of such 7. Define:

Vit = inf sup{ [ e(0.)ds = S5(0):

Tel'y

¢ is abs. cont, ¢o = (p,q), ¢ € [Gh]}

T 1
= 1£Ff sup{/ c(ps) — §|a’1(<ps)(,ugbs + @s)|?ds : ¢, abs. cont.
T t 0

Yo = ¢, SbO =D, (Spta th) € [Gg]}

Similarly, define:

VE(tpa) = inf sun{ [ elon) = S5(0):
¢ abs. COHt., ¢0 = (p7 q)v ¢t € [Gg]}

t

1

— inf sup{ [ ele) = 3lo7 (@) + s 9, abs. cont
T t 0

o = ¢, %0 = b, (¢r, ¢1) € (GG}

and

V*E(t, p,q) = sup mln{/ (ps) — Sb(0) :

0<a<t

¢ abs. cont., ¢9 = (p, q), ¢ € Go}

‘ 1 2
—suporg;gt{/o c(ps) = Slo™ (ws) (s + ) 7ds -

Ps abs. cont., o = q, %0 = P, (901‘/7 Spt) € [Gg]}
It can be proved (Lemma 2.4 of [11]) that
Vi = VE = v,
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Theorem 3.1.2 ([16]). The solution of equation (1.15) satisfies the following rela-
tion:

lim u® =

imw*(t,p,q) =0,
uniformly on any compact subset of {(t,p,q) : V**(t,p,q) < 0}. There exists h > 0

such that

liminf u®(¢,p,q) > h

el0

uniformly on any compact subset of {(t,p,q) : V**(t,p,q) = 0}.

3.1.2  Characterization of Wavefronts under Condition (N*)

We will investigate in this section another characterization of wavefronts of
equation (1.15) when it satisfies a certain condition (N*). To establish this charac-
terization, we would first like to obtain an asymptotic formula similar to (1.12) as
a lemma.

As is shown in Lemma 2.1, the action functional for the process (pi”, ¢"°)
as € | 0is e 1Sk, (¢). By the definition of action functional, the following estimates

hold:

i. for any function ¢ = (¢, ¢@) € Cou(R?), ¢\" = p, ¢ = ¢ and arbitrary

v, 0 > 0, there exists g9 > 0 such that for 0 < € < ¢¢:
1
Pz {pa( X2, 6) < 6} 2 exp{—(S4(6) + )}

ii. for any r < oo, the set ®, = {¢ € Co,(R*) : &g = x = (p,q), Sh(¢p) < r}

is compact in Cy;(R?"). Also for arbitrary v, § > 0 one can find gy > 0 such
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that for 0 < e < g
Pri{on (XL, @) > 6} < exp{—(1/2)(r = 0)}.

Lemma 3.1.3. Assume g(x) = g(p,q), z = (p,q) € R*, is a non-negative, bounded
function and denote its support of {x € R*" : g(x) > 0} by GY. Let c(q), ¢ € R",

be bounded and uniformly continuous. Let ¢ = (¢, ¢?) and

t
Ri0) = [ (o) = 510~ (0 )+ o0 P

Then

. € e e 1 ! 5
i B o) el [ elat)as)
el0 2 0

= sup{ Ry, (¢) : ¢o = =, ¢ € [G]}

Proof. Let m = sup{Rp,(¢) : ¢ = z, ¢ € [Gy]}. Since ¢(q) is bounded, g is
nonnegative and bounded and m < +o0o. The functional Rf,(¢) is upper semi-

continuous. Thus, for any v > 0, one can find é € Cp:(R?") such that
bo =, por(ds, R\ Go) = 6, > 0 and RY,(¢) > m — 7.
Let k > 0 such that

t ; g
| telas) = c(ias < 3
0

provided

- 1)
pot(XEE, 0s) < Ky g = KA 51

Then we have estimates:

1 t
ERcg(pi, ¢}) exp{g / c(qt*)ds}
0
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>Ebe X{pOt(X“E¢s)<62}g Nv exp{ / dS}

> i ol ew(E [ etds - L) < B0 b < 0
{$=P0t($,¢)<52} 2e

From estimate (i) the inequalities continue as

> min x)| exp{- / Nds — —} exp{— (Sgt(é) +7)}

{z:p0t (x,zzg) <52}

> min Ig(fﬂ)lexp{é(/0 c(§)ds — Sty(o ))——} eXp{ _

{z:pot(z,0)<b2}

> exp( 2| etd?)ds - st6) - 2

3

> exp{e ™! (m — 37)}.

Considering all estimates above, we get

e 1 [ . 1
EEg ) expl L [ eldt)ds) zexp{Zlm—3) (33)
0

To derive an upper bound, put s = |m| + tsup,cg» |c(¢)| + 1. Then

1
Ereg(pi™, qf) eXp{EC(QQ"‘S)dS} = e + e (3.4)
where
= Eg(0)" 6477 ) X gpon(x= @)= 5 - exp{= / “)ds}
€2 = By g(pi™, a1 ) X gpor (x22 @,) <5} - €XP{— / “)ds}
e < sup exp{ t sup [e(g)]} - P pou (X1, @,) > =}
{z:p0t (z,2r)> 5} qeR™ 2
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< esp{ 2t sup ela)] = =(s =)}

< exp{—=(lm| +1- )}

Choose a finite -net: ¢1, ¢2,...,¢,. Then

ey < sup |g(x ZE“ X{po (s, XE%)<n} €XP{ = / (¢*°)ds}

2
zeR?" i=1

< swp |gle |§jam{ [ eton s+ DI Lpu(X27, ) < ).

zeR2"
Put a; = inf{S§,(¢) : poe(P,¢:i) < K} —~/4, i = 1,...,N. Since S§,(¢) is semi-

continuous, one can find o > 0 such that po(®,,, ¢;) > k + a. Since
por(X™%, i) = —por(XMF, @a,) + pot(9i, Pay)
P po (X7, i) < w} < PR¥{por(pi, Pa,) — por (X", ®a,) } < K}
=P {poe(XH7, @0,) = por(pi, Pa;) — K}
=P pos(XH°, Dy,) > K+ a— K}
= P {poe (X5, @,,) > a},

we have

PE{pou(X1°, ) < K} < PE{po (X5, D) > a}

S )
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This implies that

er < sup gl |Zexp{ / (6.)ds + )} - exp{~~(a; + 1)}

zeR2n 4

= sup |g(x ZeXp{ / (¢,)d a; %)}

TER2™

= sup |g(z |ZeXp{ [sup{ Ry (@) : pot(@, d:) < K} + 27]}

r€R2n

From equation (3.4), we obtain

prrgt e {2 [ i) centmram)  69)

Since 7 is arbitrarily small, from estimate (3.3) and (3.5), we prove

lgglélnEi"eg(pé"e,qt ) exp{— / “)ds}

= sup{Rh,(¢) : ¢o =, ¢ € [supp g(p,q)] = [Gh]}.
O

Let ¢ = ¢ be the second component of vector ¢ = (¢(V), ¢(?)) € R?". Define

VE(t, p,q) as

VE(t, p,q) = sup{Rp,(9) : ¢o = (p,q), o € [GH}
= sup{ / e(62)ds — SL(6) - do = (p.4). b € [GL}
= sup{ / clps) — gl (@), + 0.)ds

