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The eye presents several anatomic and physiologic barriers that pose a major 

challenge for targeted drug delivery.  The primary causes of vision impairment and 

blindness result from posterior segment diseases and corneal diseases[1].  To tackle 

these sight-threatening diseases, a number of therapeutic methods have been 

investigated, ranging from topical eye drops to injections and implants.  Thus, the 

development of effective delivery systems depends upon the understanding of how 

the ocular barriers affect the pharmacokinetics of drugs.  In Part 1, investigation of 

the barriers to transscleral drug delivery was performed in a rabbit model, and the 

model demonstrated that the conjunctival lymphatic and blood vessels may be a 

predominant barrier to the delivery of triamcinolone acetonide to the vitreous.  In Part 

2, the pharmacokinetics of a cyclosporine episcleral implant for high-risk penetrating 

keratoplasties was also studied, and the implant was safe and effective at delivering 

therapeutic levels to the cornea and surrounding tissues. 
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Chapter 1: Introduction 

 

The main goal of ocular drug delivery is controlled release of therapeutic 

concentrations to specific tissues while avoiding systemic spread of the formulation.  

However, the eye presents several anatomic and physiologic barriers that pose a 

major challenge for targeted drug delivery, especially to the posterior segment.  The 

primary causes of vision impairment and blindness result from posterior segment 

diseases and corneal diseases [1].  To tackle these sight-threatening diseases, a 

number of therapeutic methods have been investigated, ranging from topical eye 

drops to injections and implants.  Thus, the development of effective delivery systems 

depends upon the understanding of how the ocular barriers affect the 

pharmacokinetics of drugs. 

 

Overview of Eye Anatomy  
 

The eye has two segments - a smaller, transparent anterior segment that makes up 

one-sixth of the eyeball, and an opaque, posterior segment that forms the remaining 

five-sixths of the eyeball (Figure 1-1)[2].   
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Figure 1-1: Anatomy of the eye.

Anterior Segment 
 

Conjunctiva 

The conjunctiva is a thin transparent mucous membrane that lines the inside of the 

eyelids and is reflected onto the anterior one-third of the eyeball.  The lining of the 

eyelids are referred to as palpebral conjunctiva and the eyeball layer as bulbar 

conjunctiva.  The transitional region, where the palpebral conjunctiva is reflected to 

become the bulbar conjunctiva and forms a sac, is called the fornix.  The conjunctiva 

is composed of two cellular layers, an epithelial layer and an underlying stromal 

layer.  The epithelial cells are connected by tight junctions that form a permeability 
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barrier, especially for hydrophilic compounds that are transported paracellularly [3].  

The stroma contains structural and cellular elements, including lymphatic vessels, 

blood vessels, and nerves.  The conjunctiva is loosely attached to the underlying 

sclera.   

 

Cornea 

The transparent cornea is the main structure responsible for light refraction, and its 

curvature is greater than the rest of the globe.  At the circumference of the cornea is 

the limbus, where the cornea becomes continuous with the sclera and the conjunctiva.  

Three cellular layers compose the cornea – the superficial epithelium, the thickest and 

most fibrous stroma, and the single-layered endothelium.  The epithelial cells are 

connected by tight junctions, similar to conjunctival epithelial cells, and also hinder 

movement of hydrophilic compounds [4].  This barrier represents the principle barrier 

to transcorneal transport.  Moreover, corneal permeability to hydrophilic molecules is 

one order of magnitude lower than the conjunctiva.  The transport of lipophilic 

compounds is the converse, where the permeability of the cornea increases with 

increasing lipophilicity [5].   

 

Iris and Lens 

The iris is a thin, circular, contractile diaphragm that controls the amount of light 

refraction through the lens, depending on the brightness of the environment [2].  It is 

pigmented and the central aperture forms the pupil.  The anterior surface of the 

biconvex transparent lens presses lightly against the iris.  The lens is responsible for 
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adjusting its dioptric power to allow distant and near objects to be focused on the 

retina.    

 

Trabeculum, Pars Plana, Ora Serrata 

The trabeculum is a meshwork of canals which function in the drainage of the 

anterior chamber to the circulation.  The angle formed by the trabecular meshwork, 

cornea, and iris is important for evaluating glaucoma.  The pars plana is the smooth 

and flat posterior surface of the ciliary body, a fibrous and muscular tissue that is 

continuous anteriorly with the peripheral margin of the iris and continuous posteriorly 

with the choroid.  Near the pars plana is the ora serrata, the anterior margin of the 

retina where the nervous tissues end.  Intravitreal injection of drugs and surgery are 

commonly performed through the pars plana due to its relative avascularity and 

anterior position to the retina [2, 6].  

 

Posterior Segment 
 
Sclera 

The sclera is the opaque fibrous layer covering the posterior five-sixths of the eyeball, 

and functions to protect the intraocular contents of the eye.  It is mainly composed of 

collagen, and a sparse population of fibroblasts, proteoglycans, and a few elastic 

fibers [7].  The avascular sclera is continuous with the cornea at the limbus. The 

anterior part of the sclera forms the “white” of the eye and is covered with the fibrous 

tissue of Tenon’s fascia and the conjunctiva.  The episclera, the outermost layer of the 

sclera, and Tenon’s fascia form a potential space called the episcleral space.  Scleral 
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permeation occurs through pores between the fibers and intracellular spaces, and 

permeability has been shown to depend more on molecular radius than lipophilicity 

[5] [8] [9].  Transscleral drug delivery to posterior segment targets have been 

investigated because the sclera is significantly more permeable than the cornea [4].   

 

Choroid 

The choroid is a thin vascular tissue that lines the inner surface of the sclera.  It 

extends from the optic nerve posteriorly to the ciliary body anteriorly, where it 

gradually thins.  The function of the choroid is to nourish the outer layers of the retina 

with its blood vessels.     

 

Vitreous Humor 

The vitreous is a colorless, transparent gel consisting of 98% water that fills the 

eyeball between the lens and the retina.  It also contains hyaluronic acid, amino acids, 

soluble proteins, salts, and type II collagen.  The vitreous functions to transmit light 

and contributes a small degree of dioptric power to the eye.     

 

 

Retina 

The retina, forming the internal layer of the eyeball, is where the optical image enters 

the visual system via phototransduction.  The outer layer (adjacent to the choroid) of 

the retina, composed of the retinal pigmented epithelium (RPE) absorbs light.  The 

inner layer consists of neurosensory cells including rods and cones.  At the center of 
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the posterior part of the retina is the oval, yellowish macula, which is the retinal area 

that provides for highest visual resolution.  One of the biggest drug penetration 

challenges is the blood-retina-barrier (BRB), which reduces the penetration of 

systemic drugs targeting the retina.  The BRB can be separated into an inner and outer 

barrier.  The tight junctions of the RPE form the outer barrier, restricting paracellular 

transport of polar solutes across the RPE from the choroid [9].  The inner BRB is due 

to the tight junctions in the endothelium of retinal vasculature.    

 

Optic Nerve, Optic Disc 

The optic nerve consists of the efferent axons of the retina that converge on the optic 

disc. These unmyelinated fibers run medially through the orbital cavity, into the 

lateral geniculate nucleus of the brain, and finally relayed to the visual cortex.  The 

optic nerve is surrounded by three meningeal sheaths, which are continuous with 

those surrounding the brain.   

  

Common Sight-threatening Diseases 
 

Age-related Macular Degeneration 
 

Age-related macular degeneration (AMD) is the leading cause of visual impairment 

in the United States among individuals over the age of 65 years, affecting more than 

1.75 million persons [10, 11].  AMD has two forms - wet and dry – and is caused by 

excessive aging of the RPE.   The wet form of AMD is characterized by choroidal 
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neovascularization and fluid accumulation in the subretinal space, which often leads 

to blindness.  Dry AMD, the more common form, is associated with drusen formation 

and RPE atrophy.  Drusens are small, yellowish deposits that form within the retina.  

The slow course of dry AMD leads to scar formation on the retina, which also impairs 

vision.  Wet AMD is often treated with photocoagulation, but there is currently no 

satisfactory treatment for dry AMD.   

 

 

Diabetic Retinopathy 
 

Forty percent of diabetic patients in the United States have some degree of diabetic 

retinopathy [12].  Diabetic retinopathy often leads to neovascularization, proliferative 

retinopathy (RPE dedifferentiation and proliferation in the vitreous that results in 

fibrous membrane formation and retinal detachment), and macular edema.  Macular 

edema is swelling of the macula due to subretinal fluid accumulation.  Diabetic 

retinopathy is treated with photocoagulation and vitrectomy, but earlier 

pharmacologic intervention with antiangiogenics and steroids are under investigation. 

 

Corneal Diseases 
 

The major causes of corneal blindness are corneal scar and active keratitis [13].  

Cornea scars often occur as result of keratitis, which includes corneal irritation, 

inflammation, and infection.  Infections on the cornea are caused by bacteria or fungi 
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following superficial corneal abrasions.  Corneal ulcers may also follow trauma, 

infections of other eye tissues, corneal disorders, and systemic disorders.  The only 

method to restore vision to a scarred cornea is keratoplasty, which have demonstrated 

high success rates with immunosuppresants. 
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Chapter 2: Ocular Drug Delivery 

 

Systemic Administration 
 

The systemic route of drug delivery to the eye is subject to the BRB, as it reaches the 

chorioretinal tissue via the blood circulation [9].  The BRB thus impedes the 

treatment of many retinal diseases.  High and frequent doses of systemically 

administered medications may be able to penetrate the BRB to provide therapeutic 

drug levels to the posterior segment; however serious systemic side effects may occur 

[14].  Therefore, it is important to consider localized drug delivery alternatives, which 

result in fewer adverse effects. 

