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This dissertation includes three essays on hedging the interest rate and credit risks 

of Mortgage-Backed Securities (MBS). 

Essay one addresses the problem of how to efficiently estimate interest rate 

sensitivity parameters of MBS. To do this in Monte Carlo simulation, we derive 

perturbation analysis (PA) gradient estimators in a general setting. Then we apply the 

Hull-White interest rate model and a common prepayment model to derive the 

corresponding specific PA estimators, assuming the shock of interest rate term structure 

takes the form of a trigonometric polynomial series. Numerical experiments comparing 

finite difference (FD) estimators with our PA estimators indicate that the PA estimators 

can provide better accuracy than FD estimators, while using much lower computational 

cost. Using the estimators, we analyze the impact of term structure shifts on various 

mortgage products. Based these analysis, we propose a new product to mitigate interest 

rate risk.  



  

Essay two addresses the problem of how to measure interest rate yield curve shift 

more realistically, and how to use these risk measures to hedge the interest rate risk of 

MBS. We use a Principal Components Analysis (PCA) approach to analyze historical 

interest rate data, and acquire the volatility factors we need in Heath-Jarrow-Morton 

interest rate model simulation. Then we propose a hedging algorithm to hedge MBS, 

based on PA gradient estimators derived upon these PCA factors. Our results show that 

the new hedging method can achieve much better hedging efficiency than traditional 

duration and convexity hedging.  

Essay three addresses the application a new regression method on credit spread 

data. Previous research has shown that variables in traditional structural model have 

limited explanatory power in credit spread regression. We argue that this is partially due 

to the non-constancy of the credit spread gradients to state variables. We use a Random 

Coefficient Regression (RCR) model to accommodate this problem. The explanatory 

power increases dramatically with the new RCR model, without adding new independent 

variables. This is the first work to address the dependence between credit spread 

sensitivities and state variables of structural in a systematic way. Also our estimates are 

consistent with prediction from Merton’s structural model. 
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Chapter 1 

Introduction 

Mortgage-backed securities (MBS) have become increasingly important fixed 

income instruments, both because of their volume and the role they play in fund 

investment and portfolio management. However, there has not been a very 

comprehensive set of risk indicators to measure and manage the risks involved with 

MBS. Hedging the interest rate and credit risk of MBS remains a complicated problem in 

the fixed income industry. This dissertation develops a set of risk measures for interest 

rate risk and credit risk, and then attempts to hedge the risks effectively using such risk 

measures. Specifically, the dissertation consists of three essays addressing the following 

problems: efficiently estimating these new measures of interest rate risk of MBS, hedging 

MBS with these new measures, and hedging the credit risk of MBS with advanced 

models for credit spread regression. 

 

The first essay is mainly positioned to answer the following research questions: 

• How to measure the interest rate risk in a more comprehensive approach, rather than 

simply using the traditional duration1 and convexity2? 

                                                           
1 Duration is the first order derivative of the price of a fixed income security to interest rate, expressed as a 
percentage change, see Fabozzi [2001] for more details. 
2 Convexity is the second order derivative of the price of a fixed income security to interest rate, expressed 
as a percentage change, see Fabozzi [2001] for more details. 
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• How to efficiently estimate the risk measures if more factors are introduced into the 

measurement problem? 

In answering these two questions, based on the results over a broad spectrum of mortgage 

products, we propose a new mortgage product, which could be attractive to MBS 

investors and mortgage borrowers. 

 

The second essay tries to answer the following questions: 

• What would be a realistic method to measure the term structure shift? 

• How can we hedge MBS effectively with these measures, in a general interest rate 

model framework? 

We use Principal Components Analysis (PCA) method to extract the empirical volatility 

factors of term structure, which provides some justification for the form of possible term 

structure shifts proposed in the first essay. Then we use the Heath-Jarrow-Morton model 

to incorporate the factors in developing new risk measures and show that the hedging 

effectiveness is far better than traditional duration/convexity hedging. 

 

The third essay is related to credit risks MBS issuers incur when they purchase 

mortgage pool insurance from a third party, and attempts to answer the following 

questions: 

• How to estimate the sensitivity of credit spread in a regression framework more 

effectively than a simple linear regression model? 

• What implication does the model have on traditional structural models for credit 

spread? 
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We use a Random Coefficient Regression (RCR) model to build our regression model for 

credit spread changes. This model has explicit sensitivity measures dependent on state 

variables. We acquire much better explanatory power with this new model, without 

adding new independent state variables. Also our model supports the dependence of 

sensitivity of credit spread on state variables predicted by Merton’s structural model 

(Merton [1974]). 

 

1.1 Efficient Sensitivity Analysis of Mortgage Backed Securities 

A mortgage-backed security (MBS) is a security collateralized by residential or 

commercial mortgage loans. An MBS is generally securitized, guaranteed and issued by 

three major MBS originating agencies: Ginnie Mae, Fannie Mae, and Freddie Mac. The 

cash flow of an MBS is generally the collected payment from the mortgage borrower, 

after the deduction of servicing and guaranty fees. However, the cash flows of an MBS 

are not as stable as that of a government or corporate coupon bond. Because the mortgage 

borrower has the prepayment option, mainly exercised when moving or refinancing, an 

MBS investor is actually writing a call option. Furthermore, the mortgage borrower also 

has the default option, which is likely to be exercised when the property value drops 

below the mortgage balance, and continuing mortgage payments would not be 

economically reasonable. In this case the guarantor is writing the borrower a put option, 

and the guarantor absorbs the cost. However, the borrower does not always exercise the 

options whenever it is financially optimal to do so, because there are always non-

monetary factors associated with the home, like shelter, sense of stability, etc. And it is 

also very hard for the borrower to tell whether it is financially optimal to exercise these 
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options because of lack of complete and unbiased information, e.g., they may not be able 

to obtain an accurate home price, unless they are selling it. And there are also some other 

fixed/variable costs associated with these options, such as the commission paid to the real 

estate agent, the cost to initialize another loan, and the negative credit rating impact when 

the borrower defaults on a mortgage. All these factors contribute to the complexity of 

MBS cash flows. In practice, the cash flows are generally projected by complicated 

prepayment models, which are based on statistical estimation on large historical data sets. 

Because of the complicated behaviors of the MBS cash flow, due to the complex 

relationships with the underlying interest rate term structures, and path dependencies in 

prepayment behaviors, Monte Carlo simulation is generally the only applicable method to 

price MBS. 

 

Associated with the uncertainty of cash flows are different kinds of risks. 

Treasury bonds only bear interest rate risk, whereas non-callable corporate bonds carry 

interest rate and credit risk. MBS are further complicated by prepayment risk (resulting 

from both voluntary prepayment and default). Thus risk management is especially critical 

for portfolios with large holdings in MBS. Duration and convexity are the main risk 

measurements for fixed income portfolio mangers. Many practitioners use either the 

Macaulay duration, or modified duration (Kopprasch [1987]) to capture the MBS price 

sensitivity with respect to interest rate changes, but these duration measures assume a 

constant yield and known deterministic prepayment pattern, which is rarely the case in 

practice. So these two approaches to calculate duration can lead to serious errors when 

used in hedging. Golub [2001] proposed four different approaches to estimate the 
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duration: Percent of Price (POP), Option-Adjusted Duration (OAD), Implied Duration, 

and Coupon Curve Duration (CCD). The first two approaches apply parallel shifts in the 

yield curve, which is not a very realistic assumption. The latter two approaches require 

large numbers of previous or current accurate MBS prices that are comparable to the 

MBS whose duration is to be measured. This might not be practical for on-the-fly pricing 

and sensitivity analysis. Another drawback of these approaches is that they handle only 

duration and convexity, but not sensitivity to interest rate volatility. OAD method can 

estimate the vega (the price sensitivity to volatility) using a finite difference approach, 

which requires 3 simulations to estimate one gradient: the base, up and down cases. And 

non-parallel yield curve shifts require more parameters to characterize the shift. Thus, in 

the setting we consider in Chapter 2, to estimate the duration with respect to yield curve 

shift of 4 summed harmonic functions would require 9 (2n+1, n=4) simulations. To 

estimate vega requires 2 additional simulations. So estimating the duration and vega 

roughly increases the computational cost by a factor of 10. Calculating convexity would 

require 75 duration estimators to calculate 25 convexity estimators, increasing the 

simulation factor to 225. In other words, if one were to use 10,000 replications to 

estimate the MBS price, over 2.25 million simulations would be required to estimate the 

various sensitivities. Our work aims to decrease this computational burden dramatically. 

 

Most literature on MBS has concentrated on prepayment model estimations, 

although some of the recent work has focused on computational efficiency, e.g., 

dimensionality reduction via Brownian bridge ( Caflisch et al. [1997] ), and quasi-Monte 

Carlo (Åkesson and Lehoczky [2000]). However, there is no work that we are aware of 
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that addresses efficient sensitivity analysis of MBS pricing and hedging. Related work in 

equities includes Fu and Hu [1995], Broadie and Glasserman [1996], Fu et al. [2000], 

[2001], and Wu and Fu [2001]. Perhaps the most relevant paper to our work is 

Glasserman [1999], which applied perturbation analysis (PA) method for caplet price 

sensitivity analysis. Yet most of these models involve only a single exercise decision with 

a one-time payoff, whereas an MBS is a pool of homogenous mortgages rather than an 

individual mortgage loan. So the cash flows exist until the maturity of the collateral, and 

they are highly path dependent, which makes sensitivity analysis of MBS more 

complicated. 

 

The other relevant body of research literature analyzes the duration of different 

mortgage products. We know that adjustable rate mortgage (ARM) products will have a 

different response from fixed rate mortgage (FRM) products, due to ARMs’ coupon-reset 

plan and different prepayment function. In a series of papers, Kau et al.[1990,1992,1993] 

priced the ARMs and performed some sensitivity analysis. Chiang [1997] applied a 

simple simulation scheme to estimate the modified duration of ARMs. Stanton [1999] 

calculated the duration of different indexed ARMs via a scheme like Kau’s. However, 

most of these papers are based on solving models based on partial differential equation 

(PDE), using simplified assumptions that often miss essential features that can be 

captured by Monte Carlo simulation. The three major drawbacks of these models that 

make them impractical in the mortgage industry are the following: 

• They assume borrowers exercise the prepayment option only when it is financially 

optimal to do so. This ignores the fact that people routinely prepay even in financially 



 7

adverse environments, e.g., house sales. Also seasoning and burnout effects are not 

considered. 

• By solving the PDE, one can only obtain a set of present values of the MBS along the 

interest rate axis. By applying the finite difference method, duration of the MBS 

could be acquired. However, it provides no information about the discounting factor 

and cash flows along the time horizon. So you will have no information about how 

the interest shift affects different components of the present value. 

• The PDE method generally uses one-factor interest rate model, which applies the 

same interest rate both for discounting and for the prepayment model, which ignores 

the difference between short-term and long-term interest rates. 

 

In the first essay, we apply perturbation analysis (PA) to estimate the sensitivities 

of MBS. Our work makes the following contribution to MBS literature: 

• We decompose any interest rate term structure change into four Fourier-like series, 

which is based on Fourier cosine series, and can better measure the yield curve shift; 

• We derive PA estimators for these Fourier-like factors, as well as interest rate 

volatility, which can largely save computation effort. In our example, we calculate 5 

duration estimators and 16 convexity estimators in our simulation, which would 

require 155 simulations using a conventional simulation scheme. 

• Based on our comprehensive analysis of the sensitivity measures we calculated for a 

full spectrum of mortgage product, we propose a new mortgage product, which can 

potentially benefit both the MBS investor and mortgage borrower.  
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This essay is organized in the following manner. Section 1 describes the problem 

setting. We then derive the framework for PA in a general setting in section 2, without 

restrictions to any specific interest rate model or prepayment model. Then we consider 

the well-known Hull-White interest rate model (Hull and White [1993]) and a common 

prepayment model to derive the corresponding PA sensitivities for FRM and ARM 

products in section 3, assuming the shock of interest rate term structure takes the form of 

a series of trigonometric polynomial functions. Section 4 presents numerical examples, in 

which we compare the performance of FD and PA estimators, indicating that the PA 

estimator is at least as good as the FD estimator, while the computation cost is reduced 

dramatically. Section 5 gives the insights from our simulation results. Section 6 gives 

conclusions. 
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1.2 Hedging MBS in HJM Framework 

 There is a large body of literature on hedging with different interest risk measures, 

like first-order hedging with duration (Ilmanen [1992]), second order hedging with 

convexity (Kahn and Lochoff [1990], Lacey and Nawalkha [1993]), principal 

components hedging (Golub and Tilman [1997]), key rates hedging (Ho [1992]), 

level/slope/curvature hedging (Willner [1996]), etc. Yet there has not been a unifying 

effort in combining hedging the term structure together with hedging volatility factors. 

  

This essay tries to extract the empirical volatility factors from historical term 

structure data, via principal components analysis (PCA), and apply these factors in a 

HJM framework for pricing MBS, while deriving the risk measures for hedging MBS. It 

makes the following contribution in the MBS literature: 

• The first paper to hedge MBS with PCA factors empirically extracted from historical 

interest rate data; 

• Hedging efficiency is proved to increase significantly, compared with traditional 

duration/convexity hedging. 

  

This essay is organized in the following way. Section 1 gives the motivation for 

this research question. Section 2 describes the interest rate data set and PCA method we 

used to extract the volatility factors. Section 3 applies these factors in interest rate 

simulation within a HJM framework. Section 4 derives the PA estimators in the HJM 

framework. Section 5 gives the hedging algorithm for MBS, and Section 6 gives the 

performance analysis of this hedging method. Section 7 concludes the essay. 



 10

1.3 Hedging Credit Risk of MBS: A Random Coefficient 

Approach 

In order to hedge the credit risk of MBS, the MBS issuer sometimes needs to 

purchase pool insurance from a third party, beyond the protection of mortgage collateral, 

and primary mortgage insurance. In this case, it is important to model the credit risk of 

the third party. Recently there has been increased interest in some research papers to use 

regression method to determine what factors affect credit spread. Most of the papers, 

which use simple linear regression, found that variables in structural models lack 

explanatory power in such regression. We argue that the problem partially results from 

non-constant credit spread sensitivities to state variables. 

 

We try to overcome the problem by proposing a Random Coefficient Regression 

(RCR) model. We collected data from multiple database, and constructed our data set. 

Our regression results show that our assumption of non-constancy of credit spread 

sensitivities is correct. As a result of improved regression, we improved adjusted R2 to 

28%, compared with 8% adjusted R2 for a simple linear regression approach, using the 

same set of independent variables. Another important result of our RCR model is that it 

validated the relationship between credit spread sensitivities and state variables, which 

has been predicted by Merton’s model. 

 

This essay makes the following research contributions to the finance literature: 

• The first paper to use the RCR method on credit spread data; 
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• The first paper to explicitly build a dependence relationship between credit spread 

sensitivity and state variables; 

• The first paper to empirically validate the dependence relationship between credit 

spread sensitivity and state variables predicted by a structural model, such as 

Merton’s model. 

 

This essay is organized in the following way. Section 1 gives the motivation for 

this research question. Section 2 describes several previous papers on this topic. Section 3 

gives a brief introduction to the Random Coefficient Regression model. Section 4 applies 

this model to changes of credit spread. Section 5 gives the data description used in the 

regression, and Section 6 gives the results analysis of this regression method. Section 7 

concludes the essay. 
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Chapter 2 

Efficient Sensitivity Analysis of MBS 

2.1 Problem Setting 

Generally the price of any security can be written as the net present value (NPV) 

of its discounted cash flows. Specifying the price of an MBS (here we consider only the 

pass-through MBS1) is as follows: 
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where  P is the price of the MBS, 

V is the value of the MBS, which is a random variable, dependent on the 

realization of the economic scenario, 

PV(t) is the present value for cash flow at time t, 

d(t) is the discounting factor at time t, 

c(t) is the cash flow at time t, 

M is the maturity of the MBS. 

 

                                                           
1A pass-through MBS is an MBS that passes through the principal and interest payments collected from a 

mortgage pool, minus the guaranty fee and servicing fee, to the MBS investor directly. This is in contrast to 

Collaterized Mortgage Obligations (CMOs), which have multiple tranches and pay the principal payments 

according to the seniorities of tranches. In this essay, we assume that mortgages in the MBS pool are 

homogenous. 
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Monte Carlo simulation is used to generate cash flows on many paths. By the 

strong law of large numbers, we have the following: 

[ ] ∑
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where  Vi is the value calculated out in path i. 

 

The calculation of d(t) is found from the short-term (risk-free) interest rate 

process,  
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where  d(i, i+1) is the discounting factor for the end of period i+1 at the end of period i; 

r(i) is the short term rate used to generate d(i, i+1), observed at the end of period 

i; 

∆t is the time step in simulation, generally monthly, i.e. ∆t= 1 month. 

An interest rate model is used to generate the short term-rate r(i);  then d(t) is instantly 

available when the short-term rate path is generated. 

