ABSTRACT

Title of dissertation: INFORMATIONAL FRICTIONS AND LEARNING IN EMERGING MARKETS

Emine Boz, Doctor of Philosophy, 2006

Dissertation directed by: Professor Enrique G. Mendoza

Department of Economics

Emerging market financial crises are abrupt and dramatic, usually occurring after a period of high output growth, massive capital flows, and a boom in asset markets. This thesis develops an equilibrium asset pricing model with informational frictions in which vulnerability and the crisis itself are consequences of the investor optimism in the period preceding the crisis. The model features two sets of investors, domestic and foreign. Both sets of investors are imperfectly informed about the true state of the emerging economy. Investors learn from noisy signals which contain information relevant for asset returns and formulate expectations, or “beliefs”, about the state of productivity.

Numerical analysis shows that, if preceded by a sequence of positive signals, a small, negative noise shock can trigger a sharp downward adjustment in investors’ beliefs, asset prices, and consumption. The magnitude of this downward adjustment and sensitivity to negative signals increase with the level of optimism attained prior to the negative signal. The model calibrated to a typical emerging market
economy, Turkey, reveals that with the introduction of incomplete information asset prices display persistent effects in response to transitory shocks, and the volatility of consumption increases by 2.1 percentage points.

The maximum likelihood estimation of the model’s parameters using U.S. data documents that the estimated signal-to-noise ratio for the U.S. is higher since, unlike Turkey, a significantly higher portion of fluctuations can be accounted for by changes in the persistent component rather than the noise. Feeding these two different signal-to-noise ratios to the model, we find that the booms and busts driven by misperceptions of the investors have significantly lower frequency, magnitude, and duration in the case of U.S. compared to Turkey.
INFORMATIONAL FRICTIONS AND LEARNING IN EMERGING MARKETS

by

EMINE BOZ

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2006

Advisory Committee:

Professor Enrique G. Mendoza, Chair
Professor John Rust
Professor Guillermo A. Calvo
Professor Carlos Vegh
Professor Haluk Unal
© Copyright by
Emine Boz
2006
DEDICATION

To my father and my husband.
ACKNOWLEDGMENTS

Many thanks to Enrique Mendoza, John Rust, Guillermo Calvo, Carlos Vegh, and Haluk Unal for kindly accepting to serve on my committee.

My special thanks go to my mentor Enrique Mendoza, who helped me discover who I am, and who I want to be while I took my first steps in the journey of economic research. He never lost confidence in me even when my self-confidence was shaken. I am grateful for his continuous support not only on my research but also on many other aspects of life.

My thanks also go to my mentor John Rust for his always encouraging and supportive advise and his positive attitude. It has been a great experience to learn from him and to work with him. In addition, thanks are due to Guillermo Calvo for letting me benefit from his vast knowledge and experience in economics. Also, to the rest of the international finance team particulary to Carlos Vegh for his very useful comments, Christian Daude, Irani Arraiz, and Ran Bi for their suggestions and support along the way.

I owe my deepest thanks to my husband, Bora, for always holding my hand as we travelled this journey together. In this difficult process, I realized how lucky I was to have his companionship both in the journey of research and of life especially when these two became inseparable. Every time I got stuck thinking about the empty half of the glass, he was there to remind me that the other half was full.
My gratitude also go to all friends and relatives whose birthdays, weddings, and many other important events I missed. Also, to my mother for understanding and respecting my priorities even if this meant that her only daughter would become mainly a voice on the phone. And finally, thanks to my father who was the first person to realize that I actually “enjoyed” studying and who would be so proud if he had lived to see this day.
TABLE OF CONTENTS

List of Tables vii

List of Figures viii

1 Introduction 1

2 Model 10
 2.1 Domestic Households’ Problem 10
 2.2 Foreign Investors’ Problem 12
 2.3 Information Structure 13

3 Quantitative Analysis 22
 3.1 Computation 22
 3.2 Calibration 24
 3.3 Quantitative Findings 27
 3.4 From Miracles to Crises 38
 3.5 Turkey vs. U.S. 40
 3.6 Sensitivity Analysis 44

4 Asymmetric Information 47
 4.1 Quantitative Analysis 49

5 Conclusion 53

A Proofs 56

Bibliography 61
LIST OF TABLES

1.1 Magnitudes of pre-crisis booms. ... 3

3.1 Model parameters ... 25

3.2 Long-run business cycle moments, simulated data is logged and HP filtered. ... 29

3.3 Analysis of optimism (pessimism) driven booms (busts). 36

3.4 U.S. vs Turkey, parameters .. 42

3.5 U.S. vs Turkey, booms and busts .. 43

3.6 Sensitivity analysis, simulated data is logged and linearly detrended. 45

4.1 Simulations for the asymmetric information setup; simulated data are logged and linearly detrended. 51
LIST OF FIGURES

2.1 Density of d_t conditional on z_t. .. 17

2.2 Next period’s beliefs $\tilde{z}_{t+1} = \phi(\tilde{z}_t, d_{t+1})$ for three different values of current beliefs \tilde{z}_t. .. 18

2.3 The derivative of $\phi(\tilde{z}_t, d_{t+1})$ with respect to d_{t+1} as a function of \tilde{z}_t. 21

3.1 Ergodic distribution of domestic investors’ asset holdings, α, in the case of (a) full information, and (b) incomplete information. 28

3.2 Ergodic distribution of beliefs, \tilde{z}. .. 28

3.3 Time series simulation for the case of full information. 31

3.4 Time series simulation for the case of incomplete information. 32

3.5 Forecasting functions conditional on $\alpha = 0.840$, $d = z^L$, $\tilde{z} = z^H$ (first column), and $\tilde{z} = z^L$ (second column). 34

3.6 Sequences of positive signals ... 39

3.7 Time series simulations for U.S. and Turkey. 41

vii
Chapter 1

Introduction

...That this region [East Asia] might become embroiled in one of the worst financial crises in the postwar period was hardly ever considered—within or outside the region—a realistic possibility. What went wrong? Part of the answer seems to be that these countries became victims of their own success. This success had led domestic and foreign investors to underestimate the countries economic weaknesses. It had also, partly because of the large scale financial inflows that it encouraged, increased the demands on policies and institutions, especially but not only in the financial sector; and policies and institutions had not kept pace. The fundamental policy shortcomings and their ramifications were fully revealed only as the crisis deepened... IMF (1998)

The experience of the last decade suggests that emerging capital markets are vulnerable to significant shifts in investors’ confidence in both upward and downward directions. Downward shifts in confidence and financial market collapses are abrupt and often take place unexpectedly after a large boom. Table 1.1 documents the magnitude of these booms for several pre-crisis episodes: Argentina and Mexico in 1994, Korea in 1997, and Turkey in 2000. Taking Turkey as an example, the year before its financial crisis in 2001, the country boasted an average quarterly current
account-to-GDP ratio of -5.1%, private consumption growth of 4.5%, an increase in equity prices of 57% and GDP growth of 3%.1

It is widely agreed that overconfidence and informational problems are at least partially responsible for recent crisis episodes, as the above opening quote by International Monetary Fund on the Asian crisis suggests. Whether these frictions in international capital markets can be large enough to explain pre-crisis periods of bonanza and the depth of the crises remains an open question.

In this thesis, we aim to answer this question by studying the quantitative predictions of a model in which optimism, due to investors’ underestimation of the weaknesses of emerging economies, acts as the driving force behind both the pre-crisis booms and the vulnerability that paves the way to financial turmoil and deep recessions. In the model, the pre-crisis bonanza is driven by a sequence of positive signals that investors interpret as an improvement in the true fundamentals of the economy. The crisis occurs as a sudden downward adjustment in investors’ expectations of the true fundamentals is triggered and their optimism suddenly fades. Furthermore, the magnitude of the adjustment increases with the level of optimism attained prior to the crisis.

The informational frictions that are the key ingredient of the model, are likely to be prevalent in emerging markets for several reasons. One is the lack of transparency in policy-making, and data reporting which manifests itself in the form of inaccurate or misleading data. In a report, the International Monetary Fund argued1Calvo and Reinhart (2000) conclude that “Sudden Stops,” sharp negative reversals of capital flows, are usually preceded by a surge in capital inflows.
Table 1.1: Magnitudes of pre-crisis booms.

<table>
<thead>
<tr>
<th>Episode</th>
<th>GDP (%)</th>
<th>Consumption (%)</th>
<th>Equity Price (%)</th>
<th>CA/GDP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina, 1994Q1-Q4</td>
<td>1.72</td>
<td>2.67</td>
<td>12.97</td>
<td>-1.08</td>
</tr>
<tr>
<td>Mexico, 1994Q1-Q4</td>
<td>3.43</td>
<td>6.69</td>
<td>18.53</td>
<td>-2.00</td>
</tr>
<tr>
<td>Korea, 1996Q4-1997Q3</td>
<td>3.67</td>
<td>5.14</td>
<td>1.04</td>
<td>-3.69</td>
</tr>
<tr>
<td>Turkey, 2000Q1-Q4</td>
<td>3.08</td>
<td>4.51</td>
<td>57.30</td>
<td>-5.12</td>
</tr>
</tbody>
</table>

Average quarterly changes in GDP, private consumption, equity prices and average quarterly current account-to-GDP ratios. GDP, and consumption are in constant prices, equity prices are in local currencies and are deflated using the CPI. Source: International Financial Statistics and corresponding countries’ central banks.

that this was a common thread running through several recent crisis episodes:

... A lack of transparency was a feature of the build-up to the Mexican crisis of 1994-95 and of the emerging market crises of 1997-98. In these crises, markets were kept in the dark about important developments and became first uncertain and then unnerved as a host of interrelated problems came to light. Inadequate economic data, hidden weaknesses in financial systems, and a lack of clarity about government policies and policy formulation contributed to a loss of confidence that ultimately threatened to undermine global stability ...(2001)

A second reason informational frictions pose particular challenges for emerging economies is the existence of high fixed costs associated with obtaining country-specific information and keeping up with the developments in emerging economies, as suggested by Calvo (1999). Such costs could arise due to idiosyncrasies affecting financial markets in these countries, including for example, each country’s unique
institutions, policies, political environment, legal structure, etc. In addition, it might be optimal for international investors not to “buy” this information. Calvo and Mendoza (2000) provide two arguments for why this can be the case. First, if short selling positions are limited, the benefit of paying for costly information declines as the number of emerging economies in which to invest becomes sufficiently large. Second, if punishment for poor performance is high, managers of investment funds may choose to mimic each other’s behavior instead of paying for costly information.

The model in this thesis features two types of investors, domestic and foreign, both of whom trade a single emerging market asset. Domestic investors are consumer-investors who maximize the expected present discounted value of their lifetime utility. Foreign investors specialize in trading the emerging market asset, face trading costs, and maximize the expected present discounted value of profits from investing. We model the informational frictions as follows. Both sets of investors are imperfectly informed about the true state of current productivity, which contains information relevant for predicting future returns on the emerging market asset. They can only partially infer the true state of productivity by “learning” from publicly observed dividends (or signals) and, they share the same information set. The dividends consist of two parts: a persistent component, which we interpret as “true productivity”, and a transitory component, which is a noise term that controls the accuracy of the signals. Modeled in this way, dividends serve an informational role since a dividend payment is a noisy signal that contains information about current and future realizations of productivity. Every period, foreign and domestic investors observe dividends, solve a signal extraction problem, and “learn” about
productivity by updating their expectations or “beliefs” regarding true productivity.