 

Topical Administration 
 

Topical ophthalmic drops are the most common method used to administer treatments 

for ocular disease (Figure 2-1A); however, eye anatomy and physiology pose nearly 

insurmountable barriers for posterior segment delivery.  The two routes for topical 

delivery to the posterior segment are the corneal and conjunctival/scleral pathways.  

In both pathways, drug formulations are subject to solution drainage, tear dilution, 

tear turnover, conjunctival vasculature absorption and the corneal epithelium barrier.  

An aqueous dose leaves the precorneal area within 5 minutes of instillation in humans 

and less than 5% of the drug reaches intraocular tissues[9, 15].  
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 Figure 2-1: Principal methods of local drug delivery to the eye.

 

Controlled Release Systems 
 

Overview 
 

Controlled release systems, including ocular implants and particulate systems (i.e. 

microspheres, liposomes), are designed for optimal therapeutic efficacy. These 

systems should be biocompatible and properly sterilized to minimize the potential for 

an inflammatory reaction in the eye. In addition, controlled release systems should 

deliver drug at predictable and constant release rates to achieve therapeutic levels of 

drug to the target tissue with minimal toxicity to adjacent tissues. It is necessary for 

systems to be comfortable, preferably visible for inspection in the eye, while avoiding 
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blockage of the visual axis. Implants should be easily inserted and removed, if not 

bio-erodible [16] [17]; and must be cost-effective when compared with systemic 

administration of the same drug.  Particulate systems should be small enough to be 

injected through 20-23 gauge needles [7].  Drug stability is important and needs to be 

evaluated early during the system development.  

 

Injections 
 

Drug Formulations 

Delivery of drugs directly into the eye by intravitreal injection through the pars plana 

is an approach to achieve therapeutic levels of drug to treat retinal diseases (Figure 2-

1F) [18] [19] [20] However, given the short half life of most drugs injected into the 

vitreous, frequent injections 1–3 times per week are required to maintain therapeutic 

drug levels. As a result, intravitreal drug injections are very useful in treating acute 

bacterial infections of the eye that may require one or two injections, but are not well 

tolerated by patients that may require months or years of injections to treat chronic 

eye diseases such as age-related macular degeneration or cytomegalovirus- virus 

(CMV) retinitis, which is a common AIDS manifestation (Figure 2-2). Furthermore, 

frequent injections increase the risk of retinal detachment, vitreous hemorrhage, 

endophthalmitis, and cataracts [21] [22] [23]. 
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Figure 2-2: A. An external 
photograph of the eye showing 
an injection of an anti-viral 
medication into the vitreous 
cavity to treat CMV retinitis in 
a patient with advanced HIV-
infection. These injections are 
repeated twice per week. 
B. An external photograph of a 
rabbit eye showing the front of 
the eye with the pupil widely 
dilated. A corticosteroid 
medication (arrow) had been 
injected a week before and 
positioned in the vitreous cavity 
behind the lens.  
 

 

A safer alternative to intravitreal injections for drug delivery to the vitreous is the 

transscleral route achieved with a sub-Tenon’s injection.  Drug delivery through the 

sclera in in vitro systems shows adequate penetration of corticosteroids [24] and other 

lipophilic compounds [25].  However, the drug concentrations achieved in the 

humans vitreous are significantly lower than concentrations achieved by intravitreal 

injections [26, 27].  Thus, further study is necessary to understand the transscleral 

clearance mechanisms. 

 

 

12  
 



 

Particulate Systems 

Particulate systems that have been investigated for drug delivery to the anterior and 

posterior segments include micropheres, nanospheres, and liposomes [7, 28] [29-32] 

[33].  Microspheres and nanospheres are small particle made from biodegradable 

polymers and drug dispersed either homogenously or amassed at the center.  The 

particles remain at the injection site and release drug through diffusion, chemical 

reaction, polymer degradation, or ion-exchange mechanisms [34].  Liposomes are 

small biodegradable vesicles composed of one or more concentric lipid bilayers with 

aqueous drug at the center.  Particulate systems increase the drug retention time and 

release characteristics can be controlled, achieving higher concentrations in the 

aqueous or vitreous humor than from the parent drug [7, 34].   

 

 

Implants 
 

Intraocular implants for drug delivery are capable of bypassing the barriers to 

intraocular drug absorption and avoid frequent procedures required using intravitreal 

injection therapy. Drug release rates of implants can be controlled so that therapeutic 

drug levels are maintained in the eye, while avoiding toxic or subtherapeutic levels. 

Moreover, higher intraocular drug levels can be achieved using implants compared 

with systemic or topical administration making the drug more effective for treating a 

variety of retinal diseases [35]. Since the dose of drug released by intraocular 

implants is in the range of 0.5 to 10 micrograms per day, these small doses 
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significantly reduce the risk of systemic drug toxicity. Finally, ocular implants are 

more convenient for patients and reduces patient compliance issues with taking 

frequent eye drops or systemic medications [36].   

 

Drug delivery implants can be designed to deliver drug to different parts of the eye 

(Figure 2-1). The choice of implant design and location in the eye depends on the 

location of the disease. Since most of the current implants available clinically are 

diffusion-based, the closer the implant is located to the target tissue, the more drug 

will be delivered to that site. For example, an implant designed for the 

subconjunctival space will deliver higher drug concentrations to best treat diseases 

that affect the conjunctiva or sclera (Figure 2-1 C). Implants designed to directly 

deliver drug into the vitreous cavity (Figure 2-1 B, D, E, G) are used to treat retinal 

diseases. The decision to use one implant design over another may also be influenced 

by the surgical risks of implanting a particular device. For example, implants that 

require an incision leading to the vitreous cavity significantly increase the risk of 

vitreous hemorrhage, infection, and retinal detachment. Implants inserted in the 

subconjunctival space are associated with few complications especially if they are 

biodegradable and do not require removal. However, implants placed in the 

subconjunctival space may have some difficultly in treating retinal diseases because 

the sclera and choroid may pose a formidable obstacle to drug diffusion. Some 

subconjunctival implants using drugs with high scleral permeability have a reasonable 

potential to deliver drugs into the eye to treat retinal diseases. Passive solute diffusion 

through an aqueous pathway is the primary mechanism of drug permeation across the 
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sclera [15]. In vitro and in vivo flux studies have shown that sclera to be quite 

permeable to drugs, including monoclonal antibodies, with of a wide range of 

molecular weights up to 150 kilo Daltons [37] [38, 39]. Transscleral permeability is 

inversely related to the drug’s molecular weight; therefore, small molecule drugs are 

beneficial when delivering drugs from the subconjunctival space into the eye. 

 

Matrix Implants 

The matrix implant design for ocular implants typically consist of uniformly 

distributed drug in a nonreactive, bioerodible polymer [20] [40]. The most common 

polymer used is poly (lactic-glycolic acid) (PLGA), which is a copolymer of poly-

glycolic acid and poly-lactic acid. PLGA hydrolyzes into organic monomers of lactic 

acid and glycolic acid and is the same material used for manufacturing absorbable 

sutures. During the manufacturing process of matrix implants, some of the drug 

dissolves in the polymeric solution, but the majority remains in solid phase [40]. The 

relative concentrations of the polymers, such as the lactide:glycolide ratio in PLGA, 

as well as polymer weight ratios can be altered to adjust the drug release rate [41] 

[42] [43].  Furthermore, an additional polymer coating and holes in the implants can 

influence release rates [44]. The polymer coating slows release rates, and larger hole 

diameters, increases the surface area of release, which correlates with higher release 

rates. In addition, adjustments of drug release rate are dependent on drug properties. 

The use of insoluble drugs results in drug release that more closely relates to the 

dissolution rate of the matrix. Furthermore, the hydrophilicity of the polymer affects 

the release rate, as more controlled release is exhibited from hydrophobic polymers 
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[45]. The release of drug from matrix implants follows first-order kinetics i.e. the 

initial release is robust followed by a rapid decrease in release as the drug in the 

implant declines [46] [20]. Therefore, matrix style implants are most appropriate for 

eye conditions with acute onset, such as infectious endophthalmitis or post-operative 

inflammation, because these conditions are best treated with an initial loading dose of 

antimicrobials or corticosteroids followed by a gradual tapering of the medications 

over a defined period of time generally ranging from 1 day to 3 months. 

 

Reservoir Implants 
 
Reservoir implants deliver continuous amounts of drug over months to years, which 

is desirable for treatment of chronic eye diseases. These devices typically have a 

central core of drug, coated with a non-reactive polymer [40]. Although polymers 

used for reservoir implants are generally non-erodible, there are exceptions such as a 

bio-erodible reservoir ciprofloxacin implant for the treatment of intraocular bacterial 

infections [20]. Non-erodible silicone, ethylene vinyl acetate (EVA), and polyvinyl 

alcohol (PVA) are commonly used in reservoir devices. The primary polymers in the 

first extraocular implant (placed in the inferior conjunctival sac) used for drug 

delivery were EVA and PVA, developed by Alza Corporation (Mountain View, 

California) [47, 48] and marketed as the Ocusert® implant. The Ocusert released 

pilocarpine, a medication used in the treatment of glaucoma, over a 7-day period and 

was available in 2 different doses. The Ocusert improved patient compliance since 

pilocarpine eye drops were required every 4 hours to maintain adequate intraocular 

pressure control.   
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The application of different polymers to reservoir implants is determined primarily by 

the permeability of a given drug through the polymer. Silicone and PVA are freely 

permeable to a number of drugs while providing enough support to hold the drug 

reservoir together.  Silicone, used for the past 3 decades in the manufacture of a 5-

year releasing contraceptive implant (Norplant®, Wyeth Pharmaceuticals, 

Collegeville, Penn.), has been very attractive for use in eye implants because it is 

biocompatible, inexpensive, easy to handle, and has a long track record of safety in 

the medical field. PVA, a commonly used polymer in commercial eye drops, can be 

used in high concentrations (5 to 50%) to coat drug pellets. PVA can be heated up to 

200° C to cross-link the polymer, rendering it less soluble to drugs. The duration and 

temperature of the heat treatment can be varied to control the diffusion of drugs 

through the PVA. EVA is impermeable to most medications and used as a coating 

around the drug pellet to provide more controlled diffusion of the drug from the 

implant. The drug delivery depends on the water that diffuses through the polymer 

coating and dissolves part of the pellet forming a saturated drug solution. The drug 

then diffuses back out of the device and as long as the solution inside the device is 

saturated, the release rate is constant [49]. This mechanism allows the device to 

deliver a small burst of drug, followed by a steady-state release rate that persists until 

greater than 90% of the drug pellet has diffused through the polymer. The movement 

of drug through the polymer in reservoir implants is governed by Fick’s Law of 

Diffusion where the release rate is directly proportional both the surface area of the 

implant, the diffusivity (i.e. ability of a particular drug to transit through the 
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polymer), and indirectly proportional to the thickness of the polymeric coating [40]. 

