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Classic decision theories assume that gamble payoff and probability are independent 

in subjective evaluation. This study argues that when a simple gamble is paired with a 

sure outcome, the independence assumption is violated. Important aspects of this 

study, unlike most others in the literature, were (1) no parametric assumptions were 

made in evaluating independence, and (2) participants were paid according their 

performance in an attempt to motivate to seek maximum gain and minimum loss. 

Experiment 1 used a new procedure, relays, to test independence. Then three 

dependent models, which used functional expressions, were proposed and evaluated 

in Experiments 1 and 2 to pinpoint a two-way interaction pattern in which the contrast 

along one attribute of a gamble, either payoff or probability, influences the evaluation 

of the other. The results showed that the contrast between a gamble payoff and a sure 

outcome is more likely to affect the evaluation of probability than the other way 

around. This phenomenon and the accompanying uncommon value and weighting 



  

functions may be explained by the task by which participants were encouraged to 

gain much and lose less by contingent final payment. 
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Chapter 1: Introduction 

Dependent Evaluation of Payoff and Probability in Choice 

  Classic decision-making theories, such as expected utility theory and 

prospect theory assume that evaluations of multiple alternatives are independent, that 

is, any effect produced by either payoff or probability does not influence the 

subjective value of the other. Take one gamble as an example: According to expected 

utility theory, the expected utility of the gamble ),;,( 2211 pxpx , which means to 

gain 1x with probability 1p or to gain 2x with probability 12 1 pp −= , expressed 

by 2211 )()()( pxvpxvgEU += , where )(xv is a real-valued utility function. According 

to prospect theory, the expected utility is evaluated 

by )()()()()( 2211 pwxvpwxvgEU += , where )( pw  is the subjective weight accorded 

to probability p. It is not necessary in prospect theory that 1)()( 21 =+ pwpw  when 

121 =+ pp . Even though the two theories take the probability of each payoff 

differently (and differ in certain other ways), both agree that the subjective magnitude 

of payoffs ix are always unique and will not be affected by the probabilities of 

occurrence. Similarly, the subjective impact of probabilities is unique as well and is 

independent of the payoff they modify1.  

 In the current study, I argue that payoffs and probabilities are not evaluated 

independently in choice situations in which a simple gamble is paired with a sure 

outcome and one of them is chosen according to preference. In other words, the 

contrast between two options along one attribute, either payoff or probability, will 
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affect the subjective value of the other in the gamble. Even more, the strength of this 

cross-attribute influence is goal oriented. Thus, the payoff contrast affects the 

subjective value or weight of the gamble probability if the payment is contingent on 

performance. 

 This paper is arranged as follows: In first section, I introduce the 

independence assumption between payoff and probability in decision making and 

discuss its wide influence. The second section develops a novel method, the relay, to 

test whether subjective values of payoff and probability weight are independent in 

choice. The third section presents two experiments that test whether payoff and 

probability are evaluated independently. Three dependent models are proposed as 

alternatives to the independent model, prospect theory. Experiment 1 uses the relay 

system developed in the preceding section. Experiment 2 uses a different design to 

test conclusions derived from applying the models to Experiemnt 1. The final section 

discusses the results and conclusions. 

 Assumption of Independence between Payoff and Probability 

 As a descriptive decision model, prospect theory follows the normative 

models of rational choice by assuming that payoff and probability are evaluated 

independently in valuing a gamble. Both prospect theory and expected utility theory 

take the parsimonious formula ∑=
i

ii pwxvgEU )()()(  to calculate the expected 

utility of the gamble regardless of other potential options (In expected utility theory, 

ppw =)( .) This formula suggests two different types of independence. One is the 

independence between options: the evaluation of one gamble is not influenced by the 
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presence of other options. This means that decision makers independently evaluate 

the options in hand, and any similarity or contrast between options does not influence 

the evaluation of either option. This type of independence implies that for any set of 

options, ,,, cba and d, ),(),( bcpbap > if and only if ),(),( dcpdap > , 

where ),( yxp reads “the probability that x is preferred to y”. This independence is 

proved to be equivalent to strong stochastic transitivity (Tversky & Russo, 1969). The 

second type of independence states that probability and payoff independently 

contribute to the evaluation of a gamble without any interaction between two 

attributes. Any change in one attribute, either payoff or probability, does not change 

the subjective magnitude of the other. Note that first type of independence could be 

the premise of the second type if dependence of attributes is caused by the contrast 

among options. 

 The fundamental assumption of independence between the subjective 

payoff )(xv and the probability weight )( pw is widely accepted. Researchers in 

psychology and economics interested in the functional form of payoff and weight 

assume independence of )(xv  and )( pw . The most widely acceptable form for the 

value function, )(xv , where x is the change of wealth in prospect theory, is that it is 

concave above the reference point (which is 0) and convex below it. That is, 

0 ,0)(" >< xforxv  and 0 ,0)(" <> xforxv  (Galanter & Pliner, 1974; Fishburn & 

Kochenberger, 1979; Kahneman & Tversky 1979). And the most widely accepted 

form of the weighting function, )( pw , is that humans overweight lower probabilities 

( ppw >)(  for low p) and underweight higher probabilities ( ppw <)(  for high p) 

(Tversky & Kahneman, 1992; Camerer & Ho, 1994; Tversky & Fox, 1995; Wu & 
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Gonzalez, 1996; Prelec, 1998; Wu & Gonzalez, 1999). Earlier studies along this line 

usually assumed independent functional forms of value and weight before fitting the 

data (Tversky et.al., 1992; Camerer et.al., 1994; Tversky et.al, 1995), while later 

studies avoided prior assumptions of functional forms. For instance, Wu and 

Gonzalez (1996, 1999) used a non-parametric procedure to estimate values and 

weights. If any specific functional form fits the nonparametric estimates well, it is 

chosen for parametric estimation. But their nonparametric method still depends 

implicitly on the assumption of independence. Gonzalez & Wu (1999)  developed an 

algorithm by treating levels of )(xv  and )( pw  as parameters and then used an 

alternating least square method to estimate them.. More recently, Abdellaoui (2000) 

elicited value and weighting functions with a parameter-free method. He first 

constructed a sequence of outcomes equally spaced in subjective value using the 

“trade-off” method (see Wakker & Deneffe, 1996), and then used the sequence of 

outcomes to obtain a sequence of probabilities equally spaced in terms of probability 

weighting. This procedure is like conjoint measurement, which establishes the 

required intervals on variable A to compensate a certain difference on interval B and 

then establish the equal intervals on A in a similar fashion. However, just as with 

conjoint measurement,  Abdellaoui’s parameter-free method required the 

independence assumption. This assumption is strong and it matters when the 

dependence is real. 

 This fundamental assumption in decision theories has been studied. Tversky 

(1967) reported the strict additivity, which implies independence between the payoff 

and probability, However, in that study, participants were asked to write out the 
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gamble’s selling price (indifference value) which ultimately was determined not only 

by the gamble itself, but also by the buyer’s (the experimenter’s) distribution of 

buying prices. In that sense, the selling price is not an indifference price because it is 

affected by the buying price and possibly by the particpant’s perception of its 

probability distribution.  The second issue that may affect the conclusion of 

independence is that two-factor  analyses of variance were conducted after 

logarithmic transformations of risky as well as riskless bids, with significance levels 

set at 0.1. The decision about interactions, thus, is a matter of setting the alpha-level 

of the test. A stricter criterion results on interactions for more persons. In addition, 

studies by Slovic (1966) and Irwin (1953) found that the value (payoff) or the 

desirability of the event influenced its subjective probability.  

More recently, other researchers investigated the dependence between options. 

The stochastic difference model (Gonzalez-Vallejo, 2002) pointed out that the 

comparison occurs at the level of attributes rather than options. Operating at the level 

of attributes, the function sums proportions of the difference between two options 

relative to the larger value. The contrast weighting model (Mellers, Chang, Birnbaum 

and Ordóňez, 1992) states that the weight of an attribute depends on the difference 

(similarity) of the two alternatives on that dimension.  Later, some studies looked at 

the influence of dimension contrasts on the other dimensions. For example, decision 

field theory (Busemeyer and Townsend, 1993; Roe, Busemeyer and Townsend, 2001) 

focused on relative attractiveness between options. Attribute values are compared 

across options and weighted differences are summed across attributes to produce 

momentary valence for each option. Mellers and Biagini (1994) investigated 
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interactions between payoff and probability, which indicates the violation of the 

second type of independence. They proposed a second version of contrast weighting 

theory, which states that the judged strength of preference for simple gamble a over b 

is expressed as ])()()()([),( )()()()( x
b

p
b

x
a

p
a psxupsxuJbaS βαβα −= , where )( axu  

and )( axu  are the subjective payoffs associated with the amounts to win; )( aps  and 

)( bps  are the probability weights of winning. The subjective payoffs are weighted by 

)( pα , the probability contrast; the subjective probabilities are weighted by )(xβ , the 

payoff contrast. 

