

ABSTRACT

Title: EXPLORING THE GEOGRAPHY OF

ROUTINE ACTIVITY THEORY:
A SPATIO-TEMPORAL TEST USING
STREET ROBBERY

 Elizabeth Ruth Groff, Ph.D., 2006

Co-Directed By: Ralph Dubayah, Professor, Geography
 David Weisburd, Professor, Criminology and

Criminal Justice

Many social phenomena have a spatio-temporal dimension and involve dynamic

decisions made by individuals. Investigations focusing on the spatio-temporal

dimensions of human behavior have received a great deal of theoretical attention;

however, empirical testing of these theories has been handicapped by a lack of micro-

level data and modeling tools that can capture the dynamic interactions of individuals

and the context in which they occur. This research presents a methodology for

evaluating theory through the implementation of a simulation model; the assumptions

of the theory are operationalized in a model, a series of experiments are run, and the

outcomes are analyzed to discover if they match what the theory would predict.

Specifically, the concepts of routine activity theory (RAT) (Cohen and Felson,

1979) are formalized in a computational laboratory representing Seattle, Washington.

The computational environment for implementation, Agent Analyst, merges agent-

based modeling (ABM) software with geographic information systems (GIS). A

strategy for developing activity spaces is implemented and demonstrates how agents

can move along existing street networks, and land use patterns can be used to create

representational activity spaces. Three versions of a model of street robbery are

developed; each version implements a different level of constraints on agent’s routine

activities. In one version (Simple), individuals are either at home or not at home. In

another, individuals follow a temporal schedule (Temporal). Last, individual’s

schedules are both temporally and spatially constrained (Activity Space). A series of

experiments are conducted which compare the incidence and spatial pattern of street

robbery events from each version.

The results of the experiments provide strong evidence of the important role

routine activities play in street robbery events. The addition of temporal and spatio-

temporal schedule constraints reduces the incidence and changes the pattern of street

robberies. Support for routine activity theory’s premise, as time spent away from

home increases street robbery will increase, is found in the Simple and Temporal, but

not the Activity Space version of the model.

EXPLORING THE GEOGRAPHY OF ROUTINE ACTIVITY THEORY:
A SPATIO-TEMPORAL TEST USING STREET ROBBERY

By

Elizabeth Ruth Groff

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Professor Ralph Dubayah, Co-Chair
Professor David Weisburd , Co-Chair
Associate Professor Jochen Albrecht
Associate Professor Martha Geores
Professor Keith Harries
Professor John Laub

© Copyright by
Elizabeth Ruth Groff

2006

Dedication

This research is dedicated to my grandmother Minnie Boltz who taught me to pursue

greater understanding in all things and to Jo Fraley for her good humor and

unwavering faith.

 ii

Acknowledgements

There were a variety of University of Maryland faculty members and students

who were instrumental in the completion of this research. Ralph Dubayah inherited

my candidacy willingly and gave me lots of good advice. David Weisburd

encouraged me and provided a skeptics view on the research. Jochen Albrecht guided

my exploration of human spatial behavior, discussed details of the model

implementation, and peer-reviewed the model code; his input was invaluable. In

addition, the powerful computer Jochen loaned me was very useful. The other

members of the committee offered their comments and participation for which I am

grateful.

In general, the faculty at UMD in both the Geography and Criminology programs

taught courses that were influential in expanding my horizons. In particular,

Catherine Dibble’s class on computational laboratories provided seminal guidance on

how to specify an agent-based model. A special thanks to Femke Reitsma for

listening, understanding, and challenging. Finally, Mel Songer took the journey with

me, thanks for being there.

The author gratefully acknowledges partial financial support from the National

Institute of Justice grant #2005-IJ-CX-0015. The Institute for Law and Justice’s

flexibility with regard to scheduling enabled my pursuit of this degree. Tom McEwen

gave me helpful feedback on Chapter 3. Discussions with Kelly Bradley and Randall

Guynes strengthened the research and my communication of it.

During the programming of the model, Jo Fraley’s patient tutelage was invaluable

to a novice programmer. Thanks to Tobi Glensk for building a prototype model in

 iii

Repast Java from my specifications. Even though I ended up using different

software, I learned a great deal about how to think like a programmer from my

interaction with him.

This section would be incomplete without acknowledging my mentors from the

University of North Carolina at Charlotte. Sally Ives, who introduced me to

behavioral geography and quantitative methods; Owen Furuseth who supported my

desire to explore the geographical aspects of crime; and the rest of the faculty at UNC

Charlotte who contributed in various ways -- Dennis Lord, Tink Moore, Wayne

Walcott, Paul Smith, John Sommers, Gerry Ingalls and the Jerry Pyle.

Lastly, Julie Wartell provided a thorough edit for which I am very grateful.

In general:

To the many mentors/teachers/friends that have encouraged me over my lifetime,

your words made a difference.

Thanks to my family for long distance support and to my friends for being patient and

supporting my goals.

Finally, although she will never read this, my eternal gratitude goes to Katie Jane

Groff for just being there.

 iv

Table of Contents

Dedication ... ii
Acknowledgements.. iii
Table of Contents.. v
List of Tables .. vii
List of Figures .. ix
Chapter 1: Introduction .. 1

1.0 Goal and Objectives.. 7
1.1 Expected Significance of the Research... 11
1.2 Organization of the Remaining Text... 13

Chapter 2: ‘Situating’ Simulation .. 15
1.0 Introduction... 15
2.0 Theoretical Basis for a Street Robbery Model.. 18

2.1 Criminological Theory.. 19
2.2 Activity Spaces Theory... 20
2.3 Conceptual Model... 22

3.0 Research Design.. 24
3.1 Agent Analyst- GIS/ABM Integration.. 24
3.1 Data ... 25
3.3 Achieving Agent Movement in the Model ... 30
3.4 Creating Activity Spaces for Civilians in the Model 32

4.0 Implementation Model.. 35
4.1 Overview of the Landscape and the People in the Model 36

5.0 Results of Implementing a Model in Agent Analyst .. 42
6.0 Conclusions... 43

Chapter 3 Simulation for Theory Testing and Experimentation................................. 47
1.0 Introduction... 47
2.0 Meeting the Challenges Encountered by Previous Research............................ 49

2.1 A New Approach for Modeling Crime Events and Crime Patterns.............. 51
3.0 Theoretical Basis for the Conceptual Model and Behavioral Rules 55

3.1 Routine Activity Theory ... 56
3.2 Offender Decision-making.. 62

4.0 Implementing a Model of Street Robbery .. 63
4.1 Software .. 64
4.2 Study Area, Duration and Data... 64
4.3 Hypotheses and Experiments.. 67
4.4 Parameters in the Model ... 67

4.5 Agents in the Model.. 71
4.6 Decision to Offend.. 73
5.0 Analysis... 76
6.0 Findings... 79

6.1 General Description of Model Outcomes ... 79
6.2 Testing Routine Activity Theory .. 82

 v

6.3 Spatial Distribution of Street Robberies across Places 84
6.4 Some Comments on the Robustness of the Model 90

7.0 Discussion ... 91
8.0 Conclusion .. 94

Chapter 4: The Spatio-Temporal Aspects of Routine Activities and Crime 96
1.0 Introduction... 96
2.0 Theoretical Background.. 99

2.1 Criminological Foundations for the Original Street Robbery Model 99
2.2. Background on the Spatio-temporal Nature of Human Activity 100
2.3 Hypotheses.. 106

3.0 Research Design.. 108
3.1 Agent-based Modeling and the Implementation Software 108
3.2 Data ... 109
3.3 Agent Activity Spaces in the Model ... 112
3.4 Experiments .. 116

4.0 Implementation Model.. 117
4.1 Model Versions... 119

5.0 Analysis... 122
6.0 Findings... 123

6.1 Descriptive Analysis ... 123
6.2 Hypothesis Test Results.. 126
6.6 Sensitivity Test Results... 142
6.7 Explanations for the Emergent Patterns.. 143

7.0 Discussion and Conclusion... 144
Chapter 5: Discussion and Conclusions... 150

5.0 Background... 150
5.1 Major Questions and Findings .. 151
5.2 Significance of the Research... 156
5.3 Assessing the Model Results .. 159
5.4 Possible Limitations of the Research.. 160
5.5 Next Steps ... 163

Appendices.. 166
Appendix 1: Street Robbery Model Documentation: Simple Version 166
Appendix 2: Street Robbery Model Documentation: Temporal and Activity Space
Versions .. 181
Appendix 3: Street Robbery Model: Simple Version Code................................ 206
Appendix 4: Street Robbery Model: Temporal Version Code 232
Appendix 5: Street Robbery Model: Activity Space Version Code 264
Appendix 6: Java Code to Develop Activity Nodes .. 300
Appendix 7: Visual Basic Code to Identify Paths Among Activity Nodes 305

Bibliography ... 324

 vi

List of Tables

Table 2-1: Parameters in the Model…………...……………………........................27

Table 2-2: Outcome Data from Model………………………………………….......29

Table 2-3: Implementation Versions of the Conceptual Street Robbery Model...…36

Table 3-1: Formalization of Theoretical Concepts……………………………...60-61

Table 3-2: Outcome Data from Model………………………………………...……66

Table 3-3: Experimental Conditions…………...……………………………...……67

Table 3-4: Parameters in the Model…………………………………………...…....69

Table 3-5: Sample Assignment of Time away from Home for the 40% Experimental

Condition…………………………………………………………………………….72

Table 3-6: Societal-level Model Outcomes……...……………………………...….80

Table 3-7: Change in Street Robbery Events across Experimental Conditions….....83

Table 3-8: Post Hoc Tests of Mean Differences (seed = 100)………………......….84

Table 3-9: Place-level Model Outcomes………………………………...………….85

Table 3-10: Parameter Testing Results……………….………………………...……91

Table 4-1: Parameters in the Model………………………………………...……..111

Table 4-2: Experimental Conditions: Three Versions..……………………...……116

Table 4-3: Implementation Versions of the Conceptual Street Robbery Model….120

Table 4-4: Societal-level Model Outcomes…...…………………………….…….125

Table 4-5: ANOVA for Street Robbery Events across Versions and Experimental

Conditions…………………………………………………………………………..127

Table 4-6: Post Hoc Tests of Mean Differences by Experimental Condition (seed =

100)…………………………………………………………………………………129

 vii

Table 4-7: Post Hoc Tests of Mean Differences Between Same Condition in

Different Model Versions (seed = 100)…………………………………………….131

Table 4-8: Place-level Model Outcomes……………………………………..........133

 viii

List of Figures

Figure 2-1: Conceptual Model of Crime………………………………………….…23

Figure 2-2: Movement in the Model………………………………………………...31

Figure 2-3: Data Inputs/Outputs Related to Agent Activity and Outcome Data……33

Figure 2-4: Classes in the Street Robbery Model…………………………………...37

Figure 3-1: Conceptual Model of Street Robbery…………………………………...58

Figure 3-2: Steps in Decision to Offend…………………………………………….74

Figure 3-3: Comparison of Robbery Incidents, Convergences and Robberies

Deterred…………………………………………………………………………...….80

Figure 3-4: Days to Equilibrium for Street Robbery Simple Model (condition: 30%,

seed = 100)…………………………………………………………………………...81

Figure 3-5: Ripley’s K for Robbery across Experimental Conditions…………...….87

Figure 3-6: Ripley’s K for Visits across Experimental Conditions………………....89

Figure 4-1: Conceptual Model of Street Robbery for All Versions………………..118

Figure 4-2: Ripley’s K: Distribution of Robbery Events………………………….138

Figure 4-3: Ripley’s K: Distribution of Street Robberies by Model Version……..141

Figure 5-1: Daily Change in Street Robbery Events………………………………153

 ix

List of Maps

Map 3-1: Kernel Densities for Modeled Street Robbery Events………………........86

Map 4-1: Kernel Density for 30% Time Spent Away From Home………………..135

Map 4-2: Kernel Density for 70% Time Spent Away From Home……………..…136

 x

Chapter 1: Introduction

“A temporal pattern is apparent in each and every spatial pattern (and)
space and time are separable from one another only in abstraction.”
(Hawley, 1950 288)

Drawing on human ecological theory, Cohen and Felson put forward a “routine

activity approach” to studying crime (Cohen & Felson, 1979 588). They hold that

“criminal acts require the convergence in space and time of likely offenders, suitable

targets and the absence of capable guardians against crime” (Cohen & Felson, 1979

588). According to the routine activity approach, convergence of individuals is the

key dynamic element that enables illegal acts to occur during the course of everyday

activities. Changes in social structure impact the frequency with which these

elements converge by modifying the routine activity patterns of offenders, victims,

and potential guardians. From this basic argument, they go on to hypothesize that if

the frequency with which these elements converge in space and time increases, crime

will also increase even if the supply of offenders or targets remains constant within a

city. In this way, routine activity theory clearly states the basic elements necessary

for a crime to occur and then elegantly ties the frequency with which those elements

converge in space and time to macro level crime rates. Their intriguing argument

recognizes the importance of space-time activities of individuals and makes the

theory a logical choice on which to base this investigation.

Routine activity theory has been widely applied in empirical research and the

theoretical framework is well-developed. However, because of difficulties in

obtaining individual-level data and shortcomings in available statistical techniques,

 1

the empirical validity of the theory is still in question (Akers, 2000; J. E. Eck, 1995a).

The inability to collect individual-level data, to characterize human travel behavior in

general and the situational elements of crime events in particular, is an on-going

barrier (Huisman & Forer, 1998; O'Sullivan & Haklay, 2000). Likewise, the

identification of modeling tools capable of capturing the dynamic nature of human

activities and interactions of individuals when they converge remains a hurdle.

In response to these challenges, some researchers have turned to simulation

modeling as an alternative approach. Although modeling in general has a long been

applied to examine social science phenomena, simulation has not (Gilbert & Terna,

1999; Gilbert & Troitzsch, 1999; R. G. Golledge, 1983; Harvey, 1969). Recent

software developments have made access to simulation modeling much easier. Given

the relative obscurity of simulation research, some background explaining how

simulation models fit within a typology of modeling approaches is offered next.

In general, models offer a simplified representation of reality by attempting to

capture only the most important elements of the phenomenon under study. Ostrom

(1988) identified three types of models: verbal arguments, mathematical, and

simulation. Verbal arguments describe relationships using words, where

mathematical models use symbols and numbers. Mathematical models emphasize

formalization and specificity over the richness of detail found in verbal models.

However, complex mathematical models can quickly become computationally

impractical requiring simplifying assumptions (e.g. rational man) to be used. The

simplifying assumptions underpinning models are at the root of many debates in the

literature and are critical to the veracity of the model created. When simplifying

 2

assumptions are incorrect, the efficacy of model results is compromised. Statistical

models are a type of mathematical model representing the relationship among two or

more characteristics of the unit of analysis (e.g. individuals, streets or cities). The

implementation of statistical models in a wide variety of software packages has aided

their adoption by researchers.

Finally, simulation models are similar to mathematical models in that they are

developed from theory and involve a simplification of reality but their specification is

in the form of a computer program (Gilbert & Terna, 1999; Ostrom, 1988). Once

built, the computer program is run to obtain results, which are then analyzed using

statistical models. Simulation models rely on a bottom-up approach. In other words,

a few simple, theoretically based rules are developed for the individual agents. The

interactions of individuals in the model produce the macro-level patterns that emerge.

The property of emergence refers to any unexpected consequences from the

application of simple behaviors (Epstein & Axtell, 1996; Gilbert & Troitzsch, 1999).

In addition, individuals in simulation models are able to make dynamic decisions

based on changing information (Bonabeau, 2002). Since routine activity theory

posits both the micro-level factors necessary for a crime and the macro level

consequences of changes in the convergence of those factors, simulation modeling is

particularly well suited to operationalizing it.

The three types of symbol systems can be applied in the same research endeavor,

and may even be at their most powerful when used in that way (Ostrom, 1988;

Troitzsch, 1998). Accordingly, this research relies on all three symbol systems with

different symbol systems playing a dominant role as the phases of the research

 3

progress. In the early stages, verbal models are used to describe what is known or

thought to be known about human behavior in general and criminal decision-making

within its environmental context in particular. These verbal descriptions are then

formalized in the behavior rules of the model. In some cases, mathematical equations

are embedded within the computer program to specify the relative importance of

variables in the decision-making process. The environment and the people within

that environment are defined within the program. The program also keeps track of

the model time and the interactions among agents and their environment and writes

out data at user-designated intervals. Statistical equations are then used to evaluate

the results of the model runs. In this way, each of the symbol systems can be used to

its best advantage with the goal of increasing the level of understanding of the process

and/or relationships under study.

Agent-based models are a type of simulation model that consists of a collection of

autonomous entities implemented within a software program. Entities in the model

(i.e. agents) can represent people, governments, neighborhoods etc. Each entity has a

set of unique characteristics and behaviors. Typically, these agents are placed in an

artificial world to interact although there is a recent movement to use geographic

information systems to provide a ‘real’ landscape (Brown, Riolo, Robinson, North, &

Rand, 2005; O'Sullivan & Haklay, 2000). Agent-based models allow heterogeneity

among individuals that more closely approximates the variety found in life. In

addition, they are better able to accommodate the non-linearity in relationships that is

frequently evident in complex and dynamic interactions (Dibble, 2003; Epstein &

Axtell, 1996; Gilbert & Terna, 1999; Liu, Wang, Eck, & Liang, 2005).

 4

Agent-based models can be implemented in the form of a computational

laboratory. A computational laboratory is a set of software tools that enable the

specification and execution of systematic experiments using simulation (Chen,

Cunningham, Ewing, Peralta, & Visser, 1994; Dibble, 2001; Parker, Berger, &

Manson, 2001; Slavin, 1996; Tesfatsion, 2001). An agent based modeling (ABM)

simulation implemented in the framework of a computational laboratory offers the

advantage of being able to hold the agents and/or the landscape constant and then

vary one or both of them systematically. This feature provides a level of control

difficult to attain using traditional social science methods (Dibble, 2003; Epstein &

Axtell, 1996; Gilbert & Terna, 1999). The combination of heterogeneous agents and

control enables the researcher to conduct a variety of experiments, using different

conditions or applying various prevention scenarios, and then evaluate outcomes for

minimal cost as compared to experiments undertaken in the real world. These

characteristics directly address the shortcomings of earlier research testing routine

activity and suggest ABM as an important component of a new, more flexible

methodology.

The use of simulation models is not without its drawbacks. Like mathematical

models, they are constrained by the original assumptions and the rules on which the

model is based. This drawback is mitigated, but not eradicated, by the use of

empirically-based parameters whenever possible. Relatedly, the creation of an

artificial society opens the research effort to a variety of issues regarding the

generalizability and usability of findings. Even when the simulation is based on a

real place, the society is still representative rather than empirical. In addition, as

 5

compared to mathematical models, simulation does not produce any measures of the

robustness of a particular solution (Axtell, 2000; Lempert, 2002). Mathematical

models produce such statistics as confidence intervals that communicate the surety

with which results can be interpreted. Simulation results can approach this type of

measure through an iterative process of varying input parameters and cataloguing the

outcomes of those variations so that we can begin to say something about the

robustness of a particular model. Since the goal of agent-based modeling (ABM) is

often directed toward explanation rather than prediction, the knowledge gained from

using an iterative strategy to study artificial societies can serve to increase our

understanding of how a process ‘works’ using the aforementioned strategy.

The employment of ABM in the social sciences has increased over the last ten

years (Gilbert & Doran, 1994; Gilbert & Terna, 1999; Gilbert & Troitzsch, 1999;

Macy & Willer, 2002). This rising interest in ABM stems from its unique capabilities

which range from description, to knowledge discovery, to hypothesis testing.

Another intrinsic advantage is derived from the computer code written for the

simulation. Formalized computer code provides concrete documentation for the

assumptions of the model and enables transparency in the research enterprise that is

necessary for replication and testing of results (Chattoe 1996; Gilbert & Terna 1995).

These attributes are especially important when trying to discover the mechanisms

through which observed macro level patterns are formed. Criminologists have

recently begun to explore how agent-based models can inform the study of crime (P.

L. Brantingham & Brantingham, 2004; P. L. Brantingham & Groff, 2004; J. E. Eck &

Liu, 2004; Xue & Brown, 2003). However, the inherently spatial nature of human

 6

movement and interaction, as well as the role of place in influencing those elements,

require that models incorporate space as well as time.

Recent advances in technology have enabled the creation of the software

packages necessary to enable agents to be ‘situated’ in a particular spatio-temporal

milieu (e.g., agents can interact with data describing the streets in real environment).

One example is the software product Agent Analyst which links two popular

geographic information systems (GIS) and ABM software packages, ArcGIS (ESRI,

2005) and RepastPy (North, Collier, & Vos, 2006). The combination of the strengths

of ABM and GIS is necessary in order to move away from the use of artificial

landscapes and instead model individuals in their environment (Albrecht, 2005; An,

Linderman, Qi, Shortridge, & Liu, 2005; Brown et al., 2005). The technological

advances just discussed provide the tools for addressing the limitations of previous

research. They facilitate the creation of a GIS/ABM model that is capable of

capturing and analyzing: 1) the process involved in the convergence of offenders,

victims, and guardians at a particular place and time; 2) the interaction that takes

place once they occur; and 3) the culmination of those interactions in the form of

emerging crime patterns.

1.0 Goal and Objectives

This research proceeds in the tradition of Schelling (1971), Epstein and Axtell

(1996) and many others where the goal of simulation is greater understanding rather

than prediction. The primary goal of this study is to demonstrate how formalizing

theory in a computational laboratory can provide a better understanding of how the

spatio-temporal aspects of human activity influence the incidence and distribution of

 7

street robbery events. Accordingly, the point of this research is not to predict the

pattern of street robbery events in Seattle, Washington, but rather to operationalize

the assumptions of routine activity theory in an artificial society and then test whether

the model outcomes match the predicted outcomes. The approach taken here

emphasizes theory-testing but still in a theoretical world. In this way, the method

represents an interim testing ground between the verbal formulation of the theory and

the testing of theory with empirical data. While this exercise does not result in a

determination of whether a theory is true in the real world, it does provide a way to

test the plausibility of the theory’s assumptions. To this end, the most parsimonious

model possible is created, run, and the results subject to rigorous testing.

The choice to focus on a single crime is based the widespread recognition that

crime is not a homogenous phenomenon. Narrowing the study to only one type of

crime aids in the interpretation of findings and subsequently, to better understanding

(Clarke, 1983; Clarke & Cornish, 1985;2001; Zahn & Jamieson, 1997). The crime of

street robbery offers several advantages for this study. First, it is an instrumental

crime and thus more likely than expressive crimes to involve a rational decision

process (Clarke & Cornish, 1985; Cornish & Clarke, 1986; Walsh, 1986). Second,

street robbery is by definition restricted to the street or some other exposed area rather

than in a residence or business and thus involves the public intersection of offender

and target in space and time. Third, police presence is assumed to be more effective

against street level crime then crimes that take place indoors (e.g. domestic violence).

Fourth, street robbery elicits a high level of fear among residents because of its

 8

suddenness and potential for serious injury and thus is of considerable interest to both

law enforcement and the public (Feeney, 1986).

The following objectives are met in order to achieve the overall goal.

1) Formalize routine activity theory (Cohen & Felson, 1979) in a GIS/ABM so

that the dynamics of individual level decision-making and behavior that

produce macro level street robbery patterns can be represented.

2) Explore the role of geography (i.e. activity spaces) by having the agents

interact in a ‘real’ environment, and by making the spatio-temporal dimension

of human behavior explicit in the model and the experiments.

3) Create and run a series of experiments to test whether: a) the theoretically-

predicted outcomes from routine activity theory match the model-produced

outcomes; and b) changing the spatio-temporal schedules of individuals

produces different quantities and spatial distributions of street robbery.

As the initial foray into this area, the first objective of the study focuses on the

development of several versions of a GIS-enabled computational laboratory for

modeling some simple, dynamic interactions between individuals from which

aggregate crime rates and patterns of crime emerge. The modeling approach involves

a multi-step process that begins with a review of the published writings on routine

activity theory to identify and formalize key concepts in the theory. Those key

concepts are then incorporated into the models in the form of behavior rules. Because

opportunity theories focus on dynamic, individual-level interactions within a

particular environmental context, the application of a geographic perspective is a

positive, and I would argue necessary, dimension to modeling crime. Specifically, a

 9

geographic perspective makes explicit the role of the distribution of land uses and the

shape of transportation systems in human movement. Human movement is critical to

understanding convergence (i.e. why suitable targets and motivated offenders

converge where and when there is a lack of capable guardians).

The creation and testing of the model is completed over three phases: 1)

development of a conceptual model of crime; 2) implementation of the base model;

and 3) verification of the base model. The initial phase relies on a careful

examination of the existing theory and empirical results to inform the identification

and definition of relationships used in the model. The result of this step is a

conceptual model specifying the important constructs that underlie routine activity

theory. These constructs are operationalized through the identification of specific

variables and how they will be measured (Kerlinger & Lee, 2000). Next, the base

version of the model is programmed using the specifications from the conceptual

model and making changes as needed because of the specific configuration of

software tools chosen for implementation. The resulting computer program is

systematically tested to ensure proper operation and the code verified. Extensive

testing of the entire technological framework is conducted to ensure that the model

performs as expected. Finally, experiments are conducted to answer the research

questions. The same testing protocol is applied to each of the model versions as they

are implemented under the third objective.

The second objective is to explore the role of geography by making the spatio-

temporal dimension of human behavior explicit in the model. This objective is met

by varying the spatio-temporal aspects of agent activity spaces across versions of the

 10

model. The Simple version of the model does not contain elements of spatial or

temporal activity spaces; rather, the individuals have a defined amount of time to

spend at home each day but the rest of the time they move randomly along a street

network. This model acts as a null to which the other models are compared. Two

additional versions incorporate the idea of temporally and spatially constrained

activity spaces. In one, the individuals have a temporal activity program with random

movement. In the other, the individuals have the same temporal activity program but

travel among a set of activity locations. Together, the activity locations and the path

taken among them constitute a defined routine activity space.

The third objective is met by using the computational laboratory developed to

explore the following research questions: 1) Does the shift of routine activities away

from home increase street robbery? 2) Does the spatial distribution of street robberies

change as routine activities shift away from home? and 3) How does the spatio-

temporal structure of routine activities influence the incidence and spatial pattern of

street robbery? The same set of experiments is run for each of the model versions.

1.1 Expected Significance of the Research

The proposed methodology offers several advances. First, and most generally,

this work demonstrates the value of simulation for theory testing and exploration.

This method is particularly pertinent in social science where the ideal of falsification

of theories with empirical data is difficult to achieve (Popper, 1965). Falsification

occurs when the systematic empirical observations do not match what the theory

predicted (Vold, Bernard, & Snipes, 2002). But in order to be falsified, a theory must

be “testable by objective, repeatable evidence” (Akers, 2000 7). One major challenge

 11

to establishing the empirical validity of routine activity theory is the lack of empirical

data on the micro-level interactions of individuals in space-time. The methodology

posited here provides an alternative to empirical studies that is both systematic and

repeatable. The method also enables the use of rigorous research design principles in

conducting experiments. The virtual laboratory is particularly attractive for theory

testing when ethical or monetary reasons preclude the conduct of empirical research

experiments. In addition, the methodology promotes rigor and specificity by

requiring the formalization of theoretical concepts before translating those concepts

into a simulation model and by codifying the assumptions of the model in the

computer program which implements them. These characteristics provide a level of

transparency that is necessary for repeatability and for comparison of different

implementation models to one another.

Second, the research integrates the strengths of GIS and ABM in a computational

laboratory enabling the combination of empirical data representing travel

opportunities and situational context from a GIS with ABM’s dynamic agent

decision-making. As a result, direct representation and manipulation of individuals’

routine activities is achievable. The combination also makes possible the simulation

of the micro- and macro-level interactions in a crime event as it happens. The

resulting spatio-temporal patterns can be displayed and analyzed. Third, the

completed simulation model offers the first test of routine activity theory in which the

individual-level decisions and the spatio-temporal aspects of activity spaces are

quantified and the impacts of movement on the resulting crime patterns are measured.

 12

Looking forward, these base versions of a street robbery model can serve as the

foundation for subsequent extensions that will more richly represent both human

behavior and context as they are related to crime. The results of experiments

conducted with these and future versions of the model have the potential to inform the

creation of crime prevention strategies and contribute to the body of knowledge in

geography, criminology, and social sciences in general.

1.2 Organization of the Remaining Text

The dissertation is organized in the following manner. A series of three papers

form the body of the dissertation. I’ll apologize up front for information that is

repeated among the papers. Each paper/chapter represents one of the objectives just

outlined. Chapter 2 details a new methodology for ‘situating simulation’ by

developing activity spaces based on the land use of an existing city and implementing

movement along a vector street network. Chapter 3 discusses the formalization of

routine activity theory in a computational laboratory and reports whether the

outcomes from a simple model reflect what the theory predicts. Chapter 4 extends

the basic model of street robbery outlined in the second paper by incorporating the

routine activity spaces and agent movement discussed in Chapter 2 in two new

versions of the model and then compares the results from all three versions. Chapter

5 summarizes the findings, discusses potential limitations, and then puts forward

directions for future research. Complete documentation of the model versions is

provided in the Appendices. Appendix A contains the documentation for the simple

random version and Appendix B the documentation for the two versions in which

each individual has a defined schedule (one temporal and the other spatio-temporal).

 13

Appendices C, D, and E consist of the software code for the three versions of the

model. The print statements used for debugging are left in the code to aid subsequent

users.

 14

Chapter 2: ‘Situating’ Simulation

1.0 Introduction

The importance of incorporating space and time into research on human behavior

has long been recognized in a variety of disciplines (Chorley & Haggett, 1967; Engel-

Frisch, 1943; Hägerstrand, 1973; Harvey, 1969; Hawley, 1950; Horton & Reynolds,

1971; H. J. Miller, 1991; R. J. Sampson, 1993). Addressing spatio-temporal

interactions among individuals and their environments is a challenging undertaking

with two major hurdles. First, it is not enough to be able to capture the multitude of

individual decisions that occur within unique contexts; the method must also be able

to accommodate dynamic changes in the characteristics of individuals and situations

that influence the outcome of subsequent interactions. Second, individual-level data

that can support these types of studies must be obtained. Although there has been

tremendous growth in the availability of micro-level data describing places, data

regarding the daily activities of individuals (e.g. the type, location, and duration of

activity) remains sparse. While these data are essential to modeling the spatio-

temporal convergence and interaction of individuals, they are unlikely to become

available due to privacy concerns (O'Sullivan, 2004b).

Given the large quantity of micro level environmental data and mature software

packages, researchers frequently turn to geographic information systems (GIS) to

model human behavior (An et al., 2005; Kwan, 1998; H. J. Miller, 1991). GIS

provide a powerful tool for collecting, managing and displaying the multitude of

spatially explicit data available on places but they are unable to model the dynamic,

 15

individual-level interactions across time. The inability of GIS to accommodate time

is a well-known issue that remains unsolved despite a great deal of attention

(Albrecht, Forthcoming; Brown et al., 2005; Peuquet, 1994;2002). Physical scientists

address this issue in their process models by preparing their data in a GIS and then

analyzing them in a dynamic model (Maguire, Batty, & Goodchild, 2005).

Simulation modeling offers an alternative method capable of capturing dynamic

interactions among individuals taking place at the micro level and their relationship to

macro level patterns. All models, simulation or otherwise, involve the creation of a

simplified representation of a social phenomenon (Gilbert & Terna, 1999). In the

case of statistical models, such as a regression model, input data are ‘run’ via a

statistical program which produces output data describing the relationships among the

input data. Simulation models, in contrast, are computer programs themselves;

programs that describe critical aspects of the social phenomenon being modeled. The

program is run and the output data are analyzed using standard statistical techniques.

Simulation modeling has three main advantages over statistical models. First, it

allows heterogeneity among individuals that more closely approximates the variety

found in life. Second, it is able to accommodate the non-linear relationships present

in dynamic and complex interactions (Dibble, 2003; Epstein & Axtell, 1996; Gilbert

& Terna, 1999). Third, simulation modeling can be used in situations where little or

no data empirical data are available. Statistical models require data, either empirical

or simulated.

Agent-based modeling (ABM) is one type of simulation that employs a bottom-up

approach in which agents are imbued with unique characteristics and general

 16

behavioral rules (Epstein & Axtell, 1996; Gilbert & Terna, 1999; Gilbert & Troitzsch,

1999). An agent is an “autonomous goal-directed software entity” (O'Sullivan &

Haklay, 2000) that most often represents a person but can also represent

organizations, neighborhoods etc. The outcome of interaction with other agents is

driven by the decisions of the individuals involved and those decisions dynamically

change the characteristics of agents. These agents are removed from their ‘real-word’

situation and placed in an artificial world (O'Sullivan & Haklay, 2000). The use of

artificial landscapes which do not take into account the impact of the environment in

which individuals move and interact represents one significant drawback to ABM.

A natural application for ABM is toward achieving a better understanding of the

crime event in its situational context. Some researchers have already begun to

explore the use of simulation for capturing the dynamic interactions taking place at

the micro level and their relationship to macro level patterns (P. L. Brantingham &

Brantingham, 2003;2004; P. L. Brantingham & Groff, 2004; J. E. Eck & Liu, 2004;

Gunderson & Brown, 2003; Wang, Liu, & Eck, 2004). However, these efforts rely on

the use of artificial landscapes to inform agent activities and movement.

In order to model individuals in a non-artificial environment, an approach is

needed that combines the strengths of ABM and GIS (Albrecht, 2005; An et al., 2005;

Brown et al., 2005). A combined ABM/GIS simulation model integrates the

advantages of autonomous agents found in agent-based modeling with the spatial

explicitness of a geographic information system. This allows agents to interact on

city streets and their activities during the simulation to be informed by the distribution

of opportunities for housing, employment, shopping, and recreation across the urban

 17

backcloth. The result is agent spatial behavior that is more representative of actual

human behavior than when agents are created with and interact on artificial

landscapes.

This research documents the successful implementation of a model of street

robbery in which agents move on the vector street network and their activity spaces

reflect the distribution of population, jobs, and retail/services/recreation opportunities.

The methodology is implemented using Agent Analyst software, an integrated

ABM/GIS tool. The GIS component enables the creation of realistic activity spaces

and the movement of agents along vector street networks, while the ABM controls the

temporal elements of the simulation and the interaction of agents with one another.

By combining the two, the situational elements of the convergence of offender and

victim at a specific place and time are simulated. The crime of street robbery is a

natural choice for this type of model because it stems from the interaction of

individuals in a public area. In addition, it is an instrumental crime (for economic

gain), and thus more likely to be the result of a rational decision than an expressive

crime (Clarke & Cornish, 1985; Walsh, 1986). The remainder of this paper is

organized as follows. First, the theoretical basis for the model is covered and a

conceptual model presented. Next the implementation details including model rules

and input data are provided. Lastly, the results and the implications for future

research are discussed.

2.0 Theoretical Basis for a Street Robbery Model

Both criminological and geographical knowledge are important to the

development of a conceptual model of street robbery events. Opportunity theories of

 18

crime, ones that address the elements of the situation in which the offender makes the

decision to offend, form the basis of the model.1 Specifically, routine activity theory

(RAT) (Cohen & Felson, 1979) provides the structure of the model and rational

choice theory (Clarke & Cornish, 1985;2001) is used to guide offender decision

making. The structure and timing of agent’s activities and movement along the street

network is informed by the major theoretical perspectives that address routine activity

spaces.

2.1 Criminological Theory

Cohen and Felson’s (1979) routine activity theory identifies the key to increases

in crime as the shift of routine activities away from home. The theorists hypothesize

that as individuals spend more time away from home, crime will increase. As

originally conceptualized, routine activity theory identifies the convergence of

motivated offender, suitable target, and the lack of a capable guardian at a particular

place and time as the core elements necessary for a crime to occur. They emphasize

that crimes occur when the normal everyday activities of offenders and victims

intersect with no guardian present.

The theorists also recognize the importance of routine activities in influences

when and where victims and offenders converge but they do not directly address the

details of human mobility. They view routine activities as the key dynamic element

in determining aggregate crime rates because it affects the three other elements

1 Space constraints prohibit a detailed examination of extensions to routine activity theory or even
related opportunity theories pertinent to micro level modeling. Rational choice theory is addressed
because it provides for bounded rationality in the decision to offend. For a complete overview of
theories and how they inform the criminal event perspective (CEP) please see (Meier, Kennedy, &
Sacco, 2001). Several books offer a good overview of opportunity theories (Akers, 2000; Cullen &
Agnew, 1999; Vold et al., 2002).

 19

necessary for a crime, motivated offender, suitable target, and guardianship. Changes

in routine activities directly impact the frequency of convergence among these

elements which in turn, increase or decreases overall crime rates. Thus, the theorists

neatly tie the interaction of clearly defined elements of a crime to societal level crime

rates. These four elements of offender, target, guardian, and routine activities form

the main constructs of the model.

As previously mentioned, routine activity theory pays little attention to the source

of the offender’s motivation and assumes a supply of motivated offenders.

Consequently, the model developed here relies on rational choice theory for the

specifics of offender decision-making (Clarke & Cornish, 1985). Rational choice

theory is based on the economic principle of expected utility where each individual’s

decisions are predicated upon balancing projected benefits against projected costs of

activities. The theory does not assume people have perfect knowledge but rather

recognizes that offenders make the decision to commit a particular offense based on

the characteristics of the specific situation using bounded rationality (i.e. imperfect

knowledge) and taking into account three factors: the suitability of the situation, the

presence of a viable target and the level of guardianship. Rational choice theory also

assumes that offender spatial behavior is essentially similar to that of non-offenders

so all people in the model who are not police have identical movement rules.

2.2 Activity Spaces Theory

One of the core concepts in routine activity theory involves the necessity of the

convergence of victims and offenders in space and time. The specific ‘where’ and

‘when’ of convergence stems from the routine behavior patterns of each actor

 20

involved. Thus representing the spatio-temporal aspects of human behavior that

facilitate convergence is a critical element in modeling street robbery events since it

is the interactions between humans and their environment that serve as the source of

explanation of observed spatial patterns (Aitken, Cutter, Foote, & Sell, 1989; Gold,

1980; R. G. Golledge & Timmermans, 1990; Timmermans & Golledge, 1990;

Walmsley & Lewis, 1993).

A large quantity of research is available to inform agent movement and routine

activities in the model and that research suggests people tend to have an area within

which they conduct their daily activities. Some researchers term this area an activity

space (Horton & Reynolds, 1971), some call it a potential path area (H. J. Miller,

1991), and others a domain (Hägerstrand, 1970;1975). This area encompasses both

the locations that are visited and the paths taken among those locations. Different

perspectives have their own terms for these locations and paths. Locations that are

visited are called stations (Hägerstrand, 1970;1975), nodes (Paul Brantingham &

Brantingham, 1981b; Patricia Brantingham & Brantingham, 1993; Lynch, 1960; H. J.

Miller, 1991), or anchorpoints (R. Golledge & Stimson, 1997; R. G. Golledge, 1978).

These are the places where the majority of human interaction occurs. The particular

routes taken among the locations are termed paths (Hägerstrand, 1970;1975; Lynch,

1960). None of these elements are static, for example, the shape and size of areas

(i.e. activity spaces) can change as people change jobs (i.e. nodes) or as their

circumstances change (Hägerstrand, 1970).

Regardless of the terminology, home tends to be the dominant place in any

activity space. Travel tends to be concentrated along certain routinely frequented

 21

paths. Frequently traveled paths may be important factors in determining aggregate

crime patterns because they bring offenders and victims together in space and time.

Individual’s travel patterns are influenced by constraints (i.e., temporal, economic and

spatial) on their ability to take advantage of opportunities for housing, employment,

recreation etc

Together this collection of research provides a strong basis for conceptualizing

routine activity spaces of individuals as a set of places and the paths between those

places. Specifically, agents in the model have four places they visit each day: a

home, a main node (e.g. work, school, etc.), and at least two other places that are

visited frequently such as a gym, grocery store, dry cleaner, class etc. The paths

taken to travel among the places are structured by the street network.

2.3 Conceptual Model

The preceding review of research identifies the basic elements represented in the

conceptual model (see boxes in Figure 2-1). The conceptual model identifies two

classes of people, civilians and police. Civilians have activity spaces and can take on

different roles (i.e., offender, victim, or guardian) depending on the particular

situation. Police exist only as agents of formal guardianship. Civilians with criminal

propensity can potentially take on any one of three roles, offender, victim or guardian.

Civilians without criminal propensity can be either victims or guardians. In addition

to criminal propensity, each civilian in the model has a unique set of characteristics

that include wealth and employment status.

 22

Figure 2-1: Conceptual Model of Street Robbery

Two other spatial elements are important to convergence of civilian agents in a

model of street robbery. One is the activity spaces of the agents and the other is the

network of streets available for travel. The size and form of activity spaces is

influenced by the distribution of residential housing, jobs, schools, retail and services.

Each civilian has a unique activity space reflecting the places they visit. Once

convergence occurs, factors such as guardianship, and suitability of target are

considered by the offender when making the decision whether or not to commit a

robbery.

 23

3.0 Research Design

This section describes a methodology for ‘situating’ simulation models including

software, data, movement and activity space formulation. Recent developments in

technology and increased data availability at the micro-level support this approach to

modeling individual-level phenomena. The move to object-oriented architecture

provides the technical foundation for the integration of GIS and ABM. Section 3.1

provides specifics about the software package used to implement the methodology.

Next, the data used to inform agent movement and the activity spaces of the agents is

described. Section 3.3 explains how random and directed movement of agents is

implemented in the model. Lastly, section 3.4 gives the details of how agent activity

spaces are constructed so they reflect the actual distributions of homes, jobs and

opportunities for retail, recreation, and services.

3.1 Agent Analyst- GIS/ABM Integration

The method uses a new software package, Agent Analyst, which integrates GIS

and ABM to provide a platform for the dynamic modeling of individuals across space

and time.2 This package follows the middleware approach in which the temporal

relationships are handled by the ABM software and the topological relationships are

managed by the GIS (Brown et al., 2005). Agent Analyst combines two of the most

popular packages for ABM and GIS, the Recursive Porous Agent Simulation Toolkit

(Repast) and ArcGIS. To make the software easier to use, Agent Analyst is built

using the rapid development version of Repast called Repast for Python Scripting

2 Agent Analyst under development as a partnership between ESRI and Argonne National
Laboratories; they are the parent companies of ArcGIS and Repast respectively. Agent Analyst is free
but currently available by request only. The website for Repast is http://repast.sourceforge.net/.

 24

(RepastPy) which has a graphical user interface that automates much of the

programming to create the framework of a model. Agent Analyst is designed to be

added into ArcGIS as a toolbox. Once the toolbox is added in ArcGIS, individual

models can access shapefiles allowing: 1) individual agents to become spatially aware

and 2) the visualization of agent movement and decision outcomes (e.g. locations of

crimes).

The integration of GIS and ABM enables the exploration of how individual

decisions by heterogeneous agents translate into aggregate rates of street robbery.

ABM permits the researcher to: 1) collect data about the characteristics of each

individual present during an interaction; 2) randomly assign characteristics to agents

greatly reducing the possibility of systematic bias; 3) allow agents to make

independent decisions within behavioral guidelines; and 4) systematically vary one

attribute while holding all others constant to undertake controlled, repeatable

experiments (Dibble, 2003; Epstein & Axtell, 1996; Gilbert & Terna, 1999). GIS

makes it possible to take into account how the characteristics of the real environment

(i.e. street network, distribution of homes, jobs and activities) impact the activity

spaces of agents. In addition, it provides the ability explore the role of routine

activities in facilitating the space-time convergence of a motivated offender and a

suitable target, without a capable guardian present.

3.1 Data

The initial implementation of the model is situated in Seattle, Washington which

provides the data for the model landscape and the agent activity spaces. Four input

datasets describing conditions in Seattle are used to inform the activity spaces of

 25

agents in the model: 1) total population; 2) total employment; 3) total potential

activities; and 4) streets. Blockgroup level population figures are used to describe the

distribution of residences across Seattle (U.S. Census Bureau, 2000). Employment

data are used to describe the number of employees per zip code area (U.S. Census

Bureau, 2002). The 18,024 potential activity locations are identified through the use

of retail and service establishments (e.g. grocery stores, convenience stores, dry

cleaners, gyms etc.) (ESRI, 2003). The street network, derived from the King County

Street Network Database (SND) file, is used to structure agent travel.

In addition to the input data describing Seattle, twelve parameters are set prior to

the model run. The rationale for their initial settings is described in detail in Table 2-

1. Random number seeds are a unique type of parameter used in the model; they

provide the ability to replicate the model behavior over subsequent runs and are

essential to using simulation as a laboratory for experimentation (Axelrod,

Forthcoming).

 26

Table 2-1: Parameters in the Model
Variable Rationale

Society Level

Number of Agents = 1000

Represents a balance between ensuring there are enough
agents so that interactions can occur and the computational
overhead from using more agents

Number of Police = 200

Chosen to ensure that police agents would be present at some
of the convergences that occur across the 16,035 places in
Seattle.

Unemployment Rate = 6%

The unemployment rate of six percent is based on the 2002
unemployment rate for Seattle (Bureau of Labor Statistics,
2003).3

Rate of Criminal Propensity
= 20%

Given that 20% of the population has committed a crime, 20%
of civilians are assigned criminal propensity using a uniform
distribution (Visher & Roth, 1986).

Time To ReOffend = 60

Parameter value chosen as a starting point since the author
could find no empirical data on which to base time to
reoffend..

Random Number Seed =
100 (seed also tested at 200,
300, 400 and 500)

An explicit random number seed based on the Mersenne
Twister (MT) algorithm is used as the basis for all random
number distributions used in the model. MT is currently
considered to be the most robust in the industry (Ropella,
Railsback, & Jackson, 2002).

Agent Level

Societal Time Spent Away
From Home = 30% (40%,
50%, 60%, 70%)

Assigned based on a normal distribution with a mean of 432
minutes (for the 30% condition) and a standard deviation of
10% of the mean (sd = 43).4

Initial Wealth = 50

Initial wealth is assigned with a mean of 50 and a standard
deviation of 20 units.

Amount of wealth received
each payday = 5

No empirical evidence available.

Amount of wealth
exchanged during robbery=1

No empirical evidence available.5

Situation Level

Guardianship Perception =
U(-2,2)

The guardianship perception value can add or subtract zero,
one or two guardians from the actual number present. This
represents the stochastic element in the offender’s perception
of the willingness of a guardian to intervene.

Suitable Target Perception =
U(-1,1)

The value in suitable target can increase or decrease the
suitability or leave it unchanged. This enables the offender to
sometimes decide a target is not suitable even when they have
more wealth.

3 Since the jobs data are from 2002, the corresponding year’s unemployment rate is used.
4 In Groff (Forthcoming-a) the time spent away from home is systematically varied to test the core
proposition of routine activity that as time spent away from home increases crime will increase.
5 A request to the Seattle Police Department for the average amount of cash taken during street
robberies remains unanswered.

 27

The outcome data from the simulation are collected for individual civilians, street

nodes/places and for the society as a whole (Table 2-2). Data are collected at

intervals during the model and at the completion of each model run. These data are

written to two types of files, text files and shapefiles. In a simulation model, the

modeler controls the data that are collected and how frequently they are written to a

file. There is a computational cost each time the program writes to a file that must be

balanced with the need for information about the model run.

 28

Table 2-2: Outcome Data from Model

Variable Name Description Level of
Measurement

Societal-level Outcome
TotRob Total number of robberies Ratio
RobRate Average number of robberies per

population
Ratio

TotConverge Total number of convergences (i.e.
situations with a motivated offender
and one or more ‘at risk’ civilians)

Ratio

TotDeterred Total number of robberies deterred by
a cop’s presence

Ratio

TotOffenders Total number of civilians with criminal
propensity that commit a robbery

Ratio

TotVictims Total number of civilians who are
victims of street robbery

Ratio

TotRepeatVictims Total number of civilians who are
repeat victims of street robbery

Ratio

AveAwayTime Average amount of time agents spend
away from home

Ratio

Individual-level Process
AwayTime Total time spent away from home Ratio
TotOff Total robberies committed Ratio
TotVict Total times robbed Ratio
Criminal Propensity Presence or absence of criminal

propensity
Dummy

WealthBegin Beginning amount of wealth Ratio
WealthEnd Ending amount of wealth Ratio

Place-level Process
TotRobPlace Total number of robberies Ratio
TotVisits Total number of times an agent

stopped
Ratio

TotalNodeswRob Total number of street nodes that had a
robbery

Ratio

TotNodeswMultRob Total number of street nodes that had
more than one robbery

Ratio

MeanRobPlace Mean robberies per street node Ratio
MeanVisitsPlace Mean visits per street node Ratio

 29

3.3 Achieving Agent Movement in the Model

Two types of agent movement are implemented in the model, random and

directed (i.e. among a predefined set of locations). These two types of movement

require different strategies for implementation but both rely on street nodes rather

than streets. This unconventional strategy is necessary because Agent Analyst does

not support connections to a geodatabase or a network dataset, the two data structures

which enable routing in ArcGIS. Consequently, there can be no dynamic routing of

directed agent travel within Agent Analyst. The alternative strategy implemented

here uses GIS to convert the street intersections to a node layer. An additional benefit

of this strategy is that it allows dynamic agent movement to be implemented within

Agent Analyst.

Directed movement in the model is the more complex type of movement and

requires the definition of activity spaces for the agents before running the model.

Activity spaces consist of four activity nodes and a list of path nodes. The list of path

nodes describes the complete set of nodes to be traversed to visit all four activity

nodes. Movement takes place from street intersection/node to a connected street

intersection/node (hereafter referred to as street nodes). Since routing in ArcGIS uses

the streets, identifying the street nodes that are traversed in the course of visiting all

four activity nodes required the creation of a custom program.6 The output of the

program provides a list of street nodes that are traversed while traveling the shortest

path among the activity nodes. Civilian agents in the model always travel among

their activity nodes in the same order each day (i.e. home, main, activity one, activity

6 The custom program was created in Visual Basic and added to the ArcGIS 9.1 session to identify the
street nodes traversed by each agent. The author gratefully acknowledges the assistance of Mary Jo
Fraley who wrote the code and is making it available via the author.

 30

two). They always start and end a model day at their home. As seen in left panel of

Figure 2-2, directed agent movement occurs from node to node along a pre-defined

path. In the example, the agent starts at home and moves to node 107. From there

the agent moves to 110, 122 and so on.

Figure 2-2: Movement in the Model

In addition to the directed movement by civilians going about their daily

activities, dynamic random movement is also implemented in the model. Random

movement is used by the police agents in all three versions and by the civilians in two

versions of the model. Implementing random movement of civilians enables the

comparison of outcomes to those from a model in which the civilians have directed

movement.

Random movement is implemented in the model through a two-step process,

identification of neighboring nodes and random selection of the target node. As part

 31

of the preprocessing of data done before running the model, a set of adjacent nodes is

identified for each node and written to a file. The creation of this file is achieved

through a series of topological queries (i.e. select node, select streets adjacent to

selected node, select nodes that intersect selected streets). In this way, a file of

neighboring nodes is created for each travel node and then used as the basis for

random movement.

When traveling in a random fashion, the agents follow a ‘random walk’ where the

agents move one randomly chosen node each minute of the model (Chaitin, 1990).

The current location of each agent is associated with a street node. During the model

run, the file of node neighbors is used by each agent as they travel. The right panel of

Figure 2-2 shows a simplified travel movement. The agent is at node 134 and could

potentially move to any of the following nodes: 102, 120, 121, or 133. A uniform

random number is generated giving each node an equal chance of being selected. The

agent then moves to the selected node and the cycle repeats.

3.4 Creating Activity Spaces for Civilians in the Model

As discussed earlier, theory from both geography and criminology holds that the

travel behavior of individuals is influenced by the street network, the specific

locations at which opportunities for employment, recreation, retail and services exist,

and the distance among those locations. The temporal schedule (i.e. the amount of

time spent at each activity) is affected by the distances between the activities and the

speed of travel. The more time spent traveling the less is available to spend at an

activity. The complete process of developing agent activity spaces is detailed in

Figure 2-3 which also describes the entire data flow from input through output.

 32

Figure 2-3: Data Inputs/Outputs Related to Agent Activity and Outcome Data

However, before the activity spaces for the civilian agents can be created the

locations of the street nodes have to be linked to the polygon layers. The process

begins by using GIS to create a layer of street nodes and assign area identifiers (e.g.

blockgroup or zip codes) to each street node (e.g., street node 1 is in blockgroup 201).

In stage 2, the distribution of homes, jobs and retail/service/recreation activities

across Seattle is calculated. These distributions are then used to assign agent homes,

jobs and activities in the same proportion as they are found in Seattle (e.g. if 10% of

the population lives in a particular blockgroup then 10% of the agents are assigned to

that blockgroup). This process produces two files; one file contains the activity node

number and the blockgroup in which it is located and the other file contains the

 33

blockgroup and number of agents to be assigned a home node from that blockgroup.

The same basic methodology is then repeated to assign work places and activities.

Stage three uses the two files just described in a java program that randomly

selects and assigns agent homes, work places, and activities in the same proportion as

they are found in Seattle. Each agent’s four activity nodes are selected representing a

home node, main node (e.g., work, school etc.), and two additional activity nodes

(e.g., retail stores, gym, coffee shop). Two thousand files path files are written out;

one for each agent when employed and another for each agent when unemployed.

The final stage in creating directed movement paths involves finding the shortest

path among the nodes. As previously mentioned, the shortest path among the activity

nodes is calculated using ArcGIS Network Analyst via a custom Visual Basic

program that generates a list of nodes that are traversed while traveling the shortest

path and writes them out to agent path files. Two paths are created for each agent;

one describes their activity space when employed and the other when unemployed.

Three of the four nodes remain the same between the two activity spaces, home,

recreation node 1 and recreation node 2; only the main node changes. When

employed, the agents’ main node is assigned in the same proportion as employment;

when unemployed it is assigned from the distribution of activities in Seattle. The

4,000 output files describing the activity nodes (N=2000) and activity paths (N=2000)

for each agent are then ready to be used to define directed civilian agent movement in

the model.

At this point, a temporal schedule is assigned within the street model using the

following steps. First, the time spent at home is randomly assigned to each agent so

 34

that the societal average matches the average for the experimental condition being

tested. Next the number of nodes traversed is counted and subtracted from the total

time away from home. The larger the geographic extent of an individual’s activity

nodes the greater the time required to travel among them. The remaining time is

randomly allocated to the Main, Activity 1 and Activity 2. Because of the large size

of some of the agent activity spaces, the agents must travel more than one node each

turn in order visit each activity node and make it back home in one day. The number

of nodes traveled per turn is determined via a random normal distribution (mean = 6,

sd = 1).

4.0 Implementation Model

This section explains how the conceptual model of street robbery is implemented

in three progressively more complex versions using ABM and GIS and based on GIS

data describing Seattle (Table 2-3). The simplest version called Simple, has agents

move along a real street network but does not incorporate the notion of routine

activity spaces (temporal or spatio-temporal). The Temporal version has agents with

random movement and a temporal schedule while in the Activity Space version

agents have a spatio-temporal schedule with defined movement patterns that are

based on the activity spaces developed earlier. The offender’s decision making

process is identical for all three versions of the model.

 35

Table 2-3: Implementation Versions of the Conceptual Street Robbery Model

 Simple Temporal Activity Space

Civilian Movement Random Random Defined Activity

Space

Police Movement Random Random Random

Civilian

Characteristics

Criminal Propensity Yes Yes Yes

Wealth Yes Yes Yes

Activity Space No Temporal

schedule

Spatio-temporal

Multi-faceted Risk

Status

No Yes Yes

Employment Status No Yes Yes

4.1 Overview of the Landscape and the People in the Model

The model of street robbery is based on the core elements of routine activity

theory (RAT): a motivated offender, a suitable target, and the lack of a capable

guardian. The size, shape and timing of the routine activity spaces developed in

section three are important in determining the frequency with which those elements

converge in space-time. These concepts form the basis for three of the agent classes

in the model: place, civilian and police officer (Figure 2-4). The fourth class consists

of the active nodes and is used to keep track of the street nodes where there are

agents. The rest of this section describes each of the four major components of the

model: landscape, people, activity spaces, and model behavior.

 36

Figure 2-4: Classes in the Street Robbery Model

The city of Seattle is used as the basis for the landscape in all three versions of the

street robbery model. One function of the landscape is to provide information on the

distribution of population, jobs, and service/retail opportunities across Seattle. The

other is to realistically structure the movement patterns of both civilians and police.

Two classes in the model have to do with the landscape, places and active nodes. The

place class of agents in the model represents all 16,035 street nodes. Each place has

attributes that are updated during the model run (e.g. total robberies, total visits etc).

Places, as the lone vector agents, are directly linked to a shapefile representing street

intersections and provide the only mechanism for visualization of the model while it

is running and after the completion of a model year.7 The active node class is

7 There are two types of agents in RepastPy GIS Model, vector and generic. Vector agents are
associated with a shapefile and can thus be displayed on a map while generic agents cannot.

 37

generic, and serves as a computational device to identify which nodes have agents on

them at each tick of the model. It is dynamic and changes with each minute of the

model. The active node class improves the performance of the model by restricting

the set of places that have to be checked each minute of the model.

Two agent classes operationalize people in the model, civilian and police. The

civilian class represents the general population of Seattle. The three roles that people

can take on during a crime event are encompassed in the civilian agent class; civilians

can be offenders, targets, or agents of informal guardianship. The particular role a

civilian agent takes is driven by their characteristics and the contextual dynamics of

the specific interaction. Police are the agents of formal guardianship. Both police

and civilian agents are assigned a type of movement that is static over a particular

model run. Only civilians have additional attributes that are used in the model.

Police agents have only one role, that of a formal guardian. In the model, the

presence of a police agent prevents a crime from occurring. At the start of the

simulation, police agents are randomly distributed across the nodes. To accomplish

their mission of crime prevention police agents follow a ‘random walk’ movement

pattern in which they move one node at a time and only to an adjacent node. Police

never commit crimes in this model and they are never targets.

Civilian agents are randomly distributed across the nodes in the Simple and

Temporal versions but in the Activity Space model civilians begin each day at an

assigned home node. Regardless of version, the civilian agents in the model are

assigned three characteristics that are integral to the decision to commit a street

robbery: 1) a time to spend at home; 2) criminal propensity; and 3) wealth. In the

 38

Temporal and Activity Space models agents also have an employment status. The

final characteristic of agents is their mode of movement and accompanying temporal

schedule which vary by version of the model; totally random, temporal only with

random movement or spatio-temporal (these were discussed in section 4.0). Some

background on each of the roles (i.e., offender, target and guardian) and how they are

incorporated into the model is provided next.

All civilian agents are assigned a time to spend at home that is static over a model

run. In the Simple model, civilians are either at home or not at home. When not at

home, agents move along the street network as described in the earlier section on

random movement. Civilians in the Temporal and Activity Space models share the

same temporal schedule for activities and travel. They have attributes describing the

time to spend at home, a main activity and two other activities. Civilians in the

Activity Space model have places at which those activities occur. When not at home,

civilians in the Temporal version travel randomly and those in the Activity Space

version follow the shortest path among their activity nodes.

Criminal propensity is used to differentiate agents who evaluate situations and

make the decision to offend from all other agents in the model. In all other ways,

civilians with criminal propensity are exactly the same as those without. While only

agents with criminal propensity can make the decision to offend, it is the particular

constellation of individual and situational factors that determines whether a crime is

committed. In this way, patterns of offending and victimization are allowed to

emerge from decisions made by individuals in particular contexts.

 39

The additional characteristic of employment status is added to civilian agents in

the Temporal and Activity Space versions of the model. This characteristic has two

important impacts in those versions of the model. First, it changes the relative

amount of time spent at the three activity nodes (but not the overall time spent away

from home). In the Activity Space version, a change in employment status also

changes the activity nodes that are visited by the affected agents. Incorporating this

characteristic enables the model to reflect the impact that employment status has on

the temporal and spatial aspects of routine activity schedules. Second, employment

status impacts the wealth of the civilian agents. Those who are employed receive

regular but static infusion of wealth every two weeks over the model year. Civilians

who are unemployed do not get paid. Every month, three percent of unemployed

agents become employed and are replaced by a new random selection of employed

agents who become unemployed. It is important to note that the employment status is

assigned independently of the criminal propensity indicator; civilians with criminal

propensity can be employed in the model, as they are in life.

As noted earlier, the built environment influences the structure of routine

activities. The structure of routine activities, in turn, impacts the convergence of

offenders, targets, and guardians at places. The interaction among civilians and

police in the model takes place in the particular situational context existing at places

(Carlstein & Thrift, 1978; Meier et al., 2001; R. J. Sampson, 1993). The three

versions of the model implement different activity spaces for civilian agents. In the

Simple model, civilian agents are assigned only a time to spend at home. All agents

begin at home and then travel randomly until the end of the day. Their next day

 40

begins at the node where the previous one ended. Since they are at risk of being

robbed whenever they are not at home, civilians in the random model have the

highest level of risk.

The Temporal and Activity Space versions of the model incorporate a more

complex notion of activity space and risk. In these versions of the model, civilian

agents are not at risk when they are at home or at work; only when they are at other

activities or traveling. This representation of risk is in keeping with the crime being

studied. By definition, street robbery happens only on the street or in public places;

not in a home or inside a workplace.

Civilian agents in the Temporal version spend the same amount of time at the four

activity nodes and in travel as their corresponding civilians in the Activity Space

version but they travel randomly. Only the Activity Space version uses the pre-

defined activity spaces that reflect the distribution of activity places in Seattle.

The following describes general model behavior. Each tick corresponds to one

minute of time, and each minute the nodes with an agent present are evaluated.

Active nodes meeting the three criteria continue to be evaluated: 1) no police present,

2) at least two civilians present and 3) at least one of the civilians must have criminal

propensity. First an active offender agent is selected from the agents at the active

node. If there is only one offender at the node, they automatically become the active

offender. Otherwise, the active offender is randomly selected from the list of agents

with criminal propensity who are at the node. Random selection is necessary to

ensure the same agent is not selected to be active each time the model is run.

Offender agents who are not selected are at risk of becoming victims. Once the active

 41

offender at each of the active nodes evaluates their situation, all agents move and the

decision structure repeats.

5.0 Results of Implementing a Model in Agent Analyst

The successful implementation of a theoretically-based, geographically-aware

model of street robbery documented here capitalizes on the recent development of

Agent Analyst to enable agent movement along real street networks. It also

demonstrates how realistic activity spaces can be developed from the distribution of

land use in a city. These advances allow a simulation model to be ‘situated’ on an

existent rather than an artificial landscape and in doing so provide a more realistic

context to the model.

The versions of the model implement two types of movement along a street

network, random and directed. Both implementations ‘situate’ simulated interactions

by structuring potential movement based on a street network. The random movement

offers the ability to have agents move along an existing street network rather than in

abstract grid space or along linked grids to mimic a street network. Thus researchers

can use a street network directly without having to convert the network to a grid for

use in a simulation model.

Although this is a significant advance, there are two drawbacks to the current

implementation of random movement. First, the random selection of the next node is

done from a list that only considers adjacent nodes. Thus, agents are limited to

moving only one node per minute. In addition, there is no prohibition against

backtracking by agents. The same node that an agent just came from is included in

the list of adjacent nodes for the current node which means it can be selected as the

 42

goal node. Together these implementation decisions may lead to smaller, less

realistic activity spaces for agents that are moving randomly. Future implementations

should consider giving agents who are moving randomly, the same ability to move

more than one node as the agents who have directed movement.

The directed movement allows agents to move purposefully among a set of

locations. These locations can represent home, work, school, shopping, service,

and/or recreation places. Directed movement serves as the basis for spatial activity

spaces by enabling agent travel among a set of predetermined locations that are

visited daily.

The creation of activity spaces also is an important step forward in situating

simulation. The model versions implemented here will provide the basis for

systematic experiments testing how a random schedule of activity, can be compared

to one with temporal constraints and one with spatio-temporal constraints. Thus the

impact of time can be tested separately from the impact of space. Although this

model implements only simplified versions of activity spaces, the methodology

provides a guide for future research to extend.

6.0 Conclusions

This paper details a new methodology for ‘situating’ simulation. It makes use of

a recently released software tool that integrates GIS and ABM. The result is a

package that combines the individual-level modeling capabilities of an ABM with the

spatial analysis capabilities of a GIS and in doing so situates simulated agents within

an empirical context. A methodology for enabling agent movement on a street

network and creating geographically informed activity spaces is detailed and provides

 43

the foundation for the development of three versions of a model of street robbery

events.

This implementation of a street robbery model has important implications for the

use of simulation to elaborate theory (Albrecht, 2005; J. Eck, 2005) and to conduct

experiments (Dowling, 1999; Schultz & Sullivan, 1972). Previous attempts to test

routine activity theory, although generally supportive, have produced mixed results

(Kennedy & Forde, 1990; Messner & Blau, 1987; Miethe & McDowall, 1993; R.

Sampson, J. & Lauritsen, 1990). None of those tests were able to sufficiently address

the spatio-temporal structure of routine activities, satisfactorily deal with

measurement issues or effectively capture the dynamic nature of interactions at the

micro level. The methodology and model implemented here address all three of those

issues. In addition, agent based software allows single aspects of the behaviors of

agents to be manipulated while all others are held constant. This capability is used to

conduct controlled experiments to test the core axioms of routine activity theory

(Groff, Forthcoming-a) and to separate the effects of space and time on the

convergence of the elements necessary for a street robbery to occur (Groff,

Manuscript available from author).

The choice of parameter values is a critical aspect of all models that deserves

special attention because it impacts the external validity of the model by

compromising the parameter validity; the measure of how well the parameter values

used in the model matched reality (Carley, 1996). As noted in the data section, this

research made every attempt to use realistic model parameter values. However, in

some cases there was no evidence available and in others a simplified representation

 44

was chosen to establish a baseline (e.g. wealth distribution) (Axelrod, Forthcoming;

Epstein & Axtell, 1996). In these cases, the validity of the parameters is unconfirmed

and their impact on the model results needs to be thoroughly tested via systematic

sensitivity tests.