The most important determinant of the longevity of a reservoir implant is the 

solubility of the drug in the pellet in the surrounding media. Typically, relatively 

insoluble drugs will give reservoir implants the longest release rates lasting from 6 

months to 5 years. Chronic eye diseases such as AMD and diabetic retinopathy are 

optimally treated with a constant level of drug release, or zero-order kinetics, 

delivered using reservoir implants. 

The ganciclovir implant was the first intraocular drug delivery implant available for 

humans and had a profound impact on treatment of CMV retinitis [50]. Clinical trials 

using the implant were started in 1990 and approval from the FDA occurred in 1996. 

Marketed under the trade name of Vitrasert® (Bausch and Lomb, Rochester, NY), the 

implant was constructed by coating a compressed ganciclovir pellet with PVA, which 

is permeable to the drug, and then partially coated with EVA, which is impermeable 

to the drug, to reduce the release rate (Figure 2-3). The pellet complex was attached 

to a PVA suture stub, heated to partially cross-link the PVA and adjust the in vitro 

release rate to 1.4 microgram/hr. In vivo, the intravitreal drug levels were 4.1 

microgram/ml, considerably higher than those levels achieved following intravenous 

therapy (0.93 microgram/ml) [49, 51].  The device was capable of delivering drug for 

approximately 8 months. Clinical studies showed that the median time to progression 

of retinitis in untreated patients (controls) was 15 days, compared with 226 days for 

patients assigned to immediate treatment with the implant. This compared favorably 

with reported times to progression in patients treated with intravenous ganciclovir, 

which was 71 days [52, 53]. Vitrasert implant has emerged as the most efficacious 
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method of treating CMV retinitis and the patient acceptance is high given the 

alternatives of frequent biweekly intravitreal injections or daily drug infusions. 

Because the device eventually runs out of drug and must be replaced, appropriate 

implant exchange practices have been adopted. The optimal time for exchanging the 

ganciclovir implant is dictated by the predictability of the duration of release of each 

device, the location of retinitis, and the overall health of the patient. The duration of 

release of each implant is dependent on the original quantity of drug, the rate of drug 

release from the device, and the rate of tissue clearance of the drug [53]. 

 

 
 
 

 

 

Figure 2-3: A. A Vitrasert implant showing the front and side views. The drug pellet contains 
ganciclovir, a potent antiviral agent to treat CMV retinitis. The long suture stub is trimmed and used to 
fixate the implant to the sclera at the pars plana allowing the drug reservoir to release drug into the 
vitreous cavity. B. A schematic drawing of a Vitrasert implant showing the drug pellet surrounded by 2 
polymers, PVA and EVA. Ganciclovir is freely permeable to PVA; however, to reduce the release rate, 
EVA (not permeable to ganciclovir) coats  ~90% of the pellet and drug is released (arrows) at the base 
of the implant. 
 

 

Advances in biomedical engineering and surgical techniques have encouraged the 

development of a variety of intraocular therapeutic devices.  Controlled release drug 

delivery systems have had a profound impact in clinical ophthalmology, especially in 
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the management of retinal diseases that can lead to blindness. Ocular implants and 

particulate systems have been engineered to avoid the barriers that often impede the 

delivery of drug via traditional methods. The investigation and clinical use of ocular 

drug delivery systems have relied upon an interdisciplinary approach including 

biomedical engineering and ophthalmology.  This team approach is necessary to 

elucidate ocular barriers and drug clearance mechanisms.   
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Chapter 3: An In Vivo Model for Assessing the Ocular Barriers to 

the Transscleral Delivery of Triamcinolone Acetonide 

 

Introduction 
 

Intravitreal corticosteroids have been used for treating retinal diseases; however, 

complications include vitreous hemorrhage, retinal detachment, and endophthalmitis 

[54-58].  Transscleral delivery of corticosteroids using sub-Tenon’s injections, with 

drug transport into the vitreous then to the posterior pole, may be a safer alternative to 

reduce sight-threatening complications [15].  Drug delivery through the sclera with in 

vitro systems show adequate penetration of corticosteroids[24] and other lipophilic 

compounds [25].  However, recent reports in patients receiving sub-Tenon’s 

triamcinolone acetonide showed marginal results in treating diabetic macular 

edema[26], especially when compared with direct intravitreal injections [27].  The 

main barriers to transscleral drug delivery contributing to poor vitreous drug levels 

are the sclera[37], choroidal vasculature[59], and clearance from conjunctival 

lymphatics/ blood vessels [60].  Since the relative contribution of each clearance 

mechanism is not known, they are often combined into one pathway in 

pharmacokinetic models [6, 60]. 

 

To improve our understanding of the in vivo clearance mechanisms of corticosteroids, 

we evaluated vitreous drug levels following sub-Tenon’s injection of triamcinolone 
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acetonide in rabbits with selective elimination of conjunctival lymphatic/blood 

vessels and the choroid.  

 

Methods 
 

Dutch-belted rabbits of either sex (Covance Laboratories, Inc., Vienna, VA) were 

used and all procedures adhered to the guidelines from the Association for Research 

in Vision and Ophthalmology statement for the use of animals in ophthalmic and 

vision research.  Prior to a sub-Tenon’s injection of a triamcinolone acetonide 

formulation or other ophthalmic surgical procedure, animals were anesthetized with 

ketamine hydrochloride (Fort Dodge, Inc., Fort Dodge, IN; 35mg/kg) IM and 

xylazine (Phoenix Scientific, Inc., St. Joseph, MO; 5mg/kg) IM; proparacaine 1% 

ophthalmic drops (Allergan America, Hormigueros, PR) were used topically on the 

eye. The pupils were dilated with 1 drop each of phenylephrine hydrochloride 2.5% 

(Akorn, Inc., Decatur, IL) and tropicamide 1% (Alcon, Inc., Humacao, PR).  A 

baseline eye examination including fundoscopy with an indirect ophthalmoscope was 

performed.  Injections were performed in right eye by entering the conjunctiva over 

the superior rectus area with a 30-gauge hypodermic needle, advancing the needle to 

the superotemporal quadrant, and injecting sub-Tenon’s so the center of depot was 5-

6 mm from the limbus (Figure 3-1).  The needle was then withdrawn and no drug 

suspension was observed to leak out of the opening in the conjunctiva.  The drug 

formulation was prepared in a sterile fashion using USP grade triamcinolone 

acetonide (Voight Global Distribution, LLC, Kansas City, MO) at a 40 mg/ml 
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concentration by the Clinical Center Pharmacy Department at the National Institutes 

of Health.  The suspending medium was normal saline USP (B. Braun Medical Inc., 

Irvine, CA) and hydroxypropylmethylcellulose 0.5% USP grade (Dow Chemical 

Company, Midland, MI).  Enucleated eyes were immediately frozen at –80° C to 

prevent post-mortem drug redistribution. 

 

Figure 3-1: An external photograph 
demonstrating the position of a 
triamcinolone acetonide depot following 
a sub-Tenon’s injection in the 
superotemporal quadrant of a rabbit.  
The hypodermic needle entered the 
tissue (arrow) medially and was 
advanced to the superotemporal quadrant 
before the injection, preventing the back 
flow of drug.  
 

 

A total of 6 groups of rabbits were investigated and they had the following 

procedures: 

 

Group 1: A sub-Tenon’s injection of 10-mg of drug was performed, and after 3 

hours, the animal was euthanized and the eye enucleated. 

 

Group 2: A sub-Tenon’s injection of 20-mg of drug was performed, and after 3 

hours, the animal was euthanized and the eye enucleated. 
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Group 3: The effect of the elimination of both conjunctival and choroidal clearance 

on transscleral delivery was evaluated in this group.  The blood and lymphatic flow 

that contribute to the conjunctival and choroidal clearance mechanisms was halted in 

these animals by performing euthanasia immediately following a sub-Tenon’s 

injection of 10-mg of drug.  After 3 hours, the right eye was enucleated. 

