
AAS 04-238

A Variable-Step Double-Integration Multi-Step

Integrator

Matthew M. Berry∗ Liam M. Healy†

Abstract

A variable-step double-integration multi-step integrator is derived using divided differences.
The derivation is based upon the derivation of Shampine-Gordon, a single-integration method.
Variable-step integrators are useful for propagating elliptical orbits, because larger steps can be
taken near apogee. As a double-integration method, the integrator performs only one function
evaluation per step, whereas Shampine-Gordon requires two evaluations per step, giving the
integrator a significant speed advantage over Shampine-Gordon. Though several implementation
issues remain, preliminary results show the integrator to be effective.

INTRODUCTION

Use of numerical integration in space surveillance has grown in recent years as accuracy require-
ments have increased. Numerical integration requires a great deal of computation time compared
to the analytic propagators previously used. An upgrade planned for the Navy’s Space Surveil-
lance System (known as the Fence) will greatly increase the number of objects being tracked, and
hence significantly increase the amount of computation time required. Numerical integration meth-
ods requiring less computation time than those currently employed while maintaining or improving
accuracy requirements are needed to reduce this burden.

The Gauss-Jackson method (Ref. 1) is frequently used for orbit propagation in space surveillance
applications. It is a predictor-corrector, multi-step integrator. Multi-step integrators have a consid-
erable advantage over single-step integrators (such as Runge-Kutta) because multi-step integrators
can take larger step sizes to yield a given accuracy, and also have fewer evaluations per step. The
Gauss-Jackson integrator performs double integration, meaning that the algorithm computes posi-
tion directly from acceleration, without first integrating to find velocity. Because velocity is also
needed to compute the state of the satellite and to compute atmospheric drag, Gauss-Jackson is gen-
erally implemented alongside an Adams integrator, which performs single integration. The Adams
integrator is also a multi-step integrator, and can be implemented with Gauss-Jackson without
requiring additional evaluations.

Because Gauss-Jackson is fixed step, it cannot efficiently handle highly elliptical orbits (Ref. 2).
In order to achieve a given accuracy at perigee, more steps are taken at apogee than needed. One
way to remedy this problem is with s-integration, which involves changing the independent variable
using a generalized Sundman transformation (Ref. 3) to another variable, s. This transformation
spreads the integration points more evenly about the orbit and can be considered an analytical step
size adjustment based on advance knowledge of the orbit and not on error analysis. A disadvantage

∗Graduate Assistant, Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, Virginia 24061.
E-mail: maberry2@vt.edu.

†Research Physicist, Naval Research Laboratory, Code 8233, Washington, DC 20375-5355. E-mail:
Liam.Healy@nrl.navy.mil.

1

is that a seventh differential equation must be solved to find time, which makes time subject to
integration error. Another disadvantage is that although the size of a step in time space is changing,
it is still a fixed step method in s space, so there is no control over the local error.

The Shampine-Gordon integrator (Ref. 4) is a variable-step, variable-order multi-step integrator.
Shampine-Gordon integration is derived from divided differences, explained below, which allow the
step size to be changed without a restart procedure. The predictor and corrector are of different
order, which allows a local error estimate to be made at each step. If the local error is outside user-
defined bounds, the step size is adjusted. Unlike Gauss-Jackson, where the coefficients are already
known, the Shampine-Gordon coefficients are calculated at each step, depending on the step size
and order.

Although the Shampine-Gordon integrator can efficiently handle elliptical orbits because it is
variable step, it does have some disadvantages compared to Gauss-Jackson integration. It performs
single integration, so acceleration must first be integrated to velocity, and then velocity is integrated
to find position. Performing two single integrations causes more round-off error than double inte-
gration, and hence makes Shampine-Gordon more subject to instability. It must therefore take two
evaluations per step to stay stable, whereas Gauss-Jackson only takes one evaluation per step. This
extra evaluation significantly reduces the advantage in computation time gained by the variable-step
method.

A double-integration variable-step method, proposed in this paper, needs only one evaluation
per step to stay stable, and still has the advantage of a variable-step method.