In the current study, I argue that probability weight and subjective payoff are 

dependent when a simple gamble is paired with other options in choice, in particular 

when the participants’ payoffs depend on their performance. The experiments focus 

on the simplest version of choice paradigms, in which decision makers choose 

between a simple gamble and a sure outcome. That is, given a pair of choices that 

include one sure outcome, s, and one simple gamble )0;,( px , which means gaining x 

with probability p otherwise nothing, participants are asked to choose which one they 

prefer. With this paradigm, let us first look at whether independence holds between 

payoff and probability in choice.  

Testing Independence between Subjective Payoff and Probability Weight 

 Prospect theory provides a framework for testing the independence between 

subjective payoff and probability weight in choice. Two important assumptions in 

prospect theory are independence of subjective payoff and probability weight, and 

that value and weighting functions are monotonically increasing. Independence can 
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be inferred from the basic seminal formula ∑=
i

iiii pwxvpxpxU )()(),;...;,( 11 , which 

implies that any change of payoff or subjective value will not influence the 

probability weight and vice versa. The second condition, monotonically increasing 

value and weighting functions, indicates that 2121  ifonly  and if )()( xxxvxv >>  and 

2121 p ifonly  and if )()( ppwpw >> . This property can be inferred from the 

functional forms used in prospect theory (Tversky et. al., 1992).  

In prospect theory, independence and monotonicity exist simultaneously. I test 

independence following the logic of reductio ad absurdum. In detail, the testing starts 

from the premise of independence between subjective payoff and probability weight. 

Coupled with prospect theory independence implies certain relationships between 

variables.,The aim is to find a solution that makes these relationships meet the 

condition of monotonicity. If no solution exists, the independence assumption is 

rejected. 

One novel method, which I call relays, is developed for evaluating 

independence between subjective payoff )(xv  and probability weight )( pw . The 

advantage of using relays is that the relationship between x and p can be examined 

without assuming any functional forms for v(x) and w(p). A relay can be constructed 

by starting from a simple gamble )0;,( px  denoted by 1g . An individual can always 

find a certainty equivalent 1c  such that the expected utilities of 1g  and 1c  are equal, 

thus, )()( 11 cEUgEU = . Substitute 1c  for x in gamble 1g . The new gamble )0;,( 1 pc , 

denoted by 2g , can also yield a certainty equivalent 2c . The relationship between 2g  

and its certainty equivalent 2c  is expressed by )()( 22 cEUgEU = . Again, substitute 



 

 8 

2c  for 1c  in gamble 2g  to generate a new gamble 3g ~ )0;,( 2 pc , which has its own 

certainty equivalent 3c . The relay continues to yield iterations until the certainty 

equivalent of the last gamble is too small to be meaningful. Note that probability p in 

one relay is identical cross iterations. 

 According to prospect theory, the equation )()( 11 cEUgEU =  can be 

expanded into )()()( 1cvpwxv = , )()( 22 cEUgEU =  into )()()( 21 cvpwcv = , and so 

on. Then convert the equations into 

)(
)(
)(),(

)(
)(

1

21 pw
cv
cvpw

xv
cv

== ,                                  (Equation 1) 

Connect the two equations by )( pw , yielding )(
)(
)(

)(
)(

1

21 pw
cv
cv

xv
cv

== . A more general 

relation among n iterations within one relay can be expressed by 

rpw
cv
cv

cv
cv

xv
cv

n

n =====
−

)(
)(

)(
...

)(
)(

)(
)(

11

21 ,                       (Equation 2) 

where )( pw  is an unknown constant, and I take it as one parameter, denoted by r .  

 The gambles in one relay keep the same probability p but vary their payoffs. 

Eight different probabilities can be used to construct 8 different relays with different 

values p and r , denoted by 821 ,...,, ppp  and 821 ,...,, rrr , respectively. Each relay 

provides several gambles that follow the relationship in Equation 2. Using the 

subscript i to denote relays, where 8,...,2,1=i , Equation 2 can be rewritten to 

ii
ni

ni

i

ii rpw
cv
cv

cv
cv

xv
cv

=====
−

)(
)(

)(
...

)(
)(

)(
)(

1,

,

1,

2,1, .                  (Equation 3) 
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If the relays all start from a gamble with payoff x and probability ip . )(xv  is an 

unknown constant. Divide )( , jicv  by )(xv  in order to normalize )(xv  to 1. Then the 

relations in Equation 3 can be converted into ii rcv =)(' 1, , 2
1,2, )(')(' iiii rrcvcv =×=  … 

n
iinini rrcvcv =×= − )(')(' 1,, , where )(' , jicv  is the normalized value of )( , jicv . Keep in 

mind that all )(' , jicv  can be expressed by j
ir  via parameters ir . Recall that the value 

function )( , jicv  is an increasing function of jic , . So, too, is the normalized value of it: 

)(')(' ,, hglk cvcv >  if and only if hglk cc ,, > .2 In the experiment, jic ,  is observable. 

Plotting )(' , jicv  against jic ,  is equivalent to plotting j
ir  against jic , . According to 

prospect theory, the data points are supposed to meet the requirement of 

monotonicity. Now, the task is to find a solution for the parameters ir  that satisfies 

the monotonicity of )(' , jicv , and also ensures that )(xv  is a monotonically increasing 

function of x. Note that ir  is the subjective weight of ip , that is )( ii pwr = .  The 

values of ir  are subject to the limit of monotonicity of the weighting function 

regardless of its functional form. If there is at least one set of solutions for the ir s, 

then it may be concluded that the assumption of independence between subjective 

payoff and probability weight is not violated. However, if no solution can be found, 

then the independence assumption must fail because it cannot co-exist with the 

condition of monotonicity of value and weighting functions.  

 Take two relays, as one example, to explain how the parameter search works. 

Data points from two relays are plotted into one graph (see Figure 1). The data 

marked by squares are from one relay with probability 1p  and data marked by 
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triangles are from the other relay with probability 2p . The slashed lines link 

normalized subjective payoffs to corresponding values of jic , , which are observable. 

The left panel in Figure 1 demonstrates perfect monotonicity in which normalized 

subjective payoffs monotonically increase along with the objective value x. The right 

panel displays a non-perfect situation in which monotonicity is not met. To compare 

the points in the circle on each panel, the point represented by the square is off the 

monotonous track unless the parameter '
2

r  (in the right panel of Figure 1) is adjusted 

to 2r  (in the left panel of Figure 1). When it is impossible to find an appropriate value 

for parameter 1r  or 2r , then independence fails under the constraint of monotonicity. 

Experiment 1 collected data for eight relays to examine the independence assumption.     
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Chapter 2: The Experiments 

Experiment 1 
 Experiment 1 was designed to test the independence of subjective payoff and 

probability weight. The test details are presented first, and then a set of dependent 

models is proposed and compared with prospect theory based on the data from 

Experiment 1. 

Participants:   

 Fifty-five participants, 23 male and 32 female, all undergraduate students 

from the University of Maryland at College Park, participated in the experiment to 

earn credit for completing psychology research. Among them, 41 participants 

completed the entire experiment and their data were used in all analyses. The other 14 

participants took a pilot experiment that yielded incomplete relays. Their data were 

usable in subsequent model comparisons, but not in the initial analyses.  

Stimuli and Procedures: 

 Participants viewed the stimuli displayed on the computer screen. During each 

trial, a pair of options, one simple gamble and one sure outcome were presented (see 

Figure 2) and participants clicked on the option they preferred. Sure outcomes and 

simple gambles were used in this study to simplify the choice task and to avoid 

causing confusion. Gambles with two or more branches are usually more difficult to 

process, and the complicated stimuli and procedure prevent individuals from making 

accurate decisions. 

 As mentioned in the previous sections, eight probabilities yielded eight relays. 

The probabilities under study were 5%, 20%, 30%, 40%, 50%, 70%, 90% and 95%. 
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The payoff of the first gamble in each relay started from x=10,000. The sure outcome 

was an integer randomly generated between 0 and x, the payoff of the gamble. The 

method of parameter estimation by sequential testing (PEST) (Bostic, Herrnstein and 

Luce, 1990) was adopted to derive the certainty equivalents of gambles. For details of 

this method, please see the description in Appendix B. Recall that certainty 

equivalents in one iteration of a relay were used as the payoffs of gambles in the next 

iteration within that relay. Thus, the payoff of the second gamble in each relay was 

determined only after the certainty equivalent of the first gamble in that relay was 

obtained, and so forth. Six iterations were derived for each of the eight probabilities 

(relays) except for 5% since certainty equivalents in the relay with probability 5% 

always ended up very small. The sure outcome and payoff of the gamble are not 

meaningful if their values are lower than 1. So, for relays with probability of 5%, 5 or 

fewer iterations were conducted for each person. Figure 3 illustrates the procedure for 

each relay. Trials from different relays show up alternatively.  