When investors turn pessimistic (optimistic), asset prices are driven below (above) the “fundamentals price,” which is defined as the expected present discounted value of dividends conditional on full information. In these periods, asset prices and domestic investors’ consumption display swings that are not associated with changes in true productivity. We find that a sequence of positive signals can cause a boom in both the asset market and in consumption, and can be a source of economic vulnerability if true productivity is in fact low. If a negative signal is realized at the peak of a boom of this nature and, as a result, “challenges” current prevailing beliefs, an abrupt and large downward adjustment in asset prices and consumption takes place. If, however, the same signal “confirms” prevailing beliefs, its impact is smaller.²

Foreign and domestic investors trade due to differences in their objective functions particularly their risk aversions, but not for speculation (given that they have the same beliefs). From the domestic investors’ perspective, dividend shocks are important for two reasons. First, in order to intertemporally smooth consumption domestic investors would like to increase (decrease) their asset position in response to positive (negative) dividend shocks. Second, they play a critical informational role. In response to a negative dividend shock, changes in expectations due to the new information compounds the first effect, and as result, domestic investors reduce their demand for the emerging market asset. Foreign investors also reduce their

²Moore and Schaller (2002) establish the state dependence of responses to noisy signals. We borrow our terminology from them.
demand for the asset in response to this shock, since they receive a negative signal regarding future productivity. In equilibrium, we find that domestic investors’ demand decreases by more than that of their foreign counterparts, therefore, domestic investors become net sellers in response to a negative dividend shock. This result leads to a procyclical current account on average. However, we also find that for a given dividend shock, the higher the expectations about future productivity, the lower are the domestic investors’ asset holdings since higher expectations induce foreign investors to bid more aggressively, compared to their risk-averse domestic counterparts, for the same asset. Hence, the higher the investment optimism, the more the emerging economy can attract foreign investment, and therefore the more likely the country is to develop a potentially sizable current account deficit. For a given dividend shock, the model can thus produce a current account deficit and booms in consumption and asset prices if investors are “sufficiently optimistic”.

The numerical analysis shows that with the introduction of informational frictions, the volatility of the emerging economy’s consumption increases by 2 percentage points compared to the “full information” setup. Uncertainty about true current productivity leads to increased uncertainty regarding future asset returns and a more volatile consumption profile for the risk averse domestic investors. Moreover, informational frictions produce persistence in response to transitory noise shocks. If investors turn pessimistic (optimistic) in response to a misleading signal, it takes several periods for them to correct their beliefs. The mechanism behind this result is the Bayesian learning process: the posteriors of one period are used in the calculation of the following period’s priors.
We calibrate the benchmark incomplete information model and pin down the signal-to-noise ratio using Turkish GDP data. Conducting the same calibration exercise with U.S. data reveals that the signal-to-noise ratio for this country is significantly higher, confirming that informational frictions are more prevalent in emerging market economies rather than the developed. The calibration exercise conducting using a maximum likelihood estimation procedure similar to Hamilton (1989) allows us to quantify this difference. The model calibrated for Turkey generates more frequent, larger and longer booms and busts driven by investors’ misperceptions compared to U.S.

This thesis is at the crossroads of two main strands of literature. The first is the literature on Sudden Stops and financial crises in open economies, and the second is that on informational frictions in finance. Most existing models of financial crises and Sudden Stops, focus on crash episodes, but not on the booms preceding the crashes that might indeed contain the seeds of the financial crises. In contrast, the model proposed in this thesis accounts for the boom-bust cycles observed in emerging markets. Studies explaining Sudden Stops focus on financial frictions and often utilize collateral constraints, (see, for example, Caballero and Krishnamurthy (2001), Paasche (2001), or Mendoza and Smith (2004)). Credit constraints are successful for producing amplification in the response of the economy to typical negative shocks. In this thesis, however, business cycles can also be driven by changes in investor sentiment and amplification is at work in expansions as well as in recessions.

In the international finance literature, shifts in investor sentiment have usually
been analyzed within the context of currency crises, often using sunspot models that produce multiple equilibria. In this thesis, we take a different approach by considering a model with a unique equilibrium that can endogenously produce shifts in investors’ confidence and switches between good states and bad ones which allows us to predict when these shifts occur and how long it takes for the market to recover after a bust.

In order to analyze whether the homogeneity of information plays a critical role in the model, we also present a scenario in which investors are differentially informed. This exercise is motivated by the findings of Calvo and Mendoza (2000). In this “asymmetric information” setup, we assume that foreign investors are less informed than domestic investors. Unlike their foreign counterparts, domestic investors are assumed to know the true state of productivity: in other words, domestic investors are perfectly informed. We conclude that it is sufficient to assume that one set of

3Empirical evidence about informational asymmetries between domestic and foreign investors is mixed. Using data from Korea, Germany, Indonesia and China, Choe et al. (2000), Hau (2001), Dvorak (2001), Chan et al. (2003), and Chakravarty et al. (1998) find that domestic investors have more valuable information than their foreign counterparts. On the other hand, Seasholes (2000), Grinblatt and Kelahaiju (2000), Wang and Stulz (1997) and Chui and Kwok (1998) use data for Taiwan, Finland, Japan and China and find that foreigners have more valuable information since they have the expertise that the domestic investors lack.
investors is imperfectly informed for the model to produce “misperception driven cycles,” although the magnitude of these booms and busts would depend on the proportion of imperfectly informed investors. (See Section 4 for details of this setup.)

The rest of the thesis proceeds as follows. We describe the model in Chapter 2, and in Chapter 3 we discuss the model’s solution procedure, calibration, and numerical results. Chapter 4 goes on to investigate the implications of introducing asymmetric information into the model. Finally, Chapter 5 concludes.
Chapter 2

Model

The economy has two classes of agents, foreign investors and domestic household-investors, who are identical within each class. The domestic households maximize expected lifetime utility by making consumption and asset holding decisions conditional on their information set, that includes the noisy signals about the true state of productivity. Foreign investors choose their asset positions in order to maximize the expected present discounted value of profits based on their beliefs about the state of productivity. Foreign investors also face trading costs associated with operating in the asset market. Neither domestic nor foreign investors observe the true realization of the stochastic productivity shock, which contains information relevant for forecasting the returns from the asset. They only observe dividends, which are noisy signals about the true value of productivity. Foreign and domestic investors form their beliefs by solving a signal extraction problem.

2.1 Domestic Households’ Problem

Domestic households choose stochastic intertemporal plans for consumption, c_t, and asset holdings, α_{t+1}, in order to maximize expected life-time utility condi-
tional on the information available to them:

\[U = E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1 - \sigma} |I_t^U \right] \] \hspace{1cm} (2.1)

subject to

\[c_t + \alpha_{t+1} q_t = \alpha_t (q_t + d_t) \] \hspace{1cm} (2.2)

taking asset prices, \(q_t \), and the evolution of beliefs and their information set \(I^U \) as given.\(^1\) \(d_t \) denotes dividend payments of the emerging market asset, the parameter \(\sigma \) is the coefficient of relative risk aversion of domestic investors and \(\beta \) is the standard subjective discount factor.

At the beginning of each period, productivity shocks are realized and dividends are determined. Domestic investors make their decisions after observing dividends. The optimality conditions characterizing their decisions are:

\[\beta^t u'(c_t) - \lambda_t = 0 \] \hspace{1cm} (2.3)

\[-\lambda_t q_t + E_t[\lambda_{t+1} (d_{t+1} + q_{t+1}) |I_t^U] = 0 \] \hspace{1cm} (2.4)

where \(\lambda_t \) denotes the Lagrange multiplier associated with the budget constraint. Combining these two first order conditions gives the Euler equation:

\[q_t u'(c_t) = \beta E_t \left[(q_{t+1} + d_{t+1}) u'(c_{t+1}) |I_t^U \right] . \] \hspace{1cm} (2.5)

\(^1\)We discuss the role of the expectation operator and the information structure in Section 2.3.
This equation is familiar except that the expectations are taken conditional on the information set I_t^U.

2.2 Foreign Investors’ Problem

As in Mendoza and Smith (2004), foreign investors choose $\{\alpha_{t+1}^*\}_{0}^{\infty}$ in order to maximize the expected present discounted value of their profits conditional on their information sets:

$$E_0 \sum_{t=0}^{\infty} R^{-t} \left(\alpha_t^*(d_t + q_t) - \alpha_{t+1}^* q_t - q_{t+2}^*(\alpha_{t+1}^* - \alpha_t^* + 2)^2 | I_t^U \right)$$

(2.6)

where R is the gross world interest rate, $1/a$ is the price elasticity of foreign investors’ demand, $q_{t+2}^*(\alpha_{t+1}^* - \alpha_t^* + \theta)^2$ is the total trading cost associated with buying and selling equities in the emerging economies, θ is the recurrent cost. As in Aiyagari and Gertler (1999) and Mendoza and Smith (2004), we model the trading cost associated with buying and selling the asset as quadratic in the size of the asset trade.\(^2\) The first order condition of the foreign investors’ problem is:

$$q_t \left(1 + a(\alpha_{t+1}^* - \alpha_t^* + \theta) \right) = R^{-1} E \left[d_{t+1} + q_{t+1} \left(1 + a(\alpha_{t+2}^* - \alpha_{t+1}^* + \theta) \right) | I_t^U \right].$$

(2.7)

\(^2\)This specification does not rule out buy & hold type of trading strategies. The foreign investors are allowed to buy and “watch” the market and sell when they find it profitable to so. The assumption that $\theta \neq 0$ implies that “watching” the market also comes at a cost although it is less costly compared to trading. It is intuitive to assume that “watching” the market is costly as the investors still need to follow the developments in the emerging economy so as to determine the right time to sell. In Section 3.4, we do analyze the robustness of out results to this assumption by solving the case in which $\theta = 0$.

12
We can solve the above first order condition forward to obtain:

$$\alpha_{t+1}^* - \alpha_t^* = \frac{1}{a} \left(q_t^b - 1 \right) - \theta. \quad (2.8)$$

q_t^b, called the belief price, is defined as the expected present discounted value of future dividends conditional on the current belief about productivity:

$$q_t^b \equiv E[R^{-1}d_{t+1} + R^{-2}d_{t+2} + R^{-3}d_{t+3} + \ldots | I_t^U]. \quad (2.9)$$

Intuitively, foreign investors adjust their asset holdings “partially” depending on the gap between the market price q_t and their belief price q_t^b. How much of this gap is reflected in the asset demand is determined by $1/a$.

2.3 Information Structure

Dividends are determined exogenously as follows:

$$d_t = e^{\tau_t + \eta_t}. \quad (2.10)$$

There are two types of uncertainty associated with dividends: persistent aggregate productivity shocks, z, and noise, in the form of transitory, additive, Normal i.i.d. shocks, η, with $E[\eta] = -\sigma_\eta^2/2$ and $E[\eta^2] = \sigma_\eta^2$: $\eta \sim N(-\sigma_\eta^2/2, \sigma_\eta^2)$. Aggregate productivity shocks follow a Markov process with two states and transition probability matrix P. We denote the values z can take as $z \in \{z_L, z_H\}$ and assume $z_L < z_H$.