MOTIVATION

Table 1: Summary of Integration Methods

Single / Fixed / Non-Summed / Single /
Method Multi Variable Summed Double
Runge-Kutta Single Fixed NA Single
Runge-Kutta-Fehlberg Single Variable NA Single
Adams Multi Fixed Non-Summed Single
Summed Adams Multi Fixed Summed Single
Shampine-Gordon Multi Variable Non-Summed Single
Störmer-Cowell Multi Fixed Non-Summed Double
Gauss-Jackson Multi Fixed Summed Double
Proposed Multi Variable Non-Summed Double

A study of current numerical integrators motivates the need for a variable-step double-integration
multi-step integrator. Numerical integrators may be classified into several categories. Integrators are
either single-step or multi-step, which refers to the number of points that are used when integrating to
the next point. Multi-step integrators are generally faster than single-step integrators, though there
are some disadvantages to multi-step integration, such as the need for a start-up routine. Integrators
may either have a fixed or a variable step size. Variable-step integrators reduce the number of steps
needed at apogee, where the velocity is at a minimum, and so are generally more efficient for highly
elliptical orbits. Multi-step integrators come in two forms, summed and non-summed, which refers
to whether the integration is performed from epoch or step-by-step. Finally, integrators can perform
either single or double integration. Single-integration integrators find velocity given acceleration,
and position given velocity. Double-integration integrators find position directly from acceleration.
Table 1 lists the features of several integrators commonly used in astrodynamics. Each integrator
has one of two possibilities in the four categories. Comparing the integrators in Table 1 to one

2

another shows the relative advantages and disadvantages of each category. The last line shows the
integration method that we propose in this paper.

Variable Step

In Ref. 2, we presented a study of the speed and accuracy effects of variable-step integrators. In the
study the fixed-step Gauss-Jackson integrator was compared to Shampine-Gordon, as well as Gauss-
Jackson with s-integration, which provides an analytic step size control, though it does not provide
error control. The study compared run-time of the integrators when they were set to give equivalent
accuracy. Comparisons were made of orbits having various perigee heights and eccentricities. Figure
1 shows the results from the study at 400 km, which is typical of other perigee heights. The plot
shows the speed ratio of the variable-step methods vs. eccentricity, where speed ratio is the run-
time of the fixed-step Gauss-Jackson divided by the run-time of the variable-step methods. The
variable-step methods have an advantage when the speed ratio is above one.

0 0.2 0.4 0.6 0.8 1
Eccentricity

0

5

10

Sp
ee

d
R

at
io

s-integration
Shampine-Gordon

Figure 1: Speed ratios to fixed step integration at 400 km perigee.

Figure 1 shows that s-integration is more efficient than fixed-step integration at an eccentric-
ity of approximately 0.15, and that Shampine-Gordon is more efficient than Gauss-Jackson at an
eccentricity of approximately 0.60. Test results at other perigee heights show that the eccentricity
where the variable-step methods are more efficient is independent of the perigee height. The plot
also shows that s-integration is always more efficient than Shampine-Gordon. Shampine-Gordon
requires two full evaluations per step, while s-integration only requires one full evaluation (Ref. 2).
Though s-integration does provide a significant advantage for elliptical orbits, it still does not pro-
vide local error control, so there is no guarantee that it is meeting a specific accuracy requirement.
Also, s-integration requires that a seventh differential equation be integrated to find time, which
results in in-track error (Ref. 3). A variable-step integrator that only requires one evaluation per
step would combine some advantages of both Shampine-Gordon and s-integration.

Double vs. Single Integration

Because two integrations are necessary, single integration has more round-off error than double
integration. To examine the advantage of double integration over single integration, the double-
integration Störmer-Cowell method is compared to the single-integration Adams method. These
integrators are tested on test case orbits with varying eccentricity and perigee heights. The test

3

cases all have an inclination of 40◦ and a ballistic coefficient of 0.01 m2
/kg. The epoch of the test cases

is 1999-10-01 00:00:00 UTC. The tests are performed using the Special-K software suite (Ref. 5),
developed by the Naval Research Laboratory, which is used operationally by Naval Network and
Space Operations Command (NNSOC, formerly Naval Space Command).