 Before the formal experiment, participants received training and tried a few 

trials until they understood and felt comfortable with the experiment. The participants 

were informed beforehand that their goal is to accumulate as many points as possible 

and that their performance would determine how much extra money they could earn 

in addition to the academic credit. The participants understood they should choose 

their favored options in order to earn points, and computers played gambles once they 

were chosen. The results were not disclosed until the end of the experiment. Gambles 

from the eight relays were displayed on the screen in random order. For the first two 
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rounds, gambles irrelevant to the study were interspersed between relay gambles 

simply as distraction. Refer to Appendix A for instructions. 

Results and Discussion 
 Analyses were conducted at an individual level. A constraint minimization 

procedure (sequential quadratic programming (SQP)) searched for parameter 

estimates 821 ,...,, rrr , where 821 ... rrr <<< , that minimized the sum of inverse 

relations, ∑
ji

jis
,

, , to zero, where jis ,  is defined as follows: for any two point values 

ic , and jc  

⎩
⎨
⎧ ><−

=
otherwise                       0

)(')(' and  if   )(')('
s ji,

jijiji cvcvcccvcv
 

Note that standardized value function )(' cv  is monotonically increasing if and only if 

the value function )(cv  is monotonically increasing. If there is at least one set of 

solutions, ir , I can conclude both (1) subjective value and probability weight are 

monotonic functions, and (2) the two functions are independent of each other. 

 The results of the optimization (refer to Appendix B for the details of the 

optimization procedure) showed that none of the 41 participants had a single set of 

solutions. Thus, two primary assumptions necessary for prospect theory can not hold 

simultaneously. Either (1) payoff and probability do not combine independently, (2) 

the weighting and value functions are not monotonically increasing, or both. 

However, monotonicity of value and weighting functions is more straightforward, and 

it is supported by the study (Galanter et.al., 1974) on the shape of the value function.  

So, when two assumptions can not hold simultaneously, I question the validity of  the 

independence assumption. 
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Assuming that independence actually holds, violation of it may occur just due 

to stochastic variability. One way to take variability into account is to relax the 

requirement of perfect accuracy in evaluating independence. Remember that data 

points from eight relays were plotted on one graph of )(' xv  versus x. To reduce 

precision, I thinned the data points at two levels. The first level was to thin the 

adjacent data points so that no two were closer than 50 along the x-axis. The 

procedure started with the point corresponding to the lowest x value; the adjacent 

point was removed if it was less than 50 points away fron the first point. This 

procedure continued through the highest x . The second level was to thin adjacent 

points no closer than 100 along the x-axis.  

We searched for solutions again after thinning the data. The results showed 

that at first level, 8 out of 41 participantss had at least one set of solutions; at the 

second level, 17 out of 41 had solutions. However, thinning the data reduced the 

number of data points to a very low level. On average, 65% and 49% of original data 

points remained at the first and the second levels, respectively. And the results after 

thinning the data were not very good in terms of the proportion of participants who 

had solutions, 19.5% on the first and 41.5% on the second level. Hence, although 

some individuals had solutions after thinning the data, the solutions at these levels are 

not quite valid because thinning data not only elimintes random error due to the 

cognitive fluctuation but also eliminates systematic error due to canceling too many 

data points. To be conservative, I measured the minimum degree of errors that yield 

results consistent with independence. 
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 Minimal window size. To what extent does the tolerance of error or fluctuation 

guarantee the independence? To answer this question, I defined a two-dimensional 

(height, width) window center for each pair of inverted points in the plot of )(' xv  

versus x, (see Figure 4). The height was defined by )(')(' 21 xvxvh −=  and the width 

as 12 xxw −= , where 21 xx <  and 0>h . The optimization procedure searched for ir  

that minimized ∑h . I denoted the solution by *h , where )max(* hh = . The 

magnitude of *h  must be interpreted relative to *w  , the width of that window 

yielding a solution center at ),( ** wh . I choose to define the the minimum window 

size, instead )5.0,5.0( ** wh , as those values that indicate the minimum movement 

required of the points to yield weak monotonicity. Any further movement yields 

strong monotonicity. Moving the data points within this two-dimensional window 

would guarantee that all the reverse relationships can convert to follow strong 

monotonicity, except the maximal one represented by data points A and B in Figure 

4. The minimal window size is the minimal movement required by data points A and 

B to follow weak monotonicity. The larger the window the greater tolerance the data 

requires in restoring monotonicity. Independence holds only when monotonicity 

exists. However, to my knowledge, no previous studies show how large a window is 

acceptable for accommodating the error or noise from behavioral data. The minimum 

window size was estimated at an individual level. Note the width of the window is 

along the scale of payoff, x, and the height of the window was the normalized 

subjective value of payoff, v’(x). Their scale units are different, so the absolute value 

of window size is not meaningful. Instead, the relative size against the full scale is 
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reported in Table 1. The maximum value of payoff, x, in the current study was 

10,000. The maximum value of scaled subjective value of payoff, v’(x), was 1.  

 Summary. All behavioral data are subject to random error, which is why I 

conducted conplementary analyses. Instead of concluding immediately that 

independence between payoff and probability was violated in choice, I looked for the 

tolerance of independence. After thinning the data, only 65% (at 50-point thinning) 

and 49% (at 100-point thinning) of the original data points remained and only 19.5% 

and 41.5% of the participants achieved independence at two different levels, 

respectively. These results hardly lead to the conclusion that independence holds. 

Look at the alternative window method: the width of the window demonstrated a 

great inverse between data, from 78 to 4938, and the distribution of this inversion was 

approximately uniformly distributed. Compared with the width, the height of the 

window is less intuitive because the normalized subjective value of payoff is not an 

absolute number with a natural unit. Even though the relative height was very small, 

from 0.001% to 0.94% of the scale, the majority of participants do not share the small 

window height of 0.001% of the original scale because the distribution of height was 

an approximately uniform. Even more so, the window height ought to be offset by the 

larger width. The window size was regarded as small only when both height and 

width were small.  

Considering that neither the results from thinning data nor the results from 

minimal window size favored the independence assumption, I am reluctant to accept 

the independence. To the contrary, I prefer to place doubt on the argument of 

independence between payoff and probability in choice. 
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Despite noise in the data, the results strongly suggest that payoff and 

probability do not combined independently. To pinpoint the nature of the possible 

dependence, I proposed three stochastic models carrying different versions of 

dependence. The dependence could be a one-direction influence or a two-way 

interaction between two attributes, payoff and probability. The contrast within each 

attribute was used to specify the nature of the dependence. Each model was compared 

to prospect theory, one representative of the family of independence models. 

The Contrast within Payoff or Probability 

The idea that contrasts within attributes regulate preference can be found in previous 

studies. The stochastic difference model (Gonzalez-Vallejo, 2002) argues that 

subjects are sensitive to attribute differences and the advantage/disadvantage of a 

certain option is a linear combination of attribute differences. For example, given two 

options x and y, denoted by ),(~ pax  and ),(~ qby , where a and b  are values from 

dimension A, p  and q are from dimension P, the decision maker prefers x over y if 

and only if the combination of attribute differences, 

εδ +>
−

−
−

=
|)||,max(|

|)||,min(||)||,max(|
|)||,max(|

|)||,min(||)||,max(|
qp

qpqp
ba

babad , 

where ba >  and qp < , δ is the threshold and ε  is the random error. Dimension A 

can represent payoffs and dimension B can represent probabilities of gambles. The 

stochastic difference model emphasizes that comparisons between options begin at 

the attribute level rather than by evaluating each option independently before making 

a comparison. 
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 The contrast-weighting model (Mellers, Chang, Birnbaum and Ordóňez, 

1992) takes the difference of two options within each attribute as the weight of that 

attribute. Weights are monotonic with differences along dimensions. Later, Mellers 

and Biagini (1994) proposed another version of a contrast weighting model in which 

the similarity of levels along one dimension enhances the weight of the other 

dimension. The authors asserted that this version, in addition to accounting for 

similarity effects and violations of strong stochastic transitivity, better captures the 

intuition that similarity along one dimension enhances differences on another 

dimension. To present this new version, let us to see one example: Consider two 

simple gambles a and b, in which gamble a has probability ap  to earn ax , otherwise 

nothing; and gamble b has probability bp  to earn bx , otherwise nothing . A very 

general expression for the judged strength of preference for gamble a over b, denoted 

by our notation is 

])()()()([),( )()()()( xk
b

pj
b

xk
a

pj
a pwxvpwxvfbaT −= , 

where (.)v  is the subjective value of the payoff and is weighted by )( pj , the 

probability contrast; (.)w  is the probability weight and is weighted by )(xk , the value 

contrast of the gambles. Mellers and Biagini declared that the second version of the 

contrast weighting model seemed to better capture the intuition of similarity and fit 

the data better. 