 

Group 4: To selectively eliminate clearance of drug from the choroidal circulation, 

cryotherapy was performed in the superotemporal quadrant to obliterate the choroidal 

blood flow.  The effects of cryotherapy on ocular tissues have been well described in 

the literature.  Following a single freeze/thaw cycle with cryotherapy, histology 

studies demonstrate sloughing of the superficial conjunctival epithelium and the 

Tenon’s fascia is spared [61].  The Tenon’s fascia provides a scaffold for the rapid re-

epithelialization from the surrounding untreated conjunctival epithelium[61].  To 

irreversibly damage Tenon’s fascia with cryotherapy, as in the case of eradicating 

conjunctival tumors, multiple freeze/ thaw cycles are required and Tenon’s fascia 

becomes fibrotic [61-63].  The sclera is also resistant to cryotherapy.  Scleral edema 

present histologically resolves after 3-days[64] and there are no alterations in drug 

permeability or ultrastructure of the sclera by electron microscopy [65]. Although 

there are no reported permanent alterations in the conjunctival and scleral tissues, the 

intraocular tissues, namely the ciliary body[66] and choroid/retina[64], are very 

sensitive to single freeze/thaw cryotherapy applications and the tissues undergo 

ischemic necrosis [62]. Within 1 to 4 weeks following cryotherapy, there is clinical 

evidence of a chorioretinal scar [67].  Histology studies show the choroid and retina 
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are replaced with a glial scar and the choriocapillaris and retinal vasculature are 

obliterated with rare large choroidal vessels remaining patent [64, 67-69].  The 

cryotherapy in the present study was performed using a single freeze/thaw cycle to 

preserve the conjunctiva and sclera and produce a chorioretinal scar.  The cryotherapy 

was performed under direct visualization to produce visible whitening of the choroid 

and retina at a temperature of –60° C with a 2.5 mm retinal probe attached to Keeler 

CTU CO2 Cryo Unit (Keeler Instruments, Broomall, PA).  A total of 8 adjacent 

cryotherapy applications in 2 horizontal rows were placed in the superotemporal 

quadrant of the right eye with the anterior edge 4 mm from the limbus.  Fundus 

examinations were performed using indirect ophthalmoscopy over a minimum of 1-

month to ensure that a mature chorioretinal scar formed between the medullary ray 

and ora serrata (Figure 3-2).  After a mature chorioretinal scar formed, rabbits in this 

group received a sub-Tenon’s injection of 10-mg of drug, and after 3 hours, the 

animal was euthanized and the eye enucleated. 

 

Figure 3-2: A. A photograph of a normal rabbit 
fundus (right eye) showing the temporal 
medullary ray (MR) and normal retina above. 
(original magnification, 1.5x). B. A retinal 
photograph of the rabbit eye in figure 2A, 1-
week post-cryotherapy showing the typical 
pigmentary changes (red asterisk) over the 
medullary ray. (original magnification, 1.5x). 
C. The enucleated rabbit eye shown in figure 
2B was bisected showing the chorioretinal scar 
(red asterisk) 4-weeks following cryotherapy. 
OD  optic disc, MR  medullary ray. D. 
Photomicrograph showing the border between 
normal retina/choroid and a chorioretinal scar 
(red asterisk) in the eye shown in figure 2C.  
Large choroidal vessels were present in some 
sections (stain, hematoxylin and eosin, original 
magnification, x200).  
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Group 5: To selectively inhibit the clearance from conjunctival lymphatic/blood 

vessels, we first reviewed the literature on the anatomy of the eye in this region.  The 

lymphatic vessels in the conjunctiva are one of the most extensive lymphatic network 

described in any organ system in the body[70] and occur in a superficial and deep 

plexus within Tenon’s fascia (Figure 3-3) [70-73], similar to the distribution pattern 

observed in skin [70].  Blood vessels are distributed throughout the Tenon’s fascia 

and venous drainage vessels are more numerous than the arteries [74].  In humans, 

there is a concentration of blood vessels in the episcleral region[74] that is lacking in 

rabbits [75, 76]. To inhibit the clearance of a sub-Tenon’s injection of triamcinolone 

acetonide, a ‘conjunctival window’ was created by incising an 7 mm x 7 mm x 7 mm 

square through the conjunctiva in the superotemporal quadrant of the right eye down 

to bare sclera using Wescott scissors and toothed forceps.  The conjunctiva remained 

attached at the cornea and the posterior corners to keep the tissues taut and flat 

against the sclera (Figure 3-4).  A sub-Tenon’s injection of 10-mg of drug was 

performed with the depot centered within the ‘conjunctival window.’  After 3 hours, 

the right eye was enucleated. 
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Figure 3-3: A. A schematic drawing 
showing the distribution of lymph (green) 
and blood vessels in the conjunctiva.  A 
circular lymphatic trunk termed the 
‘pericorneal lymphatic ring,’ is a 
centralized collection channel that drains 
medially and temporally to regional lymph 
nodes.  Inset: a magnified area at the 
limbus demonstrating the dense plexus of 
lymphatic vessels in the conjunctiva.  B. A 
schematic drawing of the cross section of 
an eye near the equator highlighting the 
main ocular barriers to transscleral drug 
delivery.  Lymphatic vessels in the 
conjunctiva occur as a superficial plexus 
immediately beneath the epithelium and a 
deeper plexus with larger lumen structures 
within the Tenon’s fascia.  Blood vessels 
are distributed throughout the Tenon’s 
fascia, and in humans, there is a 
concentration of blood vessels in the 
episcleral region.

 

 

 

 

 

 

 

 

 

Figure 3-4: (A) An illustration of a ‘conjunctival 
window’ in the superotemporal quadrant of a rabbit 
eye demonstrating the full-thickness incisions through 
conjunctiva to bare sclera.  Attachments remain intact 
at the limbus and the 2 posterior corners to keep the 
tissues flat against the sclera.  (B) An illustration of a 
triamcinolone acetonide depot following an injection 
in the sub-Tenon’s space of a ‘conjunctival window.’ 
(C) An external photograph of the superotemporal 
quadrant of a rabbit eye showing normal tissues.  
(D)An external photograph of the superotemporal 
quadrant of a rabbit eye demonstrating the full-
thickness radial incisions through the conjunctiva to 
bare sclera.  The superior radial incision follows the 
temporal border of the superior rectus muscle.  
Following the radial incisions, the eye was rotated 
down, and with the conjunctiva taught against the 
sclera, the posterior incision was performed.   

 

Group 6: To determine whether the chorioretinal scar following cryotherapy 

inhibited the transit of drug into the vitreous, a sub-Tenon’s injection of 10-mg of 

drug was performed in animals that received previous cryotherapy.  Following the 
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injection, the animal was immediately euthanized, and after 3 hours, the right eye was 

enucleated. 

 

In all groups, euthanasia was performed with an intracardiac pentobarbital overdose 

(Beuthanasia-D Special, Schering-Plough Animal Health Corp., Kenilworth, NJ).  

The eyes were dissected while frozen and the vitreous humor isolated using 

previously described methods [77].  The triamcinolone acetonide was extracted by 

placing the vitreous in HPLC grade acetonitrile (Fisher Scientific, Pittsburgh, PA) in 

sealed vials for 24 hours at room temperature, sonicated using a GEX 600 Ultrasonic 

processor (Daigger, Lincolnshire, Il) for 60 seconds, and stored in sealed vials for 

another 24 hours at room temperature.  The samples were spun down in a Centra C12 

centrifuge (Thermo IEC, Needham Heights, MA) for 3 minutes at 3,500 rpm and the 

supernatants were submitted for HPLC analysis.  The drug assays were performed 

using an Agilent HP1100 HPLC system (Agilent Technologies, Palo Alto, CA) 

equipped with a G1329A autosampler, a G1315A diode array detector, a G1312A 

binary pump, and a Dell workstation which controlled the operation of HPLC and 

analyzed the data.  A Beckman Ultrasphere C-18 column (5 µm, 4.6x250 

mm)(Beckman Coulter, Inc., Fullerton, CA) was used for separation, and detection 

was set at 254 nm.  The flow rate employed was 1.0 ml/min with a mobile phase of 

60% of acetonitrile and 40% of water by volume.  The retention time was 7.0 min and 

detection limit was 10 ng/ml.  The vitreous concentrations were recorded for each 

rabbit in each group in microgram/ milliter (µg/ml). 
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Results 
 

A total of 20 rabbits were used in the 6 rabbit groups and the vitreous concentrations 

of triamcinolone acetonide were recorded in Table 3-1.  There were no detectable 

drug levels in groups 1 and 4 in all rabbits.  The data for the other groups showed 

considerable variability in results between rabbits in some of the groups; therefore, 

statistically testing the concentration differences between groups was not performed.  

In Group 5 rabbits, one may argue that the vitreous drug levels recorded were not 

from transscleral delivery but from diffusion of the drug from the cut edges of the 

‘conjunctival window’ through the anterior chamber into the vitreous.  Therefore, the 

last 3 rabbits evaluated in this group had aqueous humor drug levels measured and 

they were undetectable in all animals.  This suggested that the drug entered the 

vitreous cavity from the sub-Tenon’s space through a transscleral route.  

 

Table 3-1 
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Discussion 
 

There are a number of important observations that are apparent from the results of 

this in vivo model.  Live rabbits (Group 1) had no detectable vitreous drug 

concentration following a 10-mg sub-Tenon’s injection of triamcinolone acetonide.  

However, in Group 3, where the animals were immediately euthanized, effectively 

terminating the clearance from conjunctival lymphatic/blood vessels and the choroid, 

drug was present in the vitreous.  This suggested that the tissues themselves (i.e. 

sclera, non-perfused choroid and retina) may not be the primary barrier to drug 

transport into the eye, and other factors present in vivo, such as lymph and blood 

transport, may play an inhibitory role in transscleral drug delivery to the vitreous.  

Rapid transscleral movement into the vitreous when lymph and blood clearance had 

been halted following euthanasia was recently demonstrated by using hydrophilic 

contrast agents and magnetic resonance imaging (MRI) (Figure 5A & B) [78].  It 

appears that both hydrophilic, and lipophilic drugs as shown in the present study, can 

transit through tissues when lymph and blood clearance has been terminated.  Studies 

are in progress with our in vivo model to specifically examine the relative effects of 

transscleral delivery as a function of a drug’s molecular weight, molecular radius, and 

drug solubility. 