In the tests a metric for integration accuracy is defined using an error ratio defined in terms of
the RMS error of the integration (Ref. 6). First define position errors as

∆r = |rcomputed − rreference|. (1)

The RMS position error can be calculated,

∆rRMS =

√√√√ 1
N

N∑
i=1

(∆ri)2. (2)

The RMS position error is normalized by the apogee distance and the number of orbits to find the
position error ratio,

ρr =
∆rRMS

rANorbits
. (3)

Table 2 gives error ratios over three days for the Störmer-Cowell and Adams integrators without
perturbations. The table shows that the error ratio is always smaller with Störmer-Cowell. The
reference value used to compute the error ratio in (1) is the analytic two-body solution. The
integrators both use a 30 second step size in the tests, so have nearly identical run-times. The
integrators are both set to use two evaluations per step. The first evaluation is a full evaluation, and
the second evaluation is a “pseudo-evaluation,” in which only the two-body force is re-evaluated,
and the perturbation force from the first evaluation is added to it (Ref. 2).

Table 2: Error Ratios for Störmer-Cowell and Adams, Two Body

Height (km) Eccentricity Störmer-Cowell Adams
300 0.00 2.47× 10−13 2.66× 10−12

300 0.25 3.05× 10−12 7.90× 10−12

300 0.50 1.28× 10−11 9.35× 10−11

300 0.75 4.01× 10−11 2.66× 10−10

500 0.00 3.49× 10−13 7.90× 10−13

500 0.25 2.87× 10−12 9.21× 10−12

500 0.50 7.94× 10−12 6.46× 10−11

500 0.75 2.21× 10−11 1.69× 10−10

1000 0.00 9.63× 10−14 4.78× 10−12

1000 0.25 3.53× 10−13 9.58× 10−12

1000 0.50 1.73× 10−12 2.40× 10−11

1000 0.75 9.70× 10−12 7.03× 10−11

Table 3 gives error ratios over three days for the two integrators with perturbations. The table
shows that the error ratio is always smaller with Störmer-Cowell, except in the case of the 300 km
circular orbit. The perturbations used are lunar and solar forces, the Jacchia 70 drag model, and
the 36 × 36 WGS-84 geopotential. Again a step size of 30 seconds is used for both integrators, and
two evaluations per step are performed, with the second one being a pseudo-evaluation. In these
tests the reference used in (1) is found by integrating with the same integrator, but with half the
step size. This step-size halving test has been shown to give a reasonable estimate of integration
error (Ref. 7).

The results in Tables 2 and 3 show that Störmer-Cowell is generally more accurate than Adams for
equivalent run-times. These results show the advantage of double integration over single integration.

4

Table 3: Error Ratios for Störmer-Cowell and Adams, Perturbations

Height (km) Eccentricity Störmer-Cowell Adams
300 0.00 2.60× 10−09 1.40× 10−09

300 0.25 2.96× 10−09 6.50× 10−09

300 0.50 4.14× 10−09 1.35× 10−08

300 0.75 1.32× 10−08 4.18× 10−08

500 0.00 7.30× 10−11 2.47× 10−10

500 0.25 4.76× 10−10 1.39× 10−09

500 0.50 1.30× 10−09 3.82× 10−09

500 0.75 3.94× 10−09 1.12× 10−08

1000 0.00 3.58× 10−12 1.90× 10−11

1000 0.25 1.85× 10−11 5.75× 10−11

1000 0.50 5.58× 10−11 1.71× 10−10

1000 0.75 2.01× 10−10 6.29× 10−10

In the tests used to create these results, the integrators performed two evaluations per step. A
further advantage of double integration is shown by removing the second evaluation. In a predict,
evaluate, correct (PEC) implementation, the Adams method goes unstable in all of the test cases,
with and without perturbations. The Störmer-Cowell method does not go unstable. Without the
second evaluation Störmer-Cowell gives results that are only slightly less accurate than with two
evaluations. This finding implies that double integration gives a stability advantage over single
integration. This stability advantage allows a variable-step double-integration method to require
only one evaluation per step, giving it a significant advantage over Shampine-Gordon.