 The current study stands with the second version of the contrast-weighting 

model because it specifies the contrast effect across dimensions by raising the 

contrast on one dimension to a power dependent on the evaluation of the other, while 

other theories mentioned above maily look at the contrast effects with dimensions. To 
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explore the possible dependence cross the dimensions (payoff and probability), I first 

acknowledge that the attribute differences between two options are important and 

then further expect that the difference along one dimension influences the weights of 

the other dimension. There are three possible ways to qualify the cross-dimension 

influence. Two possibilities are that either payoff or probability influences the 

subjective evaluation of the other dimension, but not both. The third possibility is the 

two-way interaction that probability weight is affected by the payoff contrast and 

simultaneously the subjective payoff is influenced by the probability contrast. The 

goal now is to determine whether dependent models perform better than independent 

models, and if the answer is yes, which possibility of cross-dimension influence 

works the best. For this purpose, define an attribute contrast as the ratio of the 

absolute difference in attribute values of the two options relative to the greater of the 

two values. I believe that this relative difference better embodies the contrast between 

two values since relative values as it eliminates concern regarding different units 

across attributes. 

Models Associated with Dependence 

 The pairs of stimuli in Experiment 1 included one simple gamble )0;,(~ pxg  

and one sure outcome s. The utility of a simple gamble is expressed most generally by 

),()( )()()( sxkpj pwxvgu = . The weights )( pj  and ),( sxk  convey the influence from 

the contrast between the simple gamble and the sure outcome along the attributes of 

probability and payoff, respectively. Dependent models assume that contrasts apply to 

the utility of the simple gamble but leave the utility of the sure outcome unchanged, 

which is expressed by the original )(sv . In other words, the presence of the sure 



 

 20 

outcome affects the relative evaluation of the gamble but not conversly. Intuitively, 

that is acceptable because the sure outcome is one element without uncertainty or 

risk, so relative evaluation is less necessary for sure outcomes than for gambles. 

 The weight )( pj  is a function of the contrast along the attribute of 

probability. The relative contrast along the attribute of probability is 

p
p

pp
−=

− 1
)1,max(

)1,min()1,max( . Weighting this contrast by γ , the  exponent )( pj  can 

be expressed as: 

)1(1)( ppj −+= γ ,                                           (Equation 4) 

 where the parameter γ describes the magnitude of the influence of the probaiblity 

and +∞<<− γ1 . The lower bound of γ  is no less than -1, such that the )()( pjxv  

keeps the evaluation of the payoff monotonically increasing. The sign of the 

parameter γ  reflects the direction of the change of the subjective payoff. If p=1, then 

the gamble becomes a sure outcome and 1)1( =j , which means that the utility of the 

sure outcome x is original )(xv . This is consistent with the assumption that contrasts 

only influence the evaluation of gambles not sure outcomes. If 0=p , γ+= 1)( pj . 

However, when 0=p , there is no gamble, as the outcome is a sure 0. 

 The weight ),( sxk  is a function of the contrast along the attribute of payoff. 

Gambles in the experiment always have payoffs greater than the paired sure outcome, 

so 
x
s

x
sx

sx
sxsx

−=
−

=
− 1

),max(
),min(),max( . The constant 1 can be ignored for simplicity 
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because ratio 
x
s is the key factor adjusting the probability weight. The exponent 

),( sxk  is expressed by:  

x
ssxk δ+= 1),(                                         (Equation 5) 

where δ  represents the magnitude of influence of the contrast along the attribute of 

payoff and +∞<<∞− δ . The higher ),( sxk , the lower the probability weight is 

since the original )( pw  is less than 1 when 1<p .   

 Following numerous studies on value and weighting functions, I adopt two 

general and flexible formulas for )(xv  and )( pw . In accordance with prospect theory, 

I set 

αxxv =)(  , where 0>x  and +∞<<α0 .3                  (Equation 6) 

The one-parameter weighting function in Prelec’s (2000) study provides the basic 

functional form for probability weight in this study: 

                             ])ln(exp[)( βppw −−= , where 10 << p and 0>β             

(Equation 7) 

When 10 << β , the probability weight is inversely S-shaped; if 1>β , the 

probability weight is a S-shaped function of objective probability. Obviously, when 

1=β , it is a linear function. As some readers may note, Prelec defined β  as 

10 << β . I extend Prelec’s original one-parameter weighting function by allowing 

1>β  to reflect a variety of shapes of weighting functions in order to accommodate 

individual differences. I did not employ Prelec’s two-parameter weighting function, 

])ln(exp[)( βλ ppw −−= , because the only relaxation of the two-parameter over the 
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one-parameter version is that diagonal concavity is not required. In brief, diagonal 

concavity says that the function is concave where ther is overweighting and convex 

where there is underweighting. Since diagonal concavity is supposed to be a 

characteristic of the weighting function, there is no benefit in relaxing that 

requirement. In addition, the one-parameter version crosses the diagonal at 1/e, which 

is stated to be very close to the empirical functions in several studies (Prelec, 2000). 

So varying the position of the reflection point by adding one more parameter is not 

necessary. In sum, the one-parameter version makes the weighting function as simple 

as possible, meanwhile, it keeps the essential characteristics of empirical weighting 

functions. 

 As we know, prospect theory takes the simple gamble utility as )()( pwxv . 

The complete version of the dependent model in this study is called interaction 

model, which is expressed as 

),()( )()(),,( sxkpj pwxvspxu = .                            (Equation 8) 

This full interaction model captures a bi-directional interaction. The other two nested 

dependent models cover uni-directional influences. One of them specifies that the 

contrast along the attribute of probability affects the subjective payoff evaluation of 

the gamble. This model is called the probability-weighted model. The expected utility 

of the gamble is expressed by: 

)()(),( )( pwxvpxu pj= .                            (Equation 9) 

The other nested model is opposite in that the contrast along the attribute of payoff 

enhances probability weight. This model is called the value-weighted model, in which 

the expected utility of the gamble is expressed by: 
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),()()(),,( sxkpwxuspxu = .                                 (Equation10) 

The relationship of the models is shown in Figure 5: 

The parameters of the three dependent models and one independent model 

(prospect theory) were estimated and each dependent model was compared with the 

independent model by means of a likelihood ratio test.  

The α -level for all tests was set as 0.05. Tests 1 to 4, as numbered in Figure 

5, had 1 degrees of freedom (df). Test 5 had df=2. Data collected from all trials were 

involved in the likelihood ratio tests. 

Maximum Likelihood Estimators and Model Comparisons 
 On each trial the strength of preference for the gamble, g, over the sure 

outcome, s, is defined as 

ε+−= )()(),( sUgUsgT .                            (Equation 11) 

 )(sU  is the utility of the sure outcome, s, αssvsU == )()( . )(gU  is the utility of the 

gamble and is contingent on the model that it serves. )()()( pwxvgU =  in prospect 

theory; )()()( )]1(1[ pwxvgU p−+= γ  in the probability-weighted model; 

)1(
)()()( x

s

pwxvgU
δ+

=  in the value-weighted model; and 

)1()]1(1[ )()()( x
s

p pwxvgU
δγ +−+=  in the interaction model. These four models share the 

same components, )(xv  and )( pw , which are defined by Equation 6 and 7, 

respectively. The probability of choosing g over s is expressed by  

]0)()([),( ≥+−= εsUgUPsgP                  (Equation 12) 
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 The item ε  reflects the variability in the data. I assume that ε  is i.i.d. and 

),0(~ 2σε N , where )var(gθσ = , and 0>θ . )(gVar  is the variance of the gamble, 

which varies from trial to trial due to different gambles. For a simple gamble 

)0;,(~ pxg , )var(g  is calculated as )1()0()( 22 pEVpEVx −−+− , where EV is the 

expeted value of the gamble. The parameter θ  captures the degree to which the 

gamble variance can affect the choice. The reason for considering the variance of the 

gamble is that several previous studies identified the importance of gamble variance 

in choice. Edwards (1962) pointed out the concept of variance preference and 

claimed that people might base their preferences among bets not only on the first 

moment of the distribution of outcomes, such as the mean, expected value or the 

subjective expected value, but also on the higher moments of the distribution, such as 

the variance of gambles. Decision field theory (Busemeyer & Townsend, 1993) also 

took gamble variance as one important component to define the momentary valence, 

which explains why attention varies from moment to moment. Weber, Shafir and 

Blais (2004) used the coefficient of variance (standard deviation devided by mean) to 

predict human and lower animal sensitivity to risk. All of these results suggested that 

gamble variance is one important factor in human decision-making. )(gVar  may 

explain why same values of )()( sugu −  can lead to different choices.  

 The parameters δγβα ,,,  and θ  were estimated separately for each 

individual. On each trial, participants chose either the gamble or the sure outcome. 

The optimization procedures (see Appendix B) maximized the joint probability of 

those choices. To avoid local maxima, each model was optimized 500 times per 

person. Each run used new initial values of parameters randomly generated within 
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their domains. For those parameters with at least one end of the domain as infinity, I 

set broad ranges in parameter estimation (Interested readers can refer to Appendix C). 