Yo = ¢, Sb() =D, (90157@75) S [GS]}
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The Feynman-Kac formula implies that the function u®(¢, p, ¢) obeys the rela-
tion
g 1 15 € 15 g
u(tp,a) = 9o i) exp{ Ze(qr", ut(t — s, py%, ¢0 %) ds} (3.6)

where c(q,u) = u™' f(q,u), c(q) = c¢(q,0) > c(q,u). Let

Qf ={(t,p,q) : V*(t,p,q) <0}

We say that condition (N*) is fulfilled if

() V¥(t ) = s (s — S(p)

$Yo = ¢, QbO =D, ((Pta@t) € [Gg], (t - S’Sbs’(pt?) S Qﬁ for 0 <s < t}
holds for any ¢t > 0 and (p, q) € ¥; = {(p,q) € R*" : VX(t,p,q) = 0}.

Theorem 3.1.4. Suppose f(q,u) satisfies the KPP assumption for ¢ € R™ and let
condition (N*") be fulfilled. Then for the solution u®(t,p,q) of the Cauchy problem

(1.15) the following relation holds:

1, for ¥ ={(t,p,q): V*(t,p,q) >0}
nglu (t,p,q) =
0, for Q" ={(t,p,q): V*(t,p,q) <0}

This convergence is uniform on every compactum lying in the region

{(t,p,q): t>0, p,g e R", V¥(t,p,q) <0}
and
{t,p,q): t>0, pgeR", V¥(t,p,q) > 0}

respectively.
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Proof. From the KPP assumption, we know ¢(g,u) < ¢(g,0) = ¢(q). It follows that

1 t
0<w(t,p,q) < B, 900", ¢t) exp{g/ c(qi")ds}
0

VHE(t,p,q
= eXp{(?)}.

Thus when (¢,p,q) € Q, that is, V*(t,p,q) <0,

limsupelnu®(t,p,q) < V*(t,p,q) < 0.
€10

Therefore

lim u®(¢, p, q) = 0.

el0

This convergence is uniform on the set Qs N QY where Qs = {(t,p,q) : t €

0, T, |(p. @)| <T,[V¥(t,p.q)| = 0}
To show lim.ou®(t,p,q) = 1 whenever V*(t,p,q) > 0, consider the strong

Markov process

(Y22 = (b0 P27, 2%) = (8 = 5, 9% ¢1), P )

corresponding to the operator L** — 9/0t. First we show that if (N*) holds, then
for any 0 > 0, T > 0 there exists gy such that when 0 < & < g, for (p,q) € ¥, 0 <

t < T, we have

u(t,p,q) > exp{—0d/c}. (3.7)
By virtue of condition (N#), let ¢ € Co(R™), $o = q,%0 = p, (¢, ) € [GH]. For
some small number § > 0, suppose that when s € [0, t — 6], the point (¢ — s, Ps, Ps)

is at a positive distance k from the complement of Q" and Rf,(¢) = fot c(ps)ds —
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Sh(¢) > —0/4. Since
Kt
0 <wu(t,p,q) < eXp{M}

Vet —
0<wu(t—s,pq < eXp{w}
£

M(t -5, Sém @S)
e

. v
0 < u(t— s, fs, Ps) < exp{ P<L

for small € > 0, u(t — s, gés, ps) is close to 0, except for small parts near s = 0 and

s = t. Therefore

=~ >

sup [C(¢8> - C(@Svua(t -5 927& ‘:278))] <
f<s<t—0

provided € > 0 is small enough. Then one can find # and k¢ so small such that that

g g 19 ]‘ !
u(tp,q) = Eylg(pi™, 4t™) expiZ / (gl us(t — s, p&%, ¢5%))ds}
0

,E W\E  L,E .
2 B 0905 45 ) X ooy (560 o)) <o

1 t
X exp{g/ (g us(t — s, pt, ¢1F))ds}
0

€ A A £ IS 1 ¢ R 5
> P (6. 6). (0,79 < rabexpl (| clp)ds = )
0

> exp{~2(54(¢) + 3 exp{z( [ epds =)

I . § 26
= exp{Z( [ clpds = SG(e) - -~ 1

= ol (AAS) -~ )
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J
> exp{—g}.

Next we establish the inequality
lirg%nf u*(t,p,q) > 1.
Let A be a small positive number. Introduce Markov times:
it =n =inf{s: u(t, ph7,¢l7) 21— A}

EA 3 . € €Y —
T, =Ty = inf{s: VH(ts,p"= ¢°) =0}
A A
A =r = AT =T AT

The strong Markov property and the Feynman-Kac formula imply:
€ e LE  J,E 1 ! L,E € LE  J,E
u(t,p,q) = E(tpq) u® (tr, pe, g )exp{g c(qhs, ut(t — s, p°, ¢4%))ds}
0

= A1+ 4
where

Ay Eélyp P Xr=n U (tn ) p¢1€7 Q¢1E> exp{ / qz 5 u (tm pg’s, qg’g))dé’}

A2 E(L;’p q)XT 7'2 (t7'2’p¢2757q7'2 eXp{ / q57 9 .572757 >q55))d$}
Since ¢(q,u) > 0 when 0 <u <1— ),

Ar 2 (L= NEG, g Xr=r = (L = NP, {7 =7} (3.8)

(t,p,q (t:p,q
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To bound Ay, let Vo = V#(t,p,q) > 0, choose h > 0 such that
. 1
inf{V*#(s,y,x): |s—t| <h, l[y—p| <h, |[vt—q| <h}> §V0.
Select 0 € (0, /2), where
=h- .
@ |z — q\<f£négu<l A clg,u)

By (3.7), for £ small enough
€ LL,E JU,E Y
u (tT27p7'2’ 7q7—27 ) > exXp _g :
We denote 73 = inf{s : |¢#° — q| = h}. Let D ={z: |x —¢q| < h}. Then

P{r3 <t} = P{¢"* exits from D for some s € [0,¢]}

1. . .
= exp(—g 1nf{8é((p) %P0 =4,%0 = D, (Spsa 905) € aD)
for some s € [0,t]})

= exp{—%} for some Cy > 0.