On the whole, the methodology presented here is relatively straightforward and

establishes a foundation for further more complex explorations of agent movement

and activity spaces. In the case of agent movement, one enhancement would be to

take into account barriers. For example, in the case of police, they typically are

assigned to patrol within designated areas. Subsequent implementations could make

use of those types of barriers and in doing so provide a step toward more realistic

police agent behavior. Barriers are also important to civilians and may be physical

(e.g. streams, limited access highways) and/or perceptual (e.g. edges of

neighborhoods etc.). Another enhancement would be to use speed limits and one-way

streets in the development of the routes among activity places.

The future use of this methodology is both facilitated and limited by the software

packages available for implementation. Currently, Agent Analyst offers a unique

opportunity and some challenges to ‘situating simulation’. Since it is still under

development, its ultimate form is still evolving so all these statements apply to the

beta version only. On the plus side, Agent Analyst offers the most straightforward

option for non-programmers who are interested in developing their own spatially-

aware models. It unburdens the new programmer from the numerous details involved

in developing the model framework and learning the syntax of java. On the minus

side, the current version is only able to read shapefiles, not the network data sets that

 45

would enable dynamic routing. In addition, the debugging tools are extremely

limited. Finally, would-be modelers must become familiar with a unique subset of

Python syntax and any Java classes that are used. Addressing these issues would

decrease the difficulty of programming models, speed development time, and increase

the realism of agent travel and activity spaces in the models.

 46

Chapter 3 Simulation for Theory Testing and Experimentation

1.0 Introduction

Achieving a better understanding of crime events in their spatio-temporal context

is an important research area in criminology with major implications for making

better policies and developing effective crime prevention strategies. Theoretical

advances under the rubric of opportunity theory have highlighted benefits of a shift in

focus from the criminal motivation of people to the contexts in which crime events

occur (Paul Brantingham & Brantingham, 1981a; J. E. Eck & Weisburd, 1995; D. L.

Weisburd, 2002). Because these approaches focus on the crime event and not the

intrinsic motivations of the actors, they produce concrete and immediate strategies for

both policy and practice (Akers, 2000; Cullen & Agnew, 1999; Felson, 1987; Vold et

al., 2002). Implementation of these strategies holds the promise of quick and

measurable reductions in crime rates.

Routine activity theory (RAT) (Cohen & Felson, 1979), in particular, has received

a great deal of attention and its crime reduction potential is widely recognized.8

Accordingly, there have been many attempts over the last twenty-five years to

empirically validate routine activity theory. Despite applying a variety of

methodologies, these studies have produced inconsistent support for the theory. Their

8 Environmental criminology is another important theory that emphasizes place characteristics and
offender travel in the convergence of victims and offenders in space-time (Paul Brantingham &
Brantingham, 1991 [1981]; P. J. Brantingham & Brantingham, 1978). Other theories relevant to micro
level modeling include lifestyle theory (Hindelang, Gottfredson, & Garofalo, 1978) and the criminal
event perspective (CEP) (Meier et al., 2001). However, the need to focus on one theory for the initial
model precludes a full examination of these theories. Three books on the theoretical foundations of
criminology offer a more complete overview of opportunity theories (Akers, 2000; Cullen & Agnew,
1999; Vold et al., 2002).

 47

shortcomings stem from the lack of: 1) individual-level data, and 2) flexible modeling

tools.

This research demonstrates a new approach to testing routine activity theory

(Cohen & Felson, 1979) using simulation modeling. The assumptions of routine

activity theory are operationalized and implemented in a model of street robbery

events. The crime of street robbery is a natural choice for this type of model because

it involves the interaction of individuals in a public area (e.g. street, parking lot,

recreational area etc.). In addition, it is an instrumental crime (for economic gain),

and thus more likely to be the result of a rational decision than an expressive crime

(e.g. assault) (Clarke & Cornish, 1985; Walsh, 1986).

The model findings provide strong evidence for the plausibility of routine activity

theory’s core proposition; as individuals spend more time away from home, the

number of street robberies will increase. Analysis of the spatial patterns of street

robberies reveals a clustered distribution that becomes more dispersed as time away

from home increases since individuals have more time to travel farther from home.

In addition, locations that have a high incidence of robbery when society, as a whole,

is spending less time away from home remain high density locations as society

spends more time away from home.

The following sections provide the rationale and methodology for constructing

simulation models based on theory. Section 2 discusses previous tests of routine

activity theory and provides an introduction to simulation as an alternative

methodology. The criminological concepts that underpin the model are identified in

section 3. Although routine activity theory is the focus of this research, rational

 48

choice theory contributes concepts important to the rules that guide offender decision-

making. Section 4 provides a description of how those constructs are implemented in

an agent-based modeling (ABM)/geographic information systems (GIS) framework.

The analysis strategy and findings are detailed in Sections 5 and 6. The final sections

discuss the findings and implications for future research.

2.0 Meeting the Challenges Encountered by Previous Research

A wide variety of studies have attempted to validate routine activity theory. Some

have employed macro-level data to approximate the construct of routine activities

(Cohen, 1981; Messner & Blau, 1987; Miethe, Hughes, & McDowall, 1991). Others

have relied on survey data collected from individuals (Miethe, Stafford, & Long,

1987; Osgood, Wilson, O'Malley, Bachman, & Johnston, 1996), and still others have

combined micro- and macro-level variables to represent routine activities within a

social structure (Cohen, Kluegel, & Land, 1981; Kennedy & Forde, 1990; Miethe &

McDowall, 1993; Rountree & Land, 1996; R. Sampson, J. & Lauritsen, 1990; R. J.

Sampson & Wooldredge, 1987). As mentioned earlier, these studies have found

inconsistent support for the theory. However, the studies suffer from three main

shortcomings: 1) failure to consider the spatio-temporal structure of routine activities,

2) measurement issues, and 3) the inability to represent patterns emerging from

individual-level interactions. These issues are addressed in more detail next.

Although the importance of spatio-temporal elements in routine activities is often

acknowledged, the spatial structure and timing of these activities has been widely

 49

overlooked.9 Indeed none of these studies incorporated the dynamic, spatio-temporal

interaction of offenders, victims, and potential guardians at the micro level; an

omission that was most likely driven by a lack of data. In a commendable effort, two

studies attempted to address these issues through the inclusion of gross measures to

capture the timing of routine activity (e.g., breaking out daytime from nighttime

activities) (Kennedy & Forde, 1990; Miethe & McDowall, 1993). However, the

spatio-temporal structure of routine activities is a core component of routine activity

theory and must be more comprehensively measured if its role in the convergence of

offenders and targets is to be better understood.

A variety of measurement issues arise when attempting to test routine activity

theory (Cohen et al., 1981; Miethe et al., 1991; R. J. Sampson & Wooldredge, 1987).

As Bursik and Grasmick note “it has been notoriously difficult to collect reliable and

valid indicators of its central components” (1993 77). Other measurement issues

include: ecological fallacy; overlapping operationalization of constructs; difficulty

with adequately measuring the construct of routine activities; and a reliance on

official data and victimization surveys that have widely-recognized flaws. When tests

are done using macro-level data, they are susceptible to the ecological fallacy which

states that the characteristics of an area cannot necessarily be inferred to individuals.

Consequently, macro-level data are generally unsuitable for testing a micro-level

theory such as routine activity (J. E. Eck, 1995a).

Regardless of the level of analysis, all studies have struggled with measuring the

construct of routine activities as isolated from other constructs being measured. This

9 Two studies (Miethe & McDowall, 1993; R. J. Sampson & Wooldredge, 1987) emphasized how
opportunity structure changed across areas but neither measured how the spatio-temporal structure of
routine activities impacted the observed distribution of crime.

 50

problem is related to general issues that have arisen when attempting to clearly link

empirically measured variables to particular constructs (e.g., single person households

are associated with less informal social control and with less guardianship) (Cohen et

al., 1981; Miethe et al., 1991). These issues make it difficult to test the theory

because data issues rather than theoretical ones can be employed to dispute contrary

evidence (Miethe et al., 1991; Miethe et al., 1987). In addition, the reliance on

official data and victimization surveys, which have widely-recognized flaws, makes

conclusions drawn from studies using those sources susceptible to the usual caveats

(Gove, Hughes, & Geerken, 1985).

Finally, all of the previous tests reviewed here suffer from the inability to

adequately model the complex and dynamic interactions of individuals that produce

observed crime patterns. Routine activity theory is essentially a micro-level theory

with macro-level implications; it characterizes crime patterns as resulting from the

decisions of individuals made in the context of a particular situation (J. E. Eck,

1995a). The methods of previous studies were simply not able to accommodate the

complex, non-linear nature of constantly changing individual-level interactions and

the manner in which crime patterns emerge from those interactions (Liu et al., 2005).

2.1 A New Approach for Modeling Crime Events and Crime Patterns

Simulation modeling offers an alternative method for capturing the dynamic

interactions among individuals taking place at the micro level and their relationship to

macro level patterns. Some researchers view simulation as a third way of conducting

social science research in addition to the more traditional verbal and

mathematical/statistical representation of theories (Gilbert & Terna, 1999; Ostrom,

 51

1988). In this tradition, simulation allows for the exploration and elaboration of

theory (Dowling, 1999; J. Eck, 2005; O'Sullivan, 2004a). Like other modeling

approaches, simulation modeling involves the creation of a simplified representation

of a social phenomenon (Gilbert & Terna, 1999). The most familiar type of model is

a statistical one (e.g., a regression model) in which input data are ‘run’ via a statistical

program and values are output that describe the relationships among the input data.

In contrast, simulation models are themselves computer programs that incorporate the

critical aspects of the social phenomenon being modeled. The program is run and the

output data are analyzed, often via standard statistical techniques. Simulation

modeling has two main advantages over statistical models. It allows heterogeneity

among individuals that more closely approximates the variety found in everyday life

and is able to accommodate the non-linear relationships present in dynamic and

complex interactions (Dibble, 2003; Epstein & Axtell, 1996; Gilbert & Terna, 1999).

Agent-based modeling (ABM) is one type of simulation. ABM employs a

bottom-up approach; agents are imbued with unique characteristics and general

behavioral rules and macro-level patterns emerge from their interactions (Epstein &

Axtell, 1996; Gilbert & Troitzsch, 1999). An agent “can be thought of as an

autonomous, goal-directed software entity” (O'Sullivan & Haklay, 2000 13). Agents

most often represent people but can also correspond to organizations, neighborhoods,

governments etc. The characteristics of agents can be randomly assigned so that

specific societal averages are produced and the possibility of systematic bias is all but

eliminated. Individual agents in the model interact with each other based on a set of

decision rules. Their characteristics are dynamically changed as a result of those

 52

interactions. Traditionally, agents interact in an artificial world, although the value of

leveraging GIS data to provide a ‘real’ landscape is gaining recognition since

artificial landscapes do not take into account the impact of the environment on agent

behavior (Brown et al., 2005; O'Sullivan & Haklay, 2000).

Additional scientific rigor is achieved when simulation models are implemented

within a computational laboratory framework (Dibble, 2003;2006; Epstein & Axtell,

1996; Gilbert & Terna, 1999; Macy & Willer, 2002).10 Computational laboratories

enable experiments to be conducted and replicated. Aspects of the agents, society,

and the landscape can be held constant or systematically varied in order to provide a

level of control impossible to attain using traditional social science methods. These

characteristics of computational laboratories facilitate the creation of a variety of

simulated experiments, featuring different conditions or applying various prevention

scenarios, which are then evaluated. An added advantage is that compared to

empirical research, simulations have minimal cost.

Recently, a small body of research has emerged that makes use of simulation

models to explore crime-related issues. Work by Epstein, Steinbruner and Parker

(2001) on civil violence and Wilhite (2001) on protection and social order provide

interesting approaches to modeling how the interactions of individual agents are

related to emerging patterns of violence or protection. Within criminology, work has

begun on conceptualizing the application of simulation in environmental criminology

(P. L. Brantingham & Brantingham, 2004; P. L. Brantingham & Groff, 2004) and

explaining crime patterns (J. Eck, 2005). ABM is being applied to study both

10 The term computational laboratory refers to the software tools to create and evaluate models
through systematic experimentation and descriptive analysis of output data (Dibble, 2003;2006;
Epstein & Axtell, 1996; Gilbert & Terna, 1999).

 53

physical and cyber crime (Gunderson & Brown, 2003), and some researchers are

combining ABM with other technologies. One example implements a general model

of crime on a GIS-based raster grid (Wang et al., 2004). Another study, based on

routine activity theory, employs cellular automata to study street robbery in one

neighborhood (Liu et al., 2005). Rather than offering competing paradigms, these

approaches represent a healthy variety of complementary approaches (J. E. Eck &

Liu, 2004).

The approach taken in this paper extends previous efforts in several ways. First,

the steps involved in building and applying a simulation model are thoroughly

explained to aid in replication. Second, a set of experiments is conducted to provide

the first direct test, albeit in an artificial society, of Cohen and Felson’s core assertion

that shifts in routine activities away from home, increases crime rates. Each

experiment holds the number of motivated offenders and suitable targets constant,

only the amount of time spent at home varies for the agents in the model. Third,

software integrating ABM and GIS is used to explore how agent travel on a real street

network impacts the frequency of convergence of the elements necessary for a crime

to occur. GIS software excels at managing data about space and ABM is superior at

keeping track of time; together they allow exploration of space-time relationships.

Finally, the new approach allows examination of how the convergence of

heterogeneous agents translates into aggregate rates of street robbery.

The remainder of the paper details how a computational laboratory using

ABM/GIS can be employed to address the following research questions: 1) Does the

shift of routine activities away from home increase the incidence of street robberies?;

 54

and 2) What is the impact of increasing time spent away from home on the spatial

pattern of street robberies? In order to facilitate interpretation, the initial model is

made as simple as possible implementing only the core concepts of routine activity.

3.0 Theoretical Basis for the Conceptual Model and Behavioral Rules

Although the approach advocated here is novel, the process of developing models

to represent reality is not. Models have a long history of use in the general social

sciences (Gilbert & Terna, 1999; Gilbert & Troitzsch, 1999; Schelling, 1971; Simon,

1952). While models vary in how faithfully they represent reality, they typically

operate on the principle that simpler is better; thus a primary goal of modelers is try to

assemble the most parsimonious model to answer a question. The degree to which

the theory is represented in the model represents the structural validity of the model

(An et al., 2005; Manson, 2001). Simulation models, in particular, start with simple

models and then systematically add complexity to ensure that the dynamics are well

understood before continuing (Macy & Willer, 2002).

Following those earlier modeling efforts, the building of the simulation model

detailed here begins with the identification of the most basic theoretical propositions

of routine activity theory. Once these are identified, the next step is to develop a

conceptual diagram that captures both the essential constructs and how they are

related to one another. The constructs and their relationships are then formalized so

they can be coded in a computer program. In some cases, the constructs are

formalized as clearly stated verbal guidelines that underlie the behavior of agents,

their interactions with other agents, and their interaction with the environment. In

other cases, the definition of these constructs takes the form of mathematical

 55

equations for evaluation of specific situations an agent encounters during the course

of a simulation. Where theory is not detailed enough for implementation or does not

address an issue, empirical research is used to enhance the representation of behavior

within the model. The final step in building the simulation is implementation of the

model via a software package that integrates ABM and GIS.

Fortunately, there is rich background literature to guide the development of an

agent-based model of street robbery. Appropriately, the model relies mainly on

routine activity theory for definition of the core concepts. Since routine activity

theory does not address offender decision-making, rational choice perspective is

employed to develop the decision rules applied in the model (Clarke & Cornish,

1985;2001). The next sections serve a dual purpose providing the basis for both the

conceptual model and the formalization of behavioral rules.

3.1 Routine Activity Theory

Cohen and Felson’s (1979) original formulation of routine activity theory has

become the most frequently cited basis for examining the connection between social

structural changes that have affected routine activities and crime.11 In their seminal

work, Cohen and Felson hypothesize that it was the shift away from home-based

activities that produced the increase in crime that occurred after World War II. An

increase which occurred despite improvement in the socioeconomic indicators

historically associated with crime (e.g. unemployment and education). As originally

conceptualized, routine activity theory identifies the convergence of motivated

offender, suitable target, and the lack of a capable guardian at a particular place and

11 The extensions to the original 1979 version of the theory are not incorporated into this first effort
(Felson, 2001;2002). This was done in order to make the results of the model easier to interpret.

 56

time as the core elements necessary for a crime to occur (Cohen and Felson 1979).

The authors also recognize the importance of routine activities in shaping the spatio-

temporal structure of convergence of victim and offender. They emphasize that

crimes occur when the normal everyday activities of offenders and victims converge

with no guardian present.

The four elements of a crime noted above form the main constructs of the model

(Figure 3-1). There are two types of people in the model, civilians and police.

Civilians take on roles representing the three major elements of crime (i.e. offenders,

targets and guardians). The fourth element, routine activity, is influenced by the

amount of time an individual spends away from home and the network of streets

available for travel. Once convergence occurs, factors such as guardianship and

suitability of target are considered by the offender when making the decision whether

or not to commit a robbery.

 57

Figure 3-1: Simple Conceptual Model of Street Robbery

Table 3-1 and the next few paragraphs provide a detailed account of how each of

the above constructs is translated into a formal verbal description and then how that

description is implemented in the model. Beginning with motivated offenders, RAT

assumes they are ubiquitous. In making the decision to offend, they evaluate the level

of guardianship and whether or not a suitable target is present. Targets, on the other

hand, are central to the theory which identifies visibility, accessibility, ability to self-

protect, and potential for financial gain as the most important characteristics in

determining their suitability. The specifics of what constitutes a capable guardianship

are not addressed, but the theory suggests that the deterrent value of some types of

individuals is higher than other types. For example, formal guardians such as police

officers have greater influence because they are more likely to intervene.

 58

 59

Cohen and Felson view the construct of routine activity as the key dynamic

element in determining aggregate crime rates because they affect the particular

configuration of offenders, guardians and targets in a situation. Changes in routine

activities directly impact the frequency of convergence among these elements which

in turn, increases or decreases overall street robbery rates resulting from ‘direct-

contact predatory violations’.12 In addition, the theorists postulate that if the

frequency of convergence increases, crime may increase even if the absolute number

of motivated offenders remains constant. The central premise of routine activity

theory then is that as individuals spend more time away from home, crime will

increase.

12 Following Glaser, they define ‘direct-contact predatory violations’ as crimes where “someone
definitely and intentionally takes or damages the person or property of another” (1974 4).

Table 3-1: Formalization of Theoretical Concepts

Theory Theoretical Concept Verbal Operationalization of Theoretical
Concept

Implementation

 Motivated Offender
-Routine Activity
-Rational Choice

There is a supply of
motivated offenders.

Research indicates that approximately 20% of the
population has participated in crime.13 This is the
proportion of the population that is encompassed in the idea
of motivated offenders. They have already achieved the
state of ‘readiness’ to commit a crime.

-Twenty percent of agents have
criminal propensity.

-Only agents with criminal
propensity make decision to offend.

-Rational Choice

Offender makes decision to
offend using bounded
rationality and based on the
availability of suitable
targets without capable
guardians.

Among those individuals with some level of criminal
motivation, the decision to offend utilizes information on
the suitability of targets and the level of guardianship to
evaluate the potential for a successful crime. The decision
itself is not necessarily lengthy or rational but rather based
on a form of ‘bounded rationality’ in which offenders
choose the first opportunity that is convenient and meets
some minimum requirement for risk and reward.

-Agents with criminal propensity
compare wealth of other agents at
node with own wealth.

 Suitable Target
-Routine Activity
-Rational Choice

Suitable target is an
individual who is visible,
accessible and has perceived
value.

Visibility and accessibility requirements are met if an
individual is on the street as opposed to at home or inside a
building. The individual also must be perceived as having
at least as much money as the motivated offender so there is
some potential for gain.

-Agents with criminal propensity
evaluate all other agents at the same
node based on the formula below:

 S = (WT) - (WA) + PS

13 Two studies that examined total lifetime participation rates for serious crimes are averaged to get the propensity applied in the model. McCord (1979) found a
participation rate of 16.9% for males and Blumstein and Gaddy (1982) found a rate of 22.8% among males and females. An average of those two is 19.8%
which is rounded to the 20% figure in the model.

 60

61

Theory Theoretical Concept Verbal Operationalization of Theoretical
Concept

Implementation

 Capable Guardian
-Routine Activity
-Rational Choice

Formal and informal
guardians factor into level
of guardianship.

Other individuals at the same place affect the decision to
offend. Their deterrent effect depends on the offender’s
perception that they might intervene in the crime. Police
have a high deterrent effect because they are the most likely
to intervene.

-Each agent with criminal propensity
evaluates the level of guardianship at
a node.

• If cop present, no crime.
• Use formula to evaluate

informal guardianship:

G = ((NA – 2) + PG)
 Routine Activities
-Routine Activity Social structure Changes in the social structure over impacted the amount of

time spent away from home. As the locus of leisure and
work time moved away from the household, fewer
individuals were left in the home to act as guardians and
their individual exposure to crime increased.

Average time spent away from home
for all agents is systematically varied
across five experimental conditions.

3.2 Offender Decision-making

Since routine activity theory assumes a supply of motivated offenders and does

not address the decision to offend, the rational choice perspective supplies the

theoretical basis for offender decision-making in the model.14 Rational choice

defines criminal behavior as a two-step process. The first step involves the decision

to participate in criminal acts. The result of this step is a state of “readiness” to

commit crime. The second step involves the decision to commit a particular crime

and is influenced by the situational factors that exist in a particular context. This

research focuses on the second step in the process, the decision to commit a specific

crime and assigns agents in the model a criminal propensity indicator that signifies

they are at this stage.

There are several components of rational choice that inform the model. At the

core of the theory is the concept of rationality in decision-making. The theorists

advocate for a notion of rationality that is very broad, stating that “even if the choices

made or the decision processes themselves are not optimal ones, they may make sense

to the offender and represent his best efforts at optimizing outcomes” (Clarke &

Cornish, 1985 163). In other words, offenders rely on a form of ‘bounded rationality’

when making the decision to commit a specific offense.15 Rational choice

perspective also assumes that, except for commission of crimes, offender routine

behavior is essentially similar to that of non-offenders.

14 Following Epstein and Axtel (1996: 1) this research is not concerned with the specific study of how
individuals make decisions, the topic of studies in experimental economics that focus on game theory
and decision rules, but rather examines the effect of specific individual behaviors on macro level social
patterns.
15 Bounded rationality, in particular, lends itself to investigation via agent-based models (O'Sullivan &
Haklay, 2000).

 62

The theorists also emphasize the value of models and particularly of formalizing

process in models. Clarke and Cornish (1985 149) specifically acknowledge the

heuristic value of models that incorporate the role of situational aspects of criminal

behavior by stating “[t]hey do not have to be ‘complete’ explanations of criminal

conduct, but only ones ‘good enough’ to suggest new directions for empirical enquiry

or crime control policy”. In addition, Clarke and Cornish suggest models should be

crime specific and include situational factors (1985; 2001); thus, this research focuses

on street robbery rather than robbery in general and includes both individual and

situational factors.

4.0 Implementing a Model of Street Robbery

The following section details how the theoretically based rules and relationships

discussed earlier are implemented in a basic model of street robbery.16 This stage of

model building highlights the attributes that make agent-based simulation a powerful

tool for exploring spatio-temporal behavior. Specifically, the ability to represent a

group of agents as autonomous decision-makers that are involved in dynamic

interactions is essential to modeling complex systems of individuals such as those

producing crime. The decisions made by agents at one point in time affect the

information considered by agents in subsequent turns. For example, when agents are

robbed they have less money; the next time they are in a situation with a motivated

offender they may be perceived as a less suitable target. This change occurs as the

program is running, and its impact is immediately incorporated into the scenario. The

16 The technical details of the implementation are available in Groff (Forthcoming-b).

 63

outcome of the model is a set of measurements describing individual and societal

crime rates and the distribution of crime events.

4.1 Software

The model is built using Agent Analyst software which combines two of the most

popular packages for ABM and GIS. The Recursive Porous Agent Simulation

Toolkit for Python (RepastPy) provides the ABM capabilities which are integrated

with ArcGIS. After Agent Analyst is added into ArcGIS as a toolbox, the program

can read from and write to shapefiles. Shapefiles are the program’s native file format

for geographic information.

4.2 Study Area, Duration and Data

Although the model can be implemented with any street network, the initial

implementation is situated in Seattle, Washington which provides the data for the

model landscape. Seattle is the largest city in the state of Washington with a

population of 564,945 persons in 2000 (U.S. Census Bureau, 2000) and two-thirds of

the city is bounded by water. Two types of data about Seattle are important to the

research: 1) input data consisting of a GIS layer that describes the Seattle street

network; and 2) output data collected during the model runs which quantify the model

outcomes.

Since this is a simulation model, data representing the state of society and the

state of individual agents can be produced at custom intervals (e.g. daily, monthly,

etc). Data are collected over the course of one year (525,601 minutes) which allows

the exploration of changes that might be occurring in the behavior of individual

civilians and society over time.

 64

Input data for the model consists of the street network of Seattle which is derived

from the King County Street Network Database (SND) file and provides the basis for

agent movement in the model. Because of software limitations, this layer is

converted to a set of nodes that represent the street intersections. Instead of traveling

along streets, civilians and police in the model move from street intersection/node to

street intersection/node (hereafter referred to as node). There are 16,035 nodes in

Seattle, and these locations represent places at which a street robbery may occur.

In a simulation model, the modeler controls the type of data that are collected and

how frequently they are written to a file. For this research, the outcome data are

collected about individual civilians, nodes (places) and society at daily intervals

during the model and at the completion of each model run (Table 3-2). These data

are written to two types of files, text files and shapefiles. CrimeStat and ArcGIS are

used to analyze and visualize the results.

Agent level variables are collected to describe the time spent away from home,

victimization, offending, wealth levels, and whether or not the civilian has criminal

propensity. Cumulative totals of the results of agent interactions are also collected for

society as a whole. These variables describe: the frequency of street robbery; the

number of times more than one agent is at a node; the extent to which police deter

crime; offending rates among civilians with criminal propensity; and victimization

rates for all civilians. In addition, data from the simulation are collected at the street

node level. These data are subsequently employed to generate statistics about the

spatial distribution of street robberies.

 65

Table 3-2: Outcome Data from Model

Variable Name Description Level of
Measurement

Societal-level Outcome
TotRob Total number of robberies Ratio
RobRate Average number of robberies per

population
Ratio

TotConverge Total number of convergences (i.e.
situations with a motivated offender
and one or more ‘at risk’ civilians)

Ratio

TotDeterred Total number of robberies deterred by
a police’s presence

Ratio

TotOffenders Total number of civilians with criminal
propensity that commit a robbery

Ratio

TotVictims Total number of civilians who are
victims of street robbery

Ratio

TotRepeatVictims Total number of civilians who are
repeat victims of street robbery

Ratio

AveAwayTime Average amount of time agents spend
away from home

Ratio

Individual-level Process
AwayTime Total time spent away from home Ratio
TotOff Total robberies committed Ratio
TotVict Total times robbed Ratio
Criminal Propensity Presence or absence of criminal

propensity
Dummy

WealthBegin Beginning amount of wealth Ratio
WealthEnd Ending amount of wealth Ratio

Place-level Process
TotRobPlace Total number of robberies Ratio
TotVisits Total number of times an agent

stopped
Ratio

TotalNodeswRob Total number of street nodes that had a
robbery

Ratio

TotNodeswMultRob Total number of street nodes that had
more than one robbery

Ratio

MeanRobPlace Mean robberies per street node Ratio
MeanVisitsPlace Mean visits per street node Ratio

 66

4.3 Hypotheses and Experiments

Two hypotheses are tested via five theoretically-based experimental conditions

(Table 3-3). Each experimental condition represents an increase in the societal

average for time spent on routine activities away from the home (i.e. 30%, 40%, 50%,

60% and 70%).17 The two hypotheses examined are:

H1: As the average time spent by civilians on activities away from
home increases, the aggregate rate of street robbery will increase.

H2: As the average time spent by civilians on activities away from

home increases, the spatial pattern of street robberies will change.

The first hypothesis tests the core assertion of routine activity theory – crime rates

will increase as time spent away from home increases. The second hypothesis

explicitly examines the spatial structure of street robbery locations by comparing the

spatial pattern produced under each of five experimental conditions.

Table 3-3: Experimental Conditions

Average Time Spent Away From Home Movement
Type C1 C2 C3 C4 C5
Random 30% 40% 50% 60% 70%
Hours per week ≈50 ≈67 ≈84 ≈101 ≈118

4.4 Parameters in the Model

In addition to the input data describing Seattle, twelve exogenous parameters are

set prior to the model run.18 Table 3-4 describes and provides the rationale for each

17 Using data from 1966, Cohen and Felson calculated the average time spent away from home to be
7.74 hours per day. The experimental conditions begin at 7.2 hours per day spent away from home (30
percent condition) and increase by 10 percent with each subsequent condition to a high of 16.8 hours
per day (70 percent condition).
18 The values of several of these parameters are assigned using random number generators (RNGs). In
simulation models, random numbers have two main functions: 1) provide a stochastic element into
what would otherwise be deterministic models of human behavior and 2) enable the replication of
model results through assignment of a random number seed at the start of a simulation. The seed is the
starting point for all random numbers that are produced during the course of a model run. A particular

 67

of the parameters values in the model. The choice of parameter values is a critical

aspect of all models that deserves special attention because of the potential impacts

on the model outcomes. Parameterization of simulation models, while often based on

empirical data, must sometimes rely on the experience of the researcher (Liu et al.,

2005). For this study, every attempt is made to assign realistic model parameter

values, but in cases where there was no evidence available a simplified representation

was chosen to establish a baseline (e.g. wealth distribution) (Axelrod, Forthcoming;

Epstein & Axtell, 1996).

seed produces the same sequence of numbers each time. This attribute enables testing of the
robustness of model outcomes since in simulation modeling the results of a single model run are
vulnerable to being atypical (Axelrod, Forthcoming). This research applies an explicit random number
seed based on the Mersenne Twister algorithm, currently considered to be the most robust available, as
the basis for all random number distributions used in the model (Ropella et al., 2002).

 68

Table 3-4: Parameters in the Model
Variable Rationale

Society Level

Number of Agents = 1,000

Represents a balance between ensuring there are enough
agents so that interactions can occur and the computational
overhead from using more agents

Number of Police = 200

Chosen to ensure that police would be present at some of the
convergences that occur across the 16,035 places in Seattle.

Unemployment Rate = 6%

The unemployment rate of six percent is based on the 2002
unemployment rate for Seattle (Bureau of Labor Statistics,
2003).19

Rate of Criminal Propensity
= 20%

Given that 20% of the population has committed a crime, 20%
of civilians are assigned criminal propensity using a uniform
distribution (Visher & Roth, 1986).

Time To ReOffend = 60

Parameter value chosen as a starting point since the author
could find no empirical data on which to base time to
reoffend..

Random Number Seed =
100 (seed also tested at 200,
300, 400 and 500)

An explicit random number seed based on the Mersenne
Twister (MT) algorithm is used as the basis for all random
number distributions used in the model. MT is currently
considered to be the most robust in the industry (Ropella et
al., 2002).

Agent Level

Societal Time Spent Away
From Home = 30% (40%,
50%, 60%, 70%)

Assigned based on a normal distribution with a mean of 432
minutes (for the 30% condition) and a standard deviation of
10% of the mean (sd = 43).

Initial Wealth = 50

Initial wealth is assigned with a mean of 50 and a standard
deviation of 20 units.

Amount of wealth received
each payday = 5

No empirical evidence available.

Amount of wealth
exchanged during robbery=
1

No empirical evidence available.20

Situation Level

Guardianship Perception =
U(-2,2)

The guardianship perception value can add or subtract zero,
one or two guardians from the actual number present. This
represents the stochastic element in the offender’s perception
of the willingness of a guardian to intervene.

Suitable Target Perception =
U(-1,1)

The value in suitable target can increase or decrease the
suitability or leave it unchanged. This enables the offender to
sometimes decide a target is not suitable even when they have
more wealth.

19 Since the jobs data are from 2002, the corresponding year’s unemployment rate is employed.
20 A request to the Seattle Police Department for the average amount of cash taken during street
robberies remains unanswered.

 69

Six of the parameters in the model apply to society and include the numbers of

civilian and police agents, the unemployment rate, the rate of criminal propensity, the

time an offender waits before committing another offense, and the random number

seed. The number of civilians and police had to be large enough to ensure that two or

more agents would sometimes end up at the same one of the 16,035 nodes but small

enough to be computationally feasible. The choice of 1,000 civilian agents and 200

police agents met that balance. In accordance with the criminal careers literature,

20% of civilian agents are assigned a ‘readiness’ to commit a crime that is positive;

making them the only civilians who evaluate each situation for its potential to commit

a street robbery. Since even motivated offenders do not offend continuously, a

minimum time of one hour is required before an offender can commit another

robbery.

Another four characteristics describing time away from home, initial wealth,

amount of wealth received each payday, and amount of wealth exchanged during a

robbery are set for each agent. Amount of time to spend away from home and initial

wealth are assigned using random normal distributions.21 Amount received each

payday and amount of wealth exchanged are fixed. These parameter values are

admittedly unrealistic but are chosen to provide a starting point for the research.

Two parameters are important to the decision to commit a robbery because they

represent the offender’s perception of the characteristics of a situation. The informal

guardianship perception value can: 1) magnify the perception of the other agents as

capable guardians; 2) reduce it or 3) leave it unchanged. This introduces a stochastic

21 The choice of distribution (e.g. normal, poisson, etc.) and the mean and standard deviation used to
assign values affect the allotment of the characteristics across all the agents.

 70

element into the offender’s perception of whether other civilians at the node are

capable guardians or not. The suitable target perception value serves the same

function for the decision about whether a suitable target exists and enables the

offender to decide a target is not suitable even when the target has more wealth.

4.5 Agents in the Model

There are two types of agents which represent people in the model, police and

civilians. Police agents have only one role, that of a formal guardian. Lack of a

formal guardian in routine activity theory is one of elements that are necessary for a

crime to occur. Thus in the model, the presence of a police agent prevents a crime

from occurring. To accomplish their mission of crime prevention, police agents

randomly move along streets. Police never commit crimes in this model, and they are

never targets.

The civilian agents represent the general population of the city. At the start of the

simulation, all civilian agents are randomly assigned a starting home location, a

wealth level, a criminal propensity indicator, and an allocation of time to spend away

from home. Per routine activity theory, a civilian agent can assume one of three

possible roles, offender, target, or informal guardian. The particular role a civilian

agent assumes is driven by their individual characteristics and the contextual

dynamics of the specific interaction. All civilian agents begin each day at home

where, by definition, they cannot be involved in street robbery either as a victim or

offender. After they spend their allotted time at home, they travel for the rest of the

day. Wealth is included in the model as the basis for determining whether the civilian

 71

is a suitable target. Every two weeks, all civilian agents receive a static amount of

wealth set at five units.

Each of the civilian agents is randomly assigned a percentage of time to stay away

from home. While the time each agent spends away from home is unique, the time

for society is controlled. This agent characteristic is the basis for the experiments

testing societal trends in time spent away from home. Table 3-5 provides an example

for the 40% experimental condition. A random normal distribution is used to assign

each of the civilian agents a percentage of time to be away from home so that the

mean for society is 40%.

Table 3-5: Sample Assignment of Time of Away from Home for the 40%
Experimental Condition

 Away* At Home
Agent 1 26% 74%
Agent 2 45% 55%
Agent 3 60% 40%
Agent 4 81% 19%
Agent 5 53% 47%
Agent 6 30% 70%
Agent 7 25% 75%
Agent 8 11% 89%
Agent 9 41% 59%
Agent 10 28% 69%
Average 40% 60%
*Time ‘Away’ from home is the difference between total time and time spent at home.

Since routine activity theory recognizes the importance of the frequency with

which the elements of a crime converge in generating crime events but does not

elaborate on the space-time structure of human activity, this model of crime events

characterizes both the distribution and movement patterns of individuals as random.

Both the civilian and police agents are distributed randomly across the street

 72

intersections in Seattle. Once their time at home is complete, civilians follow a

‘random walk’ in which the agents move one randomly chosen node each minute of

the model (Chaitin, 1990). When an agent (civilian or police) is moving, each

adjacent node has an equal chance of being selected and the civilian can backtrack as

well as go forward along the network. Civilian agents with criminal propensity travel

along the same street network and visit the same locations as other civilians and as

police agents. To illustrate the dynamics of the decision to offend, more detail is

provided in the next section regarding the behavior of agents with criminal

propensity.

4.6 Decision to Offend

At each tick of the model, only those agents with criminal propensity (one at a

time) who are traveling consider the following aspects of their situation (Figure 3-2):

1) Is there a police agent at the node?
2) What is the level of informal guardianship at the node?
3) Is there a suitable target at the node?

 73

Figure 3-2: Steps in Decision to Offend

The level of guardianship and the availability of a suitable target are evaluated via

two equations. For computational reasons, guardianship is the first situational

element considered by the active agent. If there is a police agent at the same node,

the active agent decides not to offend because of too much formal guardianship.

However, if there are no police agents and there is at least one other civilian agent at

the node, the level of informal guardianship is evaluated further via the formula

below (1). First, the total number of civilian agents at the location is evaluated minus

the active agent and the potential target. This adjustment reflects the unlikelihood

that an offender would act as a potential target’s guardian and the inability of the

target to be its own guardian. Uncertainty in how offenders perceive the

‘capableness’ of the other civilians is incorporated into the formula through the

 74

addition of a stochastic term PG that can either increase or decrease the active agent’s

perception of the level of guardianship in a situation.

G = ((NA – 2) + PG) (1)

If G < 1, then there is a lack of capable guardians so condition evaluates to True
If G = 1, then make a random decision – condition could evaluate to True or
False
If G > 1, then capable guardianship is present so condition evaluates to False
Where:
G = Guardianship
NA= number of agents at node
PG = Perception of capability of guardians who are present (uniform random
number between -2 and 2)

In reality, the presence of capable guardians is most likely evaluated along a

continuum. On one end of the continuum a police officer is present on the street

corner. At the other end, the potential offender is alone with a suitable target. More

frequently, situations are somewhere in between.

Finally, the active agent considers whether there are suitable targets at the node.

All other civilians who are away from home and at the same node are evaluated using

wealth as the primary criteria for identifying a suitable target (2).

S = (WT) - (WA) + PS (2)

If S >= 0, then there is a suitable target so condition evaluates to True
If S < 0, then no suitable target present so condition evaluates to False

Where:
S = Perceived suitableness of target
WT = wealth of target
WA = wealth of active agent (potential offender)
PS = Offender perception of target suitability (uniform random value between
-1 and 1)

If at least one other agent’s wealth exceeds the active agent’s wealth, the

evaluation of the civilian with the highest wealth continues via the formula above.

 75

The error term PS represents the influence of other factors on the offender’s

perception of the relative suitableness of a target and its value can either increase or

decrease the perceived suitability of the target. It is worth noting that other agents

with criminal propensity who are at the node are included in the active agent’s

evaluation and can become victims. If S < 0, there is not suitable target at the node,

and the active agent does not commit robbery.

To recap, for situations in which there is a suitable target, the decision to offend

hinges on the level of informal guardianship. If G = True, then there is there is a lack

of capable guardians so the decision is to rob the suitable target identified. If G =

False, the amount of guardianship is too high, and the decision is not to offend. But if

G = 1, the decision could go either way. In these cases, the active agent makes a

random decision whether to commit the street robbery. When an agent commits a

robbery, one unit of wealth is taken from the victim and transferred to the offender.

Once each civilian with criminal intent has evaluated their situation, the model time

advances, agents move and the decision structure is repeated.

5.0 Analysis

Both traditional and spatial analysis techniques are used to examine the results of

the model runs. Descriptive statistics such as mean, median and standard deviation

are used to characterize the results of each of the experiments. As is customary

practice, an ANOVA is applied to determine if there is a significant difference among

the RobRates for the five experimental conditions (Axelrod, Forthcoming). The

number of robbery victimizations for each civilian agent in the model is the response

variable. A sample size of five thousand observations across five experimental

 76

conditions provides a very powerful design. Thus increasing the sample size to ten

thousand or twenty thousand should not change any findings of significant

differences among the groups. Finally, the resulting spatial patterns of robbery events

are examined.

At the agent level, descriptive statistics are generated to test the relationships

among time spent away from home (AwayTime), total number of victimizations

(TotVict), and total number of robberies committed (TotOff). These statistics are

examined for the total population and then just for agents with and without criminal

propensity.

Two approaches to describing the spatial distribution of street robberies are taken.

A visual comparison is made of the resulting crime patterns using a kernel density.

Kernel density surfaces offer a means of evaluating the existence of global trends in

the distribution of street robberies and for comparing the relative density of robberies

across experimental conditions. To create a kernel density, a temporary grid is laid

over the entire study area and a density value for each cell in the grid is computed

using a circular ‘neighborhood’ (Bailey & Gatrell, 1995; Mitchell, 1999; Williamson

et al., 2001).22

In addition to the kernel density, formal tests of the spatial distribution of crime

events are employed using Ripley’s K function. Ripley’s K is applied to compare the

clustering of robberies and visits to places at different scales. Typically, the K

function for complete spatial randomness (CSR) is helpful in identifying whether the

observed pattern is significantly different than what would be expected from a

22 The term kernel refers to size of the ‘neighborhood’ (also called bandwidth) that is taken into
account when computing the density. The total number of street robberies within the bandwidth are
summed and divided by the area under the circle. The resulting value is assigned to the current cell.

 77

random distribution (Bailey & Gatrell, 1995; Levine, 2005). A known weakness of

comparing the observed distributions to CSR is that most human-generated patterns

are non-random (e.g., population, housing, etc.) (Levine, 2005).

In this research, CSR cannot be used to evaluate the clustering in street robbery

events because the locations at which data are collected are constrained to a fixed set

of locations representing the intersections in Seattle.23 Since the CSR algorithm

randomly places points anywhere within the study area boundary, it would be

inappropriate to compare the clustering in robberies and number of visits, which are

constrained to the street nodes, to a randomly generated CSR. However, a K function

can be generated from the pattern of street nodes thus revealing the extent of the

clustering intrinsic to the street network. Comparing the K function for street

intersections to CSR answers the question of whether the intersections are more

clustered than would be expected under CSR. Taking this one step further, the K

function for street robberies can be compared to the one for intersections to find out if

robberies are more clustered than the street intersections.

Another aspect of the same discussion involves the role of the street nodes in

structuring the initial distribution of police and civilians since they too can only be

allocated to a street node (and not to any location within Seattle). In this way, the

structure of the street network conditions both the original distribution of agents and

their movement. Since the agents are randomly assigned to nodes and they move

randomly during the simulation, the distribution of robberies should be similar to that

of the network nodes if space alone determines where street robberies occur. To

23 Thanks to Ned Levine for pointing out this issue.

 78

check this, the K function for nodes is compared to the K functions for both robberies

and visits.

6.0 Findings

The creation of the street robbery model enables the exploration of routine

activity theory’s propositions via simulation. Two research questions are addressed

in the analysis. The first asks whether the shift in routine activities away from home

increases the incidence of street robbery. The second examines the spatial pattern of

street robberies as members of society spend more time away from home. This

section describes the behavior of the model and summarizes the findings of the tests.

The robustness of the findings is then evaluated by running the model using five

different random number seeds and systematically varying key parameter values for

each seed.

6.1 General Description of Model Outcomes

Data describing nine attributes of places and society are collected to characterize

the results from the model runs across the five experimental conditions. Societal-

level changes in the number of street robberies and convergences of agents in space-

time (i.e. opportunities for street robbery) are in line with what routine activity theory

would predict; both values increase with time spent away from home (Table 3-6).

The number of times the presence of a police agent prevents a robbery from taking

place also increases as the societal time spent away from home increases. In all

likelihood, this increase in deterrence is directly related to the existence of more

 79

situations in which a crime might occur (i.e. a motivated offender and suitable target

are at the same place-time).

Table 3-6: Societal-level Model Outcomes

Experimental Condition
 Cond 30 Cond 40 Cond 50 Cond 60 Cond 70

Societal-Level
Total Robberies 54,637 76,032 95,219 118,085 139,007
Total Intersections 1,454,341 2,050,761 2,631,149 3,238,760 3,835,299
Total Robberies
Deterred by Police 1,532 2,148 2,693 3,430 4,040
Model time at
home (minutes) 1003.09 859.79 716.51 573.21 429.91
Model time spent
away (minutes) 436.91 580.21 723.49 866.79 1010.09

More in-depth examination reveals the number of intersections, street robberies,

and robberies prevented by police across experimental conditions are related (Figure

3-3). As time away from home increases, the number of convergences displays the

highest rate of increase, followed by the number of robberies, and the number of

robberies deterred by police presence.

Figure 3-3: Comparison of Robbery Incidents, Convergences and Robberies Deterred

0
500

1000
1500

2000
2500

3000
3500

4000

30% 40% 50% 60% 70%

Experimental Condition

Fr
eq

ue
nc

y
R

at
e

(p
er

 1
,0

00
)

Robbery
Convergence
Deterred

 80

Examining the amount of time before the model reaches equilibrium provides

insights into model dynamics. Figure 3-4 illustrates the change in the number of

robberies per day over the entire model year for the 30% condition. The first day has

the highest number of robberies (N=444). The number drops rapidly each day until

about day 24 when equilibrium is achieved at around 150 incidents per day. During

equilibrium the number of robberies per day fluctuates between 100 and 200 for the

rest of the year. So the major changes in the model are occurring before the end of

the first month, even though the wealth of individual agents continues to change via

robbery events and paydays throughout the model year.

Figure 3-4: Days to Equilibrium for Street Robbery Simple Model (condition: 30%,

seed = 100)

0

100

200

300

400

500

600

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343 362

Days

N
um

be
r o

f S
tre

et
 R

ob
be

rie
s

Robberies

One potential explanation for this pattern lies in the way wealth is distributed.

The same initial wealth distribution is applied regardless of criminal propensity and

each civilian agent receives the same amount each payday. However, agents with

criminal propensity can also gain wealth from committing robberies. Over time, this

wealth advantage translates into higher levels of wealth for offenders as compared to

non-offenders. Evidence of this growing wealth imbalance begins around day 24.

 81

When the agents with criminal propensity tend to have more wealth, fewer civilians

qualify as suitable targets. Robberies become restricted to situations in which there

are two or more agents with criminal propensity because only in these situations is

there likely to be an agent with more wealth than the active offender. This reduces

the number of robberies experienced by society, although the convergences remain

high. The model process just described, while informative in terms of understanding

model dynamics, does not impact the comparison among model conditions because

the behavior of the process is consistent across experimental conditions. The more

time spent away from home the fewer days it takes to reach equilibrium and the

higher the equilibrium number of robberies.

6.2 Testing Routine Activity Theory

A One-Way ANOVA is applied to test the hypothesis that robberies will increase

as time spent away from home increases. By comparing the mean number of

robberies across the five experimental conditions, it is possible to determine if

robbery increases as the time spent away from home increases. The results of the

ANOVA indicate there are there are significant differences on the rates of street

robbery across the experimental conditions (Table 3-7).24 However, the test does not

provide information on which of the conditions were significantly different.

24 Because of the positive skew to the distribution of robberies, additional tests regarding the equality
of means were conducted. Both the Brown-Forsythe and the Welch tests for equality of the means are
significant at .000. These tests are preferable to the F test when the equality of variances assumption is
violated as it is here ("SPSS for Windows," 2002).

 82

Table 3-7: Change in Street Robbery Events across Experimental Conditions
Condition 30% 40% 50% 60% 70%

Target time to spend away from
home in minutes (hours) per day

432
(7.2)

576
(9.6)

720
(12)

864
(14.4)

1008
(16.8)

Actual time spent away from home 436.9 580.2 723.5 866.8 1010.1
Number of civilian agents (N) 1,000 1,000 1,000 1,000 1,000
Mean robberies (Standard
Deviation)***

54.64
(101.99)

76.03
(144.15)

95.22
(182.35)

118.09
(228.14)

139.01
(270.06)

*** Difference among one or more of the groups is significant at P < .000.

Results from post hoc tests employed to identify which experimental conditions

are significantly different from one another are inconsistent (Table 3-8).25 Beginning

with the 30% condition, there is significantly less crime in societies in which

individuals spend 30% of their time away from home when compared to each of the

other conditions. Other significant differences are between the 40% condition and

both the 60% and 70% conditions; as well as between the 50% and the 70%

conditions.

25 The Levene statistic is significant indicating the variances are significantly different among the
groups. However, ANOVA is robust in the face of this violation when the group sizes are equal which
they are in this research (Newton & Rudestam, 1999; Shannon & Davenport, 2001). A Tamhane’s T2
post hoc test is used because it does not assume equal variances.

 83

Table 3-8: Post Hoc Tests of Mean Differences (seed = 100)

(I) Randomization
Condition

(J) Randomization
Condition

Mean
difference (I -

J)

Standard
error

Significance

30% Time away 40% Time away a -21.39 5.584 .001
 50% Time away a -40.58 6.607 .000
 60% Time away a -63.45 7.903 .000
 70% Time away a -84.37 9.129 .000

40% Time away 50% Time away -19.19 7.351 .088
 60% Time away a -42.05 8.534 .000
 70% Time away a -62.98 9.681 .000

50% Time away 60% Time away -22.87 9.236 .126
 70% Time away a -43.79 10.305 .000

60% Time away 70% Time away -20.92 11.180 .470
a Significant differences were found between experimental conditions I and J.

6.3 Spatial Distribution of Street Robberies across Places

The spatial distribution of street robberies is addressed via descriptive statistics,

examination of the outcome pattern, and quantitative description of the concentration

of robbery events. The spatial distribution of agent movement and robberies across

intersections reveals both increased concentration and a slight increase in spread, as

time spent away from home increases (Table 3-9). Looking first at the summary

statistics for places in Seattle, the mean visits per intersection increases at the same

rate across all experimental conditions as does the mean robberies per intersection.

However, both the percentage of intersections with only one robbery and those with

more then one robbery have their largest increase between the 30% and 40%

conditions.

 84

Table 3-9: Place-level Model Outcomes

Experimental Condition
 Cond30 Cond40 Cond50 Cond60 Cond70

Place-level
Mean visits per
street node 9,733 12,904 16,088 19,253 22,423
Mean robberies
per street node 3.41 4.74 5.94 7.36 8.67
Percent of
street nodes
with a robbery

83%
(N=13,376)

87%
(N=13,925)

89%
(N=14,309)

91%
(N=14,531)

92%
(N=14,683)

Percent of
street nodes
with more then
one robbery

70%
(N=11,157)

76%
(N=12,175)

81%
(N=12,995)

83%
(N=13,303)

85%
(N=13,572)

The spatial pattern of robberies is examined across all five conditions using kernel

density (Map 3-1).26 A visual inspection of the map series indicates support for the

second hypothesis. At 30% time spent away from home, a few areas of concentration

appear. As civilians spend more time away from home, the densities of those original

concentrations increase while new areas of higher density appear. This pattern

reflects both the increased frequency of the convergence of the elements necessary for

a crime to occur and the larger travel areas of agents as they spend more time away

from home.

26 A bandwidth of 1,320 feet (one quarter mile) and a cell size of 100 feet are the basis for all kernel
density surfaces. The quarter mile distance is often employed to represent the potential walking area
for individuals in urban areas and by extension their potential area of interaction (Calthrope, 1993;
Duaney & Plater-Zyberk, 1993; Nelessen, 1994). The surfaces are generated in ArcGIS version 9.1
and the output is in robberies per square mile (Mitchell, 1999).

 85

Map 3-1: Kernel Densities for Modeled Street Robbery Events

 86

Results of the Ripley’s K function indicate that there is a high degree of

concentration in street robbery locations across all five conditions.27 Figure 3-5

compares the concentration of street robberies generated from each of the five

experimental conditions to the concentration of the street network’s nodes and to a

reference distribution describing the amount of concentration that would be expected

under CSR.28 Concentration in street nodes increases until approximately one and

one-half miles when it levels off for about a half mile and then begins to decline. The

graph reveals that street nodes are significantly more concentrated than would be

expected under CSR.

Figure 3-5: Ripley’s K for Robbery across Experimental Conditions

-4000

-3000

-2000

-1000

0

1000

2000

3000

21
5

17
18

322
1

472
4

62
27

77
30

923
3

107
36

122
39

13
742

152
45

167
48

18
251

19
754

212
57

Distance Bins (feet)

L(
t)

Cond30
Cond40
Cond50
Cond60
Cond70
Nodes
CSR Nodes Min
CSR Nodes Max

The street robbery distribution lines for each experimental condition follow a

similar pattern to the line for all street nodes. All six lines are identical until about

800 feet when the robberies become more clustered than the street nodes. This

27 The reported Ripley’s K functions are generated using CrimeStat III. No edge correction is applied
since approximately three quarters of the perimeter of Seattle is bounded by water.
28 The CSR K function distribution is generated by using a uniform random number generator to create
100 distributions with the same N as the observed distribution, in this case N=16,035 (Levine, 2005).
A significance level of p < .05 is used. The random distribution generated under CSR is truly random
in that any location can be selected, not just an intersection.

 87

pattern continues until about 2.25 miles when the robberies in the 60% and 70%

conditions converge with the line for street nodes. The lines for the 30, 40 and 50%

conditions remain more concentrated than the street nodes at all distances and the

difference between concentrations is consistent. Robberies are most concentrated

when society spends 30% of time away from home, and the concentration decreases

as time spent away from home increases.

Data characterizing the total number of visits experienced by each node offer a

means of quantifying agent travel patterns. Comparing the distribution of all agent

movement with the distribution of robberies provides a test of whether the two

distributions are different. Figure 3-6 suggests that the pattern of visits across nodes

is very similar to that of street robberies. However, the lines describing visits are

closer together indicating there is even less difference in the concentration of the

distributions for visits than there is for street robberies. These results suggest that

street robbery incidents tend to occur where many agents routinely converge but that

robberies have other factors contributing to their greater concentration that are not

accounted for by the structure of the street network.

 88

Figure 3-6: Ripley’s K for Visits across Experimental Conditions

-4000

-3000

-2000

-1000

0

1000

2000

3000

22
2

17
74

33
26

48
79

64
31

79
83

95
35

11
08

8

12
64

0

14
19

2

15
74

5

17
29

7

18
84

9

20
40

1

21
95

4

Distance Bins (feet)

L(
t)

Cond30
Cond40
Cond50
Cond60
Cond70
Nodes
CSR Nodes Min
CSR Nodes Max

Overall, the results of the K function suggest support for the important role that

the street network plays in the concentration of street robbery. Specifically, they

illustrate that street nodes are significantly more concentrated than would be expected

under CSR and that their intrinsic clustering is responsible for the majority of

clustering in both agent travel and street robberies. This finding underscores the

importance of considering the street network in any evaluation of the concentration of

travel (i.e. visits) and street robberies that are produced by the model. That being

said, the results also suggest that there are situational factors at work in generating the

observed robbery patterns. Even though the agents (both civilians and police) are

randomly distributed across street intersections at the beginning of the simulation and

then move randomly from node to node over the whole model year, there is additional

clustering in the distributions of street robbery events that cannot be accounted for by

the pattern of street nodes.

 89

6.4 Some Comments on the Robustness of the Model

Sensitivity testing is essential to quantifying the robustness of the model results

and is conducted by varying the initial parameters and the random number seed

(Manson, 2001). The values of five of the parameters (i.e. number of police, time to

wait before able to re-offend, initial wealth distribution, perception of target

suitability random term and the perception of guardianship random term) are

increased; the model runs repeated for all five experimental conditions; and a one-

way ANOVA applied to analyze the results. While the absolute number of street

robberies increased or decreased depending on the parameter being varied, in all

cases the original significant differences between the groups remained, demonstrating

the robustness of model results to changes in initial parameters (Table 3-10). Finally,

the entire sensitivity testing process of varying the five parameter values is repeated

four more times using different random number seeds to test the effect of changing

the random number seed on the outcomes of the model. An analysis of the output

demonstrates that model results are robust to changes in the random number seed.29

29 The results of the sensitivity tests with random number seeds of 200, 300, 400 and 500 are available
upon request.

 90

Table 3-10: Parameter Testing Results

Condition 30% 40% 50% 60% 70%
Target time to spend away from
home (hours)

432
(7.2)

576
(9.6)

720
(12)

864
(14.4)

1008
(16.8)

Actual time spent away from home 436.9 580.2 723.5 866.8 1010.1

Base Model (robbery rate per 1000
agents)*** 54.637 76.032 95.219 118.085 139.007

Parameter Verification
Increase number of police to
1000*** 54.148 72.502 91.474 110.752 131.611

Increase time to wait before re-
offending to one day*** 31.682 37.358 41.403 44.551 47.134

Increase societal wealth
distribution (mean = 100 and
sd=50) ***

58.937 79.097 100.195 121.916 143.241

Increase impact of random term
representing perception of target
suitability U(-10,10) ***

42.093 56.688 73.931 87.699 103.353

Increase impact of random term
representing perception of
guardianship U(-4,4) ***

51.427 72.520 89.590 108.469 128.618

*** Difference among one or more of the groups is significant at P < .000.

7.0 Discussion

This paper presents a new approach to formalizing and testing criminological

theory that relies on simulation. To demonstrate the methodology, a simulation

model of street robbery is developed based on the core propositions of routine activity

theory. The model is then used to conduct a series of experiments to test whether the

outcomes match what the theory predicts.

Previous attempts to test routine activity theory, although generally supportive,

have produced mixed results. None of the tests were able to sufficiently address the

spatio-temporal structure of routine activities, satisfactorily deal with measurement

 91

issues, or effectively capture the dynamic nature of interactions at the micro-level.

This research addresses all three of those issues by relying on simulated individuals

that interact on the streets of Seattle, Washington.

Routine activity theory’s basic premise, crime will increase as individuals spend

more time away from home, is strongly supported by model results and the finding is

robust even when the initial parameter values are systematically varied. Although the

absolute number of robberies fluctuates as parameters are changed, the relative

relationship between increasing time spent away from home and the rate of street

robberies remains significant.

Previous research has recognized the role of the built environment in general to

structuring movement (Capone & Nichols, 1976; O'Sullivan, 2004a) and to

concentrating population-related variables (Bailey & Gatrell, 1995; Levine, 2005).

This research finds the street intersections are significantly more clustered than would

be expected by chance. Taking this clustering into account, the pattern for street

robberies exhibits additional clustering beyond what is explained by the street

network but only at certain distances. At these distances, the clustering is instead

related to the specific situation in which the crime occurs.

Although this initial implementation of the method is simple, it accomplishes

several essential functions. First, it makes the process of theory testing transparent by

formalizing model specifications. Subsequent researchers have a concrete record of

how theoretical constructs are operationalized in the model. Second, the model

provides a base upon which to build more complex explorations of street robbery.

Third, the method replaces artificial landscapes prevalent in agent-based models with

 92

the street network of Seattle. In doing so, the research takes an important step toward

more realistically ‘situating’ simulation and measuring the street network’s influence

on spatial patterns of street robbery. Fourth, the use of a series of controlled

experiments to test the model illustrates the potential for this type of research to refine

theory by systematically varying one aspect while holding all others constant.

New questions could be explored by building additional analytical capability into

the base model. The incorporation of activity spaces for civilians represents an

important and necessary enhancement to the initial model. Rather than traveling

randomly, individuals could be assigned home, job, and other locations among which

they could travel (Groff, Forthcoming-b). The spatial distribution of homes, jobs,

recreation and services in Seattle could serve as the basis for the distribution of

agents’ activity nodes in the model. In this way, the activity locations of agents in the

model would reflect the activity spaces of the civilians of Seattle.

The behaviors and awareness levels of agents could be expanded and made more

nuanced. Enhancing the behavior of existing police agents would enable tests of the

effectiveness of different patrol strategies (e.g. hot spot policing) in reducing or

displacing crime. For example, a researcher could compare the results of the previous

simulation in which police patrol randomly to a hot spots policing strategy in which

police are assigned areas where street robbery is highest. In addition, a wider range

of place characteristics and neighborhood-level perceptions of areas could be

incorporated into the dynamic decisions of individuals. This would enable more

richly textured micro-level situations in which agents interact as well as incorporate

important micro and macro-level elements that impact how a situation is perceived.

 93

At the individual level, the influence of guardianship on the decision to offend

could be studied intensively. Specifically, the role of place managers and intimate

handlers as guardians could be tested in a computational laboratory (J. E. Eck, 1995a;

Felson, 2001;2002). For example, a researcher could change the weightings of

different types of agents (e.g. police, known agents, place managers etc.) to determine

the effect on the decision to offend while holding everything else constant.

8.0 Conclusion

Despite the potential value of simulation as a research platform, serious questions

remain about evaluating models (Manson, 2001; O'Sullivan, 2004a). Focusing on

simulation models as tools to aid in explanation and understanding rather than

prediction avoids many of the thorniest questions of model validation. In this role,

simulation models become aids to the refinement of theory prior to empirical testing

and are especially useful in identifying ‘gaps’ in theory (O'Sullivan, 2004a). In

addition, simulation models have the potential to reduce research costs by saving

empirical tests for the strongest theories. After all, simulated theory testing takes

place in an artificial world and thus is not capable of conferring empirical validity to a

theory (Paternoster, 2001).

The research methodology employed here provides a unique framework for

promoting more comprehensive and rigorous tests of theories about human behavior

at both the micro- and macro-levels of analysis. Because the method requires the

formalization of theoretical concepts, it has the potential to generate a common

language with which to describe those concepts, and to stimulate the construction of

well-defined models that can be discussed and tested further. The findings from the

 94

example model of street robbery specified and tested here demonstrate clear support

for the plausibility of the basic premise of routine activity theory and in doing so

provide the foundation for the development of additional, more richly specified

models of criminal and spatial behavior. Advanced models are likely to produce

concrete, public policy relevant findings addressing both the situational elements of

crime and the structure of routine activities in general. The potential for crime

reduction from these findings is high because the situational aspects of the crime

event can be altered far more quickly and easily than ones involving the root causes

of criminal motivation (Akers, 2000; Cullen & Agnew, 1999; Felson, 1987; Vold et

al., 2002).

 95

Chapter 4: The Spatio-Temporal Aspects of Routine Activities
and Crime

1.0 Introduction

Researchers within geography and closely related disciplines have long

recognized the importance of considering space and time when examining human

behavior (Chorley & Haggett, 1967; Engel-Frisch, 1943; Hägerstrand, 1970;1973;

Harvey, 1969; Hawley, 1950; Horton & Reynolds, 1971; H. J. Miller, 1991; R. J.

Sampson, 1993). In particular, sparked by theoretical developments during the 1970s

and 1980s, many criminologists have begun to study how places influence when and

where victims and offenders converge (D. L. Weisburd, 2002). Proponents of this

view focus on the study of crime events rather than criminal motivation and rely on a

set of ‘opportunity theories’ of crime to explain why crimes occur in one place and

not another.

As the importance of place and time in criminological theory has gained

recognition, so has the utility of applying a more process-oriented perspective to the

study of crime (R. J. Sampson, 1993; D. L. Weisburd, Lum, & Yang, 2004). This

approach recognizes that “social behavior occurs in particular times and places with

particular social actors” (R. J. Sampson, 1993 429). While the theoretical framework

exists for such research, the collection of individual-level data to characterize human

interactions in general and crime events in particular remains an on-going barrier to

the empirical application of this perspective and one that is unlikely to change due to

privacy concerns (O'Sullivan, 2004b).

 96

In response to these challenges, some researchers have begun to consider

simulation modeling as an alternative approach (P. L. Brantingham & Brantingham,

2004; J. Eck, 2005; J. E. Eck & Liu, 2004; Gilbert & Terna, 1999; Gilbert &

Troitzsch, 1999; Gimblett, 2002; Liu et al., 2005; Macy & Willer, 2002; Moss &

Edmonds, 2005). A subset of these researchers are interested in crime and recognize

the value of simulation modeling for: 1) understanding crime in its situational

context; and 2) capturing the dynamic interactions taking place at the micro level and

examining their relationship to macro level patterns (P. L. Brantingham &

Brantingham, 2003;2004; P. L. Brantingham & Groff, 2004; J. E. Eck & Liu, 2004;

Gunderson & Brown, 2003; Wang et al., 2004). In particular, the Brantinghams

(2004) have clearly illustrated the important role of agent-based models in

formalizing the context in which a crime event occurs.

Many researchers use simulation modeling for prediction and forecasting

(Maguire et al., 2005; E. J. Miller, Hunt, Abraham, & Salvini, 2004; E. J. Miller,

Roorda, & Carrasoc, 2005). Others emphasize the potential of simulation for

elaborating theory (Albrecht, 2005; J. Eck, 2005; Macy & Willer, 2002) and for

conducting systematic experiments in virtual laboratories (Dibble, 2001; Epstein &

Axtell, 1996; Gilbert & Terna, 1999; Macy & Willer, 2002).

One recent study offers an example of combining theoretical exploration with

controlled experiments to study the crime of street robbery. This was accomplished

by implementing the assumptions of a theory, in this case routine activity theory

(RAT) (Cohen & Felson, 1979), in a simulation model and then testing them via

controlled experiments to discover whether the theoretically-predicted outcomes

 97

match the model outcomes (Groff, Forthcoming-a). The model building process

emphasized simplicity, focusing on the elements that were directly addressed by the

theory (Macy & Willer, 2002) and relied on ‘situating’ simulation by combining

agent-based modeling (ABM) with geographic information systems (GIS) to include

space and time. The study found support for RAT’s core proposition that shifts in

routine activities away from home increase the incidence of street robbery. In

addition, a spatial analysis demonstrated that the observed clustering in street robbery

events is beyond the degree that would be expected based on the configuration of the

streets. The approach taken in the study represents a middle ground for theory

‘elaboration’ between the verbal formulation of the theory and the testing of theory

with empirical data (J. Eck, 2005); some characterize it as a way of ‘experimenting on

theories’ (Dowling, 1999).