The broad ranges were determined by running optimizations with even broader 

ranges beforehand, which then provided a reasonable range for each parameter.  The 

maximum likelihood achieved in the 500 runs was taken as the maximum likelihood 

of that model and the associated parameter values were regarded as m.l.e. (maximum 

likelihood estimators). As shown in Figure 5, the interaction model is a complete 

model with five parameters, δγβα ,,,  and θ . The probability-weighted, value-

weighted and prospect theory models are nested under the interaction model. The 

model with more parameters will fit the data better than nested models do, but not 

necessarily significantly so. I compared each model to its nested model(s), if any, by 

likelihood ratio test.   

Results and Discussion 

 The data from all 55 participants were used to do model comparisons at the 

individual level. The interaction model was compared to the three other models, while 

the probability and value-weighted models were compared to prospect theory only. 

The results of the comparisons are shown in Table 2. For the majority of participants 

(52 out of 55; 94.6% of all participants) the interaction model was a significant 

improvement over prospect theory. These 52 participants also demonstrated a 

significant improvement of the probability-weighted and the value-weighted models 

over prospect theory. The results suggest that dependence models describe choice in 

this context better than the independence model does. To identify whether the cross-

attribute influence is one-way or two-way, it is necessary to compare the interaction 
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model with the probability and value-weighted models. Twenty-four out of 55 

participants (43.6% of participants) showed a significant difference between the 

interaction and probability-weighted models. Only 10 out of 55 participants (18.2% 

of participants) showed a significance effect between the interaction and value-

weighted models. The results suggest that the value-weighted model performed 

almost as well as the interaction model did, because 81.8% of participants’ data are 

described by both models with the same accuracy. The probability-weighted model is 

inferior to these two models because fewer participants (56.4%) showed the same 

accuracy as the interaction model did. Thus, contrast along the attribute of payoff 

strongly influenced the evaluation of probability weight, but not the other way 

around.   

 The optimization was conducted 500 times per participant per model. Each 

time the initial values were randomly generated by the computer within the ranges 

determined in advance. The median and the inter-quartiles values of the m.l.e.s 

accounting for the best fit of 55 participants are reported in Table 3. The empirical 

distribution of those m.l.e.s of α  and β are plotted in Figure 6 and 7. The median of 

parameter α  has a value close to 2 for all four models. Less than 10% of participants 

have values lower than 1.The result suggests that the subjective value is a convex 

function of value, i.e., that the increase of subjective values is faster for high than for 

low payoffs. The median of parameter β  is greater than 1 in all models except 

prospect theory, where β  is almost 1. For the other three models fewer than 30% of 

the participants had values less than 1. This result indicates that for most participants 
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probability weight is an S-shaped function rather than inversely S-shaped weighting 

function, as reported by previous studies.  

 Parameters α  and β  in Experiment 1 only describe human behavior in the 

gain domain, but showed different trends for )(xv  and )( pw  compared to prospect 

theory results from numerous previous studies (Tversky et.al. 1992; Camerer et.al, 

1994; Tversky et.al, 1995; Wu et.al, 1996; Prelec, 1998; Wu et.al, 1999 ). Comparing 

Experiment 1 with other studies, one primary difference is that a clear task goal was 

identified in Experiment 1. Participants were encouraged to earn as many points as 

they could, and they acknowledged that their performance would determine the final 

amount of bonuses in addition to guaranteed academic credits. Also, participants’ 

performances would determine if they could upgrade to the next experiment (not 

reported in this study). By entering the next level, participants had a chance to gain 

extra credits. On the contrary, the common instruction in previous studies usually 

asked participants to choose one favored option out of a pair for a number of trials. 

For instance, some studies on the weighting function (Wu et.al. 1996, 1999) paid 

participants $5 to finish a survey, in which participants were asked to choose the 

favorable option. There was no real link between performance and obtaining rewards. 

The real pressure in the current study might cause participants to crave more points, 

thus over-evaluating the payoff, in particular higher possible payoffs. Meanwhile, 

participants underweighted lower probability, such as 5%, and overweighted higher 

probability, such as 95%. One possible reason for this phenomenon is that 

participants wanted to earn some points on each trial because of the goal. Low 
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probabilities, such as 5%, were regarded as essentially 0%. High probabilities were 

regarded as close to 100%.  

The parameter γ  in the interaction and probability-weighted models was 

negative. Recall that γ  adjusts the subjective value of the payoff via formula 

)]1(1[)( pxv −+γ . Increasing the value of γ  raises the subjective payoff (Figure 8). 

Similarly, for fixed values of α  and γ , increasing p  increases the subjective 

evaluation of payoff x as illustrated in Figure 9. The smaller the contrast of the 

probability between the sure outcome and the gamble, the higher the adjusted 

subjective value is. Psychologically, the subjective value of the gamble payoff looms 

larger as the probability of obtaining this payoff increases. This result is consistent 

with the intuition that as the probability of earning payoff x  increases, not only the 

overall gamble, but also the payoff of the gamble becomes more attractive. 

 The parameter δ , which adjusts the probability weight, was positive. The 

formula 
)1(

)( x
s

pw
δ+

 indicates that probability weight decreases as δ  increases (Figure 

10).The adjusted probability weight curve moves to the right as the ratio xs /  

increases. Note that a high ratio of sure outcome versus gamble payoff causes 

underweight of probability.  Figure 11 plots 6 adjusted probability weight curves 

described by 
)1(

)( x
s

pw
δ+

, where 4717.1=β  and 197.2=δ . The most left curve is 

modified by the ratio 
x
s =0.05, and the most right by 

x
s =1. Intuitively, this means that 

high values of sure outcomes make the payoff of gamble payoff subjectively small. 

When the sure outcome is small relative to the gamble payoff, the significance of the 



 

 29 

probability looms large and reaches its maximum when the sure outcome is too small 

to be considered. In that case, the power raised to )( pw  is close to 1, and the ratio 
x
s  

does not adjust the original probability weight at all. It also means that when the 

gamble is presented without a sure outcome, against which to compare it, the 

evaluation of the gamble probability will be )( pw , which is not affected by a cross-

attribute contrast.  

 Experiment 1 was designed to implement the relay methodology, not to 

provide data for the subsequent post hoc modeling, thus outcome spacing was 

unequal and much denser at lower values. Also, the relay method caused outcomes to 

depend on previous responses, although not sequentially, as the 8 relays were cycled 

through in random order. Experiment 2 was run to correct these problems and to 

provide validation of the modeling results. In addition, the loss domain was involved 

to complement the gain domain.   

Experiment 2 

 Possible dependence between payoff and probability was evaluated again in 

Experiment 2. The paradigm was similar to that of Experiment 1 except that (1) 

gamble outcomes were specified independently of responses, (2) gambles were 

randomly ordered, and (3) losses were included. 

 The functional forms for the gain domain are same as those in Experiment 1. 

In the loss domain, however, the value function is expressed by αξ )()( xxv −−= , 

where 0<x  and 0>ξ (Tversky & Kahneman, 1992).  

Participants: 
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 The twenty-seven participants, 9 male and 18 female, were undergraduate 

students in the University of Maryland at College Park and earned credits for 

Psychology courses. 

 Stimuli and Procedures: 

 Like Experiment 1, Experiment 2 required participants to view the stimuli 

displayed on computer screens and to respond by clicking the option they prefer. The 

instructions are included in Appendix A. A pair of options, one simple gamble and 

one sure outcome, was shown on each trial. The stimuli were organized into two 

blocks: gain and loss. The computer randomly decided which block showed up first. 

Each block included 360 trials, obtained by crossing 6 payoffs, 6 probabilities and 10 

sure outcomes per gamble. The probabilities were 5%, 20%, 40%, 60%, 80% and 

95%, and the gamble payoffs were 100, 500, 1000, 4,000, 6,000, 10,000. For each 

gamble, five out of ten sure outcomes paired with it were higher than the expected 

value of the gamble and five were lower than it. For the five higher sure outcomes, 

each was higher than the gamble’s expected value (EV) by n/6 of the difference 

between the gamble payoff and EV. Thus, the five higher sure outcomes 

equaled ]
6

)1([
6

)( nppxnxpxxp −+=−+ , where n was 1, 2,…, 5. The five lower sure 

outcomes were less than the gamble EV, obtained by subtracting n/6 of the difference 

between EV and 0 from EV. This amount could be expressed as )
6

1( nxp − , where n 

also equaled 1, 2, …, 5. All participants went through the same 720 trials. Pairs of 

stimuli were presented in a random order, and participants were asked to choose the 

one they preferred. Once again, their goal was to accumulate as many points as they 
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could in the gain domain and to minimize the loss of points in loss domain. Their 

performances in both domains determined whether they could get one extra credit in 

addition to the credit for their work. The performances were recorded and calculated 

by the computer, which displayed the percentages of optimal choice in both domains 

at the end of the experiment. The optimal choice was defined as the option with 

higher EV. Participants did not know this definition until the end of the experiment 

and only 5 out of 27 participants were rewarded by one extra credit because they had 

around 90% optimal choices in both domains. 