Therefore, as € | 0, P{r3 <t} — 0 for any ¢t > 0. Then A, can be bounded from

below as follows
£ 13 £ 1 T2 £ 1> £ '
As = By, )Xo W (b, P77, 0757) exD{ 2 / c(qss, us(ts, pi®, q5°))ds}
0

OZTQ

E52q>xfz<nexp{——} exp(o - =) = By,

(t,p,q) X1a>73+
Since 15 > h,

Ay > eXp{ }IP’ tpq){T =Ty < T3} — IP’(tpq {m > 13}
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> exp{ }P(tpq {m <13} —o(e). (3.9)

Collecting estimates (3.8) and (3.9), we obtain

W(Lpa) 2 (1= VB, {7 = 7} + exp{ e BT (s < ),
which implies that
u®(t,p,q) > 1 — A\, for € small enough.
This is true for any A > 0, so
lir?l(i)nf u(t,p,q) > 1 (3.10)

Finally we show that
lim sup u®(t, p, q) < 1.
el0
Pick a small A > 0. Denote D = {(t,p,q) : t > 0,u(t,p,q) > 1+ A}, and let

T, = Tf’a’)‘ = inf{s : Y/ & D¢}, the first exit time of the process Y/ from D¢.
u(tp,q) = Ef, yu(t — 74,055, ¢7) exp{— / c(g®, u(ts, pi=, q5°))ds}

B et (V) expf / (g (Y2))ds)

+ B Xm=9 () 4t exp{ / o(ql®, uF(Y)7))ds}

When u < 1+ A, the KPP assumption implies that c¢(q,u) = u™f(q,u) > 0.
Therefore
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—t
“(t 14+ A ]P“’ <t - i
u ( y Py Q) ( + ) (t,p,q) {7—4 }+ ||g|| eXp{ c 1+)\<u<21-£l||g|| o q|<h|c(‘rvu)|}

><]P’“tpq){74 t}—l—IP’tpq){mf{s ¢ —q| = h < t}}

If we choose e small enough, u®(¢,p,q) < 1+ 2\, thus

lim sup u°(t, p, q) < 1. (3.11)
el0

From (3.10) and (3.11), we get

lin u(t,p,q) = 1, when (t,p,q) € Q4
1>

3.2 Convergence of the Wavefronts

We first summarize the characterization of the wavefronts of equations (1.15)

and (1.17). Let

Go ={ @) : 9(p,q) >0}
and let [Gh] denote the closure of Gf; let

Go = {(0,9) : 9(0,9) > 0}

and let [Gg] denote the closure of Gj.

For the degenerate reaction-diffusion equation (1.15):
i. When condition (N*) is satisfied, i.e.
(N¥) -
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VA(tpa) = sup (i) = [ ele) = glo~ e p + o) Pds

Yo = ¢, Qb(] =D, (@t,gbt) € [G/SL Vﬂ(t - S, 92737 908) <0 for 0<s< t}

the function

t
1 _ . .
c(ps) = 5lo Y 0) (s + @s)|2ds -

VE(t, p, ) = sup{ Rls(p) = /

0

Yo = (¢, @0 =D, (@t,gbt) € [Gg]}

determines the position of the wavefront. In this case, the manifold

S = {(p,q) €R*™: V¥(t,p,q) = 0}
separates the regions of Qf and Q.

In
O ={{t,p.q) : V*(t,p,q) > 0}
the solution u®(t, p, q) converges to 1 as € | 0 uniformly in any compact subset
of Q).
In
O ={(t,p,q) : V*(t,p,q) <0}
the solution u°(t,p, q) converges to 0 as ¢ | 0 and converges uniformly in any

compact subset of Q.

ii. When condition (N*) is not satisfied, we know the function

. . ¢ T _ . .
V(. q) = sup min {Rg, () —/ clps) = 5lo7 (o) (s + 4s)*ds :
>ax 0
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1il.

1.

Yo = ¢, 9'00 =D, (90t79bt) € [Gg]}

characterizes the position of the wavefronts. In this case, the solution u®(t, p, q)
converges to 1 as ¢ | 0 and converges uniformly in any compact subset of Q7"

defined as
QY ={(t,p,q) - V"*(t,p,q) = 0}.

The solution u® (¢, p, ¢) converges to 0 as € | 0 uniformly in any compact subset

of Q" defined as
Q= {(t,p,q) : V**(t,p,q) < 0}.

From the definition of V#(t,p, q) and V**(t,p, q), we know the following rela-
tion holds:

VEH(tp,q) < VH(t,p,q) AO.
This implies Q1" C Qf and Q™" D Q”.
For the non-degenerate reaction-diffusion equation (1.17):

When condition (N) is satisfied, i.e.

(V)
Vi) = sup{Rute) = [ clo) = gl (e s

wo =4, ¢ € [Go], V(t—s,ps) <0for 0<s <t}
the functional

Vi) = swp{Rade) = [ clp) = gl (e)eds
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11.

$o =(q, Pt € [GO]}
determines the position of the wavefront. In this case, the manifold
Ye={q¢eR": V(t,q) =0}

separates the region of €2, and Q2_.

In
Q. ={(t.q): V(t,q) >0}

the solution u®(t,q) converges to 1 as € | 0 and converges uniformly in any

compact subset of €2,.

In
Q- ={{t.q: V(tq <0}

the solution u®(t,q) converges to 0 as € | 0 and converges uniformly in any

compact subset of (2_.

When condition (N) is not satisfied, we know the function

* o . _ ¢ 1 -1 =12 .
V* () =sup min (Run(i) = | elie) = 5107 (s

w0 =q, ¢t € [Gol}

characterizes the position of the wavefronts. In this case, the solution u®(t, q)

converges to 1 as € | 0 uniformly in any compact subset of €7 defined as
O =A{(t,q) : V*(t,q) =0}.
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The solution u®(t, q) converges to 0 as € | 0 uniformly in any compact subset

of * defined as

QF ={(t,q) : V*(t,q) <0}.

ili. From the definition of V(t,q) and V*(¢,¢), we know the following relation
holds:

V*(t,q) < V(t,q) NO.

Thus 27 C Q4 and QO D Q_.

3.2.1 Convergence of Wavefronts Under Condition (N*) and N

In this section, we consider the convergence when both condition N* and

condition N are satisfied for problem (1.15) and (1.17). In this case, the manifold
2t ={(p,q) € R*: V¥(t,p,q) = 0}
can be considered as the position of the wave front for equation (1.15), and
Ye={qeR": V(t,q) =0}
can also be considered for equation (1.17).

Theorem 3.2.1. Assume f(q,u) = uc(q,u) satisfies the KPP assumption for q €
R™.  Let conditions (N*) and (N) be fulfilled and let D, C R" and D, C R" be

compact. Then for each p € D,, q € D,

11?3 Vit p,q) = V(L q)

for each 0 <t <T < o0.
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Proof. 1t is equivalent to show that for each p € D, C R", the following inequalities

hold:
V(t,q) > limsup V*(¢,p, q) (3.12)
w110
V(t,q) < liml%]nf VE(t, p,q). (3.13)
I

To show (3.13), take ¢* be an extremal of the functional

Rule) = [ clo) = 1o~ (e s

such that

V(t,q) = Roe(¢*) = sup{Ro:(¢) : @0 =4q, ¢: € [Gol}.