3This specification for $E[\eta]$ guarantees that changes in σ_η produce mean preserving spreads.
without loss of generality.

Assumption \(P >> 0 \) (irreducible Markov chain) and \(P_{ii} \neq P_{ji} \) where \(P_{ij} \) is the probability of transiting from state \(i \) to state \(j \), \(i, j \in \{L, H\} \) and \(i \neq j \) (positive autocorrelation).

\(P >> 0 \) rules out absorbent states. \(P_{ii} = P_{ji} \) would imply that the probability of transiting to state \(i \) is the same regardless of the current state. Therefore, in this case, information regarding the current state would not be useful for forecasting the following period’s state (no autocorrelation).

We assume both sets of investors know the true distributions governing the productivity shocks \(z \) and the noise \(\eta \). They observe the dividends \(d \) at the beginning of each period, but do not observe the current or past values of the productivity shock \(z \) or the noise \(\eta \).\(^4\) Both investors use the information revealed by dividends in order to infer the realization of the productivity shock in the current period.\(^5\) Beliefs are defined as:

\[
\tilde{z}_t \equiv E[z_t | I_t^U]
\]

(2.11)

where \(I_t^U \) includes the entire history of dividends observed by the investors:

\[
I_t^U \equiv \{d_t, d_{t-1}, \ldots\}.
\]

(2.12)

\(^4\)One can imagine that investors observe productivity with such a long lag that, once received, the information is no longer useful for predicting current productivity any more.

\(^5\)It is also possible to model different types of publicly observed signals, such as news reports, in addition to dividends. In any case, the model variables will be sensitive to the information content of the signals and this sensitivity will be qualitatively similar but quantitatively different depending on the informativeness of the publicly observed signals.
Throughout the thesis we refer to this information structure as the “incomplete information” scenario. The belief \tilde{z}_t is formed by updating the previous period’s belief \tilde{z}_{t-1} using Bayes’ rule, as in Hamilton (1989), Moore and Schaller (2002), and Nieuwerburgh and Veldkamp (2003):

$$Pr(z_t = z^i | I_t^U) = \frac{f(d_t | z_t = z^i) Pr(z_t = z^i | I_{t-1}^U)}{f(d_t | z_t = z^j) Pr(z_t = z^j | I_{t-1}^U) + f(d_t | z_t = z^i) Pr(z_t = z^i | I_{t-1}^U)}$$

(2.13)

where f is the conditional normal probability density that can be written as:

$$f(d_t | z_t = z^i) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2\sigma^2} (d_t - z^i)^2}$$

(2.14)

for $i, j \in \{H, L\}$ and $i \neq j$. Equation (2.13) is used to update the probability assigned to being in the high productivity state, incorporating the additional information revealed by d_t at the beginning of period t. The priors that will be used in period $t+1$ for updating beliefs are obtained by simply adjusting for the probability of a change in state from period t to $t+1$ using the Markov transition matrix known by investors. That is:

$$Pr(z_{t+1} = z^i | I_t^U) = Pr(z_t = z^i | I_t^U) P_{ii} + Pr(z_t = z^i | I_t^U) P_{ji}. \quad (2.15)$$

Once the posteriors of the current period are calculated, beliefs are:

$$\tilde{z}_t = Pr(z_t = z^L | I_t^U) z^L + Pr(z_t = z^H | I_t^U) z^H. \quad (2.16)$$
Proposition 1 0 < Pr(zt = z^i | I^U_{t-1}) < 1 and 0 < Pr(zt = z^i | I^U_t) < 1.

Proof See Appendix.

The interval to be considered for the prior and posterior probabilities is (0, 1). The prior Pr(z_0 = z^i | I^U_{t-1}) or the posterior Pr(z_0 = z^i | I^U_t) can be set exogenously to “start” from 0 or 1. Afterwards, however, it can take these values with zero probability. From Equation (2.16), we know that beliefs are convex combinations of low and high values of productivity, with weights defined by the Bayesian posterior probabilities assigned to each state. Hence, beliefs are always higher than the low value of productivity and lower than the high value, z_L < \bar{z} < z_H. This implies that agents can never be exactly sure about being in a particular state. In addition, they never underestimate (overestimate) productivity to be lower (higher) than the low (high) realization of the true productivity. This is an unappealing feature of learning with discrete probabilistic processes. Also, as a result of this limitation, the standard deviation of beliefs is always less than or equal to that of productivity.

Equation (2.16) implies that beliefs are sufficient to backtrack the probabilities assigned to each state. Using Equation (2.16) and Pr(zt = z^i | I^U_t) = 1 - Pr(zt = z^j | I^U_t) for i, j ∈ \{H, L\} and i ≠ j, a given \bar{z}_t can be mapped to a unique Pr(zt = z^i | I^U_t). The assumption that provides this simplification is having two states for productivity. This simplification is crucial for the numerical analysis since probabilities assigned to each state are continuous endogenous state variables for the problem. Given the computational difficulty of handling continuous state variables, we assume two states for productivity and carry \bar{z} as a state variable that is sufficient.
for backtracking the posterior probabilities assigned to each state of productivity.

Figure 2.1: Density of d_t conditional on z_t.

We denote the evolution of investors’ beliefs as $\tilde{z}_{t+1} = \phi(\tilde{z}_t, d_{t+1})$. When investors make their decisions at date t, d_{t+1} is not known, but its distribution conditional on z_{t+1} is known to both domestic and foreign investors. Figure 2.1 plots these conditional distributions for signal-to-noise ratios of 1.66 and 2.26, respectively.\(^6\) As the signal-to-noise ratio increases, the distribution of dividends conditional on the high and low productivity overlap less, as a result, dividends become more informative. In Figure 2.1, most of the conditional density is concentrated around the means when the signal-to-noise ratio is high (right panel). As σ_η decreases (or as the signal-to-noise ratio increases), these two conditional densities separate, and in the limit as σ_η approaches zero, the informational imperfection vanishes.

In Figure 2.2, we plot $\tilde{z}_{t+1} = \phi(\tilde{z}_t, d_{t+1})$ for three different values of \tilde{z}_t where d_{t+1} is on the horizontal axis and \tilde{z}_{t+1} is on the vertical axis. The solid curve

\(^6\)The signal-to-noise ratio is defined as $\frac{z_H - z_L}{\sigma_\eta}$. We pick these particular values for the signal-to-noise ratios because they are also the ones used for the numerical analysis.
corresponds to \(\tilde{z}_{t+1} = \phi(min(\bar{z}), d_{t+1}) \); that is, it is the case where the investors are “almost sure” that the economy is in the bad state today. Similarly, the dashed curve shows \(\tilde{z}_{t+1} = \phi(max(\bar{z}), d_{t+1}) \), or the case in which they are optimistic. All other beliefs would be represented by curves that lie between the solid and dashed curves, such as the dotted curve, which shows the case in which the investors assign equal probability to each state, \(\tilde{z}_{t+1} = \phi(\frac{z^H + z^L}{2}, d_{t+1}) \).

Figure 2.2: Next period’s beliefs \(\tilde{z}_{t+1} = \phi(\tilde{z}, d_{t+1}) \) for three different values of current beliefs \(\tilde{z}_t \).

Proposition 2 If \(P_{ii} < P_{ji} \) then \(\phi(\bar{z}_t, d_{t+1}) \) is strictly increasing in both of its arguments.

Proof See Appendix.

\(P_{ii} > P_{ji} \) corresponds to a scenario where knowing the current state would still be useful for forecasting future productivity: the information that the economy
is in a particular state would reveal that the economy is more likely to transition to the other state than to stay in the same state in the subsequent period (negative autocorrelation). Although information is valuable and learning would still take place, we rule out the case $P_{ii} > P_{ji}$ in order to establish Proposition 2.

The elasticity of \tilde{z}_{t+1} with respect to d_{t+1} varies depending on \tilde{z}_t. When the investors assign a high probability to being in the low state (\tilde{z}_t is low), a low realization of d_{t+1} “confirms” the beliefs and as a result \tilde{z}_{t+1} changes only marginally. On the other hand, if a high d_{t+1} is observed, the beliefs of investors are “challenged” and there is a large adjustment in the next period’s beliefs.

In order to see this, consider the following scenario. Assume that true productivity is low and that investors’ current beliefs are “almost correct”. In this case, $\tilde{z}_t = \min \tilde{z}$, as depicted by “lowest beliefs” curve in Figure 2.2. The vertical line in Figure 2.2 marks the mean of the signals conditional on the economy being in the low state. Hence, a small negative noise shock is a realization of dividends to the left of this vertical line. If investors observe a negative noisy signal at $t + 1$, the response of beliefs to this signal is minimal (the solid curve is flat on the left side of the vertical line). On the other hand, if investors receive a sequence of misleading positive signals before the negative one, their optimism builds up and their beliefs can move to reach that reflected in dashed curve in Figure 2.2. When the economy ends up in this situation, the response to a small negative signal is large (the dashed curve is steep on the left side of the vertical line). Therefore, a stream of positive signals can move the economy to a vulnerable state in which a negative signal triggers a large downward adjustment. As investors turn optimistic, it is as if
the economy is moving along the convex part of this curve. The point of maximum vulnerability lies at the intersection of the vertical line and the inflection point of the curve.

Figure 2.3 shows the numerical derivative of $\phi(\tilde{z}_t, d_{t+1})$ with respect to d_{t+1} around $d_{t+1} = z^L$ as a function of \tilde{z}_t. This derivative captures the response of the beliefs to a small, negative signal conditional on true productivity being low, and it approximates the “vulnerability” of the economy. Figure 2.3 illustrates that this derivative is a convex function. Hence, the response of beliefs to a negative signal increases at an increasing rate with the level of optimism attained prior to the negative signal. The convexity of the derivative of $\phi(.)$ is due to the assumption that true productivity is a discrete random variable. In the case of continuous random variables, learning takes place in a linear fashion, that is, the posteriors are a convex combination of the priors and the signal with weights that depend on the signal-to-noise ratio. In that case, this derivative would be linearly increasing in the level of optimism prior to the negative signal.

The quantitative analysis focuses on the model’s equilibrium which is defined as follows.

Definition A competitive equilibrium is given by allocations $\alpha'(\alpha, \tilde{z}, d)$, $c(\alpha, \tilde{z}, d)$, $\alpha''(\alpha, \tilde{z}, d)$ and asset prices $q(\alpha, \tilde{z}, d)$ such that:

(i) Domestic households maximize U subject to their budget constraint and their information set, I^U, taking asset prices as given.

7We approximate this derivative numerically with $\frac{\phi(\tilde{z}, z^L) - \phi(\tilde{z}, z^L - \varepsilon)}{\varepsilon}$ for ε small and positive. In the figure, we plot this expression for different values of \tilde{z}.

20
(ii) Foreign investors maximize the expected present discounted value of future profits conditional on their beliefs about the state of productivity, taking asset prices as given.