RAT’s recognition of the importance of space and time in determining the

convergence of the elements and the simplicity of the theory make it an ideal

candidate for underpinning a further exploration of temporal and spatial impacts on

crime patterns. This research extends the earlier study by adding defined temporal

and spatio-temporal schedules to the base model of street robbery. Systematically

adding complexity to the original model (Groff, Forthcoming-a) makes it possible to

isolate the effect of first time and then space on the amount and spatial distribution of

street robbery. This is accomplished via the use of a new method for implementing

activity spaces in agent-based models for ‘situating simulation’ to better reflect the

influence of the built environment and urban structure on agent behavior (Groff,

Forthcoming-b).

 98

The remainder of this paper begins with a brief description of the theoretical basis

for both the original model and the space-time extensions. Next, the research design

is described including: the application of agent-based modeling to this topic; the input

data that are used to characterize agent activity spaces; and the experiments

conducted. The implementation model is explained to provide a basis for interpreting

the model results. The analyses of model results reveal that adding temporal and

spatio-temporal schedules to agent activity spaces significantly alters the incidence

and spatial distribution of street robberies. Support for routine activity theory’s

premise that crime will increase as people spend more time away from home is found

in the Temporal version only.

2.0 Theoretical Background

Since this research extends an existing model, the next section only briefly

describes the theoretical basis for that model (Groff, Forthcoming-a). The bulk of the

current section provides the theoretical background for the spatial and temporal

components of human activity and their implications for the frequency and timing of

the convergence of individuals.

2.1 Criminological Foundations for the Original Street Robbery Model

The original model of street robbery is primarily based on routine activity theory

(Cohen & Felson, 1979) but relies on rational choice theory for the specifics of

offender decision-making (Clarke & Cornish, 1985;2001). This is necessary because

routine activity theory pays little attention to the source of the offender’s motivation

 99

and merely assumes a supply of motivated offenders. None of the later extensions to

RAT are considered.

The central premise of Cohen and Felson’s (1979) routine activity theory (RAT)

is that increases in crime are the result of a shift of routine activities away from home.

As originally conceptualized, RAT identifies the convergence of motivated offender,

suitable target, and the lack of a capable guardian at a particular place and time as

the core elements necessary for a crime to occur. A fourth element, routine activities,

influences when and where victims and offenders converge. Routine activities are the

key dynamic element in determining aggregate crime rates because this element

affects the convergence of the three other elements necessary for a crime, motivated

offender, suitable target and guardianship. In sum, crimes occur when the normal,

everyday activities of offenders and victims converge in space and time with no

guardian present. Changes in routine activities directly impact the frequency of

convergence among these elements which in turn, increase or decreases overall crime

rates.

2.2. Background on the Spatio-temporal Nature of Human Activity

One of the core concepts in RAT involves the necessity of the convergence of

victims and offenders in space and time in order for a crime to occur. The specific

‘where’ and ‘when’ of convergence stems from the routine behavior patterns of each

actor involved. Thus representing the spatio-temporal aspects of human behavior that

facilitate convergence is a critical element in modeling street robbery events since it

is the interactions between humans and their environment that serve as the source of

 100

explanation of observed spatial patterns (Aitken et al., 1989; R. G. Golledge &

Timmermans, 1990; Walmsley & Lewis, 1993).

Scholars have long recognized that capturing only a single dimension leaves more

questions than are answered (Hägerstrand, 1970;1975; Pred, 1967; Thrift & Bennett,

1978; Thrift & Pred, 1981) and that examining space-time together yields a different

and more complete representation of a situation than studying temporal variation or

patterns in space individually (Pred, 1996). However, RAT does not address any

specifics of routine activities and the original model (Groff, Forthcoming-a)

implements only a simple notion of activity space in which agents were either at

home or away from home. A more complex representation of activity spaces is

required to capture the space-time aspects of human behavior.

Although modeling activity spaces is not the main focus this research, their

creation is essential to representing the routine activities component of routine

activity theory. Fortunately, a substantial literature exists that is dedicated to the

examination of issues surrounding time-space geographies. The time-geographic

approach developed by the Lund School in Sweden is highlighted because it focuses

on developing a set of probable behaviors not on trying to predict activity spaces

based on empirical data and emphasizes increased understanding as a goal

(Hägerstrand, 1975). This is accomplished by explicitly representing how the

opportunities and constraints within which individuals operate limit the temporal

and/or spatial extent of activities. Related approaches to studying space-time patterns

relevant to this research are touched upon. Finally, attempts at empirical

implementation of time-geographic principles that incorporate the use of GIS are

 101

discussed. Together these investigations provide the foundation for the modeling

approach taken in this research.

Time-Geography as a Framework for Modeling Routine Activity Spaces

Time-geography, as developed by Hägerstrand (1970; 1975), is a conceptual

framework that takes into account the spatio-temporal aspects of human behavior as

situated within larger social processes (Thrift & Pred, 1981). Time and space are

components of every action and interaction; one cannot be considered without the

other. Individuals travel to various locations along paths. They operate with a known

domain and points at which individuals stop their spatial movement (e.g. work,

school, recreation) for a time are referred to as stations. A large part of human

interaction occurs at stations. None of these elements are static, for example,

domains and bundles can change as people change jobs or as their circumstances

change (Hägerstrand, 1970).

Several aspects of time-geography are important to the current investigation.

Individual’s travel patterns are influenced by constraints (temporal, economic and

spatial) on their ability to take advantage of opportunities for housing, employment,

recreation etc. Focusing on individual opportunities and constraints as they play out

within a particular context is essential to understanding why events, in this case street

robberies, occur sometimes and not others (Pred, 1996). Hägerstrand identifies three

main types of constraints that shape both the destinations and the route taken by

individuals as they go about their daily activities; capability, coupling and authority

(Hägerstrand, 1970). Capability constraints relate to physical or resource-related

limits to activity. A physical constraint may consist of the time needed to sleep while

 102

resource-related constraints are often related to distance. For example, a person who

can afford a car has greater mobility than someone who walks. Especially important

to this research is how capability constraints interact with fixed locations to limit

travel (e.g. individuals can travel no farther away from home or work than the amount

of time needed to return). The actual distance depends on several factors including

mode of transportation, street network, and speed limits; all of which factor into the

amount of distance that can be covered in the time allotted. Thus, models of routine

activities must include both individual behavior and urban form if we are to better

understand how the two are related and how they together produce human travel

behavior (Hägerstrand, 1975).

While the coupling constraints and authority constraints are not incorporated into

the current research, they represent important information to inform future efforts.

Coupling constraints involve activities that must be undertaken with others and thus

they require both spatial and temporal overlap among specific sets of individuals (e.g.

coworkers, customers, and friends). Individuals are also constrained by the time-

space aspects of authority constraints that regulate access to particular areas at

specific times.

As the preceding paragraphs demonstrate, both time-geography and routine

activity theory address individual-level behavior in the context of the macro-level

environment and thus the two lines of research are complimentary.

Implementations of Time-geographic Models

While time-geography offers good conceptual grounding for understanding

human behavior, its implementation to conduct empirical research has faced a variety

 103

of challenges. Early efforts, such as that of Lenntorp (1978), were hampered by

complications in translating conceptual models into physical data models (Huisman,

Forer, & Albrecht, 1997 as summarized from Forer 1993; H. J. Miller, 1991); the lack

of data describing the space-time activities of individuals (Huisman & Forer, 1998; H.

J. Miller, 2001); and difficulty in representing what data were available in a GIS,

especially the temporal element (H. J. Miller, 2001; Peuquet, 1994).

Miller (1991) took a major step toward computer modeling of human behavior

when he defined the data inputs necessary for operationalizing time-geographic

activity spaces within a GIS. He terms the set of available places and routes a person

can visit within a time period a ‘potential path area’ (PPA). A PPA is limited by the

activities that a person needs to accomplish, where those activities are located, and

the street network (H. J. Miller, 2001). Most importantly for the current research, he

identifies the following elements necessary for defining a PPA: 1) locations that

function as the origin/end of trips; 2) locations of activities; and 3) the arcs and nodes

describing the travel environment (H. J. Miller, 1991).

In his original work Miller (1991) recognized the potential of GIS for

implementing time-geographic principles but noted that the main hurdle has been the

incorporation of time into GIS (Peuquet, 1994;2002). More recent work by Miller

(2005) argues that the time-geographic conceptual framework cannot provide the

specificity necessary to develop physical data models. In response, he offers

specifications for a measurement theory for time-geography (H. J. Miller, 2005).

Briefly, they involve capturing the location (as an x, y coordinate pair) and the time

(as a discrete time slice, t) for every individual in the model. Miller’s (2005)

 104

methodology takes into account velocity of travel, as reflected by mode and speed

limits, as a constraint on the physical distance that can be covered within a specified

time. These constraints structure the timing and thus the ‘spacing’ of discretionary

activity, an important element in criminal behavior (Ratcliffe, in press).

Other perspectives on human behavior

Several other perspectives are drawn from to inform agent movement and routine

activities in the model. In general, these perspectives agree that each person has an

activity space; a geographic area within which they conduct their daily activities

(Horton & Reynolds, 1971). This area is equivalent to Hägerstrand’s (1970; 1975)

domain and encompasses both the locations that are visited and the paths taken

among those locations. Different researchers have their own terms for these locations

and paths. Locations that are visited are called nodes (Paul Brantingham &

Brantingham, 1981b; Patricia Brantingham & Brantingham, 1993; Lynch, 1960; H. J.

Miller, 1991) or anchorpoints (R. Golledge & Stimson, 1997; G. Rengert, 1988).

These are the places where the majority of human interaction occurs. The particular

routes taken among the locations are termed paths (Lynch, 1960; H. J. Miller, 1991).

These paths often represent the shortest route between two places (Felson, 1987).

Regardless of the terminology, these perspectives share the following

characteristics. Individuals’ travel patterns are influenced by temporal, economic and

spatial constraints that limit their choices related to housing, employment, recreation

etc. Home tends to be the dominant node and travel is concentrated along certain

routinely frequented paths. Frequently traveled paths are hypothesized to be

important factors in determining aggregate crime patterns because they bring

 105

offenders and victims together in space and time. Activity spaces and domains

represent the areas with which an individual has routine interaction.

Research on offender travel behavior has shown that their activity spaces are

similar to non-offenders but more diffuse, including approximately two blocks on

either side of major arteries, entertainment and employment centers (Paul

Brantingham & Brantingham, 1991). The more diffuse pattern is a result of

additional exploration to identify potential targets. In addition, studies on the journey

to crime have consistently found a distance decay effect (i.e., the distance from

residence to crime location is shorter rather than longer) (Capone & Nichols, 1976;

Costanzo, Halperin, & Gale, 1986; Groff & McEwen, 2005; Katzman, 1981; McIver,

1981; G. F. Rengert, Piquero, & Jones, 1999). Together, the principle of least effort

and findings from distance decay and activity space research emphasize the

importance of proximity, accessibility, land use, and individual characteristics in the

convergence of victims and offenders. The formulation of activity spaces in this

model combines elements from the perspectives just discussed and relies heavily on

the notion of an integrated time-space approach to modeling human behavior in the

urban environment.

2.3 Hypotheses

The review of the relevant literature highlights two questions related to the role of

time and space in the production and pattern crime events. Does the amount of time

spent away from home continue to impact crime in the predicted direction regardless

of the spatio-temporal structure of routine activities? What effect do temporal and

spatio-temporal constraints on routine activities have on the incidence and pattern of

 106

street robbery events? To examine these questions the current research revisits an

earlier study’s hypotheses (H1 and H3) (Groff, Forthcoming-a) and tests if they hold

true when the structure of routine activities is varied. Two additional hypotheses (H2

and H4) are also tested. The first two hypotheses address the incidence of street

robbery and the last two its spatial distribution:

H1: As the average time spent by civilians on activities away from
home increases, the aggregate rate of robbery will increase.

H2: The temporal and spatio-temporal schedules of civilians while

away from home change the incidence of robbery events.

H3: As the average time spent by civilians on activities away from

home increases, the spatial pattern of robberies will change.

H4: The temporal and spatio-temporal schedules of civilians while

away from home change the spatial pattern of robbery events.

The first hypothesis tests the core assertion of routine activity theory when agents

have temporal and spatio-temporal schedules. The earlier study’s findings

demonstrated the plausibility of this hypothesis when agents had no constraints on

their spatio-temporal when away from home (Groff, Forthcoming-a). The second

hypothesis examines the effect of adding temporal and then spatio-temporally defined

activity spaces on the incidence of street robbery. The third hypothesis is replicated

from the original study and compares the outcome distributions of street robberies of

the experimental conditions (i.e. as society spends more time away from home) to one

another. The fourth hypothesis explores the impact of changing the structure of

routine activities on the spatial distribution of crime events. Since this is the first test

of the effect of spatio-temporal schedules on the spatial pattern of street robberies,

hypotheses 3 and 4 do not describe the potential outcome pattern but simply note it

will be different.

 107

3.0 Research Design

This section describes the overall methodology used to implement two additional

versions of a basic model of street robbery. It begins with a brief overview of agent-

based modeling in general and the software used to implement the model. Next, the

input data utilized and the experiments that are conducted to test the effects of space

and time on the frequency and distribution of crime events are discussed.

3.1 Agent-based Modeling and the Implementation Software

Agent-based models are one type of simulation modeling. An agent-based model

consists of a collection of autonomous entities implemented within a software

program (O'Sullivan & Haklay, 2000). Taken together these entities create an

artificial world in which agents can represent people, governments, neighborhoods

etc. Each entity has a set of unique characteristics and behaviors which are often

based on existing theory and empirical research. Typically, these agents interact

within an artificial world although there is increasing recognition of the value of

using geographic information systems to provide a ‘real’ landscape (Brown et al.,

2005; O'Sullivan & Haklay, 2000).

The two additional versions of the original model (Groff, Forthcoming-a) are built

using the same software, Agent Analyst.30 Agent Analyst combines two of the most

popular packages for ABM and GIS. For ABM it relies on the Recursive Porous

Agent Simulation Toolkit (Repast) product line and for GIS it uses ArcGIS. Once the

Agent Analyst toolbox is added into an ArcGIS session individual models can access

30 Agent Analyst is under development as a partnership between ESRI and Argonne National
Laboratories; the parent companies of ArcGIS and Repast respectively. Agent Analyst is free but
currently available by request only. The website for Repast is http://repast.sourceforge.net/.

 108

shapefiles allowing: 1) individual agents to become spatially aware and 2) the

visualization of agent movement and decision outcomes (e.g. locations of crimes).

A combined ABM/GIS simulation model integrates the advantages of

autonomous agents found in agent-based modeling with the spatial explicitness of a

geographic information system (Albrecht, 2005; An et al., 2005; Brown et al., 2005).

Both are necessary to move from artificial environments to ‘real’ ones. The agents

interact on city streets and their activities during the simulation are impacted by the

distribution of opportunities for housing, employment, shopping and recreation across

the urban backcloth. In this way, the spatial behavior of agents based on real

landscapes is more representative of actual human behavior than that of agents who

are created with and interact upon artificial landscapes. 31

3.2 Data

The model uses input data describing the land use and street network of Seattle,

Washington to provide the basis for the model landscape and the agent activity spaces

(Groff, Forthcoming-a). Four datasets describing conditions in Seattle are used to

inform the activity spaces of agents in the model: 1) total population; 2) total

employment; 3) total potential activities; and 4) streets. Blockgroup level population

figures describe the distribution of residences across Seattle (U.S. Census Bureau,

2000). Employment data provide the number of employees per zip code area (U.S.

Census Bureau, 2002). Potential activity locations are quantified through the use of

retail, recreation and service establishments (e.g. grocery stores, convenience stores,

dry cleaners, gyms etc.) (ESRI, 2003). Finally, the King County Street Network

31 The details of implementing movement and activity spaces in the model are discussed in Groff
(Forthcoming-b).

 109

Database (SND) file is used to structure the agent’s movements. Because of software

limitations, street intersections are used to represent places rather than streets.

Individual civilians and police in the model move from street intersection/node to

street intersection/node (hereafter referred to as node). There are 16,035 nodes in

Seattle and these locations represent places at which a street robbery may occur.

In addition to the input data describing Seattle, twelve parameters are set prior to

the model run (Table 4-1). These parameters are identical to the ones used in the

previous study (Groff, Forthcoming-a). The choice of parameter values is a critical

aspect of all models that deserves special attention because of the potential impacts

on the model outcomes. Findings from the original model were robust to sensitivity

tests (i.e. changes in both parameter values and random number seeds) (Groff,

Forthcoming-a). The same sensitivity tests are conducted here: 1) five of the

parameter values are increased; and 2) the random number seed is changed four

times. The model runs are repeated for each test and a one-way ANOVA is applied

to evaluate the results.

 110

Table 4-1: Parameters in the Model

Variable Rationale

Society Level
Number of Agents = 1,000

Represents a balance between ensuring there are enough
agents so that interactions can occur and the computational
overhead from using more agents

Number of Cops = 200

Chosen to ensure that cops would be present at some of the
convergences that occur across the 16,035 places in Seattle.

Unemployment Rate = 6%

The unemployment rate of six percent is based on the 2002
unemployment rate for Seattle (Bureau of Labor Statistics,
2003).32

Rate of Criminal Propensity
= 20%

Given that 20% of the population has committed a crime, 20%
of civilians are assigned criminal propensity using a uniform
distribution (Visher & Roth, 1986).

Time To ReOffend = 60

Parameter value chosen as a starting point since the author
could find no empirical data on which to base time to
reoffend..

Random Number Seed =
100 (seed also tested at 200,
300, 400 and 500)

An explicit random number seed based on the Mersenne
Twister (MT) algorithm is used as the basis for all random
number distributions used in the model. MT is currently
considered to be the most robust in the industry (Ropella et
al., 2002).

Agent Level
Societal Time Spent Away
From Home = 30% (40%,
50%, 60%, 70%)

Assigned based on a normal distribution with a mean of 432
minutes (for the 30% condition) and a standard deviation of
10% of the mean (sd = 43).33

Initial Wealth = 50

Initial wealth is assigned with a mean of 50 and a standard
deviation of 20 units.

Amount of wealth received
each payday = 5

No empirical evidence available.

Amount of wealth
exchanged during robbery=1

No empirical evidence available.34

Situation Level
Guardianship Perception =
U(-2,2)

The guardianship perception value can add or subtract zero,
one or two guardians from the actual number present. This
represents the stochastic element in the offender’s perception
of the willingness of a guardian to intervene.

Suitable Target Perception =
U(-1,1)

The value in suitable target can increase or decrease the
suitability or leave it unchanged. This enables the offender to
sometimes decide a target is not suitable even when they have
more wealth.

32 Since the jobs data are from 2002, the corresponding year’s unemployment rate is used.
33The time spent away from home is systematically varied to test the core proposition of routine
activity that as time spent away from home increases crime will increase.
34 A request to the Seattle Police Department for the average amount of cash taken during street
robberies remains unanswered.

 111

3.3 Agent Activity Spaces in the Model

The purpose of the agent activity spaces in these versions of the model is two-

fold. First, they represent the routine activities element of RAT. Second, they

provide a systematic way of testing the impact of time and time-space schedules on

the incidence and distribution of street robbery. While simple, the initial definition of

activity spaces captures some crucial elements of human spatial behavior. First,

agents like people, have a series of places that they visit each day representing home,

work and activities. For instance, a person may go to work, pick-up the dry-cleaning,

go to the gym and then to the grocery. Second, the spatial extent of those activities is

fairly consistent and forms a routine activity space. One limitation of the activity

spaces in the model is that they are static while human behavior often changes daily.

Ideally, each the agent’s activity space would be dynamic during the model run

enabling them to choose locations for activities within their potential path area given

existing temporal constraints. However, current software limitations preclude

dynamic activity spaces. While the software limitation is disappointing, the

implementation of routine activity spaces with temporal and spatio-temporal

constraints represents an advance and is tested here.

A time-geographic framework is supplemented by work done on activity spaces

to develop simulated routine activities (Kwan & Lee, 2004). This hybrid approach

gives structure to the way human activities are organized, while recognizing the

importance of activity spaces as the areas in which individuals conduct their everyday

lives (Horton & Reynolds, 1971). Following Hägerstrand (1975), the activity spaces

developed here are not meant to accurately portray the specific activities, durations

 112

and routes of each individual in the model or to predict what those activity spaces

would look like but rather to offer a representative heuristic. In this way, the current

model looks for middle-ground between empirical research and simulation which

more effectively captures the complexity of human behavior.

As in real life, activity spaces in the model have both spatial and temporal

elements. Theory holds that the travel behavior of individuals is influenced by the: 1)

street network; 2) the specific locations at which opportunities for employment,

recreation, retail and services exist; and 3) the distance among those locations

(Hägerstrand, 1970;1975; Kwan, 1998; H. J. Miller, 1991). The temporal schedule is

impacted by the amount of time to spend at each activity, the distances between the

activities and the speed of travel. The more time spent traveling the less is available

to spend at an activity.

In the model, the routine activity spaces of individuals are implemented as a set of

nodes (places) and paths (list of places traversed when traveling from one node to

another) (Hägerstrand, 1970;1975; H. J. Miller, 1991). Specifically, each civilian

agent is assigned four nodes representing a home, a main (e.g. work, school etc.) and

two activities (e.g. recreation, social, and retail places). The nodes are assigned based

on the distributions of population, jobs and activities in Seattle (e.g. if 10% of the

population lives in a particular blockgroup then 10% of the agents are assigned to that

blockgroup). In this way, the size and form of activity spaces is influenced by the

distribution of residential housing, jobs, schools, retail and services (Kwan, 1998;

Weber & Kwan, 2003). The outcome is that each civilian has a unique activity space

 113

reflecting their origin/end place, the places they visit, and the routes among those

places.35

The agent activities are attached to a series of street intersections rather than street

addresses or street blocks.36 Street intersections are used to represent “interchange

points for journeys from stations to the road network and vice versa” (Lenntorp, 1978

168). It is at street intersections that agents change travel status (e.g. from work to

travel) and that the potential for street robbery exists. Intersections also provide a

convenient heuristic to represent the dual nature of many places; a bank may be a

workplace to an employee and a discretionary activity to customers (Lenntorp, 1978).

In addition, domains can change as people change jobs or as circumstances

change (Hägerstrand, 1970). Accordingly, each civilian agent has two potential

activity spaces; one activity space is used while employed and the other while

unemployed. Since becoming unemployed does not automatically change residence

and other activities, the two activity spaces are identical except that the work location

is dropped from the unemployed path and a new activity location is added. The home

location and the locations of the original two activities do not change.

Following time-geographic principles each agent is indivisible, they can be in

only one place at a time, movement across space takes time, and all activities have

duration. These principles are reflected in the existence of a temporal schedule for

each that incorporates the temporal constraints on their travel (H. J. Miller, 2005).

35 This relatively simple representation of human spatial behavior does not incorporate other aspects of
trip decision making (e.g. trip purpose, model of travel, order of travel, time of day etc.) which affect
travel but it does provide a starting point.
36 This follows the method used by Miller (1991) but for different reasons. His was to simplify the
representation in GIS. Here the use of street intersection reflects a software limitation. Repast cannot
read network or geodatabase files from ArcGIS.

 114

Each agent’s temporal schedule is primarily based on the daily amount of time the

agent is assigned to stay at home and the size of their activity space. The amount of

time to stay at home is assigned first and is static so that the average time spent away

from home for the societal experimental condition will be accurate. Next, the amount

of time needed to travel among the activity nodes is calculated since, as noted earlier,

it limits the time available to spend at activities. The remaining time in the day is

randomly allocated to the Main, Activity 1 and Activity 2.

The final element important to human activity is the street network. The paths

taken to travel among activity place are structured by the street network (Hägerstrand,

1970;1975; H. J. Miller, 1991). Movement in the model is either random or directed.

Random movement follows a ‘random walk’ process in which a node is randomly

chosen from the set of adjacent nodes (Chaitin, 1990). Random movement is used by

the police agents in all three versions and by the civilians in two versions of the

model.

Agents with pre-defined spatio-temporal activity spaces (i.e. those in the Activity

Space version) are the only ones who use directed movement. Their activity locations

and the path among those places are generated in ArcGIS before the start of the

model. Each agent starts at home and then moves along the shortest path from

activity place to activity place according to a temporal schedule and following a ring

pattern so they end at home (Hägerstrand, 1970; Lenntorp, 1978; H. J. Miller, 1991).

While research has shown that the shortest topological path is frequently not taken, it

offers a standardized and convenient heuristic for this initial model. In this way,

movement along the street network and activity spaces provide the basis for modeling

 115

how the routine nature of spatio-temporal behavior influences the convergence of

individuals at a place-time.

3.4 Experiments

In keeping with the original study, the same series of five experiments are

conducted on each of the two new versions of the street robbery model (Table 4-2).

These experiments are used to test: 1) whether changes in routine activities (defined

as time spent away from home) can increase crime even if the numbers of motivated

offenders remains constant; and 2) the impact of spatial and temporal constraints on

the incidence and spatial pattern of street robberies. These tests proceed in a

systematic fashion, with each condition representing an increase in the societal

average for time spent on routine activities away from the home. All of the

percentages represent an average time spent away from home for the agent population

as a whole; individual agents have different times spent away from home.

Table 4-2: Experimental Conditions: Three Versions
Average Time Spent Away From Home Version of

Model C1 C2 C3 C4 C5
Simple 30% 40% 50% 60% 70%
Temporal 30% 40% 50% 60% 70%
Activity Space 30% 40% 50% 60% 70%
Hours per week ≈50 ≈67 ≈84 ≈101 ≈118

Random number generators play an important dual role in agent-based models by

providing the stochastic elements in the model and enabling scientific

experimentation. Both uniform and normal random number distributions are used for

decision-making in the model. For example, random numbers play a key role in

representing uncertainty in the current knowledge about how individuals evaluate

 116

guardianship and target suitability. However, when a random number seed is defined

at the start of a simulation the random number generator produces the same sequence

of random numbers each time the model is run making experiments repeatable. This

characteristic forms the basis for using simulation as a laboratory for experimentation

because it enables any differences in the outcome variable to be attributed to the

manipulated variable and not to other sources (Axelrod, Forthcoming; Groff,

Forthcoming-a; Lenntorp, 1978).

4.0 Implementation Model

This section explains how the original model of street robbery is extended by

creating two additional and progressively more complex versions. Like the original

model of street robbery, these versions are based on the core elements of RAT but

add routine activity spaces (Figure 4-1). Since the original model serves as a base for

the two new versions, the elements common to all three versions are described first

and then the changes unique to each additional version are covered.

There are two types of people in the model, civilians and police. The civilians

represent the general population of Seattle. Only civilians have attributes and can

take on different roles in the model (i.e., offender, victim, or guardian) depending on

the particular situation. Each civilian in the model has a unique set of characteristics

that include criminal propensity, time to stay at home, wealth, and employment status.

 117

Figure 4-1: Conceptual Model of Street Robbery for All Versions

Criminal propensity differentiates agents who are interested in committing

robbery from all other agents in the model. Civilians with criminal propensity can

potentially take on any one of three roles, offender, victim, or guardian. Civilians

without criminal propensity can be either victims or guardians. In all other ways,

civilians with criminal propensity are exactly the same as those without. While only

agents with criminal propensity can make the decision to offend, it is the particular

constellation of individual and contextual dynamics that determines whether a crime

is committed. In this way, patterns of offending and victimization are allowed to

emerge from decisions made by individuals in particular contexts. In addition to

criminal propensity civilian agents are assigned a time to spend at home that is static

over a model run, and a wealth and employment status that can change during the

 118

model run. Once convergence occurs, guardianship and suitability of target are

considered by the offender when making the decision whether or not to commit a

robbery.

Police agents represent formal guardian and their presence automatically prevents

a crime from occurring. In all model versions, at the start of the simulation police

agents are randomly distributed across the nodes and they follow a ‘random walk’

movement pattern in which they move one node at a time and only to an adjacent

node.

Regardless of model version, the decision to offend is made as follows. At each

model tick (i.e. each minute of the model year) all nodes with at least one agent

present are evaluated. Active nodes meeting the following three criteria are evaluated

further: 1) no police present; 2) at least two civilians present; and 3) at least one of

the civilians must have criminal propensity. If there is only one offender at the node,

that agent automatically becomes the active offender. Otherwise, the active offender

is randomly selected from the list of agents with criminal propensity who are at the

node. Offender agents who are not selected to be active are at risk of becoming

victims. When an agent commits a robbery, one unit of wealth is taken from the

victim and transferred to the offender. Once the active offender at each of the active

nodes evaluates their situation, all agents move and the decision structure repeats.

4.1 Model Versions

Each of the three street robbery model versions is described and the differences

among them are highlighted (Table 4-3). The Simple version is from the original

study and is included to offer a counterpoint to the two new versions (Groff,

 119

Forthcoming-a). In the Simple version, the agents move randomly along a real street

network but the version does not incorporate the notion of temporal or spatio-

temporal schedules. Civilian agents are randomly distributed across the nodes and

each day begins at the node where the previous one ended. Since they are ‘at risk’ of

being robbed or robbing whenever they are not at home, civilians in the Simple

version are the most exposed to becoming victims of or committing a crime. Unlike

the other two versions, civilian agents do not have an employment status so all

civilian agents get paid every other week.

Table 4-3: Implementation Versions of the Conceptual Street Robbery Model

 Simple Temporal Activity Space

Civilian Movement Random Random Defined Activity

Space

Police Movement Random Random Random

Civilian

Characteristics

Criminal Propensity Yes Yes Yes

Wealth Yes Yes Yes

Activity Space No Temporal Only Spatio-temporal

Multi-faceted Risk

Status

No Yes Yes

Employment Status No Yes Yes

The Temporal and Activity Space versions are very similar to one another

differing only in that one has temporal constraints and the other has spatio-temporal

constraints on agent behavior. The Temporal version has civilian agents who are

randomly distributed across the nodes and follow a temporal schedule for travel when

 120

not at home. Civilians in the Temporal and Activity Space models share the same

temporal schedule for activities and travel and consequently those agents spend the

same amount of time ‘at risk’ for street robbery. The Activity Space version of the

model implements geographically informed activity spaces in which each agent

travels among a pre-defined set of activity nodes.

Civilian agents in the Temporal and Activity Space versions have attributes

describing the time to spend at home, at a main activity, and at two other activities.

Each type of activity has a different level of risk for street robbery. While at home or

at work the agent is not at risk of participating in a street robbery. Thus, the amount

of time at home or at work reduces risk of street robbery, while time spent traveling

or engaging in other activities increases it. This representation of risk is in keeping

with the crime being studied. By definition, street robbery happens only on the street

or in public places; not in a home or inside a workplace.37

Civilian agents in the Temporal and Activity Space versions of the model each

have an employment status. This characteristic has two important impacts in these

versions of the model. First, it changes the amount of time spent at the three activity

nodes (but not the overall time spent away from home). In the case of the Activity

Space version, employment status determines the spatial-temporal aspects of the

agent’s activities. Those agents who are employed receive regular but static infusion

of wealth every two weeks over the model year but civilians who are unemployed do

not get paid. Every month, 3% of unemployed agents become employed and are

replaced by a new random selection of employed agents who become unemployed. It

37 The designation of ‘at risk’ is simplified from real life. A person who is shopping in a retail store
also cannot be a victim of street robbery but is considered ‘at risk’ in the model. The main purpose of
the designation is to vary the time a civilian agent is at risk based on their activities.

 121

is important to note that the employment status is assigned independently of the

criminal propensity indicator; civilians with criminal propensity can be employed in

the model, as they are in life.

5.0 Analysis

Descriptive statistics such as mean, median, standard deviation, and range are

employed to characterize the results of each of the experiments and to compare them.

An ANOVA, is used to determine if there is a significant difference among the street

robbery rates for the five experimental conditions across the model versions (Axelrod,

Forthcoming). The response variable is number of robberies for each of the one

thousand civilian agents.

Two approaches for describing the spatial distribution of street robberies are

applied (Groff, Forthcoming-a). A visual comparison of the resulting crime patterns

is made using a kernel density. Kernel density surfaces offer a means of evaluating

the existence of global trends in the distribution of street robberies and for comparing

the relative density of robberies across experimental conditions (Bailey & Gatrell,

1995; Levine, 2005; Mitchell, 1999; Williamson et al., 2001).

In addition, formal tests of the spatial distribution of crime events are employed

via Ripley’s K but with the following interpretational caveat in mind. As noted in the

earlier study, the data from the model are somewhat unique in that convergences and

robbery events can only occur at the street nodes thus a comparison to complete

spatial randomness is inappropriate (Forthcoming-a). Instead, the K function is

calculated for the street nodes and then compared to CSR. The original study found

the street nodes were significantly more clustered than would be expected under CSR.

 122

In addition, the robberies were more clustered than the street nodes at certain

distances. To investigate this aspect in terms of space and time, both the line for CSR

and the K function are depicted on all graphics to reveal the degree of intrinsic

clustering in the street network as compared to CSR.

The impact of schedule constraints on the spatial distribution of street robbery is

evaluated by comparing the findings from the Simple version to those from the

Temporal and Activity Space versions across the five experimental conditions using

kernel density and Ripley’s K. All of these measures are distance-based and

characterize the spatial patterning of the street robbery locations as conditioned by the

pattern of street nodes. The robustness of all the findings is then evaluated through

the systematic variation of five of the key parameter values and by varying the

random number seed used across the new versions of the model.

6.0 Findings

This section summarizes the findings of the analyses just described. First

descriptive model outcomes are expressed by examining both place- and societal-

level attributes to characterize differences in the results from the model runs of the

three versions across the five experimental conditions. Next, the results pertinent to

each of the hypotheses are conveyed.

6.1 Descriptive Analysis

Societal-level changes in the number of street robberies, the frequency of

convergence of agents in space-time (i.e. opportunities for street robbery), and the

number of crimes deterred by the police for all three versions of the model are in line

 123

 124

with what routine activity theory would expect; all the values increase steadily with

time spent away from home (Table 4-4). While the overall trends are consistent,

significant differences in volume exist by model version. The Simple model has the

highest number of robberies and the steepest increases as time spent away from home

increases. The Temporal version has the fewest robberies and an identical slope as

the Activity Space version. Together these results point to the importance of a time

schedule in lowering the incidence of street robberies regardless of the time spent

away from home. The addition of a spatially-constrained schedule to the Temporal

version increases the number of street robberies. This outcome is most likely related

to the rate of convergence (i.e. presence of motivated offender and suitable target at

same place-time) which tends to be highest in the Activity Space version and lowest

in the Temporal version.

125

Table 4-4: Societal-level Model Outcomes

Experimental Condition 30% 40% 50% 60% 70%
Target time to spend away
from home in minutes
(hours)

432
(7.2)

576
(9.6)

720
(12)

864
(14.4)

1008
(16.8)

Actual time spent away
from home

436.9 (S)
427.8 (T)
427.7 (AS)

580.2 (S)
572.5 (T)
 572.3 (AS)

723.5 (S)
717.0 (T)
716.9 (AS)

866.8 (S)
 861.6 (T)
 861.5 (AS)

1010.1 (S)
1006.2 (T)
1006.2 (AS)

Total Robberies 54,637 (S)

12,807 (T)
32,326 (AS)

76,032 (S)
13,671 (T)
34,628 (AS)

95,219 (S)
15,183 (T)
38,331 (AS)

118,085 (S)
16,196 (T)
41,266 (AS)

139,007 (S)
17,181 (T)
46,085 (AS)

Total Convergences 1,454,341 (S)
736,787 (T)

1,889,899 (AS)

2,050,761 (S)
1,013,814 (T)
2,663,961 (AS)

2,631,149 (S)
1,285,568 (T)
3,446,132 (AS)

3,238,760 (S)
1,579,963 (T)
4,260,133 (AS)

3,835,299 (S)
1,880,647 (T)
5,018,754 (AS)

Total Robberies Deterred
by Police

1,532 (S)
325 (T)

1,286 (AS)

2,148 (S)
414 (T)

1,417 (AS)

2,693 (S)
416 (T)

1,484 (AS)

3,430 (S)
454 (T)

1,670 (AS)

4,040 (S)
450 (T)

1,979 (AS)
Percentage of civilians
who were robbed

77.7% (S)
74.5% (T)
74.0% (AS)

77.6% (S)
73.2% (T)
72.8% (AS)

76.4% (S)
74.6% (T)
71.8% (AS)

75.1% (S)
72.5% (T)
72.5% (AS)

76.2% (S)
71.5% (T)
73.5% (AS)

Percentage of civilians
who were repeat victims
of street robbery

65.2% (S)
64.6% (T)
64.4% (AS)

65.2% (S)
64.1% (T)
63.1% (AS)

65.5% (S)
63.9% (T)
62.6% (AS)

65.1% (S)
63.2% (T)
62.9% (AS)

65.7% (S)
62.6% (T)
63.4% (AS)

Number of civilians with
criminal propensity who
committed a street robbery

200 (S)
199 (T)
200 (AS)

200 (S)
200 (T)
200 (AS)

200 (S)
200 (T)
199 (AS)

200 (S)
200 (T)
198 (AS)

200 (S)
200 (T)
197 (AS)

(S) Simple (T) Temporal (AS) Activity Space

Results from this research also show that deterrence (i.e. number of times the

presence of a police agent prevents a robbery from taking place) increases for all model

versions as the societal time spent away from home increases and the relationships

among the versions are identical to those for convergence. This supports Cohen and

Felson’s (1979) hypothesis that the frequency of convergence impacts the potential for

deterrence. Whenever there are more convergences there are by definition more times a

police agent can function as an agent of formal guardianship.

Together these findings illustrate the separate impact of a temporal schedule and a

defined activity space on the frequency of convergences across the three models. Agents

who travel randomly but have a temporal schedule experience the fewest number of

convergences because the time they are ‘at risk’ is less then the agents in the Simple

version. When a spatial element is added (i.e. agents have defined activity spaces), it

increases the frequency of convergence because agent’s homes, jobs and activities are

clustered as opposed to randomly allocated across Seattle as in the other versions.

Increasing convergence translates into more street robberies for agents in the Activity

Space version.

6.2 Hypothesis Test Results

The first hypothesis tests the core assumption of RAT; as the average time spent by

civilians on activities away from home increases, the aggregate rate of robbery will

increase. A One-Way ANOVA is applied to the means of the five experimental

conditions to determine if the average number of robberies across all the civilian agents

increases as the time spent away from home increases. Separate tests are conducted for

the Temporal and Activity Space versions of the model. The results of the ANOVA

 126

indicate significant differences only for the Temporal version (Table 4-5).38 Overall, the

only version that does not support RAT is the one that includes space.39

Table 4-5: ANOVA for Street Robbery Events across Versions and Experimental
Conditions

Proportion of Time Spent Away From Home
Condition

1
(30%)

Condition
2

 (40%)

Condition
3

(50%)

Condition
4

(60%)

Condition
5

(70%)
Number of civilians N=1,000 N=1,000 N=1,000 N=1,000 N=1,000

Simple Model ***

Mean
(Standard Deviation)

54.64
(101.99)

76.03
(144.15)

95.22
(182.35)

118.09
(228.14)

139.01
(270.06)

Temporal Model ***
Mean

(Standard Deviation)
12.81

(17.54)
13.67

(19.35)
15.18

(22.42)
16.20

(24.34)
17.18

(26.64)
Activity Space Model

Mean
(Standard Deviation)

32.33
(87.69)

34.63
(103.26)

38.33
(129.42)

41.27
(148.5)

46.09
(174.90)

*** Difference among one or more of the groups is significant at P <= .000.

Additional tests using Tamhane’s T2 are employed to identify which groups differed

significantly (Table 4-6).40 Comparing each group, in turn, to the other four groups

reveals that there are differences between the conditions in the Simple and Temporal

38 Because of the positive skew to the distribution of robberies, additional tests regarding the equality of
means are conducted. Both the Brown-Forsythe and the Welch tests for equality of the means are
significant at .000. These tests are preferable to the F test when the equality of variances assumption is
violated as it is here ("SPSS for Windows," 2002).
39 The large sample size has a twin effect producing both a powerful design capable of detecting even small
effects and making finding statistical significant relationshipts more likely. The non significant finding for
the Activity Space version may stem from the large standard deviation found in each of the conditions. A
variety of additional analysis confirm the finding of non significance for the Activity Space model.
Specifically, analyses conducted with the same response variable under a Univariate Generalized Linear
Model (GLM), and additional tests using both a One-way ANOVA and Univariate GLM but with a logged
response variable, produce consistent findings.
40 Tamhane’s T2 is used because it does not assume equal variances. A test for homoscedasticity showed
the variances are not equal across the five experimental conditions. The Levene statistic is significant
indicating the variances are significantly different among the groups. However, ANOVA is robust in the
face of this violation when the group sizes are equal which they are in this research (Newton & Rudestam,
1999; Shannon & Davenport, 2001).

 127

versions.41 While all but two comparisons for the Simple version were significant, only

three of the between-group differences are significant for the Temporal version; between

the 30% and both the 60% and 70% conditions as well as between the 40% and the 70%

condition. Thus, the effect of a temporal activity schedule is to reduce the number of

significant differences between the experimental conditions.

41Tamhane’s T2 is only applied to those versions in which there were significant differences for the version
as a whole.

 128

Table 4-6: Post Hoc Tests of Mean Differences by Experimental Condition (seed = 100)
(I) Randomization
Condition

(J) Randomization
Condition

Mean difference
(I - J)

Standard
error

Significance

30% Time away 40% Time away
 (S) a -21.39 5.584 .001
 (T) -.86 .826 .970
 (AS) -2.30 4.284 1.00
 50% Time away
 (S) a -40.58 6.607 .000
 (T) -2.38 .900 .081
 (AS) -6.01 4.944 -6.01
 60% Time away
 (S) a -63.45 7.903 .000
 (T) a -3.39 .949 .004
 (AS) -8.94 5.453 .656
 70% Time away
 (S) a -84.37 9.129 .000
 (T) a -4.37 1.009 .000
 (AS) -13.76 6.187 .234
40% Time away 50% Time away
 (S) -19.19 7.351 .088
 (T) -.51 .936 .676
 (AS) -3.70 5.236 .999
 60% Time away
 (S) a -42.05 8.534 .000
 (T) -2.53 .983 .098
 (AS) -6.64 5.719 .941
 70% Time away
 (S) a -62.98 9.681 .000
 (T) a -3.51 1.041 .008
 (AS) -11.46 6.423 .540
50% Time away 60% Time away
 (S) -22.87� 9.236 .126
 (T) -1.01 1.046 .983
 (AS) -2.93 6.229 1.00
 70% Time away
 (S) a -43.79 10.305 .000
 (T) -2.00 1.101 .515
 (AS) -7.75 6.880 .951
60% Time away 70% Time away
 (S) -20.92 11.180 .470
 (T) -.98 1.141 .993
 (AS) -4.82 7.255 .999
a Significant differences were found between experimental conditions I and J at p < .05.

 129

The second hypothesis is that the temporal and spatio-temporal schedules of civilians

while away from home change the incidence of robbery events. This hypothesis explores

whether the versions of the model produce significantly different numbers of street

robberies for each of the experimental conditions (e.g. whether the number of robberies

under the 30% time away condition for the Simple version were significantly different

than under the Temporal or the Activity Space versions). The results of the ANOVA

indicate there are significant differences between the rates of street robbery for all three

versions of the model. A post hoc analysis reveals there are significant differences

among all five experimental conditions (Table 4-7). In other words, regardless of the

amount of time spent away from home, including the temporal and spatial components of

activity spaces resulted in significantly different robbery rates. These results support the

separate importance of both time and space when modeling routine activities.

 130

Table 4-7: Post Hoc Tests of Mean Differences Between Same Condition in Different
Model Versions (Seed = 100)

(I) Version (J) Version Mean difference

(I - J)
Standard

error
Significance

Simple Temporal
 30% Time Away a 41.83 3.272 .000
 40% Time away a 62.36 4.599 .000
 50% Time away a 80.84 5.810 .000
 60% Time away a 101.89 7.255 .000
 70% Time away a 121.83 8.582 .000
 Activity Space
 30% Time Away a 22.31 4.253 .000
 40% Time away a 41.40 5.607 .000
 50% Time away a 56.89 7.071 .000
 60% Time away a 76.82 8.608 .000
 70% Time away a 92.92 10.175 .000
Temporal Activity Space
 30% Time Away a -19.52 2.828 .000
 40% Time away a -20.96 3.322 .000
 50% Time away a -23.15 4.154 .000
 60% Time away a -25.07 4.758 .000
 70% Time away a -28.90 5.594 .000
a Significant differences were found between model versions I and J at p < .05.

 131

 132

A tabular view of the spatial distribution of agent movement and robberies offers

descriptive evidence in support of the third hypothesis; as the average time spent by

civilians on activities away from home increases, the spatial pattern of robberies will

change (Table 4-8). The outcome measures reveal both increases in concentration

and spread of street robberies as time spent away from home increases. Mean

robberies per node are lowest in the Temporal model followed by the Activity Space

model. The more time that is spent away from home, the bigger the disparity among

the versions. A different pattern emerges when looking at the percent of street nodes

with only one robbery and the percent with more then one robbery. The Simple

version has the highest proportions of both, followed by the Temporal version. Less

than 10% of all nodes in Activity Space version ever have a robbery.

133

Table 4-8: Place-Level Model Outcomes
Experimental Condition 30% 40% 50% 60% 70%

Average robberies per
node

3.41 (S)
.80 (T)

2.02 (AS)

4.74 (S)
.85 (T)

2.16 (AS)

5.94 (S)
.95 (T)

2.39 (AS)

7.36 (S)
1.01 (T)
2.57 (AS)

8.67 (S)
1.07 (T)
2.87 (AS)

Average number of visits
per node

9,732.8 (S)
5,319.1 (T)
5,116.6 (AS)

12,903.9 (S)
6,956.6 (T)
6,711.3 (AS)

16,087.8 (S)
8,595.7 (T)
8,331.1 (AS)

19,253.4 (S)
10,234.7 (T)
9,930.4 (AS)

22,423.0 (S)
11,873.2 (T)
11,522.2 (AS)

Total places with a
robbery

13,376 (S)
6,689 (T)
1,535 (AS)

13,925 (S)
6,641 (T)
1,499 (AS)

14,309 (S)
6,549 (T)
1,472 (AS)

14,531 (S)
6,441 (T)
1,475(AS)

14,683 (S)
6,568 (T)
1,498 (AS)

Percent of places with a
robbery

83.4% (S)
41.7% (T)
9.6% (AS)

86.8% (S)
41.4% (T)
9.4% (AS)

89.2% (S)
40.8% (T)
9.2% (AS)

90.6% (S)
40.2% (T)
9.2% (AS)

91.6% (S)
41.0% (T)
9.3% (AS)

Total places with more
then one robbery

11,157 (S)
3,130 (T)
1,179 (AS)

12,175 (S)
3,183 (T)
1,171 (AS)

12,995 (S)
3,225 (T)
1,128 (AS)

13,303 (S)
3,254 (T)
1,134 (AS)

13,572 (S)
3,197 (T)
1,142 (AS)

Percent of places with
more then one robbery

69.6% (S)
19.5% (T)
7.4% (AS)

75.9% (S)
19.9% (T)
7.3% (AS)

81.0% (S)
20.1% (T)
7.0% (AS)

83.0% (S)
20.3% (T)
7.1% (AS)

84.6% (S)
19.9% (T)
7.1% (AS)

(S) Simple (T) Temporal (AS) Activity Space

 134

Another way of characterizing the spatial pattern of robberies is via a kernel

density.42 Two maps describe the spatial pattern of robberies that emerges for each

version of the model at the 30 percent and 70 percent conditions (Maps 4-1 and 4-2).

As civilians spend more time away from home, the robbery concentration at existing

places increases while new areas emerge; an effect that is most likely due to the

increased frequency of the convergence of the elements necessary for a crime to

occur. 43 This visual inspection of the map series indicates support for the third

hypothesis and illustrates the importance of considering the spatio-temporal structure

of routine activities.

42 The purpose of the kernel density surface use here is to represent the overall changes in intensity
across the city of Seattle. Therefore, a bandwidth of 1,320 feet (one quarter mile) and a cell size of
100 feet are the basis for all kernel density surfaces. The quarter mile distance is often employed to
represent the potential walking area for individuals in urban areas and by extension their potential area
of interaction around a given point (Calthrope, 1993; Duaney & Plater-Zyberk, 1993; Nelessen, 1994).
The surfaces are generated in ArcGIS version 9.1 and the output is in robberies per square mile
(Mitchell, 1999).
43 Kernel density maps of the 30, 40, 50 and 60 percent conditions are not shown here but are available
from the author.

Map 4-1: Kernel Density for 30% Time Spent Away From Home

 135

136

Map 4-2: Kernel Density for 70% Time Spent Away From Home

Ripley’s K offers a more formal test of the form of the distribution across versions

and experimental conditions. 44 Figure 4-2 compares the concentration of street

robberies under all five of the experimental conditions to the concentration of the

street network’s nodes, and to a reference distribution describing the amount of

concentration that would be expected under CSR.45 As in the original study, street

nodes are significantly more concentrated then would be expected under CSR (Groff,

Forthcoming-a). Results of the Ripley’s K function indicate that there is a high

degree of concentration in street robbery locations across all five conditions. The

street robbery distribution lines for the Simple (Figure 4-2a) and Temporal (Figure 4-

2b) versions of the model are very similar to the one for street nodes in general and to

each other.

44 The reported Ripley’s K functions are generated using CrimeStat III (Levine, 2005). Following the
original study, no edge correction is applied since approximately three quarters of the perimeter of
Seattle is bounded by water.
45 The CSR K function distribution is generated by using a uniform random number generator to create
100 distributions with the same N as the observed distribution, in this case N=16,035 (Levine, 2005).
A significance level of p < .05 is used. The random distribution generated under CSR is truly random
in that any location can be selected, not just an intersection.

 137

Figure 4-2: Ripley’s K: Distribution of Robbery Events
(a) Simple

-4000

-3000

-2000

-1000

0

1000

2000

3000

21
5

12
88

23
62

34
35

45
09

55
83

66
56

77
30

88
03

98
77

10
95

0

12
02

4

13
09

7

14
17

1

15
24

5

16
31

8

17
39

2

18
46

5

19
53

9

20
61

2

Distance Bins (feet)

L(
t)

Cond 30

Cond 40

Cond 50

Cond 60

Cond 70

Nodes

CSR Nodes Min

CSR Nodes Max

(b) Temporal

-4000

-3000

-2000

-1000

0

1000

2000

3000

215
128

8
236

2
343

5
450

9
558

3
665

6
773

0
880

3
987

7
109

50
120

24
130

97
141

71
152

45
163

18
173

92
184

65
195

39
206

12

Distance Bin (Feet)

L(
t)

Cond 30

Cond 40

Cond 50

Cond 60

Cond 70

Street Nodes

CSR Nodes Min

CSR Nodes Max

(c) Activity Space

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

21
5

12
88

23
62

34
35

45
09

55
83

66
56

77
30

88
03

98
77

10
95

0
12

02
4
13

09
7

14
17

1
15

24
5

16
31

8
17

39
2

18
46

5
19

53
9
20

61
2

Distance Bins (Feet)

L(
t)

Cond 30

Cond 40

Cond 50

Cond 60

Cond 70

Street Nodes

CSR Nodes Min

CSR Nodes Max

 138

In the Simple version of the model, robberies are most concentrated when society

spends 30% of time away from home and the concentration decreases as time spent

away from home increases while the 70% condition is the most clustered for the

Temporal version. Temporal version robberies track the clustering in street nodes

until about a quarter of mile when they become and then remain more clustered at all

distances. The one exception is for condition 50 which exhibits the same level of

clustering as the street nodes at distances less than about one mile and greater than

two miles. The Activity Space K function lines are significantly more clustered than

the street nodes at all distances and under all five experimental conditions (Figure 4-

4c). Unlike the Temporal and Simple versions, there is very little variation among the

individual experimental condition lines for the Activity Space version.

An additional analysis of the distribution of visits (i.e. number of times a civilian

agent is at a node) to separate the clustering in street robbery from clustering due to

everyday travel patterns shows that the patterns for visits and robberies are very

similar across all model versions with robberies exhibiting slightly more clustering

than would be expected based on the network. This provides evidence of the

existence of additional factors, beyond routine travel, that are contributing to the

greater concentration of street robbery events.46

The final hypothesis is that the temporal and spatio-temporal schedules of

civilians while away from home change the spatial pattern of robbery events. It

explores the impact of systematically adding temporally and spatially explicit

components to agent behavior on the spatial distribution of street robberies. Kernel

46 Due to space constraints the kernel density and Ripley’s K results for the analysis of visits are not
included in the paper but are available upon request from the author.

 139

density maps (Maps 4-1 and 4-2) reveal the existence of intra-version and inter-

version differences in the spatial patterns of street robbery at the 30 and 70 percent

conditions. In general, the Simple condition has fewer clusters then the Temporal

version but the clusters represent higher density areas, regardless of the experimental

condition. The location of the densest clusters are in the same general area (e.g. in

and near the downtown) for both versions but the distribution for the rest of the city is

very different. The Simple model has more clusters in the southern part of the city

and the Temporal Activity Space has more in northern Seattle. As the only spatially-

defined version, the Activity Space version has a pattern distinctly different from the

other versions; one that reflects the unchanging activity spaces of the agents in the

model.

Another way to examine the differences in the spatial pattern of street robberies

produced by the addition of time and then time-space to the civilian’s activities is to

use the Ripley’s K calculated earlier but compare the distributions produced by the

model versions at the 30 and the 70 percent experimental conditions (Figure 4-3).47

The street robbery pattern produced by the Activity Space version is significantly

more clustered than the other versions, and than would be expected based on the

street node network regardless of experimental condition. This result is reasonable,

although not predicted; because the Activity Space version specifically restricts

civilians to pre-defined activity spaces for the duration of the model run.

47 Only the 30 and 70 percent graphs are included in the paper. Results from the 40, 50, and 60 percent
conditions are available from the author.

 140

Figure 4-3: Ripley’s K Analysis: Distribution of Street Robberies by Model Version

(a) Condition 30: Society Spends 30 Percent of Time Away From Home

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

21
5

21
47

40
80

60
12

79
44

98
77

11
80

9

13
74

2

15
67

4

17
60

6

19
53

9

21
47

1

Distance Bins (feet)

L(
t)

Activity Space
Temporal
Simple
Street Nodes
CSR Minimum
CSR Maximum

(b) Condition 70: Society Spends 70 Percent of Time Away From Home

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

215
236

2
450

9
665

6
880

3
109

50
130

97
152

45
173

92
195

39

Distance Bins (feet)

L(
t)

Activity Space
Temporal
Simple
Street Nodes
CSR Minimum
CSR Maximum

On the other hand, the pattern of clustering in the Simple and Temporal versions

relative to one another changes depending on time spent away from home. Although

both are more clustered then the street nodes at distances under two miles, the

 141

strength of that clustering varies with experimental condition. The Simple version

exhibits higher levels of clustering at distances under two miles for 30 percent

condition. At 70 percent the results are identical at shorter distances but after about a

mile they two versions switch roles and the Temporal version exhibits greater

clustering because of the smaller activity spaces. Overall, temporal constraints

reduce clustering in the distribution at distances between one-half and two miles but

only in societies in which civilians spend up to half of their time away from home. In

sum, adding spatial constraints produces a much larger effect than adding temporal

ones.

6.6 Sensitivity Test Results

Similar to results for the original model, the new model versions are robust to

changes in parameters and random number seeds (Groff, Forthcoming-a). The

absolute number of robberies increased or decreased depending on the parameter

being varied. However, findings related to RAT’s core proposition remain consistent

across all the tests except two, lending additional support for robustness of the model

even as parameters are varied. First, one of tests varying the random number seed did

produce a significant result for the Activity Space version. Otherwise, the results of

the model are shown to be robust to changes in the random number seed.48 Second,

increasing the time an agent with criminal propensity has to wait to commit another

street robbery made the ANOVA for the Temporal version non significant and

pointed to the importance of timing in the decision to offend. These were the only

changes from manipulating the base model parameters.

48 The numeric results are available upon request from the author.

 142

6.7 Explanations for the Emergent Patterns

Explanations for the findings just described have their roots in the simple rules

governing agent behavior and interaction. The separate influences of temporal and

spatio-temporal schedules and the movement rules of the agents underlie the finding

that time and space each have an effect on the incidence and spatial distribution of

street robbery events stems. Temporal schedules reduce the time agents are ‘at risk’.

Agents with a temporal schedule spend time at their activity nodes which means they

are not vulnerable to street robbery for as much time and they travel shorter distances

each day. These changes to their behavior directly impact the number of times they

end up at a place where a crime might occur (i.e. the number of convergences) and

thus, the rate of street robbery in society. They also change the spatial distribution of

robbery events by making the potential path space of the agents in the Temporal

version smaller.

Empirically-informed spatio-temporal activity spaces in the Activity Space

version of the model increase convergences in two ways. First, they increase the

clustering of agent’s homes, jobs, and activity nodes as compared to a random

distribution. As a result, civilians are funneled along many of the same roads to reach

many of the same areas. Second, the use of a defined activity space embodies the

routine nature of daily travel and its restriction to a potential path area in which

individuals can travel to all the required locations within their time schedule (H. J.

Miller, 1991). Civilians following these predefined paths are by definition then

converging only with other civilians’ paths that physically intersect their own. In this

way, spatially-defined activity spaces act to: 1) concentrate the activities of agents

 143

sharing the same activity space; 2) increase the frequency of convergence of agents in

the model; and 3) increase the deterrence effect of police who are in those high

concentration areas.

Adding a spatially-defined activity space produced results that did not support

RAT’s premise that as time spent away from home increases, crime will increase.

The explanation for this finding is probably in the implementation of the model rather

then the theory itself. Currently, the activity spaces of civilians are unrealistically

consistent which concentrates their interaction to one daily path. While this type of

activity space may be accurate for some small proportion of individuals, accessibility

research indicates there is typically more variety in daily paths (Kwan, 1998; Weber

& Kwan, 2002). As a consequence of this concentrated interaction in the model, the

same civilians with and without criminal propensity meet again and again. As the

civilians with criminal propensity accumulate more wealth than the non-criminal

civilians, especially in situations where there are only two agents (criminal and non-

criminal civilian), no crime will occur. Thus while the frequency of convergence in

the model continues to increase dramatically, the rise in street robberies is much

slower and there are not significant differences as society spends more time away

from home. Adding to the variety of agent paths or increasing the number of agents

in the population might produce a finding consistent with routine activity theory but

must wait for future versions.

7.0 Discussion and Conclusion

This research extends earlier work that presented the case and provided the

method for testing routine activity theory using simulation and found support for the

 144

theory’s main premise that the shift of routine activities away from home increases

rates of street robbery (Groff, Forthcoming-a). The approach used was unique in that

it incorporated all travel behavior and interactions of individuals when usually only

the situations in which a crime occurs are studied. However, the earlier study left

unexamined the temporal and spatio-temporal aspects of routine activities in the

model.

This paper extends the earlier work by creating two additional versions of the

basic model of street robbery based on an existing methodology for ‘situating

simulation’ (Groff, Forthcoming-b). One version adds time schedules to the civilians

that more realistically reflect the actual vulnerability to the crime of street robbery by

restricting their ‘at risk’ status to times they are traveling or participating in an

activity that requires them to be outdoors (e.g. walking in the park, shopping along

the street, etc). The other version defines both the spatial and temporal schedules of

the civilians by having them travel among a set of locations spending the same

amounts of time traveling and at activities as in the Temporal version. In this way,

the current work is able to: 1) test the core premise of routine activity theory that

shifting routine activities away from home increases street robbery; 2) explore the

impact of progressively more complex temporally and spatio-temporally explicit

activity spaces on the incidence of street robbery; and 3) examine the influence of the

first two on the spatial distribution of street robbery events.

The resulting analyses provide strong support for the important role of time and

particularly space-time in the definition of activity spaces. Specifically, routine

activity spaces that include time or time-space produce different quantities of street

 145

robberies with dissimilar spatial distributions across Seattle. In other words, as

expected based on theory, the introduction of temporal and spatio-temporal elements

to the activity spaces of the civilians in the model causes changes in both the

frequency and spatial distribution of street robbery events. However, the simulation

provides inconsistent evidence for the plausibility of routine activity theory; while the

results of the Temporal version support the plausibility of RAT’s main premise, those

from the Activity Space version do not.

Further examination of mechanisms underlying the observed outcomes are key to

achieving a better understanding and deserve further examination, particularly in

terms of model enhancements that would more completely reflect theory about

human behavior in space-time. The following discussion highlights the directions for

future work with the greatest promise for better representing activity spaces in the

model.

Of the many ways in which complexity could be added to the model,

incorporating a more realistic representation of time is perhaps the most intriguing.

Adding time of day would allow for a more fully developed representation of

temporal constraints to be included in the model (H. J. Miller, 2005). Even the naïve

version of time implemented here this research demonstrates that temporal constraints

influence both the rate and spatial pattern of street robberies. Other research provides

the basis for more sophisticated representations of temporal constraints on offender

behavior by illustrating how they are important in shaping the spatio-temporal

patterns of opportunity-based crimes (Ratcliffe, in press). The requirement that an

individual arrive at work at a certain time, the restriction of a lunch hour, the need to

 146

pick up dry cleaning, and to stop at the grocery store before arriving home to cook

dinner; all these tasks constrain the spatio-temporal activities of individuals.

Individuals also have discretionary time (i.e. time not allocated to a task or to travel)

that is important to include in any model. Incorporating time of day would have the

added benefit of enabling the model to reflect more general temporal patterns such as

the fact that more people are away from home during the day and early evening than

during the night time (i.e. when most people are sleeping).

Additional temporal constraints related to mode of transportation and

characteristics of the street network could enhance the notion of ‘at risk’ status.

Individuals who are walking or using public transportation are at greater risk of street

robbery than those in automobiles. Mode of transportation also impacts the distance

that can be traveled in a particular time period which could be included in the model.

The inclusion of speed limits and one-way streets would better provide greater

realism in creating the routes among locations.

Beyond temporal constraints, the representation of activity spaces in general

deserves more attention. The current implementation does not reflect the multi-

layered complexity that represents the human experience and decision-making. For

example, Hägerstrand’s more fully descriptive notion of human behavior in which

people have intentions that they are trying to realize through their behavior and these

future intentions influence present behavior is missing (Hägerstrand, 1975). Nor does

the model include rational choice perspective’s recognition of the role that

‘familiarity’ plays in the decision to commit a crime. These enhancements require the

 147

use of genetic algorithms which enable the agents to have the knowledge of their past

and the experience that comes with such knowledge.

Ideally, activity spaces would be dynamically generated during each day of the

model. This would allow the activity spaces to emerge during the course of a

simulation and become the object of a study. Unfortunately, this strategy would

require that the necessary software classes be developed so the appropriate data

structures could be accessed during model runs. In the interim, there are several

enhancements that can be implemented such as including more agents and generating

multiple activity spaces per agent. Including more civilian agents would increase the

potential for convergence and better reflect the density of the city. By increasing the

number of activity spaces available to agents, the model will better reflect the variety

found in activity spaces. For example, activity spaces are usually different during the

week then on the weekend.

Finally, replication is necessary to improve the external validity of the model.

The testing of different cities with varying street networks and land use patterns

would provide additional insight into the role of the built environment. As it is, this

research develops two new versions of a basic model of street robbery demonstrating

the important role of space, time, and the built environment in structuring activity

spaces which in turn mediate convergences and the crime patterns that result.

More generally, this research demonstrates how geographical perspectives can

inform the spatio-temporal representation of human behavior in a criminological

theory and in doing so advance the body of knowledge in both disciplines. The

research breaks new ground by extending an existing model so that it is capable of

 148

accommodating both the empirically-based activity spaces and the individual-level

interactions necessary to represent crime events. The resulting analyses provide

strong support for the importance of considering time and space when modeling

human behavior. Indeed, progressively adding first temporal and then spatio-

temporal activity spaces significantly changes both the incidence of street robbery

and the spatial distribution of the events. These findings provide evidence for the

importance of including the individual-level, spatio-temporal aspects of human spatial

behavior in crime event models.

 149

Chapter 5: Discussion and Conclusions

This final chapter discusses and presents conclusions regarding the major findings

from the program of work undertaken here. First, the motivation for the research is

briefly explained. Next, the research questions are examined and the major findings

are discussed. The potential limitations of the study are presented in terms of their

impacts on the findings. Theoretical implications of the study are described. The

chapter ends with a discussion of future research plans including approaches to

assessing the results of these types of models.

5.0 Background

The characteristics of human behavior strongly influence where, and with whom,

individuals converge in space and time. A major theory in criminology, routine

activity theory (RAT), recognizes the role of routine activities in bringing together

the other elements necessary for a crime (i.e. suitable target, likely offender and

capable guardian) (Cohen & Felson, 1979). However, the ability of researchers to

empirically test a micro-level theory, such as RAT, has been hampered by the lack of

individual-level data (J. E. Eck, 1995a). Previous tests were also handicapped by the

need for techniques that can accommodate heterogeneous individuals, non-linear

processes and dynamic interaction occurring in space-time.

Simulation modeling provides a framework for addressing these challenges.

Since a simulation involves an artificial society, it negates the need for individual-

level data about activities. Recent developments have integrated ABM and GIS tools

enabling researchers to represent individual-level behavior within its environmental

 150

context. This research examines the core propositions of RAT through the creation of

an ABM/GIS model of street robbery in Seattle, Washington. In doing so, the study

demonstrates how theoretical assumptions can be formalized in an agent-based model

and tested via systematic manipulation of those assumptions to discover if the

theoretically-predicted outcomes match the model outcomes.