Results and Discussion:  

 The optimization procedure, conducted at the individual level for all 27 

participants, was identical to that used in Experiment 1. I will present the results of 

the model comparisons and values of the m.l.e.s for gain and loss domains separately 

in order to compare patterns in Experiments 1 and 2, and to compare patterns in the 

gain with those in the loss domain. 

 Model Comparisons.  The results of model comparisons in the gain domain are 

presented in Table 4. As in Experiment 1, the interaction, probability-weighted and 

value-weighted models all performed much better than prospect theory for the 

majority of participants. The value-weighted model performed similarly to the 

interaction model, with only 8 out of 27 participants showing a significant difference 

between the two. However, the probability-weighted model did not perform equally 

as well, with 18 out of 27 comparisons showing significantly worse performance than 

the interaction model. In sum, the interaction model and the value-weighted model 

described data almost equally well while the probability- weighted model did not. 
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This pattern of results is the same as obtained in Experiment 1. Based on likelihood 

ratio tests in the gain domain, the interaction and value-weighted models performed 

similarly (81.8% and 70.4% of participants did not show significant differences in 

Experiment 1 and 2) while the probability-weighted model was worse, (43.6% and 

66.7% showed significantly inferior performance in Experiment 1 and 2). But all 

three dependent models performed better than prospect theory did.   

The results of model comparisons in the loss domain are presented in Table 5. 

The interaction, probability-weighted and value-weighted models performed better 

than prospect theory in well over 70% of the participants. Interestingly, the same 

pattern was found in both the gain and loss domains: value-weighted models 

described data better than probability-weighted model did (see Table 4 and 5). In the 

loss domain, the value-weighted model described the data as well as the interaction 

model did for 81.5% of the participants, the probability-weighted model performed 

significantly inferior to the interaction model for 40.7%. This suggests that 

participants tended to be affected by the payoff contrast in both domains. Intuitively, 

this result can be interpreted as showing that subjective payoff values increase as 

probability of obtaining payoffs increase. 

 Values of m.l.e.s. Each model was optimized 100 times per person. One set of 

random initial values within parameter domains was generated for each optimization. 

The best fit m.l.e.s in the gain domain showed the same patterns (Table 6) as those in 

Experiment 1. γ  is negative and δ  is positive in the gain domain. The only 

difference is that the parameter estimates between the two experiments. The absolute 

values of the medians ofα , γ  and θ are lower in Experiment 2 while median values 
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of β  and δ are higher in Experiment 2. The pattern occurs in all four models, across 

both experiments and in Experiment 2 within both domains (Tables 6 and 7). 

According to the median parameter estimates from 27 participants, α  and β  

are greater than 1. γ  is negative and δ  is positive. Recall that the utility of a simple 

gamble, )0;,(~ pxg , is expressed by 
)1()]1(1[ )()()( x

s
p pwxvgU

δγ +−+= . The value of γ  

is so small that the exponent )1(1 p−+ γ  almost equals 1, which means that contrasts 

along the attribute of probability may not influence the subjective evaluation of 

gamble payoffs very much. Meanwhile, the exponent 
x
sδ+1  matters, since the value 

of δ  is substantial. This shows once again that the payoff contrast affects subjective 

evaluation of the probability. 

Individual differences must be emphasized. As reported in the gain domains 

of Experiment 2, the best fit m.l.e.s of 27 participants vary tremendously (see Figures 

12 and 13 as one example). I have more confidence reporting the empirical 

distribution than reporting an exact value of a parameter for a group of people. 

Essentially, for most people subjective payoff value is convex in the gain and concave 

in the loss domain; Probability weight is an S-shaped function of the gamble 

probability. Payoff contrasts have a greater influence on the evaluation of 

probabilities than the other way around.  

Since there are great individual differences in parameter estimates, and the 

performance of the interaction model was significantly better than other models for 

some people but not for others, it is interesting to look at the parameter estimates for 

all participants best described by each of the models. I only focus on the model 
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comparisons in the gain domain in Experiment 2 because Experiment 2 was 

particularly designed for model comparisons and the pattern in the gain domain can 

give us some ideas about the circumstance under which each model performs equally 

well as the interaction model does. Three sub-groups of people can be identified. 

Participant in sub-group 1 did not show significant differences between the 

interaction model and prospect theory. Participants in sub-group 2 showed significant 

differences between prospect theory and the value-weighted model, but not between 

the value-weighted and interaction models. People in sub-group 3 had significant 

differences between the probability-weighted model and prospect theory, but not 

between the probability-weighted and interaction models. The descriptive statistics of 

the  parameter estimates for sub-group 2 and 3 in the gain domain are displayed in 

Tables 8 and 9. The statistics for sub-group 1 is not very meaningful since there are 

only three persons in that group, and the interquatile range does not provide much 

information. Table 8 suggestes one interesting change of subgroup 2 from overall: 

The median value of parameter δ  is much higher than the estimate overall. This 

suggests that great value of δ  at least partially accounts for the good performance of 

the value-weighted model. The higher the value of δ , the greater the effect of  the 

payoff contrast on probability weight. However, Table 9 does not follow the same 

line. The median value of γ  is similar between the sub-group 3 and overall. One 

reason is that the range of parameter estimate is too narrow to allow significant 

change when the data are broken down.  
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Chapter 3: Conclusions and General Discussion 

 

In both experiments, participants chose between a simple gamble and a sure 

outcome. The goal was to accumulate as many points as possible in the gain domain 

and to minimize the loss of points in the loss domain. Under this paradigm, the results 

suggested that evaluations of gamble payoff and probability are dependent in the 

context of choice. The interaction model was most general and therefore described 

the data best. The results of likelihood ratio tests showed that the value-weighted 

model performed similarly to the interaction model and did better than the 

probability-weighted model, which implies that the contrast between a gamble payoff 

and a sure outcome adjusted the subjective evaluation of the gamble probability. This 

is consistent with the previous result that the desirability of the event, or payoff, 

affects the subjective probability (Irwin, 1953; Slovic, 1966).  This adjustment 

explained much of the excellent performance of the interaction model over prospect 

theory. When comparing against a sure outcome, decision makers tended to estimate 

the magnitude of gamble payoffs higher when they were with high probabilities than 

with low probabilities. All the patterns displayed in this study were same for the gain 

and the loss domains, except for the shape of )(xv . In addition, the similarity of model 

comparisons in Experiment 1 and 2 showed that the results were not affected by the 

relay method of Experiment 1.  

 The medians of the maximum likelihood estimators were not consistent with 

previous studies on value and weighting functions. The medians of parameter values 

of α  and β  in the current study were higher than 1 while the reported values in 
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previous studies were usually lower than 1. Comparing parameter values in prospect 

theory across studies is more meaningful than across models because prospect theory 

was used to fit different sets of data. The dependent models proposed in this study 

have not been used in other studies. High values of α  and β  in )(xv  and )( pw , 

respectively, in the current study suggest that the goal of the task may guide people’s 

attention and affect the subjective evaluation of gamble payoffs and probabilities. I 

emphasized this point in the Results and Discussion section of Experiments 1 and 2. 

There are at least three reasons for higher α  and β  values. First, different 

combinations of functional forms of )(xv  and )( pw  were used in this study than in 

others.  Second, parameter domains were relaxed to accommodate individual 

differences, which were ignored in most previous studies that estimated value and 

weighting functions. They usually report medians of parameters in a group, which 

blur the variety of individual decisions. The empirical distributions of α  and β  

showed that some participants did have parameter values lower than 1 even though 

they could not represent the group. Third, other studies assumed that payoffs and 

probabilities are independent before estimating the parameters, but models other than 

prospect theory in the current experiments include possible cross-attribute interaction. 

So, direct parameter comparisons are less valuable than model comparisons, as the 

latter provide a big picture about whether certain patterns exist in both loss and gain 

domains and whether dependence between attributes is real and in what a way  

 The parameters γ  and δ  varied among participants, showing different 

degrees of influence from cross-attribute contrasts. The common feature among all 

participants was that γ  was negative and δ  was positive and that the absolute 
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magnitude of γ  was much smaller than that of δ . Parameter θ  played a role in 

managing potential fluctuations from trial to trial. Since it was not a key parameter in 

this study, I leave the parameter estimation in Table 3, 6 and 7 without further 

discussion.   

Previous studies expressed the functional forms of )(xv  and )( pw  in various 

ways. And contrasts along probability and payoff also can be expressed in many 

ways. I used only one form for each because my interest was on the exsistence of the 

interaction between payoff and probability, and not necessarily its best functional 

form.  