 

The difficult part is to generate c(t), the path dependent cash flow of MBS for 

month t, which is observed at the end of month t. From chapter 19 of Fabozzi [1993], we 

have the following formula for c(t): 

);()()(
);()()(

);()()()()(

tPPtSPtTPP
tIPtSPtMP

tIPtTPPtPPtMPtc

+=
+=

+=+=
     (2.4) 

where  MP(t): Scheduled Mortgage Payment for month t; 

TPP(t): Total Principal Payment for month t; 
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IP(t): Interest Payment for month t; 

SP(t): Scheduled Principal Payment for month t; 

PP(t): Principal Prepayment for month t. 

These quantities are calculated as follows: 

;)(11)(

);()1()(
));()1()(()(

;
12

)1()(

;
)12/1(1

12/)1()(

12 tCPRtSMM

tTPPtBtB
tSPtBtSMMtPP

WACtBtIP

WAC
WACtBtMP tWAM

−−=

−−=
−−=

−=









+−

−= +−

     (2.5) 

B(t):  The principal balance of MBS at end of month t; 

WAC2:  Weighted Average Coupon rate for MBS; 

WAM3:  Weighted Average Maturity for MBS; 

SMM(t): Single Monthly Mortality for month t, observed at the end of 

month t; 

CPR(t): Conditional Prepayment Rate for month t, observed at the end of 

month t. 

 

In Monte Carlo simulation, along the sample path, CPR(t) is the primary variable 

to be simulated. Everything else can be calculated out once CPR(t) is known. Different 

prepayment models offer different CPR(t), and it is not our goal to derive a new 

                                                           
2 WAC is the weighted average mortgage rate for a mortgage pool, weighted by the balance of each 

mortgage. 

3 WAM is the weighted average maturity in month for a mortgage pool, weighted by the balance of each 

mortgage. 
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prepayment model or compare existing prepayment models. Instead, our concern is, 

given a prepayment model, how can we efficiently estimate the price sensitivities of MBS 

against parameters of interest? Generally different prepayment models will lead to 

different sensitivity estimates, so it is at the user’s discretion to choose an appropriate 

prepayment function, as our method for calculating the “Greeks” is universally 

applicable. 

2.2 Derivation of General PA Estimators 

If P, the price of the MBS, is a continuous function of the parameter of interest, 

say θ, and assuming the interchange of expectation and differentiation is permissible4, we 

have the following PA estimator by differentiating both sides of (2.1): 

).,(),(),(),()),((

,),(
),(

)]([)(
1

1

θ
θ
θθ

θ
θ

θ
θ

θ
θ

θ

θ

θ
θ

θ
θ

tdtctctd
d

tPVd

d
tdPVE

d

tPVd
E

d
VdE

d
dP M

t

M

t

∂
∂

+
∂

∂
=









=



















== ∑
∑

=

=

  (2.6) 

Now we have reduced the original problem from estimating the gradient of a sum 

function to estimating the sum of a bunch of gradients. Actually now we only need to 

estimate two gradient estimators, 
θ
θ

∂
∂ ),(tc  and 

θ
θ

∂
∂ ),(td , at each time step.  

                                                           
4 Strictly speaking, sample pathwise continuity of price function with respect to θ will result in the 
interchange being valid. 
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2.2.1 Gradient Estimator for Cash Flow 

We first derive 
θ
θ

∂
∂ ),(tc . To simplify notation, we write c(t) for c(t, θ). 

A simplified expression for c(t) is derived from (2.4) and (2.5) as follows: 

{ },)()](1)[()1(

)()
12

1)(1()](1[
)12/1(1

12/)1(

)()
12

1)(1())(1)((

)()]}()([)1({)(
)()]()1([)()()()(

tSMMgtSMMtAtB

tSMMWACtBtSMM
WAC
WACtB

tSMMWACtBtSMMtMP

tSMMtIPtMPtBtMP
tSMMtSPtBtMPtPPtMPtc

tWAM

+−−=

+−+−
+−

−=

+−+−=

−−−+=
−−+=+=

+−

(2.7) 

where 

).
12

1(

,
)12/1(1

12/)(

WACg

WAC
WACtA tWAM

+=

+−
= +−

      (2.8) 

Then we can derive the gradient for c(t), if WAC and t are independent5 of θ: 

{ } ])()[1()()()](1)[()1()( gtAtBtSMMtSMMgtSMMtAtBtc
+−−

∂
∂

++−
∂
−∂

=
∂
∂

θθθ
. (2.9) 

This leads to recursive equations for calculation of the above gradient estimator 

from (2.5) and (3.2): 

.)()1()(

);()1()()
12

1)(1()()1()(

);1(
12

)()()()(

θθθ ∂
∂

−
∂
−∂

=
∂
∂

−−=−+−=−−=

−−=−=

tcgtBtB

tcgtBtcWACtBtTPPtBtB

tBWACtctIPtctTPP

 (2.10) 

                                                           
5 A fixed Rate Mortgage (FRM) would satisfy this assumption; however an Adjustable Rate Mortgage 
(ARM) will not, so we derive the gradient estimator for ARMs later in section 4. 
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Assuming we know that the initial balance is not dependent as θ; we have the 

initial conditions: 

).)1()(0()1()1(

;0)0(

gABSMMc

B

+−
∂

∂
=

∂
∂

=
∂

∂

θθ

θ       (2.11) 

This leads to the following  

,)1()0()1(
θθθ ∂

∂
−

∂
∂

=
∂
∂ cgBB        (2.12) 

{ } ),)2()(1()2()2()2(1)(2()1()2( gABSMMSMMgSMMABc
+−

∂
∂

++−
∂
∂

=
∂
∂

θθθ
 

(2.13) 

Mttc ,...,2,1,)(
=

∂
∂
θ

. 

Thus the problem of calculating the gradient estimator of cash flow c(t) is reduced 

to calculating: 

.,...,1,)( MttSMM
=

∂
∂

θ
 

Since 

,)(11)( 12 tCPRtSMM −−=  

we have 

.)())(1(
12
1)( 12

11

θθ ∂
∂

−=
∂

∂ − tCPRtCPRtSMM      (2.14) 

As discussed earlier, generally CPR(t) is given in the form of a prepayment function, 

and there are four main types of prepayment functions (Fabozzi [2000]):  

1. Arctangent Model: (An example from the Office of Thrift Supervision (OTS).) 
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))
)(

089.1(9518.5arctan(1389.02406.0)(
10 tr

WACtCPR −−= .   (2.15) 

2. CPR(S,A,B,M) Model: 

);()()()()( tBMtMMtAGEtRItCPR =       (2.16) 

where  RI(t) is refinancing incentive; 

  AGE(t) is the seasoning multiplier; 

  MM(t) is the monthly multiplier, which is constant for a certain month; 

  BM(t) is the burnout multiplier. 

3. Prepayment models incorporating macroeconomic factors, i.e., the health of 

economics, housing market activity, etc. 

4. Prepayment models for individual mortgages. 

For the last two types of prepayment models, we do not have any explicitly stated 

functional forms, mainly because they are proprietary models in the mortgage industry. 

But since our approach is general for any type of prepayment function, we can derive the 

derivatives once we are given an explicit form for the prepayment function. 

 

We would like to make one claim here: the CPR(t) model we mentioned and we are 

going to use in Chapter 2 and Chapter 3 includes both voluntary prepayment (refinance, 

house turnover, and cash out) and involuntary prepayment (default). Because default only 

makes about 1% of total prepayment, and generally MBS issuer will guarantee the 

principal payment to the investor, in case borrower defaults, it is a reasonable not to 

model default separately. However, when analyzing MBS backed by high default loans, 

such as subprime mortgages, it is desirable to model voluntary prepayment and default 

separately. 
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2.2.2 Gradient Estimator for Discounting Factor 

We have derived the gradient estimator of cash flow with respect to parameter θ. 

Next, we derive the gradient estimator of the discounting factor d(t). 

We know that the discounting factor takes the following form from section 2, 

when the option adjusted spread (OAS) is not considered. For simplification, we write 

d(t) as for d(t, θ): 

}])([exp{)(
1

0
tirtd

t

i
∆−= ∑

−

=

.       (2.17) 

Differentiating with respect to θ: 

 .))(()())((}])([exp{)( 1
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tirtdtirtirtd t
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∆
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−=∆
∂
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−∆−=
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−

=

−

=

−

= θθθ
  (2.18) 

 From the gradient estimators for cash flow and discounting factor, we can easily 

get the gradient estimator of PV(t): 

 ),(),(),(),()),(( θ
θ
θθ

θ
θ

θ
θ tdtctctd

d
tPVd

∂
∂

+
∂

∂
= .    (2.19) 

 The last step would be to apply a specific prepayment model and interest rate 

model to arrive at the actual implemented gradient estimators. To illustrate the procedure, 

we carry out this exercise in its entirety for one setting in the following section. 
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2.3 Applying the Gradients 

We choose our interest model to be the one-factor Hull-White (Hull and White 

[1990]) model, for its simplicity and easy calibration to market term structure. For the 

prepayment model, we consider a CPR(S,A,B,M) model. 

2.3.1 Interest Model Setup 

In this section, we briefly discuss the model and the simulation scheme. 

In the one-factor Hull-White interest rate model, the underlying process for the 

short-term rate r(t) is given by 

),())()(()( tdBdttarttdr σϕ +−=       (2.20) 

where B(t): a standard Brownian motion; 

a: mean reverting speed, constant; 

σ: standard deviation, constant; 

ϕ(t): chosen to fit the initial term structure, which is determined by 

),1(
2

),0(),0()( 2
2

ate
a

taf
t

tft −−++
∂

∂
=

σϕ      (2.21) 

f(0,t): the instantaneous forward rate, which is determined by 

,),0(1),0(
0∫=
t

duuf
t

tR        (2.22) 

Differentiating both sides, with respect to t, we have 

),0(),0(),0( tR
t

tRttf +
∂

∂
= ,       (2.23) 

where  R(0,t): the continuous compounding interest rate from now to time t, i.e. the term 

structure. 
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In order to simplify the simulation process, the model can be re-parameterized 

from its original to the following: 

;0)0(),()()()( =+−= xtdBdttxtatdx σ      (2.24) 

x(t) is determined by 

2
2

)1(
2

),0()()()( ate
a

tftxtrta −−+=−=
σ .     (2.25) 

The process x(t) is called an Ornstein-Uhlenbeck process, and its solution is given 

by 

∫−=
t auat udBeetx
0

)()( σ ,       (2.26) 

which is a Gaussian Markov process, and can also be represented as 

)
2

1()(
2

a
eWetx

at
at −

= −σ ,       (2.27) 

where {W(t), t≥0} is also a Brownian motion. 

In this case, the interest rate r(t) can be represented in the following form: 

))()(()( )(thWtgtaFtr += ,       (2.28) 

where a, g: R+ → R are continuous functions, and the functions F:R → R and h: R+ → R 

are strictly increasing and continuous. From above we can see that 
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      (2.29) 

To simulate r(t) given by above, we will first simulate 

)()()( thWtgtx = , 
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which is a Gaussian Markov process, and then compute the short-term interest rate by 

))()(()( txtaFtr += . 

For calculating the price of MBS, the short-term rate is not sufficient; the long-

term rate process is also required, especially the 10-year Treasury rate, which is a 

deterministic function of r(t) in the Hull-White model. Generally this is the case for 

short-term rate models, but not true for more complicated interest rate models, e.g., the 

HJM (Heath, Jarrow and Morton [1992]) model and the LIBOR forward rate model 

(Jamshidian[1997]). The long-term rate R(t,T) is calculated from the following, : 
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 (2.30) 

P(t,T) is the zero coupon bond price at time t, with face value $1, matured at T. 

Thus we can derive the R(t,T) as following: 

)(
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trTtBTtATtR
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−= .      (2.31) 

The standard (forward) path generation method for generating x(t) is given by  
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where {zi} is a series of independent standard normal random variables. In the special 

case where x(t) is from the Hull-White model, we have 

1
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where ∆ti=ti+1- ti. 

2.3.2 Trigonometric Polynomial Shocks 

There are multiple factors in the interest rate model that can change and affect the 

cash flows and discounting factor along the simulation path. The major changes could be 

the initial term structure R(0,t) and the volatility σ.  

The most common assumption for term structure change is a parallel shift on all 

maturities. However, this is often not an adequate model for the real world, where a shift 

in the term structure can take any shape. For example, short-term rates and long-term 

rates may change in opposite directions rather than in parallel. We consider a Fourier 

series decomposition of the term structure shift. 

 Our domain of concern is interest rates from time 0 to 30 years, since most 

mortgages are amortized in a 30-year term. So for example, we could assume the shift of 

term structure takes the following form: 

 ∑
∞

=

∆=∆
0

),
30

cos(),0(
n

n
tntR π        (2.34) 

where ∆n is the magnitude for the nth Fourier function. Figure 4.1 depicts the first four 

trigonometric polynomial series. (n=0,1,2,3), which is all that we will consider in our 

model. When n=0, the shift is just like a parallel shift in term structure. When n=1, the 

short-term and long-term rates move in opposite directions. When n=2, the short-term 

and long-term rates move in the same direction, while the middle-term rate moves in the 

opposite direction. Thus we decompose any shift in the term structure into the Fourier 

functions by Fourier transform. If we have previously calculated the gradients with 

respect to the magnitude of each trigonometric polynomial function, we can apply these 
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gradients and get the corresponding changes in the cash flows and discounting factors, 

and hence the change in  MBS prices. 

 The Fourier series have a serious drawback: they treat short-term rates the same 

as long-term rates. However, from experience, we know that the short-term rates 

generally change more frequency than long-term rates. So we would like to change the 

shape of the trigonometric polynomial function, which will concentrate more on the 

short-term rates, and keep the long-term rates relatively stable. The modified Fourier 

function that we adopt takes the following form: 

 ∑
∞

=

−−∆=∆
0

/ ))1(cos(),0( 0

n

Tt
n entR π ,      (2.35) 

where T0 is a user-specified parameter of the modified Fourier shifts. The smaller T0 is, 

the more likely short rates and long rates are going to act differently. See Figure 2.2 for 

the modified Fourier functions, where T0=10. Comparing Figures 2.1 and 2.2, the 

modified Fourier series concentrate more on the changes with maturities less than T0, 

which is both desirable and easier for analytical purposes. 

For a Fourier cosine series that has the following functional form: 

∑
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tf π ,       (2.36) 

the coefficients are given by a Fourier cosine transform: 

 ∫ ==
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Figure 2.1 ∆R(0,t) with Original Fourier series 

 
Figure 2.2 ∆R(0,t) with T0=10 modified Fourier series 
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For our modified Fourier series, perform the following change of variables: 

)1(
30

'
0/ Ttet −−=  

and substitute into the expression of ∆R(0,t) to get 

∑
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=

∆=∆
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)
60

'2cos()',0(
n

n
tntR π ,       (2.38) 

which is a standard Fourier cosine series, and we can use a Fourier transform to estimate 

the coefficients. In computer simulation, t is a vector of real time points, evenly 

distributed with sample function value ∆R(0,t), and t’ is the mapped time point in a new 

time scale, which is not evenly distributed, with the same sample function value ∆R(0,t’). 

However, in order to utilize the discrete cosine transform function provided in 

mathematical libraries, we need to resample ∆R(0,t’) at even time intervals. This is 

carried out by interpolating the function of ∆R(0,t’) on the t time scale. Figure 2.3 shows 

a sample of ∆R(0,t), ∆R(0,t’) re-sampled on t, the coefficients estimated on the re-

sampled ∆R(0,t’), and the reconstructed Fourier series of  ∆R(0,t). 

From Figure 2.3, if we look at the upper left and lower right sub-figures, we can 

see that the reconstructed term structure matches the original sample very well, which 

validates our method for estimating the coefficients of the modified Fourier series. 
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 Figure 2.3 Coefficients Estimation for Modified Fourier series 

2.3.3 Derivation of Gradients with respect to Modified Fourier Functions 

Our major task in this section is to derive the gradient estimator with respect to to 

specific parameters in the interest rate model and prepayment model. Specifically, for the 

former, we are interested in the parameters of the modified Fourier functions (∆n, n=0, 1, 

2, 3). 

First we derive the discounting factor gradient estimator. From (3.12), we know 

that in order to derive 
θ∂

∂ )(td , we must first derive 
θ∂

∂ )(ir , i=0,…, t-1. Let us recall that in 

section 4.1, we have the following simulation scheme for short term rate r(t): 

)()()( txtatr += . 



 28

So 

θθθ ∂
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∂
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∂
∂ )()()( txtatr  ,       (2.39) 

where 
θ∂

∂ )(ta  and 
θ∂

∂ )(tx  are determined as the following in Hull-White model: 
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We also know the relationship between f(0,t) and R(0,t) from (2.23), so  
θ∂

∂ ),0( tf  

can be derived as: 
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Considering the changes in R(0,t) which takes the form as in (2.38), we can get 

the derivatives of R(0,t) (θ  taken to be ∆n): 
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We can get the derivatives of r(i): 
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And gradient estimator for discounting factor is also obtained, applying (2.18). 
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Next, we are going to derive the cash flow gradient estimator with respect to ∆n. 