5.1 Major Questions and Findings

Three research questions are examined in the study. The first investigates

whether the shift in routine activities away from home increases street robbery. The

second asks whether the spatial distribution of street robberies changes as people

spend more time away from home. The third, explores how the spatio-temporal

structure of routine activities influences the incidence and spatial pattern of street

robbery.

Three major findings emerge from these efforts. First, support for routine activity

theory’s core proposition depends on the type of schedule constraints placed on the

agents. When agents have no constraints on their travel or when they have only

temporal constraints (i.e. the Simple and Temporal versions), the number of street

robberies increases as the agents spend more time away from home. However, when

the agents are assigned spatio-temporally defined activity spaces, the incidence of

street robbery still increases but the differences among the experimental conditions

are not statistically significant. Therefore, the findings provide support for routine

activity theory’s core proposition but not when the agent’s activity spaces are

spatially constrained. This finding also provides evidence of the importance of the

 151

spatial component of routine activity in structuring where and with whom

convergences occur.

The finding of non significance for the Activity Space version has theoretical

implications. It demonstrates that spatial constraints counteract the influence of

increasing time spent away from home. Not completely, since crime continues to

increase with time spent away from home in the Activity Space version. However,

enough to reduce the differences between the experimental conditions and render

them non significant. Thus it is the spatio-temporal etiology of routine activity, and

not just the gross amount of time spent away from home, that underpins macro level

robbery rates.

The implementation of activity spaces in the model is one potential source of

explanation for the lack of significant findings for the Activity Space version. The

maximum of two only potential activity spaces (i.e. when employed and when

unemployed) constrains the spatial extent of agent travel to an unrealistic degree.

Consequently, during any model run specific agents can only converge with the

relatively few other agents whose activity spaces intersect their own. While activity

spaces are somewhat static, it is the degree to which activity spaces are constrained

that is the issue. In the model, the repeated interaction of the same agents quickly

causes the offender agents to gain more wealth than the civilian agents, so that no

crime occurs when only two civilians converge and the offender has more wealth. As

a result, increasing convergences do not translate into higher numbers of robbery.

While this phenomenon is present in all three versions of the model, it is most

pronounced in the Activity Space version. Figure 5-1 shows the precipitous drop in

 152

daily robbery statistics for all three versions. Three potential strategies that may

ameliorate this phenomenon are to: 1) make the wealth distribution for citizens reflect

criminal propensity by assigning offenders lower wealth; 2) increase the number of

civilian agent activity spaces available for agents; and 3) boost the number of civilian

agents in the model.

Figure 5-1: Daily Change in Street Robbery Events

0

100

200

300

400

500

600

1 28 55 82 109 136 163 190 217 244 271 298 325 352

Time in Days

C
ha

ng
e

in
 S

tr
ee

t R
ob

be
ry

Simple
Temporal
Activity Space

The second finding is that the spatial and temporal structures of routine activities

have separate and unequal impacts on the convergence of the elements necessary for

a crime. Consistent with the first finding related to incidence of street robbery, the

spatial distribution also changes as time away from home increases but only for the

Simple and Temporal versions of the model (i.e. when there are no spatial

constraints). The maps of kernel density show changes in the locations of high

density areas as the time away from home increased and the Ripley’s K results

indicate changes in the clustering of street robbery across experimental conditions.

 153

However, additional time spent away from home in the Activity Spaces version

produces only small changes in pattern but large increases in the intensity of

clustering. Thus, spatially constrained activities that reflect opportunity structures in

a community are the source of generally stable hotspots that increase in intensity as

time spent away from home increases.

Thirdly, temporal and spatio-temporal constraints have a differential influence on

the incidence of street robbery. As compared to the Simple version, in which agents

are either at home or not at home, the addition of temporal schedules for civilian

agents reduces the incidence of street robbery by about 77% and changes the

distribution of street robbery events. This result provides evidence in support of

Ratcliffe’s (in press) hypothesis that temporal constraints are a major source of

observed patterns of opportunity-based crime. When spatially defined activity spaces

are added to the model and the temporal schedule for each agent is held constant, the

separate and even larger impact of space is clearly demonstrated. Spatio-temporally

constrained schedules significantly increase the incidence of street robbery as

compared to agents with a temporal schedule only and radically change the

distribution of street robbery events. The clustering in the spatial distribution of

robberies is higher than the other versions and more linear in nature due to

concentration along the major travel routes among homes, jobs and activities.

These findings regarding differences by type of schedule constraints are

consistent across all five experimental conditions. In other words, regardless of time

spent away from home, the type of schedule (i.e. simple, temporal or spatio-temporal)

produces significantly different numbers and patterns of street robbery. Thus, the

 154

impact of temporal and spatio-temporal constraints on activity is robust with regard to

time spent away from home.

There are several potential explanations for these findings. The changes in

incidence and pattern could be related to the amount of time the agents are ‘at risk’.

The addition of a temporal schedule reduces both the time that civilian agents are ‘at

risk’ of being victimized and the time that civilians with criminal propensity have to

offend. In this way, temporal schedules constrain the activities of both offenders and

non-offenders and directly influence the number and pattern of convergences.

Differences in time ‘at risk’ do not explain the increase in street robberies between

the Temporal and Activity Space versions because the temporal schedule is held

constant between the two.

The explanation for this finding lies in the clustered nature of human activity that

is reflected in the Activity Space version of the model. The homes of civilian agents

are concentrated in certain areas, they travel to jobs that are clustered in other areas

and they participate in activities that have yet another, but still clustered, distribution.

The road network acts to amplify this result in that agents traveling to the same area

tend to be routed along the same major roads. In this way, the implementation of

spatio-temporal routine activity spaces following time geographic principles acts to

increase overlap in activity spaces which in turn, increases the frequency of

convergence. One interesting side effect of this increased concentration is that police

agents who are randomly assigned to patrol in those high concentration areas are able

to deter more crimes than when civilian agents are only temporally constrained but

randomly distributed (as in the Temporal version of the model). This finding has

 155

implications for achieving a better understanding the relationship between police

patrol strategies and crime.

5.2 Significance of the Research

This examination of how the spatio-temporal nature of human activity influences

the incidence and distribution of street robbery events breaks new ground on several

fronts both theoretical and methodological. Theoretically, the research provides

discoveries stemming from the ability to test both the micro and macro aspects of

routine activity theory simultaneously and to explicitly examine the role of temporal

and spatial constraints. First, the model runs confirm that if the number of offenders

and their motivation is held constant, as people spend more time away from home, the

number of street robberies will increase. The differences among the experimental

conditions are significant in both the Simple and Temporal versions, but not for the

Activity Space version. In other words, when the core propositions of routine activity

theory are implemented in an artificial society, there is mixed support for its core

proposition and that support hinges on the spatio-temporal aspects of human

behavior. Thus the second discovery is that both temporal and spatial constraints play

a key role in determining the incidence of street robbery and should be included in

future empirical studies that aim to tease out the role of routine human behavior in

robbery events.

Third, the findings from the research demonstrate the importance of the street

network and the distribution of opportunities in structuring travel and street robbery.

When the activity spaces of the agents reflect the distribution of opportunities, the

clustering of the spatial distribution increases dramatically confirming the important

 156

role of opportunities in shaping spatial patterns of street robbery. These findings lend

credence to the inclusion of ‘place’ in later formulations of routine activity theory

(Felson, 2001;2002).

Methodological advances include the following. First, the research provides a

well-documented example of how a simulation model offers a unique opportunity to

formalize theories from multiple disciplines and then compare the theorized outcomes

to the model outcomes. Specifically, the resulting effort creates a formal

representation of routine activity theory that can be tested and enhanced in an

artificial environment before the expense of empirical data analysis is undertaken.

The agent activity spaces developed for this research provide the foundation

subsequent, richer representations of activity spaces. In addition, this work facilitates

future research by providing written and copious documentation of the model

assumptions; a resource that is necessary for replication and testing. In sum, this

effort fills the need identified in previous research for the publication of example

models with documentation (Axelrod, Forthcoming).

Second, the research demonstrates the value of ‘situating’ simulation. A

methodology is presented to develop a representative society that interacts in a real

cityscape. In this case, Seattle, Washington provides the environment in which the

agents live their lives. Activity spaces are created based on the distribution of

population, housing, recreation, retail and services in the city; thus, effectively

incorporating the influence of land use on the activities of agents. In addition, agents

can move along the vector GIS streets of Seattle. This enables researchers to use their

vector geographic data sources directly without having to convert to a grid-based

 157

system. Together these advancements make it possible to compare the model

outcome under three different assumptions of spatio-temporal activity constraints.

Under the first assumption the agents move randomly, under another they move

randomly but have a temporal schedule and under a third they have both spatial and

temporal constraints on their activities. In this way, the research design enables the

impact of time to be tested separately from the impact of space.

Third, the computational laboratory framework enables the first test of routine

activity theory based on individual-level data. Although conducted using

representational agents rather than empirical data, the computational laboratory

framework permits a high level of scientific rigor to be applied to design and testing

of the model and the analyses of results. The result is a simulated laboratory

environment in which the emphasis is on increasing our understanding of the

processes behind observed patterns. Different aspects of the model can be changed

while all others are held constant in order to isolate, as much as possible, the impact

of that one variable from all others. In general, the method used in this research

represents an interim testing ground between the verbal formulation of the theory and

the testing of theory with empirical data. While these tests do not result in a

determination of whether a theory is empirically valid, they do provide a way to

strengthen the theory prior to empirical testing. A process that has been described in

the literature as ‘elaborating’ (J. Eck, 2005) or ‘experimenting’ on theories (Dowling,

1999).

 158

5.3 Assessing the Model Results

As stated earlier the goal of this research was to operationalize theoretical

assumptions and then test whether the results generated from an artificial society

match what routine activity theory would predict. However a related question

concerns strategies for assessing the validity of ABM-produced results. One

approach is to compare the distributional properties of the rates and patterns of street

robbery to empirical data. This approach depends on being able to obtain reliable

empirical data. In this case, the required data would be official crime data on street

robbery. The reliability of official crime data is questionable and varies by type of

crime (Gove et al., 1985; Kerlinger & Lee, 2000). Violent crimes such as robbery are

more likely to be reported to police by the victim and to end up as an official crime

report. However, victims who are engaged in illegal behavior themselves are less

likely to report being robbed. The shortcomings of official crime data lend credence

to assessing validity by comparing the characteristics of the distributions produced by

the model with ones produced from empirical data.

Both spatial and aspatial characteristics of distributions can be used to compare

model and empirical results. A variety of studies have found that the spatial

distribution of crime is clustered across space (P. L. Brantingham & Brantingham,

1999; Sherman, Gartin, & Buerger, 1989; D. Weisburd & Green, 1994; D. L.

Weisburd, Bushway, Lum, & Yang, 2004). Most frequently, a relatively few places

are responsible for a large proportion of the crime. In addition, these studies have

demonstrated the existence of hotspots (i.e. clusters of crime locations) that often

persist over time. In line with these well-known characteristics of the spatial

 159

distribution of crime, the model results produced by this research show evidence of

hotspots and the concentration of robberies at a relatively few locations.

Aspatial characteristics can also be used to compare model results with empirical

ones. These comparisons could include characteristics such as the rate of street

robbery per population, rate of repeat victimization, measures of offenders as victims

etc. While empirical street robbery data were not available for Seattle, one model

result matched that of empirical studies. Just as in real life, criminals in the model

were victimized at a higher rate than non-criminals (Deadman & MacDonald, 2004).

When model results share characteristics with empirical ones, the credibility of

the model increases. Consistent empirical and model-produced findings demonstrate

that the simulated mechanisms produce distributions that share characteristics with

empirical ones. However, matching distributions is not a sufficient criteria for

validation since a different model could also produce comparable patterns (Troitzsch,

2004). In sum, establishing model credibility is an incremental process that involves

multiple comparisons and is not an exact science.

5.4 Possible Limitations of the Research

There are several potential limitations to the research, some stem from the use of

ABM and others are related to the implementation model created and the reliance on

one site’s data. Related to ABM in general, the meaning of findings from an artificial

society inspires debate. Since the goal of this research was to explore the

assumptions of routine activity theory, the findings demonstrate to what extent the

theory is plausible. This study provides evidence in support of routine activity theory

 160

but additional empirical testing is required to determine the empirical validity of the

theory.

Another characteristic of agent-based models is that their findings are constrained

by the assumptions and rules on which the model is based. This study relied on

empirically-based parameter values whenever possible to strengthen their validity. In

addition, the study used sensitivity tests to characterize the impact of parameter value

changes on the model outcomes, and to determine whether the findings from a single

run are representative (Axelrod, Forthcoming; Gilbert & Troitzsch, 1999). To test the

robustness of the research finding five different parameters were systematically

varied. Only one, time an offender had to wait before committing another robbery,

changed the experimental results and then only for the temporal version of the model.

Four other input parameter values were tested but none of those changed the findings.

Additional sensitivity testing was conducted by manipulating the random number

seed four more times. The model findings were robust across random number seed

tests with one exception; under one random number seed the Activity Space version

became significant.

Agent-based models rely on random numbers and random number distributions to

provide a stochastic element to the simulation. Similar to the choice of parameter

values, the choice of distribution (e.g. Uniform, Poisson, Normal, etc.) and the

moments of the distribution (e.g. mean, standard deviation etc.) have implications for

model results. In this study, the wealth distribution demonstrated a large influence

over the model’s time to equilibrium. The model assumed wealth is distributed

normally across all civilians, quickly producing a society in which the offenders have

 161

more wealth then the civilians so the offenders are victimized at a higher rate.

Subsequent experiments with a two-tiered wealth distribution (one for civilians with

criminal propensity and another for those without) under the Simple version of the

model find that it lengthens the time to equilibrium and reduces repeat victimization

among offenders but further study on this aspect is needed.

Two limitations of the model as implemented are related to the characterization of

civilian agent activity spaces. First, software limitations forced the creation of static

rather than dynamic activity spaces for the Activity Space version of the model. As

discussed in the findings, this severely limits the variety of travel that agents

undertake during a model run to only one of two routes and in so doing, concentrates

agent activity and limits convergences to the same set of agents. Because of this

limitation, the findings regarding Activity Space version should be interpreted with

caution.

The random movement in the model has two limitations. First, the agent only

considers the adjacent nodes so they only can move one node per minute. Second,

there is no prohibition against back-tracking by agents so they can move back to the

node they had occupied in the previous minute. Together these implementation

decisions may lead to smaller, less realistic activity spaces for agents that are moving

randomly. Future implementations should consider giving agents who are moving

randomly the same ability to move more than one node as the agents who have

directed movement. The implications of these shortcomings are revisited in the

suggestions for extensions to the model.

 162

Finally, the generalizability of the findings is limited by the nature of the data and

the reliance of a single site. The single site analysis was appropriate for an initial

effort such as this one but that decision restricted the ability to make statements about

the plausibility of model assumptions in cities with different street networks and

distributions of jobs, homes, and activities. In addition, the base data for the

distribution of jobs were for larger geographic units (i.e. zip codes) than those for

homes and activities (i.e. blockgroups). The validity of the assumption of

homogeneous distribution of data across each unit becomes weaker as units grow

larger which in turn, decreases the potential for the allocation of job locations to

agents to reflect the actual distribution of jobs within each zip code. This is a

relatively minor limitation since the goal is to distribute job locations of agents to

areas proportionately, not exactly.

5.5 Next Steps

As far as enhancements of the current model, a few of the directions highlighted

by the findings of the model are discussed first and then a couple of other promising

directions are noted. The research endeavor reveals three ways in which the model

could be enhanced. One is to provide civilian agents with a greater variety of activity

spaces, which could be done by simply creating a more activity spaces for use in the

model. A second is to increase, as much as possible given limitations of computing

power, the number of civilian agents in the model to better reflect the potential for

convergence and bring the civilian/police ratio closer to what is found in Seattle. A

third would assign agent’s wealth based on a two-tiered distribution with its roots in

the mean income distribution of Seattle. Civilian agents with criminal propensity

 163

would get a lower wealth distribution than agents without criminal propensity. In

addition, pay would be in proportion to wealth for agents who are employed. These

changes would better reflect the existing wealth distribution and how wealth figures

into the decision to commit a street robbery. After all, reports of street robbers who

commit robbery to make their mortgage payment are rare. Preliminary tests

conducted with different wealth distributions demonstrate that a two-tiered wealth

distribution reduces the time to equilibrium in the model.

Including situational aspects of the crime event probably represents the most

intriguing direction for enhancements of the model. The theoretical basis for

including situational characteristics can be found in later formulations of routine

activity theory (J. E. Eck, 1995a; Felson, 1986a;1986b;1987) and under rubric of

environmental criminology (Paul Brantingham & Brantingham, 1991 [1981]). More

recent additions to routine activity theory include a refined concept of guardianship

that relies on two additional elements intimate handlers (Felson, 1986a) and place

managers (J. E. Eck, 1995b) as well as a recognition of the importance of place

characteristics and the distribution of population (Felson, 1986b;1987) in the

patterning of crime. Empirical research within these theoretical frameworks has

generated a large body of knowledge about the characteristics of places and situations

that are related to crime.

The final example of future work discussed here (but only one of many potential

ones) is to give the police realistic patrol strategies and measure the relative

effectiveness of each. For example, under directed patrol, the police agents would

have particular areas to which they are assigned to patrol. Police could not go outside

 164

these areas. The outcome crime patterns using this strategy could be contrasted with

a place-based or hot spots policing strategy (Braga, 2001; Sherman et al., 1989;

Sherman & Weisburd, 1995; D. Weisburd, Maher, & Sherman, 1992). These police

agents would be assigned to small areas of Seattle at which the concentration of street

robbery is the highest (based on model output). Changes in the incidence street

robbery could be observed. In addition, the geographic phenomenon of displacement

and diffusion could be investigated in depth. These topics are of great interest to both

geographers and criminologists.

In sum, this investigation creates as many questions as it answers. Interesting

findings that were not directly related to the hypotheses must wait for elaboration in

later analyses. For instance, some agents with criminal propensity never commit a

street robbery while others commit hundreds. What are the differences between these

agents? In the same vein, not all civilians are victims of street robbery yet others are

repeatedly victimized. Further, many of those repeat victims are agents with criminal

propensity, a finding that is in line with ethnographic studies that indicate criminals

are very often victims depending on the situation.

To end, the current effort introduces a new way of strengthening theories through

testing in an artificial society prior on empirical tests. This method shows great

promise for investigating a multitude of interdisciplinary research questions that cut

across the social sciences.

 165

Appendices

Appendix 1: Street Robbery Model Documentation: Simple Version

Street Robbery Model Documentation: Simple Version

This documentation explains the Street Robbery Simple Model from a programming
perspective following guidelines for sharing simulation research in Axelrod
(Forthcoming). A general description of the model is provided in the main text. The
theoretical basis for the model is provided in Groff (Forthcoming-a). Details on the
implementation of agent movement on a vector network are in Groff (Forthcoming-
b). The model is created in a flavor of RepastPy called Agent Analyst.

1. REPAST PY AND AGENT ANALYST
RePast Py was developed by Argonne National Laboratories to provide a Python-
based syntax for rapid model development. The software uses a hybrid language
dubbed Not Quite Python (NQPY). The language uses Python-syntax to access Java
classes. Agent Analyst is an extension to RePastPy that can be used as a toolbox in
ESRI’s ArcGIS software. Agent Analyst provides the ability to use data from a
geographic information system (GIS) in agent-based models. Public releases of final
versions of software are available at http://repast.sourceforge.net/download.html. For
general information on RePast please see http://repast.sourceforge.net/index.html.
The Street Robbery Model presented here was developed with a beta version of
Agent Analyst which utilized Java 1.2.4_06, Python 2.3 and ArcGIS 9.1. The
documentation assumes some familiarity with these languages and software products.

2. OVERVIEW OF THE MODEL
The Street Robbery Simple model is based on routine activity theory (RAT) (Cohen
& Felson, 1979) and creates a simulation of how an individual agent’s decisions on
whether or not to commit a street robbery translate into macro-level crime patterns.
RAT identifies four elements necessary for a crime to occur. Specifically, the routine
activities of individuals determine which individuals are at the same place, at the
same time. For a crime to occur there has to be a motivated offender, a suitable target
and the lack of capable guardians. Each of these elements is represented in the
model. A series of experiments are conducted to test whether the outcomes from the
model match what the theory predicts (i.e. whether crime will increase as people
spend more time away from home). This prediction is tested by systematically
changing the amount of time that the society of agents spends away from home. For
example, in the first of five conditions agents spend 30% of their time away from
home. The results from this model are compared to societies in which agents spend
40%, 50%, 60%, and 70% of their time away from home.

 166

http://repast.sourceforge.net/download.html
http://repast.sourceforge.net/index.html

There are two types of people in the model, civilians/citizens and police/cops. 49
Civilians have two characteristics, wealth and criminal propensity. Two-hundred of
the one thousand civilians in the model are assigned criminal propensity; they
evaluate each situation for the potential to commit a street robbery considering the
level of guardianship (formal and informal) and the suitability of the target. Civilians
with criminal propensity can take on the role of offender, target, or informal guardian
in any situation; while those without can only play the roles of target or guardian.
Police have only one role, formal guardians.

The model uses empirical data to inform the movement of agents. All of the agents in
the model travel randomly. Citizen agents start at and remain at home for a set period
and then begin traveling randomly for the rest of each day. They begin the next day
at the ending point of the previous day. Police agents travel randomly without
stopping. Figure 1 provides a graphical view of the general data flow. Data
describing the street nodes and the neighbors of each node are added into the Street
Robbery model and used to support agent movement on Seattle’s street network.

Figure 1: Data Flow

There is one main model and four classes of agents in the Street Robbery Model.
Three of the classes consist of generic agents – cops, citizens and active nodes. One
class is made up of vector agents, places. Vector agents have an inherent spatial
property that is needed in the simulation, generic agents do not. Each of the classes
has a set of actions, a schedule that controls when the actions run, and a set of fields.
The actions control a variety of functions necessary to the running of the model
including agent initialization, agent movement, and agent decision-making. The
actions can be scheduled to run at each model tick, at a specified interval, or just once
during the course of a model run. The fields contain the data that are available to

49 The terms civilian and citizen describe the population of the city who are not police/cops. The
general term describing the population was changed to civilian after the program was written and the
code has not been changed to reflect that evolution. The same situation is true for the use of the terms
police and cop both of which refer to law enforcement officers.

 167

describe the members of each class. There is also a Sequence Graph that is used to
graphically display the number of robberies as they occur during the model run.

3. MAIN MODEL AND AGENT CLASSES
There is one main model and four classes of agents in each of the versions (Figure 2).
Three of the classes consist of generic agents – cops, citizens and active nodes. One
class is made up of vector agents, places. Vector agents have an inherent spatial
property that is needed in the simulation, generic agents do not. Each of the classes
has a set of actions, a schedule that controls when the actions run and a set of fields.
The actions control a variety of functions necessary to the running of the model
including agent initialization, agent movement and agent decision-making. The
actions can be scheduled to run at each model tick, at a specified interval or just once
during the course of a model run. The fields contain the data that are available to
describe the members of each class.

Figure 2: Street Robbery Model Classes

3.1 The Main Model
The main model is called StreetRobSimple. It has a display name of Street Robbery
Simple. The main model contains all the actions for the initialization of the model.
Each of the actions is listed and their function is explained. Fields that are in all
capital letters are static/global variables that can be called from anywhere in the
model. The main model is also where all the random number distributions are created
so they can be called during the appropriate parts of the model run. Please see Figure
3 for a graphical representation of the order of execution.

 168

Figure 3: Order of Action Execution

Actions:

initAgents()
Main action that calls other actions to initialize the agents. This is the first
action to run in the model. It calls the following actions:
writeModelRunData(), initModel(), initCitizensRandom(),
createCitizenTravelOutputFiles(), setupPlaces() and initCops(). Specifies
a random number seed and creates the uniform random number
distribution with the specified seed. The action also creates the street
message display function (that is currently not used).

updateDisplay()
Changes the display in ArcMap. The action is currently scheduled to be
called every ten ticks.

writeAgents()
This action writes the agent values from the place class to the shapefile.
The action is currently scheduled to be called every ten ticks and runs
before the updateDisplay() action. The symbolization settings are created
in the properties of the strnodes2 layer in ArcGIS. The same shapefile is
added into the .mxd file twice; once to symbolize the total robberies at a
place, another time to symbolize the total number of visits to a place.

 169

setupPlaces()
The primary function of setupPlaces is to initialize a hashmap and identify
the neighbors of each place for random movement. First, a hashmap is
created to store a list of all the places with strnode-id as the key. Next, the
action reads the nodeNeighbors.csv file and associates the set of neighbors
with the correct Place (i.e., it populates the field myNeighbors in the Place
class).

showMessage()
The showMessage() action enables the display of custom messages to an
output window.

incrementModel()
This action is scheduled to execute at every tick of the model. The action
does the following: 1) increments model counter; 2) calls the
writeOccupiedNodes() and writeCitizenInfoPaths() actions 3) calls
decideRob(); and 4) clears the agent list associated with the ActiveNode
class

initModel()
The initModel() is called by initAgents() and sets values for constants and
static variables in the model some of which are parameters and can be
changed through the RePast GUI at model run time.

decideRob()
Contains the code to evaluate who is at the occupied nodes and then
decide whether a crime should occur. First, the action checks to find out
which agents are at a streetnode by using the ActiveNodes class. Next, the
presence or absence of official guardianship (in the form of a cop) is
evaluated. Then the presence of an offender is evaluated (list of agents at
the node is shuffled so the same agent is not evaluated first each time and
if there are two offenders at a node, each has a random chance of getting
to decide to commit a crime). Only nodes with two or more agents and an
offender are evaluated as far as the actual decision to commit a crime.
Program also takes into account whether the agents at the node are ‘at
risk’ (which is set in Citizens.step()). If a crime occurs, the action changes
the following field values: victim and offender wealth, number of
victimizations and total robberies at the place. This action contains a ton
of commented out code that can be used for debugging and understanding
the operation of the model. The decideRob() action is called by
incrementModel().

writeOccupiedNodes()
This action writes out the distribution of agents across street nodes for
diagnostics and data analysis. The action is called by the
incrementModel() action at every tick (currently commented out).

 170

However, it could be written out less frequently by scheduling the action
instead.

initCops()
Creates cop agents and assigns them to a strnode (number) and a location
(Place). Action uses a uniform distribution to select the nodes on which to
place the cops at the start of the model.

resetAgentsDaily()
At end of the model day, all agents are reset to be back at home so they are
at an activity node (home), not at risk and not moving. Action is in
schedule to run at an interval of 1,440 (one model day). Although the
fields referring to time at activities are vestigial (e.g. timeMain, timeRec1
etc.) they remain because they are written out in other places and would
require significant effort to remove.

createCitizenTravelOutputFiles()
Creates two different types of output files to which citizen data can be
written. One creates a unique file for each citizen agent to which output
can be written by the writeAgentInfoFiles() action (output/citizenX.csv)
(not used). The other type of file is a single file to which data can be
written at specified intervals to monitor societal-level citizen
characteristics (output/citizenChar.csv) and is very helpful in tracking
model output. This file is written to by dataRecorder().

writeCitizenTravInfotoFiles()
Uses the files created by createAgentOutputFiles() and writes out
information about the individual agents at different points in the model
(not currently called).

writeModelRunData()
This action creates a log file that can be used to capture messages and
critical statistics during each model run.

writeStatistics()
This action captures the final field values for citizen agents pertaining to
activity spaces and crime in a single file. Writes out the aggregate time
spent at home, main, rec1, rec2, travel, and exposed; the assigned time to
spend at home, main, rec1, rec2, travel; and the Total number of offenses
and victimizations. These same statistics are written to individual agent
files by the createCitizenTravelOutputFiles() and
writeCitizenTravInfoFiles() actions. The action writes to
output/statistics.csv which is written one time at end of simulation and is
very helpful for understanding victimization, offending and wealth for
each agent.

 171

dataRecorder()
This action takes the place of the data recorder that I could not get to work
in the model. It records variables that change for society as a whole
during the model run such as: number of unemployed agents, average
wealth, robbery rate, total victims, total repeat victims, total offenders,
total repeat offenders, percent exposed, percent traveling, and number of
active offenders. Writes to output/citizenChar.csv

initCitizensRandom()
Sets criminal propensity and wealth characteristics, and assigns values to
the time to stay away from home fields using a random normal number
distribution.

writeFinalAgents()
Action writes the final shapefile out to the output folder.

writeCitizenInfoPaths()
This action writes out each node visited by an agent during the course of
the simulation to a single file. Using Tracking Analyst, the file can be
‘played back’ to follow the path of the agent. Additional analysis can also
be conducted on the size and shape of the agent’s random activity space.

Fields:

messageDisplay - uchicago.src.simbuilder.util.MessageDisplay, displays
messages while model is running. Parameter

modelStep – integer, counter that keeps track of model steps, 1 minute steps
MODEL_HOUR – integer, number of steps in an hour, 6 x 60 = 360 steps in

an hour. Default value = 60.
MODEL_DAY – integer, number of steps/minutes in a day, 24 x 360 = 8,640

steps = 1,440 minutes in a day.
MODEL_WEEK – integer, number of minutes in a week, 7 x 1,440 = 10,080

minutes in a day; 7 x 8640 = steps in a day.
MODEL_YEAR - integer, number of minutes/steps in a year, 365 x 1,440 =

525,600 minutes in a year; 365*8640 = 3,153,600 steps
SOCIETAL_TIMEAWAY – double, Default value = .70,
totRob – integer - Default value = 0, Cumulative number of robberies in the

model run. Parameter
placeMap – java.util.hashmap – hashmap of strnode-ids
AGENTS – integer – Default value 1000, total number of agents in the model.

Parameter
totDeter – integer, Default value = 0, total number of robberies deterred by

presence of cop for the entire model run. For this to increment there had
to have been more than one agent and a criminal agent at the node.

totIntersect – integer, total times there were more than two agents at a node
and a criminal. Represents the number of potential crime situations and is
a running total for model run.

 172

LOG_FILE – java.lang.string – file name to which data are written
REPEAT – integer, default value is 60-time a criminal has to wait before re-

offending. Parameter
MIN_GUARDIANSHIP – integer, contains minimum amount of random

error in the perception of guardianship by the criminal agent, default value
is -2. Parameter.

MAX_ GUARDIANSHIP – integer, contains maximum amount of random
error in the perception of guardianship by the criminal agent, default value
is 2. Parameter.

MIN_SUITABILITY - integer, contains minimum amount of random error in
the perception of target suitability by the criminal agent, default value is -
1. Parameter.

MAX_SUITABILITY - – integer, contains maximum amount of random error
in the perception of target suitability by the criminal agent, default value is
1. Parameter.

NUM_PLACES – integer, number of street intersections in the model.
COPS – integer, number of police agents in the model. Parameter
WEALTH_MEAN – integer, mean of the wealth distribution for all agents in

the model. Parameter.
WEALTH_SD – integer, standard deviation of the wealth distribution for all

the agents in the model. Parameter.
SEED – integer, random number seed. Parameter.

Actions that are in Schedule

Every Tick:
Citizen: step
Cop: step
incrementModel

At Interval:
Tick 20,160:

payCitizens
Tick 1,440:

dataRecorder
 writeStatistics

At:
Tick 525.600:

dataRecorder
 writeStatistics

End:
Data Recorder: dataRecorder: record
Data Recorder: dataRecorder: write

Other actions that I have scheduled in the past:
writeAgents – at interval of 20 ticks
updateDisplay – at interval of 20 ticks
writeCitizenTravInfoFiles – at interval of 40 ticks

 173

resetAgentsDaily - at interval of 1440 ticks
writeFinal – called by incrementModel() at model end

3.2 Vector Agents
There is only one vector agent class in the simulation and it consists of the set of
places (street intersections) in Seattle. To clarify, each street intersection (also called
a street node) is a place in the model. There are 16,035 places in the model and they
exist in the shapefile called strnodes2.shp that is a point file. This class contains the
geographic information about the distribution of agents and robberies (i.e., where the
agents and the robberies are located in Seattle).

Name: Places
Group Name: places

Actions:

None.

Shapefile fields:

ARC_ - integer, internal arc-id used by ArcGIS
STRCL_ - integer, internal node number used by ArcInfo
STRCL_ID – integer, node number used in the model
citiStart – integer, node at which a citizen agent starts the simulation
copStart – integer, node at which a police agent starts the simulation
crimStart – integer, node at which a civilian agent with criminal propensity
starts the simulation
the_geom – com.vividsolutions.jts – geometry of point
totPrevent – integer, total number of potential crime situations in which a cop
prevented the crime at a node that would have been committed otherwise
totalRob – integer, total number of robberies at a node
totalVisit – integer, total times any agent visited a node

Class Fields:

strcl_ - integer, street node number
myNeighbors – java.util.ArrayList – list of nodes adjacent

Actions that are in Schedule

None

3.3 Generic Agents

Overview of Generic Agents
There are three generic agent classes in the model, citizens, active nodes and cops.
These classes are not inherently spatial in nature but through object-oriented
programming, the members of the classes are associated with members of the
Place class. Each of the generic classes is described in this section.

 174

Name: Citizen
Group Name: citizens

The citizen class contains all the citizen agents in the model. One of the
interesting facets of this implementation is that citizen agents with criminal
propensity and those without are modeled exactly the same as far as movement,
initial wealth, and pay. The only characteristic that differs is the presence of
criminal propensity and only those citizens who have criminal propensity evaluate
criminal opportunities and are able to make the decision to offend. All citizen
agents can be victims of street robbery.

Actions:

step()
This action changes the atRisk, atActivity and moveStatus variables
depending on whether an agent is at home or traveling. Dynamically
creates the ActiveNode class with each step. Only agents at ActiveNodes
are evaluated during the decideRob() routine.

payCitizens()

Pay citizens who are employed every two weeks.

Fields:
placeNode – Place, associated with vector group of Places
name – string, name of the agent
home – integer, home node of agent
main – integer, work, school or other significant activity node, this value

reflects current employment status (emp or unemp)
rec1 – integer, one activity node, this value reflects current employment status

(emp or unemp)
rec2 – integer, another activity node, this value reflects current employment

status (emp or unemp)
currentNode – integer, holds the strnode_id of node the agent is occupying
criminalPropensity – Boolean, whether or not an agent thinks about

committing a crime, default value=false.
timeHome – integer, minutes spent at home
timeMain – integer, minutes spent at work
timeRec1 – integer, minutes spent at recreation one
timeRec2 – integer, minutes spent at recreation two
timeTraveling – integer, minutes spent traveling among activity nodes

(assigned as part of activity space)
totTimeExposed – integer, cumulative time spent traveling and at activities

taking into account changes in employment (counter value)
atActivity – Boolean, true= stationary, false = moving, default value = true
atRisk – Boolean, true = vulnerable to being victimized, false = safe, default

value = false.

 175

timeCounter – integer, keeps track of the cumulative time at an activity but is
reset when activity type changes or agent begins to travel. Default value =
0.

wealth - integer, the amount of wealth an agent has
position – the position in the pathNodes array that an agent is occupying
moveStatus – boolean, true = traveling, false = not traveling, default value =

false
occupiedNode – ActiveNode, each of these nodes have at least one civilian

agent on them.
empHome – integer – the home node for an agent while employed
empMain – integer – the main node for an agent while employed
empRec1 – integer – the first recreation node for an agent while employed
empRec2 – integer – the second recreation node for an agent while employed
unempHome – integer – the home node for an agent while unemployed
unempMain – integer – the main node for an agent while unemployed
unempRec1 – integer – the first recreation node for an agent while

unemployed
unempRec2 – integer – the second recreation node for an agent while

unemployed
unempPathNodes – java.util.ArrayList – the list of nodes that an unemployed

agent traverses during the course of a day
empPathNodes– java.util.ArrayList – the list of nodes that an employed agent

traverses during the course of a day
changeEmpStatus – Boolean, true = change the employment status, false= do

not change employment status, default value = false
numVict – integer, number of times an agent get robbed, default value is 0
numOffen – integer, number of times an agent commits a robbery, default

value is 0
totTimeTraveling – integer – cumulative travel time even with employment

changes (counter)
totTimeExposed – integer – cumulative ‘at risk’ for street robbery (i.e. not at

home)
timerHome – integer – cumulative time spent at home over the course of the

model run
timerMain – integer – cumulative time spent at main over the course of the

model run
timerRec1 – integer – cumulative time spent at rec1 over the course of the

model
timerRec2 – integer – cumulative time spent at rec2 over the course of the

model
timerRepeat – integer – cumulative time spent unable to offend until the

REPEAT value is reach
location – Place, is the street node object as a place
strnode – integer, holds the strnode id number
employmentStatus – boolean, employed = true and unemployed = false.

Default value =true.

 176

Actions that are in Schedule

step – at every 1 tick
payCitizens – at interval of 20,160 ticks

Name: ActiveNode
Group Name: activeNodes

The ActiveNode class exists as a computational device to avoid having to check
all the places at each step. At each step, the nodes where citizens and cops are
located are associated with the ActiveNode class. This limits the maximum
number of nodes that would have to be checked to 1,000 (i.e. the maximum
number of nodes if each agent was at a unique node) instead of 16,035.

Actions:

None

Fields:
strnode – integer, has the node number of the agent
agentList – java.util.ArrayList, has the list of agents at the node

Actions in the Schedule

None

Name: Cop
Group Name: cops

The Cop agent class is used to increase the risk of committing a crime (i.e.
increase the guardianship at a place). Cops cannot be victimized nor can they
commit a crime. Their movement patterns are random. They move from their
current place to a randomly chosen adjacent place at every model tick by
consulting the myNeighbors field in the Place class which lists all the neighbors
for their current node.

Actions:

step() –
First the action gets the list of all the places in the Place class. For each
node that has a cop, the list of neighbor nodes is shuffled and then the cop
is assigned to the first position in the node list. The strnode and the
location fields are changed to reflect the cop’s new position. The location
field is a Place object which allows the decideRob() action to see if there
are cops at the active node. Cops move last in each tick.

Fields:

strnode – integer, has the node number
location –Place, is the street node object as a place

 177

Actions in the Schedule

step() – runs at every 1 tick.

3.4 Other Model Components
A sequence graph is included that tracks the number of times a street node is visited
by any agent, the number of times a robbery occurs on the node and the number of
times a robbery is deterred by the presence of a cop.

Name: _Tracking
Title: Activity Graph

Series:

totalRobberies – cumulative number of robberies at a node
totalDeterred – cumulative number of robberies prevented by a cop at a node
totalIntersect - cumulative number of times more than one agent is at a node

Schedule:
Update of graph is run on every 100 ticks.

3.5 Random Number Distributions
The use of robust random number generators (RNGs) is essential to producing high
quality, scientifically defensible results. This simulation uses the Mersenne Twister
RNG for all the random numbers in the model. Each of the random number
distributions used relies on the same seed. The following section describes all the
random number distributions used in the model, how they are created and which
action calls them.

Actions That Use RNG’S

initCitizens()

Uniform random number distribution that is used to choose subsets of agents from the
totals set for criminal propensity, employment status, number from between 0 and the
number of agents in the model. Random.nextIntFromTo(0,self.NUM_Places - 1)

Normal random number distribution that is used to assign the amount of time to spend
at home with a mean of the experimental value and a standard deviation of 10 percent
of the mean (very peaked distribution) as is shown below.

societyPercHome = 1 - self.SOCIETAL_TIMEAWAY
 standardDeviation = (self.MODEL_DAY * societyPercHome)*.10
 meanTimeHome = self.MODEL_DAY * societyPercHome
 Random.createNormal(meanTimeHome,standardDeviation)

 178

Normal random number distribution that is used to assign wealth to the agents:
Random.createNormal(self.WEALTH_MEAN,self.WEALTH_SD)

decideRob()

Uniform RNG to represent differences in perceived guardianship:
Random.createUniform(-2,2). This adds or subtracts up to 2 agents to the perceived
guardianship value (e.g. a place manager might represent 2 agents, while someone in
car might not count for as much):
Random.uniform.nextIntFromTo(self.MIN_GUARDIANSHIP,
self.MAX_GUARDIANSHIP)

Uniform RNG to represent differences in perceived target suitability:
Random.createUniform(-1,1) – this adds or subtracts one unit of wealth from the
highest wealth agent:
Random.uniform.nextIntFromTo(self.MIN_SUITABLITY, self.MAX_
SUITABLITY)

Uniform RNG (uses target suitability RNG above) used to represent the influence of
other unknown factors when the decision to offend could go either way based on
guardianship and suitability (randDecision):
Random.uniform.nextIntFromTo(self.MIN_SUITABLITY, self.MAX_
SUITABLITY)

initCops()

Uniform RNG to choose place index numbers to which to assign cops. Randomly
chooses from the entire set of street nodes.
Random.uniform.nextIntFromTo(0, self.NUM_PLACES – 1)

3.6 Statistics Files

1) C:/model_output<condition>/modelRunDatav1.csv – in the initCitizens()
write out agent values for criminal propensity, employment and wealth; in the
initModel() write out parameter values for model
2) C:/model_output<condition>/citizen<agentName>.csv – a series of files
(one for each agent) that are written from the writeCitizenTravelInfoFiles().
Each file contains the: tick, the timers for home, main, rec1, rec2, time
exposed and time traveling, the position of the agent in their path, number of
offenses, number of victimizations and the amount of time originally assigned
to spend at each place.
3) C:/model_output<condition>/statistics.csv – writes out the times actually
spent at activity nodes. All agents are in one file. Easy to get percentages of
time spent at home, main, rec1, rec2 from this file.

 179

4) C:/model_output<condition>/occupiedSnapshot<Tick>.csv – a series of
files are created (one at each tick). Documents the distribution of agents
across the streetnodes and keeps track of how many agents were at any one
street node and which agents were there.
5) C:/model_output<condition>/timeAtActivityNodes.csv – file that has the
amounts of time assigned for activity nodes. All agents are in one file.
6) C:/model_output<condition>/citizenChar.csv – prints every 60 ticks. Has
information to monitor the model level variables. Files is created by
createCitizenTravelOutputFiles() and written to in dataRecorder()
7) C:/model_output<condition>/path<agentName>.csv – creates and writes to
the files to hold the list of nodes that each citizen visits during random
movement. Action must be scheduled to run.

 180

Appendix 2: Street Robbery Model Documentation: Temporal and Activity Space

Versions

Street Robbery Model Documentation:
Temporal and Activity Space Versions

This documentation explains the versions of the Full Street Robbery Model from a
programming perspective. The documentation follows guidelines for sharing
simulation research in Axelrod (Forthcoming). A general description of the model is
provided in the main text. The criminological basis for the model is provided in
Groff (Forthcoming-a). The theoretical basis for the representation of activity spaces
is discussed in Groff (Manuscript available from author). The implementation of
agent movement on a vector network is detailed in Groff (Forthcoming-b). The
model is created in Agent Analyst.

1. REPAST PY AND AGENT ANALYST
RePastPy was developed by Argonne National Laboratories to provide a Python-
based syntax for rapid model development. The software uses a hybrid language that
has been dubbed Not Quite Python (NQPY). NQPY uses Python-syntax to access
Java classes. Agent Analyst is an extension to RePastPy that can be used as a toolbox
in ESRI’s ArcGIS software. Agent Analyst provides the ability to use data from a
geographic information system (GIS) in agent-based models. Public releases of final
versions of software are available at http://repast.sourceforge.net/download.html. For
general information on RePast please see http://repast.sourceforge.net/index.html.
The Street Robbery Model presented here was developed with a beta version of
Agent Analyst which utilized Java 1.2.4_06, Python 2.3 and ArcGIS 9.1. The
documentation assumes some familiarity with these languages and software products.

2. OVERVIEW OF THE MODEL
The versions of the Street Robbery model discussed here are based on routine activity
theory (RAT) (Cohen & Felson, 1979) and create a simulation of how an individual
agent’s decisions on whether or not to commit a street robbery translate into macro-
level crime patterns. RAT identifies four elements necessary for a crime to occur.
Specifically, the routine activities of individuals determine which individuals are at
the same place, at the same time. For a crime to occur there has to be a motivated
offender, a suitable target and the lack of capable guardians. Each of these elements
is represented in the model. A series of experiments are conducted to test whether the
outcomes from the model match what the theory predicts (i.e. whether crime will
increase as people spend more time away from home). This prediction is tested by
systematically changing the amount of time that the society of agents spends away
from home. For example, in the first of five conditions agents spend 30% of their

 181

http://repast.sourceforge.net/download.html
http://repast.sourceforge.net/index.html

time away from home. The results from this model are compared to societies in
which agents spend 40%, 50%, 60%, and 70% of their time away from home.

There are two types of people in the model, civilians/citizens and police/cops.50
Civilians have characteristics describing their employment status, activity status,
wealth, and criminal propensity. Two-hundred of the one thousand civilians are
assigned criminal propensity; they evaluate each situation for the potential to commit
a street robbery considering the level of guardianship (formal and informal) and the
suitability of the target. Civilians with criminal propensity can take on the role of
offender, target, or informal guardian in any situation; while those without can only
play the roles of target or guardian. Police have only one role, formal guardians.

The two versions of the model described here are identical except for the spatio-
temporal constraints placed on the civilian’s schedules. Police agents patrol
randomly without stopping in both versions. Both versions rely on empirical data to
inform the movement of agents (i.e. the street network of Seattle, WA). However,
civilians in the Temporal version move randomly but follow a time schedule. At the
start of each day, citizen agents remain at home for their assigned time and then begin
traveling randomly for the rest of each day. They begin the next day at the ending
point of the previous day.

In the Activity Space version, each agent has both spatial and temporal constraints on
their activities. Civilians follow the same temporal schedule as they did in the
Temporal version but also have a set of locations they must visit each day. In this
way, an agent’s activity space consists of a set of places and the time to stay at each
one. The civilians begin each day at their home and travel in a ring pattern among
their assigned activity nodes. The Activity Space version uses empirical data to
inform both the locations of the places visited and the route taken among those places
(i.e. the activity spaces). Section 3 offers a complete description of the technical
aspects of implementing activity spaces.

3. ACTIVITY SPACES

3.1 Implementing Movement Along a Street Network
Agent Analyst does not support the connections to a geodatabase or a network dataset
which enable routing in ArcGIS. Consequently, there can be no dynamic routing of
agent travel in the model. The alternative strategy to enable directed agent movement
among a set of locations was to use GIS functionality to create predefined activity
spaces outside of Agent Analyst. Street intersections (represented as points) rather
than the street segments are the Places in the model. Thus, movement takes place
from street intersection to a connected street intersection rather than from one street

50 The terms civilian and citizen describe the population of the city who are not police/cops. The
general term describing the population was changed to civilian after the program was written and the
code has not been changed to reflect that evolution. The same situation is true for the use of the terms
police and cop both of which refer to law enforcement officers.

 182

to another. This allows the agent paths to be represented by the series of street
intersections that are traversed to visit all four nodes. The above solution also
facilitates the dynamic random movement that is required according to the model
specification. Random movement is used by the cop agents in both the Temporal and
Activity Space versions and by the civilians in the Temporal version of the model.

The extensive data manipulation that was necessary to prepare data for use in the
model is diagrammatically represented in Figures 1 and 2. Figure 1 provides an
overview of the entire data flow and Figure 2 offers the details of the process of
creating activity spaces. Figure 2 should be read left to right and top to bottom. The
symbols appear in a legend in the lower right hand corner. They represent different
types of files and programs. The rounded boxes represent GIS layers (dark green are
lines and light green are points and yellow are polygons). The orange rectangles are
files (usually .csv). The bright blue pages are programs.

Figure 1 provides a graphical view of the general data flow. For agent movement,
both versions rely on the streets of Seattle represented as intersection nodes. So the
movement box on the left describes the data for random movement. The Activity
Space version of the model employs GIS data describing streets, blockgroups and zip
codes in Seattle to provide the geographic structure within which the citizen and cop
agents go about their daily lives. Data describing the geographic distribution of
residents, jobs and potential activities for these areas was collected to aid in the
development of the agent’s activity spaces. To enable dynamic random movement in
both versions of the model, a Python script was developed to identify the neighbor
nodes for each node in the network. Output data are written to both the street node
shapefile and a series of text log files as the model runs.

 183

Figure 1: Data Flow

Figure 2 provides more detail regarding the type of data that were used to inform the
model, how those data were manipulated and by what software. Two types of street
layers were used in the study, travel streets and activity streets. First, all linear
features in the King County Street Network Database (SND) that were not
transportation-related were removed to create the travel streets.51 Travel streets
consist of those streets that can be used for transportation and serve as the basis for
cop and citizen movement. Activity streets contain only those streets along which an
agent could live, work or undertake an activity (i.e., freeways are excluded). The
activity streets were created by removing the freeways from the query used to
produce the travel streets.52 The node layer (activity nodes) was used to allocate the
agent home, employment and activity places.

51 Travel streets consist of the following types of linear features: Streets (code=0), Divided Street
(code=1), Parks (Unlimited access) (code=2), Freeway (code=4), Alley (code=6), Parks (Limited
access) (code=7), Other agency (code=8), Stairs (code=20), Walkway (code=21), Multipurpose Trail
(code=22), Private Street (code=40), Dock (addressable slips) (code=51).
52 Features along which there could be no employment or housing or activities (i.e., Freeways) are
removed leaving the following types of features: Streets (code=0), Divided Street (code=1), Parks
(Unlimited access) (code=2), Alley (code=6), Parks (Limited access) (code=7), Other agency
(code=8), Stairs (code=20), Walkway (code=21), Multipurpose Trail (code=22), Private Street
(code=40), Dock (addressable slips) (code=51).

 184

Additional processing was necessary to create a layer that accurately represents street
intersections/nodes. First, both street layers were converted to ArcInfo coverages and
the pseudo nodes removed.53 The street layers were then converted to point
shapefiles where each point represents the intersection of two streets. At the end of
the first GIS stage, a layer of travel nodes and activity nodes were intersected with the
blockgroup polygons and the zip code polygons to provide a list of the street nodes in
each blockgroup and zip code. Before the activity spaces for the citizen agents could
be created, the locations of the street nodes had to be linked to the polygon layers
because those layers contained the data about the potential activity nodes that exist in
each area (i.e., blockgroup or zip code).

Figure 2: Creating Activity Spaces for Citizen Agents

3.2 Creating Activity Spaces
Figure 2 also offers a detailed view of all the stages involved in assembling the
citizen agent activity spaces. The first stage, just described, used GIS to: 1) create a
layer of street nodes (intersections); 2) assign area identifiers to each street node and
3) assemble data describing population, jobs and activities. The next stage employed

53 Pseudo-nodes are nodes remaining in the layer from when the SND contained more lines but that no
longer represent the intersection of two lines. Failing to delete the pseudo nodes would artificially
inflate the number of street intersections in Seattle. Nodes that represent false intersections (e.g.
overpasses) and nodes that were not connected to the rest of the network are also deleted to make the
node network better represent the actual number of intersections in Seattle.

 185

data from the first stage to calculate the number of citizen agent homes, jobs and
activities that should be allocated to each area in the same proportion as they are
found in Seattle (e.g. if 10% of the population lives in a particular blockgroup then
10% of the agents are assigned to that blockgroup). Stage three made use of a java
program to randomly select a set of activity nodes for each agent. Four activity nodes
were selected; those nodes represent a home node, main node (could be work, school
etc.) and two recreational nodes (i.e., retail store, gym, coffee shop). Together the
four different activity nodes constitute each agent’s activity space. The following
paragraphs provide a more detailed description of the processes involved in creating
activity spaces, regardless of stage.

Home Node Assignment
Agent homes are allocated by a multi-step process. First, the total population of each
census blockgroup is collected from the 2000 Census of Population and Housing.
Seattle had a total population of 564,945 in 2000. That means that each agent in the
model represents 565 people who live in Seattle. Next, the percentage of Seattle’s
total population that lives in each blockgroup is calculated and multiplied by the
number of agents (1000) that are in the model to get the number of homes that should
be assigned from that blockgroup. At this point two files exist; one file contains the
activity node number and the blockgroup in which it is located. The other file
contains the blockgroup and number of agents to be assigned a home node from that
blockgroup. The same basic methodology is then used to assign work places and
activities.

Employment Node Assignment
A data source for the number of employees per blockgroup is needed in order to
assign the work places of the agents when they are employed. Unfortunately, the
number of employees is not available by blockgroup, only by zip code. There far
fewer zip codes (n=56) than blockgroups (n=570) in Seattle. Consequently, the
employment data is less precise than the blockgroup data (i.e., the units to which
employees are assigned are much larger and thus the potential for allocating agents in
a way that is not reflected by the actual distribution of employment is higher). The
rest of the process is the same as for assigning homes.

Activity Node Assignment
The same strategy used for homes and workplaces is also used for activity nodes.
Data regarding retail establishments and service establishments in Seattle is used.
Retail, entertainment and service businesses classified as the following SIC codes are
included in the analysis: 52; 53; 54; 55; 56; 57; 58; 59; 72; 7991; 7992; 7993; 7997;
7999; 82; 83; 84; and 8661. Using a spatial join, each activity is assigned to a
blockgroup and then summarized to obtain the total number of activities per
blockgroup. These data indicate a total of 18,024 qualifying establishments in the
city. Once again, the percentage of total activities in Seattle is calculated for each
blockgroup and written out to a file. The file contains two fields; blockgroup-id and
the number of activity nodes to be allocated to this blockgroup.

 186

A java program randomly assigns agent homes, work places and activities in the same
proportion as they are found in Seattle.54 In general, the program reads in the three
files that describe how many agents should live, work and recreate in each area (i.e.
blockgroup or zip code) and the two files that match each street node with the
blockgroup or zip code in which it is located. An array of 1,000 numbers is created to
assign work places and homes. A separate array of 3,000 numbers is created to use
with activity nodes.55 Those lists are shuffled and then used to select the nodes in
random order for home, work and activities. Two thousand files are written out; one
for each agent when employed and another for each agent when unemployed. The
home, work, rec1 and rec2 are written to the file for a particular agent when
employed. The same home, rec1, and rec2 are written to agent’s unemployed node
set with the addition a new node to replace work.

Establishing the Path Among Activity Nodes
The final stage in the process involved finding the shortest path among the activity
nodes. However, the standard routing algorithm identifies the streets that are
traversed, not the street nodes. This was accomplished via ArcGIS Network Analyst
and the process automated via Visual Basic.56 This is done for both the activity space
when employed and when unemployed. The program reads each file of agent activity
nodes and uses the X, Y coordinates to convert the activity nodes to a shapefile. The
program then calculates the shortest path using a network dataset.57 The travel nodes
that are traversed while traveling the shortest path are written out to agent path files
(two for each agent; employed and unemployed). The 4,000 output files describing
the activity nodes and activity path nodes for each agent are read into the model and
used to define citizen agent movement.

3.3 Java Program Documentation
All the java programs are part of a package called AssignNodestoAgents. The two
main programs are NodeAssignment and AssignNodeSets. Four additional methods
are called upon by the two main programs. The purpose and inner workings of each
are described below.

NodeAssignment()
NodeAssignment is the main program to randomly select the streetnodes to be part of
agent activity spaces. It reads two types of files – 1) nodes per area (blockgrpid,
streetnode, x, y) or (zip, streetnode, x, y) that list all the streetnodes in each area and
2) a file that lists each area and the number of agents who live, work or recreate there
(area, number of agents). The program writes out three files allHomes, allJobs and
allAct.csv that contain a list of 1,000 randomly selected home and work nodes, and

54 Detailed documentation on the java program is available in section 3.3.
55 Three thousand nodes are needed because an activity space requires a) 1,000 nodes for recreation
place 1 (rec1), b) 1,000 nodes for recreation place 2 (rec2) and 3) 1,000 nodes to replace the Main node
when the agent is unemployed.
56 The custom program was created in Visual Basic and run in ArcGIS 9.1 to identify the street nodes
traversed by each agent. Section 3.4 has the documentation for the program.
57 The network dataset is created from the travel street network and is required to be able to use
Network Analyst.

 187

3,000 activity nodes. The program has two methods, collectNodes and
selectRandomNodes. The collectNodes reads a csv file of records containing the
blockgroup/zip code, streetnode, x and y for all streetnodes in Seattle. This method is
essential because it enables the identification of a set of streetnodes for each
blockgroup from which the specified number of homes or jobs can be selected. The
selectRandomNodes method actually creates the set of randomly selected streetnodes.
It begins by reading the file with the area-id and number of streetnodes to choose
(homes, jobs, and activities). It then generates a set of random numbers. Then a
number is chosen from the set of random numbers that is between zero and the size of
the BlkgrpSet set for that blockgroup. The program then checks that number against
the index numbers of the streetnodes and selects the streetnode in an area that has the
corresponding index number. These actions are repeated until the correct number of
nodes to be assigned to that area is reached.

AssignNodeSets()
AssignNodeSets reads the three files generated by NodeAssignment and creates two
sets nodes of each of the 1,000 agents (employed and unemployed). Since the nodes
in the files were randomly chosen but are still grouped by area-id, a method is needed
to “shuffle” the locations before assigning them to the individual agent’s activity
spaces. Since I could not find a way to shuffle the files, instead two arrays are
created (one with 1000 numbers and the other with 3000 numbers). These lists are
shuffled and the numbers used to choose the indexes of the streetnodes in homes,
jobs, and activities. The streetnodes are written out so that each agent has the same
home, act1 and act2 nodes between their two paths. For employed they have home,
work, act1 and act2. While unemployed, agents have home, act1, act2 and act3. The
program writes out 2000 uniquely named files each with a streetnode, x-coord and y-
coord. These files are then used in ModelBuilder to generate the pathnodes (each
intersection along the path among the nodes in the activity space).

StrNodeLoc ()
StrNodeLocs are objects that represent the streetnode number and x,y of a particular
streetnode. Creating an object that represents these associated pieces of information,
I could keep the three variables (streetnode number, x-coord and y-coord) together
and easily write them out to files.

BlkGrpNodes()
BlkgrpNodes are objects that represent the streetnode number, x-coord and y-coord of
all the streetnodes in a particular blockgroup (actually it is a set of StrNodeLoc
objects). Nodes associated with a blockgroup are selected from the overall list and
put into a collection (in this case a vector). There is a method called collectInfo in the
NodeAssignment that reads a csv file of records that give the blockgroupid,
streetnode, x and y for each record. This method is essential to creating a set of
streetnodes for each blockgroup from which the specified number of homes or jobs
can be selected.

 188

RandomNodeSet()
RandomNodeSet objects are structured the same as BlkGrpNode objects but they
represent a set of randomly selected streetnodes (streetnode number, x,y). Once again
it is a set of StrNodeLoc objects. There are three types of RandomNodeSets, home,
job, and activity.

Mersenne()
This implements the class that uses the Mersenne Twister algorithm for random
number generation so that the Mersenne Twister random number generator (RNG)
can be used directly. However, the tutorial for Random Numbers on the Repast
website states the Random class in Java also uses Mersenne Twister as the RNG.
Consequently, the direct call implemented here is not necessary.

3.4 Visual Basic Program Documentation
This stand-alone application allows you to select a folder containing comma-
delimited ASCII files.58 In this case, the files contain the activity nodes for the
civilian agents. It reads the activity nodes (4 nodes), puts the nodes on a street
network, and calculates the shortest path route between each set of nodes in a ring
pattern. Next, the resulting route is joined back to the junctions in a network dataset
based on the matched records so the only records selected are the ones that were
traversed. Then the nodes are written out to a shapefile, two routes for each agent
(employed and unemployed)

The visual basic project for the application consists of a basutil.bas which contains
several subroutines that enable the above. The form is called frmAgentPaths.frm and
provides the graphical user interface. The prjAgentPaths.vbp is the visual basic
project file that is needed to open the project. The form uses the ArcObjects
MapControl, one property is the ability to open a map document that references the
network dataset and junctions that are to be used.

4. MAIN MODEL AND AGENT CLASSES
There is one main model and four classes of agents in each of the versions (Figure 3).
Three of the classes consist of generic agents – cops, civilians and active nodes. One
class is made up of vector agents, places. Vector agents have an inherent spatial
property that is needed in the simulation, generic agents do not. Each of the classes
has a set of actions, a schedule that controls when the actions run and a set of fields.
The actions control a variety of functions necessary to the running of the model
including agent initialization, agent movement and agent decision-making. The
actions can be scheduled to run at each model tick, at a specified interval or just once
during the course of a model run. The fields contain the data that are available to
describe the members of each class. There is also a Sequence Graph that is used to
graphically display the number of robberies as they occur during the model run.

58 The author gratefully acknowledges Jo Fraley for writing and making this program available to
subsequent researchers.

 189

Figure 3: Street Robbery Model Classes

4.1 The Main Model
The main models for each version are called StreetRobTemporal and
StreetRobActivitySpace. They have display names of Street Robbery Temporal and
Street Robbery Activity Space. The main model contains all the actions for the
initialization of the model. Each of the actions is listed and their function is explained
below. The text describes the Activity Space version and differences for the
Temporal version are noted in parentheses where they occur. Fields that are in all
capital letters are static/global variables that can be called from anywhere in the
models. The main models are also where all the random number distributions are
created so they can be called during the appropriate parts of the model run. Please
see Figure 4 for a graphical representation of the order of execution for the actions in
the models.

 190

Figure 4: Order of Action Execution in the Model

Actions:
initAgents()

This action is the first action to run in the model. As such, it is also the
main action that calls other actions to initialize the agents. It calls the
following actions for both versions: writeModelRunData(); initModel();
createCitizenTravelOutputFiles(); setupPlaces(); and initCops(). For the
Temporal version it calls initCitizensRandom() and for the Activity
Spaces version it calls initCitizens() and initActivitySpaces(). Specifies a
random number seed and creates the uniform random number distribution
and a normal distribution with the specified seed. The action also creates
the street message display function (that is currently not used).

updateDisplay()
The updateDisplay action changes the display in ArcMap. Execution of
this action is done through the schedule.

writeAgents()
This action writes the agent values from the place class to the shapefile.
The action runs before the updateDisplay() action. The symbolization
settings are created in the properties of the strnodes2 layer in ArcGIS. The
same shapefile is added into the .mxd file twice; once to symbolize the

 191

total robberies at a place, another time to symbolize the total number of
visits to a place.

setupPlaces()
The primary function of setupPlaces is to initialize a linked hashmap and
identify the neighbors of each place for random movement. First, a linked
hashmap is created to store a list of all the places with strnode-id as the
key. Next, the action reads the nodeNeighbors.csv file and associates the
set of neighbors with the correct Place (i.e., it populates the field
myNeighbors in the Place class).

showMessage()
The showMessage() action enables the display of custom messages to an
output window.

incrementModel()
This action is scheduled to execute at every tick of the model. The action
does the following: 1) increments model counter, 2) calls the
writeOccupiedNodes() action, 3) calls decideRob(); 4)clears the agent list
associated with the ActiveNode class and increments the criminal agent’s
time to reoffend counter. It also has code to call the
writeOccupiedNodes() and writeCitizenInfoPaths() methods to track agent
movement.

initModel()
The initModel() is called by initAgents() and sets values for constants and
static variables in the model some of which are parameters and can be
changed through the RePast GUI at model run time.

initActivitySpaces() (not used in StreetRobberyTemporal)
Reads the files of activity nodes and paths and creates a new Civilian
agent with an activity space as specified by the appropriate activity nodes
and pathnodes. Uses the assignNodeInfo() action in Citizens to set the
field values in Citizen agents.

initCitizens()(not used in StreetRobberyTemporal which uses
initCitizensRandom instead)

Sets criminal propensity, wealth, employment, and assigns values to the
time to stay away from home fields using the random number distributions
created in initAgents(). Action also writes out timeHome, timeMain etc.
fields to a file for validation. The times are calculated by starting with the
time to spend at home (because this has to be allocated so that the average
is a certain number). Next, the number of pathnodes the agent has to
traverse in a day is accounted for. Then a check is done to make sure an
agent does not have less time left then they are required to stay at home.
If that statement evaluates to true, then another random time is assigned to

 192

that agent and the statement is reevaluated until there is time left to do
other activities. Next, the remaining time is divided in half and half is
assigned to the Main activity node. The remaining time is multiplied by a
randomly chosen fraction between .10 and .90 and the resulting value is
assigned to Rec1. The Rec2 activity node is assigned the remainder of the
time.

initCitizensRandom() (not used in StreetRobberyActivitySpace)
Sets criminal propensity, wealth, employment, and reads the activity
schedule used in the StreetRobberyActivitySpace version from files.
Action also writes out timeHome, timeMain etc. fields to a file for
validation. The times were calculated during the run of the
StreetRobberyActivitySpace model so they are identical between the two
models. A new field is created to divide the time traveling into three equal
parts. The agent uses these times to randomly travel before stopping at its
next activity. In this way, time spent at activities is separated by time
travel.

decideRob()
Contains the code to evaluate who is at the occupied nodes and then
decide whether a crime should occur. First, the action checks to find out
which agents are at a streetnode by using the ActiveNodes class. Next, the
presence or absence of official guardianship (in the form of a cop) is
evaluated. If a cop is not present, then the program continues to evaluate
the civilian agents at a node. The list of agents at the node is randomly
reordered so the same agent is not evaluated first each time and if there are
two offenders at a node, each has a random chance of getting to decide to
commit a crime.59 Then each civilian agent is checked for criminal
propensity. The first agent found becomes the criminal decision-maker
for this situation. Program also takes into account whether the agents at
the node are ‘at risk’ (which is set in Citizens.step()). Next a target agent
is identified by checking the wealth of each agent. The agent with the
most wealth is chosen to be the target but only if their wealth is greater
than or equal to the criminal agent’s wealth. Only nodes with two or more
agents and an offender are evaluated as far as the actual decision to
commit a crime. The suitability and guardianship terms are calculated and
used in the decision to commit a crime. If a crime occurs, the action
changes the following field values: victim and offender wealth, number of
victimizations and total robberies at the place. The decideRob() action is
called by incrementModel().