 

30  
 



 

There were drug levels in the vitreous when a 20-mg depot of triamcinolone 

acetonide was injected in the sub-Tenon’s space in live rabbits (Group 2), in contrast 

to the 10-mg depot from Group 1 that produced no detectable vitreous levels.  It had 

been previously shown in other models that the release of drug from triamcinolone 

acetonide depots were higher with larger weight depots [79].  Extrapolating from an 

ocular pharmacokinetic model developed for triamcinolone acetonide depots[80], 

over a 3-hour period, the 10-mg depot was estimated to release at a mean of 8 

microgram per hour; the 20-mg depot released at a mean of 13 microgram per hour.  

Since a 10-mg depot was not able to deliver drug into the vitreous in the present 

study, and the 20-mg depot was successful, one can estimate that the clearance rate of 

triamcinolone acetonide from the sub-Tenon’s space is between 8 microgram per 

hour and 13 microgram per hour.  Drug depots, with release rates that exceed the 

tissue clearance rates, will deliver drug into the vitreous.  Estimating these parameters 

is important when developing sustained-release devices for placement in the sub-

Tenon’s space to deliver drug to the vitreous.  Since the typical release rate of a 

corticosteroid-eluting implant manufactured for vitreous insertion is < 0.125 

microgram per hour[81], substantially higher drug release rates would be required 

from sub-Tenon’s implants to bypass the transscleral drug transport barriers in order 

to deliver drug to the vitreous.  These data are consistent with human studies where 

small depots (e.g. 5-mg or less of triamcinolone acetonide) were injected in the sub-

Tenon’s space and the majority of patients had no recordable vitreous drug levels a 

median of 5.5 days after the injection[82], whereas patients injected with 40-mg 

depots had detectable vitreous drug levels at 4-weeks [83].  Animal studies using 
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depot-corticosteroid preparations showed that vitreous drug levels following 

subconjunctival or sub-Tenon’s injection were highest within the first 24 to 72 hours 

after the injection and rapidly tapered off over 1- to 2-weeks [84, 85].  An explanation 

for this rapid reduction in vitreous drug concentrations is that the depot becomes 

smaller with time and the drug release rate from the depot falls below the threshold 

required to overcome the clearance mechanisms.  This results in poorly sustained 

vitreous drug concentrations which may account for the limited efficacy when using 

sub-Tenon’s triamcinolone acetonide injections for diabetic macular edema [26, 27].  

 

Although vitreous drug levels were undetectable 2-weeks following a 40-mg anterior 

or posterior sub-Tenon’s triamcinolone acetonide injection in rabbits, aqueous humor 

levels were detectable for at least 2-months following injections (Robinson et al. 

Unpublished data).  Aqueous humor drug levels may have been sustained following 

sub-Tenon’s injections by drug entrance through the ciliary body area.  This ‘portal of 

entry’ zone in the ciliary body was described separately by 2 groups with MRI in live 

rabbits using contrast agents in the sub-Tenon’s space [59, 60]. Unfortunately, the 

prolonged anterior segment exposure to corticosteroids can lead to ocular 

hypertension appearing as late as 6-months following the injection in patients with 

retained drug depots in the sub-Tenon’s space [86].  

 

Although it is generally accepted that the choriocapillaris is involved with clearing 

compounds following an intravitreal injection[60, 87-89], the elimination of the 

choroid in this study utilizing cryotherapy (Group 4 rabbits) did not produce the 
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vitreous drug concentrations following a sub-Tenon’s triamcinolone acetonide 

injection.  A possible explanation was that the release rate from the drug depot did not 

exceed the clearance rate from the conjunctival lymphatics/blood vessels and the 

absence of the choroid was not relevant.  It was unlikely that the chorioretinal scar 

itself impeded drug transport since drug was still able to transit through the scar into 

the vitreous in euthanized animals (Group 6 rabbits).  Surprisingly, the elimination of 

the conjunctival lymphatics/blood vessels (Group 5 rabbits), with an intact choroid, 

allowed the transit of drug into the vitreous.  This suggested that the conjunctival 

clearance pathways were possibly more effective than drug clearance via the 

choroidal vasculature to inhibit triamcinolone acetonide transport into the vitreous in 

this rabbit model.  

  

The transport of compounds in the blood and lymph have been well studied in other 

organ systems [90].  Once thought to be primarily involved with the transport of 

macromolecules[91], the lymphatics are important for the transport of different 

molecular weight compounds and drugs[92-95], especially small molecular weight 

lipophilic compounds like corticosteroids [90].  Although our experiment did not 

distinguish between clearance of triamcinolone acetonide from the sub-Tenon’s space 

via conjunctival lymphatics or conjunctival blood vessels, we have previously 

demonstrated that a similar molecular weight drug was transported into the ipsilateral 

cervical lymph nodes within 1-hour after placement of an episcleral sustained-release 

implant [89, 96, 97]. Investigators examining the drug concentrations in the ipsilateral 

cervical lymph nodes have shown significant lymphatic clearance from the sub-
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Tenon’s space of small molecular weight hydrophilic compounds such as gadolinium-

DTPA[60], and compounds as large as albumin [98-100].  Further studies applying 

lymphatic diversion/ligation techniques [101, 102] used to investigate the afferent 

lymphatic drainage of the brain through the cervical lymph nodes may be  necessary 

to determine the relative contributions of the lymph and blood in drug elimination 

from the eye.  

 

Transscleral drug delivery has classically been studied with in vitro methods using 

perfusion apparatuses with isolated sclera ± choroid tissue mounted between two 

chambers [24, 25, 38, 39, 65, 103, 104].  Since the results of this study suggested that 

the conjunctival lymphatic/blood vessels in the live animal may be a factor in the 

clearance of drugs from the sub-Tenon’s space, in vivo models may be a more 

clinically relevant approach in studying the transscleral delivery of drugs.  

Furthermore, when establishing in vivo models to study transscleral drug delivery, 

one must be cognizant of the clearance role of the conjunctival lymphatic/blood 

vessels.  For example, delivering a drug under a partial thickness scleral flap [38, 39] 

may bypass the conjunctival elimination pathways and yield different vitreous drug 

concentrations compared with a delivery system that releases into Tenon’s fascia. 

 

Although the rabbit is a commonly used animal in ocular pharmacology, there are 

differences in the anatomy of the rabbit eye that have to be considered when 

extrapolating the results of this study to humans [105, 106].  Compared with humans, 

the rabbit has a lower mean scleral thickness[105], higher choroidal flow rates[107, 
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108], a smaller vitreous volume[105], and a poorly vascularized retina [106].  

Nevertheless, from the viewpoint of transscleral transport studies, the permeability of 

the sclera is similar in both species using a number of different compounds [38, 39].  

Furthermore, the anatomy and physiology of the lymphatic system is similar to the 

human establishing the rabbit as a common species for lymphatic studies of other 

organ systems [90, 101].  

  

In summary, the rabbit appeared to demonstrate saturable ocular barriers to 

transscleral delivery of triamcinolone acetonide into the vitreous following a sub-

Tenon’s injection.  The results suggested that the conjunctival lymphatics/ blood 

vessels may be a predominant barrier to the delivery of triamcinolone acetonide to the 

vitreous in this rabbit model.  The barrier location and clearance abilities of the ocular 

tissues are important to consider when developing a successful transscleral drug 

delivery system.   In vivo models, retaining the dynamics of blood and lymph flow, 

may improve the basic understanding of the ocular barriers involved with transscleral 

drug transport. 
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Chapter 4: The Pharmacokinetics and Toxicity of a Novel Episcleral 

Cyclosporine Implant for High-Risk Keratoplasties 

 

Introduction 
 

Penetrating keratoplasties (PKP) are one of the most common and successful 

allografts performed in the United States.  However, high-risk PKPs, where patients 

have vascularized corneas, have rejection rates greater than 65% [109]and can have 

corneal graft failure in over 50% of cases within the first year [110] [111].  

Cyclosporine (CsA), an immunosuppressive drug used to prevent allograft rejection 

[112], has demonstrated some efficacy in prolonging high-risk PKPs in humans[113] 

following systemic administration; however, adverse side effects such as 

nephrotoxicity and hypertension limits its long-term use in some patients [114, 115].  

The use of topical CsA is also limited by poor penetration of the corneal and 

conjunctival epithelium which leads to subtherapeutic drug levels to prevent allograft 

rejection [116-121].  As a result, sustained-release implants delivering CsA to the 

cornea have been investigated and have shown some success in preventing graft 

rejection in high-risk experimental models [122].  We previously reported the success 

in delivering therapeutic drug concentrations to the lacrimal gland with a sustained-

release CsA episcleral implant [89].  Consequently, we examined a similar  implant to 

see if a single device could deliver therapeutic drug levels throughout the entire 

cornea, and how rapidly therapeutic drug levels could be achieved.  In addition, we 

report the results of a 1-year pharmacokinetic and toxicity evaluation of the implant. 
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Materials and Methods 
 

Implant Manufacturing 
 

We developed an implant with a release rate profile based on the typical 

immunosuppression therapy for prevention of corneal allograft rejection, starting with 

a high dose followed by a tapering maintenance dose [111].  The goal was to deliver 

cyclosporine to the cornea for 12 months from a silicone-based matrix-style implant 

release system[123], using previously described methods of implant preparation [124] 

[89].  In summary, the implants were made in a polytetrafluoroethylene mold with 

impressions on the surface measuring 0.75 inch long or 0.50 inch long, 0.08 inch 

wide, and 0.04 inch in height (width was measured on the flat side; height was 

measure from the flat surface to the bottom of the rounded depression)(Figure 4-1).  