From our derivation in section 3, we know that in order to get 
θ∂

∂ )(tc , we need to derive 

θ∂
∂ )(tCPR  first. We use the second type of prepayment function, among the four 

described in section 3. An example for this type of prepayment model is available from 

the sample code at the Numerix homepage http://www.numerix.com. 
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From the formulas, only RI(t) and BM(t) depend on θ, when θ is not time t. Thus 

we have the following formula for 
θ∂

∂ )(tCPR : 
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θ∂
∂ )(tB  is available, when 

θ∂
∂ )(tc  is calculated out, so the problem is reduced to 

calculating 
θ∂

∂ )(10 tr
. In the one-factor Hull-White framework, as we have discussed in 

section 2.3.1, the long-term rate is a deterministic function of r(t), so substituting T=t+10 

for (2.30), we have 
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θ∂
∂ )(10 tr

 takes the following form, when θ is independent of σ and t: 
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Thus we have derived 
θ∂

∂ )(10 tr
as a function of  

θ∂
∂ )(tR  and 

θ∂
∂ )(tr  derived earlier.  
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2.3.4 Derivation of Gradients with respect to Volatility: Vega 

The derivation is straightforward as in section 2.3.3; all we need to do is to 

substitute θ with σ, instead of ∆n. In order to get 
σ∂

∂ )(td , we must first derive 
σ∂

∂ )(ir . 

Following the same logic in (2.40), we can get the vega of r(t): 
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And vega of d(t) would be: 
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Now we derive 
σ∂

∂ )(tc , which would require us to derive 
σ∂

∂ )(tCPR  first, which has 

the same form as in (2.45), while 
σ∂

∂ )(10 tr  has the form of: 
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2.3.5 Derivation of Second Order Gradients: Gamma 

Another gradient that interests risk mangers is convexity, or the gamma of MBS, 

which is the second order derivative of price against term structure shifts. Now we derive 

an estimator for the gamma. 
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In order to calculate the partial second order derivatives (Hessian matrix), we take 

θ to be the vector, θ=[∆1 ∆2 ∆3 ∆4 σ]’. Differentiating (2.1)1, we get 
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where ]'     [
4321 σθ ∂

∂
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∂
∂ PPPPPP , and 2

2

θ∂
∂ P  is a 5-by-5 matrix, whose (i, j)th 

element is determined by 
ji

P
θθ ∂∂

∂ 2

, where θI and θI are the ith and jth elements of θ, 

respectively. The same notation will be used for gradients of other variables, i.e. c(t), d(t), 

r(t), etc. 

Since we have calculated 
θ∂

∂ )(tc  and 
θ∂

∂ )(td in previous sections, now the problem 

is reduced to estimate 2

2 )(
θ∂

∂ tc  and 2

2 )(
θ∂

∂ td . So we first derive the gamma for the 

discounting factor d(t). Differentiating (2.18), we get 
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Once we have 2

2 )(
θ∂

∂ ir , the gamma of d(t) is easily calculated. Now we derive the 

gamma for cash flow c(t). From (2.9), we can derive the following gamma equation: 

 

                                                           
1 Again, we need the first order derivative to be pathwise continous to make the interchange of expectation 
and differentiation permissible. 
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 And from (3.5), we can get the gamma of B(t): 
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Now we calculate gamma of SMM(t): 
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θ∂
∂ )(tCPR  and 2

2 )(
θ∂

∂ tCPR  will be prepayment model specific. 

 For discounting factors, if we choose the Hull-White one factor model, we have 

the following: 
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From and (2.43) and (2.49), we can derive the following: 
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And the gamma of d(t) would be 
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 For cash flows, based on the equations (2.45) and (2.48) in the CPR(S, A, B, M) 

model, we have: 
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where we know from (2.58) that 
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Finally, the gamma of price P given by equation (2.53) can be obtained from 

equations (2.60), (2.61), and (2.62). 

2.3.6 Derivation of ARM PA estimators 

In this section, we derive PA estimators for ARMs. We know FRMs only have 

two sources of uncertainty: 

• Short-term rate r(t), which affects the discounting factor d(t), and 

• Long-term rate r10(t), which determines the prepayment rate CPR(t), and hence 

determines the cash flow C(t).  

ARMs introduce one more source of uncertainty, the coupon rate WAC(t), which 

affects both the amortization schedule and the prepayment rate CPR(t), and then affects 

the cash flow C(t). Coupon rate is determined by many factors: 

• The index rate. WAC resets to the index rate plus the margin periodically. 

• Margin. The spread between the WAC and the index rate. 

• Adjustment period. For fixed period (FP) ARMs, the first adjustment period is 

different from subsequent adjustment period. 
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• Period Cap/Floor. The maximum  amount the WAC could increase/decrease from 

previous period. 

• Lifetime Cap/Floor. The maximum/minimum coupon rate over the lifetime of the 

mortgage. 

In order to derive the PA gradient estimator of C(t) for ARM, we first need to 

derive the PA gradient estimator for Index(t) and WAC(t). 

The most commonly used index rate is the 1-year Treasury rate. In the Hull-White 

model, it is an explicit function of short-term rate r(t) and the term structure R(0, t). As 

we have derived the function form of r10(t), we can derive the rlag(t) for any lag: (in this 

case, lag=1) 
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Thus we have the PA gradient estimator of 
θ∂

∂ )(tIndex  in following form: 
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           (2.64) 

The hard part is to get the 
θ∂

∂ )(tWAC  from 
θ∂

∂ )(tIndex , because of the complicated rules to 

determine WAC(t), based on all the factors mentioned above. Given WAC(t-1), Index(t), 
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Margin, Period_Cap2, Period_Floor, Life_Cap, Life_Floor, WAC(t) is determined as 

follows: 
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           (2.65) 

 Figure 2.4 shows the relationship of WAC with Index. 

 

Figure 2.4 WAC as a function of Index 

 

                                                           
2 Life_Cap/Life_Floor are absolute numbers, while Period_Cap/Period_Floor are relative. 
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Then we can derive the 
θ∂

∂ )(tWAC  as following: 
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Note that the gradient is  0, when it is bounded by lifetime cap or floor, because a 

perturbation would not change the WAC(t). 

Next, we need to derive 
θ∂

∂ )(tCPR  for ARM, assuming ARM borrowers have the 

same prepayment behavoir as FRM borrowers (which is not necessarily true, but it does 

not affect our analysis), so we are facing the same prepayment function as FRM30 as in 

(2.45). 

θ∂
∂ )(tCPR  will be affected because of the uncertainty of WAC(t). 
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Also C(t) will be affected by the introduced uncertainty in WAC(t): 
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And the PA gradient estimator for balance B(t) is as the following: 
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The PA estimator for the discounting factor is unchanged, so we can get the modified 

Fourier duration and volatility duration. 
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2.4 Numerical Example 

2.4.1 Specification of Numerical Example 

 We need to specify two sets of data to price the mortgage: the mortgage data and 

the interest rate data, which includes the initial term structure and parameters for the 

interest rate model. 

 We price different mortgages to examine the different impacts that a term 

structure shift or change in volatility may have on different mortgage products. 

The following data are fixed for all products: 

 Unpaid Balance/UPB =$4,000,000; 

 WAM =360 months. 

 Table 2.1 shows the difference between all the products. All the ARM products 

have the same subsequent adjustment period of 12 months, period cap/floor of 0.02, 

lifetime cap of initial WAC plus 0.06, and no lifetime floor. 

Product WAC Index Adjust First 
FRM 0.07425 N/A N/A 
1 Year ARM 0.06425 Treasury 1 Year 12 month 
3/1 FP1ARM 0.07425 Treasury 1 Year 36 month 
5/1 FPARM 0.07425 Treasury 1 Year 60 month 
7/1 FPARM 0.07425 Treasury 1 Year 84 month 
10/1 FPARM 0.07425 Treasury 1 Year 120 month 
1 Year ARM2 0.07425 Treasury 10 Year 12 month 

Table 2.1 Product Specification for Mortgage Pricing 
                                                           
1 FP ARM refers to Fixed Period ARM, which keep the coupon rate constant for a certain period, and then 

adjust periodically, generally once a year. So All the FP ARM products are the same, except different 

Adjust First date, which is the first coupon reset date. 

2 This ARM is not a mortgage product in the market at present, and is constructed for illustration purpose 

only. The following sections will discuss why we introduce this product, and what nice properties it has. 
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 We use the same parameters for all the different products in order to have 

comparable results. Thus we set all the products to have the same coupon rate, except the 

first 1 year ARM with index of Treasury 1 year rate, which has a 100 basis points (bps) 

teaser rate. All the ARM products have the same characteristics, except for the Adjust 

First date, which is the feature that distinguishes these products. 

 Our initial term structure is the following: 

 f(0,t)=ln(150+12t)/100, t=0,1,…,360. 

This will produce an upward-sloping curve increasing gradually from 5% to 8.7% 

along 30 year maturity, and R(0,t) is acquired by calculating the following: 

 );0,0()0()0,0(,
),0(

),0( 0 frR
t

duuf
tR

t

=== ∫     (2.75) 

 which increases from 5%, to 7.78% gradually. 

 Our assumptions for interest rate model parameters are the following: 

 a=0.1; σ=0.1; ∆n=0.00025, n=0,1,2,3 (used in the FD gradient and gamma 

estimator calculation); ∆σ=0.00025, (used in the FD vega estimator calculation). 

2.4.2 Comparison of PA and FD gradient estimators 

In order to test whether our PA gradient estimators are accurate, and are within 

the error tolerance range, we calculate the finite difference (FD) gradient estimators at the 

same time during our pricing process. This section will demonstrate the accuracy of our 

PA estimators of delta, vega, and gamma for FRM, as well as the delta and gamma for 

ARM. 
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Comparison of Modified Fourier Gradient Estimators for FRM 

 Figure 2.5 shows the FD estimator, PA estimator, their difference, and standard 

deviation of their difference for 
n

td
∆∂

∂ )( . The four curves in each chart are specified as 

following, which will be the convention for the rest of the paper: 

Blue: Modified Fourier Order 1; 

Green: Modified Fourier Order 2; 

Red: Modified Fourier Order 3; 

Cyan: Modified Fourier Order 4. 

 We can see that although these two estimators are pretty close, there exists a 

pattern in the difference of these two estimators. This will be explained later in the error 

analysis section. 

 Figure 2.6 shows the PA and FD gradient estimators for cash flow c(t): they are 

pretty close, and the difference behaves as random noise. Based on
θ
θ

∂
∂ ),(tc  and 

θ
θ

∂
∂ ),(td , 

we can calculate 
θ
θ

d
tdPV ),( , and figure 5.3 shows us the 

nd
tdPV

∆
)( . Figure 5.4 shows the 

95% confidence interval for difference between PA and FD estimators of 
nd
tdPV

∆
)( , and 

we can see that 0 is generally contained in the 95% confidence interval. 
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Figure 2.5 Gradient Estimator Comparison for ∂d(t)/ ∂∆n 

 
Figure 2.6 Gradient Estimator Comparison for ∂c(t)/ ∂∆n 
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Figure 2.7 Gradient Estimator Comparison for dPV(t)/ d∆n 

 
Figure 2.8 95% Confidence Interval for dPV(t)/d∆n 
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Comparison of Vega Estimators for FRM 

 In this section, we also compare the FD and PA estimators for the gradient w.r.t. 

interest rate volatility: Vega. Figure 2.9 shows the FD estimator, PA estimator, their 

difference, and standard deviation of their difference for 
σ∂

∂ )(td . Also there exists a 

pattern in the difference of these two estimators. This will also be explained later in the 

error analysis section. Figure 2.10 shows the gradient estimators for cash flow c(t): they 

are pretty close, and the difference behaves as random noise. Figure 2.11 shows us the 

σd
tdPV )( , and figure 2.12 shows the 95% confidence interval for 

σd
tdPV )( , and we can see 

that 0 is always contained in the 95% confidence interval. 

 
 

 
Figure 2.9 Gradient Estimator Comparison for ∂d(t)/∂σ 



 47

 
Figure 2.10 Gradient Estimator Comparison for ∂c(t)/∂σ 

 
Figure 2.11 Gradient Estimator Comparison for dPV(t)/dσ 
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Figure 2.12 95% Confidence Interval for dPV(t)/dσ 

Comparison of Gamma Estimators for FRM 

For gamma estimation, θ=[∆1 ∆2 ∆3 ∆4]’. So 2

2 )(
θ∂

∂ td , 2

2 )(
θ∂

∂ tc , or
2

2 )(
θ∂

∂ tPV
 is a 

4x4 matrix. If we want to estimate this matrix by the FD method, we would need 144 

points to estimate 48 first order derivatives and to estimate 16 second order derivatives.  

 The following figures show the FD, PA estimators, the difference and STD of 

difference for diagonal gamma elements. 
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Figure 2.13 gamma estimators for 2

2 )(

i

td
∆∂

∂ , i=1, 2, 3, 4 

Figure 2.14 gamma estimators for 2

2 )(

i

tCPR
∆∂

∂ , i=1, 2, 3, 4 
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Figure 2.15 gamma estimators for 2

2 )(

i

tCF
∆∂

∂ , i=1, 2, 3, 4 

Figure 2.16 gamma estimators for 2

2 )(

i

tPV
∆∂

∂ , i=1, 2, 3, 4 
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Comparison of ARM gradient estimators 

For ARM products, we basically have the same set of PA gradient estimators to 

compare with FD gradient estimators, with one additional set of estimators for 

i

tWAC
∆∂

∂ )( (figure 2.17). To illustrate the accuracy of our simulation in a brief way, we 

only show the FD and PA gradient estimator comparison for one ARM product, 1-Year 

ARM with index of 1-Year Treasury rate, adjusted annually. 

 

Figure 2.17 Gradient Estimator Comparison for 
i

tWAC
∆∂

∂ )( , i=1, 2, 3, 4 

Figures 2.18 and 2.19 show the FD/PA gradient estimator comparison for  

i

tPV
∆∂

∂ )(  and 
σ∂

∂ )(tPV  for this ARM product, respectively. 
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Figure 2.18 Gradient Estimator Comparison for 
i

tPV
∆∂

∂ )( , i=1, 2, 3, 4 

 

Figure 2.19 Gradient Estimator Comparison for 
σ∂

∂ )(tPV   
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2.4.3 Result Analysis 

Efficiency Analysis 

In financial practice, people are more interested in duration, which is the 

percentage change for a security, once there is a minor shift in one parameter, which 

mathematically is expressed as  

NPVd
dNPVduration 1)(

θ
θ

= .       (2.76) 

Actually, there should be a minus sign before the expression, since the original 

duration of fixed income securities measures the percentage price drop resulting from an 

increase in the interest rate. Yet for our analytical purpose, we do not need the duration 

always to be positive, since from the following numbers, we see that durations can also 

be negative. Table 2.2 shows the FD and PA durations for FRM30, their 95% confidence 

interval, and the error range of the mean. 

 
Fourier Order 0 1 2 3 Vega 
PA estimator -6.4816±0.1017 3.1012±0.1860 -0.5705±0.1817 0.6269±0.1189 -6.7567±0.6712
FD estimator -6.4814±0.1017 3.1001±0.1860 -0.5695±0.1816 0.6259±0.1188 -6.7565±0.6712

Absolute Error -0.0002 0.0011 -0.001 0.001 -0.0002 
Relative Error 0.0031% 0.0355% 0.1753% 0.1595% 0.0030% 

 
Table 2.2 Comparison of PA/FD Duration 

 We can see that the error size is very small, and the 95% confidence intervals are 

almost the same. Thus from the accuracy point of view, we can use PA estimator to 

replace FD estimator without causing too much problem. And the improvement in 

computation efficiency is enormous. The FD duration estimator works in the following 

way: 
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θ
NPV

NPVNPV
NPVd

tdNPV ∆−−∆+
= .  (2.77) 

Thus for each parameter, we need two additional simulations. In our case, we 

need 2x5+1=11 simulations to estimate the FD duration. However, by PA estimator, we 

only need one simulation. Ignoring the costs of middle steps, and middle variables, we 

can reduce the computational time by 10/11, or 90.9%. When we consider the second 

order derivative, gamma, the computational efficiency improves even more. 

The following table shows the comparison of convexity estimators for FRM. 

Convexity is calculated as following: 

NPVd
NPVdconvexity 1)(

2

2

θ
θ

= .      (2.78) 

As we have mentioned earlier, we only estimated part of the FD gamma 

estimators, via using the PA delta estimators. Because to fully estimate one set of 25 

gamma estimators, we would need to simulate 225 times to get all of them. And each 

element is a 360 by 300 (time length by simulation path) matrix. 

So from the above analysis, we can see that by the conventional FD method, to 

estimate one full set of duration and convexity estimators with 5 free variables, would 

require 11 plus 225 simulations. Since we achieve almost the same accuracy by a single 

simulation in PA analysis, the simulation cost is reduced roughly by more than 99.5%. 