The Euler-Lagrange equation for extremals of Ry, () implies that they are in C?([0, ¢]).
Let a(q) = o(q)o*(q), ¢ € D, be strictly positive definite. Assume o(q), ¢ € D,,

have bounded derivatives. Then
VIt p,q) > Ry (¢)
! 1 .
= [ = Sl D + éo)Pds
0
¢ * 1 2 1 2
= 0(905)—§|0 Y et — 5!0 ) e
0
— (7 (P per, o @h)es)ds
L1
= [ clg:) — 2! Hk)pr|?ds — IU (¢h)pzlPds
0
t . .
—u/<<@wy%m

- ROt - _/|0 905 905| ds — /ZZGU Sps 905 SO:JdS

=1 j5=1
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2 t t n n
% I[_L _ N lj, _ % .*' '*i
= Rule") = 5 [loenipas =5 [ 30 S aienaig’es)
i=1
= ROt Z Z Q;; 903 (psjsps |O Y /Z Z 905 SDS ))

7,1]1 =1 j=1
—o(p)

= Ro(¢") — %[(0‘1(902‘)@2‘, o M eh)er) — (07 ()l o (wh)eh)]

——/ZZs& prd(ag; (1)) — olp)

=1 j=1

= Ru(¢") = Sl (el = 1o~ (@)

——/ SO gl (02) — o).

i=1 j=1

Since p* € C?([0,1]), the derivatives in

A=l Dl o o= i [ 3 e o)

i=1 j=1

are bounded. Thus A ~ o(u) as p | 0, which implies that
VAt p, ) 2 Ro(p") = o(p) = V (2, q) — o(p)-
When p | 0, we have the following estimate:
lirgl%nf VE(t,p,q) > V(t,q).

To prove (3.12), for each fixed > 0 let ¢ be an extremal of the functional
' Lo 2
Rie) = [ clo) = Sla ()b + ) ds
0
such that V¥(¢,p,q) = R, (). Similarly, extremals of R, () are in C*([0,¢]). Then
t 1, . C g
Rie) = [ cle) = 3lo @b+ do)Pds
0
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t . 1 B . . 1 t B . .
= [Cetwa) - gl @adpds - 5 [l @b s
0 0

t
o / (071 (Ge) s 0 (30)30)ds
0

= Roy(¢ ——/ Ea(CRIEN ds——/zz a;; (ps)d(Pip))

i=1 j=1
= Rot(¢) — o(p) — H[(afl(@)@m 1) — (a™" (o) @0, $o)]
2
t n n
H Ag A
+ [ T e 2]
1= 1=

= Ra@) = ol) = Ello~ (@0 = lo™ (P

8 [ S dddar )

i=1 j=1
t non
< Ra(@)+ 5 [ 303 ¢dldla ()
0 =1 j=1
w 1/ \ A (2 1 2
= 5lle T (@)oo (@)pl’]

Since p € D, C R*, ¢ € D, C R*, D,, D, are compact and o(q) has bounded

derivatives, the derivatives in the quantity

=[5> a2 - o~ @0l - o

=1 j=1

are all bounded. Therefore, B ~ o(u) as p | 0. Summarizing the above inequalities,

we obtain
Ro(¢) < Rou(p) + o(p) < V(¢ q) + o).

Thus,

limsup V¥(t,p,q) < V(t,q).
pl0
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From (3.12) and (3.13) we find that for fixed p € D, C R", for each ¢t € [0,T], 0 <

T <o0,q € Dy, CR" we have
lim V(. p, q) = V(t, 9). (3.14)

"
m

Example 3.2.2. Consider the following example in R!. Recall that if the function

f(q,u) satisfies the KPP assumption, then it fulfills the relation

flg,u) = ue(q, u), 02132(1 c(q,u) = c(q,0) = c(q).

Assume that the function ¢(q) is a linear function with slope of £ > 0 for ¢ > 0 and

is 0 when ¢ < 0, i.e.

kg, ¢>0
c(q) = c(q,0) =
0, ¢g<0

We study the relation between the wavefront propagation of the following two equa-
tions. The first is

ous(t, p, q) e 0% 1 ouf ous 1
bl P S VA _ - Ut € 3.15

u*(0,p,q) =8(p)x '(q), ¢, pER

where d(p) is the delta function centered at 0, taking value 1 at 0 and 0 otherwise

and y~!(q) is the indicator function such that

The second equation is

ous(t,q) ed®u 1 .
T - 9 8q2 + SU c(q,u ) (316)
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u*(0,9) = x"'(q), ¢ € RL.

We will prove in what follows that both condition (N*) and condition (N) are ful-
filled when ¢(q) is linearly growing as kq. Thus we can use the functionals V* (¢, p, q)

to characterize the wave front propagation for equation (3.15) and V' (¢, q) for equa-

tion (3.16). Let

t
1 . . . )
VHE(t, p,q) = sup{/ c(ps) — §Iusos + psds, po=q, $o=p, 1= =0}
0

t
1,.
V(t,q) = Sup{/ c(ps) — §\¢s\2ds, o =q, pr = 0}.
0

For the functional V (¢, q), the Euler-Lagrange equation has the form

G5 = —k, po=4q, p=0.

There exists a unique solution @, s € [0,¢], on which the supremum is attained. Tt

has the form

- 1 q kt
= ——ks?— (2 - = 1
@ Sks” = (1 —F)s+a (3.17)
and its derivative has the form
K q kt
s =—ks— =+ —. 3.18
%) S t+ 5 ( )

The functional V' (¢, q) has the expression
K 1
~ 2
V(t,q) —/ c(ps) = Slosl"ds
0

1 1 1
= _Z‘f + §kqt + ﬂk%? (3.19)
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By setting V' (¢, q) = 0, we calculate the front position as
1
at) = - (3 + 2v3)t%k, ¢ > 0. (3.20)

Since the front position ¢(¢) is a convex function and the extremal @, is concave,
condition (V) is satisfied. Thus characterization of the wave front position using
function V(t,q) is verified. Moreover, we also obtain the wave front position and
extremals.

For equation (3.15), we will approach the functional V#(¢,p,q) in the same
way as we treat the functional V (¢, ¢). It is more complicated, but we can simplify
the analysis somewhat by considering small .

Let

— 1, . .
F(g&s, QOS,QOS) = C(‘PS) - §|N¢s + <:08|2'

The Euler-Lagrange equation for the functional F'(¢, ¢, ) is calculated as

i . dd._. &d._ d. . P o
%F - %@F + @%F = ps) = (= (s + Q)] + —5[=plpuds + 45)]

= (ps) + (1l + @) — (12l + )

= c(ps) + @5 — 1PV =0
The Euler-Lagrange equation is

N290g4) — Qs = Cl(‘PS) =k.

Let ¢#, s € [0,t] be the solution of the Euler-Lagrange equation :

(4)

PP gt =k ok =q>0, g =p, pr=pf =0. (3.21)
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It’s easy to check that all solutions of (3.21) satisfy the equation

é“(s) = c1exp (—£> + ¢y exp (S—_t) — k.
7 7

Integrating with respect to s and using the boundary condition ¢} = @f =0 we
find:

S

P(s) = —k( — ts + )+ per [mexp(—i) — exp()) + exp(—)(s — )

(3.22)

+ MCz[M(eXP(T) —1)+t— 4

PH(s) = —k(s —t) + ucl(exp(—i) - exp(—i)) + /ch(exp(ST_t) —1)  (3.23)

From ¢*(0) = ¢, we have

kt?