(iii) The goods and asset markets clear.
Chapter 3

Quantitative Analysis

3.1 Computation

The dynamic programming representation of the domestic investors’ problem for \(i, j \in \{L, H\} \) and \(i \neq j \) is:

\[
V(\alpha, \tilde{z}, d) = \max_{\alpha'} \{ u(\alpha(q + d) - \alpha'q) \\
+ \beta \left[Pr(z = z^l|I^U)P_{ii} + Pr(z = z^j|I^U)P_{jj} \right] \int V(\alpha', \phi(\tilde{z}, d'), d') f(d'|z' = z^i) dd' \\
+ \beta \left[Pr(z = z^l|I^U)P_{ij} + Pr(z = z^j|I^U)P_{jj} \right] \int V(\alpha', \phi(\tilde{z}, d'), d') f(d'|z' = z^j) dd' \}.
\] (3.1)

The solution algorithm includes the following steps:

1. Discretize the state space. We use 102 equally spaced nodes for \(\alpha \) and 40 equally spaced nodes for \(\tilde{z} \) in the intervals \([.83, 1.00]\) and \([z^L, z^H]\) respectively. To discretize the noise component of dividends we use Gaussian quadratures with 20 quadrature nodes.

2. Evaluate the evolution of beliefs \(\tilde{z}_{t+1} = \phi(\tilde{z}_t, d_{t+1}) \) using Equations (2.13)-(2.16).

3. For a conjectured pricing function \(q^{dd}(\alpha, \tilde{z}, d) \), solve the dynamic programming problem described in Equation 3.1 using value function iterations in order to get \(\alpha'(\alpha, \tilde{z}, d) \) and \(c(\alpha, \tilde{z}, d) \).
4. Calculate the foreign investors’ demand function using domestic investors’ asset
demand function obtained in Step 3 and the market clearing condition in the asset
market, \(\alpha^* + \alpha = 1 \).

5. Using foreign investors’ demand calculated in Equation (2.8), calculate new prices
\(q^{new}(\alpha, \tilde{z}, d) \).

6. Update the conjectured prices with \(\xi q^{old}(\alpha, \tilde{z}, d) + (1 - \xi)q^{new}(\alpha, \tilde{z}, d) \) where \(\xi \) is
a fixed relaxation parameter that satisfies \(\xi \in (0, 1) \) and is set close to 1 in order to
dampen hog cycles.

7. Iterate prices until convergence according to the stopping criterion \(\max\{|q^{new} - q^{old}|\} < 0.00001 \) and get equilibrium asset prices \(q(\alpha, \tilde{z}, d) \).

To check the accuracy of the solution of the dynamic programming problem,
we evaluate Euler equation residuals as described in Judd (1992). In order to do so,
we solve for \(\hat{c} \) in the following Euler equation:

\[
q_t u'(\hat{c}_t) = \beta E_t[(q_{t+1} + d_{t+1})u'(c_{t+1})].
\] (3.2)

Intuitively, we evaluate the consumption function that exactly satisfies the Euler
equation implied by the solution of the dynamic programming problem. Then, we
calculate \(1 - (\hat{c}_t/c_t) \), which is a unitless measure of error. We find that the average
Euler equation error is 0.0016.\(^1\)

Euler equation errors do not include the errors from the price iteration since
the Euler equation must hold for any pricing function, not only the equilibrium

\(^1\)Judd (1992) calls this measure the “bounded rationality measure,” and interprets an error of
0.0016 as a $16 error made on a $10000 expenditure.
pricing function. As a measure for the accuracy of the equilibrium price, we report the tolerance of the price iteration. Tolerance is defined as the maximum of the absolute value of the difference between prices evaluated in the last two consecutive iterations, \(\max\{|q^{\text{new}} - q^{\text{old}}|\} \). We iterate prices until tolerance is less than 0.00001.

3.2 Calibration

The model is calibrated quarterly for Turkey using data for the 1987:1-2005:2 period. We set the risk free interest rate to average US Treasury Bill rate, \(R = (1.0471)^{25} = 1.0115 \). We set \(\beta = 0.9886 \) and \(\sigma = 2 \) following the business cycles literature. We set the trading costs of the foreign investors to \(\{a = 0.001, \theta = 0.1\} \). With this calibration, total trading costs on average constitute 0.2589% of foreign investors’ per period profits as specified in Equation (2.6) and 1.8845% of the trade value. These costs are in line with the findings of Domowitz, Glen and Madhavan (2001) showing equity trading costs during the period 1996-1998 for a total of 42 countries among which 20 are emerging countries. They found that for emerging markets, trading costs are higher than the developed ones and they range between 0.58% (Brazil) and 1.97% (Korea) as percentage of trade value.

We estimate the parameters \(\{\sigma_\eta, z^H, z^L\} \) and Markov transition probabilities \(\{P_{HH}, P_{LL}\} \) using a Maximum Likelihood Estimation procedure similar to the one described in Hamilton (1989). For this exercise, we use quarterly GDP data for Turkey from 1987:1 to 2005:2 with a total of 74 observations. The data are from Central Bank of the Republic of Turkey’s web site and are in constant 1987 prices.
They are logged, seasonally adjusted (using the Bureau of Economic Analysis’s X12 Method) and filtered with HP filter using a smoothing parameter of 1600.

<table>
<thead>
<tr>
<th>Table 3.1: Model parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
</tr>
<tr>
<td>(R)</td>
</tr>
<tr>
<td>(\sigma)</td>
</tr>
<tr>
<td>(P_{HH})</td>
</tr>
<tr>
<td>(P_{LL})</td>
</tr>
<tr>
<td>(z^L)</td>
</tr>
<tr>
<td>(z^H)</td>
</tr>
<tr>
<td>(\sigma_\eta)</td>
</tr>
<tr>
<td>(z^H - z^L)</td>
</tr>
<tr>
<td>({a, \theta})</td>
</tr>
</tbody>
</table>

We denote the observed GDP series as \(y_t \) for \(t \in \{1, 2, ..., T\} \) and the parameters to be estimated are \(\psi \equiv \{z^i, z^j, \sigma_\eta, P_{ii}, P_{jj}\} \). The algorithm used for the estimation is as follows:

1. Calculate the ergodic distribution of the Markov process, \(\pi = [\pi_i, \pi_j] \), using
 \[
 \pi_i = \frac{(1 - P_{jj})}{(2 - P_{jj} - P_{ii})}. \quad \pi_j \text{ can be calculated using } \pi_i + \pi_j = 1.
 \]

2. Calculate the conditional density:

\[
 f(y_t, \psi|y^{t-1}) = \frac{1}{\sqrt{2\pi\sigma_\eta}} \left(Pr(z_t = z^i|y^{t-1}) e^{-(y_t - z^i)^2} + Pr(z_t = z^j|y^{t-1}) e^{-(y_t - z^j)^2} \right)
\]

where \(Pr(z_t = z^i|y^{t-1}) \) denotes the posterior probability assigned to being in state \(i \) conditional on the observed history of \(y \) until period \(t - 1 \).
3. For $t = 1$, when no history is available, use the ergodic probabilities calculated in Step 1 instead of the conditional probabilities.

4. Update the prior probability $Pr(z_t = z^i|y^{t-1})$ using Bayesian updating Equations 2.13 and 2.15.

5. Repeat Steps 2-4 for $\forall t \in \{1, 2, ..., T\}$.

6. The log likelihood function is evaluated by simply adding the logged conditional density functions for all observations:

$$L(\psi) = \sum_{t=1}^{T} \ln f(y_t; \psi|y^{t-1}).$$

(3.4)

7. Maximize the log likelihood function:

$$\max_{\psi} L(\psi; y^T)$$

subject to $P_{ii} > 0$, $P_{jj} > 0$ and $P_{ii} > P_{ji}$ (see Assumption).

The estimates of the productivity shock are $\{z^H, z^L\} = \{0.0175, -0.0427\}$ which translate into $\{\exp(z^H), \exp(z^L)\} = \{1 + 0.0177, 1 - 0.0418\}$. The estimated transition probabilities are $P_{HH} = 0.8933$ and $P_{LL} = 0.6815$. The estimated persistent component variance is $\sigma_z = 0.0260$, and the estimated noise component variance is $\sigma_\eta = 0.0362$, the ratio of the two is $\frac{\sigma_z}{\sigma_\eta} = 0.7182$. With these parameters, the estimated signal-to-noise ratio is $\frac{z^H - z^L}{\sigma_\eta} = 1.6638$. The productivity shocks and the transition probability matrix approximate a Normal AR(1) process:

$$z_{t+1} = (0.0004) + (0.5763)z_t + \epsilon_{t+1},$$

where $\sigma_\epsilon = 0.0213$. This calibration implies
\(\frac{\sigma_\eta}{\sigma_\eta} = 0.5888 \) which constitutes another measure of information content of the signals.\(^2\)

3.3 Quantitative Findings

Figure 3.1 shows the ergodic distribution of the domestic investors’ asset position, \(\alpha \), for a situation in which investors have full information (panel (a)) and in which investors have incomplete information (panel (b)) scenarios. The “full information” scenario corresponds to the case in which the information set of both investors is \(I_t \equiv \{d_t, d_{t-1}, \ldots, z_t, z_{t-1}, \ldots\} \).\(^3\) In both cases, the ergodic distributions are skewed to the left. The informational imperfection reduces the mean asset holdings of domestic investors. This is because the informational imperfection increases the uncertainty associated with future asset returns, and, hence, risk averse domestic investors are less inclined to demand risky assets.

The ergodic distribution of beliefs, \(\tilde{z} \), is plotted in Figure 3.2. In this distribution, most of the mass is concentrated at the tails, or around \(z^L \) and \(z^H \). This result arises because beliefs usually being close to correct. The extent to which the mass is concentrated at the tails depends crucially on the signal-to-noise ratio. The more informative the signals, the less beliefs deviate from the truth and the more the ergodic distribution is concentrated at the tails. Another feature of this distribution

\(^2\)This, in fact, is the conventional measure of the information content of the signals when learning takes place about continuous as opposed to discrete variables.

\(^3\)One can model a full information scenario by setting \(\sigma_\eta = 0 \). However, doing so would alter the distribution of the dividend process. As a result, it would not be possible to distinguish changes in results that are due to full information per se from those due to the change in the distribution of the dividend process.
Figure 3.1: Ergodic distribution of domestic investors’ asset holdings, α, in the case of (a) full information, and (b) incomplete information.

![Figure 3.1](image)

Figure 3.2: Ergodic distribution of beliefs, \tilde{z}.

![Figure 3.2](image)

is its skewness. Skewness is a result of the asymmetry of the Markov transition matrix. The high state is more persistent than the low, an asymmetry that both sets of investors acknowledge as they formulate their beliefs. Knowing that there are more periods in which the economy is in the high state than in the low state, investors’ beliefs are more likely to be close to z^H than z^L.