However, we also need to contemplate the introduced costs of intermediate variables as a 

tradeoff of the PA method. 
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Convexity = Gamma/Mortgage Value  
Mortgage Value = 4.22E+08  

FD estimator 0 1 2 3 Vol 
0 -246.5944896 N/A N/A N/A N/A 
1 N/A -1871.407927 N/A N/A N/A 
2 N/A N/A -1854.492905 N/A N/A 
3 N/A N/A N/A -2000.544882 N/A 

Vol N/A N/A N/A N/A -4751.605032 
     

PA estimator     
0 -246.6418706 951.9319609 -646.2296558 161.8535453 919.0969179 
1 951.9319609 -1871.360546 1251.356282 -233.9200682 -1435.431523 
2 -646.2296558 1251.356282 -1854.208619 1106.51252 1223.425174 
3 161.8535453 -233.9200682 1106.51252 -2000.92393 -715.5006989 

Vol 919.1916799 -1435.407832 1223.377793 -715.4533179 -4755.158608 
   

Fourier Order 0 1 2 3 Vol 
PA estimator -246.5944896 -1871.407927 -1854.492905 -2000.544882 -4751.605032 
FD estimator -246.6418706 -1871.360546 -1854.208619 -2000.92393 -4755.158608 

Absolute Error 0.047381014 -0.047381014 -0.284286087 0.379048115 3.553576082 
Relative Error 0.0192% 0.0025% 0.0153% 0.0189% 0.0748% 

Table 2.3 Comparison of Convexity Estimators 
 
We did all the simulations on a Pentium III 800 MHz processor, with 512 MB 

memory, in Matlab Release 12.0 under Windows 2000. Here is the simulation 

comparison. 

Method FD PA 
Memory Required 17 MB 54 MB 
Simulation Time for 300 paths 115.5 765.8 
Number of Duration Measures 5 5 
Simulation required for estimating 
Duration 

11 1 

Number of Convexity Measures 25 25 
Simulation required for estimating 
Convexity 

225 1 

Total Simulation 236 1 
Total Expected Simulation Time 27257.7 765.8 
Efficiency Improvement  97.2% 

 
Table 2.4 Comparison of Computing Costs 
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Accuracy Analysis 

In order to validate the predictive power of our PA estimator, we setup a test case 

to compare the predicted percentage change in the MBS price with the real percentage 

change. 

The test case is set up as following: 

.55
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 While the predicted change in NPV is calculated as following: 
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     (2.80) 

where ∆θ=[∆1 ∆2 ∆3 ∆4 ∆σ]. 

We can see that the relative error by using both duration and convexity measures 

is only 0.0056%, while using duration measures only would produce a relative error of 

0.1403%. So this test validates the predictive power of our PA gradient estimators. In the 

next section, we are going to show that PA estimator not only is more efficient than FD 

estimator, but also is a more accurate estimator. 
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Error Analysis 

 Figure 2.5 and 2.9 show that there exists a pattern in the difference of gradient 

estimator of discounting factor d(t). Actually this has two reasons: the calculation of 

forward rates f(0,t) and the finite difference estimator of d(t). This could be verified by 

figure 2.9, which shows the difference of FD and PA 
n

tf
∆∂

∂ ),0(  estimators.  

We know that in the Hull-White model, f(0,t) is determined by (2.23). However, 

generally we do not have an explicit function form for R(0,t). Instead, we only have 

discrete points for term structure, so R(0,t) is estimated by interpolation. And f(0,t) is 

further estimated by calculating the difference between adjacent points on R(0,t) as 

t
tR

∂
∂ ),0( , which is not so accurate. The detailed calculation is given below. 

 

Figure 2.20 Difference of FD/PA ∂f(0, t)/ ∂∆n estimators 
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So using FD method to calculate the f(0,t) will result inaccuracy in FD estimator 

of 
n

tr
∆∂

∂ )( , and this will result inaccuracy in d(t). Also we know that d(t) takes the 

following form: 
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Figure 2.21 Fuction of xe-x 
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However, when we use FD method to estimate the first order derivative of e-x, the 

FD estimator is always greater in the absolute value, because e-x is a convex function. So 

FD estimator of 
θ∂

∂ )(td  is always biased, the bias decreases as the FD step width reduces. 

The bias increases linearly, while d(t) decreases exponentially. As a result, the bias takes 

the form of xe-x. Compare the difference of FD/PA 
σ∂

∂ )(td  gradient estimators and the 

figure of xe-x as in Figure 2.14, which resembles the error pattern very closely. 

For the PA method, 
n

tf
∆∂

∂ ),0(  is estimated by the following formula, 

0

/
// )())1(sin())1(cos(),0( 0

00

T
enenentf Tt

TtTt

n

−
−− −+−=

∆∂
∂ πππ   (2.83) 

which does not involve the FD estimation of 
t

tR
∂

∂ ),0( . And 
θ∂

∂ )(td  is directly estimated 

using its analytical form of first order derivative. So the PA estimator is more accurate 

than the FD estimator. 
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2.5 Interpretation of the Results 

In this section, we briefly present the durations for various mortgage products, 

which show different trends for modified Fourier duration of different order. And we try 

to interpret how the modified Fourier shocks of different order would affect the 

discounting factors and the cash flows, and then the present value (PV) of the mortgage. 

Then we analyze the relationship of mortgage prepayment option and mortgage duration. 

Based on these analysis, we propose a potential new ARM product, which could reduce 

the duration over any of the existing mortgages, while having a less volatile index than 

most existing mortgages. This product would benefit both the investors who want to 

reduce the interest risk, and the mortgage borrowers who want to have a fairly stable 

coupon rate. 

2.5.1 Overview of the Results 

The following table shows the durations for various ARM and FRM products we 

specified and priced in section 2.4: 

 
Fourier Order 0 1 2 3 Vega 

ARM TSY 1 -1.7761 -4.313 6.5674 -2.3822 -3.4618 
FP 3/1 ARM -2.8441 -2.9642 7.1814 -3.4784 -4.1601 
FP 5/1 ARM -3.8514 -1.1609 5.9506 -5.3355 -5.2456 
FP 7/1 ARM -4.3054 -0.3064 4.9272 -5.4472 -5.6651 
FP 10/1 ARM -5.4256 1.6401 1.7592 -2.6933 -6.6163 
FRM30 -6.4816 3.1012 -0.5705 0.6269 -6.7567 

Table 2.5 Durations of Different Products 
 

The relation can be better illustrated with the figure 6.1. The zeroth order modified 

Fourier duration (with respect to ∆0) is the same as Option Adjusted Duration (OAD), 

which measures the price percentage change to a parallel interest term structure shift. 

Other modified Fourier durations are the same measure, with respect to other interest 
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term structure changes. Vega measures the price percentage change to an interest 

volatility change. As we can see, for OAD and Vega, the most important hedge measures, 

FRM30 has the highest numbers, and 1-Year ARM has the lowest. For everything 

between pure FRM and pure ARM, there exists a monotonic relationship with the 

product’s approximation to an FRM30. For example, the Fixed Period 10/1 ARM is more 

like an FRM30 than a Fixed Period 7/1 ARM, so it has higher OAD, and higher Vega. 

This means that ARM products have a lower interest risk than FRM products, 

since an ARM borrower takes more interest risk than an FRM borrower. This result is 

consistent with Kau et al.[1990,1992,1993] and Chiang [1997].  

However, an interesting phenomenon is that the first order modified Fourier duration 

(with respect to ∆1) actually decreases, and changes sign as volatility of the coupon rate 

decreases. This indicates that an opposite move of the long-term and short-term rates 

would not only affect ARMs with a different magnitude, but also has a reverse effect 

from FRMs. Here is the explanation for this. The first order modified Fourier duration 

models the following changes in term structure: 

• Short-term rate increases; 

• Intermediate term rate (e.g. 10 year rate) doesn’t change, or moves only a little bit; 

• Long-term rate decreases. 

In this scenario, people with a short-term ARM, e.g. 1-year ARM are burnt the 

hardest, so they are going to refinance anyway, even if the prevailing mortgage rate does 

not change a lot. This will create huge prepayment, and reduce the NPV of the ARM 

mortgage. People with FRM, on the other hand, have no incentive to refinance, since the 

refinance mortgage rate (highly correlated with 10-Year Treasury rate) does not change a 
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lot. This will make the future cash flow more stable and valuable, since they are 

discounted at a lower long-term interest rate, and increase the NPV of the FRM 

mortgage. 

Figure 2.22 Duration vs. Products 

 The above analysis is based mainly on intuition, and does not show how will this 

term structure shock affect the discounting factors, cash flows, and NPV of MBS. In the 

following section, we will see what effect each one of the modified Fourier functions has 

on these components of MBS for various mortgage products. 

2.5.2 Modified Fourier Shock Impact 

The following 8 charts will show different modified Fourier shocks on term 

structure R(0,t), and their impact on d(t), CF(t), and PV(t). 
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Figure 2.23 The Impact of Modified Fourier Function Order 0 on FRM30 

Explanation: A parallel shift in the upward slope term structure will have a negative 

impact on the discounting factor. Also people are less likely to prepay in the near future, 

which reduces the cash flow in the short term, and increase the cash flow in the long term 

a little bit. However, the overall effect of such a shift on present value is negative, and 

thus reduces the NPV of this MBS. 
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Figure 2.24 The Impact of Modified Fourier Order 1 on FRM30 

Explanation: A shift of this shape in the upward slope term structure will have a mixed 

impact on the discounting factor: decrease it in the short term, but increase it in the long 

term. Also people are more likely to prepay in the near future, which increases the cash 

flow in the short term, and reduces the cash flow in the long term a little bit. However, 

the overall effect of such a shift on present value is positive, and thus increases the NPV 

of this MBS. 
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Figure 2.25 The Impact of Modified Fourier Order 2 on FRM30 

Explanation: A shift of this shape in the upward slope term structure will have a mixed 

impact on the discounting factor: increase it in the middle term, but decrease it in the long 

term. There is little incentive for people to prepay in the near future, and they will also 

cling to their current coupon rate in the middle term, because at that time the refinance 

rate will increase. However, the overall effect of such a shift on present value is cancelled 

out, and has little impact on the NPV of this MBS. 
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Figure 2.26 The Impact of Modified Fourier Order 3 on FRM30 

Explanation: same as Modified Fourier Order 2 
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Figure 2.27 The Impact of Modified Fourier Order 0 on ARM TSY 1 

Explanation: A parallel shift in the upward slope term structure will have a negative 

impact on the discounting factor. Also people with ARM are less likely to prepay in the 

near future, because they have a lower ARM rate than the refinance. Yet they will start 

prepay in the middle term, because short term rate at that time will increase, due to the 

upward slop term structure. This behavior will reduce the cash flow in the short term, and 

increase the cash flow in the middle term. However, the overall effect of such a shift on 

present value is negative, and thus reduces the NPV of this MBS. Yet the impact will be 

much smaller than that for FRM. 
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Figure 2.28 The Impact of Modified Fourier Order 1 on ARM TSY 1 

Explanation: A shift of this shape in the upward slope term structure will have a mixed 

impact on the discounting factor: decrease it in the short term, but increase it in the long 

term. Also people are more likely to prepay in the near future, which increase the cash 

flow in the short term, and reduce the cash flow in the long term a little bit. The overall 

effect of such a shift on present value is negative, and thus decreases the NPV of this 

MBS. 
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Figure 2.29 The Impact of Modified Fourier Order 2 on ARM TSY 1 

Explanation: A shift of this shape in the upward slope term structure will have a mixed 

impact on the discounting factor: increase it in the middle term, but decrease it in the long 

term. People will cling to their low ARM rate for the first few years, but then start to 

prepay in the middle term, since short term rate will increase at that time. The overall 

effect of such a shift on present value is positive, due to the increase cash flow and 

discounting factor in the middle term. 
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Figure 2.30 The Impact of Modified Fourier Order 3 on ARM TSY 1 

Explanation: much like Modified Fourier Order 3, yet because the reverse effect of 

discounting factor, the overall effect will be negative. 

6.3 Potential New ARM Product 

Duration is used to measure the interest risk of a fixed income security. The 

higher the duration is, the more interest risk that security bears. From the investor’s 

perspective, she will benefit if interest rates fall, and suffer if interest rates climb, if the 

security is non-callable (no prepayment option). From the mortgage borrower’s point of 

view, he will exercise his prepayment option if interest rates drop, and thus reduce the 

benefit for the investor. He will be able to lock in the low mortgage rate (for FRM), in 

case interest rates climb, and thus hurt the investor more. However, for the ARM 

borrower, he benefits from the rate drop, so he does not prepay like the FRM; thus the 
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MBS investor will also benefit. And he also pays the high coupon rate when interest rates 

increase, and the ARM MBS investor will not suffer like the FRM MBS investors. From 

this perspective, the ARM should have a lower duration compared to FRM. 

ARM borrower’s coupon rate fluctuates with the current interest rate, which is 

correlated with the prevailing mortgage rate. Because of this, she will have less incentive 

to prepay when interest rate drops. So the prepayment option value for a FRM borrower 

will be larger than that of an ARM borrower. This is compatible with the market, where 

FRM mortgages are sold with the highest rate (borrower pays for the valuable 

prepayment option), and ARM, that adjust most frequently are offered with the lowest 

rate. 

In option theory, we know that option value generally increases as the volatility of 

underlying asset increases. However, from the above analysis, we also know that the 

option value for a FRM is generally greater than for an ARM, while an ARM bears a 

more volatile coupon rate than a FRM. This looks like a contradiction to the option-

volatility relationship. In fact, it’s not, because the underlying asset of a prepayment 

option is not its coupon rate, but the difference between the coupon rate and the 

prevailing mortgage rate. In most cases, the more volatile the coupon rate is, the less the 

difference will be, and the less valuable the option will be. However, the borrower does 

not like the volatility, which put her at risk when interest rate jumps. The investor, on the 

other hand, does not like the prepayment, which reduce her investment value. It seems 

that no product can both reduce the coupon rate volatility and the prepayment option at 

the same time. Is this true? We will see that we can achieve both goals in a potential new 

ARM product. 
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We have mentioned that the underlying asset for the prepayment function is the 

spread between the coupon rate and the prevailing mortgage rate. So an ARM bearing a 

volatile index does not necessarily indicate a less volatile spread. From historical data, we 

know that 10-Year Treasury rate is highly correlated with conventional (FRM30) 

mortgage rate. Figure 6.10 shows the two rates for the period between 1971 and 2001. 

The correlation calculated is 97.9%. Figure 6.10 also shows the 10-Year Treasury Rate 

and the 1-Year Treasury rate, which is the most commonly used index in ARM. As we 

can see, the 1-Year Treasury rate is relatively more volatile than the 10-Year Treasury 

Rate. The calculated standard deviation is 2.7890 for the 1-Year Treasury rate, and 

2.6309 for the 10-Year Treasury rate. However, the standard deviation of spread of 

FRM30 vs. TSY10 is 0.58, compared with the standard deviation of spread of FRM30 vs. 

TSY1 at 1.16. Obviously 10-Year Treasury rate has a lower volatility and also a lower 

volatile spread. The spread between conventional mortgage rate (FRM30) and 10-Year 

Treasury rate and the spread between conventional mortgage rate (FRM30) and 1-Year 

Treasury rate are also shown, which indicates that ARM with index of 1-Year Treasury 

rate has a more volatile spread. 
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Figure 2.31 10-Year T Rate, 1-Year T Rate, and mortgage rate 

Thus if we construct an ARM with index of 10-Year Treasury rate, and reset it 

more frequently, we could expect a lower duration. So we construct such an ARM with 

the adjustment period of 12 months. This ARM does not exist at present; it is for 

illustration purposes only. We then got the modified Fourier duration measures as 

following: 

 

Fourier Order 0 1 2 3 Vega 

ARM TSY 10 -1.2741 -4.0635 3.1819 -0.4894 -1.8855 

 

 Figure 2.32 shows the new ARM product’s duration against duration of other 

mortgage products we calculated earlier. We compare this set of durations with table 6.1, 
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and we can see that this product has the smallest durations for modified Fourier function 

order 0 and 3, as well as for vega. The durations for modified Fourier function order 1 

and 2 are not very high. And we know that generally when there is a shock on the term 

structure, the biggest magnitude would be that of the first-order modified Fourier 

function, and volatility is also a big impact. So this product would actually have the least 

percentage change during a common term structure shift, which satisfies the needs of 

investors. 
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Figure 2.32 New ARM TSY 10 Durations 

So we could predict that if there exist such a mortgage, it would have the least 

refinancing incentive, which would be a better product to suit investors’ needs, and it will 

also have a less volatile index, which suits borrowers’ needs. 
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2.6 Conclusion 
 
 This paper applies perturbation analysis (PA) method to estimate MBS 

sensitivities. The sensitivity estimators include most interest risk measures like duration 

(equivalent to delta), convexity (equivalent to gamma), and vega. MBS products covered 

includes fixed rate mortgages (FRMs) and adjustable rate mortgages (ARMs).  