59 Although this method required additional coding, the use of randomly generated numbers ensures
that the same result will be achieved each time a run is conducted with the same random number seed.
The shuffle method cannot be used because the order of the agents changes each time the action is
given regardless of the random number seed.

 193

writeOccupiedNodes()
This action writes out the distribution of agents across street nodes for
diagnostics and data analysis. The action is called by the
incrementModel() action so it occurs at every tick (not currently used).
However, it could be written out less frequently by scheduling the action
instead.

idChangingEmploymentStatus()
This action is scheduled to run every two weeks. The action identifies the
3% of agents whose employment status will change by setting the field
changeEmpStatus to true.

switchActivitySpace() (not used in StreetRobberyTemporal)
Checks to see if agent has been identified to switch employment status (by
looking at the field – changeEmpStatus that is calculated in
idChangingEmploymentStatus()) and then calculates new times to spend
at activity nodes just for those agents who change. Uses the same
methodology as in the initCitizens() action to allocate time spent at
activity nodes. Last, the action updates the field values of main, rec1, rec2
and pathNodes to reflect the new path (employed or unemployed).

initCops()
Creates cop agents and assigns them to a strnode (number) and a location
(Place). Action uses a uniform distribution to select the nodes on which to
place the cops at the start of the model.

resetAgentsDaily()
At end of the model day, all agents are reset to be back at home so they are
at an activity node (home), not at risk and not moving. In the Activity
Space version this is necessary because the agents travel a random number
of street nodes during each turn.

createCitizenTravelOutputFiles()
Creates two different types of output files to which citizen data can be
written. One creates a unique file for each citizen agent to which output
can be written by the writeAgentInfoFiles() action (output/citizenX.csv).
The other type of file is a single file to which data can be written at
specified intervals to monitor societal-level citizen characteristics
(output/citizenChar.csv). This file is written to by dataRecorder().

writeCitizenTravInfotoFiles()
Uses the files created by createAgentOutputFiles() and writes out
information about the individual agents at different points in the model
(not currently called).

 194

writeModelRunData()
This action creates a log file to capture model parameter values, error
messages and critical statistics during each model run. Many actions write
to the file as necessary.

writeStatistics()
This action captures the final field values for citizen agents pertaining to
activity spaces and crime in a single file. Writes out the aggregate time
spent at home, main, rec1, rec2, travel, and exposed; the assigned time to
spend at home, main, rec1, rec2, travel; and the Total number of offenses
and victimizations. These same statistics are written to individual agent
files by the createCitizenTravelOutputFiles() and
writeCitizenTravInfoFiles() actions. The action writes to
output/statistics.csv which is written one time at end of simulation and is
very helpful for understanding victimization, offending and wealth for
each agent.

dataRecorder()
This action takes the place of the data recorder that I could not get to work
in the model. It records variables that change during the model run such
as: number of unemployed agents, average wealth, robbery rate, total
victims, total repeat victims, total offenders, total repeat offenders, percent
exposed, percent traveling, and number of active offenders. Writes to
output/citizenChar.csv.

writeFinalAgents()
This action writes out the ending values in the shapefile to a named model
output directory for later analysis.

writeCitizenInfoPaths()
For random movement and to verify directed paths, this action provides a
convenient way to write out every street node visited by an agent.

Fields:
messageDisplay - uchicago.src.simbuilder.util.MessageDisplay, displays

messages while model is running. Parameter
modelStep – integer, counter that keeps track of model steps, 1 minute steps
MODEL_HOUR – integer, number of steps in an hour, 6 x 60 = 360 steps in

an hour. Default value = 60.
MODEL_DAY – integer, number of steps/minutes in a day, 24 x 360 = 8,640

steps = 1,440 minutes in a day.
MODEL_WEEK – integer, number of minutes in a week, 7 x 1,440 = 10,080

minutes in a day; 7 x 8640 = steps in a day.
MODEL_YEAR - integer, number of minutes/steps in a year, 365 x 1,440 =

525,600 minutes in a year; 365*8640 = 3,153,600 steps
SOCIETAL_TIMEAWAY – double, Default value = .70,

 195

totRob – integer - Default value = 0, Cumulative number of robberies in
the model run. Parameter

totRob – integer, cumulative number of robberies for model.
placeMap – java.util.hashmap – hashmap of strnode-ids
AGENTS – integer – Default value 1000, total number of agents in the model.

Parameter
totDeter – integer, Default value = 0, total number of robberies deterred by

presence of cop for the entire model run. For this to increment there had
to have been more than one agent and a criminal agent at the node.

totIntersect – integer, total times there were more than two agents at a node
and a criminal. Represents the number of potential crime situations and is
a running total for model run.

NORM_TRAVEL – cern.jet.random.Normal – random number distribution
for number of positions to move while traveling

REPEAT – integer, default value is 60-time a criminal has to wait before re-
offending. Parameter

COPS – integer, number of cop agents in the model, default value is 200.
Parameter.

MIN_GUARDIANSHIP – integer, contains minimum amount of random
error in the perception of guardianship by the criminal agent, default value
is -2. Parameter.

MAX_ GUARDIANSHIP – integer, contains maximum amount of random
error in the perception of guardianship by the criminal agent, default value
is 2. Parameter.

MIN_SUITABILITY - integer, contains minimum amount of random error in
the perception of target suitability by the criminal agent, default value is -
1. Parameter.

MAX_SUITABILITY - – integer, contains maximum amount of random error
in the perception of target suitability by the criminal agent, default value is
1. Parameter.

NUM_PLACES – integer, number of street intersections in the model.
Parameter.

WEALTH_MEAN – integer, mean of the wealth distribution for all agents in
the model. Parameter.

WEALTH_SD – integer, standard deviation of the wealth distribution for all
the agents in the model. Parameter.

Actions that are in Schedule
incrementModel – at every 1 tick
resetAgentsDaily - at interval of 1440 ticks (run last)
dataRecorder – at interval of 1,140
idChangingEmploymentStatus – at interval of 40,319 ticks
switchActivityStatus - at interval of 40,320 ticks (run last)
writeStatistics – at end (525,600) ticks
writeStatistics – at interval of 525,599 ticks (Activity Space only)

 196

4.2 Vector Agents
There is only one vector agent class in the simulation and it consists of the set of
places (street intersections) in Seattle. To clarify, each street intersection (also called
a street node) is a place in the model. There are 16,035 places in the model and they
exist in the shapefile called strnodes2.shp that is a point file. This class contains the
geographic information about the distribution of agents and robberies (i.e., where the
agents and the robberies are located in Seattle).

Name: Places
Group Name: places

Actions:

None.

Shapefile fields:

ARC_ - integer, internal arc-id used by ArcGIS
STRCL_ - integer, internal node number used by ArcInfo
STRCL_ID – integer, node number used in the model
citiStart – integer, node at which a citizen agent starts the simulation
copStart – integer, node at which a police agent starts the simulation
crimStart – integer, node at which a civilian agent with criminal propensity
starts the simulation
the_geom – com.vividsolutions.jts – geometry of point
totPrevent – integer, total number of potential crime situations in which a cop
prevented the crime at a node that would have been committed otherwise
totalRob – integer, total number of robberies at a node
totalVisit – integer, total times any agent visited a node

Class Fields:

strcl_ - integer, street node number
myNeighbors – java.util.ArrayList – list of nodes adjacent

Actions that are in Schedule

None

4.3 Generic Agents

Overview of Generic Agents
There are three generic agent classes in the model, citizens, active nodes and cops.
These classes are not inherently spatial in nature but through object-oriented
programming, the members of the classes can be associated with members of the
Place class. Each of the generic classes is described in this section.

 197

Name: Citizen
Group Name: citizens

The citizen class contains all the citizen agents in the model. One of the
interesting facets of this implementation is that citizen agents with criminal
propensity and those without are modeled exactly the same as far as activity
spaces, initial wealth, pay schedule and employment status. The only
characteristic that differs is the presence of criminal propensity. Only those
citizens who have criminal propensity evaluate criminal opportunities and are able
to make the decision to offend. All citizen agents can be victims of street
robbery.

Actions:

step() (Activity Space version)
This action controls the movement of the agents along their paths by
incrementing their position in their pathNodes field. Keeps track of time
(timeCounter) spent at an activity. Changes the atRisk, atActivity and
moveStatus variables depending on which activity and whether an agent is
traveling between activities. Dynamically creates the ActiveNode class
with each step. Only agents at ActiveNodes are evaluated during the
decideRob() routine.

step() (Temporal version)
This action controls the random movement of the agents by having them
choose a neighbor node to move to. Keeps track of total time spent in
their time schedule (timeCounter) throughout the course of a day.
Changes the atRisk, atActivity and moveStatus variables depending on the
activity of the agent and whether an agent is traveling between activities.
Dynamically creates the ActiveNode class with each step. Only agents at
ActiveNodes are evaluated during the decideRob() routine.

assignNodeInfo() (not used in the Temporal version)

Assigns the field values from the activity node and path files generated by
the Java/GIS programs to each of the Citizen agents (see Figure 2). The
following fields are assigned: name, home, empHome, empMain,
empRec1, empRec2, empPathNodes, unempHome, unempMain,
unempRec1, unempRec2, unempPathnodes and currentNode. Is called by
the model action, initActivitySpaces().

payCitizens()

Pay citizens who are employed every two weeks (20,160 ticks).

Fields:
placeNode – Place, associated with vector group of Places
name – string, name of the agent
home – integer, home node of agent

 198

main – integer, work, school or other significant activity node, this value
reflects current employment status (emp or unemp)

rec1 – integer, one activity node, this value reflects current employment status
(emp or unemp)

rec2 – integer, another activity node, this value reflects current employment
status (emp or unemp)

pathNodes – java.util.ArrayList, the nodes traveled to move among activities,
reflects current employment status pathnodes

currentNode – integer, holds the strnode_id of node the agent is occupying
criminalPropensity – Boolean, whether or not an agent thinks about

committing a crime, default value=false.
timeHome – integer, minutes spent at home
timeMain – integer, minutes spent at work
timeRec1 – integer, minutes spent at recreation one
timeRec2 – integer, minutes spent at recreation two
timeTraveling – integer, minutes spent traveling among activity nodes

(assigned as part of activity space), default value=0
atActivity – Boolean, true= stationary, false = moving, default value = true
atRisk – Boolean, true = vulnerable to being victimized, false = safe, default

value = false.
timeCounter – integer, keeps track of the cumulative time at an activity but is

reset when activity type changes or agent begins to travel. Default value =
0.

employmentStatus – boolean, employed = true and unemployed = false.
Default value =true.

wealth - integer, the amount of wealth an agent has
position – integer, the position in the pathNodes array that an agent is

occupying
moveStatus – boolean, true = traveling, false = not traveling, default value =

false
occupiedNode – ActiveNode, each of these nodes have at least one civilian

agent on them.
empHome – integer – the home node for an agent while employed
empMain – integer – the main node for an agent while employed
empRec1 – integer – the first recreation node for an agent while employed
empRec2 – integer – the second recreation node for an agent while employed
unempHome – integer – the home node for an agent while unemployed
unempMain – integer – the main node for an agent while unemployed
unempRec1 – integer – the first recreation node for an agent while

unemployed
unempRec2 – integer – the second recreation node for an agent while

unemployed
unempPathNodes – java.util.ArrayList – the list of nodes that an unemployed

agent traverses during the course of a day
empPathNodes– java.util.ArrayList – the list of nodes that an employed agent

traverses during the course of a day

 199

changeEmpStatus – Boolean, true = change the employment status, false= do
not change employment status, default value = false

numVict – integer, number of times an agent get robbed, default value is 0
numOffen – integer, number of times an agent commits a robbery, default

value is 0
totTimeTraveling – integer – cumulative travel time even with employment

changes (counter) , default value is 0
totTimeExposed – integer, cumulative time spent traveling and at activities

taking into account changes in employment (counter value) , default value
is 0

timerHome – integer – cumulative time spent at home over the course of the
model run, default value is 0

timerMain – integer – cumulative time spent at main over the course of the
model run, default value is 0

timerRec1 – integer – cumulative time spent at rec1 over the course of the
model, default value is 0

timerRec2 – integer – cumulative time spent at rec2 over the course of the
model, default value is 0

timerRepeat – integer – cumulative time spent unable to offend until the
REPEAT value is reach, default value is 0

location – Place – place object representing physical location of agent
strnode – integer – strnode number of intersection representing physical

location of agent
nodeList – java.util.ArrayList – list of nodes agent has visited using random

movement
timeEmpHome – integer – time to spend at home while employed (Temporal

only)
timeEmpMain – integer – time spent at main while employed (Temporal only)
timeEmpRec1 – integer – time spent at rec1 while employed(Temporal only)
timeEmpRec2 – integer – time spent at rec2 while employed (Temporal only)
timeEmpTraveling - integer, time to spend traveling while employed

(Temporal only)
timeUnempHome – integer – time to spend at home while unemployed

(Temporal only)
timeUnempMain – integer – time spent at main while unemployed (Temporal

only)
timeUnempRec1 – integer – time spent at rec1 while unemployed (Temporal

only)
timeUnempRec2 – integer – time spent at rec2 while unemployed (Temporal

only)
timeUnempTraveling - integer, time to spend traveling while employed

(Temporal only)
travelTimeSplit – integer – travel time between activities (Temporal only)

Actions that are in Schedule

step – at every 1 tick

 200

payCitizens – at interval of 20,160 ticks

Name: ActiveNode
Group Name: activeNodes

The ActiveNode class exists as a computational device to avoid having to check
all the places at each step. At each step, the nodes where citizens and cops are
located are associated with the ActiveNode class. This limits the maximum
number of nodes that would have to be checked to 1,000 (i.e. the maximum
number of nodes if each agent was at a unique node) instead of 16,035.

Actions:

None

Fields:
strnode – integer, has the node number of the agent
agentList – java.util.ArrayList, has the list of agents at the node

Actions in the Schedule

None

Name: Cop
Group Name: cops

The Cop agent class is used to represent formal guardianship at a place. The
presence of a cop increases the risk of committing a crime (i.e. increase the
guardianship at a place). Cops cannot be victimized nor can they commit a crime.
Their movement patterns are random. They move from their current place to a
randomly chosen adjacent place at every model tick by consulting the
myNeighbors field in the Place class which lists all the neighbors for their current
node.

Actions:

step() –
First the action gets the list of all the places in the Place class. For each
node that has a cop, the list of neighbor nodes is reordered and then the
cop is assigned to the first position in the node list. The strnode and the
location fields are changed to reflect the cop’s new position. The location
field is a Place object which allows the decideRob() action to see if there
are cops at the active node. Cops move last in each tick.

Fields:

strnode – integer, has the node number
agentList – java.util.ArrayList – contains the agents who are at the street
intersection

 201

Actions in the Schedule

step() – runs at every 1 tick.

4.4 Other Model Components

A sequence graph is included that tracks the number of times a street node is visited
by any agent, the number of times a robbery occurs on the node and the number of
times a robbery is deterred by the presence of a cop.

Name: _Tracking
Title: Activity Graph

Series:

totalRobberies – cumulative number of robberies at a node
totalDeterred – cumulative number of robberies prevented by a cop at a node
totalIntersect - cumulative number of times more than one agent is at a node

Schedule:
Currently not scheduled.

4.5 Random Number Distributions

The use of robust random number generators (RNGs) is essential to producing high
quality, scientifically defensible results. This simulation uses the Mersenne Twister
RNG for all the random numbers in the model. The same seed is used for each of the
random number distributions in a single run of five experiments. The seed is set in
the initAgents() action. Two types of random number distributions are used, normal
and uniform. The uniform random number distribution is created in the initAgents
and used in various actions as documented below. Two normal distribution are
created in the initAgents() action for Full Robbery Directed movement model, one as
a static variable the other as a regular normal distribution. The static normal
distribution is necessary for directed agent movement and is called from the step()
action. The Full Street Robbery Random model requires only one normal distribution
be created. The following section describes all the random number distributions used
in the model, how they are created and in which action they are used.

Actions That Use RNG’S

initCitizens()

Uniform distributions are used to:

• choose subsets of agents from the totals set for criminal propensity,
employment status, number from between 0 and 999.

 202

• select numbers from between (.1,.9) to assign a percent of time left to

rec1.

• Represent randomness in an offender’s perception of guardianship and
suitability of targets.

Normal distributions are used to:

• assign wealth to the agents: Random.createNormal(50,20)

• assign the amount of time to spend at home with a mean of the
experimental value and a standard deviation of 10 percent of the mean
(very peaked distribution) as is shown below.

societyPercHome = 1 - self.SOCIETAL_TIMEAWAY
standardDeviation = (self.MODEL_DAY * societyPercHome)*.10
meanTimeHome = self.MODEL_DAY * societyPercHome
Random.createNormal(meanTimeHome,standardDeviation)

• choose a number of nodes to move each turn. A separate random number
generator is created and used for this distribution. A global variable is
created to hold the distribution so it can be called from the Citizen.step()
action (only in the Activity Space model).

mtRNG = MersenneTwister(100)
self.NORM_TRAVEL = Normal(6,1,mtRNG)

decideRob()

Uniform distributions are used to:

• represent differences in perceived guardianship, generate number between
-2 and 2. This adds or subtracts up to 2 agents to the perceived
guardianship value (e.g. a place manager might represent 2 agents, while
someone in car might not count for as much).

• represent differences in perceived target suitability, select a number

between -1 and 1 which adds to or subtracts from the difference in wealth
between offender and target.

• represent the influence of other unknown factors when the decision to

offend could go either way based on guardianship and suitability (i.e. the
randDecision section of code)

 203

idChangingEmploymentStatus()

Uniform distribution is used to:

• choose a subset of agents that will change their employment status, generates
a series of numbers from between 0 and 999.

switchActivitySpace()

Uses two of the same distributions as the initCitizens() action:

Uniform distributions are used to:

• choose subsets of agents from the totals set for criminal propensity,
employment status, number from between 0 and 999.

• select numbers from between (.1,.9) to assign a percent of time left to

rec1.

Normal distribution (created in initCitizens()) is used to:

• assign the amount of time to spend at home with a mean of the
experimental value and a standard deviation of 10 percent of the mean
(very peaked distribution) as is shown below.

societyPercHome = 1 - self.SOCIETAL_TIMEAWAY
standardDeviation = (self.MODEL_DAY * societyPercHome)*.10
meanTimeHome = self.MODEL_DAY * societyPercHome
Random.createNormal(meanTimeHome,standardDeviation)

initCops()

Uniform distribution is used to:

• choose place index numbers to which to assign cops. Randomly chooses
from the entire set of street nodes, 0 to 16034.

Citizen.step()

Normal distribution is used to:

• obtain a random number of nodes to move each turn. The average number
of nodes needs to be six per turn. This distribution was created in
initAgents() and is called here self.NORM_TRAVEL.

 204

4.6 Statistics Files

The following files are written out for each model run:
1) C:/model_output<condition>/modelRunDatav1.csv – in the initCitizens()
write out agent values for criminal propensity, employment and wealth; in the
initModel() write out parameter values for model
2) C:/model_output<condition>/citizen<agentName>.csv – a series of files
(one for each agent) that are written from the writeCitizenTravelInfoFiles().
Each file contains the: tick, the timers for home, main, rec1, rec2, time
exposed and time traveling, the position of the agent in their path, number of
offenses, number of victimizations and the amount of time originally assigned
to spend at each place.
3) C:/model_output<condition>/statistics.csv – writes out the times actually
spent at activity nodes. All agents are in one file. Easy to get percentages of
time spent at home, main, rec1, rec2 from this file.
4) C:/model_output<condition>/occupiedSnapshot<Tick>.csv – a series of
files are created (one at each tick). Documents the distribution of agents
across the streetnodes and keeps track of how many agents were at any one
street node and which agents were there.
5) C:/model_output<condition>/timeAtActivityNodes.csv – file that has the
amounts of time assigned for activity nodes. All agents are in one file.
6) C:/model_output<condition>/citizenChar.csv – prints every 60 ticks. Has
information to monitor the model level variables. Files is created by
createCitizenTravelOutputFiles() and written to in dataRecorder()
7) C:/model_output<condition>/path<agentName>.csv – creates and writes to
the files to hold the list of nodes that each citizen visits during random
movement. Action must be scheduled to run.

 205

Appendix 3: Street Robbery Model: Simple Version Code

Street Robbery Simple Actions

def initAgents():

Java imports
uchicago.src.simbuilder.util.MessageDisplay
java.lang.String
anl.repast.gis.data.dbf.DBFReader
anl.repast.gis.data.dbf.JDBField
java.Array
java.util.Vector
java.util.List
java.lang.Object
java.util.ArrayList
uchicago.src.sim.util.Random
java.io.PrintWriter

Code
 print "Inside initAgents"
 if (self.messageDisplay == None):
 self.messageDisplay = MessageDisplay()
 self.messageDisplay.display("Street Robbery Messages")
 else:
 self.messageDisplay.clear()

 # Explicitly set the random number generator seed and initialize Random distributions
 # Create RNG and set seed
 Random.setSeed(self.SEED)
 #Random.setSeed(100)
 Random.createUniform()

 # Create log file for model run
 self.writeModelRunData()

 # Initialize model level variables
 self.initModel()

 # Initialize the activity spaces of agents
 self.initCitizensRandom()

 # Create output files for analysis
 self.createCitizenTravelOutputFiles()

 # Process the street nodes for use in the model
 self.setupPlaces()

 # Check to make sure values in shapefile fields are zero
 for node as Place in self.places:
 if node.totalRob > 0 or node.totalVisit > 0 or node.totPrevent > 0:
 print "WARNING: Shapefile had non-zero values in counter fields"

 # Initialize the cop agents

 206

 self.initCops()

def updateDisplay():
 #print "Inside updateDisplay"
 self.updateGISDisplay()

def writeAgents():
 #print "Inside writeAgents-Model level"
 baseFilePath = ".\\projects\\rob_model\\shapefiles\\"
 self.writeAgents(self.places, baseFilePath + "strnodes2.shp")

def setupPlaces():

Java Imports
java.io.BufferedReader
java.io.FileReader
java.util.StringTokenizer

Code
 print "Inside setupPlaces"

 # Put Places in a HashMap where the key is the strnode-id
 # Creates the map
 self.placeMap = LinkedHashMap()

 # Add the places to the hashmap
 for currentPlace as Place in self.places:
 specNode = "0"
 specNode = String.valueOf(currentPlace.getSTRCL_())
 specNodeNew = Float(specNode)
 self.placeMap.put(specNodeNew, currentPlace)
 #print "PLACE node info: ", specNodeNew
 currentPlace.setMyNeighbors(ArrayList())

 # Read the neighbors file and set each nodes neighbors.
 # The neighbors files lists the active node and the neighboring
 # nodes of that active node. The map created above is used to
 # get the neighbors for each active node.

 fileName = "./projects/rob_model/neighborFiles/nodenghbrs.csv"
 reader = BufferedReader(FileReader(fileName))
 line = reader.readLine()

 while(line):
 tokenizer = StringTokenizer(line, ",")
 if(tokenizer.hasMoreTokens()):
 activeNode = tokenizer.nextToken().trim()
 actNodeObject = Float(activeNode)
 currentPlace = (Place)self.placeMap.get(actNodeObject)
 #print "Current variable ", activeNode #prints out the variable strcl_
 #print "Current node from place object: ", currentPlace.getSTRCL_()
 nghs = currentPlace.getMyNeighbors()
 while (tokenizer.hasMoreTokens()):
 ngh = tokenizer.nextToken()
 currentPlace.myNeighbors.add(ngh)
 #print "Neighbor node ", ngh

 207

 # Read the line
 line = reader.readLine()
 # Close the reader
 reader.close()

 #This code enables verification that the myNeighbors array has the correct values
 for currentPlace as Place in self.places:
 #print "Streetnode: ", node.strcl_
 if currentPlace.getMyNeighbors() == None:
 print "Neighbor arraylist is empty for node " + currentPlace.strcl_

def showMessage(String message):

Java imports
javax.swing.JOptionPane

Code
 print "Inside showMessage"
 JOptionPane.showMessageDialog((JComponent)None, message)

def incrementModel():

 # Increment the modelStep field
 if self.modelStep < self.MODEL_YEAR: #525,600
 #if self.modelStep < 40320: # month is 40,320
 self.modelStep = self.modelStep + 1
 else:
 self.writeFinalAgents()
 for node as Place in self.places:
 node.totalVisit = 0
 node.totalRob = 0
 node.totPrevent = 0
 node.copStart = 0
 node.citiStart = 0
 node.crimStart = 0
 self.writeAgents()
 self.writeStatistics()
 self.dataRecorder()
 print "YEAR OVER"
 self.stop()
 #print "MODEL STEP = ", self.modelStep

 # ActiveNode - call a method to write out a file of the nodes and their
 # associated agents at each step
 #print "Called writeOccupiedNodes"
 #self.writeOccupiedNodes()

 # Write out citizen position
 #self.writeCitizenInfoPaths()

 # Make the decision to commit a crime
 # print "Total Active NOdes: ", self.activeNodes.size()
 self.decideRob()

 # Clear the agents from the activeNodes class
 self.activeNodes.clear()

 208

 #print "Total active nodes after clear: ", self.activeNodes.size()

 # Increment the timers for agents with criminal propensity
 for citizen as Citizen in self.citizens:
 if citizen.criminalPropensity == true:
 if citizen.timerRepeat > 0 and citizen.timerRepeat < self.REPEAT:
 citizen.timerRepeat = citizen.timerRepeat + 1
 #print "Agent " + citizen.name + " repeat timer incremented to: " + citizen.timerRepeat
 elif citizen.timerRepeat == self.REPEAT:
 #print "REPEAT value: " + self.REPEAT
 citizen.timerRepeat = 0
 #print "Agent " + citizen.name + " timer reset to 0: " + citizen.timerRepeat
 else:
 citizen.timerRepeat = citizen.timerRepeat

 #print "TOTAL Robberies in society: ", self.totRob

def initModel():
Java imports
cern.jet.random.*
cern.jet.random.engine.MersenneTwister
uchicago.src.sim.util.Random
cern.jet.random.Normal

Code
 print "Inside initModel"

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))

 # Set static field values for model run
 #self.SOCIETAL_TIMEAWAY = .30
 self.modelStep = 0
 self.MODEL_HOUR = 60 #360 steps per hour, Travel occurs at 6 steps per minute
 self.MODEL_DAY = (24 * self.MODEL_HOUR)
 self.MODEL_WEEK = (7 * self.MODEL_DAY)
 self.MODEL_YEAR = (365 * self.MODEL_DAY)
 #self.REPEAT = 60 #Time until a criminal can reoffend

 # Print to file to document model run
 temp = self.SOCIETAL_TIMEAWAY *100
 logData = "Experimental condition: " + temp + "% time spent away from home" + "::::" + "Number
of Agents in model " + self.AGENTS
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""
 logData = "Number of cops: " + self.COPS
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""
 logData = "Limit on Repeat Offending: " + self.REPEAT
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)

 209

 logWriter.newLine()
 logData = ""

 #Close the log file
 logWriter.close()

def decideRob():
Java Imports
java.lang.Object
java.lang.String
uchicago.src.sim.util.SimUtilities
java.util.Arrays
java.util.List

Code
 #print "Inside decideRob"

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))
 #data = "Inside Decide Rob Action"
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 # Check each ActiveNode for list of agents
 # Logical error check
 if self.activeNodes.size() > self.AGENTS:
 ###########################
 data = "Too Many Active Nodes during step: " + self.modelStep
 intSize = int(data.length())
 logWriter.write(data,0,intSize)
 logWriter.newLine()
 data = ""

 # Loop through the nodes with citizens and make the decision to commit a robbery
 for occupied as ActiveNode in self.activeNodes:
 # Check agents at each of the active nodes
 #print "The Node being evaluated is: ", occupied.strnode

 #################
 #data = "Street Node " + occupied.strnode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Initialize variables in action
 numAgentsAtNode = occupied.getAgentList().size()
 #data = "Number of Agents at Node (from size of agent list field): " + numAgentsAtNode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 210

 numCrimAtNode = 0
 numAgentAtRisk = 0
 numCriminals = 0
 offenderAtNode = false
 curStreetNode = (Place)self.places.get(0)
 #print "The default curStreetNode: ", curStreetNode.STRCL_
 curAgent = (Citizen)self.citizens.get(0)
 #targetAgent = (Citizen)self.citizens.get(0)
 targetAgent = (Citizen)self.citizens.get(0)
 criminalAgent = (Citizen)self.citizens.get(0)
 copPresent = false
 robbery = true
 crimWealth = 0
 evalWealth = 0
 targetWealth = 0
 suitability = 0
 targetSet = false

 #################
 #data = "START VALUES: Criminal Agent-- " + criminalAgent.name + "Current Agent-- " +
curAgent.name + "Target agent- " + targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Log presence of agents on street node
 # Retrieving the place by converting to a float object
 occupiedObject = Float(occupied.strnode)
 currentPlace = (Place)self.placeMap.get(occupiedObject)
 #print "NEW Place node:", currentPlace.getSTRCL_()
 #print "Number of agents at Node: ", numAgentsAtNode
 #self.messageDisplay.addAlert("There are "+ numAgentsAtNode + " citizens at " +
occupied.strnode)

 # Log fact that agents visited a node in the shapefile
 if (currentPlace != None):
 currentPlace.totalVisit = currentPlace.totalVisit + numAgentsAtNode
 #currentPlace.visits = currentPlace.visits + numAgentsAtNode
 #print "NEW Number of Visits: ", currentPlace.totalVisit
 else:
 print "Unable to log visit at strnode: " + occupied.strnode + " during tick: " + self.modelStep

 # Loop through all the cops to find out if there is a cop at node
 for copAtNode as Cop in self.cops:
 copPlace = copAtNode.getLocation()
 # When you find a cop at the place break out of loop and calculate variable
 if copPlace == currentPlace:
 #print "Cop at node: ", copAtNode.location.STRCL_
 copPresent = true
 break
 else:
 copPresent = false
 #############################DEBUG
 #if copPresent == true:
 #data = "Cop is at node! "

 211

 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #if copPresent == true:
 #print "Cop! at node "+ occupied.strnode

 # Only evaluate nodes that have more than one citizen and there is no cop present
 if numAgentsAtNode > 1:

 ################# DEBUG
 #data = "Street Node " + occupied.strnode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #############################
 #data = "Number of Agents at Node is: " + numAgentsAtNode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #i = 0
 #j = 1

 # Calculate the level of GUARDIANSHIP
 guardianship = (numAgentsAtNode - 2) +
Random.uniform.nextIntFromTo(self.MIN_GUARDIANSHIP,self.MAX_GUARDIANSHIP)
 #print "Guardianship is: ", guardianship

 # Outside loop that checks each of the agents at a particular node using the citizen name
 # Shuffle the agents at a node so they have an equal chance of being selected first and thus
 # are not always evaluated in the same order.

 #for position in range(0, numAgentsAtNode):
 #print "Original Order: Node--" + occupied.strnode + " Position " + position + ", "+
String.valueOf(occupied.getAgentList().get(position))

 # Create a distribution using number of agents at node
 maxValue = numAgentsAtNode-1

 # Create arraylist variables
 # Array to hold randomly shuffled agents
 randList = ArrayList()
 # List of array positions that have been used
 strList = ArrayList()
 foundIt = false
 #print numAgentsAtNode
 # Outside while to create a new list of all the agents at the node in a new order

 while randList.size() < numAgentsAtNode:
 # Generate a random number
 foundIt = false
 index = Random.uniform.nextIntFromTo(0,numAgentsAtNode-1)
 indexStr = String.valueOf(index)
 #print "The first index generated is: " + index

 212

 #############################
 #data = "Index value: " + index
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 # If this is the first agent generated then add it to the new randList array, otherwise check to see if
 # the index has already been used
 if strList.size() >= 1:
 for p in range (0, strList.size()):
 if String.valueOf(strList.get(p)) == indexStr:
 foundIt = true
 break

 if foundIt == false:
 agent = occupied.AgentList.get(index)
 randList.add(agent)
 strList.add(indexStr)
 #print "randList size is ", randList.size()
 #print "New size of list of index numbers is " + strList.size()

 # Code to verify new order
 #for position in range(0, numAgentsAtNode):
 #print "New order at Node: " + occupied.strnode + " position " + position + ", " +
String.valueOf(randList.get(position))

 for i in range (0,numAgentsAtNode):
 #Bunch of code that get the agent name (e.g. a1) and then strips off the first character
 #and pulls the correct Citizen agent using the agent name
 fullName = randList.get(i)
 fullStrName = String.valueOf(fullName)
 partName = fullStrName.substring(1)
 #print "Agent: " + partname + " in agentList"
 # Use the agent's name to find the index number of correct Citizen agent
 index = int(partName) - 1
 curAgent = (Citizen)self.citizens.get(index)
 #print "Citizen in agentList: ", curAgent.name
 #print "Current agent: " + curAgent.name + " is criminal? " + curAgent.criminalPropensity

 #################################
 #data = "Loop through current agents to find Criminal: " + i + "," +
String.valueOf(randList.get(i)) + "," + "criminal: " + curAgent.criminalPropensity + "," + " at risk?: " +
curAgent.atRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Identifies if any of the agents have criminal propensity and are 'atRisk' and selects the
 # first one it finds to be the active criminal in this interaction
 if curAgent.criminalPropensity == true and curAgent.atRisk == true:
 criminalAgent = curAgent
 if criminalAgent.timerRepeat == 0:
 offenderAtNode = true

 213

 #else:
 #print "Agent " + criminalAgent.name + " Offender unable to offend yet"
 break #go directly to next if statement (if offenderAtNode == true:)

 #################################DEBUG
 #data = "Criminal in interaction: " + criminalAgent.name + "," + "timer: " +
criminalAgent.timerRepeat
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Loop that uses formulas to evaluate guardianship and target suitability
 if offenderAtNode == true:
 #print "Offender: " + criminalAgent.name + " is at Node and evaluating opportunity"

 # Find out how many civilians are 'at risk' and
 # which 'at risk' civilian at the active node has the most wealth
 for i in range (0,numAgentsAtNode):
 # Get the first agent in the randomly ordered list
 fullName = randList.get(i)
 fullStrName = String.valueOf(fullName)
 partName = fullStrName.substring(1)
 # Use the agent's name to find the index number of correct Citizen agent
 index = int(partName) - 1
 evalAgent = (Citizen)self.citizens.get(index)
 evalWealth = evalAgent.wealth
 crimWealth = criminalAgent.Wealth
 #print "Criminal's Wealth: ", crimWealth
 #print "Evaluated agent: ", evalAgent.name
 #print "Evaluated agent's wealth: ", evalWealth

 # Counter for number of criminals at node
 if evalAgent.criminalPropensity == true:
 numCrimAtNode = numCrimAtNode + 1

 #############################DEBUG
 #data = "Evaluate Wealth for eval agent: " + evalAgent.name + " has wealth of: " + evalWealth
+ " CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth
 #data = "Eval agent: " + "," + evalAgent.name + "," + "Wealth: " + "," + evalWealth + "
CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Counter for number of agents at node who are 'at risk' of being robbed (only is counted
 # if there is an offender at the node)
 if (evalAgent.atRisk == true) and (evalAgent.name != criminalAgent.name):
 numAgentAtRisk = numAgentAtRisk + 1

 #############################
 #data = "Number of agents at risk: " + numAgentAtRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)

 214

 #logWriter.newLine()
 #data = ""

 # Identify the 'at risk' agent with the most wealth
 if criminalAgent.name != evalAgent.name:
 #############################
 #data = "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: "
+ evalAgent.name + " with " + evalWealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 #print "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " +
evalAgent.name + " with " + evalWealth
 if (crimWealth <= evalWealth) and (evalAgent.atRisk == true):
 if evalWealth > targetWealth:
 targetWealth = evalWealth
 #targetAgent = (Citizen)self.citizens.get(index)
 targetAgent = evalAgent
 targetSet = true
 #print "Current Agent with highest wealth ", targetAgent.name

 ######################## DEBUG
 #data = "Identity of selected targetAgent: " + "," + targetAgent.name + "," +
targetAgent.criminalPropensity
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #print "Number of agents at risk", numAgentAtRisk

 ######################Print summary
 #if numCrimAtNode >= 2:
 #data = "Model Step: " + "," + self.modelStep
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #data = "Number Criminals: " + "," + numCrimAtNode + "," + "Number Agents at Risk: " +
numAgentAtRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Decide to Commit Robbery
 # Calculate SUITABILITY of victim but first check to see if there is a targetAgent found
 targetExists = false
 if targetSet == true:
 #print "Current Agent with highest wealth ", targetAgent.name
 suitability = targetWealth - crimWealth +
Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, self.MAX_SUITABILITY)
 #suitability = targetWealth - crimWealth + self.UNI_PERCEPTION.nextInt()
 targetExists = true

 215

 # Series of checks necessary to evaluate guardianship value calculated earlier
 # If G < 1 then there is a lack of capable guardians so commitCrime = true
 # If G = 1 then randomly assign T or F with equal probability
 # If G >= 2 then too many guardians so commitCrime = false
 #print "PreCommit Crime Guardianship is: ", guardianship
 #print "Suitability is: ", suitability

 # Check to make sure a target exists and evaluate suitability and guardianship
 if targetExists == true and suitability >= 0 and guardianship < 1 and copPresent == false:
#commit crime
 # Exchange one units of wealth
 # Subtract one unit from victim
 #print "Victim Name ", targetAgent.name
 #print "Victims current wealth ", targetAgent.wealth
 targetAgent.wealth = targetAgent.wealth - 1
 #print "Victims new wealth ", targetAgent.wealth
 #print "Offender Name: " + criminalAgent.name + "Timer value of: " +
criminalAgent.timerRepeat
 #print "Offenders current wealth ", criminalAgent.wealth

 # Add one unit of wealth to criminal
 criminalAgent.wealth = criminalAgent.wealth + 1
 #print "Offenders new wealth ", criminalAgent.wealth

 # Start the timer until citizen can offend again
 criminalAgent.timerRepeat = 1

 # Code to log the offense for that specific place
 if (currentPlace != None):
 currentPlace.totalRob = currentPlace.totalRob + 1
 #print "Robbery at Node: ", currentPlace.STRCL_
 #print "Total Robberies at Specific Node ", currentPlace.totalRob
 # Log the offense at model level
 self.totRob = self.totRob + 1

 # Log offending and victimization for agents involved
 criminalAgent.numOffen = criminalAgent.numOffen + 1
 targetAgent.numVict = targetAgent.numVict + 1

 ##################################DEBUG
 #data = "ROBBERY: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 ##################################DEBUG
 #data = "WEALTH: CriminalAgent: " + criminalAgent.wealth + "," + "TargetAgent: " +
targetAgent.wealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 #if targetAgent.criminalPropensity == true:

 216

 ##################################
 #data = "Model step: " + self.modelStep
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #data = "Target Agent: " + targetAgent.name + "is a criminal"
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 else:
 print "Unable to log robbery at strnode: " + occupied.strnode + " during tick: " +
self.modelStep

 # Random decision to commit robbery
 elif targetExists == true and suitability >= 0 and guardianship == 1 and copPresent == false:
 randDecision = guardianship + Random.uniform.nextIntFromTo(self.MIN_SUITABILITY,
self.MAX_SUITABILITY)
 #print "Random Decision: ", randDecision
 if randDecision == 1:
 break
 elif randDecision < 1:
 # Exchange one units of wealth
 #print "Random: Victim Name ", targetAgent.name
 #print "Random: Victims current wealth ", targetAgent.wealth
 targetAgent.wealth = targetAgent.wealth - 1
 #print "Victims new wealth ", targetAgent.wealth
 #print "Random: Offender Name " + criminalAgent.name + "Timer value of: " +
criminalAgent.timerRepeat
 #print "Random: Offenders current wealth ", criminalAgent.wealth
 criminalAgent.wealth = criminalAgent.wealth + 1
 #print "Offenders new wealth ", criminalAgent.wealth

 # Start the timer until citizen can offend again
 criminalAgent.timerRepeat = 1

 # Log the offense at the specific place
 if (currentPlace != None):
 currentPlace.totalRob = currentPlace.totalRob + 1
 #print "Robbery at Node: ", currentPlace.STRCL_
 #print "Total Robberies at Specific Node ", currentPlace.totalRob
 # Log the offense at model level
 self.totRob = self.totRob + 1

 # Log offending and victimization for agents involved
 criminalAgent.numOffen = criminalAgent.numOffen + 1
 targetAgent.numVict = targetAgent.numVict + 1

 ##################################
 #data = "ROBBERY: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()

 217

 #data = ""

 #if targetAgent.criminalPropensity == true:
 ##################################
 #data = "Target Agent: " + targetAgent.name + "is a criminal"
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 else:
 print "Unable to log random decision robbery at strnode: " + occupied.strnode + " during tick:
" + self.modelStep

 ##################################
 #data = "FINAL: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()

 # Loop that logs deterrence effect of cops
 #print "Cop was present and I made it inside for loop"
 if offenderAtNode == true and copPresent == true and numAgentAtRisk >= 1 and targetWealth > 0:
 currentPlace.totPrevent = currentPlace.totPrevent + 1
 self.totDeter = self.totDeter + 1
 #print "Running total of crimes DETERRED is: ", self.totDeter

 # Log occurrence of potential crime situation - offender and victims present
 if offenderAtNode == true and numAgentAtRisk >= 1:
 self.totIntersect = self.totIntersect + 1
 #print "Running total of potential robbery situations: ", self.totIntersect

 #else:
 #print "Only one agent at node or cop at node."

 # Close the writer
 logWriter.close()

def writeOccupiedNodes():
 #print "Inside writeOccupiedNodes from model level"

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Write out contents of ACTIVE NODES class
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/occupiedSnapshot"+currTick+".csv"
 #outFileName = "./projects/rob_model/output/occupiedSnapshot"+currTick+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames = "StreetNode,NumAgents,Agent1,Agent2,Agent3,Agent4,Agent5"
 intSize = int(columnNames.length())
 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 218

 # Loop through all the active nodes and write the agents at each node to a file
 for occupied as ActiveNode in self.activeNodes:
 #print "Number of agents at node ", occupied.agentList.size()
 #create a string of each data field to be written to the file
 tempNode = String.valueOf(occupied.strnode)
 numAgents = String.valueOf(occupied.agentList.size())
 temp = tempNode + "," + numAgents

 #print numAgents + " are at node"

 for i in range (0,occupied.agentList.size()):
 temp = temp + ","
 temp = temp + String.valueOf(occupied.agentList.get(i))

 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 #print "Agent:", citizens.getName()
 #print "Time Traveling: ", citizens.getTimeTraveling()
 #print "Time at Home: ", citizens.getTimeHome()
 #print "Time at Main: ", citizens.getTimeMain()
 #print "Time at Rec1: ", citizens.getTimeRec1()
 #print "Time at Rec2: ", citizens.getTimeRec2()

 # Close the file of activity path nodes
 txtWriter.close()

def initCops():
 print "Inside init cops"
 # Randomly assign the cops to a starting location.
 # Use the Places to get the strnode
 for i in range (self.COPS):
 #index = self.UNI_SELPLACES.nextInt()
 index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1)
 #print "Index ", index
 cop = Cop()
 cop.setModel(self)

 node = (Place)self.places.get(index)
 #print "FOUND a place " , node.STRCL_

 # Log that cop started at this node
 node.copStart = 1
 cop.setLocation(node)
 cop.setStrnode(node.STRCL_)
 self.cops.add(cop)

def resetAgentsDaily():
 #print "Inside resetAgentsDaily"

 for citizen as Citizen in self.citizens:
 citizen.atActivity = true
 citizen.atRisk = false
 citizen.moveStatus = false
 citizen.position = 0

 219

 citizen.timeCounter = 0
 citizen.timerHome = 0
 citizen.timerMain = 0
 citizen.timerRec1 = 0
 citizen.timerRec2 = 0
 #print "Counter at reset agent: " + citizen.timerRepeat

def createCitizenTravelOutputFiles():
 print "Inside createCitizenTravelOutputFiles"

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Citizen characteristics
 #for citizen as Citizen in self.citizens:
 #agentName = String.valueOf(citizen.name)
 # Write the fields describing citizen agents
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 #currTick = int(self.getTickCount())
 #outFileName = "C:/model_output"+away+"/citizens"+agentName+".csv"
 #txtWriter = BufferedWriter(FileWriter(outFileName))
 #columnNames =
"Tick,timerHome,timerMain,timerRec1,timerRec2,totTimeTraveling,totTimeExposed,numVict,numOf
fen,assignHome,assignMain,assignRec1,assignRec2,assignTravel"
 #intSize = int(columnNames.length())
 #txtWriter.write(columnNames,0,intSize)
 #txtWriter.newLine()
 #txtWriter.close()

 # Citizen random path nodes
 #for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 #agentName = String.valueOf(citizen.name)
 # Write the fields describing citizen agents
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 #currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 #outFileName = "C:/model_output"+away+"/path"+agentName+".csv"
 #txtWriter = BufferedWriter(FileWriter(outFileName, true))
 #txtWriter.close()

 # Create an output file for model runtime statistics
 # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc.
 currTick = int(self.getTickCount())
 outFileName = "C:/model_output"+away+"/citizenChar.csv"
 dataWriter = BufferedWriter(FileWriter(outFileName))
 columnNames =
"Tick,NumChangeEmp,NumUnemployed,TotWealth,AvgWealth,RobRate,TotVictims,RepeatVict,Tot
Offen,RepeatOffen,NumExp,PercExposed,NumTravel,PercTraveling,numActiveOffenders,numWaitin
gOffenders,cumDeter,cumIntersect,cumRobberies"
 intSize = int(columnNames.length())
 dataWriter.write(columnNames,0,intSize)
 dataWriter.newLine()
 dataWriter.close()

 220

def writeCitizenTravInfotoFiles():
 #print "Inside writeCitizenTravInfotoFiles"
 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Loop through all citizen agents and write out the specified fields
 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 agentName = String.valueOf(citizen.name)
 # Write the fields describing citizen agents
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/citizens"+agentName+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName, true))

 tempName = currTick
 home = String.valueOf(citizen.timerHome)
 temp = tempName + "," + home
 main = String.valueOf(citizen.timerMain)
 temp = temp + "," + main
 rec1 = String.valueOf(citizen.timerRec1)
 temp = temp + "," + rec1
 rec2 = String.valueOf(citizen.timerRec2)
 temp = temp + "," + rec2
 travel = String.valueOf(citizen.totTimeTraveling)
 temp = temp + "," + travel
 expose = String.valueOf(citizen.totTimeExposed)
 temp = temp + "," + expose
 vict = String.valueOf(citizen.numVict)
 temp = temp + "," + vict
 offen = String.valueOf(citizen.numOffen)
 temp = temp + "," + offen
 ahome = String.valueOf(citizen.timeHome)
 temp = temp + "," + ahome
 amain = String.valueOf(citizen.timeMain)
 temp = temp + "," + amain
 arec1 = String.valueOf(citizen.timeRec1)
 temp = temp + "," + arec1
 arec2 = String.valueOf(citizen.timeRec2)
 temp = temp + "," + arec2
 atravel = String.valueOf(citizen.timeTraveling)
 temp = temp + "," + atravel

 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()
 txtWriter.close()

def writeModelRunData():
 print "Inside writeModelRunData"
 away = int(self.SOCIETAL_TIMEAWAY*100)
 print away

 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 modelRun = 1
 self.LOG_FILE = "C:/model_output"+away+"/RunDatav"+ modelRun + ".csv"

 221

 txtWriter = BufferedWriter(FileWriter(self.LOG_FILE))

 # Put a model run header
 header = "Model run: " + modelRun
 intSize = int(header.length())
 txtWriter.write(header,0,intSize)
 txtWriter.newLine()

 # Add parameter information
 seed = Random.getSeed()
 nxtLine = "Random Number Seed: " + seed
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 nxtLine = "Time to reoffend: " + self.REPEAT
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 nxtLine = "Wealth: " + "Mean " + self.WEALTH_MEAN + ", Standard Deviation " +
self.WEALTH_SD
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 nxtLine = "Error Term in Suitability: " + "Minimum " + self.MIN_SUITABILITY + ", Maximum " +
self.MAX_SUITABILITY
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 nxtLine = "Error Term in Guardianship: " + "Minimum " + self.MIN_GUARDIANSHIP + ",
Maximum " + self.MAX_GUARDIANSHIP
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 # Close text writer
 txtWriter.close()

def writeStatistics():
 # Writes out final statistics for all agents in one file to provide summary statistics
 # Aggregate time spent at home, main, rec1, rec2, travel, and exposed.
 # Assigned time to spend at home, main, rec1, rec2, travel.
 # Total number of offenses and victimizations.
 # Create a file

 away = int(self.SOCIETAL_TIMEAWAY*100)

 outFileName = "C:/model_output"+away+"/statistics.csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames =
"Agent,timerHome,timerMain,timerRec1,timerRec2,totTimeTraveling,totTimeExposed,numVict,num
Offen,assignHome,assignMain,assignRec1,assignRec2,assignTravel,criminal,wealth"
 intSize = int(columnNames.length())

 222

 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 name = String.valueOf(citizen.name)
 home = String.valueOf(citizen.timerHome)
 temp = name + "," + home
 main = String.valueOf(citizen.timerMain)
 temp = temp + "," + main
 rec1 = String.valueOf(citizen.timerRec1)
 temp = temp + "," + rec1
 rec2 = String.valueOf(citizen.timerRec2)
 temp = temp + "," + rec2
 travel = String.valueOf(citizen.totTimeTraveling)
 temp = temp + "," + travel
 expose = String.valueOf(citizen.totTimeExposed)
 temp = temp + "," + expose
 vict = String.valueOf(citizen.numVict)
 temp = temp + "," + vict
 offen = String.valueOf(citizen.numOffen)
 temp = temp + "," + offen
 ahome = String.valueOf(citizen.timeHome)
 temp = temp + "," + ahome
 amain = String.valueOf(citizen.timeMain)
 temp = temp + "," + amain
 arec1 = String.valueOf(citizen.timeRec1)
 temp = temp + "," + arec1
 arec2 = String.valueOf(citizen.timeRec2)
 temp = temp + "," + arec2
 atravel = String.valueOf(citizen.timeTraveling)
 temp = temp + "," + atravel
 acriminal = String.valueOf(citizen.criminalPropensity)
 temp = temp + "," + acriminal
 awealth = String.valueOf(citizen.wealth)
 temp = temp + "," + awealth

 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 # Close the file
 txtWriter.close()

def dataRecorder():
 #print "DATA RECORDER T0 FILE"

 # Writes out model runtime statistics
 # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc.

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Open the output file and the buffered writer to write the information to a file
 currTick = int(self.getTickCount())
 outFileName = "C:/model_output"+away+"/citizenChar.csv"
 dataWriter = BufferedWriter(FileWriter(outFileName, true))

 223

 # Count number of agents to change employment status
 numChange = 0
 #for citizens as Citizen in self.citizens:
 #if citizens.changeEmpStatus == true:
 #numChange = numChange + 1
 #citizens.changeEmpStatus = false

 # Count unemployed agents
 numUnemployed = 0
 numEmployed = 0
 #for agent as Citizen in self.citizens:
 #if agent.employmentStatus == false:
 #numUnemployed = numUnemployed + 1
 #elif agent.employmentStatus == true:
 #numEmployed = numEmployed + 1
 #else:
 #print "Employment status not assigned"
 #print "Number unemployed is: ", numUnemployed
 #print "Number employed is: ", numEmployed

 # Calculate average wealth of agents
 totWealth = 0
 for citizens as Citizen in self.citizens:
 totWealth = totWealth + citizens.wealth
 aveWealth = totWealth / self.AGENTS

 # Calculate the robbery rate
 robRate = self.totRob / self.AGENTS

 # Count number of agents victimized
 totNumVict = 0
 for citizens as Citizen in self.citizens:
 if citizens.numVict > 0:
 totNumVict = totNumVict + 1

 # Count number of repeat victims
 numRepeatVict = 0
 for citizens as Citizen in self.citizens:
 if citizens.numVict > 1:
 numRepeatVict = numRepeatVict + 1

 # Count number of offenders
 totNumOffenders = 0
 for citizens as Citizen in self.citizens:
 if citizens.numOffen > 0:
 totNumOffenders = totNumOffenders + 1

 # Count number of repeat offenders
 numRepeatOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.numOffen > 1:
 numRepeatOffen = numRepeatOffen + 1

 # Calculate the number of citizens at risk of victimization
 numExp = 0

 224

 for citizens as Citizen in self.citizens:
 if citizens.atRisk:
 numExp = numExp + 1
 percExp = ((numExp / self.AGENTS) * 100)

 # Calculate the number of citizens traveling
 numTravel = 0
 for citizens as Citizen in self.citizens:
 if citizens.atActivity == false:
 numTravel = numTravel + 1
 percTravel = ((numTravel / self.AGENTS) * 100)

 # Calculate the number of active offenders (able to offend)
 numActiveOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat == 0:
 numActiveOffen = numActiveOffen + 1

 # Calculate the number of waiting offenders (not able to offend)
 numWaitingOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat > 0:
 numWaitingOffen = numWaitingOffen + 1

 # Create a string of each data field to be written to the file
 temp = currTick + "," + numChange + "," + numUnemployed + "," + totWealth
 temp = temp + "," + aveWealth
 temp = temp + "," + robRate
 temp = temp + "," + totNumVict
 temp = temp + "," + numRepeatVict
 temp = temp + "," + totNumOffenders
 temp = temp + "," + numRepeatOffen
 temp = temp + "," + numExp + ","+ percExp
 temp = temp + "," + numTravel + ","+ percTravel
 temp = temp + "," + numActiveOffen
 temp = temp + "," + numWaitingOffen
 temp = temp + "," + self.totDeter
 temp = temp + "," + self.totIntersect
 temp = temp + "," + self.totRob
 intSize = int(temp.length())
 dataWriter.write(temp,0,intSize)
 dataWriter.newLine()

 #Close the file
 dataWriter.close()

def initCitizensRandom():
 print "Inside initCitizensRandom"

 # Randomly assign all citizens to a starting location and name them
 for i in range(1000):
 p = i + 1
 index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1)
 #print "Index ", index

 225

 citizen = Citizen()
 citizen.setModel(self)

 node = (Place)self.places.get(index)
 #print "Assigned to place ", node.STRCL_
 # Log where citizen started random movement
 node.citiStart = 1
 citizen.setLocation(node)
 citizen.setStrnode(node.STRCL_)
 name = "a" + p
 citizen.setName(name)
 self.citizens.add(citizen)

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))
 logData = "Log File Name: " + logoutput
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()

 # Randomly assign criminal propensity to 20% of the Citizens
 # Assign 200 agents criminal propensity (criminalPropensity = true)
 for i in range (200):
 index = Random.uniform.nextIntFromTo(0, self.AGENTS-1)
 agent = (Citizen)self.citizens.get(index)
 #print "Index ", String.valueOf(index)
 #print "Agent Name: "+ agent.getName()+ " is a criminal"
 node = agent.getLocation()

 # Condition to check and make sure citizen was not previously selected to have criminal propensity
 if agent.criminalPropensity == false:
 agent.criminalPropensity = true
 # Log where criminal started random movement
 node.crimStart = 1
 else:
 while agent.criminalPropensity == true:
 index = Random.uniform.nextIntFromTo(0, self.AGENTS-1)
 agent = (Citizen)self.citizens.get(index)
 node = agent.getLocation()
 # Log where criminal started random movement
 node.crimStart = 1
 agent.criminalPropensity = true
 #print "Agent Name: "+ agent.getName()+ " is a criminal"

 ###Randomly assign time to stay at home to each agent
 ## Five experimental conditions:
 # 30% timeAway = 70% of time at home (1008 minutes)
 # 40% timeAway = 60% of time at home
 # 50% timeAway = 50% of time at home
 # 60% timeAway = 40% of time at home
 # 70% timeAway = 30% of time at home
 # Create a new random number generator to create a normal distribution
 # with a mean of 70 and SD of 10.

 # CREATE an output file of times at each node and traveling

 226

 # First create the buffered writer to write the activity times for each agent to a file
 away = int(self.SOCIETAL_TIMEAWAY*100)
 outFileName = "C:/model_output" +away+"/timeAtActivityNodes.csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames = "Agent,Home"
 intSize = int(columnNames.length())
 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 # Uniform distribution to assign amount of time to spend at home
 # Mean is the society mean and SD is ten percent of the mean
 societyPercHome = 1 - self.SOCIETAL_TIMEAWAY
 standardDeviation = (self.MODEL_DAY * societyPercHome)*.10
 meanTimeHome = self.MODEL_DAY * societyPercHome

 # Create a normal distribution with specified mean and sd
 Random.createNormal(meanTimeHome, standardDeviation)

 # Allocate the time to remain at home
 for citizens as Citizen in self.citizens:

 # Initialize nodeList array
 citizens.nodeList = ArrayList()

 # Get a new random number for each agent
 timeAtHome = Random.normal.nextInt()
 #print "Random time at home: ", totTimeAtHome

 # While loop to check for size of timeAtHome and reset timeAtHome until
 # it is less than total time in day.
 while timeAtHome > self.MODEL_DAY:
 timeAtHome = Random.normal.nextInt()

 # Assign variable value to field in citizen
 citizens.timeHome = timeAtHome

 # Create a string of each data field to be written to the file
 tempName = String.valueOf(citizens.getName())
 tempHome = String.valueOf(citizens.getTimeHome())
 values = (tempName + "," + tempHome)
 intSize = int(values.length())
 txtWriter.write(values,0,intSize)
 txtWriter.newLine()

 #print "Agent:", citizens.getName()
 #print "Time at Home: ", citizens.getTimeHome()

 # Close the file of time at home
 txtWriter.close()

 # Create new random normal distribution to ASSIGN WEALTH
 Random.createNormal(self.WEALTH_MEAN,self.WEALTH_SD)

 # ASSIGN wealth to agents
 for citizens as Citizen in self.citizens:
 #Get a new random number for each agent

 227

 citizens.wealth = Random.normal.nextInt()
 #print "Name: ", citizens.getName() + " has been assigned Wealth of: "+ citizens.getWealth()

 # Write out initial values for each agent
 # Header line
 logData = "Name, Criminality, Wealth, TimeHome, StartNode"
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""
 for citizens as Citizen in self.citizens:
 # Write values
 logData = citizens.getName() + "," + citizens.getCriminalPropensity() + "," + citizens.getWealth() +
"," + citizens.getTimeHome() + "," + citizens.getStrnode()
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 #Close the log file
 logWriter.close()

def writeFinalAgents():
 print "Writing Final Agents"
 away = int(self.SOCIETAL_TIMEAWAY*100)
 baseFilePath = "C:/model_output"+away+"/"
 self.writeAgents(self.places, baseFilePath + "strnodes"+away+".shp")

def writeCitizenInfoPaths():
 #print "Inside writeCitizenTravInfotoFiles"
 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Loop through all citizen agents and write out the specified fields
 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 agentName = String.valueOf(citizen.name)
 # Write the fields describing citizen agents
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/path"+agentName+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName, true))
 node = citizen.strnode
 temp = node + "," + currTick
 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 txtWriter.close()

Place Actions
(none)

 228

Citizen Actions

def step():
Java imports
java.lang.Object
java.lang.Double
java.lang.Number
java.lang.Integer

Code
 #print "INSIDE CITIZEN STEP"

 # Every citizen agent evaluates their move status, if they are moving they are added to the active
nodes
 # class and are part of the decision to commit a crime. Then the values (atRisk, atActivity, moving,
and
 # position are set for the next turn.
 isActNodePosition = 0
 isActNode = 0

 # Each agent stays at home a designated amount of time and then moves with each model tick
 # Increment timerHome value and set moveStatus
 if self.timerHome < self.timeHome:
 self.timerHome = self.timerHome + 1

 # Add the new node to the agent's nodeList field to track
 #self.nodeList.add(String.valueOf(self.strnode))
 else:
 self.moveStatus = true
 self.atRisk = true
 self.totTimeExposed = self.totTimeExposed + 1
 places = self.model.getPlaces()

 #if self.name == "a6" or self.name == "a7":
 #print "Agent: ", self.name
 #print "Old node: ", self.strnode

 # Identify number of neighbor nodes, generate a random number and use that to pick the next node
 numNeighs = self.location.myNeighbors.size()
 #print "Number of neighbors is: ", numNeighs

 # Generate a value
 index = Random.uniform.nextIntFromTo(0,numNeighs-1)
 #print "Index picked: ",index

 #for node in range (0, numNeighs):
 #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node))+ "
at position " + index

 # Get the new node and assign it to strnode field
 newNode = self.location.getMyNeighbors().get(index)
 self.strnode = int(String.valueOf(newNode))

 # Add the new node to the agent's nodeList field to track
 #self.nodeList.add(newNode)

 229

 #print self.name + " Move to " + "adjacent strnode: ", self.strnode
 #print self.name + " Move to " + "adjacent strnode: ", self.nodeList.get(0)

 # Do the assignment directly of the strnode to a place
 nodeFL = Float(self.strnode)
 newLocation = (Place)self.model.placeMap.get(nodeFL)
 self.location = newLocation
 #if self.name == "a6" or self.name == "a7":
 #print "New location: ", self.location.STRCL_

 # ADD an agent to the ActiveNode class. If there is an ActiveNode agent
 # that exists with a particular strnode value then add the name of the
 # citizen agent to the agentList (an arrayList). If there is no ActiveNode
 # with the same value as the currentNode then add a new ActiveNode agent and
 # populate the strnode number with the currentNode and add the name of the
 # citizen agent to the agentList (an arrayList).