0= =5+ sl = exp(—)) — texp(= )] + pealp(exp(—) — 1)+ 1]

which is equivalent to

ey [ (1 - exp(—%)) —texp(—%)] + pea[p (exp(—%) — 1) +t=q+ % (3.24)

From ¢*(0) = p, we have
B t t
¢"(0) = kt + pey (exp(—;) - 1) + pea <exp(—;) - 1) =p,
which implies that
t
(pey + pes) (exp(—;) — 1) =p—kt. (3.25)

Solve (3.24) and (3.25) for uc; and pcs, we obtain

(exp(=24) = 1)(q + 52%) = [u(exp(=L£) = 1) + t](p — kt)

(exp(—7) — 1)[2p0(1 — exp(—)) — texp(—7) — ] (3.26)

Her =
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[1(1 = exp(—7)) — texp(—)](p — kt) — (¢ + 5t*)(exp(—7) — D

JCo = 3.27
: (exp(— 1)~ DBl — exp(— 1)) — fexp(— 1) — 1 (3:27)
Notice that when p | 0,
kt q
——p—= 3.28
pey — 5 p / ( )
kt
pez — o+ % (3.29)

Thus, pcy ~ O(1), pcy ~ O(1) as p | 0.

By substituting for ¢, gég‘, géf;, we calculate V¥ (t,p, q) as
t 1 . )
Vi(tpa) = [ clot) - i+ Guds
0

t t 1 1
= 2u2(exp(—;) — )oKy + kp?(1 — exp(—;))cl + §t2K3 +tK, — 51{;2753

t 2t 1 1
+ [aug(exp(—;) — 1) + 2kp*t]c + u‘“’(eXp(—;)Ci — UG+ SH
where
k*t? t
K, = -t ke exp(—;) (p+1t) — kuca(p —t),

t
Ky = pey eXP(—;) — pes — k(p — 1),
t
K3 = k(e exp(—ﬁ) — pes + kt).

We would like to solve V#(¢,p,q) = 0 for p, g to find the position of the wave front.
In order to simplify the problem, it’s helpful to write V#(t,p, q) as a function of p, q

and find the dominating terms for small p. First we write

pcr = lig — lap + Lo, (3.30)
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where [y, [y, l12 are quantities not depending on p, ¢. From (3.26), we know

Similarly,

-1

L= |2u(1 — exp(—%)) - texp(—é) —t

1
—>—¥asul0

p(exp(—7) — 1) +1
(exp(—7) — D[2u(1 — exp(—7)) — texp(—3) — 1]

ly =
— laspl0

Ik
112 - %tz + lgl{?t

kt
—>Eas,ul0

HCo = lgp — l4(] + l34, (331)

where 3, l4, [34 are quantities not depending on p, ¢. From (3.27) we know

pu(1l —exp(—1)) — texp(—+)
(exp(—1%) = 1)[2u(1 — exp(—1)) — texp(—1) — 1]

l3:

—0,aspu |0

-1

t t
ly =12 1—exp——>—texp—— —t
4 {u( -5) (-3)
1
— =7 as p | 0

Ly kt?

134 == —lgl{?t - 2

kt
—>E’ as u | 0.
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For the quantities Ky, Ky, K3, we can write:
Ky =1lig+ bp+ ls, (3.32)
where
- t
ll = k?([L — t)l4 — kexp(—;)(u + t)ll

— k, as | O

t
Iy = keXp(—;)(u + )l — k(p—t)ls
— 0, aspu |0

. k2t? ¢
le = 5 = Lok exp(—;)(,u + 1) = k(p— )l

— 0, as pu | 0.

Also

Ky = l3q + lyp + Iz, (3.33)

where

t
13 = ll eXp(——) + l4
1%

1
— -5 aspll

_ t
l4 = —(lg + 12 exp(—p))

— 0, as pu | 0
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_ t
l34 = —k:(,u — t) + l12 exp(—;) — l34

kt
—>§, as u | 0.

Finally
K3 =15q+ lp + Ise, (3.34)
where

t

l_5 = k(exp( ,[,L)ll + l4>

— - asull

_ t
le = —k(l3 + lyexp(——))
1
— 0, aspu |0

t

l_56 = kexp( )llg - kl34 + k'?t
%

k%t
— TR as i | 0.

Summarizing (3.32), (3.33), (3.34) we calculate the following asymptotics when p |

0:
K, — kq (3.35)
1 kt
Ky — ——q+ — (3.36)
t 2
ko k*
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Collecting (3.26), (3.27), (3.32), (3.33), (3.34), we calculate V¥(t,p, q) as
v‘u(t?pa Q) = m1q2 + meq + msp + My (338)

where

1 2k > 2k >

t 2t
exp(——) + kuexp (——) ,
2 It
) t
ms3 = k:“’ eXp<__> -1 )
u
1 t S|
= —uk?t? —)+1 — k3.
My = o p (exp( M)+ ) + 55

Notice that when p | 0, the following limits hold for these quantities:

1
m; — ——

2t

me — —kt

2

m3—>0

1
my — —k2t3.

24

When ¢ > 0, there exists a p; > 0, such that whenever 0 < p < py, the wave front

for ¢ has the same concavity as:

and there exists a po > 0 such that whenever 0 < p < s, the wave front for p has

kt?; (3.39)

the same concavity as:

1 1 1
—ﬂk2t3 — EQI{?t — EQQ
ki (exp(—+) — 1)

pt) =
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Therefore, there exists a f112 = 1 A fig, when 0 < p < p112 the wavefronts p#(t) and
q"(t) are close to the convex functions p(t) and ¢(t) respectively.

The extremals ¢ and gbf; can be approximated in the same way. By plugging
in the approximate quantities pc; and pcy for small g into equations (3.22) and

(3.23), we obtain:

Py - oG~ s+ )
kt s
+ (5 =P = Plulexp(=—) —exp(=—)) + exp(=—)(1 —1)]
kt ¢ s —
(EJF;)[M(GXP( )—1)+t—s].

Its second derivative has the form:

ko (5 —p—g)exp(=2) (%5 +aqt)exp(%1)
+ + .
2 p Iz

For small p, gb{; is close to —k/2 which is negative, and thus there exists a uz > 0

such that when 0 < p < ps, ¢, s € [O(us),t — O(us)], has the same concavity as

its limit
po=—ghs?— (L =y 1
For $*(s), we have:
§(6) = ~k(s = )+ (5~ p — Diexpl(—1) = exp(~2)
+ (g + Dexn(H) ~ 1),

and thus there exists a gy > 0 such that when 0 < p < pg, ¢*(s), s € [O(jus),t —

O(p4)] has the same linearity as its limit

R q kt
= —ks— 24~
o(s) s—ot 5
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Therefore, there exists pg4 = 3 A g4 > 0 such that when 0 < p < 34, the extremal
@ is concave, and @ is linear on the interval s € [O(juss),t — O(ji34)).