 We first derive a general framework to derive the PA estimators of MBS, without 

restriction to MBS type, interest rate model, or prepayment model. Then we apply the PA 

estimator to both FRM and ARM products, in the setup of a one-factor Hull-White model 

and a commonly used prepayment model. We compare the PA estimators with finite 

difference (FD) estimators, and find that PA method can achieve at least the same 

accuracy as FD method, with a much lower computational cost. In the case we presented, 

the computational time is reduced by 95.7%, while the memory requirement increases 

only by a factor of 3, which can be handled by current computer technology with ease. 

Then we analyze the results of PA estimated sensitivity measures for various MBS 

products. We justify why and how different term structure shock would affect FRM and 

ARM differently. Based these analysis, we propose a potential new ARM product which 

could benefit both the MBS investor and the mortgage borrower. 

Future research includes applying this method to other MBS-like securities, since 

the PA method proposed in section 3 is a very general framework. These include other 

asset-backed securities, e.g. securities backed by student loans, car loans, credit card 

receivables. It is pretty straightforward to expand this framework to those securities, since 

all that is required is to apply a specific interest rate model and prepayment model.  
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Another area for further research is to incorporate more complicated prepayment 

and/or default models into the MBS pricing scheme. For MBS investors, the major 

concerns are price sensitivities to interest changes, which we have covered in detail. 

However, the MBS guarantor/insurer and issuer might have other concerns, e.g., how will 

the interest rate change affect the default behavior of the mortgage borrowers? Our 

framework would be able to serve this purpose as well. By applying the default model 

that same way as we apply a prepayment model, the default cash flow will take the place 

of payment cash flow, so the default cost sensitivities could be easily estimated. 
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Chapter 3  

Hedging MBS in HJM Framework 

3.1 Motivation 

As we have pointed out in our first essay, short term rate and long term rate do not 

always move in the same direction, it is sometimes misleading to use the conventional 

interest rate risk measures like duration and convexity to hedge fixed income instruments, 

especially MBS. 

 

One recent event can illustrate this point very well. In July 2003, Federal Reserve 

lowered the short term interest rate by another 25 bps, yet just in one month, the long 

term 10 year rate jumped upward for more than 100 bps. Part of the reason is that the rate 

deduction is lower than market expectation, and market responded with a selling wave in 

the bond section. So using a duration measure, which assumes the yield curve moves in 

parallel, will produce significant hedging error. 

 

It is natural to hedge against the factors of which any yield curve shift can be 

decomposed. We use a series of exponentially decaying modified Fourier series to 

approximate any interest rate change in our first essay. However, this is purely for the 

generality of modeling convenience, and there is no empirical evidence that such a series 

provides a good match of the actual yield curve shift. 
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A lot of literature studying the dynamics of interest rates found that there are three 

major factors affecting the yield curve: level, slope, and curvature. A common method to 

estimate these factors is Principal Components Analysis (PCA). See details in Litterman 

and Scheikman [1991], Litterman, Scheikman, and Weiss [1991), Knez, Litterman, and 

Scheikman [1994], Nunes and Webber [1997]. Despite the abundance of research on 

identifying the various factors affecting bond prices, there has been little research on 

hedging these factors effectively. Golub and Tilman [1999] compared different risk 

measures, like PCA, VaR, and key rate duration for yield curve risk, but did not give 

hedging performance for these different measures. 

 

In mortgage industry, practitioners generally use effective duration, and empirical 

duration in hedging. Goodman and Ho [1999] examined the performance of three 

different hedge ratios: effective duration, empirical duration, and option-implied duration, 

which is acquired from forward option for a given pass-through MBS. They found that 

the average hedging error for a monthly hedge could reach 120 bps in an 18-month 

period. And for a daily hedging, it is 25 bps in the same time period. They concluded that 

option-implied duration performs the best. However, it does not always outperform the 

other hedging measure, and the difference is small. Hayre and Chang [1999] compared 

effective duration and empirical duration, and found that effective duration calculated 

from OAS model are generally longer than empirical duration, and they challenged a few 

assumptions for effective duration calculation in OAS mode. To cite a few, the parallel 

yield curve shifts, absence of convexity, etc. These are also issues we addressed in our 
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paper, but in a more systematic way. They proposed a combined duration, which is a 

effective duration adjusted for correlations between changes in the yield and prices of 

MBS in recent market data, i.e., a combination of effective duration and empirical 

duration. 

 

There has not been a unifying framework in hedging MBS with factors affecting 

the yield curve shifts, and we would like to pursue in this direction, since we are pretty 

confident about its effectiveness in reducing the hedging error, and/or reducing hedging 

frequency. In order to incorporate these factors into MBS hedging strategy, we need to 

choose an interest rate model, which can handle these factors readily. HJM model is a 

good choice, because it is basically driven by volatility structure, and the volatility factors 

can take any shape, which easily accommodate the PCA factors we identified from 

historical data. 

In the rest of this essay, we discuss how to get volatility factors from historical 

interest rate data via the PCA method. In section 3, we are give the detailed 

implementation of HJM model with these estimated volatility factors. Then we derive the 

PA estimators for hedging MBS, which is very similar to Chapter 2, and we will not go 

into details to derive PA estimator for each state variable. In section 5, we give the 

detailed hedging algorithm with these hedging measures, and we discuss the performance 

of our hedging method in section 6. Section 7 concludes the essay, and gives potential 

future research directions. 
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3.2 Estimation of Volatility Factors via PCA 

The Principal Components Analysis method is generally used to find the 

explanatory factors that maximize successive contributions to the variance, effectively 

explaining variations as a diagonal matrix. This method has been used in yield curve 

analysis for more than 10 years, see Litterman and Scheinkman [1991], Steeley [1990], 

Carverhill and Strickland [1992]. Here we give a brief description of PCA method 

applied in yield curve analysis: 

1. Suppose we have observation of interest rates )( jti
r τ at time ti, i=1, 2, …, n+1, for 

different maturity dates τj. 

2. Calculate the difference )()(
1, jtjtji ii

rrd ττ −=
+

,  where the di,j are regarded as 

observations of a random variable, dj, that measures the successive variations in the 

term structure. 

3. Find the covariance matrix ),...,cov( 1 kdd=Σ . Write 

),cov( where},{ ,, jijiji dd=ΣΣ=Σ . 

4. Find an orthogonal matrix P such that P’=P-1 and 

kk λ ... λ), ..., λdiag(λPP ≥≥=Σ 11   where,' . 

5. The column vectors of P are the principal components. 

6. Using P, each observation of dj can be decomposed into a linear combination of the 

principal components. By setting jii dpe '= , where pi is the ith column of P, we can 

find ei, which is the corresponding coefficient for principal component i, i=1, …, k. A 
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small change in ei will cause the term structure to alter by a multiple of pi along the 

time horizon. 

 

We use the weekly data of nominal zero coupon yield from January 1997 to 

October 2001 as the term structure data. All data were retrieved from Professor 

McLulloch’s web site at the Department of Economics, Ohio State University, at 

<http://econ.ohio-state.edu/jhm/ts/ts.html>. For each observation 

date, interest rates are provided for maturities in monthly increments from the 

instantaneous rate to the 40-year rate, providing a total of 481 interest rates as principal 

components. Table 3.1 lists the eigen-values and % variance explained by the first ten 

factors, and Figure 3.1 graphs the shapes of the first four factors. 

Factor Eigenvalue Explained(%) Cumulative(%) 
1 16.38 75.824 75.824 
2 4.41 20.432 96.257 
3 0.72 3.335 99.592 
4 0.087 0.40 99.995 
5 0.00088 0.0041 99.999 
6 8.67E-05 0.00040 99.9996 
7 1.59E-05 7.4E-05 99.99966 
8 4.20E-06 1.9E-05 99.99968 
9 4.03E-06 1.9E-05 99.99970 
10 3.67E-06 1.7E-05 99.99972 

 

Table 3.1. Statistics for Principal Components 



 82

 
Figure 3.1 The first four principal components 

 
 The statistics indicate that the first three factors explain about 99.6% of the yield 

curve changes, and the first four factors explain about 99.995% of the total variance of 

yield curve. These results are similar to findings by Litterman and Scheikman [1991], and 

Nunes and Webber [1997]. Figures 3.2 and 3.3 plot the matching results with three and 

four factors, respectively, for a monthly yield curve shift, as well as for an annual shift. 

The figures indicate that four factors provide a substantially improved match, both for the 

short term and the long term, over three factors, so in our model we will use four factors.  

Thus, hedging against these factors will lead to a considerably more stable portfolio, 

thereby reducing hedging transactions and its associated costs. 
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Figure 3.2 Match monthly yield curve shift 

 

Figure 3.3 Match annual yield curve shift 
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3.3 Simulation in HJM Framework 

This section gives the detailed implementation of HJM model, using the volatility 

factors identified in PCA analysis. 

 

We know that, in a multifactor HJM framework, the dynamics of instantaneous 

forward rate looks like: 

∑
=

Ω+Ω=
N

k
ktkt tdZTtdtTtmTtdf

1
)(),,(),,(),( σ ,    (3.1) 

where under no arbitrage assumption, the drift term is determined by volatility structure. 

 ∑ ∫
=

ΩΩ=Ω
N

k

T

t tktkt dtTtdtTtm
1

),,(),,(),,( ττσσ .    (3.2) 

Assume our volatility functions take the following form: 

),(),,( TtPCTt kktk βσ =Ω ,       (3.3) 

where PCi(t, T) is the principal components we get in last section; 

 βi is a parameter to be calibrated to market price of interest rate derivatives. 

 

Detailed Implementation: 

1. Input data include f(0,T), the instantaneous forward curve,  and σk(t, T), which 

has a specified functional form fitting into our PCA factors. 

2. Start loop for maturity, if we need 10 year rate for 30 years, we need maturity at 

40 year; 

3. Start of time step loop; 

4. Start of τ loop, to calculate σk(t, τ) from t to T; 
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5. Calculate σk
*(t, T)= ∫

T

t k dt ττσ ),( , using numerical integration technique; 

6. Calculate m(t, T)= σk (t, T)* σk
*(t, T); 

7. Advance f(t, T) one more step, in our simulation, one month increment: 

;),(),(),( ,∑+∆=∆+
k

ktk zTttTtmTttf σ  

where zt,k is a series of independent standard normal random variables. 

8. End of time step loop; 

9. Short rate r(t)=f(t,t); Long rate r10(t)= 
10

),(
10

∫
+t

t
dtf ττ

; 

10. End of maturity step loop. 
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3.4 Deriving PA estimators in HJM Framework 

Following the logic in Chapter 2, we only need to derive the PA estimator for 

short rate r(t) and 10-year rate r10(t), since our prepayment model and valuation model are 

totally dependent on these two factors. 

 

If we assume that in a short period of time, the principal components for yield 

curve volatility are going to be constant, then any interest rate yield curve shift can be 

decomposed of these principal components, which is to say: 

∑∆=∆
k

kk tPCtR )(),0( ,       (3.4) 

which is analogous to (2.35). Following the same logics as in (2.51), we can have the 

following: 
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    (3.5) 

We know that in HJM framework: 

),()( ttftr =  ,        (3.6) 

So 

kk

ttftr
∆∂

∂
=

∆∂
∂ ),()( .        (3.7) 
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We also know: 

∑
=

Ω+Ω=
N

i
itit tdZTtdtTtmTtdf

1
)(),,(),,(),( σ .    (3.8) 

When T=t+dt 

dt)df(t,ddt)f(t,tdt)dt,tf(t +++=++ .     (3.9) 

So 

kkk

dt)df(t,ddt)f(t,tdt)dt,tf(t
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+∂
+

∆∂
+∂

=
∆∂
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If we rewrite the drift term as: 

),(*),(),( *

1
TtTtTtm k

N

k
k σσ∑

=

= ,      (3.12) 

where 

ττσσ dtTt
T

t kk ∫= ),(),(* .       (3.13) 

Then gradient of m(t, T) can be written as 
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From the form of ),( Ttkσ  

),(),,( TtPCTt kktk βσ =Ω .       (3.15) 
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There is no direct relation ship between ),( Ttiσ  and k∆ 1, so the above gradients are 

zero. This gives us 

kkk

dt),df(dt)f(t,tdt)dt,tf(t
∆∂

+∂
==

∆∂
+∂

=
∆∂

++∂ ]0[... .    (3.16) 

For the same reason, we can derive the 10 year rate gradient as: 

10

),(
)(

10

10
∫

+

∆∂
∂

=
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∂

t

t
k

k

dtf
tr

ττ

.       (3.17) 

And follow the same logic, we can get the gradients of discounting factors, prepayment 

rate, cash flows, present values, etc. 

                                                           
1 Although observed k∆  and kβ might have a positive correlation, i.e., when the volatility is high, the 

observed shift also might have bigger magnitude. But they have total different meaning, kβ is the 

parameter to calibrate to market price, and k∆ is the observed shift in yield curve. 
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3.5 Hedging MBS in HJM Framework 

This section gives a detailed implementation of our hedging algorithm. 

Security to be hedged: MBS 

Hedging Instruments: Portfolio of {MBS, Treasury bonds with different maturities} 

Hedging Method: Dynamic hedging using PCA duration. vs. Conventional duration and 

convexity hedging 

Hedging Parameters: PCA duration 

Hedging Error: The net present value of the portfolio, which has initial value of zero 

Hedging Efficiency: Reduce hedging Error 

Hedging Strategy: Construct a portfolio, consisting of MBS and various T-notes, bonds, 

with 0 face value. Duration matched to 0. Rebalance at each time period to match the 

hedging parameters; compare the results with duration and convexity hedging.  

There are two issues we need to pay special attention to, in order to effectively execute  

the hedging strategy. 

Issue 1: With the coupon payment and prepayment of MBS, what needs to be done with 

this extra cash flow? 

Answer: Use this cash flow to rebalance the portfolio, basically to change the weights of 

Treasury bonds holdings. If the position is short in MBS, and long in Treasury bonds, we 

need to sell the Treasury bonds to honor the MBS payment. 

Issue 2: Some Treasury bonds used to hedging the MBS will expire before the MBS 

maturity date. This will hurt the capacity of available hedging instruments. 
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Answer: We only hedge the MBS for a short period of time, e.g. 3 years, and then we can 

use Treasury bonds with greater or equal to 3 years maturities. Another solution is to 

introduce on extra hedging instrument when there is one expiring at that period. 

Hedging Framework 

1. At time 0, get the MBS price, gradients (PCA duration) by simulation (360x300 

simulation needed). Zero coupon Treasury bonds price and gradients should be 

directly available from the yield curve, and the PCA factors; 

2. Construct the portfolio, by shorting MBS to finance Treasury bonds; match the 

duration, and get the corresponding weights; 

3. At time 1, use HJM model to update the yield curve, then get the new price and 

gradients of MBS as well as those of Treasury bonds; 

4. Use MBS payment to rebalance portfolio (MBS payment is deterministic upon the 

last period yield curve); 

5. Repeat 3, 4 for next month, till the end of hedging period; 

6. Check the effectiveness of hedging strategy. 

Implementation of Hedging MBS with Treasury Bonds 

1. Get mortgage information; 

2. Get historical yield curve data; 

3. Get Principal Components Factors; 

4. Start clock for hedging period: m=0 

5. Calculate MBS_Price(m), MBS_Duration(m)4x1, Payment(m), 

PrincipalPayment(m); 
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6. Choose hedging instrument: Treas_Portfolio=[12 36 60 84 120], each element 

represent months to maturity; 

7. Calculate Treasury bond price Treas_Price(m)5x1, 5 hedging components are 

needed because of 5 factors to hedge: Price, and Duration4x1. 

Treas_Duration(m)4x5. 

8. Solving for hedging ratio W(m): 

15
15

55 )(_
)(_

)(
)(_
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x
x

x mDurationMBS
mpriceMBS
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mDurationTreas

mpriceTreas
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, if m>0.         (3.19) 

 

9. Calculate hedging error: 

)1(_)1()'(_)(_)( −+−−= mpaymentMBSmWmpriceTreasmpriceMBSmerror
 

10. Update loan.UPB=loan.UPB-PrincipalPayment(m); 

11. Update loan.WAM=loan.WAM-1/12; 

12. Update Treas_Portfolio=Treas_Portfolio-1; 

13. m=m+1, go back to 5 until hedging period ends. 
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3.6 Hedging Performance Analysis 

In this section, we compare the hedging performance of our PCA-based hedging 

and traditional duration and convexity based hedging for a FRM30 MBS instrument. 

 

The principal balance of the MBS is $4 million. We are selling short this MBS at 

the market price, and use the proceeds to buy treasury bonds. Initial net present value of 

the hedging portfolio is zero. Every month, we try to rebalance the portfolio, and we sell 

part of our bonds to meet the payment obligation of the MBS. Hedging error is defined as 

the net present value of current portfolio at each time point. 

 

We carry on this practice for 22 months, during which our PCA estimation does 

not change dramatically. We repeat the hedging practice for 25 simulations, which is 

relatively few, because the simulation scheme takes an extremely long time. The PCA-

based hedging takes around 40 CPU hours to finish, while the duration and convexity 

based hedging takes 120 CPU hours to complete the task. 