The flat side of the implant was the posterior surface, which was applied to the 

episclera, and the rounded side was the anterior surface.  Cyclosporine powder 

(Xenos Bioresources, Inc., Santa Barbara, CA) was thoroughly mixed with medical 

grade silicone with a platinum cure system (Nusil Technology, Carpinteria, CA) so 

that the weight of the drug as a percentage of the total weight of the implant (wt/wt) 

was 30%.  The impressions were filled with the cyclosporine-silicone paste using a 

metal spatula and cured for a minimum of 24 hours at room temperature.  The 

implants were sterilized with gamma irradiation (25-30 kGy).   
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Figure 4-1: An episcleral 
implant measuring 0.75 inch 
long or 0.50 inch long, 0.08 
inch wide, and 0.04 inch in 
height.   Width was measured 
on the flat side; height was 
measure from the flat surface 
to top of the rounded surface. 

 

 

In Vitro Release Rate 
 

In vitro release rate determination was continued from our previously reported 

experiment[89] to study 1 year pharmacokinetics of the CsA implants.  

Representative implants of each length were weighed and placed in individual glass 

scintillation vials with 10 mL of phosphate buffered saline (PBS) (pH 7.4).  Each vial 

was placed in a shaking water bath at 37◦C, and the PBS in each vial was replaced 

every 24 hours, 5 days a week.  In vitro release rates from the implants were 

determined by assaying the cyclosporine concentrations in the vial over time with a 

reversed-phase high-performance liquid chromatography (HPLC) assay.  Samples or 

standards with volumes of 5 to 200 µL were injected with an autosampler (model 
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G1329A; Agilent Technologies, Palo Alto, CA).  A 250 x 4.6-mm (5-mm) C18 

polymeric column (Vydac, Hesperia, CA) was heated to 80◦C in a column heater 

(model G1316Al; Agilent).  Separation was conducted by 1 mL/min isocratic elution 

with an acetonitrile/water/methanol/o- phosphoric acid (600:325:75:0.5) mobile phase 

and a pump (model G1312A; Agilent).  The concentrations of the samples were 

monitored at 210 nm with an ultraviolet (UV) detector (model G115A; Aglient) and 

analyzed with Chemstation software, Agilent.  The standard curve was linear (r2 = 

1.000) over the range of 46 to 23,360 ng/mL, and the deviation between replicate 

samples was <5%.  The drug detection limit for cyclosporine in solvent was 0.01 

µg/mL.  The cumulative release of drug from the implants was determined by 

calculating the area under the release rate curve with the trapezoidal rule and 

recording it in milligrams ± 1 standard deviation (SD).  Sampling time points were 

daily for the first 2 weeks (for 5 days a week), twice weekly for 1 month, and weekly 

thereafter for 1 year.   

 

Ocular Pharmacokinetics 
 

Short-term Pharmacokinetics 

New Zealand White (NZW) rabbits of either sex weighing 2-3 kg (Covance 

Laboratories, Inc., Vienna, VA) were anesthetized with ketamine hydrochloride (Fort 

Dodge, Inc., Fort Dodge, IN; 35mg/kg) IM and xylazine (Phoenix Scientific, Inc., St. 

Joseph, MO; 5mg/kg) IM; proparacaine 1% ophthalmic drops (Allergan America, 

Hormigueros, PR) were used topically on the right eye. The pupils were dilated with 

39  
 



 

1 drop each of phenylephrine hydrochloride 2.5% (Akorn, Inc., Decatur, IL) and 

tropicamide 1% (Alcon, Inc., Humacao, PR).  A baseline eye examination including 

fundoscopy with an indirect ophthalmoscope was performed.  A toothed forceps was 

used to lift the conjunctiva and Tenon’s fascia in the superotemporal quadrant and a 

3-mm incision was made with a Wescott tenotomy scissors.  A pocket was formed in 

the sub-Tenon’s space and a 0.50 inch cyclosporine implant was placed on the 

episclera, 5 mm posterior and parallel to the limbus in one eye.  No sutures were used 

to secure the implants.  The conjunctiva and Tenon’s fascia were reapproximated 

with a single 9-0 vicryl suture.  Bacitracin ophthalmic ointment was placed in the 

operative eye following surgery.  Animals were euthanized at 3 and 72 hours post-

implantation with an intracardiac pentobarbital overdose (Beuthanasia-D Special, 

Scheming-Plough Animal Health Corp., Kenilworth, NJ).  Animals were also 

euthanized at 1 hour and 1 week to determine CsA concentrations in the buccal lymph 

node.  Following euthanasia, the implanted eye was enucleated and 5 mm x 5 mm 

sections of bulbar conjunctiva adjacent to the limbus were removed superiorly, 

nasally, inferiorly, and temporally, to examine the relative difference in cyclosporine 

concentrations around the eye.  The globes were immediately frozen at –70˚C for 

later dissection and drug extraction.  The time from enucleation to freezing was rapid 

(<10 seconds) which limited postmortem drug redistribution.  The eyes were 

dissected while frozen and circular sections of sclera, were removed superiorly, 

nasally, inferiorly, and temporally with a 6-mm diameter trephine, centered 5 mm 

away from the limbus.  Three contiguous circular sections of cornea were also 

removed with a 6-mm diameter trephine with the center of the sections 8, 13, and 18 
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mm away from the center of the implant to study the rate and amount of cyclosporine 

distribution at various distances from the implant. (Figure 4-2)  The frozen globe was 

then cut 360 degrees around at the limbus with a razor blade and the remainder of the 

cornea lifted cleanly off of the frozen aqueous humor.  A razor blade was passed 

parallel to the front surface of the iris, and the frozen aqueous humor lifted off the 

iris/lens diaphragm in 2 to 3 frozen pieces.  Other ocular tissues isolated for drug 

analysis included the vitreous humor, and residual scleral and conjunctival body.  In 

addition, lacrimal gland tissue was extracted at 1 hour and 1 week.  Cyclosporine was 

extracted by placing the ocular tissues in HPLC grade acetonitrile (Fisher Scientific, 

Pittsburgh, PA) in sealed vials for 24 hours at room temperature, sonicated using a 

GEX 600 Ultrasonic processor, (Daigger, Lincolnshire, Il) for 60 seconds, and stored 

in sealed vials for another 24 hours at room temperature.  The samples were spun 

down in a Centra C12 centrifuge (Thermo IEC, Needham Heights, MA) for 30 

minutes at 3,500 rpm and the supernatants were submitted for HPLC analysis.  The 

cyclosporine concentrations were expressed as microgram/milligram (µg/mg) of 

tissue.   

41  
 



 

 
Figure 4-2: Placement of episcleral cyclosporine implant (A) superotemporally 5 mm from limbus.  
Circular sections (B) of the cornea are removed to measure the drug concentration at different 
regions.  Distances are measured from the implant (arrow) which is superotemporal. 

 

 

Long-term Pharmacokinetics 
 
We extended the previously reported study[89] of the cyclosporine distribution in the 

ocular tissues over time following implant surgery in normal research beagles.  Using 

methods previously described, the 0.75 inch implant was placed superotemporally in 

one eye 5 mm from the limbus, and the animals were sacrificed at 1, 3, 6, 9, and 12 

months subsequent to implantation.  Ocular tissues, including the cornea, conjunctiva, 

sclera, lacrimal gland, third-eyelid gland, lens, ciliary body, aqueous humor, vitreous 

humor, upper and lower eyelid tarsus, and tarsal conjunctiva were separated for drug 

extraction using the methods described above.  
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Toxicity Evaluation 
 

A toxicology study was performed using the 0.75 inch implant and 1 device was 

inserted into one eye of each dog.  The ocular toxicity was evaluated by clinical 

examination, serial electroretinography, and histopathology.  All procedures adhered 

to the guidelines from the Association for Research in Vision and Ophthalmology 

statement for the use of animals in ophthalmic and vision research. 

 

Normal research beagles (Marshall Farms, Inc., North Rose, NY) were anesthetized 

with acepromazine (Abbott Laboratories, Chicago, IL; 0.02 mg/kg) IM and 

hydromorphone HCl injection (Abbott Laboratories, Chicago, IL; 0.11 mg/kg) IM.  