Table 3.2 documents the long run moments of simulated and actual data. Consistent with Figure 3.1, average asset holdings of the domestic investors is higher

4We simulate the model for 10,000 periods and calculate the moments after dropping the first 1,000 observations.
Table 3.2: Long-run business cycle moments, simulated data is logged and HP filtered.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Full Info.</th>
<th>Incomplete Info.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E(d))</td>
<td>1.0036</td>
<td>1.0032</td>
<td></td>
</tr>
<tr>
<td>(E(c))</td>
<td>0.8642</td>
<td>0.8419</td>
<td></td>
</tr>
<tr>
<td>(E(\alpha))</td>
<td>0.8609</td>
<td>0.8397</td>
<td></td>
</tr>
<tr>
<td>(E(q))</td>
<td>83.1358</td>
<td>83.0617</td>
<td></td>
</tr>
<tr>
<td>(E(CA/d))</td>
<td>-0.0001</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>(\sigma(z))</td>
<td>2.5884</td>
<td>2.5884</td>
<td>2.5884</td>
</tr>
<tr>
<td>(\sigma(\eta))</td>
<td>3.6341</td>
<td>3.6341</td>
<td>3.6341</td>
</tr>
<tr>
<td>(\sigma(d))</td>
<td>4.5694</td>
<td>4.5514</td>
<td>4.5514</td>
</tr>
<tr>
<td>(\sigma(c)/E(c))</td>
<td>5.4597</td>
<td>2.1265</td>
<td>4.2168</td>
</tr>
<tr>
<td>(\sigma(q)/E(q))</td>
<td>38.0997</td>
<td>0.0370</td>
<td>0.0283</td>
</tr>
<tr>
<td>(\sigma(CA/d))</td>
<td>3.1168</td>
<td>3.6134</td>
<td>3.8935</td>
</tr>
<tr>
<td>(\text{corr}(d, c))</td>
<td>0.6984</td>
<td>0.3153</td>
<td>0.4425</td>
</tr>
<tr>
<td>(\text{corr}(d, q))</td>
<td>0.0718</td>
<td>0.5611</td>
<td>0.8327</td>
</tr>
<tr>
<td>(\text{corr}(d, CA))</td>
<td>-0.4217</td>
<td>0.9019</td>
<td>0.5801</td>
</tr>
<tr>
<td>(\text{corr}(d, \alpha'))</td>
<td>0.0347</td>
<td>0.1655</td>
<td></td>
</tr>
<tr>
<td>(\text{corr}(\tilde{z}, \tilde{z}_{-1}))</td>
<td>x</td>
<td>0.5532</td>
<td></td>
</tr>
<tr>
<td>(\text{corr}(z, q))</td>
<td>0.9990</td>
<td>0.6678</td>
<td></td>
</tr>
</tbody>
</table>

In the full information scenario than in the incomplete information scenario (86.1 percent v. 84 percent). As a result of their greater asset holdings, domestic investors’ consumption is also higher on average in the full information scenario than in the incomplete information. In the full information case, higher average consumption and lower consumption volatility lead to a higher level of welfare compared to the case in which investors have only incomplete information.
Going from the full information setup to one with incomplete information, the standard deviations of consumption and the current account increase by 2.1 percentage points, and 0.4 percent, respectively. On the other hand, the standard deviation of asset prices falls by 0.87 basis points. The decline in the standard deviation of asset prices is due to beliefs being a convex combination of the low and high value of true productivity. (See Equation (2.16) and Proposition 1.)

The correlation between true productivity, z, and asset prices, q, falls from 0.9990 in the full information setup to 0.6678 in the incomplete information setup. This is due to booms-busts induced by the imperfection of information, which gives rise to misperceptions regarding the true state of productivity. In the full information case, all of the cycles are driven by changes in true productivity and noise shocks have negligible effects on asset prices. Although most of the booms and busts in the incomplete information scenario are also due to changes in true productivity, there is a significant number of optimism-pessimism driven cycles.

The autocorrelation coefficient of \tilde{z} is 0.5532 which suggests that transitory shocks have persistent effects on beliefs. This occurs because investors cannot distinguish the component of shocks that is persistent from the component that is transitory. The belief updating structure is the key element in the model that induces persistence: the previous period’s posteriors are current period’s priors.

Another important observation from Table 3.2 is the decrease in the correlation between dividends and the current account going from full information to imperfect information (0.90 vs. 0.58). In response to a positive dividend shock, domestic investors would like to increase their asset position so as to smooth consumption
over time and *in addition*, their expectations for asset returns increase since they observe a positive signal. Foreign investors are modeled not to have a consumption smoothing motive therefore, for them only the second effect (positive signal) is present and this effect is in fact stronger than their domestic counterparts because they bid more aggressively for the asset when there is a positive signal due to their risk neutrality. Overall, we find that usually the first effect is greater than the second, and therefore, the model produces a procyclical current account. However, as we mentioned the procyclicality is lower compared to the full information scenario where only the first effect is present.

Figure 3.3: Time series simulation for the case of full information.

Figures 3.3 and 3.4 show simulated asset prices, productivity, and consumption
Figure 3.4: Time series simulation for the case of incomplete information.
under full information and incomplete information, respectively. In the full information case, swings in asset prices match the swings in productivity and shocks to the transitory component of dividends have minimal effects on prices. Without the information role of dividends, in response to a negative noise shock domestic investors would like to be net sellers so as to intertemporally smooth their consumption and thus at equilibrium asset prices fall. However, this effect on prices is small and not visible in the figure. In the incomplete information scenario, asset prices fluctuate both with true productivity and with transitory shocks. Noisy signals thus can induce cycles driven by misperceptions among investors regarding true productivity. In addition, as mentioned before, the volatility of consumption increases substantially when we introduce informational imperfections.

In Figure 3.5, we plot the conditional forecasting functions starting from a state where investors are optimistic (first column) and where they are pessimistic (second column). In the optimistic scenario we set the state variables to $(\alpha, \tilde{z}, d) = (0.840, 0.017, 0.958)$: that is, beliefs are $\tilde{z} = \max(\tilde{z})$; dividends are set to signal that the productivity is low; $d = e^{z}$ and the domestic investors’ asset position is set to its long-run mean. The pessimistic scenario is set to start at $(\alpha, \tilde{z}, d) = (0.840, -0.042, 0.958)$. Hence, these scenarios are identical except for the initial beliefs.

In the figures for consumption and asset prices, the vertical axes show percentage deviations from long-run means. In the figure for the current account, the vertical axis shows the ratio of the current account to dividends in percentage terms. On impact in period one, the economy with optimistic investors is characterized by a
Figure 3.5: Forecasting functions conditional on $\alpha = 0.840$, $d = z^L$, $\tilde{z} = z^H$ (first column), and $\tilde{z} = z^L$ (second column).
current account deficit as well as a boom in consumption and asset prices. In period two, however, consumption falls sharply below its mean by 1.5% and the current account turns to a surplus of roughly 2.5%. The prices also adjust downwards but the adjustment is more gradual than those of consumption and the current account. After the second period, all variables slowly and monotonically converge to their long-run means.

The dynamics of the model economy starting with optimistic investors are similar to that of an emerging market in the period before a crisis. As documented in Chapter 1, pre-crisis periods are generally characterized by current account deficits as well as consumption and asset price booms. Our model is able to forecast a collapse in consumption and asset prices as well as reversal of the current account after this period of optimism.

The results in Table 3.2 suggested that the model produces a procyclical current account on average and in the imperfect information scenario this procyclicality is lower than in the full information case. Previously, we explained the model dynamics that lead to this result. The forecasting functions plotted in Figure 3.5 support the previous explanation and the results of Table 3.2. Particularly, the economy with optimistic investors has a current account deficit because, ceteris paribus, the higher the beliefs, the lower the current account.

Table 3.3 analyzes optimism and pessimism driven cycles in terms of their frequency, average duration, and magnitude. In order to conduct the analysis, we use simulated data to identify periods in which investors assign a probability greater than 0.5 to productivity being high (low) even though the true productivity is low

35
Table 3.3: Analysis of optimism (pessimism) driven booms (busts).

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>Booms</th>
<th>Busts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Prob}[\text{Prob}(z_t = z^i</td>
<td>I^U_t, z_t = z^j) > 0.5])</td>
<td>9.6800</td>
</tr>
<tr>
<td>(\text{Prob}[\text{Prob}(z_t = z^i</td>
<td>I^U_t, z_t = z^j) > 0.5</td>
<td>z_t = z^j])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration (quarters)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average duration</td>
<td>1.3552</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnitude (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>0.0664</td>
</tr>
<tr>
<td>(c)</td>
<td>5.5420</td>
</tr>
<tr>
<td>(CA)</td>
<td>3.2158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnitude (in std. deviations)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>2.3626</td>
</tr>
<tr>
<td>(c)</td>
<td>1.3143</td>
</tr>
<tr>
<td>(CA)</td>
<td>0.8320</td>
</tr>
</tbody>
</table>

(high) and call them optimism (pessimism) periods. In the second and third rows of Table 3.3, we report the ratio of the number of optimism (pessimism) periods to the total number of observations, and to the number of periods in which the state was low (high), respectively. We calculate the average duration by calculating the average length of the distinct optimism-pessimism periods. Given the inherent noisiness of signals obtained by calibrating the model to a typical emerging economy, this table reveals how often investors turn optimistic-pessimistic due to misleading signals, how long these periods last, and more importantly, whether and how much

\[5\text{Note that by doing so, we are picking up only those periods in which optimism and pessimism are due to misperceptions of investors.}\]
optimism (pessimism) periods are associated with booms (busts) in asset prices and consumption and current account deficits (surpluses).

Unconditionally, the model produces optimism driven booms with a 9.64% probability, whereas it produces pessimism driven busts with a 4.23% probability. Also, given that the true state is low, there is a 37.10% probability that the investors are optimistic and similarly, conditional on the true productivity being high, the investors are pessimistic with 5.72% probability. The former is more likely to happen because investors interpret positive signals to be more “credible” than negative signals due to the asymmetry of the Markov transition probability matrix. The optimism in response to a misleading positive signal is greater than the pessimism caused by a misleading negative signal with the same magnitude.

On average, the model predicts an average duration of 1.35 (1.21) quarters for the optimism (pessimism) driven booms (busts). These cycles are relatively short lived because these cycles hinge on the realization of a sequence of positive or negative signals.

In the same table, we also report the size of these booms-busts as percentage deviations from the value that corresponding variables would have taken if investors had correctly estimated the true productivity instead of being optimistic or pessimistic. The magnitude for the asset price boom is small when we look at it as percentage deviation because the equilibrium asset prices have low volatility. This magnitude is closer to what we observe in the data in terms of standard deviations. The boom periods are characterized by asset prices, consumption, and current account that are on average 2.36, 1.31, and 0.83 standard deviations above what they
would have been if the investors were not optimistic. The over-pricing as well as over-consumption are evident in this table. Especially, the over-pricing of the emerging market asset is significant: during the booms on average we observe prices that are more than two standard deviations higher that what they would have been if investors were not optimistic. Similarly, we see under-pricing and under-consumption during the busts, although their magnitudes are smaller in absolute value than those observed during booms due to the asymmetry of the Markov process.