Take po = pi2 A pga. Then for 0 < p < o, the wave front p#(t), ¢"(t)
is convex, the extremal $#(s) is concave, and $#(s) is linear on the interval s €
[O(po),t — O(up)]. Therefore condition (N*) is satisfied for 0 < p < pg. Now we
have justified the use of the functional V#(t,p,q) as a characterization of the wave
front for equation (3.15).

From the above calculation of (3.19) and (3.38), we have proven V#(¢,p, q) —
V(t,q) for each bounded p € R'. Moreover, from (3.20) and (3.39), we see that the
asymptotic wave front positions are the same as | 0. Therefore, we can use the

wave front of equation (3.16) to approximate that of (3.15).

3.2.2 Convergence of Wavefronts in the General Case

Convergence of the wavefronts when neither (N*) nor (N) is satisfied so far
can not be proved in general. However, we can still deal with some of the cases.
In this section, we will consider a special case of equations (1.15) and (1.17) when
the diffusion matrix o(q) is a unit matrix. For simplicity, let the initial condition
be g(0,p,q) = d(p)x (), 9(0,9) = x"'(g), where §(p) and x~'(¢) are defined the
same way as in the example of the previous section. We will study the relation

between equations:

ou(t,p,q) € | . .1, .
5 = 20 Ay ut — ppvpu + pVu® + U c(q,u®) (3.40)
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u*(0,p,q) = 6(p)x '(9), ¢, p € R

and

ous(t,q) ¢ I .
% 3 Dy ut + U c(q, u®) (3.41)

u®(0,q9) = x '(q), ¢ € R™.

Assume that for the given function ¢(g, u), condition (N*) is not fulfilled for equation

(3.40), while condition (V) is fulfilled for equation (3.41). Then functional

V2L, py q) = sup min {Ro,(9) : w0 = ¢, o = o = ¢ = 0},
where
1 “ 1 . . 2
Roa(p) = | clps) = 5luds + @l 7ds,
0
is used to characterize position of the wavefronts for equation (3.40). Recall that
the functional V#(t,p, q) is defined as:
VAt p,q) = sup{RG,(v) : o = q, %0 = p, o = 1 = 0}
where
t 1 )
Ri(o) = [ clon) = 3lupi + guds.
0
The following result can be generalized for any p € D C R™ where D is compact.
For simplicity, fix p = 0. Define
QY ={(t,q) : V*(t,0,q) = 0}

Q- ={(t,q) : V**(t,0,q) < 0}
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We know that the solution of (3.40) converges to 1 as € | 0 uniformly in any compact
subset of Q7" and converges to 0 as € | 0 uniformly in any compact subset of Q™"

Similarly, define:
QF ={(t.q) : V*(£,0,q) > 0}
OF = {(t,q) : V¥(£,0,q) < 0}

In general V**(t,p,q) < V*(t,p,q) A 0. When condition (N*) is not satisfied, the
inequality is strict:

VRt p,q) < VH(t,p,q) NO. (3.42)
It implies that
Qi c ol
Qo QF

Since we assume condition (V) is satisfied for equation (3.41), the characteri-

zations using functionals V*(¢,¢q) and V' (¢, q) are equivalent. Let

V*(t,q) = sup min {Roa(¢) = 0 = ¢, ¢ = 0}
in{ [ elod) = 5l 0}
= sup min clos) — =¢sl?: wo=¢q, o1 =
0<a<t " J 2 0 ¢
V(t,q) = sup{Ro:(¥) : @0 =q, 0 =0}

t
1 .
—supf [ cle) = 5lalds g =a. o =0}
0
Define:

O =A{(t,q) : V*(t,q) = 0}
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O ={(t.q) : V'(t,q) <0}
Qp ={(t,q) : V(t,q) > 0}
Q= {(t,q): V(t,q) <0},
The functionals V*(¢,q) and V (¢, q) are related by the equation
V*(t,q) < V(t,q) NO

in general. When condition (NNV) is satisfied, the inequality becomes the equality

V*(t,q) =V (t,q) NO. (3.43)
This implies
0 =0y
O =Q_

As we know, the solution of (3.41) converges uniformly to 1 as ¢ | 0 in any compact

subset of (0 = (1, and converges uniformly to 0 as € | 0 in any compact subset of

Q =Q_.
Lemma 3.2.3. Given 0 <t <T < oo, assume that the function c(q) is sufficiently
smooth. Let @, s € [0,t], be an extremal of V*(t,p,q) and let ps, s € [0,t], be an
extremal of V (t,q). Then

QL — Ps

@g - 9278
as p | 0 for each s € [0,¢].
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Proof. Since ¢# and @, s € [0,t] are extremals, they solve the Euler-Lagrange

equations:

PP — Gl =Ve(Qh), ¢h=q, o =p, 1= =0 (3.44)
Ps = —Ve(@s), Po=4q, ¢ =0. (3.45)

Consider equation (3.44) without boundary conditions. It can be written as the

following system:
=, v=ux, pi=y, wy = x + Ve(@h).
Let h(s) = Ve(¢h). Since z(s) = ¢F, equation (3.44) can be written as
p?i(s) — x(s) = h(s), s €[0,t]. (3.46)

It can be calculated that for all h € C*(]0,¢]), any solution of (3.46) is given by

z(s) = exp(—i)cl + exp(s Jea + H(s) (3.47)

where

H(s) = %/0 exp (T ; S) (r)ds — %/t exp (S ; T) h(r)dr — h(s).

Notice that the integral terms

l/s <r—s)- 1/t (s—r)-
— exp h(r)ds — = | exp h(r)dr — 0, as u | 0.
2/, . (r)ds — 5 5 - (r)

Since ¢ (s) = x(s), replace z(s) in (3.47) we find

F(s) = exp<—§>c1 +exp(Z—")es + H{(s).
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Integrate both sides of the equation using the boundary condition

to get
A“SZtt z2)dzdr c ex—i—ex—E ex—is—'
6 = [ [ s+ penlpexp(=) = exp(=2) + expl(~ ) (s 0
(3.48)
et — s+ M<exp<57—t> —1)]

S

H(s) = — / H(r)dr + ,ucl(exp(—i) —exp(=2) + ,ucz(eXp(ST_t) S 1), (3.49)

From ¢#(0) = q, $*(0) = p, we get

pea (1 — exp(—ﬁw - texp(—ﬁn et + u<exp<—§> 1)) (3.50)
=q-— /Ot/tH(z)dzdr,
m(exp(—ﬁ) 1)+ #Cz(exp(—%) “1)=p+ / H(r)dr. (3.51)

By solving (3.50) and (3.51) for ucy, pcse, we find

ey = K, [q— /Ot /rtH(z)dzdr} + K, [p—F/OtH(r)dr}
jicy = Ks {p—i— /OtH(r)dr] — K {q - /Ot /:H(z)dzdr]

where

Rit) = |2 (1= exp(- 1) ) = vexp(-5)

pu(exp(—3) — 1) +1

Ka(p,t) = — (exp(—ﬁ) —D[2u(1 - eXp(—ﬁ)) - texp(—ﬁ) —t’

5



pu(l —exp(—1)) — texp(—)
(exp(—%) = D[2u(1 —exp(—1)) — texp(—L) — 1]’

K3(:u7 t) =

When g | 0, we see that puc; ~ O(1), pca ~ O(1), moreover,

ey — —% (q— /Ot /TtH(z)dzdr> _ (p+/0tH(r)dr>
ey — % (q _ /0 t / tH(z)dzdr)

as | 0.