 Parameter estimation by sequential testing (PEST) (Bostic, Herrnstein and 

Luce, 1990) is a psychophysical method to obtain the certainty equivalent of a 

gamble. It reduces the impact of cognitive fluctuation and avoids one-shot decision 

mistakes. Ideally, PEST requires hundreds or even thousands of trials to repeat 

choices in order to obtain stable results. Fewer numbers of trials may cause test-retest 

inconsistency, which means results may vary from test to test. Hence, I examined the 

data from Experiment 1 for this issue. Recall that certainty equivalents (CEs) were 

derived by taking the midpoints of two values: the highest rejected sure outcome and 

the lowest accepted sure outcome. The former value is supposed to be smaller than 

the latter one. Any reversion indicates fluctuation in choice behaviors. Only 1 out of 

41 participants showed this phenomenon for only one gamble. Overall, the data from 

relays were reliable regarding the quality of CEs, which helped prevent errors from 

proliferating along the relays. To quickly converge to CEs, one method called 

QUICKINDIFF, introduced by von Winterfeldt, Chung, Luce and Cho (1997), can be 
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used in the future study. It is similar to PEST, except that respondents rate their 

degree of preference among stimulus pairs. This extra requirement avoids lengthy 

experiments. 

 One result found in this study is particular interesting. Participants 

underweighted lower probabilities, and overweighted higher probabilities; and they 

were more sensitive to higher payoff than to lower ones. This phenomenon may be 

due to motivation for the task, in which the goal was to seek maximum gain and 

minimum loss. A future study will look closely at the effect of motivation on choice, 

in particular at the situation under which the payment is contingent on the 

performance.   
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Table 1. The Results of Minimum Window of 41 Participants in Experiment 1 
 Minimum Maximum Mean Variance 

x 78 
(0.8%) 

4938 
(49%) 

2030 
(20.3%) 2.1*10-6 

v’(x) 1.04*10-5 

(0.001%) 
0.009 

(0.9%) 
0.003 

(0.3%) 4.1*10-6 

 Note. The values in the parenthesis are the percentage of the full scale 
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Table 2. Pair-Wise Model Comparisons between Higher Ranked and Nested Models 
in Experiment 1 

 Higher rank models 

  Interaction Probability-
weighted Value-weighted  

 Prospect theory 52 (94.6%) 52 (94.6%) 52 (94.6%) 

Probability-
weighted 24 (43.6%) N/A N/A 

Nested models 

Value-weighted 10 (18.2%) N/A N/A 

Note. The entries are the number (percentage) of participants who showed significant 

improvement of higher order models over the model(s) nested under them. All data 

are out of a total of 55 subjects. Significance level is 05.0=α  
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Table 3. The Median (and Inter-Quartile) Values of Parameter Estimates in Four 
Models in Experiment 1 

 α  β  γ  δ  θ  

Interaction 2.005 
(1.817, 2.259) 

1.833 
(0.960, 4.098) 

-0.053 
(-0.250, -0.004) 

4.618 
(2.087, 5.000) 

6.844 
(0.583, 37.161) 

Probability-
weighted 

2.038 
(1.817, 2.322) 

2.087 
(1.534. 5.349) 

-0.152 
(-0.364, -0.045) N/A 6.438 

(1.219, 102.817) 

Value-
weighted 

1.9772 
(1.791, 2.199) 

1.309 
(0.895, 1.978) N/A 5.640 

(2.206, 19.660) 
3.6158 

(0.614, 42.082) 

Prospect 
theory 

2.133 
(1.863, 2.298) 

0.9611 
(0.542, 1.292) N/A N/A 26.782 

(3.659, 138.709) 

Note. The results are over 55 participants. N/A means not applied. 
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Table 4. Pair-Wise Model Comparisons between Higher Ranked and Nested Models 
in Gain Domain in Experiment 2 

  Higher rank models 

  Interaction Probability-
weighted Value-weighted 

Prospect theory 23 (85.2%) 20 (77.1%) 22 (81.5%) 
Probability-
weighted 18 (66.7%) N/A N/A Nested 

models 
Value-weighted 8 (29.6%) N/A N/A 

Note. The entries are the number (percentage) of participants who show significant 

effect between pair wised models. All data are out of total 27 subjects in Experiment 

2. Significance level 05.0=α . N/A means not applied. 
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Table 5. Pair-Wise Model Comparisons between Higher Ranked and Nested Models 
in Loss Domain in Experiment 2 

  Higher rank models 

  Interaction Probability-
weighted Value-weighted 

Prospect theory 24 (88.9%) 24 (88.9%) 20 (74.1%) 

Probability-
weighted 11 (40.7%) N/A N/A 

Nested 
models 

Value-weighted 5 (18.5%) N/A N/A 

 
Note. The entries are the number (percentage) of participants who show significant 

effect between pair wised models. All data are out of total 27 subjects in Experiment 

2. Significance level 05.0=α . N/A means not applied. 
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Table 6. The Median (and Inter-Quartile) Values of Parameter Estimates in Four 
Models in the Gain Domain in Experiment 2 

 α  β  
γ  δ  θ  

Interaction 1.888 
(1.742, 1.925 ) 

2.360 
(1.081, 4.472) 

-0.013 
(-0.149, -0.004) 

5.010 
(2.389, 5.011) 

1.780 
(0.992, 5.070) 

Probability-
weighted 

1.845 
(1.747, 1.919) 

2.165 
(1.178, 4.887 ) 

-0.119 
(-0.334, -0.007) N/A 1.469 

(0.661, 3.982 ) 

Value-
weighted 

1.827 
(1.752, 2.049) 

1.865 
(0.781, 6.528) N/A 9.689 

(1.820, 315.783) 
1.737 

(0.309, 6.174) 

Prospect 
theory 

1.821 
(1.664, 1.909) 

1.939 
(0.733, 3.390) N/A N/A 3.336 

(1.283, 9.310) 

Note. The results are over 27 participants. N/A means not applied. 
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Table 7. The Median (and Inter-Quartile) Values of Parameter Estimates in Four 
Models in the Loss Domain in Experiment 2 

 α  β  
γ  δ  ξ  θ  

Interaction 1.800 
(1.735, 1.802) 

2.124 
(0.568, 5.021) 

-0.027 
(-0.729, -0.007) 

2.571 
(0.450, 5.020) 

2.759 
(1.963, 2.990) 

2.227 
(0.776, 4.688) 

Probability
-weighted 

1.957 
(1.043, 2.102) 

2.131 
(0.778, 3.704) 

-0.120 
(-1.424, -0.005) N/A 9.226 

(2.134, 21.658) 
32.864 

(5.361, 56.883) 

Value-
weighted 

1.950 
(1.581, 2.106) 

1.238 
(0.553, 3.094) N/A 

6.153 
(3.369, 

140.553) 

4.213 
(1.677, 19.563) 

38.085 
(7.109, 95.764) 

Prospect 
theory 

1.732 
(0.940, 1.801) 

1.307 
(0.500, 3.470) N/A N/A 2.945 

(2.236, 2.999) 
2.425 

(0.979, 6.594) 

Note. The results are over 27 participants. N/A means not applied. 
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Table 8. The Median (and Inter-Quartile) Values of Parameter Estimates for sub-
group 2 in the Gain Domain in Experiment 2 

 α  β  
γ  δ  θ  

Interaction 1.788 
(1.761, 1.958 ) 

2.352 
(1.926, 7.577) 

-0.5834 
(-1.979, -0.271) 

4.946 
(2.256, 4.964) 

4.194 
(1.224, 6.878) 

Value-
weighted  

1.983 
(1.673, 2.041 ) 

0.963 
(0.617, 2.111) N/A 138.03 

(1.801, 254.13) 
2.438 

(0.660, 28.127) 

Prospect 
theory 

1.848 
(1.554, 1.905) 

1.939 
(0.991, 4.821) N/A N/A 3.336 

(4.166, 9.951) 
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Table 9. The Median (and Inter-Quartile) Values of Parameter Estimates for sub-
group 3 in the Gain Domain in Experiment 2 

 α  β  
γ  δ  θ  

Interaction 1.917 
(1.840, 1.956 ) 

2.258 
(1.48, 3.938) 

-0.030 
(-0.070, -0.003) 

5.000 
(4.889, 5.014) 

1.413 
(1.148, 2.291) 

Probability-
weighted 

1.887 
(1.792, 1.938) 

2.137 
(1.508, 3.517 ) 

-0.124 
(-0.249, -0.047) N/A 1.329 

(0.673, 1.693 ) 

Prospect 
theory 

1.871 
(1.788, 1.919) 

2.010 
(0.996, 2.935) N/A N/A 1.540 

(1.043, 9.372) 
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Figure 1.  An example of monotonic (left panel) and non-monotonic (right panel) 
value functions. The square points came from one relay and the triangles from 
another. The circled pairs of points differ in their monotonicity relation. 
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Figure 2. Display of an experimental trial. 
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Figure 3. The flowchart of the dynamic procedure of relays. For relay i, each iteration 
includes a gamble with a fixed probability and a payoff obtained from CE of the 
previous gamble within that relay (except for the first gamble, which has a payoff 
10,000). The initial sure outcome of the new gamble is a random number between 0 
and the gamble payoff. Then paired sure outcome is adjusted up and down through 
PEST in the next several trials until the certainty equivalent of the gamble is obtained. 
There are six interations in one relay (except for the relay with p of 5%). 