SHAMPINE-GORDON INTEGRATION

Shampine-Gordon follows a predict, evaluate, correct, evaluate (PECE) implementation, so there are
two evaluations at every step. The corrector is one order higher than the predictor, which allows for
a local error estimate at each step. The step size and order are adjusted at every step based on the
local error estimate. The derivation of Shampine-Gordon was originally presented in Ref. 4. That
derivation is repeated here because it is the starting point of the derivation of the double-integration
variable-step integrator. The derivation is based on the concept of divided differences.

Divided Differences

The Shampine-Gordon integrator is derived by integrating a polynomial which interpolates through
the function values at the backpoints. This polynomial is written in divided difference form so that
the backpoints do not have to be equally spaced.

The (k−1)th degree polynomial Pk,n(x) interpolates through the k function values fn−k+1 . . . fn

if (Ref. 4, p. 76)
Pk,n(xn+1−i) = fn+1−i, i = 1 . . . k. (4)

Here fi = f(xi, yi), where f is the right-hand side function in the differential equation

y′ = f(x, y). (5)

In divided difference form, the polynomial is written (Ref. 4, p. 77, (3))

Pk,n(x) = f [xn] + (x− xn)f [xn, xn−1] + (x− xn)(x− xn−1)f [xn, xn−1, xn−2] + · · ·
+ (x− xn)(x− xn−1) · · · (x− xn−k+2)f [xn, xn−1, . . . , xn−k+1], (6)

5

where f [xn, . . . , xn−i+1] is the ith divided difference of fn. The divided differences are calculated
through a recursive relation,

f [xn] = fn,

f [xn, xn−1] =
fn − fn−1

xn − xn−1
,

f [xn, . . . , xn−i] =
f [xn, . . . , xn−i+1]− f [xn−1, . . . , xn−i]

xn − xn−i
. (7)

As an example, consider the divided difference table in Table 4. Each divided difference is
calculated by subtracting the two values to the left and dividing by the total span in x that the
difference covers.

Table 4: Example Divided Difference Table

n xn f [xn] f [xn, xn−1] f [xn, xn−1, xn−2] f [xn, . . . , xn−3]

1 1 1

&&MMMMMMMMMMMMM

2 3 5

&&LLLLLLLLLLLLL // 2

((RRRRRRRRRRRRRRRRR

3 4 9

%%LLLLLLLLLLL // 4

((QQQQQQQQQQQQQQQ // 2/3

))RRRRRRRRRRRRRRRR

4 7 7 // −2/3 // −14/12 // −11/36

For the example in Table 4, the polynomial P4,4 that passes through the values is found from
(6),

P4,4 = 7 + (x− 7)(−2/3) + (x− 7)(x− 4)(−14/12) + (x− 7)(x− 4)(x− 3)(−11/36). (8)

The example can also be used to illustrate how a new point can be added to an existing polynomial.
When n = 3, the polynomial P3,3 is known,

P3,3 = 9 + (x− 4)(4) + (x− 4)(x− 3)(2/3). (9)

The polynomial P4,4 can be found from P3,3 by adding one more term which includes the new
difference,

P4,4 = 9 + (x− 4)(4) + (x− 4)(x− 3)(2/3) + (x− 4)(x− 3)(x− 1)(−11/36). (10)

The two forms of P4,4, (8) and (10), are equivalent. This procedure is used in the derivation of the
corrector, which uses a polynomial that passes through the predicted value as well as all the same
values as the polynomial used by the predictor.

Predictor

The Shampine-Gordon predictor finds the predicted value, pn+1, of the solution at point (n + 1)
from the value at n, yn, by integrating the interpolating polynomial Pk,n defined in (6) (Ref. 4, p.