 #print "There are " + self.model.activeNodes.size() + "active nodes"

 # Test to see if this is the first ActiveNode
 nodeisEqual = false
 if self.model.activeNodes.size() <> 0:
 for occupied as ActiveNode in self.model.activeNodes:
 if self.strnode == occupied.strnode:
 occupied.agentList.add(self.name)
 nodeisEqual = true
 #print "Found an existing active node"

 if self.model.activeNodes.size() == 0 or nodeisEqual == false:
 newAgent = ActiveNode()
 newAgent.setModel(self.model)
 newAgent.strnode = self.strnode
 newAgent.agentList = ArrayList()
 newAgent.agentList.add(self.name)
 self.model.activeNodes.add(newAgent)
 #print "First agent at node: " + newAgent.strnode
 #print "ArrayList Value = ", newAgent.agentList.get(0)

 #print "Current Node as Integer: ", Integer.toString(self.location)

def payCitizens():
 #print "Inside Pay Citizens"
 # Each employed citizen gets paid at designated intervals

 if self.employmentStatus == true:
 #print "Agent Name: ",self.name
 #print "Agent Old Wealth: ", self.wealth

 self.wealth = self.wealth + 5

 #print "Agent New Wealth: ", self.wealth

Active Node Actions
(none)

 230

Cop Actions

def step():
Java imports
java.lang.Object
java.lang.String
uchicago.src.sim.util.SimUtilities
java.util.Arrays
java.util.List

Code
 # Every cop moves with each model tick
 places = self.model.getPlaces()
 #print "Old node: ", self.strnode

 # Shuffle the adjacent nodes of the Place where the cop is located
 # Identify number of neighbor nodes
 numNeighs = self.location.myNeighbors.size()
 maxValue = numNeighs-1

 # Generate a value
 index = Random.uniform.nextIntFromTo(0,numNeighs -1)

 #print "Move to index: " + index

 # Verification code
 #for node in range (0, numNeighs):
 #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node))

 # Get the new node and assign it to strnode field
 # (can't just use index because index and strnode do not correspond)
 newNode = self.location.getMyNeighbors().get(index)
 self.strnode = int(String.valueOf(newNode))

 #print "New strnode: ", self.strnode

 # Do the assignment directly of the strnode to a place
 nodeFL = Float(self.strnode)
 newLocation = (Place)self.model.placeMap.get(nodeFL)
 self.location = newLocation
 #print "New location: ", self.location.STRCL_

Sequence Graph

totalRobberies
return self.totRob

totalDeterred
return self.totDeter

totalIntersect
return self.totIntersect

 231

Appendix 4: Street Robbery Model: Temporal Version Code

Street Robbery Temporal Actions

def initAgents():
Java imports
uchicago.src.simbuilder.util.MessageDisplay
java.lang.String
anl.repast.gis.data.dbf.DBFReader
anl.repast.gis.data.dbf.JDBField
java.Array
java.util.Vector
java.util.List
java.lang.Object
java.util.ArrayList
uchicago.src.sim.util.Random
java.io.PrintWriter

Code
 print "Inside initAgents"
 if (self.messageDisplay == None):
 self.messageDisplay = MessageDisplay()
 self.messageDisplay.display("Street Robbery Messages")
 else:
 self.messageDisplay.clear()

 # Explicitly set the random number generator seed and initialize Random distributions
 # Create RNG and set seed
 Random.setSeed(100)
 Random.createUniform()

 # Create log file for model run
 self.writeModelRunData()

 # Initialize model level variables
 self.initModel()

 # Process the street nodes for use in the model
 self.setupPlaces()

 # Initialize the agents
 self.initCitizensRandom()

 # Create output files for analysis
 self.createCitizenTravelOutputFiles()

 # Check to make sure values in shapefile fields are zero
 for node as Place in self.places:
 if node.totalRob > 0 or node.totalVisit > 0 or node.totPrevent > 0:
 print "WARNING: Shapefile had non-zero values in counter fields"

 # Initialize the cop agents
 self.initCops()

 232

 print "Leaving initAgents"

def updateDisplay():
 #print "Inside updateDisplay"
 self.updateGISDisplay()

def writeAgents():
 #print "Inside writeAgents-Model level"
 baseFilePath = ".\\projects\\rob_model\\shapefiles\\"
 self.writeAgents(self.places, baseFilePath + "strnodes2.shp")

def setupPlaces():
Java imports
ava.io.BufferedReader
java.io.FileReader
java.util.StringTokenizer

Code
 print "Inside setupPlaces"

 # Put Places in a HashMap where the key is the strnode-id
 # Creates the map
 self.placeMap = LinkedHashMap()

 # Add the places to the hashmap
 for currentPlace as Place in self.places:
 specNode = "0"
 specNode = String.valueOf(currentPlace.getSTRCL_())
 specNodeNew = Float(specNode)
 self.placeMap.put(specNodeNew, currentPlace)
 #print "PLACE node info: ", specNodeNew
 currentPlace.setMyNeighbors(ArrayList())

 # Read the neighbors file and set each nodes neighbors.
 # The neighbors files lists the active node and the neighboring
 # nodes of that active node. The map created above is used to
 # get the neighbors for each active node.

 fileName = "./projects/rob_model/neighborFiles/nodenghbrs.csv"
 reader = BufferedReader(FileReader(fileName))
 line = reader.readLine()

 while(line):
 tokenizer = StringTokenizer(line, ",")
 if(tokenizer.hasMoreTokens()):
 activeNode = tokenizer.nextToken().trim()
 actNodeObject = Float(activeNode)
 currentPlace = (Place)self.placeMap.get(actNodeObject)
 #print "Current variable ", activeNode #prints out the variable strcl_
 #print "Current node from place object: ", currentPlace.getSTRCL_()
 nghs = currentPlace.getMyNeighbors()
 while (tokenizer.hasMoreTokens()):
 ngh = tokenizer.nextToken()
 currentPlace.myNeighbors.add(ngh)
 #print "Neighbor node ", ngh
 # Read the line

 233

 line = reader.readLine()
 # Close the reader
 reader.close()

 #This code enables verification that the myNeighbors array has the correct values
 #for currentPlace as Place in self.places:
 #print "Streetnode: ", node.strcl_
 #if currentPlace.getMyNeighbors() == None:
 #print "Neighbor arraylist is empty for node " + currentPlace.strcl_
 #else:
 #print "Neighbor Nodes", currentPlace.getMyNeighbors().size()

def showMessage(String message):
Java imports
javax.swing.JOptionPane

Code
 print "Inside showMessage"
 JOptionPane.showMessageDialog((JComponent)None, message)

def incrementModel():
 #print "Inside incrementModel"

 # Increment the modelStep field
 #if self.modelStep < self.MODEL_DAY: #1,440
 #if self.modelStep < self.MODEL_WEEK:
 if self.modelStep < self.MODEL_YEAR: #525,600
 #if self.modelStep < 40320: # month is 40,320
 self.modelStep = self.modelStep + 1
 else:
 self.writeFinalAgents()
 for node as Place in self.places:
 node.totalVisit = 0
 node.totalRob = 0
 node.totPrevent = 0
 node.copStart = 0
 node.citiStart = 0
 node.crimStart = 0
 self.writeAgents()
 self.writeStatistics()
 self.dataRecorder()
 print "YEAR OVER"
 self.stop()
 #print "MODEL STEP = ", self.modelStep

 # ActiveNode - call a method to write out a file of the nodes and their
 # associated agents at each step
 #print "Called writeOccupiedNodes"
 #self.writeOccupiedNodes()

 # Write out citizen position
 #self.writeCitizenInfoPaths()

 # Make the decision to commit a crime

 234

 # print "Total Active Nodes: ", self.activeNodes.size()
 self.decideRob()

 # Clear the agents from the activeNodes class
 self.activeNodes.clear()
 #print "Total active nodes after clear: ", self.activeNodes.size()

 # Increment the timers for agents with criminal propensity
 for citizen as Citizen in self.citizens:
 if citizen.criminalPropensity == true:
 if citizen.timerRepeat > 0 and citizen.timerRepeat < self.REPEAT:
 citizen.timerRepeat = citizen.timerRepeat + 1
 #print "Agent " + citizen.name + " repeat timer incremented to: " + citizen.timerRepeat
 elif citizen.timerRepeat == self.REPEAT:
 #print "REPEAT value: " + self.REPEAT
 citizen.timerRepeat = 0
 #print "Agent " + citizen.name + " timer reset to 0: " + citizen.timerRepeat
 else:
 citizen.timerRepeat = citizen.timerRepeat

 #print "TOTAL Robberies in society: ", self.totRob

def initModel():
Java Imports
cern.jet.random.*
cern.jet.random.engine.MersenneTwister
uchicago.src.sim.util.Random
cern.jet.random.Normal

Code
 print "Inside initModel"

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))

 # Set static field values for model run
 self.modelStep = 0
 self.MODEL_HOUR = 60 #360 steps per hour, Travel occurs at 6 steps per minute
 self.MODEL_DAY = (24 * self.MODEL_HOUR)
 self.MODEL_WEEK = (7 * self.MODEL_DAY)
 self.MODEL_YEAR = (365 * self.MODEL_DAY)

 # Print to file to document model run
 temp = self.SOCIETAL_TIMEAWAY *100
 logData = "Experimental condition: " + temp + "% time spent away from home" + "::::" + "Number
of Agents in model " + self.AGENTS
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""
 logData = "Number of cops: " + self.COPS
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()

 235

 logData = ""

 #Close the log file
 logWriter.close()

def decideRob():
Java imports
java.lang.Object
java.lang.String
uchicago.src.sim.util.SimUtilities
java.util.Arrays
java.util.List

Code
 #print "Inside decideRob"

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))
 #data = "Inside Decide Rob Action"
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Check each ActiveNode for list of agents
 # Logical error check
 if self.activeNodes.size() > self.AGENTS:
 data = "Too Many Active Nodes during step: " + self.modelStep
 intSize = int(data.length())
 logWriter.write(data,0,intSize)
 logWriter.newLine()
 data = ""

 # Loop through the nodes with citizens and make the decision to commit a robbery
 for occupied as ActiveNode in self.activeNodes:
 # Check agents at each of the active nodes
 #print "The Node being evaluated is: ", occupied.strnode

 #################
 #data = "Street Node " + occupied.strnode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Initialize variables in action
 numAgentsAtNode = occupied.getAgentList().size()
 #data = "Number of Agents at Node (from size of agent list field): " + numAgentsAtNode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 numCrimAtNode = 0

 236

 numAgentAtRisk = 0
 numCriminals = 0
 offenderAtNode = false
 curStreetNode = (Place)self.places.get(0)
 #print "The default curStreetNode: ", curStreetNode.STRCL_
 curAgent = (Citizen)self.citizens.get(0)
 targetAgent = (Citizen)self.citizens.get(0) #used to initialize target variable
 criminalAgent = (Citizen)self.citizens.get(0)
 copPresent = false
 robbery = true
 crimWealth = 0
 evalWealth = 0
 targetWealth = 0
 suitability = 0
 targetSet = false

 #################
 #data = "START VALUES: Criminal Agent-- " + criminalAgent.name + "Current Agent-- " +
curAgent.name + "Target agent- " + targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Log presence of agents on street node
 # Retrieving the place by converting to a float object
 occupiedObject = Float(occupied.strnode)
 currentPlace = (Place)self.placeMap.get(occupiedObject)
 #print "NEW Place node:", currentPlace.getSTRCL_()
 #print "Number of agents at Node: ", numAgentsAtNode
 #self.messageDisplay.addAlert("There are "+ numAgentsAtNode + " citizens at " +
occupied.strnode)

 # Log fact that agents visited a node in the shapefile
 if (currentPlace != None):
 currentPlace.totalVisit = currentPlace.totalVisit + numAgentsAtNode
 #currentPlace.visits = currentPlace.visits + numAgentsAtNode
 #print "NEW Number of Visits: ", currentPlace.totalVisit
 else:
 print "Unable to log visit at strnode: " + occupied.strnode + " during tick: " + self.modelStep

 #Loop through all the cops to find out if there is a cop at node
 for copAtNode as Cop in self.cops:
 copPlace = copAtNode.getLocation()
 #When you find a cop at the place break out of loop and calculate variable
 if copPlace == currentPlace:
 #print "Cop at node: ", copAtNode.location.STRCL_
 copPresent = true
 break
 else:
 copPresent = false

 #############################DEBUG
 #if copPresent == true:
 #data = "Cop is at node! "
 #intSize = int(data.length())

 237

 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #if copPresent == true:
 #print "Cop! at node "+ occupied.strnode

 #Only evaluate nodes that have more than one citizen and there is no cop present
 if numAgentsAtNode > 1: #Change to > 1 for final testing

 ################# DEBUG
 #data = "Street Node " + occupied.strnode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #############################
 #data = "Number of Agents at Node is: " + numAgentsAtNode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Calculate the level of GUARDIANSHIP
 guardianship = (numAgentsAtNode - 2) +
Random.uniform.nextIntFromTo(self.MIN_GUARDIANSHIP,self.MAX_GUARDIANSHIP)
 #print "Guardianship is: ", guardianship

 # Outside loop that checks each of the agents at a particular node using the citizen name
 # Use code to randomly shuffle the agents at a node so they have an equal chance of being
 # selected first and thus are not always evaluated in the same order.

 #for position in range(0, numAgentsAtNode):
 #print "Original Order: Node--" + occupied.strnode + " Position " + position + ", "+
String.valueOf(occupied.getAgentList().get(position))

 # Create a distribution using number of agents at node
 maxValue = numAgentsAtNode-1

 # Create arraylist variables
 # Array to hold randomly shuffled agents
 randList = ArrayList()
 # List of array positions that have been used
 strList = ArrayList()
 foundIt = false
 #print numAgentsAtNode
 # Outside while to create a new list of all the agents at the node in a new order

 while randList.size() < numAgentsAtNode:
 # Generate a random number
 foundIt = false
 #index = shuffleDist.nextInt()
 index = Random.uniform.nextIntFromTo(0,numAgentsAtNode-1)
 indexStr = String.valueOf(index)
 #print "Original index generated is: " + index

 #############################

 238

 #data = "Index value: " + index
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logwriter.newLine()
 #data = ""

 # If this is the first agent generated then add it to the new randList array, otherwise check to see if
 # the index has already been used
 if strList.size() >= 1:
 for p in range (0, strList.size()):
 if String.valueOf(strList.get(p)) == indexStr:
 foundIt = true
 break

 if foundIt == false:
 agent = occupied.AgentList.get(index)
 randList.add(agent)
 strList.add(indexStr)
 #print "randList size is ", randList.size()
 #print "New size of list of index numbers is " + strList.size()

 # Code to verify new order
 #for position in range(0, numAgentsAtNode):
 #print "New order at Node: " + occupied.strnode + " position " + position + ", " +
String.valueOf(randList.get(position))

 for i in range (0,numAgentsAtNode):
 #Bunch of code that get the agent name (e.g. a1) and then strips off the first character
 #and pulls the correct Citizen agent using the agent name
 fullName = randList.get(i)
 fullStrName = String.valueOf(fullName)
 partName = fullStrName.substring(1)
 #print "Agent: " + partname + " in agentList"
 # Use the agent's name to find the index number of correct Citizen agent
 index = int(partName) - 1
 curAgent = (Citizen)self.citizens.get(index)
 #print "Citizen in agentList: ", curAgent.name
 #print "Current agent: " + curAgent.name + " is criminal? " + curAgent.criminalPropensity

 #################################
 #data = "Loop through current agents to find Criminal: " + i + "," +
String.valueOf(randList.get(i)) + "," + "criminal: " + curAgent.criminalPropensity + "," + " at risk?: " +
curAgent.atRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Identifies if any of the agents have criminal propensity and are 'atRisk' and selects the
 # first one it finds to be the active criminal in this interaction
 if curAgent.criminalPropensity == true and curAgent.atRisk == true:
 criminalAgent = curAgent
 if criminalAgent.timerRepeat == 0:
 offenderAtNode = true
 #else:
 #print "Agent " + criminalAgent.name + " Offender unable to offend yet"

 239

 break #go directly to next if statement (if offenderAtNode == true:)

 #################################DEBUG
 #data = "Criminal in interaction: " + criminalAgent.name + "," + "timer: " +
criminalAgent.timerRepeat
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Loop that uses formulas to evaluate guardianship and target suitability
 if offenderAtNode == true:
 #print "Offender: " + criminalAgent.name + " is at Node and evaluating opportunity"

 # Find out how many civilians are 'at risk' and
 # which 'at risk' civilian at the active node has the most wealth
 for i in range (0,numAgentsAtNode):
 # Get the first agent in the randomly ordered list
 fullName = randList.get(i)
 fullStrName = String.valueOf(fullName)
 partName = fullStrName.substring(1)
 # Use the agent's name to find the index number of correct Citizen agent
 index = int(partName) - 1
 evalAgent = (Citizen)self.citizens.get(index)
 evalWealth = evalAgent.wealth
 crimWealth = criminalAgent.Wealth
 #print "Criminal's Wealth: ", crimWealth
 #print "Evaluated agent: ", evalAgent.name
 #print "Evaluated agent's wealth: ", evalWealth

 # Counter for number of criminals at node
 if evalAgent.criminalPropensity == true:
 numCrimAtNode = numCrimAtNode + 1

 #############################DEBUG
 #data = "Evaluate Wealth for eval agent: " + evalAgent.name + " has wealth of: " + evalWealth
+ " CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth
 #data = "Eval agent: " + "," + evalAgent.name + "," + "Wealth: " + "," + evalWealth + "
CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Counter for number of agents at node who are 'at risk' of being robbed (only is counted
 # if there is an offender at the node)
 if (evalAgent.atRisk == true) and (evalAgent.name != criminalAgent.name):
 numAgentAtRisk = numAgentAtRisk + 1

 #############################
 #data = "Number of agents at risk: " + numAgentAtRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()

 240

 #data = ""

 # Identify the 'at risk' agent with the most wealth
 if criminalAgent.name != evalAgent.name:
 #############################
 #data = "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: "
+ evalAgent.name + " with " + evalWealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 #print "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " +
evalAgent.name + " with " + evalWealth
 if (crimWealth <= evalWealth) and (evalAgent.atRisk == true):
 if evalWealth > targetWealth:
 targetWealth = evalWealth
 #targetAgent = (Citizen)self.citizens.get(index)
 targetAgent = evalAgent
 targetSet = true
 #print "Current Agent with highest wealth ," + targetAgent.name

 ######################## DEBUG
 #data = "Identity of selected targetAgent: " + "," + targetAgent.name + "," +
targetAgent.criminalPropensity
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #print "Number of agents at risk", numAgentAtRisk

 ######################Print summary
 #if numCrimAtNode >= 2:
 #self.multiCriminalsAtNode = self.multiCriminalsAtNode + 1
 #data = "Two or more criminals presentat node during Model Step: " + "," + self.modelStep
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #data = "Number Criminals: " + "," + numCrimAtNode + "," + "Number Agents at Risk: " +
numAgentAtRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Decide to Commit Robbery
 # Calculate SUITABILITY of victim but first check to see if there is a targetAgent found
 targetExists = false
 if targetSet == true:
 #print "Current Agent with highest wealth ", targetAgent.name
 suitability = targetWealth - crimWealth +
Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, self.MAX_SUITABILITY)
 targetExists = true

 # Series of checks necessary to evaluate guardianship value calculated earlier

 241

 # If G < 1 then there is a lack of capable guardians so commitCrime = true
 # If G = 1 then randomly assign T or F with equal probability
 # If G >= 2 then too many guardians so commitCrime = false
 #print "PreCommit Crime Guardianship is: ", guardianship
 #print "Suitability is: ", suitability

 # Check to make sure a target exists and evaluate suitability and guardianship
 if targetExists == true and suitability >= 0 and guardianship < 1 and copPresent == false:
#commit crime
 # Exchange one units of wealth
 # Subtract one unit from victim
 #print "Victim Name ", targetAgent.name
 #print "Victims current wealth ", targetAgent.wealth
 targetAgent.wealth = targetAgent.wealth - 1
 #print "Victims new wealth ", targetAgent.wealth
 #print "Offender Name: " + criminalAgent.name + "Timer value of: " +
criminalAgent.timerRepeat
 #print "Offenders current wealth ", criminalAgent.wealth

 # Add one unit of wealth to criminal
 criminalAgent.wealth = criminalAgent.wealth + 1
 #print "Offenders new wealth ", criminalAgent.wealth

 # Start the timer until citizen can offend again
 criminalAgent.timerRepeat = 1

 # Code to log the offense for that specific place
 if (currentPlace != None):
 currentPlace.totalRob = currentPlace.totalRob + 1
 #print "Robbery at Node: ", currentPlace.STRCL_
 #print "Total Robberies at Specific Node ", currentPlace.totalRob
 # Log the offense at model level
 self.totRob = self.totRob + 1

 # Log offending and victimization for agents involved
 criminalAgent.numOffen = criminalAgent.numOffen + 1
 targetAgent.numVict = targetAgent.numVict + 1

 ##################################DEBUG
 #data = "ROBBERY: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 ##################################DEBUG
 #data = "WEALTH: CriminalAgent: " + criminalAgent.wealth + "," + "TargetAgent: " +
targetAgent.wealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 if targetAgent.criminalPropensity == true:
 ##################################

 242

 data = "Model step: " + self.modelStep
 intSize = int(data.length())
 logWriter.write(data,0,intSize)
 logWriter.newLine()
 data = ""
 data = "Target Agent: " + targetAgent.name + "is a criminal"
 intSize = int(data.length())
 logWriter.write(data,0,intSize)
 logWriter.newLine()
 data = ""

 else:
 print "Unable to log robbery at strnode: " + occupied.strnode + " during tick: " +
self.modelStep

 # Random decision to commit robbery
 elif targetExists == true and suitability >= 0 and guardianship == 1 and copPresent == false:
 randDecision = guardianship + Random.uniform.nextIntFromTo(self.MIN_SUITABILITY,
self.MAX_SUITABILITY)
 #print "Random Decision: ", randDecision
 if randDecision == 1:
 break
 elif randDecision < 1:
 # Exchange one units of wealth
 #print "Random: Victim Name ", targetAgent.name
 #print "Random: Victims current wealth ", targetAgent.wealth
 targetAgent.wealth = targetAgent.wealth - 1
 #print "Victims new wealth ", targetAgent.wealth
 #print "Random: Offender Name " + criminalAgent.name + "Timer value of: " +
criminalAgent.timerRepeat
 #print "Random: Offenders current wealth ", criminalAgent.wealth
 criminalAgent.wealth = criminalAgent.wealth + 1
 #print "Offenders new wealth ", criminalAgent.wealth

 # Start the timer until citizen can offend again
 criminalAgent.timerRepeat = 1

 # Log the offense at the specific place
 if (currentPlace != None):
 currentPlace.totalRob = currentPlace.totalRob + 1
 #print "Robbery at Node: ", currentPlace.STRCL_
 #print "Total Robberies at Specific Node ", currentPlace.totalRob
 # Log the offense at model level
 self.totRob = self.totRob + 1

 # Log offending and victimization for agents involved
 criminalAgent.numOffen = criminalAgent.numOffen + 1
 targetAgent.numVict = targetAgent.numVict + 1

 ##################################
 #data = "ROBBERY: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 243

 #if targetAgent.criminalPropensity == true:
 ##################################
 #data = "Target Agent: " + targetAgent.name + "is a criminal"
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 else:
 print "Unable to log random decision robbery at strnode: " + occupied.strnode + " during tick:
" + self.modelStep

 ##################################
 #data = "FINAL: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()

 # Loop that logs deterrence effect of cops
 #print "Cop was present and I made it inside for loop"
 if offenderAtNode == true and copPresent == true and numAgentAtRisk >= 1 and targetWealth > 0:
 currentPlace.totPrevent = currentPlace.totPrevent + 1
 self.totDeter = self.totDeter + 1
 #print "Running total of crimes DETERRED is: ", self.totDeter

 # Log occurrence of potential crime situation - offender and victims present
 if offenderAtNode == true and numAgentAtRisk >= 1:
 self.totIntersect = self.totIntersect + 1
 #print "Running total of potential robbery situations: ", self.totIntersect

 #else:
 #print "Only one agent at node or cop at node."

 # Close the writer
 logWriter.close()

def writeOccupiedNodes():
 #print "Inside writeOccupiedNodes from model level"

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Write out contents of ACTIVE NODES class
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/occupiedSnapshot"+currTick+".csv"
 #outFileName = "./projects/rob_model/output/occupiedSnapshot"+currTick+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames = "StreetNode,NumAgents,Agent1,Agent2,Agent3,Agent4,Agent5"
 intSize = int(columnNames.length())
 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 244

 # Loop through all the active nodes and write the agents at each node to a file
 for occupied as ActiveNode in self.activeNodes:
 #print "Number of agents at node ", occupied.agentList.size()
 #create a string of each data field to be written to the file
 tempNode = String.valueOf(occupied.strnode)
 numAgents = String.valueOf(occupied.agentList.size())
 temp = tempNode + "," + numAgents

 for i in range (0,occupied.agentList.size()):
 temp = temp + ","
 temp = temp + String.valueOf(occupied.agentList.get(i))

 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 #print "Agent:", citizens.getName()
 #print "Time Traveling: ", citizens.getTimeTraveling()
 #print "Time at Home: ", citizens.getTimeHome()
 #print "Time at Main: ", citizens.getTimeMain()
 #print "Time at Rec1: ", citizens.getTimeRec1()
 #print "Time at Rec2: ", citizens.getTimeRec2()

 # Close the file of activity path nodes
 txtWriter.close()

def idChangingEmploymentStatus():
 print "ID CHANGE AGENTS loop"

 #SWITCH the employment status for 3% of agents in the model using a uniform distribution
 for i in range (30):
 index = Random.uniform.nextIntFromTo(0,self.AGENTS - 1)
 agent = (Citizen)self.citizens.get(index)
 agent.changeEmpStatus = true
 #print "Changed agent name ", agent.name

def switchActivitySpace():
 # Switch the activity spaces of agents whose employment status changed
 # Change the times to remain at home, main, rec1 and rec2 and the time needed for travel

 print "Inside switchEmploymentStatus -- Model"

 for citizens as Citizen in self.citizens:
 if citizens.changeEmpStatus == true:
 #print "Index ", String.valueOf(index)
 #print "Agent Name: ", citizens.getName()
 #print "PreChange empStatus ", citizens.employmentStatus
 if citizens.employmentStatus == true:
 #print "My Values should be for unemployed"
 citizens.employmentStatus = false #Employed becomes unemployed
 citizens.timeHome = citizens.timeUnempHome
 citizens.timeMain = citizens.timeUnempMain
 citizens.rec1 = citizens.timeUnempRec1
 citizens.rec2 = citizens.timeUnempRec2

 245

 citizens.timeTraveling = citizens.timeUnempTraveling
 citizens.changeEmpStatus = false
 #print "Time at Main ", citizens.timeMain
 #print "Time at Main when Unemployed", citizens.timeUnempMain
 else:
 #print "I am employed"
 citizens.employmentStatus = true #Unemployed becomes employed
 citizens.timeHome = citizens.timeEmpHome
 citizens.timeMain = citizens.timeEmpMain
 citizens.rec1 = citizens.timeEmpRec1
 citizens.rec2 = citizens.timeEmpRec2
 citizens.timeTraveling = citizens.timeEmpTraveling
 citizens.changeEmpStatus = false
 #print "Time at Main ", citizens.timeMain
 #print "Time at Main when Employed", citizens.timeEmpMain

 #print "PostChange ", citizens.employmentStatus

def initCops():
 print "Inside init cops"
 #Randomly assign the cops to a starting location.

 # Use the Places to get the strnode ##CODE HAS BEEN VERIFIED
 for i in range (self.COPS):
 index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1)
 #print "Index ", index
 cop = Cop()
 cop.setModel(self)

 node = (Place)self.places.get(index)
 #print "FOUND a place " , node.STRCL_

 # Log that cop started at this node
 node.copStart = 1
 cop.setLocation(node)
 cop.setStrnode(node.STRCL_)
 self.cops.add(cop)

def resetAgentsDaily():
 #print "Inside resetAgentsDaily"

 for citizen as Citizen in self.citizens:
 citizen.atActivity = true
 citizen.atRisk = false
 citizen.moveStatus = false
 citizen.position = 0
 citizen.timeCounter = 0
 citizen.timerHome = 0
 citizen.timerMain = 0
 citizen.timerRec1 = 0
 citizen.timerRec2 = 0
 #print "Counter at reset agent: " + citizen.timerRepeat

 246

def createCitizenTravelOutputFiles():
 print "Inside createCitizenTravelOutputFiles"

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Create an output file for model runtime statistics
 # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc.
 currTick = int(self.getTickCount())
 outFileName = "C:/model_output"+away+"/citizenChar.csv"
 dataWriter = BufferedWriter(FileWriter(outFileName))
 columnNames =
"Tick,NumChangeEmp,NumUnemployed,TotWealth,AvgWealth,RobRate,TotVictims,RepeatVict,Tot
Offen,RepeatOffen,NumExp,PercExposed,NumTravel,PercTraveling,numActiveOffenders,numWaitin
gOffenders,cumDeter,cumIntersect,cumRobberies, cumMultiOffendersAtNode"
 intSize = int(columnNames.length())
 dataWriter.write(columnNames,0,intSize)
 dataWriter.newLine()
 dataWriter.close()

def writeCitizenTravInfotoFiles():
 #print "Inside writeCitizenTravInfotoFiles"
 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Loop through all citizen agents and write out the specified fields
 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 agentName = String.valueOf(citizen.name)
 # Write the fields describing citizen agents
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/citizens"+agentName+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName, true))

 tempName = currTick
 home = String.valueOf(citizen.timerHome)
 temp = tempName + "," + home
 main = String.valueOf(citizen.timerMain)
 temp = temp + "," + main
 rec1 = String.valueOf(citizen.timerRec1)
 temp = temp + "," + rec1
 rec2 = String.valueOf(citizen.timerRec2)
 temp = temp + "," + rec2
 travel = String.valueOf(citizen.totTimeTraveling)
 temp = temp + "," + travel
 expose = String.valueOf(citizen.totTimeExposed)
 temp = temp + "," + expose
 vict = String.valueOf(citizen.numVict)
 temp = temp + "," + vict
 offen = String.valueOf(citizen.numOffen)
 temp = temp + "," + offen
 ahome = String.valueOf(citizen.timeHome)
 temp = temp + "," + ahome
 amain = String.valueOf(citizen.timeMain)
 temp = temp + "," + amain

 247

 arec1 = String.valueOf(citizen.timeRec1)
 temp = temp + "," + arec1
 arec2 = String.valueOf(citizen.timeRec2)
 temp = temp + "," + arec2
 atravel = String.valueOf(citizen.timeTraveling)
 temp = temp + "," + atravel

 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()
 txtWriter.close()

def writeModelRunData():
 print "Inside writeModelRunData"
 away = int(self.SOCIETAL_TIMEAWAY*100)
 print away

 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 modelRun = 1
 self.LOG_FILE = "C:/model_output"+away+"/RunDatav"+ modelRun + ".csv"
 txtWriter = BufferedWriter(FileWriter(self.LOG_FILE))

 # Put a model run header
 header = "Model run: " + modelRun
 intSize = int(header.length())
 txtWriter.write(header,0,intSize)
 txtWriter.newLine()

 # Put a model name in header
 header = "Model Name: Full_Random Model"
 intSize = int(header.length())
 txtWriter.write(header,0,intSize)
 txtWriter.newLine()

 # Add parameter information
 seed = Random.getSeed()
 nxtLine = "Random Number Seed: " + seed
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 nxtLine = "Time to reoffend: " + self.REPEAT
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 nxtLine = "Wealth: " + "Mean " + self.WEALTH_MEAN + ", Standard Deviation " +
self.WEALTH_SD
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 # Close text writer
 txtWriter.close()

 248

def writeStatistics():
 # Writes out final statistics for all agents in one file to provide summary statistics
 # Aggregate time spent at home, main, rec1, rec2, travel, and exposed.
 # Assigned time to spend at home, main, rec1, rec2, travel.
 # Total number of offenses and victimizations.

 # Create a file
 away = int(self.SOCIETAL_TIMEAWAY*100)
 month = "month"+ self.modelStep/40320

 # Set up to write to file
 outFileName = "C:/model_output"+away+"/statistics_"+month+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames =
"Agent,timerHome,timerMain,timerRec1,timerRec2,totTimeTraveling,totTimeExposed,numVict,num
Offen,assignHome,assignMain,assignRec1,assignRec2,assignTravel,criminal,wealth"
 intSize = int(columnNames.length())
 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 name = String.valueOf(citizen.name)
 home = String.valueOf(citizen.timerHome)
 temp = name + "," + home
 main = String.valueOf(citizen.timerMain)
 temp = temp + "," + main
 rec1 = String.valueOf(citizen.timerRec1)
 temp = temp + "," + rec1
 rec2 = String.valueOf(citizen.timerRec2)
 temp = temp + "," + rec2
 travel = String.valueOf(citizen.totTimeTraveling)
 temp = temp + "," + travel
 expose = String.valueOf(citizen.totTimeExposed)
 temp = temp + "," + expose
 vict = String.valueOf(citizen.numVict)
 temp = temp + "," + vict
 offen = String.valueOf(citizen.numOffen)
 temp = temp + "," + offen
 ahome = String.valueOf(citizen.timeHome)
 temp = temp + "," + ahome
 amain = String.valueOf(citizen.timeMain)
 temp = temp + "," + amain
 arec1 = String.valueOf(citizen.timeRec1)
 temp = temp + "," + arec1
 arec2 = String.valueOf(citizen.timeRec2)
 temp = temp + "," + arec2
 atravel = String.valueOf(citizen.timeTraveling)
 temp = temp + "," + atravel
 acriminal = String.valueOf(citizen.criminalPropensity)
 temp = temp + "," + acriminal
 awealth = String.valueOf(citizen.wealth)
 temp = temp + "," + awealth

 intSize = int(temp.length())

 249

 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 # Close the file
 txtWriter.close()

def dataRecorder():
 #print "DATA RECORDER T0 FILE"

 # Writes out model runtime statistics
 # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc.

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Open the output file and the buffered writer to write the information to a file
 currTick = int(self.getTickCount())
 outFileName = "C:/model_output"+away+"/citizenChar.csv"
 dataWriter = BufferedWriter(FileWriter(outFileName, true))

 # Count number of agents to change employment status
 numChange = 0
 for citizens as Citizen in self.citizens:
 if citizens.changeEmpStatus == true:
 numChange = numChange + 1
 citizens.changeEmpStatus = false

 # Count unemployed agents
 numUnemployed = 0
 numEmployed = 0
 for agent as Citizen in self.citizens:
 if agent.employmentStatus == false:
 numUnemployed = numUnemployed + 1
 elif agent.employmentStatus == true:
 numEmployed = numEmployed + 1
 else:
 print "Employment status not assigned"
 #print "Number unemployed is: ", numUnemployed
 #print "Number employed is: ", numEmployed

 # Calculate average wealth of agents
 totWealth = 0
 for citizens as Citizen in self.citizens:
 totWealth = totWealth + citizens.wealth
 aveWealth = totWealth / self.AGENTS

 # Calculate the robbery rate
 robRate = 0
 robRate = self.totRob / self.AGENTS

 # Count number of agents victimized
 totNumVict = 0
 for citizens as Citizen in self.citizens:
 if citizens.numVict > 0:
 totNumVict = totNumVict + 1

 250

 # Count number of repeat victims
 numRepeatVict = 0
 for citizens as Citizen in self.citizens:
 if citizens.numVict > 1:
 numRepeatVict = numRepeatVict + 1

 # Count number of offenders
 totNumOffenders = 0
 for citizens as Citizen in self.citizens:
 if citizens.numOffen > 0:
 totNumOffenders = totNumOffenders + 1

 # Count number of repeat offenders
 numRepeatOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.numOffen > 1:
 numRepeatOffen = numRepeatOffen + 1

 # Calculate the number of citizens at risk of victimization
 numExp = 0
 for citizens as Citizen in self.citizens:
 if citizens.atRisk:
 numExp = numExp + 1
 percExp = ((numExp / self.AGENTS) * 100)

 # Calculate the number of citizens traveling
 numTravel = 0
 for citizens as Citizen in self.citizens:
 if citizens.atActivity == false:
 numTravel = numTravel + 1
 percTravel = ((numTravel / self.AGENTS) * 100)

 # Calculate the number of active offenders (able to offend)
 numActiveOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat == 0:
 numActiveOffen = numActiveOffen + 1

 # Calculate the number of waiting offenders (not able to offend)
 numWaitingOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat > 0:
 numWaitingOffen = numWaitingOffen + 1

 # Create a string of each data field to be written to the file
 temp = currTick + "," + numChange + "," + numUnemployed + "," + totWealth
 temp = temp + "," + aveWealth
 temp = temp + "," + robRate
 temp = temp + "," + totNumVict
 temp = temp + "," + numRepeatVict
 temp = temp + "," + totNumOffenders
 temp = temp + "," + numRepeatOffen
 temp = temp + "," + numExp + ","+ percExp
 temp = temp + "," + numTravel + ","+ percTravel

 251

 temp = temp + "," + numActiveOffen
 temp = temp + "," + numWaitingOffen
 temp = temp + "," + self.totDeter
 temp = temp + "," + self.totIntersect
 #temp = temp + "," + self.totRob + "," + self.multiCriminalsAtNode
 intSize = int(temp.length())
 dataWriter.write(temp,0,intSize)
 dataWriter.newLine()

 #Close the file
 dataWriter.close()

def writeFinalAgents():
 print "Writing Final Agents"
 away = int(self.SOCIETAL_TIMEAWAY*100)
 baseFilePath = "C:/model_output"+away+"/"
 self.writeAgents(self.places, baseFilePath + "strnodes"+away+".shp")

def writeCitizenInfoPaths():
 #print "Inside writeCitizenTravInfotoFiles"
 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Loop through all citizen agents and write out the specified fields
 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 agentName = String.valueOf(citizen.name)
 # Write the fields describing citizen agents
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/path"+agentName+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName, true))
 node = citizen.strnode
 temp = node + "," + currTick
 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 txtWriter.close()

def initCitizensRandom():
 print "Inside initCitizensRandom"

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Randomly assign all citizens to a starting location and name them
 for i in range(self.AGENTS): # Change to 1000 for final model
 p = i + 1
 index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1)
 #print "Index ", index
 citizen = Citizen()
 citizen.setModel(self)

 252

 node = (Place)self.places.get(index)
 #print "Assigned to place ", node.STRCL_
 # Log where citizen started random movement
 node.citiStart = 1
 citizen.setLocation(node)
 citizen.setStrnode(node.STRCL_)
 name = "a" + p
 citizen.setName(name)
 self.citizens.add(citizen)

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))
 logData = "Log File Name: " + logoutput
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()

 # Randomly assign criminal propensity to 20% of the Citizens
 # Assign 200 agents criminal propensity (criminalPropensity = true)
 for i in range (200):
 index = Random.uniform.nextIntFromTo(0, self.AGENTS - 1)
 agent = (Citizen)self.citizens.get(index)
 #print "Index ", String.valueOf(index)
 #print "Agent Name: "+ agent.getName()+ " is a criminal"
 node = agent.getLocation()

 # Condition to check and make sure citizen was not previously selected to have criminal propensity
 if agent.criminalPropensity == false:
 agent.criminalPropensity = true
 # Log where criminal started random movement
 node.crimStart = 1
 else:
 while agent.criminalPropensity == true:
 index = Random.uniform.nextIntFromTo(0, self.AGENTS - 1)
 agent = (Citizen)self.citizens.get(index)
 node = agent.getLocation()
 # Log where criminal started random movement
 node.crimStart = 1
 agent.criminalPropensity = true
 #print "Agent Name: "+ agent.getName()+ " is a criminal"

 logData = agent.getName() + " ," + " criminal"
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 # Read in files of times to spend at activities for each agent when EMPLOYED
 fileName = "C://Program Files//Repast 3//Agent
Analyst//projects//rob_model//timeSchedule//empTimeAtActivityNodes" + away + ".csv"
 txtreader1 = BufferedReader(FileReader(fileName))

 aName = ""

 # Read each line of the file

 253

 for citizens as Citizen in self.citizens:
 line = txtreader1.readLine()
 tokenizer = StringTokenizer(line, ",")

 # Loop to get all the fields in a particular line
 if (tokenizer.hasMoreTokens()):
 aName = tokenizer.nextToken().trim()
 tEmpHome = tokenizer.nextToken().trim()
 citizens.timeEmpHome = int(tEmpHome)
 tEmpMain = tokenizer.nextToken().trim()
 citizens.timeEmpMain = int(tEmpMain)
 tEmpRec1 = tokenizer.nextToken().trim()
 citizens.timeEmpRec1 = int(tEmpRec1)
 tEmpRec2 = tokenizer.nextToken().trim()
 citizens.timeEmpRec2 = int(tEmpRec2)
 tEmpTravel = tokenizer.nextToken().trim()
 citizens.timeEmpTraveling = int(tEmpTravel)

 # Close the file of activity nodes
 txtreader1.close()

 # Read in files of times to spend at activities for each agent when UNEMPLOYED
 fileName = "C://Program Files//Repast 3//Agent
Analyst//projects//rob_model//timeSchedule//unempTimeAtActivityNodes" + away + ".csv"

 # Read each line of the file
 for citizens as Citizen in self.citizens:
 line = txtreader.readLine()
 tokenizer = StringTokenizer(line, ",")

 # Loop to get all the fields in a particular line
 if (tokenizer.hasMoreTokens()):
 aName = tokenizer.nextToken().trim()
 tUnempHome = tokenizer.nextToken().trim()
 citizens.timeUnempHome = int(tUnempHome)
 tUnempMain = tokenizer.nextToken().trim()
 citizens.timeUnempMain = int(tUnempMain)
 tUnempRec1 = tokenizer.nextToken().trim()
 citizens.timeUnempRec1 = int(tUnempRec1)
 tUnempRec2 = tokenizer.nextToken().trim()
 citizens.timeUnempRec2 = int(tUnempRec2)
 tUnemptravel = tokenizer.nextToken().trim()
 citizens.timeUnempTraveling = int(tUnemptravel)

 #print "Agent:", aName
 #print "Employed Time at Home: ", intEmpHome
 #print "Employed Time at Main: ", intEmpMain
 #print "Employed Time at Rec1: ", intEmpRec1
 #print "Employed Time at Rec2: ", intEmpRec2
 #print "Employed Time Traveling: ", intEmpTravel

 #print "Agent:", aName
 #print "Unemployed Time at Home: ", intUnempHome
 #print "Unemployed Time at Main: ", intUnempMain
 #print "Unemployed Time at Rec1: ", intUnempRec1
 #print "Unemployed Time at Rec2: ", intUnempRec2

 254

 #print "Unemployed Time Traveling: ", intUnempTravel

 # Close the file of activity nodes
 txtreader.close()

 # SET the employment status for all agents in the model
 # Using a uniform distribution assign 6% of agents to be unemployed
 for i in range (60):
 index = Random.uniform.nextIntFromTo(0, self.AGENTS - 1)
 agent = (Citizen)self.citizens.get(index)
 #print "Index ", String.valueOf(index)

 # Condition to check and make sure citizen was not previously selected to be unemployed
 if agent.employmentStatus == true:
 agent.employmentStatus = false #Agent is unemployed
 else:
 while agent.employmentStatus == false:
 index = Random.uniform.nextIntFromTo(0, self.AGENTS - 1)
 agent = (Citizen)self.citizens.get(index)
 agent.employmentStatus = false
 #print "Agent Name: "+ agent.getName()+ " is unemployed"

 logData = agent.getName() + " ," + " unemployed"
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 # CREATE an output file of times at each activity and traveling
 # First create the buffered writer to write the activity times for each agent to a file
 outFileName = "C:/model_output" +away+"/timeAtActivityNodes.csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames =
"Agent,Home,Main,Rec1,Rec2,Travel,empHome,empMain,empRec1,empRec2,empTravel,unempHo
me,unempMain,unempRec1,unempRec2,unempTravel"
 intSize = int(columnNames.length())
 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 # Assign time schedule to each citizen agent in the model
 for citizens as Citizen in self.citizens:
 if citizens.employmentStatus == true:
 citizens.timeHome = citizens.timeEmpHome
 citizens.timeMain = citizens.timeEmpMain
 citizens.timeRec1 = citizens.timeEmpRec1
 citizens.timeRec2 = citizens.timeEmpRec2
 citizens.timeTraveling = citizens.timeEmpTraveling
 citizens.travelTimeSplit = citizens.timeTraveling / 4 # Allocate equal travel between activities
 elif citizens.employmentStatus == false:
 citizens.timeHome = citizens.timeUnempHome
 citizens.timeMain = citizens.timeUnempMain
 citizens.timeRec1 = citizens.timeUnempRec1
 citizens.timeRec2 = citizens.timeUnempRec2
 citizens.timeTraveling = citizens.timeUnempTraveling
 citizens.travelTimeSplit = citizens.timeTraveling / 4 # Allocate equal travel between activities

 255

 else:
 print "Agent has not been assigned a criminal propensity."

 # Create a string of each data field to be written to the file for later diagnostics
 tempName = String.valueOf(citizens.getName())
 tempHome = String.valueOf(citizens.getTimeHome())
 tempMain = String.valueOf(citizens.getTimeMain())
 tempRec1 = String.valueOf(citizens.getTimeRec1())
 tempRec2 = String.valueOf(citizens.getTimeRec2())
 tempTravel = String.valueOf(citizens.getTimeTraveling())
 tEmpHome = String.valueOf(citizens.getTimeEmpHome())
 tEmpMain = String.valueOf(citizens.getTimeEmpMain())
 tEmpRec1 = String.valueOf(citizens.getTimeEmpRec1())
 tEmpRec2 = String.valueOf(citizens.getTimeEmpRec2())
 tEmpTravel = String.valueOf(citizens.getTimeEmpTraveling())
 tUnempHome = String.valueOf(citizens.getTimeUnempHome())
 tUnempMain = String.valueOf(citizens.getTimeUnempMain())
 tUnempRec1 = String.valueOf(citizens.getTimeUnempRec1())
 tUnempRec2 = String.valueOf(citizens.getTimeUnempRec2())
 tUnempTravel = String.valueOf(citizens.getTimeUnempTraveling())

 # Write values to file
 values =
(tempName+","+tempHome+","+tempMain+","+tempRec1+","+tempRec2+","+tempTravel+","+tEmp
Home+","+tEmpMain+","+tEmpRec1+","+tEmpRec2+","+tEmpTravel+","+tUnempHome+","+tUne
mpMain+","+tUnempRec1+","+tUnempRec2+","+tUnempTravel)
 intSize = int(values.length())
 txtWriter.write(values,0,intSize)
 txtWriter.newLine()

 #print "Agent:", citizens.getName()
 #print "Time Traveling: ", citizens.getTimeTraveling()
 #print "Time at Home: ", citizens.getTimeHome()
 #print "Time at Main: ", citizens.getTimeMain()
 #print "Time at Rec1: ", citizens.getTimeRec1()
 #print "Time at Rec2: ", citizens.getTimeRec2()

 #close the file of activity path nodes
 txtWriter.close()

 # Create new random normal distribution to ASSIGN WEALTH
 Random.createNormal(self.WEALTH_MEAN,self.WEALTH_SD)

 # ASSIGN wealth to agents
 for citizens as Citizen in self.citizens:
 #Get a new random number for each agent
 citizens.wealth = Random.normal.nextInt()
 #print "Name: ", citizens.getName() + " has been assigned Wealth of: "+ citizens.getWealth()

 # Write out initial values for each agent
 # Header line
 logData = "Name, Criminality, Wealth, TimeHome, StartNode"
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 256

 for citizens as Citizen in self.citizens:
 # Write values
 logData = citizens.getName() + "," + citizens.getCriminalPropensity() + "," + citizens.getWealth() +
"," + citizens.getTimeHome() + "," + citizens.getStrnode()
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 #Close the log file
 logWriter.close()

Place Actions
(none)

Citizen Actions

def step():
Java imports
java.lang.Object
java.lang.Double
java.lang.Number
java.lang.Integer
Code
 #print "INSIDE CITIZEN STEP"

 # Every citizen agent evaluates their move status, if they are moving they are added to the active
nodes
 # class and are part of the decision to commit a crime. Then the values (atRisk, atActivity, moving,
and
 # position are set for the next turn.

 # Verification code to check daily start points of agents
 #if self.timeCounter < 2:
 #print "AGENT: ", self.name
 #print "Start Node : ", self.strnode

 # Associate all agents with a current street node so we can test whether they are are atRisk
 # and/or moving.
 self.currentNode = self.strnode

 # Collect all agents who are moving or recreating are at risk and need to be logged
 # at active nodes and put them in the activeNode class.

 #<<CONDITION 1 - Start
 if self.moveStatus == true or self.atRisk == true:

 # ADD an agent to the ActiveNode class. If there is an ActiveNode agent
 # that exists with a particular strnode value then add the name of the
 # citizen agent to the agentList (an arrayList). If there is no ActiveNode
 # with the same value as the currentNode then add a new ActiveNode agent and
 # populate the strnode number with the currentNode and add the name of the
 # citizen agent to the agentList (an arrayList).

 #print "Current Node: ", self.currentNode

 257

 #print "The Size is : ", self.model.activeNodes.size()

 # Test to see if this is the first ActiveNode
 nodeisEqual = false
 #<CONDITION 1.1 - Start
 if self.model.activeNodes.size() <> 0:
 for occupied as ActiveNode in self.model.activeNodes:
 if self.currentNode == occupied.strnode:
 occupied.agentList.add(self.name)
 nodeisEqual = true
 #CONDITION 1.1 - End >

 #<CONDITION 1.2 - Start
 if self.model.activeNodes.size() == 0 or nodeisEqual == false:
 newAgent = ActiveNode()
 newAgent.setModel(self.model)
 newAgent.strnode = self.currentNode
 newAgent.agentList = ArrayList()
 newAgent.agentList.add(self.name)
 self.model.activeNodes.add(newAgent)
 #print "First agent of Total Agents: ", self.model.activeNodes.size()
 #print "Inside Assignment: Strnode = ", newAgent.strnode
 #print "ArrayList Value = ", newAgent.agentList.get(0)
 #CONDITION 1.2 - End >

 #print "Current Node as Integer: ", Integer.toString(self.currentNode)
 #print "Home Node: " + self.home + " Main Node: " + self.main + " Rec 1: " + self.rec1 + " Rec 2:
" + self.rec2
 #CONDITION 1 - End >>

 #print "Home Node: " + self.home + " Main Node: " + self.main + " Rec 1: " + self.rec1 + " Rec 2: "
+ self.rec2

 # RESET values for next turn.
 # Check to see if currentNode equal to an activity node.
 # If yes, do not move but update time that agent has been at node. If no, move to next node.
 #<<<CONDITION 2 - Start
 seg1 = self.timeHome + self.travelTimeSplit
 seg2 = self.timeHome + self.travelTimeSplit + self.timeMain
 seg3 = self.timeHome + self.travelTimeSplit + self.timeMain + self.travelTimeSplit
 seg4 = self.timeHome + self.travelTimeSplit + self.timeMain + self.travelTimeSplit + self.timeRec1
 seg5 = self.timeHome + self.travelTimeSplit + self.timeMain + self.travelTimeSplit + self.timeRec1
+ self.travelTimeSplit
 cumulative = seg5 + self.timeRec2

 #print "self.timeHome = " + self.timeHome
 #print "self.timeMain = " + self.timeMain
 #print "self.timeRec1 = " + self.timeRec1
 #print "self.rec1 = " + self.rec1
 #print "self.timeRec2 = " + self.timeRec2
 #print "self.rec2 = " + self.rec2
 #print "seg1 = " + seg1
 #print "seg2 = " + seg2
 #print "seg3 = " + seg3
 #print "seg4 = " + seg4

 258

 #print "seg5 = " + seg5
 #print "remainder = " + remainder
 #print "self.travelTimeSplit = " + self.travelTimeSplit
 #print "self.model.MODEL_DAY = " + self.model.MODEL_DAY

 if self.timeCounter <= self.timeHome:
 #print "Time assigned to be at HOME: ", self.timeHome
 #print "Time Spent at Home: ", self.timeCounter
 if self.timeCounter < self.timeHome:
 # Agent is at home
 self.atActivity = true
 self.atRisk = false
 self.moveStatus = false
 #Increment the timer
 self.timeCounter = self.timeCounter + 1
 self.timerHome = self.timerHome + 1
 else:
 # Next step agent leaves home
 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = self.timeCounter + 1
 elif self.timeCounter > seg1 and self.timeCounter <= seg2:
 #print "Time Assigned Main ", self.timeMain
 # "Total Time", self.timeCounter
 if self.timeCounter < seg2:
 # Agent is at Main activity
 self.atActivity = true
 self.atRisk = false
 self.moveStatus = false
 #Increment the timer
 self.timeCounter = self.timeCounter + 1
 self.timerMain = self.timerMain + 1
 else:
 # Next step agent leaves Main activity
 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = self.timeCounter + 1
 ##print "Agent Leaving Main and moving to position: ", self.position
 self.totTimeTraveling = self.totTimeTraveling + 1
 self.totTimeExposed = self.totTimeExposed + 1
 elif self.timeCounter > seg3 and self.timeCounter <= seg4:
 #print "Time Assigned REC1", self.timeRec1
 #print "Total Time: ", String.valueOf(self.timeCounter)
 if self.timeCounter < seg4:
 # Agent is at Rec1
 self.atActivity = true
 self.atRisk = true #Agents at activities are also at risk
 self.moveStatus = false
 #Increment the timer
 self.timeCounter = self.timeCounter + 1
 self.timerRec1 = self.timerRec1 + 1
 self.totTimeExposed = self.totTimeExposed + 1
 else:
 # Agent is leaving Rec1 next step

 259

 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = self.timeCounter + 1
 ##print "Agent Leaving Rec1 and moving to position: ", self.position
 self.totTimeTraveling = self.totTimeTraveling + 1
 self.totTimeExposed = self.totTimeExposed + 1
 elif self.timeCounter > seg5 and self.timeCounter <= cumulative:
 #print "Time assigned Rec2 ", self.timeRec2
 #print "Total time: ", String.valueOf(self.timeCounter)
 if self.timeCounter < cumulative: # line 135
 # Agent is at Rec2
 self.atActivity = true #Agents at activities are also at risk
 self.atRisk = true
 self.moveStatus = false
 #Increment the timer
 self.timeCounter = self.timeCounter + 1
 self.timerRec2 = self.timerRec2 + 1
 self.totTimeExposed = self.totTimeExposed + 1
 else:
 # Agent is leaving Rec2 next step
 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = self.timeCounter + 1
 ##print "Agent Leaving Rec1 and moving to position: ", self.position
 self.totTimeTraveling = self.totTimeTraveling + 1
 self.totTimeExposed = self.totTimeExposed + 1
 else:
 # Agent is traveling
 #print "Agent is Traveling"
 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = self.timeCounter + 1
 self.totTimeTraveling = self.totTimeTraveling + 1
 #print "Agent time traveling incremented to " + self.totTimeTraveling + " in else of Condition 2.1.1"
 self.totTimeExposed = self.totTimeExposed + 1

 # Select the node the agent will move to in the next turn
 places = self.model.getPlaces()

 #if self.name == "a6" or self.name == "a7":
 #print "Agent: ", self.name
 #print "Old node: ", self.strnode

 # Identify number of neighbor nodes, generate a random number and use that to pick the next node
 numNeighs = self.location.myNeighbors.size()
 #print "Number of neighbors is: ", numNeighs

 #if self.name == "a6" or self.name == "a7":
 #print "Number of neighbors is: ", numNeighs

 # Generate a value
 index = Random.uniform.nextIntFromTo(0,numNeighs-1)
 #print "Index picked: ",index

 260

 #if self.name == "a6" or self.name == "a7":
 #print "Index picked: ",index

 #for node in range (0, numNeighs):
 #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node))+ "
at position " + index

 # Get the new node and assign it to strnode field
 newNode = self.location.getMyNeighbors().get(index)
 self.strnode = int(String.valueOf(newNode))

 # Add the new node to the agent's nodeList field to track
 #self.nodeList.add(newNode)

 #print self.name + " Move to " + "adjacent strnode: ", self.strnode
 #print self.name + " Move to " + "adjacent strnode: ", self.nodeList.get(0)

 # Do the assignment directly of the strnode to a place
 nodeFL = Float(self.strnode)
 newLocation = (Place)self.model.placeMap.get(nodeFL)
 self.location = newLocation
 #if self.name == "a6" or self.name == "a7":
 #print "New location: ", self.location.STRCL_

 #CONDITION 2 - END>>>

 #CONDITION 1 - End >

def assignNodeInfo(String tname, int ehome, int emain, int erec1, int erec2, ArrayList
ePathNodeList, int uhome, int umain, int urec1, int urec2, ArrayList uPathNodeList):
 # Assigns the variable values read from the files in initCitizens() to the fields in Citizen class
 self.name = tname
 self.home = ehome
 self.empHome = ehome
 self.empMain = emain
 self.empRec1 = erec1
 self.empRec2 = erec2
 self.empPathNodes = ePathNodeList
 self.unempHome = uhome
 self.unempMain = umain
 self.unempRec1 = urec1
 self.unempRec2 = urec2
 self.unempPathNodes = uPathNodeList
 self.currentNode = self.home

def payCitizens():
 #print "Inside Pay Citizens"

 # Each employed citizen gets paid at designated intervals

 if self.employmentStatus == true:
 #print "Agent Name: ",self.name
 #print "Agent Old Wealth: ", self.wealth

 261

 self.wealth = self.wealth + 5

 #print "Agent New Wealth: ", self.wealth

Active Node Actions
(none)

Cop Actions

def step():
Java imports
java.lang.Object
java.lang.String
uchicago.src.sim.util.SimUtilities
java.util.Arrays
java.util.List
Code
 # Every cop moves with each model tick
 places = self.model.getPlaces()
 #print "Old node: ", self.strnode

 # Shuffle the adjacent nodes of the Place where the cop is located
 # Identify number of neighbor nodes
 numNeighs = self.location.myNeighbors.size()
 maxValue = numNeighs-1

 # Generate a value
 index = Random.uniform.nextIntFromTo(0,numNeighs -1)

 #print "Move to index: " + index

 # Verification code
 #for node in range (0, numNeighs):
 #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node))

 # Get the new node and assign it to strnode field
 # (can't just use index because index and strnode do not correspond)
 newNode = self.location.getMyNeighbors().get(index)
 self.strnode = int(String.valueOf(newNode))

 #print "New strnode: ", self.strnode

 # Do the assignment directly of the strnode to a place
 nodeFL = Float(self.strnode)
 newLocation = (Place)self.model.placeMap.get(nodeFL)
 self.location = newLocation
 #print "New location: ", self.location.STRCL_

Sequence Graph

totalRobberies
return self.totRob

totalDeterred

 262

return self.totDeter

totalIntersect
return self.totIntersect

 263

Appendix 5: Street Robbery Model: Activity Space Version Code

Street Robbery Activity Space Actions

def initAgents():
Java imports
uchicago.src.simbuilder.util.MessageDisplay
java.lang.String
anl.repast.gis.data.dbf.DBFReader
anl.repast.gis.data.dbf.JDBField
java.Array
java.util.Vector
java.util.List
java.lang.Object
java.util.ArrayList
uchicago.src.sim.util.Random
java.io.PrintWriter

Code
 print "Inside initAgents"
 if (self.messageDisplay == None):
 self.messageDisplay = MessageDisplay()
 self.messageDisplay.display("Street Robbery Messages")
 else:
 self.messageDisplay.clear()

 # Explicitly set the random number generator seed and initialize Random distributions
 # Create RNG and set seed
 mtRNG = MersenneTwister(100)
 Random.setSeed(100)
 Random.createUniform()

 # Create log file for model run
 self.writeModelRunData()

 # Initialize model level variables
 self.initModel()

 # Process the street nodes for use in the model
 self.setupPlaces()

 # Initialize the activity spaces of agents
 self.initActivitySpaces()

 # Initialize the activity spaces of agents
 self.initCitizens()

 # Create a normal random number distribution for agent movement
 self.NORM_TRAVEL = Normal(6,1,mtRNG)

 # Create output files for analysis
 self.createCitizenTravelOutputFiles()

 # Check to make sure values in shapefile fields are zero

 264

 for node as Place in self.places:
 if node.totalRob > 0 or node.totalVisit > 0 or node.totPrevent > 0:
 print "WARNING: Shapefile had non-zero values in counter fields"

 # Initialize the cop agents
 self.initCops()

def updateDisplay():
 #print "Inside updateDisplay"
 self.updateGISDisplay()

def writeAgents():
 #print "Inside writeAgents-Model level"
 baseFilePath = ".\\projects\\rob_model\\shapefiles\\"
 self.writeAgents(self.places, baseFilePath + "strnodes2.shp")

def setupPlaces():
Java imports
java.io.BufferedReader
java.io.FileReader
java.util.StringTokenizer

Code
 print "Inside setupPlaces"

 # Put Places in a HashMap where the key is the strnode-id
 # Creates the map
 self.placeMap = LinkedHashMap()

 # Add the places to the hashmap
 for currentPlace as Place in self.places:
 specNode = "0"
 specNode = String.valueOf(currentPlace.getSTRCL_())
 specNodeNew = Float(specNode)
 self.placeMap.put(specNodeNew, currentPlace)
 #print "PLACE node info: ", specNodeNew
 currentPlace.setMyNeighbors(ArrayList())

 # Read the neighbors file and set each nodes neighbors.
 # The neighbors files lists the active node and the neighboring
 # nodes of that active node. The map created above is used to
 # get the neighbors for each active node.

 fileName = "./projects/rob_model/neighborFiles/nodenghbrs.csv"
 reader = BufferedReader(FileReader(fileName))
 line = reader.readLine()

 while(line):
 tokenizer = StringTokenizer(line, ",")
 if(tokenizer.hasMoreTokens()):
 activeNode = tokenizer.nextToken().trim()
 actNodeObject = Float(activeNode)
 currentPlace = (Place)self.placeMap.get(actNodeObject)

 265

 #print "Current variable ", activeNode #prints out the variable strcl_
 #print "Current node from place object: ", currentPlace.getSTRCL_()
 nghs = currentPlace.getMyNeighbors()
 while (tokenizer.hasMoreTokens()):
 ngh = tokenizer.nextToken()
 currentPlace.myNeighbors.add(ngh)
 #print "Neighbor node ", ngh
 # Read the line
 line = reader.readLine()
 # Close the reader
 reader.close()

 #This code enables verification that the myNeighbors array has the correct values
 for currentPlace as Place in self.places:
 #print "Streetnode: ", node.strcl_
 if currentPlace.getMyNeighbors() == None:
 print "Neighbor arraylist is empty for node " + currentPlace.strcl_

def showMessage(String message):
Java imports
javax.swing.JOptionPane

Code
 print "Inside showMessage"
 JOptionPane.showMessageDialog((JComponent)None, message)

def incrementModel():
 #print "Inside incrementModel"

 # Increment the modelStep field
 #if self.modelStep < self.MODEL_DAY: #1,440
 #if self.modelStep < self.MODEL_WEEK:
 #if self.modelStep < self.MODEL_YEAR: #525,600
 if self.modelStep < 40320: # month is 40,320
 self.modelStep = self.modelStep + 1
 else:
 self.writeFinalAgents()
 for node as Place in self.places:
 node.totalVisit = 0
 node.totalRob = 0
 node.totPrevent = 0
 node.copStart = 0
 node.citiStart = 0
 node.crimStart = 0
 self.writeAgents()
 self.writeStatistics()
 self.dataRecorder()
 print "YEAR OVER"
 self.stop()
 #print "MODEL STEP = ", self.modelStep

 # ActiveNode - call a method to write out a file of the nodes and their
 # associated agents at each step
 #print "Called writeOccupiedNodes"

 266

 #self.writeOccupiedNodes()

 # Write out citizen position
 #self.writeCitizenInfoPaths()

 # Make the decision to commit a crime
 # print "Total Active Nodes: ", self.activeNodes.size()
 self.decideRob()

 # Clear the agents from the activeNodes class
 self.activeNodes.clear()
 #print "Total active nodes after clear: ", self.activeNodes.size()

 # Increment the timers for agents with criminal propensity
 for citizen as Citizen in self.citizens:
 if citizen.criminalPropensity == true:
 if citizen.timerRepeat > 0 and citizen.timerRepeat < self.REPEAT:
 citizen.timerRepeat = citizen.timerRepeat + 1
 #print "Agent " + citizen.name + " repeat timer incremented to: " + citizen.timerRepeat
 elif citizen.timerRepeat == self.REPEAT:
 #print "REPEAT value: " + self.REPEAT
 citizen.timerRepeat = 0
 #print "Agent " + citizen.name + " timer reset to 0: " + citizen.timerRepeat
 else:
 citizen.timerRepeat = citizen.timerRepeat

 #print "TOTAL Robberies in society: ", self.totRob

def initModel():
Java imports
cern.jet.random.*
cern.jet.random.engine.MersenneTwister
uchicago.src.sim.util.Random
cern.jet.random.Normal

Code
 print "Inside initModel"

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))

 # Set static field values for model run
 self.modelStep = 0
 self.MODEL_HOUR = 60 #360 steps per hour, Travel occurs at 6 steps per minute
 self.MODEL_DAY = (24 * self.MODEL_HOUR)
 self.MODEL_WEEK = (7 * self.MODEL_DAY)
 self.MODEL_YEAR = (365 * self.MODEL_DAY)

 # Print to file to document model run
 temp = self.SOCIETAL_TIMEAWAY *100
 logData = "Experimental condition: " + temp + "% time spent away from home" + "::::" + "Number
of Agents in model " + self.AGENTS
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)

 267

 logWriter.newLine()
 logData = ""
 logData = "Number of cops: " + self.COPS
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""
 logData = "Limit on Repeat Offending: " + self.REPEAT
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 #Close the log file
 logWriter.close()

def initActivitySpaces():
 print "Inside initActivitySpaces"
 print "Number of Citizen Agents in model: " + self.citizens.size()

 ##Read two types of files to get the activity nodes and the path nodes for each
 # Civilian agent and populate the Civilian agents
 # Each civilian agent has a list of activity nodes in a separate file:
 # Order of activity nodes in file:
 # Node 0: HOME
 # Node 1: MAIN
 # Node 2: REC1
 # Node 3: REC2
 # FILE 1: Read in the list of activity nodes for each agent from individual files and
 ##assign to the generic agent class of ActivityNode (group name: activityNodes).