3.4 From Miracles to Crises

In Figure 3.6 we plot the response of asset prices to a sequence of positive signals, particularly to one, two, three and four consecutive one standard deviation positive transitory shocks, respectively. In each of these scenarios, we set the true state to low \(z = z^L \) and with the one standard deviation transitory shocks, the signals can be written as \(d = z^L + \sigma \eta \). After the positive signals a truth revealing signal \((d = z^L) \) arrives. Figure 3.6 plots the response of asset prices as percentage deviations from its long run mean conditional on \(z = z^L \).

In line with the analysis of Chapter 2, Figure 3.6 establishes the relation between the size of the booms and the magnitude of the downward adjustment due to the truth revealing signal that arrives after the peak of the boom. Although the signal that is observed after the positive signals is exactly the same in all of these scenarios, asset prices respond differently because of learning dynamics, beliefs respond more to challenging signals compared to the confirming ones.
Figure 3.6: Sequences of positive signals
3.5 Turkey vs. U.S.

In order to establish the difference of a developed economy from a typical emerging market economy, we estimate the model’s parameters governing the informativeness of the signals using GDP data for the U.S. for the same time period using the same estimation procedure.\(^6\) Not surprisingly, the total variance of the U.S. GDP is significantly higher than that of Turkey (1.0121 vs. 4.5694).\(^7\) Table 3.4 reports the results of the estimation for the U.S. and also reproduces those for Turkey. Comparing $\sigma(z)$ and $\sigma(\eta)$ for these two countries reveals that the variance for the persistent component as well as the noise is lower for the U.S. In the model at hand, the informativeness of signals is determined by the ratio of these two variances, or the signal-to-noise ratio. The signal-to-noise ratios estimated for the US are $\frac{z^U-z^L}{\sigma_\eta} = 2.7053$ (vs. 1.6638 for Turkey) suggesting a more trivial learning for the case of the U.S.

To see the differences of these two economies visually, we plot time series simulations of the persistent and transitory shocks for the U.S. and Turkey in Figure 3.7, ensuring that the plots are in the same scale. In addition to the observations made before, one can also see in this figure that for the case of Turkey, switches between the low and high states of the persistent component are more frequent. This is also consistent with the common argument that emerging market economies face

\(^6\) U.S. data are from OECD’s web site, and are in constant prices, seasonally adjusted and HP filtered with a smoothing parameter 1600.

\(^7\) This volatility for the U.S. GDP is somewhat lower than the ones calculated by other studies in the literature because we only consider the 1987:1-2005:2 period which is characterized by a lower volatility compared the period before the 1980’s. We restrict our analysis to this time frame since quarterly Turkish data is available starting 1987.
Figure 3.7: Time series simulations for U.S. and Turkey.
Table 3.4: U.S. vs Turkey, parameters

<table>
<thead>
<tr>
<th></th>
<th>Turkey</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{HH}</td>
<td>0.8933</td>
<td>0.9117</td>
</tr>
<tr>
<td>P_{LL}</td>
<td>0.6815</td>
<td>0.9317</td>
</tr>
<tr>
<td>z^L</td>
<td>-0.0427</td>
<td>-0.0054</td>
</tr>
<tr>
<td>z^H</td>
<td>0.0175</td>
<td>0.0108</td>
</tr>
<tr>
<td>σ_η</td>
<td>0.0362</td>
<td>0.0060</td>
</tr>
<tr>
<td>$\frac{z^H-z^L}{\sigma_\eta}$</td>
<td>1.6638</td>
<td>2.7053</td>
</tr>
<tr>
<td>$\sigma(z)$</td>
<td>2.5884</td>
<td>0.8109</td>
</tr>
<tr>
<td>$\sigma(\eta)$</td>
<td>3.6341</td>
<td>0.6124</td>
</tr>
<tr>
<td>$\sigma(d)$</td>
<td>4.5694</td>
<td>1.0121</td>
</tr>
</tbody>
</table>

Table 3.4 documents the magnitude, frequency and the duration of booms and busts due to misperceptions of investors for the cases of U.S. and Turkey. Definitions of optimism and pessimism and all of the calculations are the same as those of Table 3.3. The first two rows of the table reveal that the unconditional and conditional probabilities of both booms and busts are lower for the case of U.S. compared to Turkey. This is mainly driven by the higher signal-to-noise ratio estimated for the U.S. leading to more informative signals and making it less likely for the investors to be misled. Another observation is the reversed asymmetry, for Turkey optimism
Table 3.5: U.S. vs Turkey, booms and busts

<table>
<thead>
<tr>
<th></th>
<th>Turkey</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability (%)</td>
<td>Booms/Busts</td>
<td>Booms/Busts</td>
</tr>
<tr>
<td>(\text{Prob})</td>
<td>(\text{Prob}) (z_t = z^i \mid I_U^t, z_t = z^j) > 0.5</td>
<td>9.6800/4.2300</td>
</tr>
<tr>
<td>(\text{Prob})</td>
<td>(\text{Prob}) (z_t = z^i \mid I_U^t, z_t = z^j) > 0.5 \mid z_t = z^j</td>
<td>37.1023/5.7232</td>
</tr>
<tr>
<td>Duration (quarters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average duration</td>
<td>1.3552/1.2118</td>
<td>1.1383/1.1163</td>
</tr>
<tr>
<td>Magnitude (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q)</td>
<td>0.0664/-0.0537</td>
<td>0.0724/-0.0633</td>
</tr>
<tr>
<td>(c)</td>
<td>5.5420/-5.3174</td>
<td>1.1825/-0.8576</td>
</tr>
<tr>
<td>(CA)</td>
<td>3.2158/-1.2994</td>
<td>1.8730/-1.0329</td>
</tr>
<tr>
<td>Magnitude (in std. deviations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q)</td>
<td>2.3626/-1.9134</td>
<td>1.5894/-1.3924</td>
</tr>
<tr>
<td>(c)</td>
<td>1.3143/-1.2764</td>
<td>1.1498/-0.8475</td>
</tr>
<tr>
<td>(CA)</td>
<td>0.8320/-0.3362</td>
<td>0.5062/-0.2792</td>
</tr>
</tbody>
</table>

Driven booms occur with a higher probability than busts whereas pessimism driven busts are more likely for the U.S. A careful observation of Table 3.4 reveals that the low state is slightly more persistent than the high state (comparing \(P_{LL} \) with \(P_{HH} \)) for the U.S. which is in contrast with the case of Turkey. This difference in the Markov transition matrices estimated for these countries accounts for the reversed asymmetry.

In terms of the durations, the cycles generated by the model calibrated Turkey are on average longer than those generated by the model calibrated to the U.S.
Noisier signals for the case of Turkey make it more likely for the investors to receive consecutive misleading signals and extend the time it takes for them to correct their beliefs leading to longer misperceptions driven booms and busts.

The magnitude of consumption booms/busts are significantly larger for Turkey than the U.S. but this result does not hold for asset prices. The higher signal-to-noise ratio for the U.S. leads to a higher asset price volatility.\(^8\) In units of the standard deviations of the corresponding variables reported in the last three rows, all of the magnitudes are larger for the case of Turkey.

3.6 Sensitivity Analysis

We document the long run business cycle moments of the model with different calibrations for the noisiness of the signals, \(\sigma_\eta\), and trading costs, \(a\) and \(\theta\). The third column of Table 3.6 shows the results with \(\sigma_\eta = 0.0265\) and we compare these results with those of the baseline model with \(\sigma_\eta = 0.0362\) reproduced in the second column.\(^9\) With lower \(\sigma_\eta\), the standard deviation of dividends, consumption and the current account fall by 85, 20, and 27 basis points, respectively. Average consumption among domestic investors increases due to the lower volatility of dividends and the associated decrease in uncertainty regarding future asset returns.

Lower \(\sigma_\eta\) implies that the signals are more informative and credible. Therefore, learning is faster compared to the baseline scenario. This leads to less persistence in beliefs. The autocorrelation of beliefs drops down to 0.54 from 0.55 in the baseline.

\(^8\)Remember that the full information model produces more volatile asset prices than the incomplete information as documented in Table 3.2.

\(^9\)With \(\sigma_\eta = 0.0265\) the signal-to-noise ratio increases to 2.26 from 1.66 in the baseline scenario.
Table 3.6: Sensitivity analysis, simulated data is logged and linearly detrended.

<table>
<thead>
<tr>
<th>Incomplete Information</th>
<th>Baseline</th>
<th>$\sigma_\eta = 0.0265$</th>
<th>$a = 0.002$</th>
<th>$\theta = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(d)$</td>
<td>1.0036</td>
<td>1.0036</td>
<td>1.0036</td>
<td>1.0036</td>
</tr>
<tr>
<td>$E(c)$</td>
<td>0.8419</td>
<td>0.8472</td>
<td>0.8663</td>
<td>0.8417</td>
</tr>
<tr>
<td>$E(q)$</td>
<td>83.0617</td>
<td>83.0937</td>
<td>82.9521</td>
<td>83.0636</td>
</tr>
<tr>
<td>$E(\alpha)$</td>
<td>0.8397</td>
<td>0.8448</td>
<td>0.8637</td>
<td>0.8398</td>
</tr>
<tr>
<td>$E(CA)$</td>
<td>0.0001</td>
<td>0.0001</td>
<td>-0.0001</td>
<td>-0.0001</td>
</tr>
<tr>
<td>$\sigma(z)$</td>
<td>2.5884</td>
<td>2.5884</td>
<td>2.5884</td>
<td>2.5884</td>
</tr>
<tr>
<td>$\sigma(\eta)$</td>
<td>3.6341</td>
<td>2.6512</td>
<td>3.6341</td>
<td>3.6341</td>
</tr>
<tr>
<td>$\sigma(d)$</td>
<td>4.5514</td>
<td>3.6997</td>
<td>4.5514</td>
<td>4.5514</td>
</tr>
<tr>
<td>$\sigma(c)/E(c)\ (%)$</td>
<td>4.2168</td>
<td>4.0287</td>
<td>4.4765</td>
<td>4.2153</td>
</tr>
<tr>
<td>$\sigma(q)/E(q)\ (%)$</td>
<td>0.0283</td>
<td>0.0291</td>
<td>0.0288</td>
<td>0.0285</td>
</tr>
<tr>
<td>$\sigma(CA)\ (%)$</td>
<td>3.8935</td>
<td>3.7166</td>
<td>4.5698</td>
<td>3.8472</td>
</tr>
</tbody>
</table>

$corr(d, c)$ | 0.4425 | 0.4318 | 0.2163 | 0.4519 |
$corr(d, q)$ | 0.8327 | 0.8505 | 0.8038 | 0.8313 |
$corr(d, \alpha')$| 0.1655 | 0.1403 | 0.0216 | 0.2064 |
$corr(d, CA)$ | 0.5801 | 0.6032 | 0.6591 | 0.5751 |
$corr(\tilde{z}, \tilde{z}-1)$ | 0.5532 | 0.5407 | 0.5532 | 0.5532 |
$corr(z, q)$ | 0.6678 | 0.7282 | 0.6694 | 0.6761 |

model. In addition, the probability of optimism-pessimism driven cycles falls leading to a stronger correlation between asset prices and true productivity.

The fourth column of the same table presents the results for the scenario with higher per trade costs, $a = 0.002$. The standard deviation of prices, consumption, and the current account increase by 0.05, 26, and 67 basis points, respectively. Due to higher per trade costs on the foreign investors’ side, domestic investors hold more
of the asset in equilibrium, leading to higher mean consumption but more volatile consumption.