We note that as | 0
Ki(p,t) ~ [o(p) =] — =™

o(p) +1

K2(:u7t) ~ _O(,U) —t

Ks(p,t) ~o(p) — 0

H(s) ~ o(p) — h(s) = o(u) — V(g (s)).

Substituting H(s), ucy, pce into equations (3.48) and (3.49), we can rewrite the

boundary value problem as a fixed point problem:

o =T(u ), ¢ € C([0,1]) (3.52)

where the operator T': [0, 00) x C1([0,t]) — C*([0,#]) is defined by the right hand

side of equation (3.48). When p | 0,

T(p, ) — T(0, )
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where

(0 //Vc dzdr+—<q+//Vc ))dzdr).

The problem
e =T(0,¢)

is equivalent to

ps = —Ve(ps), s € 0,1 (3.53)

©(0) =q, ¢(t) =0.

Let @5, s € [0,t] be a non-degenerate solution of Euler-Lagrange equation (3.45).
By nondegeneracy we mean that the linearization of (3.53) is nonsingular. When
@ > 0 is small, from the implicit function theorem we know there exists a unique
solution of problem (3.52). From (3.48) and (3.49), we can write the solution of

problem (3.52) as

/ / Ve(p dsz—I—

(// Ve(oH (z)dzdr + q> + o(p)

(3.54)

- / V(g (r)dr — 0 < / / Ve(g dzdr—l—q)—l—o(u) (3.55)

Thus, when p | 0, from (3.54) and (3.55) we obtain
Py — @s
@g - 928

for each s € [0, ¢]. O
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Theorem 3.2.4. Assume that condition (N*) is not satisfied for equation (3.40),
and condition (N) is satisfied for equation (3.41). Let V (t,q) and V*(t,q) have the

same extremals. Then there exists a py > 0 such that when 0 < p < o,

QY CH{(t,q) : (£ q) — Q| < 0(po)} (3.56)

O C{t ) [t a) — Q[ < (po)} (3.57)
where 0 is some constant depending on g,
|(t,q) — A| = min{dist{(t,q), (s,y)}: forall (s,y) € AC[0,T] x D C R"},
dist is the Euclidean distance in R™ and D is compact.
Proof. By the proof of Theorem 3.1, we obtain the following estimates:

i. if ¢* is an extremal of Ry (¢), that is, V(¢,q) = Rot(¢*), then

VIt p,q) = R (¢") > Ror(#") — o(p); (3.58)

ii. if ¢ is an extremal of RY,(yp), that is, V#(t,p,q) = Rb,(), then

VE(t p,q) = Ry (¢) < Roe(@) + o) < V(¢ q) + o(p) (3.59)

Let ©2_, C €2_ be the complement of the ¢ neighborhood of §2,; that is,

Qo ={{t,q) : [(t,q) — Q| <6}° (3.60)

={(t,q) € [0, T1 x D}\{(t,q) : [(£,q) — 4| < 0}

Note that by the continuity of V(t,q) in (¢,q) € [0,7] x D, we can choose the
number 6 > 0 such that V(¢,q) < —vg < 0 for some small number vy > 0 and for
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all (t,q) € Q_,. Moreover, we have
—vg < V(t,q) <0 for (t,q) € Q_\ Q_,.

Take (¢1,¢1) be any point in the set 2_, and ¢ be an extremal of V*#(1,0,¢;) such

that V#(t1,0,q1) = R}, (¢). When condition (N*) is not satisfied, we have
VoR(t,0,q1) < VH(t1,0,q1) A O.
From inequality (3.59), we get
ViR, 0, 1) < VH(t,0, 1) = Roy(@) < Rot(@) + o(p) < V(tr, 1) + o)

Therefore

V*’#(tl, 0, (J1) < =Yg + O([,L)

Thus there exists a p; > 0 such that when 0 < p < uy, V#(t1,0,¢1) < 0. Hence for
0 <p < pu,
0, C Q™ (3.61)
Similarly, let Q, C €2, be the complement of the § neighborhood of €2, , that
is,

Q0 ={(t,q) : |(t,q) — Q- < 6} (3.62)

={(t,q) € [0,T] x D}\{(t,q) - |(t,q) — Q| < o}.

Again by the continuity of V (¢, ¢) in (¢, q) € [0,T]x D, we can choose a number § > 0
such that V'(¢,q) > v; > 0 for some small number v; > 0 and for all (t,q) € Q4.

Moreover, we have

0 < V(t,q) <wvy for (t,q) € Oy \ Q..
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Take (t2,q2) be any point in the set Q,, and let ¢ be an extremal of Ry (p) such

that

to 1 .
V(t27q2) = ROt(@) = / C(@S) - §|(758|2d8 Z v > 07 950 = {42, @tz =0.
0

When condition (N) is satisfied, we know V*(t2, q2) = V(t2, ¢2) A0. By assumption,

s, s € [0,15] is also an extremal of functional V*(t5, g2). Therefore

. . “ 1, - . .
V*(ta,q2) = 0 = sup min {/ c(@s) — —|gps|2ds D Qo= q2, P, =0},
a€l0,t2] 0 2

which implies that
- L -
c(ps) — §|g03| > Cp >0, for all s €0, to (3.63)

for some positive constant Cy. As is known, the extremal ¢, solves the Euler-

Lagrange equation

Ps = VC(@S% 950 = {42, @tz - 07 ERS [OatQ]
Let ¢* be an extremal of R}, (), that is
t2 1 . o ) )
Vit 0.00) = [ elp) = gl + GLPds, = an, 6 =0, ol = ¢l =0
0
Then p* solves the Euler-Lagrange equation:
LY — @l = Ve(@h), @ =@, 96 =0, ¢, = ¢f, =0, s € [0,ta].

Since ¢* € C4([0,t5]), as p | 0, we have the following estimate:

~ 1 N X
c(@L) = 5lnel + o

~ 1 ~ 1 N N X
= c(¢h) — §|90’;\2 — §u2|90§‘|2 — (et M)
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. 1
= (@) = S1eLI° —oln)
From the Lemma 3.2.3, we know that for each s € [0, ],

Ps — Psy as L0

P — @y, as L 0.

Knowing ¢(q) is smooth, as p | 0, we have

= [elg) — () - %@f; F BN = )

IN

O(|¢7g - ¢s| + |¢s - @SD

IA

Co(u).

for some constant C' > 0. This is equivalent to

~ 1 ~ A 1 ~ ~ 1 2
o(@s) = 512sl* = olp) < e(@) = SIFLI < e(Bs) = 51251 + olp)-
From (3.63), we conclude that there exists a pp > 0 such that when 0 < p < po,

~ ]- N X ~ ]- X
o(@4) — 5lnel + Ps|” = c(@h) — §|90’;|2 —o(p)
. 1, -
> C(‘PS) - 5'905’2 - 0(:“)

> Co — pg > 0.