 

Figure 3.4 shows the hedging performance of three PCA factors, while Figure 3.5 

shows the hedging performance of duration and convexity hedging. We can see that the 

standard deviation of PCA-based hedging ranges from $4000 to $20000, which is 10 bps 

to 50 bps for a $4 million portfolio. Consider the standard deviation of duration and 

convexity based hedging, which ranges from $60000 to $200000, i.e. 150 bps to 500 bps 

of the hedging balance. The hedging improvement is obvious. 
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Figure 3.4 Mean Hedging Error of PCA vs. D&C 
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Figure 3.5 STD of Hedging Error: PCA vs. D&C 
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3.7 Conclusion 

 In this essay, we proposed a new method to hedge the interest risk of  MBS, based 

on PCA factors estimated from historical interest rate data. We estimated the PA 

estimators for hedging MBS, and implemented the hedging with a dynamically re-

balancing portfolio of MBS and Treasury bonds. We achieved much better hedging 

efficiency, compared with traditional hedging, not only in the measure of mean hedging 

error, but also in the standard deviation of hedging error. We made the following 

contribution: 

• A unified hedging framework for hedging yield curve shift and volatility factors; 

• Improved hedging efficiency compared with traditional duration and convexity 

based hedging. Our monthly hedging get very close results to daily hedging with 

traditional hedging method. 

 

We would like to pursue in the following directions for our future research: 

• Apply this hedging method to more sophisticated prepayment models, and 

analyze the robustness of this hedging algorithm; 

• Improve computational efficiency of the algorithm, which is now very time 

consuming. 
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Chapter 4  

Hedging the Credit Risk of MBS: A Random 

Coefficient Approach 

4.1 Motivation 

In our previous two chapters, we have assumed that the credit risk of the MBS is 

totally absorbed by the MBS issuer, and the MBS investor only needs to hedge the 

interest rate risk due to voluntary prepayment, including housing turnover and 

refinancing. This assumption is reasonable since in the secondary market for conforming 

mortgages, the three major MBS issuers, Ginnie Mae, Fannie Mae, Freddie Mac1, all 

promise that they will guarantee the principal payment when there is a default event 

incurred on the mortgage borrower’s side. The MBS issuers have the following methods 

to mitigate the credit risk: 

• Mortgage Collateral: Basically when a default occurs, the collateral property will 

become REO(Real Estate Owned), and the issuer can foreclose the mortgage and sell 

the property, and recover whatever is left; 

• Primary Mortgage Insurance (PMI): If a borrower initiate a loan with LTV greater 

than 80%, she will be required to purchase mortgage insurance. If default occurs, the 

mortgage insurance company pays the owner of the mortgage whatever is promised in 

the insurance contract, generally 35% for a 95 LTV loan, and 20% for a 85 LTV loan; 

                                                           
1 However, the credit risks of these agencies are different. Ginnie Mae is guaranteed by the full faith and 
credit of the United States government. Both Fannie Mae and Freddie Mac have $2.2 billion line of credit 
with the Treasury department. Also they receive an implicit guarantee from the government, since most 
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• Credit Enhancement: The MBS issuer can purchase additional insurance from a 

mortgage insurance company for a mortgage pool. This deal is also called pool 

insurance, or backend credit enhancement. It is not necessarily purchased from the 

same company that provides PMI in the mortgage pool. There is generally an auction 

among several insurance companies, and the bidder with the most competitive price 

will be awarded the contract. 

 

When hedging the credit risk of the MBS with credit enhancement from a third 

party, the issuer is now exposed to the credit risk of the counter party. In order to hedge 

the credit risks effectively and efficiently, we not only need to model the default behavior 

of the mortgage borrower, but also need to understand the credit worthiness of the 

counter party. The credit worthiness of a given counter party for a given time horizon is 

generally called a haircut2. We need to model the haircuts of the counter party to perform 

the following tasks: 

 

• Calculate the insurance premium, i.e., the purchase price for the insurance policy, 

to be paid.  Apparently, a company with lower credit risk should be charging 

higher fees, and vice versa, since lower credit risk means better insurance policy. 

• Estimate the credit loss, and report it to external investors and regulators. 

Currently the Office of Federal Housing Enterprise Oversight (OFHEO), regulator 

of Fannie Mae and Freddie Mac, requires both GSEs to report their risk-based 

                                                                                                                                                                             
market participants believe that federal government will interfere whenever any of these two giant GSEs 
steps in financial distress. 
2 This term is used to determine the reduction applied to promised payment, due to credit risk, e.g., a 25% 
haircut means that the promised payment needs to be reduced to 75%. 



 97

capital calculated by pre-specified haircuts for different rated counter parties. 

With the implementation of Basel Accord II3, internal credit risk models could be 

used to calculate the haircuts, and in-house model for calculating the counter 

party credit risk is of extreme importance in reporting the credit risks. 

 

We below show that a haircut is actually a credit risk measure similar to credit 

spread. And estimation of a haircut is equivalent to estimation of credit spread. Suppose 

we need to take the haircut H(t) for a promised future payment of $1, what would be the 

price for this promised payment? In risk neutral probability, the price should be: 

P=exp(-r(0,t)*t)[1-H(t)] 

Where r(0,t) is the spot rate for maturity t. 

If the promised payment can be viewed as a zero-coupon defaultable bond with face 

value of $1, its price is given by 

 P=exp{-[r(0,t)+CS(t)]*t}, where CS(t) is the credit spread for maturity t. 

Apparently haircut and credit spread have the following one-to-one relationship: 

H(t)=1-exp(-CS(t)*t) 

 

Once we estimated the credit spread of the third party’s defaultable bonds, we will 

get the haircut we need to impose on the insurance contract automatically. So it is of 

critical importance that we have a good estimation for the credit spread changes of the 

counter party. There are generally two ways to model the dynamics of the credit spread: 

                                                           
3 Basel Accord II is the new international banking regulation rule proposed by Basel Committee, which will 
be implemented before 2006. It gives more flexibility in treating credit risk, and internal credit risk models 
can be used in calculating risk-based capital requirement, which is the capital a financial institution needs 
to reserve in order to alleviate the credit risk exposure to counter parties. 
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theoretical approach and empirical approach. There has been a lot of published work on 

the literature on the theoretical part of credit risk modeling: either using structural models 

(Merton [1974], Longstaff and Schwartz [1995], Collin-Dufresne and Goldstein [2001]), 

or reduced form (hazard rate) models (Duffie and Singlton [1999], Madan and Unal 

[2000]). In empirical work, different models are estimated and fitted with market data, 

and the performances of these models are compared in recent papers, e.g. Eom, Helwege, 

and Huang [2003]. Recently there has been interest in using regression to determine the 

factors affecting credit spread changes, because neither structural nor reduced form 

models can handle the large number of factors affecting credit spread changes. With a 

flourishing credit derivative market, there is a great need for identifying the factors that 

affect credit spread, in order to find possible financial instruments to hedge credit 

derivatives written on credit spreads.  

 

The main model used in these researches is the simple linear regression model, 

e.g., Duffee [1998], Collin-Dufresne, Goldstein and Martin [2001], Huang and Kong 

[2003]. However, these models generally do not offer very compelling results. In this 

essay, we identify the theoretical drawbacks of this type of models, and address these 

problems with a new approach: the Random Coefficient Regression (RCR) model, which 

we can handle the non-constancy phenomena of credit spread sensitivities. 

 

The rest of this essay is organized as follows. We first give a literature review in 

the following section; specifically we are going to discuss several important papers. In 

section 3, we introduce the random coefficient regression (RCR) model is given and then 
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apply the model to estimate the dynamics of credit spread changes, using variables from 

the simplest structural model. Description of the data is given in section 5, and the 

regression results are discussed in the next section. We show that our assumption about 

non-linearity and non-constancy of credit spread changes are well supported by the 

regression results, also the regression results are consistent with theoretical structural 

models, such as Merton [1974]. In the last part of this essay, we give conclusions and 

possible future research directions. 
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4.2 Literature Review 

There has been a lot of recent interest on identifying the key factors affecting 

credit spread. One approach is to add macroeconomic variables into the traditional 

structural model. However, by adding new state variables, the model not only becomes 

more complicated in the form, but also harder to identify empirical evidence to improve 

pricing and hedging practice. Another approach is to concentrate on regression models. 

Because of the simplicity and convenience in incorporating any new state variables, 

regression is gaining popularity in empirical research for credit spread modeling. 

Regression models can be divided into two categories: regression on credit spread 

changes and regression on credit spread levels. 

 

Of the first category, there are three major papers: Duffee [1998], Collin-

Dufresne, Goldstein and Martin [2001], and Huang and Kong [2003]. 

 

Duffee [1998] did the pioneer work on credit spread changes regression. He 

analyzed the credit spread data indexed by different industry, rating group, and maturity. 

He used only the interest rate level and slope in the regression, and found that there is a 

significant negative correlation between short rate change and credit spread change. He 

achieved an average adjusted R2 around 17%.  

 

Collin-Dufresne et al. [2001] performed similar analysis, but on a lot more 

variables. They divided corporate bond data by leverage ratio, rating, and maturity, and 

performed multiple regressions. Among many regression models in the literature, this 
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model appears to be the most complicated. Their basic model included six basic 

explanatory variables: leverage, interest rate level, interest rate slope, VIX, S&P, jump 

probability. They achieved around 25% adjusted R2. They then performed principal 

components analysis on the residual and found that over 75% variations are due to the 

first component. Then they introduced new variables. The total number of variables in 

final regression is 19, and the adjusted R2 improved only to 34%. Eventually they 

acknowledged that they could not identify the factor that contributes to the 75% residual 

variation, within all the proxy they constructed for liquidity, etc. They claim that the 

single factor driving the credit spread variation could be attributed to local 

demand/supply fluctuation. Interestingly, while they introduce new variables, none of 

these new variables are bond specific; most of them are macroeconomic variables.  

 

Huang and Kong [2003] criticized Collin-Dufresne et al. [2001] for not having 

chosen the best proxies for state variables. So they performed regression on credit spread 

changes, with similar explanatory variables, while testing multiple proxies for each 

variable among eight independent variables, and choosing the best one. Also they choose 

to work with credit spread index OAS data (which they claim as cleaner credit spread) of 

rating and maturity group. They achieved adjusted R2of more than 40% for 5 out of 9 

groups. However, the number of observations for each index is merely 67. There is no 

theoretical support as to why certain proxies for a state variable should perform better 

than other proxies. And using index data in a short time period might have alleviated the 

problem. 
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Table 4.1 gives an itemized comparison of the three papers. 

 Duffee [1998] Collin-Dufresne et al. 
[2001] 

Huang and Kong 
[2003] 

Category Industry, rating, 
maturity 

Leverage, rating, 
maturity 

Rating and Maturity, 
total=9 

 {All sectors, Industrial, 
Utility, Financial} 

{<15%, 15-25%, 25-
35%, 45-55%, 55%} 

Investment Grade: 
{AA-AAA, BBB-A} 

 {Aaa, Aa, A, Baa} {AAA, AA, A, BBB, 
BB, B} 

{1-10 yr, 10-15 yr, 15+ 
yr} 

 {2-7, 7-15, 15-30} {long (>12 yr),  
short (<9 yr)} 

High Yield:{BB, B, C}

Data Type Mean corporate yield 
vs. corresponding. 
Treasury yield(self 
constructed index) 

Corporate yield vs. 
corresponding Treasury 

yield 

Index 

OAS? N N Y 
Data 

Description 
 No option embedded, 

> 4 yr maturity. 
 

Data Range Monthly, 
 Jan-85 to March-95 

Monthly,  
July-88 to Dec-97 

Monthly,  
Jan-97 to July-02 

observations  At least 25 observations 
for each bond 

67 observations for each 
index 

Adj. R-square Around 17% 19% to 25% by leverage 
ratio 

>40% for 5 out of 9 

  17% to 34% by rating 
group 

67% for B 

  34% after additional 
variables 

60% for BB 

 

Table 4.1 Comparison of three papers on credit spread regression 

 Clearly we can see that all these three papers try to improve the explanatory 

power by either adding more state variables or cherry-picking different proxies for the 

same state variables. The regression model is fundamentally the same, and the 

improvement is marginal.  
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Of the second category of credit spread level regression, one major paper is 

Campbell and Taksler [2003]. They claim that equity volatility in the regression is almost 

as good as the credit rating variable. What they used in the regression is the excess return 

(equity return minus market return) volatility for the last 180 trading days, not the 

historical volatility, or implied volatility from options market. 

 

This paper falls into the first category by modeling credit spread changes on 

individual bonds. We believe there are several benefits focusing on changes: 

• Credit spread changes are more relevant to the modeling of credit spread 

dynamics, since regression on credit spread levels will have a large intercept 

portion, which is not very informational, because we know that there is always 

some credit premium associated with the corporate bond yields; 

• Regression in credit spread changes is more useful in developing a hedging 

framework, since we can estimate the sensitivities of the credit spread changes to 

interest rate, leverage of the company. These sensitivities can be used to derive 

hedge ratios. 

• Individual bond data contain far more information than the indexed data. All the 

firm-relevant data could enter the modeling, especially the leverage, which is a 

very important factor in any structural model.  

However, realizing the drawbacks from simple linear regression, we adopt a more 

flexible approach:  Random Coefficient Regression model. Although the RCR model is 

not new in statistics (Hildreth and Houck [1968]), it has rarely been used in financial 

research.  
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4.3 Introduction to Random Coefficient Model 

The most frequently used linear model in statistics might be the following: 

iii Xy εβ += ,        (4.1) 

where yi is the observed response of dependent variables; 

 Xi is the vector of explanatory variables; 

 β is the vector of coefficients of the linear model; 

εi is the error term, and ),0(~ 2
εσε Ni .       

For time series data, like those we frequently encounter in financial econometrics, it can 

be written as: 

.,...,2,1             , Ttxy tk
k

tkt =+= ∑ εβ                                                        

where yt is the observed random variable, xkt are known explanatory variables, βk are 

unknown constants to be estimated, and εt are the error terms, independently and 

identically distributed with mean zero, and finite variance. If exact tests of significance 

are desired, the error terms, εt, are typically assumed to be normal.  

 

In some applications, the constancy of the coefficients, βk, in consecutive 

observations may not hold. For example, a particular βk represents the response of credit 

spread change for a bond to interest rate, which depends on the demand/supply ratio and 

market liquidity premium. If both demand/supply ratio and market liquidity premium are 

relatively stable, the assumption of constancy for βk might be a tolerable approximation. 

However, if demand/supply ratio and market liquidity premium vary, but are not 
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observed, assuming βk as the mean of a random response rate may be better than 

assuming the response rate to be constant.  

 

Consider the following simple extension of model (4.1): 

iiii Xy εβ +=  

where 

ii v+= ββ ; 

0][ =ivE , Γ=]'[ iivvE , and νi is uncorrelated with εi. 

 

As before, yi is still the observed random dependent variable and Xi are known 

values of independent variables. In this extension, β is the mean response of the 

dependent variable to the independent variables and (β + vi) is the actual response rate in 

the ith observation. Combining terms, we have the model: 

ii

iiiii

wX
vXXy

+=
++=

β
εβ )(

      (4.2) 

where 

0][ =iwE , 

iiiiii XXIwwE Π=Γ+= ']'[ 2σ  

 

An important difference between random coefficient and simple regression model 

is that the simple linear model assumes the sample is relatively homogeneous. Therefore, 

if the estimate for β is zero, then X  will be concluded to have no effect on the 

dependent variable. However, random coefficients may indicate that the effect the results 
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from cancellation of positive effects on some observations with negative effects on other 

observations.  As a result, the randomness of coefficient provides better explanation 

power even if the mean of the coefficient ( β ) is neutral. Dielman, Nantell, and Wright 

[1980] emphasized that random coefficient models are very useful in analyzing pooled 

cross-sectional and time series data. 

 

In more complex cases, iβ  can be parametrically expressed. For example, iβ  can 

be a linear function of several independent variables. While this specification involves 

additional assumptions, it is essentially the same as the previous simple extension. This 

functional form is appealing in some cases, especially when there is theoretical basis for 

the relationship between iβ  and those independent variables, and the relationship are of 

interests of researchers.  

 

There are several ways to estimate the model. Details will be given in the next 

section. 
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4.4 Random Coefficient Model for Credit Spread Changes 

 Huang and Kong [2003] mention that the low explanatory power of theoretical 

determinants, documented in Collin-Dufresne et al. [2001], could be due to two reasons. 

The first reason is that the explanatory variables may not be the best proxies to measure 

the changes in default risk. The second reason is that the current existing corporate bond 

pricing model might miss some important systematic risk factors. We have a different 

opinion as to why the simple linear regression model lacks explanatory power. 

 

We think the fundamental cause lies in the underlying assumptions of the 

regression model. When the regression (4.1) is estimated, there is an assumption that the 

coefficients are fixed. That is, the marginal effect for one unit change in iX has the same 

effect ( β ) on iy regardless of the characteristics of instance i . 