Analysis of the scenario with no recurrent costs, $\theta = 0$, is reported in the fifth column. The results remain largely unchanged except for the slight drops in the current account volatility and the correlation of the current account with dividends.
Chapter 4

Asymmetric Information

In this section we modify the baseline incomplete information model by assuming that domestic investors observe the true state of productivity but that the signal extraction problem facing the foreign investors’ remains identical to that in the previous section. The aim of this exercise is to investigate whether the results for the incomplete information case hinge on the informational homogeneity of investors (i.e., on whether the results change when the investors are asymmetrically informed and they “disagree” on the state of the economy.)

The information set of domestic investors as of time t, I_t^I, is now defined as:

$$I_t^I \equiv \{d_t, d_{t-1}, \ldots, z_t, z_{t-1}, \ldots\}.$$ \hspace{1cm} (4.1)

The foreign investors’ information set is a subset of domestic investors’, $I_t^U \subset I_t^I$, for $\forall \ t$. Domestic investors maximize the same objective function as before, but conditional on the information set in Equation (4.1) subject to Equation (2.2) and taking the evolution of foreign investors’ beliefs, $\tilde{z'} = \phi(\tilde{z}, d')$, as given. Even though they are fully informed, domestic investors keep track of foreign investors’ beliefs, as they contain information useful for predicting future asset prices.

1Since the information sets of investors can be hierarchically ranked, we do not face an “infinite regress problem”; i.e., agents do not forecast the forecasts of other agents, avoiding an infinitely dimensional belief space.
The objective function and belief updating process of the foreign investors are the same as in the previous setup. Contrary to conventional models in which prices reveal information, we abstract from the informational role of prices. This assumption is implicit in the belief updating equations, where the only signals considered are the realizations of dividends. One justification for this assumption is that, as long as prices are not fully revealing, which is likely to be the case even in developed country asset markets, asset prices will be sensitive to the misperceptions of uninformed investors. Wang (1994) shows that this is the case using a model with asymmetric information. In Wang’s model, the equilibrium price has an informational role and is a linear function\(^2\) of the return from the private investment opportunity, the persistent component of dividends (which is what the uninformed wish to know about), and the uninformed investors’ beliefs. When prices are partially revealing, they act as a device that transmits information from the informed to the uninformed, lowering the informational gap between the two. In a model in which prices do not play any informational role, this gap will be larger compared to an identical model in which prices reveal information. Our strategy to deal with this problem is to calibrate the model so that dividends are ‘very’ informative and reveal sufficient information to prevent the informational gap from becoming too large.

There are two uncertainties faced by domestic households in this setup: the evolution of the true productivity (which enters the problem directly) and the beliefs of foreign investors (which enters indirectly). The latter enters the domestic

\(^2\)The model is solved analytically assuming CARA utility and Normally distributed returns.
investors’ problem since the introduction of imperfect information to the foreign investors’ problem has implications for the domestic investors’ problem as well. The beliefs of foreign investors affect asset prices and are persistent. They contain information for forecasting next period’s prices. Domestic investors treat these beliefs as a state variable and form expectations about the following period’s beliefs. However, due to their advantage in separating persistent shocks from noise, on average their forecasts of future beliefs are more accurate than those of their foreign counterparts’. Mathematically,

Proposition 3 \(\{ E \left[E[\tilde{z}_{t+1} | I'_t] - \tilde{z}_{t+1} \right] \}^2 < \{ E \left[E[\tilde{z}_{t+1} | I'_t] - \tilde{z}_{t+1} \right] \}^2 \).

Proof See Appendix.

4.1 Quantitative Analysis

With asymmetric information, the total dividend is not a sufficient state variable; \(z \) and \(\eta \) enter as separate state variables. The dynamic programming representation of the domestic households’ problem is:

\[
V(\alpha, \tilde{z}, \eta, z) = \max_{\alpha', c} \left[u(c) + \beta E[V(\alpha', \tilde{z}', \eta, z' | I')] \right]
\]

subject to

\[
c + \alpha' q(\alpha, \tilde{z}, \eta, z) = \alpha q(\alpha, \tilde{z}, \eta, z) + \alpha d
\]

and

\[
\tilde{z}' = \phi(\tilde{z}, d')
\]
for given prices $q(\alpha, \tilde{z}, \eta, z)$. In order to solve the problem numerically, we substitute
for consumption using the budget constraint, substitute for \tilde{z}' using the evolution
of beliefs, and rewrite the problem as follows for $i, j \in \{H, L\}$ and $i \neq j$:

$$V(\alpha, \tilde{z}, \eta, z^i) = \max_{\alpha'} u(\alpha q(\alpha, \tilde{z}, \eta, z) + \alpha d - \alpha' q(\alpha, \tilde{z}, \eta, z)) +$$

$$\beta P_{ii} \int V(\alpha', \phi(\tilde{z}, d'), \eta', z^i) f(d'|z^i) dd' +$$

$$\beta P_{ij} \int V(\alpha', \phi(\tilde{z}, d'), \eta', z^j) f(d'|z^j) dd'. \quad (4.5)$$

Table 4.1 documents the long run moments of the simulated data. The third
column shows the results for the asymmetric information scenario, whereas the
second column repeats the results of the incomplete information case for comparison.
The most significant difference in the long run moments of these two setups is the
current account volatility and its correlation with dividends. The standard deviation
of the current account increases by 7% and its correlation with dividends drops from
0.58 in incomplete information scenario to -0.40 in the asymmetric information case.
This findings suggests that the asymmetric information setup leads to more frequent
trade and higher trading volume because agents trade not only due to differences in
their objective functions but also due to differences in their perceptions of the current
state and in their expectations regarding future returns. Unlike in the incomplete
information setting, domestic investors in the asymmetric information setup can
make capital gains by better predicting the following period’s prices. Indeed, they
have an incentive to “run against the wind” to make capital gains.

Being able distinguish the transitory shocks from the permanent makes asset
Table 4.1: Simulations for the asymmetric information setup; simulated data are logged and linearly detrended.

<table>
<thead>
<tr>
<th></th>
<th>Incomplete Information</th>
<th>Asymmetric Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(d)$</td>
<td>1.0032</td>
<td>1.0032</td>
</tr>
<tr>
<td>$E(c)$</td>
<td>0.8419</td>
<td>0.8503</td>
</tr>
<tr>
<td>$E(q)$</td>
<td>83.0617</td>
<td>83.0609</td>
</tr>
<tr>
<td>$E(\alpha)$</td>
<td>0.8397</td>
<td>0.8481</td>
</tr>
<tr>
<td>$E(CA)$</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>$\sigma(z)$</td>
<td>2.5884</td>
<td>2.5884</td>
</tr>
<tr>
<td>$\sigma(\eta)$</td>
<td>3.6341</td>
<td>3.6341</td>
</tr>
<tr>
<td>$\sigma(d)$</td>
<td>4.5514</td>
<td>4.5514</td>
</tr>
<tr>
<td>$\sigma(c)/E(c)$ (%)</td>
<td>4.2168</td>
<td>4.2227</td>
</tr>
<tr>
<td>$\sigma(q)/E(q)$ (%)</td>
<td>0.0283</td>
<td>0.0285</td>
</tr>
<tr>
<td>$\sigma(CA/d)$ (%)</td>
<td>3.8935</td>
<td>11.9711</td>
</tr>
<tr>
<td>$corr(d, c)$</td>
<td>0.4425</td>
<td>0.2505</td>
</tr>
<tr>
<td>$corr(d, q)$</td>
<td>0.8327</td>
<td>0.8322</td>
</tr>
<tr>
<td>$corr(d, \alpha')$</td>
<td>0.1655</td>
<td>0.0513</td>
</tr>
<tr>
<td>$corr(d, CA)$</td>
<td>0.5801</td>
<td>-0.4018</td>
</tr>
<tr>
<td>$corr(\tilde{z}, \tilde{z}_{-1})$</td>
<td>0.5532</td>
<td>0.5532</td>
</tr>
<tr>
<td>$corr(z, q)$</td>
<td>0.6678</td>
<td>0.5681</td>
</tr>
</tbody>
</table>

investment less risky for domestic investors. On average, domestic investors demand more of the asset. In response to a positive transitory component shock, the domestic investors would like to buy more of the asset in order to smooth consumption. Their incentives to increase asset holdings are stronger than under incomplete information since they do not face the risk of being misled by a noisy signal. Hence, on average, their demand for the asset is higher.
Domestic investors’ asset demand decision is affected through two channels in response to transitory shocks. First, negative (positive) transitory shocks imply low (high) dividends and hence the domestic investors would like to become net sellers (buyers) of the asset in order to smooth their consumption over time. This lowers (increases) the demand of domestic investors, and it is present in the full information case as well.

The second effect arises due to the capital gain opportunity for domestic investors who have an informational advantage over their foreign counterparts. When the asset is undervalued (overvalued) due to the misperceptions of foreign investors, domestic investors know that this is the result of a transitory shock, and that prices will eventually correct. As a result, they would like to use the opportunity to buy (sell) the asset when the prices are low (high) due to the pessimism (optimism) of foreign investors. We find that on average the capital gain opportunity dominates the consumption smoothing effect and we find a negative correlation between the current account and dividends.
Chapter 5

Conclusion

The boom-bust cycles of emerging economies suggest that periods of apparent prosperity in these countries might contain the seeds of crises. This thesis explores this possibility using an open economy equilibrium asset pricing model with imperfect information in which agents do not know the true state of productivity in the economy. The model proposed in this thesis can endogenously generate periods of optimism characterized by booms in asset prices and consumption followed by sudden reversals, and sensitivity to negative signals that increases with, and arises from, investor optimism attained prior to the negative signal. These results are due to the fact that informational frictions generate a disconnect between country fundamentals and asset prices. That is, busts (booms) in asset markets can occur even though the fundamentals of the economy are strong (weak). Asset prices display persistence in response to transitory shocks since investors cannot perfectly identify the underlying state of productivity. Due to the additional uncertainty created by informational frictions, the volatility of the emerging economy’s consumption increases by 2 percentage points compared to the full information scenario. In addition, periods with high levels of optimism are more likely to be associated with current account deficits than periods of pessimism.

In addition, this thesis quantifies the signal-to-noise ratios of a typical emerg-
ing market economy and a developed economy and establishes that informational frictions are more prevalent for emerging markets. Based on this difference, we show that emerging markets are more likely to experience booms and busts due to misperceptions of investors. Also, these cycles tend to last longer and have larger magnitudes compared to those of the U.S.

Although the informational frictions introduced in this thesis can produce booms and busts in asset prices and consumption due to shifts in investor confidence, these booms and busts are short lived and are of about the same size as regular business cycles. In addition, even though the introduction of imperfect information provides an improvement in terms of matching the volatility of consumption and the current account dynamics observed in the data, the model cannot account for the volatility of asset prices.