 # Initialize variables
 theAgentName = "0"
 theEmpHome = 0
 theEmpMain = 0
 theEmpRec1 = 0
 theEmpRec2 = 0
 theUnempHome = 0
 theUnempMain = 0
 theUnempRec1 = 0
 theUnempRec2 = 0
 strNode = 0
 j = 0

 #outside loop to run through files for activity space information files (counter is used for both files)
 for i in range (1000):
 j = i + 1
 theAgentName = "a" + String.valueOf(j)
 fileName = "./projects/rob_model/activityNodeFiles/" + theAgentName + "empnodes" + ".csv"
 txtreader = BufferedReader(FileReader(fileName))
 line = txtreader.readLine()
 lineNumber = 0

 # Loop to read one line at a time, each file in turn
 while (line):

 268

 tokenizer = StringTokenizer(line, ",")
 #counter for the four records in each actNode file
 if lineNumber > 3:
 lineNumber = 0

 # Loop to get all the fields in a particular line
 if (tokenizer.hasMoreTokens()):
 strnode = tokenizer.nextToken().trim()
 stringNode = int(strnode)
 x = tokenizer.nextToken().trim()
 y = tokenizer.nextToken().trim()
 #Conditions to assign strnode number in first line of file
 #to Home, second record to Mainetc.
 #print "Strnode :", strnode
 if lineNumber == 0:
 theEmpHome = stringNode
 elif lineNumber == 1:
 theEmpMain = stringNode
 elif lineNumber == 2:
 theEmpRec1 = stringNode
 else:
 theEmpRec2 = stringNode

 lineNumber = lineNumber + 1
 line = txtreader.readLine()

 # Close the file of activity nodes
 txtreader.close()

 # FILE 2: Each EMPLOYED civilian agent has a list of path nodes they travel to get to
 # their activity nodes (one file for each agent):

 # Read in the list of path nodes for each agent from individual files and
 # assign to the generic agent class.
 shpFilePath = "./projects/rob_model/pathFiles/" + theAgentName + "empnodespath" + ".dbf"

 # Create reader and get first field
 reader = DBFReader(shpFilePath)
 fieldCount = reader.getFieldCount()

 # Declaring the list here creates a new one for each file read.
 theEmpPathNodeList = ArrayList()
 while (reader.hasNextRecord()):
 theObject = reader.nextRecord()
 objList = Arrays.asList(theObject)
 #print "Field value ", objList.get(0).toString()
 theEmpPathNodeList.add(objList.get(0))

 # UMEMPLOYED -- Read the file of unemployed activity nodes for each agent
 #theAgentName = "a" + String.valueOf(j)
 fileName = "./projects/rob_model/activityNodeFiles/" + theAgentName + "unempnodes" + ".csv"
 txtreader = BufferedReader(FileReader(fileName))
 line = txtreader.readLine()
 lineNumber = 0

 269

 # Loop to read one line at a time, each file in turn
 while (line):
 tokenizer = StringTokenizer(line, ",")
 #counter for the four records in each actNode file
 if lineNumber > 3:
 lineNumber = 0

 #Loop to get all the fields in a particular line
 if (tokenizer.hasMoreTokens()):
 strnode = tokenizer.nextToken().trim()
 stringNode = int(strnode)
 x = tokenizer.nextToken().trim()
 y = tokenizer.nextToken().trim()
 #Conditions to assign strnode number in first line of file
 #to Home, second record to Mainetc.
 #print "Strnode :", strnode
 if lineNumber == 0:
 theUnempHome = stringNode
 elif lineNumber == 1:
 theUnempMain = stringNode
 elif lineNumber == 2:
 theUnempRec1 = stringNode
 else:
 theUnempRec2 = stringNode

 lineNumber = lineNumber + 1
 line = txtreader.readLine()

 # Close the file of activity nodes
 txtreader.close()

 # FILE 2: Each civilian agent has a list of UNMEMPLOYED path nodes they travel to get to
 # their activity nodes (one file for each agent):

 # Read in the list of path nodes for each agent from individual files and
 # assign to the generic agent class.
 shpFilePath = "./projects/rob_model/pathFiles/" + theAgentName + "unempnodespath" + ".dbf"

 # Create reader and get first field
 reader = DBFReader(shpFilePath)
 fieldCount = reader.getFieldCount()

 # Declaring the list here creates a new one for each file read.
 theUnempPathNodeList = ArrayList()
 while (reader.hasNextRecord()): # while reads until there are no more records
 theObject = reader.nextRecord()
 objList = Arrays.asList(theObject)
 #print "Field value ", objList.get(0).toString()
 theUnempPathNodeList.add(objList.get(0))

 # Create an individual citizen agent called citizenSet within the loop to read the files in the directory
 citizenSet = Citizen()
 citizenSet.setModel(self)

 # Assign the values from the file to the agent variables #uncomment after testing

 270

 citizenSet.assignNodeInfo(theAgentName, theEmpHome, theEmpMain, theEmpRec1, theEmpRec2,
theEmpPathNodeList, theUnempHome, theUnempMain, theUnempRec1, theUnempRec2,
theUnempPathNodeList)

 # Add an agent to the ActivityNode class with the field values from above
 self.citizens.add(citizenSet) #uncomment after testing

def initCitizens():
 print "Inside initCitizens"

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))
 logData = "Log File Name: " + logoutput
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = "Agents with Criminal Propensity: "
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 # Create new random normal distribution to ASSIGN WEALTH
 Random.createNormal(self.WEALTH_MEAN,self.WEALTH_SD)

 # ASSIGN wealth to agents
 for citizens as Citizen in self.citizens:
 #Get a new random number for each agent
 citizens.wealth = Random.normal.nextInt()
 #print "Name: ", citizens.getName() + " has been assigned Wealth of: "+ citizens.getWealth()

 # Randomly assign criminal propensity to 20% of the Citizens
 # Assign 200 agents criminal propensity (criminalPropensity = true)
 for i in range (200):
 index = Random.uniform.nextIntFromTo(0, 999)
 agent = (Citizen)self.citizens.get(index)
 #print "Index ", String.valueOf(index)
 #print "Agent Name: "+ agent.getName()+ " is a criminal"

 # Condition to check and make sure citizen was not previously selected to have criminal propensity
 if agent.criminalPropensity == false:
 agent.criminalPropensity = true
 else:
 while agent.criminalPropensity == true:
 index = Random.uniform.nextIntFromTo(0, 999)
 agent = (Citizen)self.citizens.get(index)
 agent.criminalPropensity = true
 #print "Agent Name: "+ agent.getName()+ " is a criminal"

 logData = agent.getName() + " is a criminal."
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 271

 # SET the employment status for all agents in the model
 # Using a uniform distribution assign 6% of agents to be unemployed
 for i in range (60):
 index = Random.uniform.nextIntFromTo(0, 999)
 agent = (Citizen)self.citizens.get(index)
 #print "Index ", String.valueOf(index)

 # Condition to check and make sure citizen was not previously selected to be unemployed
 if agent.employmentStatus == true:
 agent.employmentStatus = false #Agent is unemployed
 else:
 while agent.employmentStatus == false:
 index = Random.uniform.nextIntFromTo(0, 999)
 agent = (Citizen)self.citizens.get(index)
 agent.employmentStatus = false
 #print "Agent Name: "+ agent.getName()+ " is unemployed"

 logData = agent.getName() + " is a criminal."
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""

 # SET the activity node and activity path to be used in assigning time spent at activities
 for citizens as Citizen in self.citizens:
 nodeFL = Float(citizens.empHome) # empHome and UnempHome are the same value
 node = (Place)self.placeMap.get(nodeFL)
 #print "Street node home: " + citizens.empHome
 node.citiStart = 1
 #print "Citizen starts at node: " + node.STRCL_
 if citizens.employmentStatus == true:
 citizens.main = citizens.empMain
 citizens.rec1 = citizens.empRec1
 citizens.rec2 = citizens.empRec2
 citizens.pathNodes = citizens.empPathNodes
 citizens.setLocation(node)
 citizens.setStrnode(node.STRCL_)
 else:
 citizens.main = citizens.unempMain
 citizens.rec1 = citizens.unempRec1
 citizens.rec2 = citizens.unempRec2
 citizens.pathNodes = citizens.unempPathNodes
 citizens.setLocation(node)
 citizens.setStrnode(node.STRCL_)
 if citizens.criminalPropensity == true:
 node.crimStart = 1

 #print "Name ", citizens.name
 #print "Status ", citizens.employmentStatus
 #print "Main ", citizens.main
 #print "UnempMain ", citizens.unempMain
 #print "EmpMain ", citizens.empMain

 ###Randomly assign time to stay at home to each agent

 272

 ## Five experimental conditions:
 # 30% timeAway = 70% of time at home (1008 minutes)
 # 40% timeAway = 60% of time at home
 # 50% timeAway = 50% of time at home
 # 60% timeAway = 40% of time at home
 # 70% timeAway = 30% of time at home
 # Create a new random number generator to create a normal distribution
 # with a mean of 70 and SD of 10. Since there is no literature on the
 ##split before and after midnight, randomly assign split.

 # CREATE an output file of times at each node and traveling
 # First create the buffered writer to write the activity times for each agent to a file

 #Commented out code split times at home between start and end node
 away = int(self.SOCIETAL_TIMEAWAY*100)
 outFileName = "C:/model_output" +away+"/timeAtActivityNodes.csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames = "Agent,Home,Main,Rec1,Rec2,Travel"
 intSize = int(columnNames.length())
 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 # Normal distribution to assign amount of time to spend at home
 # Mean is the society mean and SD is ten percent of the mean
 societyPercHome = 1 - self.SOCIETAL_TIMEAWAY
 standardDeviation = (self.MODEL_DAY * societyPercHome)*.10
 meanTimeHome = self.MODEL_DAY * societyPercHome

 # Create a normal distribution with specified mean and sd
 Random.createNormal(meanTimeHome, standardDeviation)

 # Allocate the times to remain at home, main, rec1 and rec2 and the time needed for travel
 timeLeftForRec = 0
 for citizens as Citizen in self.citizens:

 # Get a new random number for each agent
 timeAtHome = Random.normal.nextInt()
 #print "Random time at home: ", totTimeAtHome

 # Get a new proportion to split time not at home
 randSplit = Random.uniform.nextDoubleFromTo(.1, .9)

 # Loop through the agents and find out how many nodes are in the activityPath
 totSteps = citizens.getPathNodes().size()
 #print "Total Steps: ", totSteps

 # Convert the travel time in steps to travel time in minutes
 citizens.timeTraveling = totSteps / 6
 timeAfterTravel = self.MODEL_DAY - citizens.timeTraveling

 # While loop to check for negative numbers and reset timeAtHome until it is less than
timeAfterTravel.
 # This ensures the agents have time to spend at each activity node besides Home.
 # while timeAfterTravel < totTimeAtHome:
 while timeAfterTravel < timeAtHome:

 273

 timeAtHome = Random.normal.nextInt()

 extra = timeAtHome - timeAfterTravel
 timeAfterTravel_Home = timeAfterTravel - timeAtHome
 citizens.timeHome = timeAtHome

 # Checks employment status before distributing time to main and recreations places
 if citizens.employmentStatus: #Employed
 citizens.timeMain = (timeAfterTravel_Home/2)
 citizens.timeRec1 = int(citizens.timeMain * randSplit)
 citizens.timeRec2 = citizens.timeMain - citizens.timeRec1
 else: #Unemployed
 citizens.timeMain = int(timeAfterTravel_Home * randSplit)
 timeLeftForRec = timeAfterTravel_Home - citizens.timeMain
 citizens.timeRec1 = int(timeLeftForRec * randSplit)
 citizens.timeRec2 = timeLeftForRec - citizens.timeRec1
 #citizens.timeMain = (timeAfterTravel_Home/3)
 #citizens.timeRec1 = int(citizens.timeMain * randSplit)
 #citizens.timeRec2 = citizens.timeMain - citizens.timeRec1

 #create a string of each data field to be written to the file
 tempName = String.valueOf(citizens.getName())
 tempHome = String.valueOf(citizens.getTimeHome())
 tempMain = String.valueOf(citizens.getTimeMain())
 tempRec1 = String.valueOf(citizens.getTimeRec1())
 tempRec2 = String.valueOf(citizens.getTimeRec2())
 tempTravel = String.valueOf(citizens.getTimeTraveling())
 intSize = int(values.length())
 txtWriter.write(values,0,intSize)
 txtWriter.newLine()

 #print "Agent:", citizens.getName()
 #print "Time Traveling: ", citizens.getTimeTraveling()
 #print "Time at Home: ", citizens.getTimeHome()
 #print "Time at Main: ", citizens.getTimeMain()
 #print "Time at Rec1: ", citizens.getTimeRec1()
 #print "Time at Rec2: ", citizens.getTimeRec2()

 #close the file of activity path nodes
 txtWriter.close()

 # Write out initial values for each agent
 # Header line
 logData = "Name, Criminality, Wealth_Start, TimeHome, StartNode"
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)
 logWriter.newLine()
 logData = ""
 for citizens as Citizen in self.citizens:
 # Write values
 logData = citizens.getName() + "," + citizens.getCriminalPropensity() + "," + citizens.getWealth() +
"," + citizens.getTimeHome() + "," + citizens.getStrnode()
 intSize = int(logData.length())
 logWriter.write(logData,0,intSize)

 274

 logWriter.newLine()
 logData = ""

 #Close the log file
 logWriter.close()

 #for citizens as Citizen in self.citizens:
 #print "Name: " + citizens.getName()
 #print "Home: " + citizens.getHome()
 #print "Main: " +citizens.getMain()
 #print "Rec1: " +citizens.getRec1()
 #print "Rec2: " +citizens.getRec2()
 #print "Employed?: " +citizens.getEmploymentStatus()

def decideRob():
Java imports
java.lang.Object
java.lang.String
uchicago.src.sim.util.SimUtilities
java.util.Arrays
java.util.List

Code
 #print "Inside decideRob"

 # Open log file
 logoutput = self.LOG_FILE
 logWriter = BufferedWriter(FileWriter(logoutput, true))
 #data = "Inside Decide Rob Action"
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Check each ActiveNode for list of agents
 # Logical error check
 if self.activeNodes.size() > self.AGENTS:
 data = "Too Many Active Nodes during step: " + self.modelStep
 intSize = int(data.length())
 logWriter.write(data,0,intSize)
 logWriter.newLine()
 data = ""
 #else:
 #data = "Number of Active Nodes in: " + self.modelStep + " is: " + self.activeNodes.size()
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Loop through the nodes with citizens and make the decision to commit a robbery
 for occupied as ActiveNode in self.activeNodes:
 # Check agents at each of the active nodes
 #print "The Node being evaluated is: ", occupied.strnode

 #################

 275

 #data = "Street Node " + occupied.strnode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Initialize variables in action
 numAgentsAtNode = occupied.getAgentList().size()
 #data = "Number of Agents at Node (from size of agent list field): " + numAgentsAtNode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 numCrimAtNode = 0
 numAgentAtRisk = 0
 numCriminals = 0
 offenderAtNode = false
 curStreetNode = (Place)self.places.get(0)
 #print "The default curStreetNode: ", curStreetNode.STRCL_
 curAgent = (Citizen)self.citizens.get(0)
 targetAgent = (Citizen)self.citizens.get(0) #used to initialize target variable
 criminalAgent = (Citizen)self.citizens.get(0)
 copPresent = false
 robbery = true
 crimWealth = 0
 evalWealth = 0
 targetWealth = 0
 suitability = 0
 targetSet = false

 #################
 #data = "START VALUES: Criminal Agent-- " + criminalAgent.name + "Current Agent-- " +
curAgent.name + "Target agent- " + targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Log presence of agents on street node
 # Retrieving the place by converting to a float object
 occupiedObject = Float(occupied.strnode)
 currentPlace = (Place)self.placeMap.get(occupiedObject)
 #print "NEW Place node:", currentPlace.getSTRCL_()
 #print "Number of agents at Node: ", numAgentsAtNode
 #self.messageDisplay.addAlert("There are "+ numAgentsAtNode + " citizens at " +
occupied.strnode)

 # Log fact that agents visited a node in the shapefile
 if (currentPlace != None):
 currentPlace.totalVisit = currentPlace.totalVisit + numAgentsAtNode
 #currentPlace.visits = currentPlace.visits + numAgentsAtNode
 #print "NEW Number of Visits: ", currentPlace.totalVisit
 else:
 print "Unable to log visit at strnode: " + occupied.strnode + " during tick: " + self.modelStep

 276

 #Loop through all the cops to find out if there is a cop at node
 for copAtNode as Cop in self.cops:
 copPlace = copAtNode.getLocation()
 #When you find a cop at the place break out of loop and calculate variable
 if copPlace == currentPlace:
 #print "Cop at node: ", copAtNode.location.STRCL_
 copPresent = true
 break
 else:
 copPresent = false

 #############################DEBUG
 #if copPresent == true:
 #data = "Cop is at node! "
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #if copPresent == true:
 #print "Cop! at node "+ occupied.strnode

 #Only evaluate nodes that have more than one citizen and there is no cop present
 if numAgentsAtNode > 1: #Change to > 1 for final testing

 ################# DEBUG
 #data = "Street Node " + occupied.strnode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #############################
 #data = "Number of Agents at Node is: " + numAgentsAtNode
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Calculate the level of GUARDIANSHIP
 guardianship = (numAgentsAtNode - 2) +
Random.uniform.nextIntFromTo(self.MIN_GUARDIANSHIP,self.MAX_GUARDIANSHIP)
 #print "Guardianship is: ", guardianship

 # Outside loop that checks each of the agents at a particular node using the citizen name
 # Use code to randomly shuffle the agents at a node so they have an equal chance of being
 # selected first and thus are not always evaluated in the same order.

 #for position in range(0, numAgentsAtNode):
 #print "Original Order: Node--" + occupied.strnode + " Position " + position + ", "+
String.valueOf(occupied.getAgentList().get(position))

 # Create a distribution using number of agents at node
 maxValue = numAgentsAtNode-1

 # Create arraylist variables
 # Array to hold randomly shuffled agents
 randList = ArrayList()

 277

 # List of array positions that have been used
 strList = ArrayList()
 foundIt = false
 #print numAgentsAtNode
 # Outside while to create a new list of all the agents at the node in a new order

 while randList.size() < numAgentsAtNode:
 # Generate a random number
 foundIt = false
 #index = shuffleDist.nextInt()
 index = Random.uniform.nextIntFromTo(0,numAgentsAtNode-1)
 indexStr = String.valueOf(index)
 #print "Original index generated is: " + index

 #############################
 #data = "Index value: " + index
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logwriter.newLine()
 #data = ""

 # If this is the first agent generated then add it to the new randList array, otherwise check to see if
 # the index has already been used
 if strList.size() >= 1:
 for p in range (0, strList.size()):
 if String.valueOf(strList.get(p)) == indexStr:
 foundIt = true
 break

 if foundIt == false:
 agent = occupied.AgentList.get(index)
 randList.add(agent)
 strList.add(indexStr)
 #print "randList size is ", randList.size()
 #print "New size of list of index numbers is " + strList.size()

 # Code to verify new order
 #for position in range(0, numAgentsAtNode):
 #print "New order at Node: " + occupied.strnode + " position " + position + ", " +
String.valueOf(randList.get(position))

 for i in range (0,numAgentsAtNode):
 #Bunch of code that get the agent name (e.g. a1) and then strips off the first character
 #and pulls the correct Citizen agent using the agent name
 fullName = randList.get(i)
 fullStrName = String.valueOf(fullName)
 partName = fullStrName.substring(1)
 #print "Agent: " + partname + " in agentList"
 # Use the agent's name to find the index number of correct Citizen agent
 index = int(partName) - 1
 curAgent = (Citizen)self.citizens.get(index)
 #print "Citizen in agentList: ", curAgent.name
 #print "Current agent: " + curAgent.name + " is criminal? " + curAgent.criminalPropensity

 #################################

 278

 #data = "Loop through current agents to find Criminal: " + i + "," +
String.valueOf(randList.get(i)) + "," + "criminal: " + curAgent.criminalPropensity + "," + " at risk?: " +
curAgent.atRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Identifies if any of the agents have criminal propensity and are 'atRisk' and selects the
 # first one it finds to be the active criminal in this interaction
 if curAgent.criminalPropensity == true and curAgent.atRisk == true:
 criminalAgent = curAgent
 if criminalAgent.timerRepeat == 0:
 offenderAtNode = true
 #else:
 #print "Agent " + criminalAgent.name + " Offender unable to offend yet"
 break #go directly to next if statement (if offenderAtNode == true:)

 #################################DEBUG
 #data = "Criminal in interaction: " + criminalAgent.name + "," + "timer: " +
criminalAgent.timerRepeat
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Loop that uses formulas to evaluate guardianship and target suitability
 if offenderAtNode == true:
 #print "Offender: " + criminalAgent.name + " is at Node and evaluating opportunity"

 # Find out how many civilians are 'at risk' and
 # which 'at risk' civilian at the active node has the most wealth
 for i in range (0,numAgentsAtNode):
 # Get the first agent in the randomly ordered list
 fullName = randList.get(i)
 fullStrName = String.valueOf(fullName)
 partName = fullStrName.substring(1)
 # Use the agent's name to find the index number of correct Citizen agent
 index = int(partName) - 1
 evalAgent = (Citizen)self.citizens.get(index)
 evalWealth = evalAgent.wealth
 crimWealth = criminalAgent.Wealth
 #print "Criminal's Wealth: ", crimWealth
 #print "Evaluated agent: ", evalAgent.name
 #print "Evaluated agent's wealth: ", evalWealth

 # Counter for number of criminals at node
 if evalAgent.criminalPropensity == true:
 numCrimAtNode = numCrimAtNode + 1

 #############################DEBUG
 #data = "Evaluate Wealth for eval agent: " + evalAgent.name + " has wealth of: " + evalWealth
+ " CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth

 279

 #data = "Eval agent: " + "," + evalAgent.name + "," + "Wealth: " + "," + evalWealth + "
CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Counter for number of agents at node who are 'at risk' of being robbed (only is counted
 # if there is an offender at the node)
 if (evalAgent.atRisk == true) and (evalAgent.name != criminalAgent.name):
 numAgentAtRisk = numAgentAtRisk + 1

 #############################
 #data = "Number of agents at risk: " + numAgentAtRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Identify the 'at risk' agent with the most wealth
 if criminalAgent.name != evalAgent.name:
 #############################
 #data = "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: "
+ evalAgent.name + " with " + evalWealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 #print "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " +
evalAgent.name + " with " + evalWealth
 if (crimWealth <= evalWealth) and (evalAgent.atRisk == true):
 if evalWealth > targetWealth:
 targetWealth = evalWealth
 #targetAgent = (Citizen)self.citizens.get(index)
 targetAgent = evalAgent
 targetSet = true
 #print "Current Agent with highest wealth ," + targetAgent.name

 ######################## DEBUG
 #data = "Identity of selected targetAgent: " + "," + targetAgent.name + "," +
targetAgent.criminalPropensity
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #print "Number of agents at risk", numAgentAtRisk

 ######################Print summary
 #if numCrimAtNode >= 2:
 #data = "Two or more criminals present at node during Model Step: " + "," + self.modelStep
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 280

 #data = "Number Criminals: " + "," + numCrimAtNode + "," + "Number Agents at Risk: " +
numAgentAtRisk
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 # Decide to Commit Robbery
 # Calculate SUITABILITY of victim but first check to see if there is a targetAgent found
 targetExists = false
 if targetSet == true:
 #print "Current Agent with highest wealth ", targetAgent.name
 suitability = targetWealth - crimWealth +
Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, self.MAX_SUITABILITY)
 targetExists = true

 # Series of checks necessary to evaluate guardianship value calculated earlier
 # If G < 1 then there is a lack of capable guardians so commitCrime = true
 # If G = 1 then randomly assign T or F with equal probability
 # If G >= 2 then too many guardians so commitCrime = false
 #print "PreCommit Crime Guardianship is: ", guardianship
 #print "Suitability is: ", suitability

 # Check to make sure a target exists and evaluate suitability and guardianship
 if targetExists == true and suitability >= 0 and guardianship < 1 and copPresent == false:
#commit crime
 # Exchange one units of wealth
 # Subtract one unit from victim
 #print "Victim Name ", targetAgent.name
 #print "Victims current wealth ", targetAgent.wealth
 targetAgent.wealth = targetAgent.wealth - 1
 #print "Victims new wealth ", targetAgent.wealth
 #print "Offender Name: " + criminalAgent.name + "Timer value of: " +
criminalAgent.timerRepeat
 #print "Offenders current wealth ", criminalAgent.wealth

 # Add one unit of wealth to criminal
 criminalAgent.wealth = criminalAgent.wealth + 1
 #print "Offenders new wealth ", criminalAgent.wealth

 # Start the timer until citizen can offend again
 criminalAgent.timerRepeat = 1

 # Code to log the offense for that specific place
 if (currentPlace != None):
 currentPlace.totalRob = currentPlace.totalRob + 1
 #print "Robbery at Node: ", currentPlace.STRCL_
 #print "Total Robberies at Specific Node ", currentPlace.totalRob
 # Log the offense at model level
 self.totRob = self.totRob + 1

 # Log offending and victimization for agents involved
 criminalAgent.numOffen = criminalAgent.numOffen + 1
 targetAgent.numVict = targetAgent.numVict + 1

 ##################################DEBUG

 281

 #data = "ROBBERY: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 ##################################DEBUG
 #data = "WEALTH: CriminalAgent: " + criminalAgent.wealth + "," + "TargetAgent: " +
targetAgent.wealth
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 #if targetAgent.criminalPropensity == true:
 ##################################
 #data = "Model step: " + self.modelStep
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""
 #data = "Target Agent: " + targetAgent.name + "is a criminal"
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 else:
 print "Unable to log robbery at strnode: " + occupied.strnode + " during tick: " +
self.modelStep

 # Random decision to commit robbery
 elif targetExists == true and suitability >= 0 and guardianship == 1 and copPresent == false:
 randDecision = guardianship + Random.uniform.nextIntFromTo(self.MIN_SUITABILITY,
self.MAX_SUITABILITY)
 #print "Random Decision: ", randDecision
 if randDecision == 1:
 break
 elif randDecision < 1:
 # Exchange one units of wealth
 #print "Random: Victim Name ", targetAgent.name
 #print "Random: Victims current wealth ", targetAgent.wealth
 targetAgent.wealth = targetAgent.wealth - 1
 #print "Victims new wealth ", targetAgent.wealth
 #print "Random: Offender Name " + criminalAgent.name + "Timer value of: " +
criminalAgent.timerRepeat
 #print "Random: Offenders current wealth ", criminalAgent.wealth
 criminalAgent.wealth = criminalAgent.wealth + 1
 #print "Offenders new wealth ", criminalAgent.wealth

 # Start the timer until citizen can offend again
 criminalAgent.timerRepeat = 1

 # Log the offense at the specific place
 if (currentPlace != None):

 282

 currentPlace.totalRob = currentPlace.totalRob + 1
 #print "Robbery at Node: ", currentPlace.STRCL_
 #print "Total Robberies at Specific Node ", currentPlace.totalRob
 # Log the offense at model level
 self.totRob = self.totRob + 1

 # Log offending and victimization for agents involved
 criminalAgent.numOffen = criminalAgent.numOffen + 1
 targetAgent.numVict = targetAgent.numVict + 1

 ##################################
 #data = "ROBBERY: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 #if targetAgent.criminalPropensity == true:
 ##################################
 #data = "Target Agent: " + targetAgent.name + "is a criminal"
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()
 #data = ""

 else:
 print "Unable to log random decision robbery at strnode: " + occupied.strnode + " during tick:
" + self.modelStep

 ##################################
 #data = "FINAL: CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " +
targetAgent.name
 #intSize = int(data.length())
 #logWriter.write(data,0,intSize)
 #logWriter.newLine()

 # Loop that logs deterrence effect of cops
 #print "Cop was present and I made it inside for loop"
 if offenderAtNode == true and copPresent == true and numAgentAtRisk >= 1 and targetWealth > 0:
 currentPlace.totPrevent = currentPlace.totPrevent + 1
 self.totDeter = self.totDeter + 1
 #print "Running total of crimes DETERRED is: ", self.totDeter

 # Log occurrence of potential crime situation - offender and victims present
 if offenderAtNode == true and numAgentAtRisk >= 1:
 self.totIntersect = self.totIntersect + 1
 #print "Running total of potential robbery situations: ", self.totIntersect

 #else:
 #print "Only one agent at node or cop at node."

 # Close the writer
 logWriter.close()

 283

def writeOccupiedNodes():
 #print "Inside writeOccupiedNodes from model level"

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Write out contents of ACTIVE NODES class
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/occupiedSnapshot"+currTick+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames = "StreetNode,NumAgents,Agent1,Agent2,Agent3,Agent4,Agent5"
 intSize = int(columnNames.length())
 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 # Loop through all the active nodes and write the agents at each node to a file
 for occupied as ActiveNode in self.activeNodes:
 #print "Number of agents at node ", occupied.agentList.size()
 #create a string of each data field to be written to the file
 tempNode = String.valueOf(occupied.strnode)
 numAgents = String.valueOf(occupied.agentList.size())
 temp = tempNode + "," + numAgents

 for i in range (0,occupied.agentList.size()):
 temp = temp + ","
 temp = temp + String.valueOf(occupied.agentList.get(i))

 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 #print "Agent:", citizens.getName()
 #print "Time Traveling: ", citizens.getTimeTraveling()
 #print "Time at Home: ", citizens.getTimeHome()
 #print "Time at Main: ", citizens.getTimeMain()
 #print "Time at Rec1: ", citizens.getTimeRec1()
 #print "Time at Rec2: ", citizens.getTimeRec2()

 # Close the file of activity path nodes
 txtWriter.close()

def idChangingEmploymentStatus():
 #print "ID CHANGE AGENTS loop"

 #SWITCH the employment status for 3% of agents in the model using a uniform distribution
 for i in range (30): #change to 30 for the full model
 index = Random.uniform.nextIntFromTo(0,999) #change to 999 for full model
 agent = (Citizen)self.citizens.get(index)
 agent.changeEmpStatus = true
 #print "Changed agent name ", agent.name

def switchActivitySpace():
 # Switch the activity spaces of agents whose employment status changed

 284

 # Allocate the times to remain at home, main, rec1 and rec2 and the time needed for travel
 # RN Distribution has been verified

 #print "Inside switchEmploymentStatus -- Model"

 for citizens as Citizen in self.citizens:
 # Get a new random number for each agent
 timeAtHome = Random.normal.nextInt()
 #print "Random time at home: ", totTimeAtHome

 # Get a new proportion to split time not at home
 randSplit = Random.uniform.nextDoubleFromTo(.1, .9)
 timeLeftForRec = 0
 if citizens.changeEmpStatus == true:
 #print "Index ", String.valueOf(index)
 #print "Agent Name: ", citizens.getName()
 #print "PreChange empStatus ", citizens.employmentStatus
 if citizens.employmentStatus == true:
 #print "My Values should be for unemployed"
 citizens.employmentStatus = false #Employed becomes unemployed
 citizens.main = citizens.unempMain
 citizens.rec1 = citizens.unempRec1
 citizens.rec2 = citizens.unempRec2
 citizens.pathNodes = citizens.unempPathNodes
 citizens.changeEmpStatus = false
 #print "Main Node ", citizens.main
 #print "Unemp Node ", citizens.unempMain

 # Start of code to reallocate time at activity nodes based on length of circuit
 # Loop through the agents and find out how many nodes are in the activityPath
 totSteps = citizens.getPathNodes().size()
 #print "Total Steps: ", totSteps

 # Convert the travel time in steps to travel time in minutes
 citizens.timeTraveling = totSteps / 6
 timeAfterTravel = self.MODEL_DAY - citizens.timeTraveling

 # If loop to check for negative numbers
 while timeAfterTravel < timeAtHome:
 timeAtHome = Random.normal.nextInt()
 extra = timeAtHome - timeAfterTravel
 timeAfterTravel_Home = timeAfterTravel - timeAtHome
 citizens.timeHome = timeAtHome
 citizens.timeMain = int(timeAfterTravel_Home * randSplit)
 timeLeftForRec = timeAfterTravel_Home - citizens.timeMain
 citizens.timeRec1 = int(timeLeftForRec * randSplit)
 citizens.timeRec2 = timeLeftForRec - citizens.timeRec1
 else:
 #print "I am employed"
 citizens.employmentStatus = true #Unemployed becomes employed
 citizens.main = citizens.empMain
 citizens.rec1 = citizens.empRec1
 citizens.rec2 = citizens.empRec2
 citizens.pathNodes = citizens.empPathNodes
 citizens.changeEmpStatus = false
 #print "Main Node ", citizens.main

 285

 #print "Emp Node ", citizens.empMain

 # Start of code to reallocate time at activity nodes based on length of circuit
 # Loop through the agents and find out how many nodes are in the activityPath
 totSteps = citizens.getPathNodes().size()
 #print "Total Steps: ", totSteps

 # Convert the travel time in steps to travel time in minutes
 citizens.timeTraveling = totSteps / 6
 timeAfterTravel = self.MODEL_DAY - citizens.timeTraveling

 # If loop to check for negative numbers
 while timeAfterTravel < timeAtHome:
 timeAtHome = Random.normal.nextInt()

 extra = timeAtHome - timeAfterTravel
 timeAfterTravel_Home = timeAfterTravel - timeAtHome
 citizens.timeHome = timeAtHome
 citizens.timeMain = (timeAfterTravel_Home/2)
 citizens.timeRec1 = int(citizens.timeMain * randSplit)
 citizens.timeRec2 = citizens.timeMain - citizens.timeRec1

 #print "PostChange ", citizens.employmentStatus

def initCops():
 print "Inside init cops"
 #Randomly assign the cops to a starting location.

 # Use the Places to get the strnode
 for i in range (self.COPS): #assign 2000 cop agents for testing and 200 cops for final model
 index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1)
 #print "Index ", index
 cop = Cop()
 cop.setModel(self)

 node = (Place)self.places.get(index)
 #print "FOUND a place " , node.STRCL_

 # Log that cop started at this node
 node.copStart = 1
 cop.setLocation(node)
 cop.setStrnode(node.STRCL_)
 self.cops.add(cop)

def resetAgentsDaily():
 #print "Inside resetAgentsDaily"

 for citizen as Citizen in self.citizens:
 citizen.atActivity = true
 citizen.atRisk = false
 citizen.moveStatus = false
 citizen.position = 0
 citizen.timeCounter = 0
 citizen.timerHome = 0

 286

 citizen.timerMain = 0
 citizen.timerRec1 = 0
 citizen.timerRec2 = 0
 #print "Counter at reset agent: " + citizen.timerRepeat

def createCitizenTravelOutputFiles():
 print "Inside createCitizenTravelOutputFiles"

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Create an output file for model runtime statistics
 # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc.
 currTick = int(self.getTickCount())
 outFileName = "C:/model_output"+away+"/citizenChar.csv"
 dataWriter = BufferedWriter(FileWriter(outFileName))
 columnNames =
"Tick,NumChangeEmp,NumUnemployed,TotWealth,AvgWealth,RobRate,TotVictims,RepeatVict,Tot
Offen,RepeatOffen,NumExp,PercExposed,NumTravel,PercTraveling,numActiveOffenders,numWaitin
gOffenders,cumDeter,cumIntersect,cumRobberies"
 intSize = int(columnNames.length())
 dataWriter.write(columnNames,0,intSize)
 dataWriter.newLine()
 dataWriter.close()

def writeCitizenTravInfotoFiles():
 #print "Inside writeCitizenTravInfotoFiles"
 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Loop through all citizen agents and write out the specified fields
 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 agentName = String.valueOf(citizen.name)
 # Write the fields describing citizen agents
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/citizens"+agentName+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName, true))

 tempName = currTick
 home = String.valueOf(citizen.timerHome)
 temp = tempName + "," + home
 main = String.valueOf(citizen.timerMain)
 temp = temp + "," + main
 rec1 = String.valueOf(citizen.timerRec1)
 temp = temp + "," + rec1
 rec2 = String.valueOf(citizen.timerRec2)
 temp = temp + "," + rec2
 travel = String.valueOf(citizen.totTimeTraveling)
 temp = temp + "," + travel
 expose = String.valueOf(citizen.totTimeExposed)
 temp = temp + "," + expose
 vict = String.valueOf(citizen.numVict)
 temp = temp + "," + vict

 287

 offen = String.valueOf(citizen.numOffen)
 temp = temp + "," + offen
 ahome = String.valueOf(citizen.timeHome)
 temp = temp + "," + ahome
 amain = String.valueOf(citizen.timeMain)
 temp = temp + "," + amain
 arec1 = String.valueOf(citizen.timeRec1)
 temp = temp + "," + arec1
 arec2 = String.valueOf(citizen.timeRec2)
 temp = temp + "," + arec2
 atravel = String.valueOf(citizen.timeTraveling)
 temp = temp + "," + atravel

 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()
 txtWriter.close()

def writeModelRunData():
 print "Inside writeModelRunData"
 away = int(self.SOCIETAL_TIMEAWAY*100)
 print away

 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 modelRun = 1
 self.LOG_FILE = "C:/model_output"+away+"/RunDatav"+ modelRun + ".csv"
 txtWriter = BufferedWriter(FileWriter(self.LOG_FILE))

 # Put a model run header
 header = "Model run: " + modelRun
 intSize = int(header.length())
 txtWriter.write(header,0,intSize)
 txtWriter.newLine()

 # Add parameter information
 seed = Random.getSeed()
 nxtLine = "Random Number Seed: " + seed
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 nxtLine = "Time to reoffend: " + self.REPEAT
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 nxtLine = "Wealth: " + "Mean " + self.WEALTH_MEAN + ", Standard Deviation " +
self.WEALTH_SD
 intSize = int(nxtLine.length())
 txtWriter.write(nxtLine,0,intSize)
 txtWriter.newLine()

 # Close text writer
 txtWriter.close()

 288

def writeStatistics():
 # Writes out final statistics for all agents in one file to provide summary statistics
 # Aggregate time spent at home, main, rec1, rec2, travel, and exposed.
 # Assigned time to spend at home, main, rec1, rec2, travel.
 # Total number of offenses and victimizations.

 # Create a file
 away = int(self.SOCIETAL_TIMEAWAY*100)

 outFileName = "C:/model_output"+away+"/statistics.csv"
 txtWriter = BufferedWriter(FileWriter(outFileName))
 columnNames =
"Agent,timerHome,timerMain,timerRec1,timerRec2,totTimeTraveling,totTimeExposed,numVict,num
Offen,assignHome,assignMain,assignRec1,assignRec2,assignTravel,criminal,wealth"
 intSize = int(columnNames.length())
 txtWriter.write(columnNames,0,intSize)
 txtWriter.newLine()

 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 name = String.valueOf(citizen.name)
 home = String.valueOf(citizen.timerHome)
 temp = name + "," + home
 main = String.valueOf(citizen.timerMain)
 temp = temp + "," + main
 rec1 = String.valueOf(citizen.timerRec1)
 temp = temp + "," + rec1
 rec2 = String.valueOf(citizen.timerRec2)
 temp = temp + "," + rec2
 travel = String.valueOf(citizen.totTimeTraveling)
 temp = temp + "," + travel
 expose = String.valueOf(citizen.totTimeExposed)
 temp = temp + "," + expose
 vict = String.valueOf(citizen.numVict)
 temp = temp + "," + vict
 offen = String.valueOf(citizen.numOffen)
 temp = temp + "," + offen
 ahome = String.valueOf(citizen.timeHome)
 temp = temp + "," + ahome
 amain = String.valueOf(citizen.timeMain)
 temp = temp + "," + amain
 arec1 = String.valueOf(citizen.timeRec1)
 temp = temp + "," + arec1
 arec2 = String.valueOf(citizen.timeRec2)
 temp = temp + "," + arec2
 atravel = String.valueOf(citizen.timeTraveling)
 temp = temp + "," + atravel
 acriminal = String.valueOf(citizen.criminalPropensity)
 temp = temp + "," + acriminal
 awealth = String.valueOf(citizen.wealth)
 temp = temp + "," + awealth

 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 289

 # Close the file
 txtWriter.close()

def dataRecorder():
 #print "DATA RECORDER T0 FILE"

 # Writes out model runtime statistics
 # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc.

 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Open the output file and the buffered writer to write the information to a file
 currTick = int(self.getTickCount())
 outFileName = "C:/model_output"+away+"/citizenChar.csv"
 dataWriter = BufferedWriter(FileWriter(outFileName, true))

 # Count number of agents to change employment status
 numChange = 0
 for citizens as Citizen in self.citizens:
 if citizens.changeEmpStatus == true:
 numChange = numChange + 1
 citizens.changeEmpStatus = false

 # Count unemployed agents
 numUnemployed = 0
 numEmployed = 0
 for agent as Citizen in self.citizens:
 if agent.employmentStatus == false:
 numUnemployed = numUnemployed + 1
 elif agent.employmentStatus == true:
 numEmployed = numEmployed + 1
 else:
 print "Employment status not assigned"
 #print "Number unemployed is: ", numUnemployed
 #print "Number employed is: ", numEmployed

 # Calculate average wealth of agents
 totWealth = 0
 for citizens as Citizen in self.citizens:
 totWealth = totWealth + citizens.wealth
 aveWealth = totWealth / self.AGENTS

 # Calculate the robbery rate
 robRate = 0
 robRate = self.totRob / self.AGENTS

 # Count number of agents victimized
 totNumVict = 0
 for citizens as Citizen in self.citizens:
 if citizens.numVict > 0:
 totNumVict = totNumVict + 1

 # Count number of repeat victims
 numRepeatVict = 0

 290

 for citizens as Citizen in self.citizens:
 if citizens.numVict > 1:
 numRepeatVict = numRepeatVict + 1

 # Count number of offenders
 totNumOffenders = 0
 for citizens as Citizen in self.citizens:
 if citizens.numOffen > 0:
 totNumOffenders = totNumOffenders + 1

 # Count number of repeat offenders
 numRepeatOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.numOffen > 1:
 numRepeatOffen = numRepeatOffen + 1

 # Calculate the number of citizens at risk of victimization
 numExp = 0
 for citizens as Citizen in self.citizens:
 if citizens.atRisk:
 numExp = numExp + 1
 percExp = ((numExp / self.AGENTS) * 100)

 # Calculate the number of citizens traveling
 numTravel = 0
 for citizens as Citizen in self.citizens:
 if citizens.atActivity == false:
 numTravel = numTravel + 1
 percTravel = ((numTravel / self.AGENTS) * 100)

 # Calculate the number of active offenders (able to offend)
 numActiveOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat == 0:
 numActiveOffen = numActiveOffen + 1

 # Calculate the number of waiting offenders (not able to offend)
 numWaitingOffen = 0
 for citizens as Citizen in self.citizens:
 if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat > 0:
 numWaitingOffen = numWaitingOffen + 1

 # Create a string of each data field to be written to the file
 temp = currTick + "," + numChange + "," + numUnemployed + "," + totWealth
 temp = temp + "," + aveWealth
 temp = temp + "," + robRate
 temp = temp + "," + totNumVict
 temp = temp + "," + numRepeatVict
 temp = temp + "," + totNumOffenders
 temp = temp + "," + numRepeatOffen
 temp = temp + "," + numExp + ","+ percExp
 temp = temp + "," + numTravel + ","+ percTravel
 temp = temp + "," + numActiveOffen
 temp = temp + "," + numWaitingOffen

 291

 temp = temp + "," + self.totDeter
 temp = temp + "," + self.totIntersect
 temp = temp + "," + self.totRob
 intSize = int(temp.length())
 dataWriter.write(temp,0,intSize)
 dataWriter.newLine()

 #Close the file
 dataWriter.close()

def writeFinalAgents():
 print "Writing Final Agents"
 away = int(self.SOCIETAL_TIMEAWAY*100)
 baseFilePath = "C:/model_output"+away+"/"
 self.writeAgents(self.places, baseFilePath + "strnodes"+away+".shp")

def writeCitizenInfoPaths():
 #print "Inside writeCitizenTravInfotoFiles"
 away = int(self.SOCIETAL_TIMEAWAY*100)

 # Loop through all citizen agents and write out the specified fields
 for citizen as Citizen in self.citizens:
 # Create a string of each data field to be written to the file, two fields at a time
 agentName = String.valueOf(citizen.name)
 # Write the fields describing citizen agents
 # CREATE an output file and the buffered writer to write the activity times for each agent to a file
 currTick = int(self.getTickCount())
 #print "Current Tick: ", currTick
 outFileName = "C:/model_output"+away+"/path"+agentName+".csv"
 txtWriter = BufferedWriter(FileWriter(outFileName, true))
 node = citizen.strnode
 temp = node + "," + currTick
 intSize = int(temp.length())
 txtWriter.write(temp,0,intSize)
 txtWriter.newLine()

 txtWriter.close()

__
Classes

Place Actions
(none)

Citizen Actions

def step():
Java imports
java.lang.Object
java.lang.Double
java.lang.Number
java.lang.Integer

 292

Code
 #print "INSIDE CITIZEN STEP"

 # Every citizen agent evaluates their move status, if they are moving they are added to the active
nodes
 # class and are part of the decision to commit a crime. Then the values (atRisk, atActivity, moving,
and
 # position are set for the next turn.
 isActNodePosition = 0
 isActNode = 0

 #Obtain a random number of positions to move while traveling
 #randMoveSize = Random.normal.nextInt()
 randMoveSize = int(self.model.NORM_TRAVEL.nextDouble())

 #print "AGENT: ", self.name
 #print "POSITION: ", self.position

 #<CONDITION 1 - Start (Check to make sure there is another node in the pathNodes arrayList)
 if self.position < self.pathNodes.size()-1:
 #print "Agent: " + self.name + " is at POSITION " + self.position + " in path node array"
 #print "Position: ", self.position
 #print "Total Path Nodes in List: ", self.pathNodes.size()
 #print "ModelStep Counter: ", counter

 # Associate all agents with a current street node so we can test whether they are are atRisk
 # and/or moving.
 # Read the pathNodes arrayList and convert the number with a decimal to an integer or string.

 theStrCurrentNode = self.pathNodes.get(self.position).toString()
 #print "Node as String: ", theStrCurrentNode
 token = "."
 thePartialString = theStrCurrentNode
 #searches for decimal point
 index = theStrCurrentNode.indexOf(token)
 #print "index is :", index
 thePartialString = theStrCurrentNode.substring(0, index)
 #print "Second Node as String: ", thePartialString
 self.currentNode = Integer.valueOf(thePartialString).intValue()

 # Collect all agents who are moving or recreating are at risk and need to be logged
 # at active nodes and put them in the activeNode class.

 #<<CONDITION 2 - Start
 if self.moveStatus == true or self.atRisk == true:

 # ADD an agent to the ActiveNode class. If there is an ActiveNode agent
 # that exists with a particular strnode value then add the name of the
 # citizen agent to the agentList (an arrayList). If there is no ActiveNode
 # with the same value as the currentNode then add a new ActiveNode agent and
 # populate the strnode number with the currentNode and add the name of the
 # citizen agent to the agentList (an arrayList).

 #print "Current Node: ", self.currentNode
 #print "The Size is : ", self.model.activeNodes.size()

 293

 # Test to see if this is the first ActiveNode
 nodeisEqual = false
 #<CONDITION 2.1 - Start
 if self.model.activeNodes.size() <> 0:
 for occupied as ActiveNode in self.model.activeNodes:
 if self.currentNode == occupied.strnode:
 occupied.agentList.add(self.name)
 nodeisEqual = true
 #CONDITION 2.1 - End >

 #<CONDITION 2.2 - Start
 if self.model.activeNodes.size() == 0 or nodeisEqual == false:
 newAgent = ActiveNode()
 newAgent.setModel(self.model)
 newAgent.strnode = self.currentNode
 newAgent.agentList = ArrayList()
 newAgent.agentList.add(self.name)
 self.model.activeNodes.add(newAgent)
 #print "First agent of Total Agents: ", self.model.activeNodes.size()
 #print "Inside Assignment: Strnode = ", newAgent.strnode
 #print "ArrayList Value = ", newAgent.agentList.get(0)
 #CONDITION 2.2 - End >

 #print "Current Node as Integer: ", Integer.toString(self.currentNode)
 #print "Home Node: " + self.home + " Main Node: " + self.main + " Rec 1: " + self.rec1 + " Rec 2:
" + self.rec2
 #CONDITION 2 - End >>

 #print "Home Node: " + self.home + " Main Node: " + self.main + " Rec 1: " + self.rec1 + " Rec 2:
" + self.rec2

 # RESET values for next turn.
 # Check to see if currentNode equal to an activity node.
 # If yes, do not move but update time that agent has been at node. If no, move to next node.
 #<<<CONDITION 3 - Start
 if self.currentNode == self.home:
 #print "Time assigned to be at HOME: ", self.timeHome
 ##print "Time Spent at Home: ", self.timeCounter
 if self.timeCounter < self.timeHome:
 self.atActivity = true
 self.atRisk = false
 self.moveStatus = false
 #Increment the timer
 self.timeCounter = self.timeCounter + 1
 self.timerHome = self.timerHome + 1
 else:
 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = 1
 self.position = self.position + 1 #move agent to next position in pathNode array
 ##print "Agent Leaving Home and moving to position: ", self.position
 elif self.currentNode == self.main:
 #print "Time Assigned Main ", self.timeMain
 ##print "TimeCounter for Main", self.timeCounter

 294

 if self.timeCounter < self.timeMain:
 self.atActivity = true
 self.atRisk = false
 self.moveStatus = false
 #Increment the timer
 self.timeCounter = self.timeCounter + 1
 self.timerMain = self.timerMain + 1
 else:
 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = 1
 self.position = self.position + 1 #move agent to next position in pathNode array
 ##print "Agent Leaving Main and moving to position: ", self.position
 self.totTimeTraveling = self.totTimeTraveling + 1
 self.totTimeExposed = self.totTimeExposed + 1
 elif self.currentNode == self.rec1:
 #print "Time Assigned REC1", self.timeRec1
 ##print "TimeCounter for Rec1: ", String.valueOf(self.timeCounter)
 if self.timeCounter < self.timeRec1:
 self.atActivity = true
 self.atRisk = true #Agents at activities are also at risk
 self.moveStatus = false
 #Increment the timer
 self.timeCounter = self.timeCounter + 1
 self.timerRec1 = self.timerRec1 + 1
 self.totTimeExposed = self.totTimeExposed + 1
 else:
 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = 1
 self.position = self.position + 1 #move agent to next position in pathNode array
 ##print "Agent Leaving Rec1 and moving to position: ", self.position
 self.totTimeTraveling = self.totTimeTraveling + 1
 self.totTimeExposed = self.totTimeExposed + 1
 elif self.currentNode == self.rec2:
 #print "Time assigned Rec2 ", self.timeRec2
 ##print "Time spent at Rec2: ", String.valueOf(self.timeCounter)
 if self.timeCounter < self.timeRec2:
 self.atActivity = true #Agents at activities are also at risk
 self.atRisk = true
 self.moveStatus = false
 #Increment the timer
 self.timeCounter = self.timeCounter + 1
 self.timerRec2 = self.timerRec2 + 1
 self.totTimeExposed = self.totTimeExposed + 1
 else:
 self.atActivity = false
 self.atRisk = true
 self.moveStatus = true
 self.timeCounter = 1
 self.position = self.position + 1 #move agent to next position in pathNode array
 ##print "Agent Leaving Rec2 and moving to position: ", self.position
 self.totTimeTraveling = self.totTimeTraveling + 1
 self.totTimeExposed = self.totTimeExposed + 1

 295

 else:
 ##print "AGENT enters ELSE loop for travellers--needs to check for intervening activity node
 #print "Agent time traveling incremented to " + self.totTimeTraveling + "in else of Condition 3"

 # Check to make sure the random number is positive and nonzero
 while randMoveSize <= 0:
 #randMoveSize = Random.normal.nextInt()
 randMoveSize = int(self.model.NORM_TRAVEL.nextDouble())
 target = self.position + randMoveSize #temporarily move agent the number of randomly
generated positions
 beginRange = self.position + 1

 #print "Randommovesize: ", randMoveSize
 #print "Target position", target

 #<CONDITION 3.1 - Start
 # Check to make sure move does not take agent beyond the number of pathNodes in list
 if target >= self.pathNodes.size()-1:
 #print "Agent at end of path"
 #print self.name + "Travelling agent RETURNED HOME at Model step: " +
self.model.modelStep
 self.currentNode = self.home
 self.position = 0
 self.timeCounter = 0
 self.atActivity = true
 self.atRisk = false
 self.moveStatus = false
 self.timerHome = self.timerHome + 1
 else:
 # Test to make sure none of the skipped nodes are activity nodes
 ##print "Main node of agent ", self.main
 ##print "Target position ", target
 for i in range(beginRange, target):
 # Get each position between the current one and the target and evaluate each
 currentPosition = i
 #print "TempTarget in loop ", tempTarget
 # Associate a position with a node
 theStrTestNode = self.pathNodes.get(i).toString()
 token = "."
 #print "theStrTestNode ", theStrTestNode
 thePartialStrTestNode = theStrTestNode
 index1 = theStrTestNode.indexOf(token)
 #print "Index 1 ", index1
 thePartialStrTestNode = theStrTestNode.substring(0, index1)
 testNode = Integer.valueOf(thePartialStrTestNode).intValue()

 # If testnode is an activity node, hold its information until all nodes
 # are checked from fartherest to nearest.
 ##print "Test node being compared: ", testNode
 ##print "Current test position ", currentPosition
 if testNode == self.home:
 #print "Node " + testNode + " is the home node " + self.home
 #print "Found home activity position at: ", currentPosition
 isActNodePosition = currentPosition
 isActNode = testNode
 break

 296

 if testNode == self.main:
 #print "Node " + testNode + " is the main node " + self.main
 ##print "Found activity position at: ", currentPosition
 isActNodePosition = currentPosition
 isActNode = testNode
 break
 if testNode == self.rec1:
 #print "Node " + testNode + " is the rec1 node " + self.rec1
 ##print "Found activity position at: ", currentPosition
 isActNodePosition = currentPosition
 isActNode = testNode
 break
 if testNode == self.rec2:
 #print "Node " + testNode + " is the rec2 node " + self.rec2
 ##print "Found activity position at: ", currentPosition
 isActNodePosition = currentPosition
 isActNode = testNode
 break

 # Final setting of self.position and activity node status for traveling agents ONLY
 #<CONDITION 3.1.1 - START
 #print "BEFORE isActNodePosition value: ", isActNodePosition
 #print "Redirected Node before if <= 0 ", isActNode
 if isActNodePosition > 0:
 #print "AFTER isActNodePosition > 0", isActNodePosition
 self.position = isActNodePosition
 self.currentNode = isActNode
 if isActNode == self.home or isActNode == self.main:
 self.atActivity = true
 self.atRisk = false
 self.moveStatus = false
 self.timeCounter = 1
 ##print "Redirected to home or main at Position " + self.position
 if isActNode == self.home:
 self.timerHome = self.timerHome + 1
 else:
 self.timerMain = self.timerMain + 1
 elif isActNode == self.rec1 or isActNode == self.rec2:
 self.atActivity = true
 self.atRisk = true
 self.moveStatus = false
 self.timeCounter = 1
 self.totTimeExposed = self.totTimeExposed + 1
 ##print "Redirected to rec1 or rec2 at position " + self.position
 if isActNode == self.rec1:
 self.timerRec1 = self.timerRec1 + 1
 else:
 self.timerRec2 = self.timerRec2 + 1
 else:
 self.position = target
 self.totTimeTraveling = self.totTimeTraveling + 1
 ##print "Agent time traveling incremented to " + self.totTimeTraveling + " in else of Condition
3.1.1"
 self.totTimeExposed = self.totTimeExposed + 1
 ##print "MOVED TO TARGET position", target
 #print "Agent is Traveling"

 297

 #CONDITION 3.1.1 - END>
 #CONDITION 3.1 - END>

 #print "ISACTNODE", isActNodePosition
 #print "SELF.POSITION Step", self.position
 #CONDITION 3 - END>>>

 else:
 # Reset agent to home position and reset timer to 0
 #print "RESET agent to home position"
 #print "Agent: " + self.name + "RETURNED HOME at Model step: " + self.model.modelStep
 self.position = 0
 self.timeCounter = 1
 self.atActivity = true
 self.atRisk = false
 self.moveStatus = false
 self.timerHome = self.timerHome + 1

 #CONDITION 1 - End >

def assignNodeInfo(String tname, int ehome, int emain, int erec1, int erec2, ArrayList
ePathNodeList, int uhome, int umain, int urec1, int urec2, ArrayList uPathNodeList):
 # Assigns the variable values read from the files in initCitizens() to the fields in Citizen class
 self.name = tname
 self.home = ehome
 self.empHome = ehome
 self.empMain = emain
 self.empRec1 = erec1
 self.empRec2 = erec2
 self.empPathNodes = ePathNodeList
 self.unempHome = uhome
 self.unempMain = umain
 self.unempRec1 = urec1
 self.unempRec2 = urec2
 self.unempPathNodes = uPathNodeList
 self.currentNode = self.home

def payCitizens():
 #print "Inside Pay Citizens"

 # Each employed citizen gets paid at designated intervals

 if self.employmentStatus == true:
 #print "Agent Name: ",self.name
 #print "Agent Old Wealth: ", self.wealth

 self.wealth = self.wealth + 5

 #print "Agent New Wealth: ", self.wealth

Active Node Actions
(none)

Cop Actions

 298

def step():
Java imports
java.lang.Object
java.lang.String
uchicago.src.sim.util.SimUtilities
java.util.Arrays
java.util.List

Code
 # Every cop moves with each model tick
 places = self.model.getPlaces()
 #print "Old node: ", self.strnode

 # Shuffle the adjacent nodes of the Place where the cop is located
 # Identify number of neighbor nodes
 numNeighs = self.location.myNeighbors.size()
 maxValue = numNeighs-1

 # Generate a value
 index = Random.uniform.nextIntFromTo(0,numNeighs -1)

 #print "Move to index: " + index

 # Verification code
 #for node in range (0, numNeighs):
 #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node))

 # Get the new node and assign it to strnode field
 # (can't just use index because index and strnode do not correspond)
 newNode = self.location.getMyNeighbors().get(index)
 self.strnode = int(String.valueOf(newNode))

 #print "New strnode: ", self.strnode

 # Do the assignment directly of the strnode to a place
 nodeFL = Float(self.strnode)
 newLocation = (Place)self.model.placeMap.get(nodeFL)
 self.location = newLocation
 #print "New location: ", self.location.STRCL_

Sequence Graph

totalRobberies
return self.totRob

totalDeterred
return self.totDeter

totalIntersect
return self.totIntersect

 299

Appendix 6: Java Code to Develop Activity Nodes

NodeAssignment.java

Package AssignNodesToAgents;

/**
 * Title: Assignment
 * Description: Main program to assign nodes
 * Copyright: Copyright (c) 2005
 * @author Liz Groff
 * @version 1.0
 */

//Import classes
import java.io.*;
import java.util.*;
import java.lang.Math;

public class NodeAssignment {
 public static void main(String [] args){

 //Read the first record from the source file that has the number of nodes
 //to be allocated per blockgroup or zip
 //Create an instance of the FileInputStream class for a particular
 //file.
 FileInputStream stream = null;

 //CHANGE --Change name of input file to reflect the type of node
 try {
 //File for homes
 //stream = new FileInputStream
 //("C:/Projects/Dissertation/GISData/TestData/homesperblkgrpall.csv");
 //File for jobs
 //stream = new FileInputStream
 //("C:/Projects/Dissertation/GISData/TestData/empperzip.csv");
 //File for activities
 stream = new FileInputStream
 ("C:/Projects/Dissertation/GISData/TestData/actperblkgrp.csv");
 }
 catch (FileNotFoundException e) {
 e.printStackTrace(System.err);
 System.exit(1);
 }

 //CHANGE --Create and open new file to write. Change for different nodes.
 PrintWriter out = null;

 try {
 //Create a file to hold the random "home" street node info
 //String allHomes =
 //"C:/Projects/Dissertation/GISData/TestData/allHomes.csv";

 //Create a file to hold the random "work" nodes
 //String allHomes =

 300

 //"C:/Projects/Dissertation/GISData/TestData/allJobs.csv";

 //Create a file to hold the random "work" nodes
 String allHomes =
 "C:/Projects/Dissertation/GISData/TestData/allAct.csv";

 //Create a PrintWriter based on File parameter
 out = new PrintWriter(new FileWriter(allHomes));

 }
 catch (IOException exc) {
 System.out.println(exc.toString());
 }

 //Create an InputStreamReader
 InputStreamReader reader=new InputStreamReader(stream);

 //Create a Buffered Reader that gets data from the InputStreamReader and
 //allows it to be read by the program
 BufferedReader buffer = new BufferedReader(reader);

 //Variables
 String line;
 String templine;

 //Create line variable and read line into buffer
 try {
 //Loop through the rows to get each blkgrpid and number of homes to be
 //allocated per blkgrpid
 while ((line = buffer.readLine()) != null && !line.equals("")){
 line = line.trim();
 templine = line;
 int nextSpace = line.indexOf(",");
 String blkgrpid= line.substring(0, nextSpace);
 int homes = Integer.parseInt(templine.substring(++nextSpace).trim());
 //System.out.println("Blockgroupid passed: " + blkgrpid + "," + homes);

 //Call to method to extract vector of streetnodeids,x,y
 BlkgrpNodes curBlkgrpset = collectNodes(blkgrpid);//make sure this will create a new
vector each time

 //Add call to new method
 System.out.println("Size of the current blkgrpset is: "+
 curBlkgrpset.size());
 System.out.println("Blockgrp id of current blkgrpset is: "+
 blkgrpid);

 BlkgrpNodes blkgrpRand = selectRandomNodes(curBlkgrpset,homes);
 System.out.println(blkgrpid + ", Assigned " + blkgrpRand.size() + " homes");

 //Write to the allHomes file
 StrNodeLoc aStrnodeRand = null;

 for(int i=0; i < blkgrpRand.size(); i++){
 aStrnodeRand = blkgrpRand.get(i);
 out.println(aStrnodeRand.toString());

 301

 out.flush();
 }

 //System.exit(0);
 }

 //close the connection to file
 out.close();
 stream.close();

 }
 catch (IOException e) {
 System.err.println("\nStack Trace Output:\n");
 e.printStackTrace(System.err);
 System.err.println("\nEnd of Stack Trace Output:\n");
 System.exit(1);
 }

 System.exit(0);
 return;
 }

 //Method to loop through the data file and populate the fields
 public static BlkgrpNodes collectNodes(String blkgrpid){

 //Create a file input stream and try to open the file
 FileInputStream stream2 = null;

 //CHANGE -
 try {

 //use this for blkgrps/homes and activities
 stream2 = new FileInputStream
 ("C:/Projects/Dissertation/GISData/TestData/blkgrp_stnodeall.csv");

 //use this for zip codes/jobs
 //stream2 = new FileInputStream
 //("C:/Projects/Dissertation/GISData/TestData/zip_stnodeall.csv");
 }
 catch (FileNotFoundException e) {
 e.printStackTrace(System.err);
 System.exit(1);
 }

 //Create an InputStreamReader
 InputStreamReader reader2=new InputStreamReader(stream2);

 //Create a Buffered Reader
 BufferedReader buffer2 = new BufferedReader(reader2);

 /* File format must be strnode,blkgrpid,x,y with no headers for program
 *to read properly. File type must be csv.
 */
 //Create new object to hold StrNodeLoc object
 StrNodeLoc astrnodeLoc;

 302

 BlkgrpNodes blkgrpSet = new BlkgrpNodes();
 String line2;
 String templine2;
 String blkgrpid1= null;
 String strnode = null;
 String x = null;
 String y = null;

 try {
 //Loop through the rows and read each one
 while ((line2 = buffer2.readLine()) != null && !line2.equals("")){
 line2 = line2.trim();
 templine2= line2;
 int nextSpace2 = line2.indexOf(",");
 strnode = line2.substring(0, nextSpace2);
 line2 = line2.substring(++nextSpace2).trim();
 nextSpace2 = line2.indexOf(",");
 blkgrpid1 = line2.substring(0,nextSpace2);
 line2 = line2.substring(++nextSpace2).trim();
 nextSpace2 = line2.indexOf(",");
 x = line2.substring(0,nextSpace2);
 y = line2.substring(++nextSpace2).trim();

 //Test for current blockgrp and loop to collect the streetnodes that are
 //associated with a blkgrpid.
 //System.out.println(blkgrpid1);
 //System.out.println(blkgrpid + "," + blkgrpid1);
 if (blkgrpid1.compareTo(blkgrpid) == 0){
 System.out.println(blkgrpid + "," + blkgrpid1);
 int count = 0;

 // create the new StrNodeLoc object and populate it
 astrnodeLoc = new StrNodeLoc(strnode,x,y);
 //System.out.println(astrnodeLoc.toString());

 // add the StrNodeLoc object to the vector of BlkgrpNodes
 blkgrpSet.add(astrnodeLoc);
 }
 }
 //close the connection to file
 stream2.close();
 }
 catch (IOException e) {
 System.err.println("\nStack Trace Output:\n");
 e.printStackTrace(System.err);
 System.err.println("\nEnd of Stack Trace Output:\n");
 System.exit(1);
 }

 //System.exit(0);
 return blkgrpSet;
 }

 /*Nested for loop to generate random numbers and then choose the
 * correct number of random street nodes.

 303

 * 1) Find number of random street nodes needed.
 * 2) Generate a random number and compare it to list of streetnodes
 * 3) Write out matched StrNodeLoc objects to a file along with the
 * blockgroupid number
 */

 public static BlkgrpNodes selectRandomNodes(BlkgrpNodes curBlkgrpset,
 int homes){

 Random randstrnodeValues = new Random(100); //creates random number
generator
 //Mersenne randnum = new Mersenne(1);
 StrNodeLoc aStrnodeRand = null;
 BlkgrpNodes blkgrpRand = new BlkgrpNodes();

 for (int i = 0; i < homes; i++){
 int filecount = 1;
 //Generate random index number
 int index = Math.abs(randstrnodeValues.nextInt(curBlkgrpset.size()));
 System.out.println("Random index is: " + index);
 //int index = Math.abs(randnum.genrand());
 //do while (index > curBlkgrpset.size()) {//look this up
 //index = Math.abs(randnum.genrand());

 //System.out.println("Index = " + index);
 aStrnodeRand = curBlkgrpset.get(index);
 //System.out.println("Assigned Node #" + i + ": " +
aStrnodeRand.toString());
 blkgrpRand.add(aStrnodeRand); //Put it in blkgrpRand
 //System.out.println("Size of new vector: " + blkgrpRand.size());
 }

 return blkgrpRand;
 }
}

StrNodeLoc.java

package AssignNodesToAgents;

/**
 * Title: StrNodeLoc
 * Description: StrNodeLocs are objects that represent the streetnode
 * number and x,y of a particular streetnode.
 *
 * @author Liz Groff
 * @version 1.0
 */

 //Import classes
 import java.io.*;
 import java.util.*;

 304

 public class StrNodeLoc {
 //Constructors -- BlkgrpNodes object
 StrNodeLoc (String strnode, String x, String y){
 this.strnode = strnode;
 this.x = x;
 this.y = y;
 }

 public String toString(){
 return strnode + " , " + x + "," + y;
 }

 //variables
 private String strnode;
 private String x;
 private String y;
}

Appendix 7: Visual Basic Code to Identify Paths Among Activity Nodes

frmAgentPaths.frm

' Copyright 1995-2005 ESRI

' All rights reserved under the copyright laws of the United States.

' You may freely redistribute and use this sample code, with or without modification.

' Disclaimer: THE SAMPLE CODE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
' WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS
' FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ESRI OR
' CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY,
' OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF
' SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
' INTERRUPTION) SUSTAINED BY YOU OR A THIRD PARTY, HOWEVER CAUSED AND ON
ANY
' THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
ARISING IN ANY
' WAY OUT OF THE USE OF THIS SAMPLE CODE, EVEN IF ADVISED OF THE POSSIBILITY
OF
' SUCH DAMAGE.

' For additional information contact: Environmental Systems Research Institute, Inc.

' Attn: Contracts Dept.