 

Suppose credit spread (CSt)is a complex function of interest rate (rt), firm 

leverage (levt), firm asset volatility (σt) and other state variables (Xt), which is compatible 

with most structural models. Given 

CSt=CS(levt, rt, σt, {Xt}), 

we can derive the first order approximation for the change of credit spread: 

tttt X
X
CSCSr

r
CSlev

lev
CSCS ∆

∂
∂

+∆
∂
∂

+∆
∂

∂
+∆

∂
∂

≅∆ σ
σ

   (4.3) 

In a short time period, if all these state variables, lev, r, σ, X, do not change dramatically, 

a simple linear regression model could be used to estimate the coefficients. However, 

over a relatively long time period, as in Duffee [1998] and Collin-Dufresne et al. [2001], 
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which uses data spanning a 10-year period, this assumption is no longer valid. Because 

all these gradients themselves are functions of each state variable, they are going to 

change as well. Specifically, we have: 

),,,(

),,,(

),,,(

tttt

tttt

tttt

XrlevhCS
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Merton [1974] in his seminal paper has calculated the credit spread for a zero-

coupon corporate bond in the following form: 
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where H is the credit spread; 

d is a debt ratio measure, defined as d=Be-rτ/V; 

B is the face value of the debt; 

V is the asset value of the firm; 

σ is the volatility for the corporate asset process; 

τ is the maturity of the zero-coupon bond. 

 

Then he calculates the credit spread gradient to most state variables as follows: 
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where g[d, T] is the ratio of instantaneous bond return volatility to instantaneous asset 

return volatility, and is defined as: 

 )],[/()],([),( 1 dTdPTdh
F

VF
Tdg Vy Φ===

σ
σ

 

P[d, T] is the price ratio of the defaultable bond to risk-free bond, which is 

defined as: 

 )],([1)],([],[ 12 Tdh
d

TdhTdP Φ+Φ=  

T=σ2τ. 

 

Clearly we can see that all these gradients are time varying. If we assume g[d, T] 

is constant, or estimate it as ratio of excess return on bond to excess return on asset, then 

model can be estimated in a simple form. 

 

To summarize, using a simple linear regression to estimate these coefficients over 

a long time horizon can lead to poor results. By adopting a random coefficient method, 

the model (4.3) can be restated as: 
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Rewriting the original model, we have: 
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   (4.5)  

with standard assumptions: 

0][][][][ ==== ∆CS
ii

lev
i

r
i EEEE εεεε σ , 

0][][][ === ∆∆∆ CS
ii

CS
i

lev
i

CS
i

r
i EEE εεεεεε σ , which basically states that the error 

terms are uncorrelated. 

The coefficients in the original model now are random, and have their own specifications.  

 

The difference between our model and the simple linear regression model exists 

not only in the specification of coefficients, but also in the difference in the assumption of 

the error terms. The homoscedasticity assumption in a simple linear regression is relaxed 

in our model.  

 

Apparently, the OLS estimates for β in model (4.5) are still consistent under the 

assumption stated above because βiX and sumε  (sum of all error terms) are uncorrelated. 
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However, the estimates are no longer efficient4. Both Feasible Generalized Least Square 

(FGLS) and the White robust estimator can provide consistent and efficient estimates 

(Greene [1997]). We tried both methods in our application. The difference between the 

two estimates is small. We only report the White estimates, because FGLS estimates 

involve additional weights from the variance-covariance matrix. If the form of the 

heteroscedasticity and parameters involved are known, then FGLS will be a better choice; 

otherwise, the White estimator, which is robust to unknown heteroscedasticity, is 

certainly appealing, because the weights introduced by FGLS may add additional 

variation into the slope estimates.  

                                                           

4 Efficiency of estimators: an unbiased estimator 
∧

1θ  is more efficient than another unbiased estimator 
∧

2θ  

if the sampling variance of 
∧

1θ is less than that of 
∧

2θ . That is, ][][ 21

∧∧

< θθ VarVar . 
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4.5 Data Description 

We extract data from three databases: Warga bond database5, CRSP6, and 

COMPUSTAT7 for different financial data. 

 

Warga database, which is also known as the Lehman Brothers Fixed Income 

Database, contains the most comprehensive bond data for academia. We only choose 

those bond that satisfy the following standards: 

1. Dealer quoted price, instead of matrix price, since it has been pointed out that 

matrix price could produce some problems (Sarig and Warga [1989]); 

2. At least 30 consecutive observations; 

3. Non-callable and non-putable. This would eliminate the optionality-induced 

premium in the yield spread; 

4. Bond with maturity greater than four years, since it is well known structural 

model is less accurate for short maturity bonds. 

Based on these standards, we end up with credit spread time series for 728 bonds, with 

45627 observations. We have bond price, yield to maturity, maturity date, and duration 

data from this database. These data are used later to construct the credit spread. 

                                                           
5 The Warga Fixed Income Securities Database (FISD) for academia is a collection of publicly offered U.S. 
Corporate and Agency bond data. Produced by LJS Global Information Services, Inc., this fixed income 
database engine is used by Reuters/Telerate and Bridge/EJV. These vendors collectively account for 83% 
of trader screens. 
6 The CRSP Database provides access to NYSE, AMEX and Nasdaq daily and monthly securities prices, as 
well as to other historical data related to over 20,000 companies. The data is produced, and updated 
quarterly, by the Center for Research in Security Prices (CRSP), a financial research center at the Graduate 
School of Business at The University of Chicago. 
7 The Standard & Poor's COMPUSTAT® databases contain financial, statistical, and market data for 
different regions of the world. The databases are searched using Standard & Poor's Research Insight® 
software, which enables data queries, retrieval, manipulation and analysis. The software includes 
predefined sets for searching different types of data and allows the user to generate this data using 
predefined reports. 
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We acquired the equity data from CRSP database. The equity data is linked with 

bond data via the CRSP permno (permanent number) index. We retrieved the daily equity 

data for 322 companies from January 1987 to March 1998. These data are used later to 

construct the mark-to-market equity, as well as stock return volatility. 

 

COMPUSTAT database provided us with the balance sheet information. It is also 

linked to the CRSP database via the permno index. We retrieved the quarterly balance 

sheet data for the same 322 companies from January 1987 to March 1998. Then we 

interpolated the total asset value and total liability value for the months between. These 

data are used later to construct leverage ratio. 

 

Here we provide a brief description for the data we constructed in the regression. 

 

Treasury curve is constructed by using linear interpolation. The treasury rate source is 

the constant maturity Treasury (CMT) rate of H.15 release from the Federal Reserve web 

site. We use the 3-year, 5-year, 7-year, 10-year, 30-year treasury rates. 20-year treasury 

rate is disregarded because its discontinuity for the observation period. Interest rate level 

is defined as 10-year Treasury rate.  

 

Credit Spread is calculated as the difference between bond yield and treasury rate with 

the same maturity8. As a convention, only quoted price are used, excluding callable and 

putable bonds. The bond yield we use is the yield to maturity. Data ranges from July 

1988 to March 1998. 
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Firm leverage is calculated by the following formula: 

Liability Total Equity  of ValueMarket 
Liability Totalleverage

+
=  

Total liability in each quarter is acquired from Compustat database; data in between 

months are interpolated linearly. Market value of equity is acquired by multiplying stock 

price with shares outstanding. Firm leverage is an important factor in structural models to 

calculate distance to default. However, different researchers have been using different 

numbers to calculate leverage ratio, e.g. Collin-Dufresne et al. [2001] uses the book value 

of debt to calculate leverage, and Moody’s KMV is using short-term debt to calculate 

default probability. 

 

Volatility: We considered three different measures for volatility: 

1. VIX, which is the volatility index as a weighted average of eight implied 

volatilities of near-the-money options on the OEX (S&P 100) index. This 

volatility measure is identical to the Collin-Dufresne et al. [2001] paper. 

2. Simple estimated standard deviation of last 20 daily returns, for the corresponding 

company’s common stock. 

3. Excess return volatility for last 180 trading days return. It is the standard deviation 

of the last 180 trading day’s excess return, which is defined as the return minus 

market return (S&P 500 return). This volatility measure is identical to the 

Campbell and Taksler [2003] paper. 

The effect of these three different volatility measures will be discussed in later sections. 

                                                                                                                                                                             
8 Treasury rate with the same maturity is linearly interpolated from adjacent CMT rates. 
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4.6 Results Analysis 

We are going to discuss the regression results of our new model in this section. 

First, we compare the coefficients of simple linear regression model with RCR model, 

and examine the assumption of dependence between credit spread sensitivities and state 

variables. Second, we examine the regression results for different rating and maturity 

groups. In the last subsection, we are going to examine the assumption of non-constancy 

of credit spread sensitivities. 

4.6.1 Dependence of Credit Spread Sensitivities to State Variables 

In this section, we are going to discuss the regression results of our RCR model, 

compared with simple linear model. Table 4.2 shows the coefficient estimation for both 

models, and their t-values. Applying White robust estimator, regression is performed on 

individual bond and the average statistics9 are reported. In the simple linear regression 

model, we can find that the sensitivity measures to interest rate change, leverage change, 

and volatility changes are significant, and the signs and magnitudes of coefficients are 

consistent with structural models and regression results in previously mentioned papers. 

 

In the new model, we find that the following newly constructed interactive 

variables are significant (with |t| > 2): 

r∆r, r∆σ, σ∆σ, T∆σ. 

                                                           
9 We followed the convention in Collin-Dufresne et al. [2001] to report these statistics. The reported 
coefficient values are average of the regression estimates for the coefficient on each variable. The t-
statistics are calculated by dividing each reported coefficient by the standard deviation of the N estimates 
and scaled by sqrt(N). 
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Linear 
Model Variable beta 

Standard 
error t 

 intercept -0.006 0.02 -9.45 
 ∆r -0.058 0.21 -7.37 
 ∆lev 0.977 4.77 5.53 
 ∆σ 0.005 0.01 8.48 
 Adj. r2 0.077    
     

RCR 
Model Variable beta 

 
t 

 intercept 0.05 0.002 -9.23 
 ∆r 18.47 0.68 -1.95 
 ∆lev 295 10.9 -1.38 
 ∆σ 1.32 0.049 -1.42 
 r∆r 0.60 0.022 6.02 
 lev∆r 18.59 0.69 -0.42 
 σ∆r 0.09 0.003 1.53 
 T∆r 0.84 0.031 1.42 
 r∆lev 12.44 0.46 -0.45 
 lev∆lev 308 11.4 0.91 
 σ∆lev 1.68 0.062 -0.32 
 T∆lev 19.41 0.72 1.44 
 r∆σ 0.07 0.002 -3.02 
 lev∆σ 1.54 0.057 -0.35 
 σ∆σ 0.01 0.000 3.58 
 T∆σ 0.11 0.004 2.30 
 N 728   
 Adj. r2 0.297   

Table 4.2 Comparison of RCR vs. linear model 

These significant interactive terms mean that the level of state variables has a 

significant impact on the sensitivity of credit spread to these state variables. For example, 

a positive coefficient for r∆r means that when interest rate increases, the sensitivity of 

credit spread to interest rate change should decrease (because the sensitivity of credit 

spread to interest rate is negative). In other words, in a higher interest rate environment, 

credit spread will be less sensitive to interest rate, given everything else unchanged. For 

the same reason, a negative r∆σ coefficient means that in a higher interest environment, 

credit spread will be less sensitive to volatility, when everything else is kept constant. 
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Also a positive σ∆σ coefficient would stand for high volatility sensitivity in high 

volatility environment. The next table summarizes the relationship we found between 

levels of state variables and credit spread sensitivities. 

Sign of beta 
r

CS
∂

∂  (<0) 
lev
CS

∂
∂  (>0) 

σ∂
∂CS  (>0) 

Interest + Not Significant 

(N/S) 

- 

Leverage N/S N/S N/S 

Volatility N/S N/S + 

Maturity N/S N/S + 

Table 4.3 Relationship between state variables and credit spread sensitivities 

These findings validate our assumption that sensitivity should be dependent on 

state variables. Also we would like to compare these coefficients to structural models, 

and to validate whether these findings are consistent with theoretical models. We take the 

most straightforward structural model for credit spread, the Merton [1974] model, for 

which we have given the derivatives of the credit spread with respect to state variables in 

section 4.4. Although it is possible to derive the second order derivative of credit spread 

to validate the relationship we found are consistent with structural model or not, we 

prefer to demonstrate this in a static analysis, as Merton did in the paper, which will be 

more intuitive. The following charts show the results of our static analysis. 
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Figure 4.1 Credit Spread vs. Risk-free Rate 

Figure 4.1 shows the credit spread and credit spread sensitivity to interest rate at 

different interest rate level. This zero-coupon bond is evaluated with 30% leverage, 30% 

asset volatility and 5-year maturity, which is pretty representative. We can see that while 

the Merton model predicts the credit spread will be decreasing while the interest rate 

increases, the credit spread sensitivity to interest rate is an increasing function. However, 

since the sensitivity measure itself is negative, being an increasing function actually 

means reduced sensitivity at higher interest rate level, which is consistent with our 

findings. 
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Figure 4.2 Credit Spread vs. Volatility 

Figure 4.2 depicts the credit spread and its sensitivity to volatility at different 

volatility level. The bond is evaluated at 5% risk-free rate, with 30% leverage and 5-year 

maturity. From Figure 4.2, we find that credit spread is an increasing function of 

volatility, and sensitivity to volatility is an increasing function for the most volatility 

spectrum, from 5% to 60%, and after that, is pretty flat with a slight trend of decreasing. 

This result is consistent with our findings. 
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Figure 4.3 Sensitivity to Volatility at different Leverage 

In order to test the robustness of the relationship between credit spread sensitivity 

to volatility and volatility itself, we choose two different setting for maturity and 

leverage. Figure 4.3 shows the credit sensitivity to volatility for a zero coupon bond with 

maturity of 15 year, and leverage of 30%, and 60%, at 5% interest rate level. We can see 

increased maturity make the curve more flat, compared with Figure 4.2. Also increasing 

leverage makes the yield more flat as well. Since the vast majority of our bonds have 

maturity less than 15 years, and leverage below 60%, we think the estimated positive 

coefficient of volatility on sensitivity to volatility is a valid prediction for the majority of 

these bonds.  
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Figure 4.4 Sensitivity to Volatility vs. Interest Rate 

Figure 4.4 shows the credit sensitivity to volatility for a zero coupon bond with 

maturity of 5 year, and leverage of 30%, volatility of 30%, at different interest rate levels. 

The Merton [1974] model predicts it to be a decreasing function in interest rate, which 

means that the higher the interest rate is, the lower the sensitivity to volatility will be. The 

chart is consistent with our coefficient estimator of r∆σ, which is negative. 
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dCS/dsig vs. maturity
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Figure 4.5 Sensitivity to Volatility vs. Maturity 

Figure 4.5 shows the credit sensitivity to volatility for a zero coupon bond with 

leverage of 30%, volatility of 30%, at 5% rate level, with different maturities. It shows 

how maturity change would affect the credit spread sensitivity to volatility. The 

sensitivity will increase rapidly with respect to maturity till 8 years, and then decrease 

slightly after maturity passed 8 years. In our estimation, the coefficient is positive, but the 

significance is not very strong. We predict it is a mixed result of the rapid increasing and 

slow decreasing. Also Merton’s model is based on zero coupon bond, so if applied to 

coupon bond, the maturity might be better replaced with duration measure, which is 

significantly shorter than the maturity. That would explain why we have the coefficient 

estimator to be positive, which is more inclined to the shorter end of the maturity.  
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4.6.2 Results by Rating and Maturity 

In this section, we show results for different rating and maturity groups. We have 

five rating groups: AAA-AA, A, BBB, BB, B and others (below rating B or not rated), 

and three maturity groups: LONG (maturity >12 years), MEDIUM (12 years >maturity>8 

years), and SHORT (maturity < 4years). The total number of  combinations is 15. 