  

PEST: adjusts si,1 to find ci,1 

  

PEST: adjusts si,2 to find ci,2 

                     .     )0;,($~ 1,1, iii svspxg

... 

                     .     )0;,($~ 2,1,2, iiii svspcg

  

PEST: adjusts si,6 to find ci,6 

                     .     )0;,($~ 6,5,6, iiii svspcg

Iteration 1 

Iteration 2 

Iteration 6 
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Figure 4. Illustration of minimum window size. Data points A and B represent 
minimized maximal inverse relationship. Weak monotonicity is satisfied only when 
the two data points move to the center of the rectangle, indicated by the arrows. 
Strong monotonicity is achieved for any two data points if either moves further 
beyond the center. Thus, ½ of the full height and width of the rectangle are the two 
dimensions of the minimum window).  
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Figure 5. The structure of models with highest ordered model on the top and lowest at 
the bottom. 
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Figure 6. The empirical distribution of the m.l.e. of parameterα in Experiment 1. P 
represents for prospect theory; I for interaction model; PW for probability-weighted 
mode and VW for value-weighted model. 
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Figure 7.   The empirical distribution of the m.l.e. of paramete β . P represents for 
prospect theory; I for interaction model; PW for probability-weighted mode and VW 
for value-weighted model. 
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Figure 8. The subjective value )(xv is adjusted by the power ))1(1( p−+ γ in the 
interaction and probability-weighted models.  Higher values of γ increase the 
subjective feeling of the payoff. (The curves are based on 0743.1=α and 
fixed 95.01 =− p ) 
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Figure 9.   The subjective value of payoff is adjusted by the probability p of the 
gamble (Take 11725.0−=γ as one example, The lines from low to high represent for 
the subjective payoff values adjusted by probability p equals 0, 0.2, 0.4, 0.6 0.8 and 1, 
respectively). 
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Figure 10. The probability weight is adjusted by the power )1(
x
sδ+ . Higher δ tends 

to decrease the evaluation of the probability (Take 4717.1=β and ratio 1.0=
x
s as one 

example). 
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Figure 11. The weighting function adjusted by the ratio of the sure outcome to the 
gamble payoff. (Take 4717.1=β and 197.2=δ as one example, the lines from left to 
right represent the probability weight adjusted by ratios of 0.05, 0.1, 0.3, 0.6, 0.9, 1, 
respectively.) 
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Figure 12. The empirical distribution of the m.l.e.s of α  in the gain domain. P 
represents the prospect theory estimates; I the interaction model estimates; PW the 
probability-weighted model estimates and VW the value-weighted model estimates. 
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Figure 13. The empirical distribution of the m.l.e.s of β in the gain domain. P 
represents the prospect theory estimates; I the interaction model estimates; PW the 
probability-weighted model estimates and VW the value-weighted model estimates. 
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 Appendices 
 

Appendix A 
 
Instructions for Experiment 1: 

There are two options on each trial, one is a simple gamble and the other is a 

sure outcome. Your task is to choose one option by clicking on that square. The 

selected square turns to pink. Your goal is to accumulate as many points as you can. 

And you can switch your option before going to the next trial. You final bonus is 

determined by your performance. 

Instruction for Experiment 2: 

There are two blocks in this experiment. One block has positive payoffs, and 

the other has negative payoff only. See specific instructions at the beginning of each 

block. Your final bonus will be determined by your performance. 

For the gain domain: There are two options on each trial, one is a simple 

gamble and the other is a sure outcome. Your task is to choose one option by clicking 

on that square. The selected square turns to pink. Your goal is to accumulate as many 

points as you can. And you can switch your option before going to the next trial. 

For the loss domain: There are two options on each trial, one is a simple 

gamble and the other is a sure outcome. Your task is to choose one option by clicking 

on that square. The selected square turns to pink. Your goal is to avoid to lose as few 

points as you can. And you can switch your option before going to the next trial. 
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Appendix B 
 
 Parameter estimation by sequential testing (PEST) (Bostic, Herrnstein and 

Luce, 1990) is a psychophysical method to obtain the certainty equivalent of a 

gamble. It reduces the impact of cognitive fluctuation and avoids one-shot decision 

mistakes. PEST was implemented in the current study in following ways: 

 1. The initial value of a sure outcome, s, was a random integer drawn from 

uniform distribution ),0( x , where x was the payoff of the simple gamble.  

 2. If the participant chose s, s decreased when the gamble next appeared; 

otherwise, it increased. The initial step size for the increment or decrement was 
5
1 x. 

 3. When the choice reversed for any identical gamble, that is choosing g right 

after choosing s or vise versa, the step size was halved. If the choice did not change 

three times in a row, the step size doubled. Otherwise it was kept the same size. 

 4. The certainty-equivalent searching procedure was over when the step size 

was less than x
50
1 or 1, whichever came first. 

 To make it more convenient for participants to process the information, the 

computer rounded up the sure outcomes to the nearest integers. The certainty 

equivalent c was calculated by averaging the highest rejected and the lowest accepted 

values of s. 
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Appendix C 
Optimization procedure for testing independence assumption 

 The procedure was programmed in MatLab. There are 8 parameters ir , where 

8,...,2,1=i . The Optimization procedure searched for a set of solutions that can 

satisfy two monotonicity criteria.  

 First, the computer generated a set of initial value to 1r  by randomly selecting 

a random number from a uniform distribution (0, 1). Then, it assigned 2r  a value by 

generating a random number from a uniform distribution ( 1r , 1), given 21 pp < . The 

parameters 3r  through 8r  were assigned values by the similar procedure which 

guarantees the monotonicity of the weighting function. Then, the computer conducted 

SQP (sequential quadratic programming), which finds a set of parameters that can 

minimize the sum of the inverse magnitudes, ∑
ji

jis
,

, , where jis ,  is defined as  

⎩
⎨
⎧ ><−

=
otherwise                       0

)(')(' and  if   )(')('
s ji,

jijiji cvcvcccvcv
 

SQP is carried out by a built-in function fmincon in Matlab. Briefly, a positive 

definite quasi-Newton approximation of the Hessian of the Lagrangian function is 

calculated at each iteration. Then a quadratic programming (QP) problem is sloved. 

Finally, the solution to the QP sub-problem used to form a new iteration (Coleman, 

Branch and Grace, 1999).  

 Once the minimum value of ∑
ji

jis
,

,  is found, the optimization terminates. To 

avoid a local minimum, the computer repeated the optimization procedure 500 times 

per participant, each time with a new set of randomly generated initial values. The 

Comment [MSOffice1]: HONG – 
NOTE THAT YOU HAD THE LOWER 
LIMIT AS r2
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computer identified the parameters that produced the  minimum value of ∑
ji

jis
,

, . For 

the purpose of testing monotonicity, failing to obtain ∑
ji

jis
,

, =0 is regarded as 

violation of monotonicity of the value function. 

 

Optimization procedure for maximum likelihood estimates (m.l.e.) 

  The optimization for maximizing the joint likelihood is very similar to that 

mentioned above. The differences include (1) maximize the joint probability of all 

trials, (2) constraint the parameters in models, and (3) optimize 100 times. The 

parameters that produce greatest likelihood are regarded as m.l.e. 
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Appendix D 
 
 Ranges of parameters θδγβα ,,,, are ),(),,(),,0(),,0( +∞−∞+∞−∞+∞+∞ and 

),0( +∞ , respectively. To make the range practical in the optimization procedure, the 

parameter ranges were set as follows: 

100 ≤≤ α ; 100 ≤≤ β ; 1010 ≤≤− γ ; 1010 ≤≤− δ ; 1500 ≤<θ . 

The practical boundaries above were determined by the values of parameters 

estimated within much broader ranges.  
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Footnotes 
 1. There is a form of sign-dependence in cumulative prospect theory (CPT) 

(Tversky and Kahneman, 1992), where two weighting functions exist, one for 

probabilities of gain and one for loss. Also, CPT is rank-dependent, as the decision 

weight of each outcome is decided by the rank of the outcome in addition to the 

corresponding probability. However, CPT yields independence in two-outcom 

gambles. 

2.
)(
)(

)(' ,
, xv

cv
cv lk

lk = . Since )(xv is a constant, the order held by 

)( ,lkcv and )( ,hgcv  also held for normalized values )(' ,lkcv and )(' ,hgcv . 

 3. The domain of parameter α was not defined in Tversky & Kahneman’s 

(1992) paper. I added one reasonable domain to do parameter estimation.  
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