The role of informational frictions in understanding emerging market regularities is an area ready for further research. For instance, the model presented in this thesis endogenously produces sensitivity to negative signals given an exogenous sequence of positive signals. We could think of producing an endogenous sequence of positive signals by introducing strategic information manipulation into the model, especially prevalent during the run-ups to crises. If there is initially some sensitivity due to short-term and/or dollarized debt, a policymaker might find it optimal to manipulate or screen the signals to send positive signals. However, this would come at a cost because, by taking out the negative signals and sending only positive ones, the sensitivity of the economy to a sudden downward adjustment would increase. This would create a feedback mechanism in which the policymaker, con-
cerned about the country’s ability to continue borrowing in international markets, has a self-perpetuating incentive to hide negative information about the economy from the public.
Appendix A

Proofs

Throughout this section, we assume that \(i, j \in \{L, H\} \) and \(i \neq j \).

Proof of Proposition 1

Denote the prior \(Pr(z_t = z^i | I_{t-1}) = p_t(i) \) and the Normal density function \(f(d_t | z_t = z^i) = f(i) \) for \(i \in \{L, H\} \).

Priors:

Evolution of \(p_t(i) \) is characterized by:

\[
p_t(i) = \frac{p_{t-1}(i)f(i)P_{ii} + [1 - p_{t-1}(i)]f(j)P_{ji}}{p_{t-1}(i)f(i) + [1 - p_{t-1}(i)]f(j)}.
\]

- \(p_t(i) = 1 \iff p_{t-1}(i)f(i)P_{ii} + [1 - p_{t-1}(i)]f(j)P_{ji} = p_{t-1}(i)f(i) + [1 - p_{t-1}(i)]f(j) \)

and \(p_{t-1}(i)f(i) + [1 - p_{t-1}(i)]f(j) \neq 0 \). Given \(P >> 0 \) (see Assumption), the first condition is satisfied iff

\[
p_{t-1}(i) = 0 \text{ and } f(j) = 0 \text{ or } p_{t-1}(i) = 1 \text{ and } f(i) = 0,
\]

both of which violate the second condition.

- \(p_t(i) = 0 \iff f(j)P_{ji} + p_{t-1}(i)[f(i)P_{ii} - f(j)P_{ji}] = 0 \) and \(p_{t-1}(i)f(i) + [1 - p_{t-1}(i)]f(j) \neq 0 \). The first condition is satisfied iff

\[
f(j) = 0 \text{ and } f(i)P_{ii} = f(j)P_{ji}.
\]

These two hold iff \(f(j) = 0 \) and \(f(i) = 0 \), in which case the second condition above does not hold.
\(f(j) = 0 \) and \(p_{t-1} = 0 \). In this case, second condition is again violated.

See Liptser and Shiryayev (1977) Ch. 9 and David (1997) for the proof of entrance boundaries in continuous time.

Posterioris:

Rewrite Equation (2.13):

\[
Pr(z_t = z_i | I_t^U) = \frac{p_{t-1}(i)f(i)}{p_{t-1}(i)f(i) + [1 - p_{t-1}(i)]f(j)}.
\]

Clearly, all terms on the right hand side of the equation are positive: \(p > 0 \) (the proof above) and \(f > 0 \) (Normal distribution).

Proof of Proposition 2

First Argument: We need to show that \(\frac{\partial \phi(\tilde{z}_t, t+1)}{\partial \tilde{z}_t} > 0 \) for \(\forall \tilde{z}_t \). Denote the posterior probabilities \(Pr(z_t = z^i | I_t^U) = \gamma_t \) and \(f(d_{t+1}|z_t = z^i) = f(i) \). We start with expressing \(\gamma_{t+1} \) as a function of \(\gamma_t \):

\[
\gamma_{t+1} = \frac{[\gamma_t P_{ii} + (1 - \gamma_t) P_{ji}]f(i)}{[\gamma_t P_{ii} + (1 - \gamma_t) P_{ji}]f(i) + [1 - \gamma_t P_{ii} - (1 - \gamma_t) P_{ji}]f(j)}.
\] (A-1)

Also:

\[
\frac{\partial \phi(\tilde{z}_t, d_{t+1})}{\partial \tilde{z}_t} = \frac{\partial \tilde{z}_{t+1}}{\partial \tilde{z}_t} = \frac{\partial \tilde{z}_{t+1}}{\partial \gamma_{t+1}} \frac{\partial \gamma_{t+1}}{\partial \gamma_t} \frac{\partial \gamma_t}{\partial \tilde{z}_t}.
\] (A-2)

Remember that \(\tilde{z}_t = \gamma_t z^i + (1 - \gamma_t) z^j \), so we can calculate the first and the third
expressions in the above equation:

\[\frac{\partial \tilde{z}_{t+1}}{\partial \gamma_{t+1}} = z^i - z^j, \quad \frac{\partial \gamma_t}{\partial \tilde{z}_t} = \frac{1}{z^i - z^j}. \] (A-3)

The second expression can be calculated using Equation (A-1). After some manipulation:

\[\frac{\partial \gamma_{t+1}}{\gamma_t} = \frac{f(z^i)f(z^j)(P_{ii} - P_{ji})}{\{[\gamma_t P_{ii} + (1 - \gamma_t)P_{ji}]f(i) + [1 - \gamma_t P_{ii} - (1 - \gamma_t)P_{ji}]f(j)\}^2}. \] (A-4)

Plug in Equations (A-3) and (A-4) into Equation (A-2). To complete the proof, we need to establish \(f(z^i), f(z^j) > 0 \) and \(P_{ii} > P_{ji} \) for \(\forall z^i, z^j \) since the Normal distribution is unbounded. \(P_{ii} > P_{ji} \) follows from Assumption 2.3.

Second Argument: We need to show that \(\frac{\partial \phi(., d_{t+1})}{\partial d_{t+1}} > 0 \). Write:

\[\frac{\partial \phi(., d_{t+1})}{\partial d_{t+1}} = \frac{\partial \tilde{z}_{t+1}}{\partial d_{t+1}} = \frac{\partial \gamma_{t+1}}{\partial \tilde{z}_{t+1}} \frac{\partial \gamma_{t+1}}{\partial d_{t+1}}. \] (A-5)

Denote \(A = P_{ij} + \gamma(P_{ii} - P_{ji}) \). Then we can rewrite Equation (A-1):

\[\gamma_{t+1} = \frac{Af(i)}{Af(i) + (1 - A)f(j)} = \frac{1}{1 + \frac{1-A}{A} \frac{f(j)}{f(i)}}. \] (A-6)

Write \(f(i) \) and \(f(j) \) explicitly:

\[\frac{f(j)}{f(i)} = e^{\frac{1}{2\sigma^2}[(d_{t+1} - z^i)^2 - (d_{t+1} - z^j)^2]} = e^{\frac{(2d_{t+1} - z^i)(z^i - z^j)}{2\sigma^2}}. \]
Then we can calculate its derivative with respect to d_{t+1}:

$$\frac{\partial [f(j)/f(i)]}{\partial d_{t+1}} = \frac{z^j - z^i}{\sigma^2} e^{\frac{(2d_{t+1} - z^j - z^i)(z^j - z^i)}{2\sigma^2}}. \quad (A-7)$$

Rewrite Equation (A-5):

$$\frac{\partial \tilde{z}_{t+1}}{\partial d_{t+1}} = \frac{\partial \tilde{z}_{t+1}}{\partial \gamma_{t+1}} \frac{\partial \gamma_{t+1}}{\partial [f(j)/f(i)]} \frac{\partial [f(j)/f(i)]}{\partial d_{t+1}}. \quad (A-8)$$

We know the first expression from Equation (A-2). The second expression can be calculated using Equation (A-6):

$$\frac{\partial \gamma_{t+1}}{\partial [f(j)/f(i)]} = \frac{-(1 - A)/A}{(1 + [(1 - A)/A][f(j)/f(i)])^2}. \quad (A-9)$$

Plugging in Equations (A-2), (A-7) and (A-9) into (A-8) and rearranging we get:

$$\frac{\partial \tilde{z}_{t+1}}{\partial d_{t+1}} = \left[\frac{z^i - z^j}{\sigma[1 + (1 - A)/A(f(j)/f(i))]}\right]^2 e^{\frac{(2d_{t+1} - z^j - z^i)(z^j - z^i)}{2\sigma^2}} > 0. \quad \blacksquare$$

Proof of Proposition 3

Assume $z_t = z^i$ without loss of generality. Write:

$$E[\tilde{z}_{t+1} | I^I_t] = E[\phi(\tilde{z}_t, d_{t+1}) | I^I_t] = P_{ii} \int \phi(\tilde{z}_t, z^i + \eta)d\eta + P_{ij} \int \phi(\tilde{z}_t, z^j + \eta)d\eta. \quad (A-10)$$

Since I^I_t includes the history of all variables as well as the distributions governing them, and since the informed agents use their information rationally, we have
\(E[\tilde{z}_{t+1}|I^U_t] = E[\tilde{z}_{t+1}] \). This implies \(\{E[E[\tilde{z}_{t+1}|I^U_t] - \tilde{z}_{t+1}]\}^2 = 0 \). To complete the proof, we need to show that \(\{E[E[\tilde{z}_{t+1}|I^U_t] - \tilde{z}_{t+1}]\}^2 > 0 \). Write

\[
\{E[E[\tilde{z}_{t+1}|I^U_t] - \tilde{z}_{t+1}]\}^2 = \{E[E[\tilde{z}_{t+1}|I^U_t]|I^U_t] - E[\tilde{z}_{t+1}|I^U_t]\}^2.
\]

And write the expression for \(E[\tilde{z}_{t+1}|I^U_t] \) denoting posterior probabilities \(Pr(z_t = z^i|I^U_t) = \gamma_t \):

\[
E[\tilde{z}_{t+1}|I^U_t] = \gamma_t P_{ii} + (1-\gamma_t)P_{ji} \int \phi(\tilde{z}_t, z^i + \eta)d\eta + \gamma_t P_{ij} + (1-\gamma_t)P_{jj} \int \phi(\tilde{z}_t, z^j + \eta)d\eta
\]

(A-11)

Combine Equation (A-10), Equation (A-11), and \(P_{ij} = 1 - P_{ii} \) to write:

\[
\{E[\tilde{z}_{t+1}|I^U_t] - E[\tilde{z}_{t+1}|I^U_t]\}^2 = (1 - \gamma_t)^2 (P_{ii} + P_{jj} - 1)^2 \left[\int \phi(\tilde{z}_t, z^i + \eta)d\eta - \int \phi(\tilde{z}_t, z^j + \eta)d\eta \right]^2
\]

Clearly, \(\{E[\tilde{z}_{t+1}|I^U_t] - E[\tilde{z}_{t+1}|I^U_t]\}^2 \geq 0 \) with equality iff

- \(\gamma_t = 1 \) or

- \(P_{jj} = P_{ij} \) or

- \(\phi(\tilde{z}_t, z^i + \eta) = \phi(\tilde{z}_t, z^j + \eta) \)

Proposition 1 establishes that \(\gamma \in (0,1) \), which rules out condition 1. Condition 2 does not hold by assumption (see text). Finally, condition 3 is violated because \(z^L \neq z^H \) (see text) and \(\phi(.,.) \) is monotonically increasing in its second argument.
BIBLIOGRAPHY