 AA_LONG AA_MEDIUM AA_SHORT 
 beta std_error t beta std_error t beta std_error t 
intercept -0.01 0.001 -5.13 -0.003 0.003 -1.33 -0.01 0.003 -3.34 

∆r -0.53 1.01 -0.52 0.72 0.49 1.48 0.43 0.46 0.94 
∆lev 8.41 13.12 0.64 8.20 5.13 1.60 2.88 11.59 0.25 
∆σ -0.39 0.19 -2.00 -0.12 0.06 -2.01 -0.24 0.16 -1.51 
r∆r 0.10 0.02 5.85 0.05 0.04 1.20 -0.03 0.05 -0.66 

lev∆r 0.31 0.59 0.53 -0.01 0.86 -0.01 0.07 0.71 0.09 
σ∆r 0.01 0.00 1.61 -0.02 0.01 -1.85 0.01 0.02 0.75 
T∆r 0.00 0.02 -0.01 -0.07 0.03 -2.25 -0.07 0.06 -1.28 

r∆lev -0.32 0.38 -0.84 -0.04 0.48 -0.08 0.93 0.67 1.38 
lev∆lev 4.42 16.88 0.26 -3.94 14.31 -0.28 -39.72 30.33 -1.31 
σ∆lev -0.06 0.09 -0.68 -0.22 0.16 -1.37 0.17 0.26 0.64 
T∆lev -0.15 0.51 -0.30 -0.39 0.65 -0.60 -0.07 1.17 -0.06 
r∆σ -0.01 0.002 -2.49 -0.004 0.004 -0.95 0.002 0.01 0.25 

lev∆σ 0.07 0.06 1.08 -0.03 0.17 -0.20 0.34 0.24 1.42 
σ∆σ 0.00 0.00 0.98 0.002 0.001 1.97 -0.001 0.002 -0.67 
T∆σ 0.01 0.01 2.03 0.01 0.003 4.61 0.02 0.01 1.34 
N 42   10   53   

Adj. r2 0.266   0.270   0.233   
 

Table 4.4 RCR coefficients for AA-AAA group 

For the rating group of AA-AAA, we found that the model performs better (with 

higher R2) in long maturity group than short maturity group. This is consistent with 

previous regression model (Duffee [1998]). Also the average explanatory power for this 

group is below average, which is also consistent with previous regression results. AAA 

bonds are counted in this group because of the limited numbers in each AAA maturity 

group.
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 A_LONG A_MEDIUM A_SHORT 
 beta std_error t beta std_error t beta std_error t 
intercept -0.01 0.002 -4.24 -0.01 0.003 -3.13 -0.01 0.003 -3.73 

∆r -1.66 0.68 -2.43 -1.67 0.77 -2.16 -0.33 0.30 -1.10 
∆lev 16.91 10.05 1.68 -2.19 7.53 -0.29 4.91 7.65 0.64 
∆σ 0.00 0.10 0.00 0.08 0.09 0.85 -0.01 0.05 -0.32 
r∆r 0.11 0.03 3.91 0.12 0.04 3.38 0.11 0.04 2.96 

lev∆r 0.01 0.51 0.02 1.14 0.92 1.24 -0.02 0.44 -0.05 
σ∆r 0.01 0.00 1.94 0.02 0.01 2.78 -0.01 0.01 -1.44 
T∆r 0.02 0.02 1.05 0.01 0.05 0.15 -0.04 0.03 -1.47 

r∆lev -0.21 0.37 -0.57 -0.33 0.76 -0.44 -0.86 0.57 -1.51 
lev∆lev -1.52 9.49 -0.16 -12.68 14.33 -0.88 -21.83 11.84 -1.84 
σ∆lev -0.01 0.07 -0.19 -0.10 0.19 -0.54 0.13 0.09 1.45 
T∆lev -0.60 0.45 -1.35 1.26 0.75 1.68 1.56 0.62 2.51 
r∆σ -0.01 0.00 -3.50 -0.02 0.01 -3.19 -0.005 0.003 -1.69 

lev∆σ -0.05 0.06 -0.79 -0.02 0.12 -0.20 -0.03 0.06 -0.45 
σ∆σ 0.001 0.0005 2.39 -0.0001 0.001 -0.09 0.002 0.001 2.13 
T∆σ 0.002 0.003 0.59 0.01 0.01 1.12 0.01 0.01 1.28 
N 124   35   145   

Adj. r2 0.332   0.298   0.187   
 

Table 4.5 RCR coefficients for A group 

For the rating group of A, we also found that the performance of our RCR model 

deteriorates as the maturity decreases. The average explanatory power for long and 

medium maturity is above and near average (R2 of 28%), which is also consistent with 

previous literature (Duffee [1998]).
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 BBB_LONG BBB_MEDIUM BBB_SHORT 
 beta std_error t beta std_error t beta std_error t 
intercept -0.0175 0.00341 -5.1259 0.0040 0.00686 0.5792 -0.0150 0.00317 -4.7205 

∆r -1.4606 1.30092 -1.1228 0.4031 3.15080 0.1279 0.4132 0.67383 0.6108 
∆lev 6.3313 14.42570 0.4389 -25.1286 19.48469 -1.2897 -3.3511 15.10461 -0.2210 
∆σ 0.1922 0.16763 1.1464 0.1464 0.37627 0.3890 0.0037 0.07100 0.0517 
r∆r 0.1302 0.03744 3.4778 0.0416 0.09990 0.4168 0.1056 0.09241 1.1383 

lev∆r -0.4979 0.71171 -0.6996 -1.3209 3.10094 -0.4260 -1.2636 1.04115 -1.2089 
σ∆r 0.0309 0.00940 3.2876 -0.0354 0.02867 -1.2358 -0.0130 0.00842 -1.5402 
T∆r 0.0260 0.05094 0.5094 0.1095 0.15163 0.7223 0.0049 0.13122 0.0373 

r∆lev 0.3805 0.71955 0.5288 1.4138 1.85106 0.7638 -1.8690 1.80103 -1.0337 
lev∆lev 7.5851 13.19033 0.5751 34.6082 17.93499 1.9296 -0.8355 20.67328 -0.0403 
σ∆lev 0.1919 0.14222 1.3493 -0.2079 0.29622 -0.7018 -0.2272 0.33345 -0.6786 
T∆lev -0.4527 0.70592 -0.6413 0.0419 2.22403 0.0189 3.9359 2.19255 1.7880 
r∆σ -0.0187 0.00617 -3.0315 0.0065 0.01899 0.3438 0.0014 0.00847 0.1649 

lev∆σ 0.0901 0.08254 1.0912 -0.1715 0.30587 -0.5607 -0.0434 0.14752 -0.2927 
σ∆σ -0.0004 0.00069 -0.5319 0.0033 0.00455 0.7291 0.0031 0.00164 1.8640 
T∆σ -0.0044 0.00747 -0.5856 -0.0151 0.03758 -0.4024 -0.0032 0.00888 -0.3582 
N 72   24   126   

Adj. r2 0.3159   0.1873   0.2032   
 

Table 4.6 RCR coefficients for BBB group 

For rating group BBB, we found that the performance of our RCR model 

deteriorates as the maturity decreases. The average explanatory power for long and 

maturity is above average, which is also consistent with previous literature (Duffee 

[1998]). The regression results for the BBB medium group is far below average, and 

almost none of these variables are statistically significant, which we suspect is due to 

limited data problem (only 24 bonds available.)
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 BB_LONG BB_MEDIUM BB_SHORT 
 beta std_error t beta std_error t beta std_error t 
intercept -0.06 0.01 -11.45 N/A N/A N/A -0.07 0.01 -5.68 

∆r -5.18 1.57 -3.29 N/A N/A N/A -4.61 2.35 -1.96 
∆lev 21.89 13.93 1.57 N/A N/A N/A -87.91 36.79 -2.39 
∆σ -0.28 0.08 -3.75 N/A N/A N/A 0.48 0.35 1.40 
r∆r 0.37 0.04 8.32 N/A N/A N/A 0.34 0.16 2.17 

lev∆r -1.29 2.21 -0.59 N/A N/A N/A 1.03 2.03 0.51 
σ∆r 0.03 0.01 2.96 N/A N/A N/A 0.01 0.04 0.16 
T∆r 0.18 0.15 1.19 N/A N/A N/A 0.15 0.16 0.90 

r∆lev 0.90 0.70 1.29 N/A N/A N/A -1.99 2.28 -0.87 
lev∆lev 27.62 13.75 2.01 N/A N/A N/A 66.40 38.54 1.72 
σ∆lev -0.78 0.28 -2.80 N/A N/A N/A -0.10 0.83 -0.12 
T∆lev -1.72 0.66 -2.62 N/A N/A N/A 7.07 3.14 2.25 
r∆σ -0.01 0.00 -3.69 N/A N/A N/A -0.01 0.02 -0.48 

lev∆σ -0.48 0.14 -3.43 N/A N/A N/A -0.66 0.44 -1.51 
σ∆σ 0.002 0.001 1.35 N/A N/A N/A 0.01 0.002 3.79 
T∆σ 0.03 0.01 3.83 N/A N/A N/A -0.01 0.03 -0.44 
N 24   1   27   

Adj. r2 0.123   N/A   0.104   
 

Table 4.7 RCR coefficients for BB group 

For the rating group BB, we also see that model became worse when the maturity 

decreases. And for BB medium group, there is only one bond, so we cannot draw any 

reasonable conclusion about variable significance. Again the explanatory power is both 

low for long and short maturity, which could be contributed to limited bond numbers in 

both categories.
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 B_LONG B_MEDIUM B_SHORT 
 beta std_error t beta std_error t beta std_error t 
intercept N/A N/A N/A N/A N/A N/A -0.056 0.060 -0.935 

∆r N/A N/A N/A N/A N/A N/A -29.005 15.404 -1.883 
∆lev N/A N/A N/A N/A N/A N/A 30.750 309.773 0.099 
∆σ N/A N/A N/A N/A N/A N/A 0.350 2.174 0.161 
r∆r N/A N/A N/A N/A N/A N/A 1.422 0.609 2.336 

lev∆r N/A N/A N/A N/A N/A N/A 12.422 10.146 1.224 
σ∆r N/A N/A N/A N/A N/A N/A 0.075 0.183 0.409 
T∆r N/A N/A N/A N/A N/A N/A 1.372 1.538 0.892 

r∆lev N/A N/A N/A N/A N/A N/A 46.626 20.449 2.280 
lev∆lev N/A N/A N/A N/A N/A N/A -419.950 376.543 -1.115 
σ∆lev N/A N/A N/A N/A N/A N/A -3.616 7.040 -0.514 
T∆lev N/A N/A N/A N/A N/A N/A 22.297 18.849 1.183 
r∆σ N/A N/A N/A N/A N/A N/A -0.291 0.277 -1.047 

lev∆σ N/A N/A N/A N/A N/A N/A 4.618 5.316 0.869 
σ∆σ N/A N/A N/A N/A N/A N/A -0.069 0.069 -0.990 
T∆σ N/A N/A N/A N/A N/A N/A -0.162 0.137 -1.186 
N 1   1   8     

Adj. r2 N/A   N/A   0.500     
 

Table 4.8 RCR coefficients for B and other group 

The total number of bonds in B and other group are very limited, so we cannot 

make judgments about model performance in each maturity group. 

 

Overall, our model performs best for the A and BBB groups, as well as for longer 

maturities. These findings are consistent with Duffee [1998], as well as with theoretical 

structural models for credit spreads.  
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 The following table shows the significance level of previously identified 

interactive terms in each rating and maturity group. 

Interactive Terms r∆r r∆σ σ∆σ T∆σ 

AA_LONG + - Not Significant 
(N/S) 

+ 

AA_MEDIUM + - N/S + 

AA_SHORT N/S N/S N/S + 

A_LONG + - + N/S 

A_MEDIUM + - N/S N/S 

A_SHORT + - + + 

BBB_LONG + - N/S N/S 

BBB_MEDIUM N/S N/S N/S N/S 

BBB_SHORT + N/S + N/S 

BB_LONG + - + + 

BB_SHORT + N/S + N/S 

B_SHORT + - N/S N/S 

Table 4.9 Summary of RCR coefficients  

 Not surprisingly, we found that for the interactive terms, which were constructed 

in the RCR model, the significance levels and signs of the coefficient estimators are very 

consistent for each rating and maturity group. If we remove the three groups with one 

sample ecah, the r∆r term is significant for 10 of 12 groups, which means that the interest 

rate level has a positive impact on the credit spread sensitivity on interest rate, no matter 

what rating group or maturity category. Also the impact of interest rate level on credit 

spread sensitivity on volatility is very consistent. 
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4.6.3 Non-Constancy of Credit Spread Sensitivities 

The non-constancy of credit spread sensitivities would naturally be embedded in 

their dependence on state variables in the RCR model. However, we would like to see 

how they change over time, and compare it to the simple linear regression sensitivity 

estimators, and find out why the RCR estimators provide better accuracy. 

 

Let’s take one bond as example, the bond with CUSIP of "001765AE", one of 

American Airlines' long term bonds, and depict its random coefficients and constant 

coefficients. The following three figures show the comparison of regression coefficients 

with respect to interest rate changes, leverage changes, and volatility changes. 
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Figure 4.6 Coefficient for ∆r in RCR vs. Linear Model 
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Figure 4.7 Coefficient for ∆vol in RCR vs. Linear Model 

sensitivity to sig

-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

19
90

06

19
90

10

19
91

02

19
91

06

19
91

10

19
92

02

19
92

06

19
92

10

19
93

02

19
93

06

19
93

10

19
94

02

19
94

06

19
94

10

19
95

02

19
95

06

19
95

10

19
96

02

19
96

06

19
96

10

19
97

02

19
97

06

19
97

10

beta_dvix_linear beta_dvix_RCR
 

Figure 4.8 Coefficient for ∆lev in RCR vs. Linear Model 

There are three major findings from the graphs: 

1. Sensitivity to ∆r does change over time. In Merton’s model, increased interest rate 

would increase the risk neutral drift term, thus decrease the default probability, 

and shrink the credit spread. In reality, Fed generally lowers interest rate to 

stimulate economy when there is a recession, which is the case during 1990-1992. 

Generally higher credit spreads are observed during a recession. That is the main 

reason for negative correlation between interest rate and credit spread. However, 
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what about during times of economic recovery or boom? It would be interesting 

to compare Figure 4.6 which depicts the sensitivity of credit spread to interest 

rate, to Figure 4.9, the history of 3-month Treasury rate, a close reflection of 

Fed’s policy on funding rate. When the economy is recovering, lowering interest 

rate would have less effect on credit spread. That is exactly the case we found 

during 1992-1993, when the Fed continued lowering the short interest rate, and 

the sensitivity of credit spread to the interest rate is close to zero. Also when 

economy is booming, the Fed is likely to raise the interest rate, and that seems to 

have little effect on the credit spread. That is likely the case for 1994-1995. 

2. Sensitivity to ∆σ also changes over time. In structural model, increase in volatility 

would increase the default probability, and thus widen the credit spread. However, 

comparing Figure 4.8 with 4.10: the history of VIX volatility index, we found that 

while volatility is high both in the early 90’s and the late 90’s, their impact on 

credit spread sensitivity are quiet different. One explanation for this could be that 

during a recession, volatility is a bad thing, because it is likely that the volatility is 

a result of dropping equity, and investors will be really concerned with a volatility 

spike. However, when the economy is booming, it is likely that high volatility is 

introduced by rising stock prices, and investors are less likely to require high 

credit spread for this “good volatility”.  
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Figure 4.9 Three-Month Treasury Rate from 1990 to 1997 
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Figure 4.10 VIX index from 1990 to 1997 

Of the three volatility measures we used, our results show that VIX is better than 

both history volatility and excess volatility, which is unanticipated. Originally we thought 

that since VIX is a broad market volatility index, replacing it with company specific 

volatility should improve our results. The reason for this phenomenon might be that 

credit spread response is more sensitive to market perception of risk than to historical 
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volatility. Also we tried the excess return volatility, which Campbell and Taksler (2003) 

claims to have significant explanatory power in regression of credit spread levels. The 

results are disappointing, and the adjusted R2 is comparable to historical volatility, but 

not as good as VIX index. The reason might be that the credit spread itself already has a 

build-in premium associated with the standard deviation of excess return, but the change 

of credit spread is not sensitive to its change, so the regression on credit spread levels and 

changes will have different explanation. 

 



 134

4.7 Conclusions and future work 

By using the RCR approach, we not only model the dynamics of credit spread 

sensitivities in a more consistent way with current structural model, but also achieve 

more explanatory power than simple linear model. Our contributions are the following: 

1. The first paper to use RCR model on credit spread data; 

2. The first paper to explicitly model the credit spread sensitivities with dependence 

against state variables, and empirically validate the dependence relationship 

predicted by Merton’s model; 

3. Higher explanatory power is achieved without adding new independent state 

variables. In this case, we increased the adjusted R2 from 8% to 30%. 

 

Obviously, there are still some unanswered questions remaining in our work. We 

would like to pursue future research in the following directions: 

1. We can see from our results analysis from section 4.5, the theoretical sensitivity 

changes are not always linear with respect to state variables (Figure 4.5), and 

when there is a strong no linear relationship, our predictions of coefficient are 

generally weaker. So can we change the functional form in the regression model 

for sensitivity parameters and achieve better explanatory power? And which 

structural model should we adopt in selecting the functional form? It will be 

interesting to compare the regression results for different functional forms of 

credit spread sensitivity from different structural models. 

2. What would be a better asset volatility proxy than the VIX index? We think that 

the option implied volatility for each company’s stock option might be a better 
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indicator of the market perception of risk. However, how to convert the equity 

volatility to asset volatility? One way to look into this might be to look at the 

combined bond return volatility of the specific company, which means that we 

need to group the bonds of the same company, instead of doing individual 

regression on each bond issued. 

3. It would be interesting to analyze the residuals of the regression error, and find 

whether there exists any pattern to discover hidden significant drivers for credit 

spread. 
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