' 380 New York Street

' Redlands, California, U.S.A. 92373

 305

' Email: contracts@esri.com

Option Explicit

Private m_pNetworkDataset As INetworkDataset
Private m_pNAContext As INAContext
Private m_pNALayer As INALayer

Private Sub cmbLayer_Change()

 Dim pEnumLayer As IEnumLayer
 Dim pLayer As ILayer
 Dim pNetworkLayer As INetworkLayer

 Set pEnumLayer = MapControl1.Map.Layers
 pEnumLayer.Reset

 pEnumLayer.Reset
 Set pLayer = pEnumLayer.Next
 Do While Not pLayer Is Nothing
 If pLayer.Name = cmbLayer.Text Then
 Set pNetworkLayer = pLayer
 Set m_pNetworkDataset = pNetworkLayer.NetworkDataset
 End If
 Set pLayer = pEnumLayer.Next
 Loop

 'cleanup
 Set pEnumLayer = Nothing
 Set pLayer = Nothing
 Set pNetworkLayer = Nothing

End Sub

Private Sub cmdGo_Click()

 Dim fs As FileSystemObject
 Dim inputFolder As Folder
 Dim inputFiles As Files
 Dim agentFile As File
 Dim shapefileName As String
 Dim counter As Integer

 Dim pStopFeatureClass As IFeatureClass

 Me.MousePointer = vbHourglass

 Set fs = CreateObject("Scripting.FileSystemObject")

 'Get the files to read and create shapefiles from
 Set inputFolder = fs.GetFolder(txtInputDir.Text)
 Set inputFiles = inputFolder.Files

 'Delete temporary files if they exist
 Dim oldFiles As Files

 306

 Dim oldFile As File
 Dim tempFolder As Folder
 Set tempFolder = fs.GetFolder(txtTempLoc.Text)
 Set oldFiles = tempFolder.Files
 For Each oldFile In oldFiles
 oldFile.Delete (True)
 Next

 'Delete the output files
 Set tempFolder = fs.GetFolder(txtOutputDir.Text)
 Set oldFiles = tempFolder.Files
 For Each oldFile In oldFiles
 oldFile.Delete True
 Next

 'Loop through each file in the input Directory
 For Each agentFile In inputFiles
 counter = counter + 1
 Label5.Caption = counter

 'Create a shapefile from the agentFile
 shapefileName = Left(agentFile.Name, Len(agentFile.Name) - 4)
 Set pStopFeatureClass = CreateShapefile(txtTempLoc.Text, shapefileName)

 'Add the points to the newly created shapefile
 AddPoints agentFile, pStopFeatureClass, True

 ' Create NAContext and NASolver
 Set m_pNAContext = CreateSolverContext(m_pNetworkDataset)

 ' Get Cost Attributes
 Dim pNetworkAttribute As INetworkAttribute
 Dim i As Long
 For i = 0 To m_pNetworkDataset.AttributeCount - 1
 Set pNetworkAttribute = m_pNetworkDataset.Attribute(i)
 If pNetworkAttribute.UsageType = esriNAUTCost Then
 cmdCostAttribute.AddItem pNetworkAttribute.Name
 End If
 Next i
 cmdCostAttribute.ListIndex = 0

 ' Load locations from FC
 LoadNANetworkLocations m_pNAContext, "Stops", pStopFeatureClass, 100

 'Create a Network Analysis Layer and add to ArcMap
 Set m_pNALayer = m_pNAContext.Solver.CreateLayer(m_pNAContext)
 Dim pLayer As ILayer
 Set pLayer = m_pNALayer
 pLayer.Name = m_pNAContext.Solver.DisplayName
 MapControl1.AddLayer pLayer

 SetSolverSettings m_pNAContext, cmdCostAttribute.Text, False, False

 ' Compute the route
 Dim strMsg As String
 Dim pGPMessages As IGPMessages

 307

 Set pGPMessages = New GPMessages
 strMsg = Solve(m_pNAContext, pGPMessages)

 If strMsg = "OK" Then
 lstOutput.AddItem "Solve: Route length: " + Format(GetRouteOutput(m_pNAContext, "Routes"),
"######0.00") + " " + ""
 Else
 lstOutput.AddItem "Solve: " + strMsg

 ' Display Error/Warning/Informative Messages
 If Not pGPMessages Is Nothing Then
 For i = 0 To pGPMessages.Count - 1
 Select Case pGPMessages.GetMessage(i).Type
 Case esriGPMessageTypeError
 lstOutput.AddItem "Error " & Str(pGPMessages.GetMessage(i).ErrorCode) & " " &
pGPMessages.GetMessage(i).Description
 Case esriGPMessageTypeWarning
 lstOutput.AddItem "Warning " & Str(pGPMessages.GetMessage(i).ErrorCode) &
pGPMessages.GetMessage(i).Description
 Case Else
 lstOutput.AddItem "Information " & pGPMessages.GetMessage(i).Description
 End Select
 Next i
 End If
 End If

 Call AddResultsLayer

 Dim pFC1 As IFeatureClass
 Dim pL1 As IFeatureLayer
 Set pL1 = MapControl1.Layer(0)
 Set pFC1 = pL1.FeatureClass
 Dim pFC2 As IFeatureClass
 Dim pL2 As IFeatureLayer
 Set pL2 = MapControl1.Layer(2)
 Set pFC2 = pL2.FeatureClass

 Call RelQryTabExample(pL1, pFC1, "SourceOID", pFC2, "Strcl_")

 'MapControl1.Refresh

 'routine to read the junctions and write out the nodes visited
 Call NodesVisited(pL1, txtOutputDir, shapefileName, pStopFeatureClass)
 'Remove the junctions and route layer from the map to get ready to create a new one
 MapControl1.DeleteLayer 0
 MapControl1.DeleteLayer 0
 'MapControl1.Refresh

 Next

 'cleanup
 Set fs = Nothing
 Set inputFolder = Nothing
 Set inputFiles = Nothing
 Set agentFile = Nothing
 Set pStopFeatureClass = Nothing

 308

 Set oldFiles = Nothing
 Set oldFile = Nothing
 Set tempFolder = Nothing
 Set pStopFeatureClass = Nothing

 Me.MousePointer = vbDefault

 MsgBox "DONE"
End Sub

Private Sub dirInput_Change()

 txtInputDir.Text = dirInput.Path

End Sub

Private Sub dirOutputDir_Change()

 txtOutputDir.Text = dirOutputDir.Path

End Sub

Private Sub dirTempLoc_Change()

 txtTempLoc.Text = dirTempLoc.Path

End Sub

Private Sub Form_Load()

 Dim pEnumLayer As IEnumLayer
 Dim pLayer As ILayer

 Set pEnumLayer = MapControl1.Map.Layers
 pEnumLayer.Reset
 Set pLayer = pEnumLayer.Next
 Do While Not pLayer Is Nothing
 If TypeOf pLayer Is INetworkLayer Then
 cmbLayer.AddItem pLayer.Name
 End If
 Set pLayer = pEnumLayer.Next
 Loop

 Dim pNetworkLayer As INetworkLayer

 If cmbLayer.ListCount > 0 Then
 cmbLayer.Text = cmbLayer.List(0)
 pEnumLayer.Reset
 Set pLayer = pEnumLayer.Next
 Do While Not pLayer Is Nothing
 If pLayer.Name = cmbLayer.Text Then
 Set pNetworkLayer = pLayer
 Set m_pNetworkDataset = pNetworkLayer.NetworkDataset
 End If
 Set pLayer = pEnumLayer.Next
 Loop

 309

 End If

 'cleanup
 Set pEnumLayer = Nothing
 Set pLayer = Nothing

End Sub

'**

' Get the Total_impedance from Route Output Class
Public Function GetRouteOutput(pContext As INAContext, strNAClass As String) As Double
 Dim intRow As Long
 Dim pTable As ITable
 Set pTable = pContext.NAClasses.ItemByName(strNAClass)
 If pTable Is Nothing Then
 GetRouteOutput = -1
 Exit Function
 End If

 Dim pCursor As ICursor
 Dim pRow As IRow
 Set pCursor = pTable.Search(Nothing, False)

 Dim pSolverSettings As INASolverSettings
 Set pSolverSettings = pContext.Solver

 Set pRow = pCursor.NextRow
 If Not pRow Is Nothing Then
 GetRouteOutput = pRow.Value(pTable.FindField("Total_" +
pSolverSettings.ImpedanceAttributeName))
 End If

 'cleanup
 Set pTable = Nothing
 Set pCursor = Nothing
 Set pRow = Nothing
 Set pSolverSettings = Nothing

End Function

Public Sub AddResultsLayer()

 Dim pFLayer As IFeatureLayer
 Dim pTraversalResultQuery As INATraversalResultQuery
 Dim pNATraversalResultEdit As INATraversalResultEdit

 Set pTraversalResultQuery = m_pNALayer.Context.Result
 Set pNATraversalResultEdit = pTraversalResultQuery

 Dim pTrackCancel As ITrackCancel

 pNATraversalResultEdit.InferGeometry "", Nothing, pTrackCancel

 Set pFLayer = New FeatureLayer
 Set pFLayer.FeatureClass = pTraversalResultQuery.FeatureClass(esriNETJunction)

 310

 pFLayer.Name = pFLayer.FeatureClass.AliasName

 MapControl1.AddLayer pFLayer

 'MapControl1.Refresh

 'cleanup
 Set pFLayer = Nothing
 Set pTraversalResultQuery = Nothing
 Set pNATraversalResultEdit = Nothing
 Set pTrackCancel = Nothing

End Sub

Private Sub Form_Terminate()

 Set m_pNetworkDataset = Nothing
 Set m_pNAContext = Nothing
 Set m_pNALayer = Nothing

End Sub

Private Sub MapControl1_OnMouseDown(ByVal button As Long, ByVal shift As Long, ByVal x As
Long, ByVal y As Long, ByVal mapX As Double, ByVal mapY As Double)

 MapControl1.Extent = MapControl1.TrackRectangle

End Sub

Basutil.bas

Attribute VB_Name = "basUtil"
' Copyright 1995-2005 ESRI

' All rights reserved under the copyright laws of the United States.

' You may freely redistribute and use this sample code, with or without modification.

' Disclaimer: THE SAMPLE CODE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
' WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS
' FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ESRI OR
' CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY,
' OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF
' SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
' INTERRUPTION) SUSTAINED BY YOU OR A THIRD PARTY, HOWEVER CAUSED AND ON
ANY
' THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
ARISING IN ANY
' WAY OUT OF THE USE OF THIS SAMPLE CODE, EVEN IF ADVISED OF THE POSSIBILITY
OF
' SUCH DAMAGE.

 311

' For additional information contact: Environmental Systems Research Institute, Inc.

' Attn: Contracts Dept.

' 380 New York Street

' Redlands, California, U.S.A. 92373

' Email: contracts@esri.com

Option Explicit
'**
'Routine CreateShapefile to create a shapefile containing the points that will be *
'used as stops on the during the route calculations *
'**
Public Function CreateShapefile(sPath As String, sName As String) As IFeatureClass ' Dont include
.shp extension

 ' Open the folder to contain the shapefile as a workspace
 Dim pFWS As IFeatureWorkspace
 Dim pWorkspaceFactory As IWorkspaceFactory
 Set pWorkspaceFactory = New ShapefileWorkspaceFactory
 Set pFWS = pWorkspaceFactory.OpenFromFile(sPath, 0)

 ' Set up a simple fields collection
 Dim pFields As IFields
 Dim pFieldsEdit As IFieldsEdit
 Set pFields = New Fields
 Set pFieldsEdit = pFields

 Dim pField As IField
 Dim pFieldEdit As IFieldEdit

 ' Make the shape field
 ' it will need a geometry definition, with a spatial reference
 Set pField = New Field
 Set pFieldEdit = pField
 pFieldEdit.Name = "Shape"
 pFieldEdit.Type = esriFieldTypeGeometry

 Dim pGeomDef As IGeometryDef
 Dim pGeomDefEdit As IGeometryDefEdit
 Set pGeomDef = New GeometryDef
 Set pGeomDefEdit = pGeomDef
 With pGeomDefEdit
 .GeometryType = esriGeometryPoint
 Set .SpatialReference = New UnknownCoordinateSystem
 End With
 Set pFieldEdit.GeometryDef = pGeomDef
 pFieldsEdit.AddField pField

 ' Add sndcl-id field
 Set pField = New Field
 Set pFieldEdit = pField

 312

 With pFieldEdit
 .Length = 20
 .Name = "sndcl-id"
 .Type = esriFieldTypeDouble
 End With
 pFieldsEdit.AddField pField

 ' Add x field
 Set pField = New Field
 Set pFieldEdit = pField
 With pFieldEdit
 .Length = 19
 .Name = "x"
 .Type = esriFieldTypeDouble
 .Precision = 18
 .Scale = 11
 End With
 pFieldsEdit.AddField pField

 ' Add y field
 Set pField = New Field
 Set pFieldEdit = pField
 With pFieldEdit
 .Length = 19
 .Name = "y"
 .Type = esriFieldTypeDouble
 .Precision = 18
 .Scale = 11
 End With
 pFieldsEdit.AddField pField

 ' Create the shapefile
 ' (some parameters apply to geodatabase options and can be defaulted as Nothing)
 Dim pFeatClass As IFeatureClass
 Set pFeatClass = pFWS.CreateFeatureClass(sName, pFields, Nothing, _
 Nothing, esriFTSimple, "Shape", "")

 Set CreateShapefile = pFeatClass

 'cleanup
 Set pFWS = Nothing
 Set pWorkspaceFactory = Nothing
 Set pFields = Nothing
 Set pFieldsEdit = Nothing
 Set pField = Nothing
 Set pFieldEdit = Nothing
 Set pGeomDef = Nothing
 Set pGeomDefEdit = Nothing

End Function

'**

'Route AddPoints which takes the rows in the textfile (csv) and puts them into the *
'shapefile which will be used as the stops for the routes. *

 313

'**

Public Function AddPoints(textFile As File, pFeatClass As IFeatureClass, bVal As Boolean)

 Dim pFC As IFeatureCursor
 Dim pFB As IFeatureBuffer
 Dim pFieldsNew As IFields

 'Get an insert cursor and a feature buffer
 Set pFC = pFeatClass.Insert(True)
 Set pFB = pFeatClass.CreateFeatureBuffer
 Set pFieldsNew = pFB.Fields

 'Get the column index in the table for sndcl-id, x, y
 Dim indSndclid As Long
 Dim indX As Long
 Dim indY As Long
 indSndclid = pFieldsNew.FindField("sndcl-id")
 indX = pFieldsNew.FindField("X")
 indY = pFieldsNew.FindField("Y")

 'Open the textfile for reading
 Dim fs As FileSystemObject
 Set fs = CreateObject("Scripting.FileSystemObject")
 Dim theStream As TextStream
 Set theStream = fs.OpenTextFile(textFile.Path, ForReading)

 Dim theLine As String
 Dim sndclid As Double
 Dim thePosition As Integer
 Dim sx As String
 Dim sy As String
 Dim tempLine As String

 Dim pPoint As IPoint
 Dim pGeom As IGeometry

 'Read through the file and populate the shapefile with the points and id's
 Do While Not theStream.AtEndOfStream
 theLine = theStream.ReadLine
 sndclid = Val(theLine)
 thePosition = InStr(theLine, ",")
 tempLine = Right(theLine, Len(theLine) - thePosition)
 sx = Val(tempLine)
 thePosition = InStr(tempLine, ",")
 tempLine = Right(tempLine, Len(tempLine) - thePosition)
 sy = Val(tempLine)
 Set pPoint = New Point
 pPoint.x = sx
 pPoint.y = sy
 Set pGeom = pPoint
 Set pFB.Shape = pGeom

 pFB.Value(indX) = sx
 pFB.Value(indY) = sy

 314

 pFB.Value(indSndclid) = sndclid

 pFC.InsertFeature pFB
 pFC.Flush
 Loop

 pFC.Flush

 'cleanup
 Set pFC = Nothing
 Set pFB = Nothing
 Set pFieldsNew = Nothing
 Set fs = Nothing
 Set theStream = Nothing
 Set pPoint = Nothing
 Set pGeom = Nothing

End Function

'***
' Create NASolver and NAContext
'***
Public Function CreateSolverContext(pNetDataset As INetworkDataset) As INAContext
 'Get the Data Element
 Dim pDENDS As IDENetworkDataset
 Set pDENDS = GetDENetworkDataset(pNetDataset)

 Dim pNASolver As INASolver
 Dim pContextEdit As INAContextEdit
 Set pNASolver = New esriNetworkAnalyst.NARouteSolver
 Set pContextEdit = pNASolver.CreateContext(pDENDS, "Route")
 pContextEdit.Bind pNetDataset, New GPMessages

 Set CreateSolverContext = pContextEdit

 'cleanup
 Set pDENDS = Nothing
 Set pNASolver = Nothing
 Set pContextEdit = Nothing

End Function

Public Sub LoadNANetworkLocations(ByRef pContext As INAContext, _
 ByVal strNAClassName As String, _
 ByVal pInputFC As IFeatureClass, _
 ByVal SnapTolerance As Double)

 Dim pNAClass As INAClass
 Dim pClasses As INamedSet
 Set pClasses = pContext.NAClasses
 Set pNAClass = pClasses.ItemByName(strNAClassName)

 ' delete existing Locations except if that a barriers
 pNAClass.DeleteAllRows

 ' Create a NAClassLoader and set the snap tolerance (meters unit)

 315

 Dim pLoader As INAClassLoader
 Set pLoader = New NAClassLoader
 Set pLoader.Locator = pContext.Locator
 If SnapTolerance > 0 Then pLoader.Locator.SnapTolerance = SnapTolerance
 Set pLoader.NAClass = pNAClass

 'Create field map to automatically map fields from input class to naclass
 Dim pFieldMap As INAClassFieldMap
 Set pFieldMap = New NAClassFieldMap
 pFieldMap.CreateMapping pNAClass.ClassDefinition, pInputFC.Fields
 Set pLoader.FieldMap = pFieldMap

 'Load Network Locations
 Dim rowsIn As Long
 Dim rowsLocated As Long
 pLoader.Load pInputFC.Search(Nothing, True), Nothing, rowsIn, rowsLocated

 'cleanup
 Set pNAClass = Nothing
 Set pClasses = Nothing
 Set pLoader = Nothing
 Set pFieldMap = Nothing

End Sub

'**

' Get GetDENetworkDataset fom NetworkDataSet
'
**

Public Function GetDENetworkDataset(pNetDataset As INetworkDataset) As IDENetworkDataset
 'QI from the Network Dataset to the DatasetComponent
 Dim pDSComponent As IDatasetComponent
 Set pDSComponent = pNetDataset

 'Get the Data Element
 Set GetDENetworkDataset = pDSComponent.DataElement

 'cleanup
 Set pDSComponent = Nothing

End Function
'***
' Set Route Solver Settings
'***
Public Sub SetSolverSettings(ByRef pContext As INAContext, _
 ByVal sImpedanceName As String, _
 ByVal bOneWay As Boolean, _
 ByVal bUseHierarchy As Boolean)

 'Set Route specific Settings
 Dim pSolver As INASolver
 Set pSolver = pContext.Solver

 Dim pRteSolver As INARouteSolver

 316

 Set pRteSolver = pSolver

 pRteSolver.OutputLines = esriNAOutputLineTrueShapeWithMeasure
 pRteSolver.CreateTraversalResult = True
 pRteSolver.UseTimeWindows = False
 pRteSolver.FindBestSequence = False
 pRteSolver.PreserveFirstStop = False
 pRteSolver.PreserveLastStop = False

 'Set generic Solver settings
 ' set the impedance attribute
 Dim pSolverSettings As INASolverSettings
 Set pSolverSettings = pSolver
 pSolverSettings.ImpedanceAttributeName = sImpedanceName

 ' Set the OneWay Restriction if necessary
 Dim restrictions As IStringArray
 Set restrictions = pSolverSettings.RestrictionAttributeNames
 restrictions.RemoveAll
 If bOneWay Then
 restrictions.Add "oneway"
 End If
 Set pSolverSettings.RestrictionAttributeNames = restrictions

 'Restrict UTurns
 pSolverSettings.RestrictUTurns = esriNFSBNoBacktrack

 ' Set the Hierachy attribute
 pSolverSettings.UseHierarchy = bUseHierarchy
 If bUseHierarchy Then
 pSolverSettings.HierarchyAttributeName = "hierarchy"
 pSolverSettings.HierarchyLevelCount = 3
 pSolverSettings.MaxValueForHierarchy(1) = 1
 pSolverSettings.NumTransitionToHierarchy(1) = 9

 pSolverSettings.MaxValueForHierarchy(2) = 2
 pSolverSettings.NumTransitionToHierarchy(2) = 9
 End If

 ' Do not forget to update the context after you set your impedance
 pSolver.UpdateContext pContext, GetDENetworkDataset(pContext.NetworkDataset), New
GPMessages

 ' Update the StreetDirectionAgent context
 Dim pNAAgent As INAAgent
 Set pNAAgent = pContext.Agents.ItemByName("StreetDirectionsAgent")
 pNAAgent.OnContextUpdated

 'cleanup
 Set pSolver = Nothing
 Set pRteSolver = Nothing
 Set pSolverSettings = Nothing
 Set restrictions = Nothing
 Set pNAAgent = Nothing

End Sub

 317

'***
' Solve the problem
'***
Public Function Solve(ByVal pNAContext As INAContext, ByVal pGPMessages As IGPMessages)
As String
On Error GoTo FAIL

 'Solving the Problem
 Solve = "Error when solving"
 Dim IsPartialSolution As Boolean
 IsPartialSolution = pNAContext.Solver.Solve(pNAContext, pGPMessages, Nothing)

 If IsPartialSolution = False Then
 Solve = "OK"
 Else
 Solve = "Partial Solution"
 End If

 Exit Function
FAIL:

 If Err.Number Then
 Solve = Solve + " Error # " + Str(Err.Number) + " Description " + Err.Description
 End If
End Function

'**

'Populate output file containing nodes visited in route for an agent *
'**

Public Sub NodesVisited(ByVal pJL As IFeatureLayer, outPath As String, outFile As String,
pStopsFC As IFeatureClass)

 'Create a new shapefile to put nodes into
 Dim pOutputFeatureClass As IFeatureClass
 Set pOutputFeatureClass = CreateShapefilePaths(outPath, outFile & "path")

 'Set up file for output
 Dim pOutputFC As IFeatureCursor
 Dim pOutputFB As IFeatureBuffer
 Dim pOutputFields As IFields

 'Get an insert cursor and a feature buffer
 Set pOutputFC = pOutputFeatureClass.Insert(True)
 Set pOutputFB = pOutputFeatureClass.CreateFeatureBuffer
 Set pOutputFields = pOutputFB.Fields

 'Get the column index for the Output table for sndcl-id, x, y, step, path number,arc_
 Dim idxOutputSndclid As Long
 Dim idxarcid As Long
 Dim idxOutputX As Long
 Dim idxOutputY As Long
 Dim idxOutputPath As Long
 Dim idxOutputStep As Long

 318

 idxOutputSndclid = pOutputFields.FindField("sndcl-id")
 idxarcid = pOutputFields.FindField("arc_")
 idxOutputX = pOutputFields.FindField("X")
 idxOutputY = pOutputFields.FindField("Y")
 idxOutputPath = pOutputFields.FindField("path_num")
 idxOutputStep = pOutputFields.FindField("step")

 'Create a featurecursor with the records from our Original stops
 Dim pStopsFeatureCursor As IFeatureCursor
 Set pStopsFeatureCursor = pStopsFC.Search(Nothing, False)
 Dim pStopFeature As IFeature
 Set pStopFeature = pStopsFeatureCursor.NextFeature

 'Get the column index for the Original stops
 Dim idxStopsSndclid As Long
 Dim idxStopsX As Long
 Dim idxStopsY As Long
 idxStopsSndclid = pStopsFC.FindField("sndcl-id")
 idxStopsX = pStopsFC.FindField("x")
 idxStopsY = pStopsFC.FindField("y")

 'Get the first layer in the mapcontrol which should be our junctions
 Dim pJunctionsLayer As ILayer
 Set pJunctionsLayer = pJL
 'Get the Junctions featureclass
 Dim pJunctionsFeatureLayer As IFeatureLayer
 Set pJunctionsFeatureLayer = pJunctionsLayer
 Dim pJunctionsFeatureClass As IFeatureClass
 Set pJunctionsFeatureClass = pJunctionsFeatureLayer.FeatureClass

 'Create a featurecursor with the records from our junctions
 Dim pJunctionFeatureCursor As IFeatureCursor
 Dim pJunctionFeature As IFeature

 'Get the column index for the Junctions file
 Dim pTable As ITable
 Dim pDisplayTable As IDisplayTable
 Set pDisplayTable = pJL
 Set pTable = pDisplayTable.DisplayTable
 Set pJunctionFeatureCursor = pTable.Search(Nothing, False)
 Set pJunctionFeature = pJunctionFeatureCursor.NextFeature

 Dim idxSourceID As Long
 Dim idxSourceOID As Long
 Dim idxArcVal As Long
 idxSourceID = pJunctionFeatureCursor.FindField("Junctions.SourceID")
 idxSourceOID = pJunctionFeatureCursor.FindField("Junctions.SourceOID")
 idxArcVal = pJunctionFeatureCursor.FindField("strnodes_astrnodes.Arc_")

 'Other Variables needed to populate the output
 Dim pPoint As IPoint
 Dim pGeom As IGeometry
 Dim pathnum As Integer
 Dim counter As Integer
 pathnum = 1

 319

 Do While Not pJunctionFeature Is Nothing
 Set pPoint = New Point
 If pJunctionFeature.Value(idxSourceID) = 5 Then
 pOutputFB.Value(idxOutputPath) = pathnum
 pathnum = pJunctionFeature.Value(idxSourceOID)
 pOutputFB.Value(idxOutputSndclid) = pStopFeature.Value(idxStopsSndclid)
 Set pStopFeature = pStopsFeatureCursor.NextFeature
 ElseIf pJunctionFeature.Value(idxSourceID) = 2 Then
 pOutputFB.Value(idxOutputSndclid) = pJunctionFeature.Value(idxSourceOID)
 pOutputFB.Value(idxOutputPath) = pathnum
 End If
 pOutputFB.Value(idxOutputStep) = counter
 Set pPoint = pJunctionFeature.Shape
 Set pOutputFB.Shape = pJunctionFeature.Shape
 pOutputFB.Value(idxOutputX) = pPoint.x
 pOutputFB.Value(idxOutputY) = pPoint.y
 pOutputFB.Value(idxarcid) = pJunctionFeature.Value(idxArcVal)
 pOutputFC.InsertFeature pOutputFB
 pOutputFC.Flush
 Set pJunctionFeature = pJunctionFeatureCursor.NextFeature
 counter = counter + 1
 Loop

 'cleanup
 Set pOutputFeatureClass = Nothing
 Set pOutputFC = Nothing
 Set pOutputFB = Nothing
 Set pOutputFields = Nothing
 Set pStopsFeatureCursor = Nothing
 Set pStopFeature = Nothing
 Set pJunctionsLayer = Nothing
 Set pJunctionsFeatureLayer = Nothing
 Set pJunctionsFeatureClass = Nothing
 Set pJunctionFeatureCursor = Nothing
 Set pJunctionFeature = Nothing
 Set pPoint = Nothing
 Set pGeom = Nothing
 Set pTable = Nothing
 Set pDisplayTable = Nothing

End Sub

'**

'Create the shapefile that will contain the nodes that were visited for a particular agent *
'**

Public Function CreateShapefilePaths(sPath As String, sName As String) As IFeatureClass ' Dont
include .shp extension

 ' Open the folder to contain the shapefile as a workspace
 Dim pFWS As IFeatureWorkspace
 Dim pWorkspaceFactory As IWorkspaceFactory
 Set pWorkspaceFactory = New ShapefileWorkspaceFactory
 Set pFWS = pWorkspaceFactory.OpenFromFile(sPath, 0)

 320

 ' Set up a simple fields collection
 Dim pFields As IFields
 Dim pFieldsEdit As IFieldsEdit
 Set pFields = New Fields
 Set pFieldsEdit = pFields

 Dim pField As IField
 Dim pFieldEdit As IFieldEdit

 ' Make the shape field
 ' it will need a geometry definition, with a spatial reference
 Dim pSpatRef As ISpatialReference2
 Set pSpatRef = frmAgentPaths.MapControl1.SpatialReference

 Set pField = New Field
 Set pFieldEdit = pField
 pFieldEdit.Name = "Shape"
 pFieldEdit.Type = esriFieldTypeGeometry

 Dim pGeomDef As IGeometryDef
 Dim pGeomDefEdit As IGeometryDefEdit
 Set pGeomDef = New GeometryDef
 Set pGeomDefEdit = pGeomDef
 With pGeomDefEdit
 .GeometryType = esriGeometryPoint
 Set .SpatialReference = pSpatRef
 End With
 Set pFieldEdit.GeometryDef = pGeomDef
 pFieldsEdit.AddField pField

 ' Add sndcl-id field
 Set pField = New Field
 Set pFieldEdit = pField
 With pFieldEdit
 .Length = 20
 .Name = "sndcl-id"
 .Type = esriFieldTypeDouble
 End With
 pFieldsEdit.AddField pField

 ' Add arc_ field
 Set pField = New Field
 Set pFieldEdit = pField
 With pFieldEdit
 .Length = 20
 .Name = "arc_"
 .Type = esriFieldTypeDouble
 End With
 pFieldsEdit.AddField pField

 ' Add step field
 Set pField = New Field
 Set pFieldEdit = pField
 With pFieldEdit
 .Length = 4
 .Name = "step"

 321

 .Type = esriFieldTypeInteger
 End With
 pFieldsEdit.AddField pField

 ' Add path number field
 Set pField = New Field
 Set pFieldEdit = pField
 With pFieldEdit
 .Length = 2
 .Name = "path_num"
 .Type = esriFieldTypeInteger
 End With
 pFieldsEdit.AddField pField

 ' Add x field
 Set pField = New Field
 Set pFieldEdit = pField
 With pFieldEdit
 .Length = 19
 .Name = "X"
 .Type = esriFieldTypeDouble
 .Precision = 18
 .Scale = 11
 End With
 pFieldsEdit.AddField pField

 ' Add y field
 Set pField = New Field
 Set pFieldEdit = pField
 With pFieldEdit
 .Length = 19
 .Name = "Y"
 .Type = esriFieldTypeDouble
 .Precision = 18
 .Scale = 11
 End With
 pFieldsEdit.AddField pField

 ' Create the shapefile
 ' (some parameters apply to geodatabase options and can be defaulted as Nothing)
 Dim pFeatClass As IFeatureClass
 Set pFeatClass = pFWS.CreateFeatureClass(sName, pFields, Nothing, _
 Nothing, esriFTSimple, "Shape", "")

 Set CreateShapefilePaths = pFeatClass

 'cleanup
 Set pFWS = Nothing
 Set pWorkspaceFactory = Nothing
 Set pFields = Nothing
 Set pFieldsEdit = Nothing
 Set pField = Nothing
 Set pFieldEdit = Nothing
 Set pGeomDef = Nothing
 Set pGeomDefEdit = Nothing

 322

End Function

Public Sub RelQryTabExample(ByVal pL As IFeatureLayer, ByVal pFCls As IFeatureClass,
strFClsFld As String, ByVal pFCls2 As IFeatureClass, strFCls2Fld As String)

 ' ++ Create the MemoryRelationshipClass that defines what is to be joined
 Dim pMemRelClassFact As IMemoryRelationshipClassFactory
 Set pMemRelClassFact = New MemoryRelationshipClassFactory
 Dim pRelClass As IRelationshipClass
 Set pRelClass = pMemRelClassFact.Open("Juntions_join", pFCls2, _
 strFCls2Fld, pFCls, strFClsFld, "forward", "backward", esriRelCardinalityOneToMany)

 ' ++ Perform the join
 Dim pRelQueryTableFact As IRelQueryTableFactory
 Dim pRelQueryTab As ITable
 Set pRelQueryTableFact = New RelQueryTableFactory

 'Set pRelQueryTab = pRelQueryTableFact.Open(pRelClass, True, Nothing, Nothing, "", True, True)

 Dim pDRC As IDisplayRelationshipClass
 Set pDRC = pL
 pDRC.DisplayRelationshipClass pRelClass, esriLeftInnerJoin

End Sub

 323

Bibliography

Aitken, S. C., Cutter, S. L., Foote, K. E., & Sell, J. L. (1989). Environmental
Perception and Behavioral Geography. In Wilmott & Gaile (Eds.), Geography
in America (pp. 218-238).

Akers, R. L. (2000). Criminological Theories: Introduction, Evaluation, and
Application. Los Angeles: Roxbury Publishing Company.

Albrecht, J. (2005). A New Age for Geosimulation. Transactions in GIS, 9(4), 451-
454.

Albrecht, J. (Forthcoming). Dynamic GIS. In J. P. Wilson & A. S. Fotheringham
(Eds.), Handbook of GIScience.

An, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. (2005). Exploring Complexity
in a Human-Environment System: An Agent-Based Spatial Model for
Multidisciplinary and Multiscale Integration. Annals of the Association of
American Geographers, 95(1), 54-79.

Axelrod, R. (Forthcoming). Advancing the Art of Simulation in the Social Sciences.
In J.-P. Rennard (Ed.), Handbook of Research on Nature Inspired Computing
for Economy and Management. Hershey, PA: Idea Group.

Axtell, R. (2000). Why Agents? On the Varied Motivations for Agent Computing in
the Social Sciences. The Brookings Institution. Retrieved 11/5/2004, 2004,
from the World Wide Web:
http://www.brook.edu/es/dynamics/papers/agents/agents.pdf

Bailey, T. C., & Gatrell, A. C. (1995). Interactive Spatial Data Analysis. Essex:
Longman Group Limited.

Bonabeau, E. (2002). Agent-based modeling: Methods and Techniques for
Simulating Human Systems. Paper presented at the Arthur M. Sackler
Colloquium of the National Academy of Sciences, Irvine, CA.

Braga, A. A. (2001). The Effects of Hot Spots Policing on Crime. Annals of the
American Academy, 578, 104-125.

Brantingham, P., & Brantingham, P. (1981a). Introduction: The Dimensions of
Crime. In P. Brantingham & P. Brantingham (Eds.), Environmental
Criminology (pp. 7-26). Prospect Heights, IL: Waveland Press, Inc.

Brantingham, P., & Brantingham, P. (1981b). Notes on the Geometry of Crime. In P.
Brantingham & P. Brantingham (Eds.), Environmental Criminology (pp. 27-
54). Prospect Heights, IL: Waveland Press, Inc.

Brantingham, P., & Brantingham, P. (1991). Introduction to the 1991 Reissue: Notes
on Environmental Criminology. In P. Brantingham & P. Brantingham (Eds.),
Environmental Criminology (pp. 1-6). Prospect Heights: Waveland Press Inc.

Brantingham, P., & Brantingham, P. (1991 [1981]). Environmental Criminology.
Prospect Heights, IL: Waveland Press, Inc.

Brantingham, P., & Brantingham, P. (1993). Nodes, Paths and Edges: Considerations
on the Complexity of Crime and the Physical Environment. Journal of
Environmental Psychology, 13, 3-28.

 324

http://www.brook.edu/es/dynamics/papers/agents/agents.pdf

Brantingham, P. J., & Brantingham, P. L. (1978). A Theoretical Model of Crime Site
Selection. In M. D. Krohn & R. L. Akers (Eds.), Crime, Law, and Sanctions:
Theoretical Perspectives (pp. 105-118). Beverly Hills: Sage.

Brantingham, P. L., & Brantingham, P. J. (1999). Theoretical Model of Crime Hot
Spot Generation. Studies on Crime and Crime Prevention, 8(1), 7-26.

Brantingham, P. L., & Brantingham, P. J. (2003). Computer Simulation as a Tool for
Environmental Criminologists. Paper presented at the presented at 11th
International Symposium on Environmental Criminology and Crime Analysis,
University of Cincinnati.

Brantingham, P. L., & Brantingham, P. J. (2004). Computer Simulation as a Tool for
Environmental Criminologists. Security Journal, 17(1), 21-30.

Brantingham, P. L., & Groff, E. R. (2004). The Future of Agent-Based Simulation in
Environmental Criminology. Paper presented at the American Society of
Criminology, Nashville, TN.

Brown, D. G., Riolo, R., Robinson, D. T., North, M., & Rand, W. (2005). Spatial
Process and Data Models: Toward Integration of Agent-Based Models and
GIS. Journal of Geographic Systems, 7, 25-47.

Bureau of Labor Statistics. (2003). Metropolitan Area Employment and
Unemployment: January 2003. Bureau of Labor Statistics, United States
Department of Labor. Retrieved, 2006, from the World Wide Web:
www.bls.gov/news.release/archives/metro_03262003.pdf

Bursik, R. J. J., & Grasmick, H. G. (1993). Neighborhoods and Crime: The
Dimensions of Effective Community Control. New York, NY Lexington
Books.

Calthrope, P. (1993). The Next American Metropolis: Ecology, Community and the
American Dream. New York: Princeton Architectural Press.

Capone, D. L., & Nichols, W. W. (1976). Urban Structure and Criminal Mobility.
American Behavioral Scientist, 20, 199-213.

Carley, K. M. (1996). Validating Computational Models. Pittsburgh, PA: Carnegie
Mellon University.

Carlstein, T., & Thrift, N. J. (1978). Afterword: Towards a Time-Space Structured
Approach to Society and Environment. In T. Carlstein & D. Parkes & N. J.
Thrift (Eds.), Human Activity and Time Geography (pp. 225-263). New York:
Halsted Press.

Chaitin, G. (1990). Information, Randomness and Incompleteness (Second ed.).
World Scientific: Singapore.

Chen, B., Cunningham, A., Ewing, R., Peralta, R., & Visser, E. (1994). Two-
Dimensional Modeling of Microscale Transport and Biotransformation in
Porous Media. Numerical Methods for Partial Differential Equations, 10(1),
65-83.

Chorley, R. J., & Haggett, P. (Eds.). (1967). Models in Geography. London: Methuen
& Co.

Clarke, R. V. (1983). Situational Crime Prevention: Its Theoretical Basis and
Practical Scope. In M. Tonry & N. Morris (Eds.), Crime and Justice: An
Annual Review of Research (Vol. 14). Chicago: University of Chicago Press.

 325

http://www.bls.gov/news.release/archives/metro_03262003.pdf

Clarke, R. V., & Cornish, D. B. (1985). Modeling Offender's Decisions: A
Framework for Research and Policy. In M. Tonry & N. Morris (Eds.), Crime
and Justice: An Annual Review of Research, Volume 6. Chicago: University
of Chicago Press.

Clarke, R. V., & Cornish, D. B. (2001). Rational Choice. In R. Paternoster & R.
Bachman (Eds.), Explaining Criminals and Crime (pp. 23-42). Los Angeles:
Roxbury Publishing Co.

Cohen, L. E. (1981). Modeling Crime Trends: A Criminal Opportunity Perspective.
Journal of Research in Crime and Delinquency, 18, 138-163.

Cohen, L. E., & Felson, M. (1979). Social Change and Crime Rate Trends: A
Routine Activity Approach. American Sociological Review, 44, 588-608.

Cohen, L. E., Kluegel, J. R., & Land, K. C. (1981). Social Inequality and Predatory
Criminal Victimization: An Exposition and Test of a Formal Theory.
American Sociological Review, 46, 505-524.

Cornish, D. B., & Clarke, R. V. (1986). Introduction. In D. B. Cornish & R. V. Clarke
(Eds.), The Reasoning Criminal: Rational Choice Perspectives on Offending
(pp. 1-13). New York: Springer-Verlag.

Costanzo, C. M., Halperin, W. C., & Gale, N. (1986). Criminal Mobility and the
Directional Component in Journeys to Crime. In R. M. Figlio & S. Hakim &
G. F. Rengert (Eds.), Metropolitan Crime Patterns (pp. 73-95). Monsey, NY:
Criminal Justice Press.

Cullen, F. T., & Agnew, R. (Eds.). (1999). Criminological Theory: Past to Present.
Los Angeles, CA: Roxbury Publishing Company.

Deadman, D., & MacDonald, Z. (2004). Offenders as Victims of Crime?: An
Investigation into the Relationship between Criminal Behaviour and
Victimization. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 167(1), 53.

Dibble, C. (2001). Theory in a Complex World: GeoGraph Computational
Laboratories. Unpublished PhD Dissertation, University of California Santa
Barbara, Santa Barbara.

Dibble, C. (2003). Theory in a Complex World: GeoGraph Computational
Laboratories. submitted Nystrom 2003.

Dibble, C. (2006). Computational Laboratories for Spatial Agent-Based Models. In L.
Tesfatsion & K. L. Judd (Eds.), Handbook of Computational Economics, Vol
2: Agent-Based Computational Economics (Vol. 2). Amsterdam: Elsevier.

Dowling, D. (1999). Experimenting on Theories. Science in Context, 12(2), 261-273.
Duaney, A., & Plater-Zyberk, E. (1993). The Neighborhood, the District and the

Corridor. In P. Katz (Ed.), The New Urbanism: Toward an Architecture of
Community. New York: McGraw-Hill.

Eck, J. (2005). Using Crime Pattern Simulations to Elaborate Theory. Paper
presented at the American Society of Criminology, Toronto.

Eck, J. E. (1995a). Examining Routine Activity Theory: A Review of Two Books.
Justice Quarterly, 12(4), 783-797.

Eck, J. E. (1995b). A General Model of the Geography of Illicit Retail Marketplaces.
In J. E. Eck & L. Weisburd David (Eds.), Crime and Place (pp. 67-93).
Monsey, NY: Willow Tree Press.

 326

Eck, J. E., & Liu, L. (2004). Routine Activity Theory in a RA/CA Crime Simulation.
Paper presented at the American Society of Criminology, Nashville, TN.

Eck, J. E., & Weisburd, D. L. (1995). Crime Places in Crime Theory. In J. E. Eck &
L. Weisburd David (Eds.), Crime and Place (pp. 1-33). Monsey, NY: Willow
Tree Press.

Engel-Frisch, G. (1943). Some Neglected Temporal Aspects of Human Ecology.
Social Forces, 22(1/4), 43-47.

Epstein, J. M., & Axtell, R. (1996). Growing Artificial Societies. Washington DC:
Brookings Institution Press.

Epstein, J. M., Steinbruner, J. D., & Parker, M. T. (2001). Modeling Civil Violence:
An Agent-Based Computational Approach (Working Paper). Washington DC:
Center on Social and Economic Dynamics, Brookings Institution.

ESRI. (2003). Business Location Data. Redlands, CA: Environmental Systems
Research Institute.

ESRI. (2005). ArcGIS 9.1. Redlands, CA: Environmental Systems Research Institute.
Feeney, F. (1986). Robbers as Decision-Makers. In D. B. Cornish & R. V. Clarke

(Eds.), The Reasoning Criminal: Rational Choice Perspectives on Offending
(pp. 53-71). New York: Springer-Verlag.

Felson, M. (1986a). Linking Criminal Choices, Routine Activities, Informal Control,
and Criminal Outcomes. In D. B. Cornish & R. V. Clarke (Eds.), The
Reasoning Criminal: Rational Choice Perspectives on Offending (pp. 119-
128). New York: Springer-Verlag.

Felson, M. (1986b). Predicting Crime Potential at Any Point on the City Map. In R.
M. Figlio & S. Hakim & G. F. Rengert (Eds.), Metropolitan Crime Patterns
(pp. 127-136). Monsey, NY: Criminal Justice Press.

Felson, M. (1987). Routine Activities and Crime Prevention in the Developing
Metropolis. Criminology, 25(4), 911-931.

Felson, M. (2001). The Routine Activity Approach: A Very Versatile Theory of
Crime. In R. Paternoster & R. Bachman (Eds.), Explaining Criminals and
Crime (pp. 43-46). Los Angeles: Roxbury Publishing Co.

Felson, M. (2002). Crime in Everyday Life (Third Edition ed.). Thousand Oaks, CA:
Sage.

Gilbert, N., & Doran, J. (Eds.). (1994). Simulating Societies: The Computer
Simulation of Social Phenomena. London: University College London Press.

Gilbert, N., & Terna, P. (1999). How to Build and Use Agent-based Models in Social
Science. Discussion Paper. Retrieved 9-30-2003, 2003, from the World Wide
Web: http://web.econ.unito.it/terna/deposito/gil_ter.pdf

Gilbert, N., & Troitzsch, K. G. (1999). Simulation for the Social Scientist.
Buckingham: Open University Press.

Gimblett, H. R. (Ed.). (2002). Integrating Geographic Information Systems and
Agent-based Modeling Techniques for Simulating Social and Ecological
Processes. Oxford: Oxford University Press.

Gold, J. R. (1980). An Introduction to Behavioural Geography. New York: Oxford
University Press.

Golledge, R., & Stimson, R. J. (1997). Spatial Behavior: A Geographical
Perspective. New York: Guilford Press.

 327

http://web.econ.unito.it/terna/deposito/gil_ter.pdf

Golledge, R. G. (1978). Learning About Urban Environments. In T. Carlstein & D.
Parkes & N. J. Thrift (Eds.), Making Sense of Time (pp. 76-98). New York:
John Wiley & Sons.

Golledge, R. G. (1983). Models of Man, Points of View, and Theory in Social
Science. Geographical Analysis, 15(1), 57-60.

Golledge, R. G., & Timmermans, H. (1990). Applications of Behavioural Research
on Spatial Problems I: Cognition. Progress in Human Geography, 14, 57-99.

Gove, W. R., Hughes, M., & Geerken, M. (1985). Are Uniform Crime Reports a
Valid Indicator of the Index Crimes? An Affirmative Answer with Minor
Qualifications. Criminology, 23, 451-501.

Groff, E. R. (Forthcoming-a). Simulation for Theory Testing and Experimentation:
An Example Using Routine Activity Theory and Street Robbery. Journal of
Quantitative Criminology.

Groff, E. R. (Forthcoming-b). 'Situating' Simulation to Model Human Spatio-
Temporal Interactions: An Example Using Crime Events. Transactions in
GIS.

Groff, E. R. (Manuscript available from author). The Spatio-Temporal Aspects of
Routine Activities and Crime.

Groff, E. R., & McEwen, T. (2005). Disaggregating the Journey to Homicide. In F.
Wang (Ed.), Geographic Information Systems and Crime Analysis (pp. 60-
83). Hershey, PA: Idea Group.

Gunderson, L., & Brown, D. (2003). Using a Multi-Agent Model to Predict Both
Physical and Cyber Crime. Retrieved 11/12/03, 2003, from the World Wide
Web: http://vijis.sys.virginia.edu/publication/SMCMultiAgent.pdf

Hägerstrand, T. (1970). What about people in regional science? Papers of the
Regional Science Association, 24, 7-21.

Hägerstrand, T. (1973). The Domain of Human Geography. In R. J. Chorley (Ed.),
Directions in Geography (pp. 67-87). London: Methuen.

Hägerstrand, T. (1975). Space, Time, and Human Conditions. In A. Karlqvist & L.
Lundqvist & F. Snickars (Eds.), Dynamic Allocation of Urban Space (pp. 3-
14). Farnborough: Saxon House.

Harvey, D. (1969). Explanation in Geography. London: Edward Arnold Publishers.
Hawley, A. H. (1950). Human Ecology. New York: The Ronald Press Company.
Hindelang, M. J., Gottfredson, M. R., & Garofalo, J. (1978). Victims of Personal

Crime. Cambridge, MA: Ballinger.
Horton, F. E., & Reynolds, D. R. (1971). Action Space Differentials in Cities. In H.

McConnell & D. Yaseen (Eds.), Perspectives in Geography: Models of
Spatial Interaction (pp. 83-102). Dekab, IL: Northern Illinois University
Press.

Huisman, O., & Forer, P. (1998). Computational Agents and Urban Life Spaces: A
Preliminary Realization of the Time-Geography of Student Lifestyles. Paper
presented at the GeoComputation 98, Bristol, UK.

Huisman, O., Forer, P., & Albrecht, J. (1997). A Geometric Model of Urban
Accessibility. Paper presented at the 25th Annual Conference of the Australian
Urban and Regional Information Systems Association, Christchurch, New
Zealand.

 328

http://vijis.sys.virginia.edu/publication/SMCMultiAgent.pdf

Katzman, M. T. (1981). The Supply of Criminals: A Geo-Economic Examination. In
S. Hakim & G. F. Rengert (Eds.), Crime Spillover. Beverly Hills, CA: Sage.

Kennedy, L. W., & Forde, D. R. (1990). Routine Activities and Crime: An Analysis
of Victimization in Canada. Criminology, 28(1), 137-151.

Kerlinger, F. N., & Lee, H. B. (2000). Foundations of Behavioral Research (Fourth
ed.). US: Wadsworth.

Kwan, M.-P. (1998). Space-time and Intregral Measures of Individual Accessibility:
A Comparative Analysis Using a Point-based Framework. Geographical
Analysis, 30, 191-216.

Kwan, M.-P., & Lee, J. (2004). Geovisualization of Human Activity Patterns Using
3D GIS: A Time-Geographic Approach. In M. F. Goodchild & D. G. Janelle
(Eds.), Spatially Integrated Social Science (pp. 48-66). New York: Oxford
University Press.

Lempert, R. (2002). Agent-based Modeling as Organizational and Public Policy
Simulators. Paper presented at the Arthur M. Sackler Colloquium of the
National Academy of Sciences, Irvine, CA.

Lenntorp, B. (1978). A Time-Geographic Simulation Model of Individual Activity
Programmes. In T. Carlstein & D. Parkes & N. J. Thrift (Eds.), Human
Geography and Time Geography (pp. 162-199). New York: Halsted Press.

Levine, N. (2005). CrimeStat: A Spatial Statistics Program for the Analysis of Crime
Incident Locations (v 3.0). Washington DC: Ned Levine & Associates,
Houston, TX, and the National Institute of Justice.

Liu, L., Wang, X., Eck, J., & Liang, J. (2005). Simulating Crime Events and Crime
Patterns in RA/CA Model. In F. Wang (Ed.), Geographic Information Systems
and Crime Analysis (pp. 197-213). Singapore: Idea Group.

Lynch, K. (1960). The Image of the City. Cambridge, MA: M.I.T. Press.
Macy, M. W., & Willer, R. (2002). From Factors to Actors: Computational

Sociology and Agent-Based Modeling. Annual Review of Sociology, 28, 143-
166.

Maguire, D. J., Batty, M., & Goodchild, M. F. (Eds.). (2005). GIS, Spatial Analysis,
and Modeling. Redlands, CA: ESRI Press.

Manson, S. M. (2001). Calibration, Verification, and Validation (Section 2.4). In D.
C. Parker & T. Berger & S. M. Manson & W. J. M. (mng. ed. (Eds.), Agent-
based Models of Land-use and Land-cover change:
http://www.csiss.org/resources/maslucc/ABM-LUCC.pdf (last accessed
March 14,2005).

McIver, J. P. (1981). Criminal Mobility: A Review of Empirical Studies. In S. Hakim
& G. F. Rengert (Eds.), Crime Spillover. Crime Spillover: Sage.

Meier, R. F., Kennedy, L. W., & Sacco, V. F. (2001). Crime and the Criminal Event
Perspective. In R. F. Meier & L. W. Kennedy & V. F. Sacco (Eds.), The
Process and Structure of Crime: Criminal Events and Crime Analysis (Vol. 9,
Advances in Criminological Theory, pp. 1-28). New Brunswick, NJ:
Transaction Publishers.

Messner, S. F., & Blau, J. R. (1987). Routine Leisure Activities and Rates of Crime:
A Macro-Level Analysis. Social-Forces, 65(4), 1035-1052.

 329

http://www.csiss.org/resources/maslucc/ABM-LUCC.pdf

Miethe, T. D., Hughes, M., & McDowall, D. (1991). Social Change and Crime Rates:
An Evaluation of Alternative Theoretical Approaches. Social Forces, 70(1),
165-185.

Miethe, T. D., & McDowall, D. (1993). Contextual Effects in Models of Criminal
Victimization. Social Forces, 71, 741-759.

Miethe, T. D., Stafford, M. C., & Long, J. S. (1987). Social Differentiation in
Criminal Victimization: A Test of Routine Activities/Lifestyle Theories.
American Sociological Review, 52(2), 184-194.

Miller, E. J., Hunt, J. D., Abraham, J. E., & Salvini, P. A. (2004). Microsimulating
Urban Systems. Computers, Environment and Urban Systems, 28(2004), 9-44.

Miller, E. J., Roorda, M. J., & Carrasoc, J. A. (2005). A Tour-based Model of Travel
Mode Choice. Transportation, 32, 399-422.

Miller, H. J. (1991). Modelling Accessibility Using Space-Time Prism Concepts
Within Geographical Information Systems. International Journal
Geographical Information Systems, 5(3), 287-301.

Miller, H. J. (2001). What About People in Geographic Information Science?
Retrieved, 2003, from the World Wide Web:
http://www.geog.utah.edu/%7Ehmiller/papers/what_about_people.pdf

Miller, H. J. (2005). A Measurement Theory for Time Geography. Geographical
Analysis, 37, 17-45.

Mitchell, A. (1999). The ESRI Guide to GIS Analysis (Vol. Volume 1: Geographic
Patterns & Relationships). Redlands, CA: Environmental Systems Research
Institute Press.

Moss, S., & Edmonds, B. (2005). Sociology and Simulation: Statistical and
Qualitative Cross-Validation. The American Journal of Sociology, 110(4),
1095-1131.

Nelessen, A. C. (1994). Visions for a New American Dream: Process, Principle and
an Ordinance to Plan and Design Small Communities. Chicago: Planners.

Newton, R. R., & Rudestam, K. E. (1999). Your Statistical Consultant: Answers to
Your Data Analysis Questions. Thousand Oaks: Sage.

North, M. J., Collier, N. T., & Vos, J. R. (2006). Experiences Creating Three
Implementations of the Repast Agent Modeling Toolkit. ACM Transactions
on Modeling and Computer Simulation, 16(1), 1-25.

Osgood, D. W., Wilson, J. K., O'Malley, P. M., Bachman, J. G., & Johnston, L. D.
(1996). Routine Activities and Individual Deviant Behavior. American
Sociological Review, 61, 635-655.

Ostrom, T. M. (1988). Computer Simulation: The Third Symbol System. Journal of
Experimental Psychology, 24, 381-392.

O'Sullivan, D. (2004a). Complexity Science and Human Geography. Transactions of
the Institute of British Geographers, 29, 282-295.

O'Sullivan, D. (2004b). Too Much of the Wrong Kind of Data: Implications for the
Practice of Micro-Scale Modeling. In M. F. Goodchild & D. G. Janelle (Eds.),
Spatially Integrated Social Science (pp. 95-107). New York: Oxford
University Press.

O'Sullivan, D., & Haklay, M. (2000). Agent-based Models and Individualism: Is the
World Agent-Based? Environment and Planning A, 32(8), 1409-1425.

 330

http://www.geog.utah.edu/%7Ehmiller/papers/what_about_people.pdf

Parker, D. C., Berger, T., & Manson, S. M. (2001). Agent-Based Models of Land-Use
/ Land-Cover Change in LUCC Report Series No. 6: LUCC Focus 1 Office
Anthropological Center for Training and Research on Global Environmental
Change, Indiana University.

Paternoster, R. (2001). The Structure and Relevance of Theory in Criminology. In R.
Paternoster & R. Bachman (Eds.), Explaining Criminals and Crime: Essays in
Contemporary Criminological Theory (pp. 1-10). Los Angeles, CA: Roxbury
Publishing Company.

Peuquet, D. J. (1994). It's About Time: A Conceptual Framework for the
Representation of Temporal Dynamics in Geographic Information Systems.
Annals of the Association of American Geographers, 84(3), 441-461.

Peuquet, D. J. (2002). Representations of Space and Time. New York: Guilford Press.
Popper, K. R. (1965). Normal Science and Its Dangers. In I. Lakatos & A. Musgrave

(Eds.), Criticism and the Growth of Knowledge (pp. 51-58). London:
Cambridge University Press.

Pred, A. (1967). Behavior and Location: Foundations for a Geographic and
Dynamic Location Theory, Part I. Gleerup: Lund.

Pred, A. (1996). The Choreography of Existence: Comments on Hagerstrand's Time-
Geography and Its Usefulness. Economic Geography, 53, 207-221.

Ratcliffe, J. H. (in press). A Temporal Constraint Theory to Explain Opportunity-
based Spatial Offending Patterns. Journal of Research in Crime and
Delinquency.

Rengert, G. (1988). The Locations of Facilities and Crime. Journal of Security of
Administration, 11(2), 12-16.

Rengert, G. F., Piquero, A. R., & Jones, P. R. (1999). Distance Decay Reexamined.
Criminology, 37(2), 427-445.

Ropella, G. E., Railsback, S. F., & Jackson, S. K. (2002). Software Engineering
Considerations for Individual-Based Models. Natural Resource Modeling,
15(1), 5-22.

Rountree, P. W., & Land, K. C. (1996). Burglary Victimization, Perceptions of Crime
Risk, and Routine Activities: A Multilevel Analysis Across Seattle
Neighborhoods. Journal of Research in Crime and Delinquency, 33(2), 147-
180.

Sampson, R., J., & Lauritsen, J. L. (1990). Deviant Lifestyles, Proximity To Crime,
and the Offender-Victim Link in Personal Violence. Journal of Research in
Crime and Delinquency, 27(2), 110-139.

Sampson, R. J. (1993). Linking Time and Place: Dynamic Contextualism and the
Future of Criminological Inquiry. Journal of Research in Crime and
Delinquency, 30(4), 426-444.

Sampson, R. J., & Wooldredge, J. (1987). Linking Micro and Macro Dimensions of
Victimization Models. Journal of Quantitative Criminology, 3(4), 371-393.

Schelling, T. C. (1971). Dynamic Models of Segregation. Journal of Mathematical
Sociology, 1, 143-186.

Schultz, R. L., & Sullivan, E. M. (1972). Developments in Simulation in Social and
Administrative Science. In H. Guetzkow & P. Kotler & R. L. Schultz (Eds.),

 331

Simulation in Social and Administrative Science: Overviews and Case-
Examples (pp. 3-47). Edgewood Cliffs, NJ: Prentice-Hall.

Shannon, D. M., & Davenport, M. A. (2001). Using SPSS to Solve Statistical
Problems: A Self-Instruction Guide. Upper Saddle River, NJ: Prentice-Hall
Inc.

Sherman, L., W., Gartin, P., & Buerger, M., E. (1989). Hot Spots of Predatory Crime:
Routine Activities and the Criminology of Place. Criminology, 27(1), 27-55.

Sherman, L., W., & Weisburd, D. (1995). General Deterrent Effects of Police Patrol
in Crime `Hot Spots': A Randomized, Controlled Trial. Justice Quarterly,
12(4), 625-648.

Simon, H. A. (1952). A Behavioural Model of Rational Choice. Quarterly Journal of
Economics, 69, 99-118.

Slavin, E. (1996). An Integrated, Dynamic Approach to Travel Demand Forecasting.
Transportation, 23(3), 313-350.

SPSS for Windows. (Version Release 11.5.0)(2002). Chicago: SPSS Inc.
Tesfatsion, L. (2001). Guest Editorial Agent-Based Modeling of Evolutionary

Economic Systems. Computation, 5(5), 437-441.
Thrift, N. J., & Bennett, R. R. (Eds.). (1978). Towards the Dynamic Analysis of

Spatial Systems. London: Pion Limited.
Thrift, N. J., & Pred, A. (1981). Time-Geography: A New Beginning. Progress in

Human Geography, 5(2), 277-286.
Timmermans, H., & Golledge, R. G. (1990). Applications of Behavioural Research

on Spatial Problems II: Preference and Choice. Progress in Human
Geography, 14, 311-354.

Troitzsch, K. G. (1998). Multilevel Process Modeling in the Social Sciences:
Mathematical Analysis and Computer Simulation. In W. B. G. Liebrand & A.
Nowak & R. Hegselmann (Eds.), Computer Modeling of Social Processes (pp.
20-36). London: Sage Publications.

Troitzsch, K. G. (2004). Validating Simulation Models. Paper presented at the 18th
European Simulation Multiconference, Magdeburg, Germany.

U.S. Census Bureau (Cartographer). (2000). Census 2000: Summary Tape File 1
(SF1)

U.S. Census Bureau. (2002). County Business Patterns. U.S. Census Bureau.
Retrieved, from the World Wide Web:
http://censtats.census.gov/cbpnaic/cbpnaic.shtml

Visher, C. A., & Roth, J. A. (1986). Participation in Criminal Careers. In A.
Blumstein & J. Cohen & J. A. Roth & C. A. Visher (Eds.), Criminal Careers
and "Career Criminals" (Vol. I, pp. 211-291). Washington DC: National
Academy Press.

Vold, G. B., Bernard, T. J., & Snipes, J. B. (2002). Theoretical Criminology. Oxford:
Oxford University Press.

Walmsley, D. J., & Lewis, G. J. (1993). People and Environment: Behavioral
Approaches in Human Geography. Essex: Longman Scientific & Technical.

Walsh, D. (1986). Victim Selection Procedures Among Economic Criminals: The
Rational Choice Perspective. In D. B. Cornish & R. V. Clarke (Eds.), The

 332

http://censtats.census.gov/cbpnaic/cbpnaic.shtml

Reasoning Criminal: Rational Choice Perspectives on Offending (pp. 39-52).
New York: Springer-Verlag.

Wang, X., Liu, L., & Eck, J. (2004). A Spatial Dynamic Simulation of Crime Using
Agent-based Modeling. Paper presented at the Association of American
Geographers, Philadelphia, PA.

Weber, J., & Kwan, M.-P. (2002). Bringing Time Back In: A study on the Influence
of Travel Time Variations and Facility Opening Hours on Individual
Accessibility. The Professional Geographer, 54, 226-240.

Weber, J., & Kwan, M.-P. (2003). Evaluating the Effects of Geographic Contexts on
Individual Accessibility: A Multlevel Approach. Urban Geography, 24(8),
647-671.

Weisburd, D., & Green, L. (1994). Defining the Drug Market: The Case of the Jersey
City DMA System. In D. L. MacKenzie & C. D. Uchida (Eds.), Drugs and
Crime: Evaluating Public Policy Initiatives. Newbury Park, CA: Sage.

Weisburd, D., Maher, L., & Sherman, L. (1992). Contrasting Crime General and
Crime Specific Theory: The Case of Hot Spots of Crime, Advances in
Criminological Theory (Vol. 4).

Weisburd, D. L. (2002). From Criminals to Criminal Contexts: Reorienting Crime
Prevention. In E. Waring & D. Weisburd (Eds.), Crime & Social Organization
(Vol. 10, pp. 197-216). New Brunswick, NJ: Transactions Publishers.

Weisburd, D. L., Bushway, S., Lum, C., & Yang, S.-M. (2004). Trajectories of Crime
at Places: A Longitudinal Study of Street Segments in the City of Seattle.
Criminology, 42(2), 283-321.

Weisburd, D. L., Lum, C., & Yang, S.-M. (2004). The Criminal Careers of Places: A
Longitudinal Study. Washington DC: US Department of Justice, National
Institute of Justice.

Wilhite, A. (2001). Protection and Social Order. Paper presented at the
Computational Economics and Finance Meeting, Yale University.

Williamson, D., Mclafferty, S., McGuire Philip, G., Ross, T. A., Mollenkopf, J. H.,
Goldsmith, V., & Quinn, S. (2001). Tools in the Spatial Analysis of Crime. In
A. Hirschfield & K. Bowers (Eds.), Mapping and Analysing Crime Data:
Lessons from Research and Practice (pp. 187-203). London: Taylor &
Francis.

Xue, Y., & Brown, D. E. (2003). A Decision Model for Spatial Site Selection by
Criminals: A Foundation for Law Enforcement Decision Support. IEEE
Transactions on Systems, Man, Cybernetics - Part C: Applications and
Reviews, 33(1), 78-85.

Zahn, M. A., & Jamieson, K. M. (1997). Changing Patterns of Homicide and Social
Policy. Homicide-Studies, 1, 190-196.

 333

	Elizabeth Ruth Groff, Ph.D., 2006
	Dedication
	 Acknowledgements
	 Table of Contents
	List of Tables
	 List of Figures
	Chapter 1: Introduction
	1.0 Goal and Objectives
	1.1 Expected Significance of the Research
	1.2 Organization of the Remaining Text

	 Chapter 2: ‘Situating’ Simulation
	1.0 Introduction
	2.0 Theoretical Basis for a Street Robbery Model
	2.1 Criminological Theory
	2.2 Activity Spaces Theory
	2.3 Conceptual Model

	3.0 Research Design
	3.1 Agent Analyst- GIS/ABM Integration
	3.1 Data
	3.3 Achieving Agent Movement in the Model
	3.4 Creating Activity Spaces for Civilians in the Model

	4.0 Implementation Model
	4.1 Overview of the Landscape and the People in the Model

	5.0 Results of Implementing a Model in Agent Analyst
	6.0 Conclusions

	 Chapter 3 Simulation for Theory Testing and Experimentation
	1.0 Introduction
	2.0 Meeting the Challenges Encountered by Previous Research
	2.1 A New Approach for Modeling Crime Events and Crime Patterns

	3.0 Theoretical Basis for the Conceptual Model and Behavioral Rules
	3.1 Routine Activity Theory
	
	3.2 Offender Decision-making

	4.0 Implementing a Model of Street Robbery
	4.1 Software
	4.2 Study Area, Duration and Data
	4.3 Hypotheses and Experiments
	4.4 Parameters in the Model

	4.5 Agents in the Model
	4.6 Decision to Offend
	5.0 Analysis
	6.0 Findings
	6.1 General Description of Model Outcomes
	6.2 Testing Routine Activity Theory
	6.3 Spatial Distribution of Street Robberies across Places
	6.4 Some Comments on the Robustness of the Model

	7.0 Discussion
	8.0 Conclusion

	 Chapter 4: The Spatio-Temporal Aspects of Routine Activities and Crime
	1.0 Introduction
	2.0 Theoretical Background
	2.1 Criminological Foundations for the Original Street Robbery Model
	2.2. Background on the Spatio-temporal Nature of Human Activity
	2.3 Hypotheses

	3.0 Research Design
	3.1 Agent-based Modeling and the Implementation Software
	3.2 Data
	3.3 Agent Activity Spaces in the Model
	3.4 Experiments

	4.0 Implementation Model
	4.1 Model Versions

	5.0 Analysis
	6.0 Findings
	6.1 Descriptive Analysis
	6.2 Hypothesis Test Results
	6.6 Sensitivity Test Results
	6.7 Explanations for the Emergent Patterns

	7.0 Discussion and Conclusion
	

	 Chapter 5: Discussion and Conclusions
	5.0 Background
	5.1 Major Questions and Findings
	5.2 Significance of the Research
	5.3 Assessing the Model Results
	5.4 Possible Limitations of the Research
	5.5 Next Steps

	 Appendices
	Appendix 1: Street Robbery Model Documentation: Simple Version
	 Appendix 2: Street Robbery Model Documentation: Temporal and Activity Space Versions
	 Appendix 3: Street Robbery Model: Simple Version Code
	 Appendix 4: Street Robbery Model: Temporal Version Code
	 Appendix 5: Street Robbery Model: Activity Space Version Code
	Appendix 6: Java Code to Develop Activity Nodes
	Appendix 7: Visual Basic Code to Identify Paths Among Activity Nodes

	 Bibliography