Proparacaine 1% ophthalmic drops (Allergan America, Hormigueros, PR) were used 

topically on the eye. The pupils were dilated with 1 drop each of phenylephrine 

hydrochloride 2.5% (Akorn, Inc., Decatur, IL) and tropicamide 1% (Alcon, Inc., 

Humacao, PR).  A baseline eye examination including fundoscopy with an indirect 

ophthalmoscope and intraocular pressure measurement was performed.  The 

conjunctiva and Tenon’s fascia in the superotemporal quadrant were lifted with a 

toothed forceps and a 3-mm incision was made with a Wescott tenotomy scissors.  A 

pocket was formed in the sub-Tenon’s space and a 0.75” device was placed on the 

episclera, 5 millimeters posterior and parallel to the limbus in one eye. No sutures 

were used to secure the implant to the sclera and a 6-0 vicryl suture was used to close 

the conjunctival incision.  Bacitracin ophthalmic ointment was placed in the operative 

eye twice daily for 3 days.  Following the implant surgery, clinical eye examinations 
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including a Schirmer’s tear test, laboratory work (serum chemistries, renal and liver 

function tests, complete blood count), and electroretinogram (ERG) recordings were 

performed over a 12-month period in awake animals.  The ERG measures the mass 

retinal response to a stimulus of light using electrodes placed at the cornea and on the 

skin around the eye.  A flash of light is shown to the rabbit and the electrodes record 

the retinal potentials which develop as a response to the flash.  ERGs were recorded 

from each eye separately after 5 minutes of dark adaptation.  A monopolar contact 

lens electrode (ERG-jet, La Chaux des Fonds, Switzerland) was placed on the cornea 

and served as the active electrode.  A Barraquer eyelid speculum connected to an 

electrode wire served as the indifferent electrode, and a subdermal needle electrode 

inserted in the forehead area as the ground electrode.  ERGs were elicited by brief 

flashes at 0.33 Hz delivered with a Grass PS22 photostimulator (Grass Instruments, 

Quincy, MA) at maximal intensity, coupled to an 18-inch long optic guide of 0.5 inch 

diameter.  Responses were amplified, filtered, and averaged with a Nicolet Spirit 

signal averager (Nicolet Instruments Corp., Madison, WI).  Averages of 10 responses 

were measured to obtain peak amplitude values of a-waves and b-waves.  The a-wave 

reflects the general physiological health of the photoreceptors in the outer retina, and 

the b-wave reflects the health of the inner layers of the retina, including the ON 

bipolar cells and the Muller cells [125]. Recordings were performed at baseline, 6 

months, and 12 months.  Differences in the mean amplitudes at each recording were 

compared with the baseline (pre-implant) values for each eye and tested by the 

analysis of variance (ANOVA) using PSI-Plot version 7.0 (Poly Software 

International, Inc., Pearl River, NY).  Differences were considered likely to be 
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clinically significant if the P-value was ≤ 0.05.  Animals were euthanized at 12 

months, all the eyes were enucleated, and submitted for histopathology.  The 

subgroup of animals used for histological evaluation were anesthetized and then 

euthanized with an intracardiac pentobarbital overdose (Beuthanasia-D Special, 

Schering-Plough Animal Health Corp., Kenilworth, NJ).  Both eyes were enucleated 

leaving the implants and overlying conjunctiva intact.  All tissues were placed in 10% 

formalin for a minimum of 7 days.  The globes were sectioned perpendicular to the 

long axis of the implants and through the optic discs.  All tissue specimens were 

placed in increasing concentrations of ethanol, cleared with xylene using a Jung 

Histokinette Tissue Processor (Leica, Inc., Deerfield, Il), and embedded in paraffin 

using a Shandon Embedding Center (Shandon, Inc, Pittsburgh, PA).  Sections of 7 

µm thickness were obtained using a microkeratome, stained with hematoxylin and 

eosin and representative slide mounted sections were examined by light microscopy.  

 

 

 

Statistical Analysis 
 

Statistical analysis was performed using the resampling test and statistical 

significance was assigned to p ≤ 0.05.   
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 Results 
 

In Vitro Release Rate 
 

In vitro release rates were continued on 5 randomly selected implants from each lot of 

0.75 inch and 0.5 inch, and total mean weights were 40.6 ± 1.8 mg and 25.8 ± 1.6 mg, 

respectively, and the amount of CsA initially loaded into the implants was 12.18 and 

7.74 mg [89].  The in vitro release pattern of all implants was typical of a matrix 

implant whose release kinetics is governed by diffusion from dispersed drug in a 

polymer (Figure 4-3) [126].  The release rate from 150 days to 400 days 

(approximately 5 months to 1 year) was sustained, and the final cumulative release 

for the 0.75 inch and 0.5 inch implants was 3.8 ± 0.3 mg and 2.3 ± 0.3 mg, which was 

approximately 30% of the initial drug loading.   

 

 Figure 4-3: In vitro release rates 
of cyclosporine episcleral 
implant shows sustained-release 
typical of matrix implants with 
drug dispersed in polymer. 
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Short-term Pharmacokinetics 
 

Twelve NZW rabbits received 0.5-inch episcleral implants superotemporally and 5 

mm posterior to the limbus.  Drug extraction was performed on the right eye of 3 

rabbits at each time point studied.  Three hours after implantation, the cornea had 

CsA concentrations of 0.15 ± 0.06 ug/mg, 0.07 ± 0.02 ug/mg, and 0.05 ± 0.02 ug/mg 

at 8, 13, and 18 mm away from the implant site (Figure 4-4).  72 hours after implant 

placement, the corneal CsA concentrations were 0.10 ± 0.06 ug/mg, 0.09 ± 0.03 

ug/mg, and 0.05 ± 0.03 ug/mg at 8, 13, and 18 mm away from the implant site.  The 

concentration of the superior and inferior conjunctiva at 3 hours was 0.11 ± 0.03 

ug/mg and 0.04 ± 0.01 ug/mg, respectively (Figure 4-5).  At 72 hours, the superior 

and inferior conjunctiva concentrations were 0.13 ± 0.06 ug/mg and 0.13 ± 0.03 

ug/mg.  Drug extraction was also performed on the draining buccal lymph node of 3 

rabbits at each time point.  The lymph node concentration of CsA was 0.10 ± 0.04 

ug/mg and 0.06 ± 0.02 ug/mg at 1 hour and 1 week respectively. 
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Figure 4-4: Cornea cyclosporine 
concentrations at increasing distances 
from the implant at 3 and 72 hours.  The 
bars correspond to the experimentally 
measured cyclosporine concentrations at 
the corresponding sites on the cornea.  
The lines predict concentrations if drug 
dispersion in the cornea is due to 
diffusion alone as a function of distance. 
 

Figure 4-5: Conjunctival cyclosporine 
concentrations at increasing distances 
from the implant at 3 and 72 hours.  The 
bars correspond to the experimentally 
measured cyclosporine concentrations at 
the corresponding sites on the 
conjunctiva.  The lines predict 
concentrations due to drug diffusion 
across circular distances around the 
cornea, which were calculated based on 
the 13 mm radius from implant to the 
center of the cornea. 

 

Long-term Pharmacokinetics 
 

The right eyes of fifteen normal research beagles received a 0.75 inch CsA episcleral 

implant, and the beagles were euthanized at 1 month, 3 months, 6 months, 9 months, 

and 1 year for ocular drug extraction (Table 4-1).  Corneal cyclosporine levels ranged 

from 0.18 ± 0.06 ug/mg to 0.009 ± 0.004 ug/mg during the 1 year study, but the 

corneal CsA concentration at 1 year was 0.04 ± 0.05 ug/mg.  Aqueous humor levels at 

1 year were at 0.007 ± 0.01 ug/mg, and the highest aqueous CsA concentration was 
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0.13 ± 0.15 ug/mg at 3 months.  The conjunctival CsA concentrations ranged from 

0.28 ± 0.35 ug/mg to 0.125 ± 0.05 ug/mg.   

 

Table 4-1 

 

 

Toxicity Evaluation 

Six dogs each received 0.75 inch episcleral implant devices in one eye.  Over the 1-

year period, clinical examinations showed no signs of ocular toxicity (Figure 4-6).   

There were no significant changes in the ERG recordings compared to baseline 

during the 1-year study in both eyes (Figure 4-7).  The histopathologic appearance by 

light microscopy in all eyes showed normal ocular tissues.  There was a fine fibrous 

encapsulation surrounding the implant securing it to the episclera (Figure 4-8).  There 

were no signs of retinal toxicity in all quadrants of the eye.  In 2 of 6 dogs, there was 

a lymphoplasmacytic reaction around the implants; however, there was no observable 

swelling clinically. 
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Figure 4-6: Clinical 
examinations of beagles with 
episcleral implants were 
normal. 
 

Figure 4-7: At 1 year, there were no significant changes 
from baseline in ERG results of beagles. 

Figure 4-8: Light microscopy of histopathology in all eyes 
showed normal ocular tissues.  There was a fine fibrous 
encapsulation surrounding the implant securing it to the 
episclera. 

Discussion 
   

In this study, a single episcleral implant delivered therapeutic CsA levels to the 

cornea as early as 3 hours, and continued to release therapeutic concentrations for 1 

year in animals.  CsA is therapeutic for preventing high-risk corneal graft rejection at 

concentrations that inhibit T-cell activation and vascular endothelial cell proliferation, 

which are 0.0001 – 0.001 ug/mg and 0.0012 – 0.06 ug/mg, respectively [127, 128] 

[129-135]. The corneal CsA concentrations were .09 ± .05 ug/mg at the 3 hour time 

point and remained above the therapeutic ranges at 1 year, when the concentration 

was 0.04 ± 0.05 ug/mg.  Aqueous humor CsA concentrations were also well above 

the defined therapeutic range in both the short and long term experiments, suggesting 

sufficient penetration through all layers of the cornea as early as 3 hours and lasting 

for at least 1 year, as endothelial rejection is the most common type of allograft 

rejection [110].  The short time point experiments used the 0.5 inch episcleral 
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implants while the long time points obtained from beagle experiments used the 0.75 

inch implants due to animal globe size.  Nonetheless, the drug concentrations 

achieved from the two different lengths of implants are roughly comparable because 

they exhibited similar matrix style release kinetics, and demonstrated similar release 

rates for one year (Figure 4-3).   

 

It is also important to suppress T-cell activation in the draining lymph nodes of eyes 

following a corneal allograft because the generation of an alloresponse occurs in these 

lymph nodes for both low and high-risk cases [136, 137].  The episcleral implant 

delivered concentrations of 0.1 ± 0.04 ug/mg and 0.12 ± 0.09 ug/mg of cyclosporine 

to the buccal lymph node of rabbits at 1 hour and 1 week respectively, which are 2 to 

3 log units higher than the range necessary to inhibit T-cell activation in vitro. 