Hence for any (ta, ¢2) € Q4 C Qy, we have V*#(t5,0,¢2) = 0. This implies that

when 0 < p < pg,

0., C QW (3.64)

81



Take po = p1 A pro. When 0 < p < po, (3.61) and (3.64) hold. When 0 < p < pp,

from (3.60) and (3.61), for some fixed ¢ depending on (i, we have the set inequalities

{(t.q) : (t.q) — Q] < 8(po)}° € Q"
({(tq) = (£, @) = Q] < 6(0)})" 2 (227)°

{(tq): 1t q) — Q| < 8(uo0)} 2 O3

Thus we have proved (3.56). By the same analysis, when 0 < p < po, from (3.62)

and (3.64), for some fixed § depending on f, we have the set inequalities

{(t,q) : 1(t,q) — Q| < (o)} € QA
{(tq) « [(t,q) = Q| < 6(p0)})" 2 (23")°

{(t,q) - 1(t,q) = Q| <d(po)} 2 Q2.

Thus we have proved (3.57).

]

Example 3.2.5. Consider an example in R' when the function f(g,u) = f(u)

depends only on u, that is

f(u) = uc(u), Dax, c(u) =¢(0) =c.

where ¢ > 0 is a constant not depending on q. We study the relation between the
wavefront propagation of the following two equations. The first equation is

ous(t,p, q) e 0% 1 Ouf ou®
= ——pa—+p
ot 2u? dp*>  u° Op dq

1 € €
+ U c(u®) (3.65)
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u(0,p,q) =6(p)x '(q), ¢, p R

where §(p) is the delta function centered at 0, taking value 1 at 0 and 0 otherwise

and x'(g) is the indicator function such that

The second equation is defined as:

ous(t,q) ed®u 1 _
ot 208 + U c(u®) (3.66)

u(0,9) = x"'(q), ¢ € R".

We will see later that when ¢(q) = ¢ > 0 is a constant not depending on ¢, condi-
tion (N*#) for (3.65) is not fulfilled. As checked in Freidlin [8], we know condition
(N) is fulfilled for equation (3.66). Thus we can use the functional V*#(¢,p, q) to
characterize the wave front propagation for equation (3.65) and V' (¢, ¢) for equation

(3.66). From the sections above, it’s easy to find that

0<a<t

. . ¢ L. : . .
V(. p,q) = sup min {/ ¢ = Sluds + @l ds, 0o = a4, b0 = popr = pr = 0}
0
|
V(t,q) = sup {/ = 5l¢sl*ds, po =4, o1 = O} :
0
Recall the definition of the functional V#(t,p,q) as

t
1. ) . .
VE(t,p,q) = SUP{/ c— 5!/1905 + ¢sds, o = q, 0 = p, o1 = P = 0}.
0

It helps us to check that condition (N*) is not fulfilled.
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Let @ be an extremal of the functional V#(t, p, q), such that
t1 . )
Vitpoa) =t~ [ Sludt+ Gupds
0

with

Let @5 be an extremal of V (¢, ¢) such that

t
L . _ .
Vita) =t~ [ SIaPds, go=a. g =0.
0

Since the Euler-Lagrange equation for @,, s € [0, ], has the form

()Os:Oa 950:(]7 @tzoa
the extremal @5 can be easily calculated as

By = —%s +q. (3.67)

The functional V' (¢, ¢) has the form

2

q
V(t =ct— —.
(tg) =ct—o;
So the wavefront is
qg=+V2ct, t>0. (3.68)

First, to check that condition (N*) for equation (3.65) is not satisfied, we

calculate the extremal @#, s € [0,t]. It satisfies the Euler-Lagrange equation
/LQ@Z’M) - @g = 07
with

oh=q, ph=p, P =@ =0.
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By similar calculation as in Example 3.2, we find

s—t

)

N S
o =0 eXP(—;) + ¢z exp(

5 = per[ulexp(—2) — ex L ex L 5 —
@l = per[p(exp( u) p( M))+ p( u)( t)]

+ MCz[M(eXP(ST) — 1) 41—

DM = ey fex ! —exp(—2 co(ex sty
# = perlexp(=7) = exp(=2)] + peafexp(—=) = 1)

for some constants ¢1, co. From @#(0) = ¢, ¢*(0) = p, we obtain the following

equalities:
t t t
q = per[p(l —exp(——)) — texp(——)] + pea[p(exp(——) — 1) + ]
M M M
t t
p = per(exp(—=—) = 1) + pea(exp(——) — 1).
H H
We calculate the value of puc; and pcy from the above equations as:

pcr = Kvq — Kaop, pey = Kap — Kyq

where
1 plo 1
Kl = _ — —
20(1 — exp(—)) —texp(—) — ¢ t
exp(—L) — 1)+ ¢
K, — plexp(—) — 1) o

(exp(—L) = 1)2p(1 — exp(—L)) — texp(—L) — 1]

t t
p(1 —exp(—)) — texp(—:) o

= oD — D1 — (= D)) — fexp(—L) — 1]

Note that as p | 0, we have uc; ~ O(1) and pcy ~ O(1). Moreover

q q
Her — —p — b HCy — t
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Plugging the values of gé{j, nﬁfj into functional V#(t, p, q), and solving for the value
of p when V#(t,p,q) = 0, we obtain the position of the wavefront of p. It has the
form

—(X £Y)

() = ==

where

X = MCI(GXP(—%) - 26><p(—£) +1)

Y = ou(1 exp<—£>>[<2u — 1)~ @ +1) exp(—ﬁﬂ

t 2t 2t
x [pet(1 — dexp(——) + 3exp(—=) + (2ct* — ¢°*) exp(——)
7 p 7

2t t 2t
Z = u(3u exp(—;) —4u eXp(—;) + 2t eXp(—;) + 1)

Since terms of exp(—%), exp(—ﬁ) are relatively small compared with terms of i, ¢, t
when g is small, the terms of 1, ¢, ¢t dominate as p | 0. In this way, we can simplify

the representation of XY, Z to find an approximation formula of p*(t) for small pu:

pg £/ =2u(2p — tpct
1 '

pi(t) =

Differentiating twice we find

4 2, 4
) = — cr <0.
(—2ctp* (=t + 2p))

ol

This is a concave function for all £ > 0. However, when p is small,

5= ey lex —i —ex _3 co(ex S—_t -
@k = pey[exp( u> p( u)]ﬂt (exp( - )—1)

is close to the convex function exp(ST_t) — 1, which implies that

Vﬂ(t -5, ¢g7 ) > 0.
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Condition (N*) is not satisfied.
It’s easy to check that in this case, V' (¢, ¢) and V*(¢, ¢) have the same extremals.
From the theorem, we conclude that the position of the wavefront of equation (3.65)

is with in the ¢ neighborhood of wavefront (3.68), where ¢ is a function depends on

I
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