Furthermore, the delivery of antigen-presenting cells and antigenic material that 

stimulate the alloimmunization in draining lymph nodes and the influx of effector 

cells on the cornea that eventually lead to graft rejection is enabled by hem- and 

lymphangiogenesis at the graft site [138].  In high-risk corneal transplants, the host 

bed is often substantially vascularized with lymph and blood vessels, and inflamed, 

new blood and lymph vessel ingrowth begins soon after surgery [138].  Thus, it is 

also important to inhibit hem- and lymphangiogenesis to eliminate or reduce the 

afferent and efferent arms of the corneal allograft response that lead to rejection early.  

The episcleral implant delivers cyclosporine levels, as early as 3 hours, for 1 year to 

ocular tissues containing lymphatic and blood vessels within the range of vascular 

endothelial cell proliferation inhibition.  The inhibition of lymph and blood vessel 
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growth is reversible upon cessation of cyclosporine therapy and is not cytoclastic, 

which avoids permanent vascular damage [134, 139, 140].  These levels of 

cyclosporine may cause the corneal lymph and blood vessels to regress and 

reestablish immunologic privilege.   

 

The rapid rate that the episcleral implant delivered high concentrations of CsA to the 

cornea, conjunctiva, and buccal lymph node, suggests that diffusion may not be the 

only drug dispersion mechanism present.  The CsA concentration (C) due to diffusion 

in one dimension and in the absence of clearance processes, can be predicted with the 

following equation[141]: 

  
C = Coerfc x / 2 Dt(⎡

⎣⎢
⎤
⎦⎥) , where Co is the constant concentration in the tissue adjacent 

to the source (implant), D is the coefficient for solution diffusion through the tissue, t 

is time, erfc is the complementary error function, and x is the distance between the 

source and the measurement position.  The coefficients for diffusion of cyclosporine 

through rabbit cornea and conjunctiva were estimated from measurements from 

literature of a wide range of hydrophilic and lipophilic model solutes to be 1.0 x 10-6 

cm2/sec and 4.4 x 10-7 cm2/sec respectively[5, 142] [143] [2].  Contrastingly, when 

the experimental data is taken to be due to diffusion alone, the diffusion coefficient 

for diffusion of cyclosporine across the cornea is estimated to be 1.8 x 10^-2 cm2/sec.    

The distances from the implant to the sampling site (x) on the cornea were 8, 13, and 

18 mm, corresponding to the trephined sections of the cornea.  For the conjunctiva, 

circular distances around the cornea were calculated based on the 13 mm radius (from 

implant to the center of the cornea) (Figure 4-2).  The origin was taken to be at the 
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implant site in the superior conjunctiva giving 13π = 40.8 mm as the location of the 

interior conjunctiva.  The theoretical concentrations on the cornea due to diffusion 

alone were significantly less than the experimental concentrations (p < 0.05) at 13 and 

18 mm away from the implant site at 3 and 72 hours (Figures 4-2 and 4-9).  The 

inferior conjunctiva exhibited significantly higher CsA concentration at 72 hours than 

predicted for movement by diffusion alone. 

 

Figure 4-9: (Top) Theoretical 
drug concentrations due to 
diffusion alone at 3 hours (a) and 
72 hours (a).  (Bottom) 
Experimental drug concentrations 
at 3 hours (c) and 72 hours (d) 
imply that diffusion alone does 
not provide for the drug 
movement across the cornea.  
 

 

 

 

 

 

 

 

 

Because high levels of CsA were detected in the buccal lymph node at 1 hour and 1 

week, we hypothesize that conjunctival lymphatic vessels contribute to the rapid 

distribution of the drug around the cornea.  Previous investigations of drug 

concentrations in the ipsilateral cervical lymph nodes have also shown significant 

lymphatic clearance from the sub-Tenon’s space of small molecular weight 

hydrophilic compounds such as gadolinium-DTPA [60], and compounds as large as 

albumin [98-100].  The role of conjunctival lymphatics in drug delivery to the cornea 

was first suggested in 1957 by Sugar, when he proposed that the transfer of 
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subconjunctivally-injected substances reached the anterior chamber via conjunctival 

lymphatics [71].  It has also been suggested that the conjunctival lymphatics play a 

role in drug elimination from sub-Tenon’s injections of triamcinolone acetonide.  

Robinson et al. showed that significant concentrations of drug entered the posterior 

segment only when the lymphatic circulation was eliminated at the injection site, 

because there was minimal lymphatic uptake of the drug to impede the transscleral 

diffusion [144].  In the current study, the ring of Orts, which is concentric with the 

cornea, and its afferent lymphatic vessels around the implant site absorb the 

cyclosporine near the implant site.  The CsA is the transported out of the lymphatic 

vessels along its flow pathway around the cornea.  Thus, the lymphatic flow 

surrounding the cornea may contribute to the rapid CsA dispersion across the cornea 

and conjunctiva.  Further studies are necessary to support this hypothesis.  

Nonetheless, one should be cautious in using diffusion coefficients determined in 

vitro to predict drug transport in vivo which will neglect the contribution of other 

coexisting modes of drug transport, such as lymphatics.  

 

In the literature, there are currently two cyclosporine releasing implants studied for 

the prevention of high risk corneal allograft rejection.  Apel et al. studied a polylactic-

glycolic acid (PLGA) disc-shaped CsA implant in a high risk rabbit model, and 

showed that these devices implanted at the time of transplantation improved the 

survival time of the grafts [122].  In vitro, these implants exhibited stable release for 

less than 100 days before reaching an unstable phase characterized by bulk 

degradation of PLGA.  Unlike our episcleral implant, which maintained stable drug 
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release for 400 days, the in vitro release from PLGA are difficult to predict beyond 

the first 100 days.  The corneal concentration achieved from the PLGA implant was 

0.4 ng/mg at 35 days, which is below the therapeutic range for preventing PKP 

rejection and 3 log units lower than corneal CsA levels from episcleral implants at 42 

days [89].  Xie et al. reported experiments with a CsA PLG implant that was 

implanted in the aqueous humor and subconjunctival region of rat models of PKP 

rejection [145].  Although the PLG delivery system significantly prolonged corneal 

allograft survival in a high-risk corneal graft rejection model in rats compared to 

controls, the CsA concentrations achieved were below the therapeutic range.  

Furthermore, even though the PLGA subconjunctival implant and the PLG implant 

are biodegradable, Apel at al. showed the bulk degradation of the polymer to be 

disadvantageous in generating a long term release profile.  Silicone, the polymer in 

our episcleral implant has demonstrated to be non-bioreactive and exhibited 

prolonged steady release for over 1 year.  The episcleral implant is also easily 

retrievable with minimal infection.  Furthermore, the silicone drug matrix allows the 

episcleral implant to remain flexible to conform to the curvature of the globe, and no 

extrusions were observed in our long term animal experiments. 

 

Several other drug delivery methods have been investigated for preventing corneal 

allograft rejection.  Local injections into the subconjunctival space[146, 147], 

vitreous[148], and anterior chamber[149] have shown very low corneal levels and 

thus a short-lived therapeutic effect.  Collagen shields and fragments appeared to be 

more effective than systemic formulations, however also had short-lived effects, 
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lasting for up to 12 hours only [150, 151].  Microspheres, liposomes, and 

nanocapsules also do not provide the prolonged release that prevention of high-risk 

corneal allografts require [28-33]. 

 

Our experiments have shown that episcleral implants are safe and effective at 

delivering therapeutic levels to the cornea and surrounding tissues for preventing 

corneal allograft rejection.  The implant can be surgically placed on the episclera at 

the time of PKP, since the implant achieves therapeutic levels as early as 3 hours.  

Although these episcleral CsA implants are expected to be therapeutic, further studies 

are required to determine the effectiveness of these episcleral devices in PKP models. 
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Chapter 5: Conclusion and Future Directions 

Conclusion 

 

Recent advances in ocular drug delivery have had a profound impact in clinical 

ophthalmology, especially in the management of sight-threatening diseases.  

Understanding of the barriers and mechanisms of drug delivery provides the 

fundamental parameters of developing new therapies.  The studies described in the 

previous chapters contribute to the field of ocular drug delivery as they describe the 

significance of the three types of transscleral drug transport barriers, and describe a 

drug-releasing implant for the prevention of high-risk PKP rejection.  It is now 

understood that the most significant barrier to transscleral delivery may not be the 

scleral tissue or choroidal vasculature, as suggested in the literature [60, 87-89], but 

the conjunctival lymphatic and blood vessels.  In addition, the pharmacokinetic 

studies of the episcleral implant suggested that a mechanism other than diffusion 

provided for rapid drug dispersion across the corneal tissue.  Both of these studies 

suggest that conjunctival lymphatic vessels may play an important drug delivery role.  

It is important to further investigate the mechanisms that conjunctival lymphatics 

contribute to ocular pharmacokinetics drug delivery. 
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Future Directions 

 

 
These studies point towards further elucidating the role of conjunctival lymphatics as 

a clearance mechanism in the eye.  Real-time analysis should be performed, to see the 

dispersion from the sub-Tenon’s space to various parts of the eye.  An opaque tracer 

may be utilized to see where the solution is transported at various time points through 

the transparent conjunctiva.  An alternative or additional real-time analysis of 

lymphatics may be magnetic resonance imaging.  Furthermore, the drug dispersion 

that occurred across the cornea from the episcleral implant was in the lateral 

direction.  Lateral drug diffusion of ocular tissues has not previously been studied, as 

past permeability studies were of molecules through tissues [4,5].  Finally, because 

the episcleral implant was demonstrated to be safe and effective at releasing 

therapeutic levels of CsA, animal models of PKP, as well as clinical studies should be 

performed.  The future of ocular drug delivery will be finding ways to bypass and use 

the conjunctival lymphatic vessel flow to design more effective therapies. 
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