6

76, (2a)),

pn+1 = yn +
∫ xn+1

xn

Pk,n(x) dx. (11)

In order to develop an effective algorithm to integrate Pk,n(x), the terms are rewritten. First, the
independent variable x is replaced by s which measures the fraction of the current interval covered
(Ref. 4, p. 77, (4)),

s =
x− xn

hn+1
, (12)

with hn = xn−xn−1 the separation between adjacent values of x. It is helpful to replace the divided
differences with modified divided differences, φ, for which (Ref. 4, p. 77, (4))

φ1(n) = f [xn] = fn,

φi(n) =ψ1(n)ψ2(n) · · ·ψi−1(n)f [xn, xn−1, . . . , xn−i+1] i > 1, (13)

where ψi(n) is the size of the interval from the point i steps prior, that is, the sum of the i steps
leading up to point n (Ref. 4, p. 77, (4)),

ψi(n) = hn + hn−1 + · · ·+ hn+1−i. (14)

The first term of the polynomial Pk,n, (6), is simply f [xn]. For i > 1, the ith term of Pk,n(x)
(Ref. 4, p. 78, (5)),

(x− xn)(x− xn−1) · · · (x− xn−i+2)f [xn, xn−1, . . . , xn−i+1] (15)

if i > 1, can be written in terms of s and φi(n) (Ref. 4, p. 78),

(shn+1)(shn+1 + hn) · · · (shn+1 + hn + · · ·+ hn−i+3)
φi(n)

ψ1(n)ψ2(n) . . . ψi−1(n)
. (16)

Next, the term is multiplied and divided by ψ1(n+1) through ψi−1(n+1) which allows the differences
to be easily computed from one step to the next (Ref. 4, p. 78),(

shn+1

ψ1(n+ 1)

) (
shn+1 + hn

ψ2(n+ 1)

)
· · ·

(
shn+1 + hn + · · ·+ hn−i+3

ψi−1(n+ 1)

)
× ψ1(n+ 1)ψ2(n+ 1) · · ·ψi−1(n+ 1)

ψi(n)ψ2(n) · · ·ψi−1(n)
φi(n). (17)

This expression is simplified by introducing β (Ref. 4, p. 77, (4)),

β1(n+ 1) =1,

βi(n+ 1) =
ψ1(n+ 1)ψ2(n+ 1) · · ·ψi−1(n+ 1)

ψ1(n)ψ2(n) · · ·ψi−1(n)
i > 1, (18)

and by condensing the sums of h in the numerators into ψ (Ref. 4, p. 78),(
shn+1

ψ1(n+ 1)

) (
shn+1 + ψ1(n)
ψ2(n+ 1)

)
· · ·

(
shn+1 + ψi−2(n)
ψi−1(n+ 1)

)
βi(n+ 1)φi(n). (19)

Noting that the i = 1 term of Pk,n(x) is f [xn] = φ1(xn), the ith term (15) can be written (Ref. 4, p.
79, (6)),

ci,n(s)βi(n+ 1)φi(n), (20)

7

where ci,n(s) is defined (Ref. 4, p. 76, (6))

ci,n(s) =

1 i = 1,(

shn+1

ψ1(n+ 1)

)
= s i = 2,(

shn+1

ψ1(n+ 1)

) (
shn+1 + ψ1(n)
ψ2(n+ 1)

)
· · ·

(
shn+1 + ψi−2(n)
ψi−1(n+ 1)

)
i ≥ 3.

(21)

In turn (20) can be written (Ref. 4, p. 79),

ci,n(s)φ∗i (n) (22)

by defining φ∗ (Ref. 4, p. 79),
φ∗i (n) = βi(n+ 1)φi(n). (23)

The interpolating polynomial Pk,n(x) can now be written as a summation (Ref. 4, p. 79, (7)),

Pk,n(x) =
k∑

i=1

ci,n(s)φ∗i (n). (24)

Returning to the original problem of finding the predicted value, the polynomial in (11) can be
replaced with (24),

pn+1 = yn +
∫ xn+1

xn

k∑
i=1

ci,n(s)φ∗i (n) dx. (25)

Since the φ∗i (n) are constants, they can be pulled out of the integration,

pn+1 = yn +
k∑

i=1

φ∗i (n)
∫ xn+1

xn

ci,n(s) dx. (26)

The integration variable can be changed to s by (12), noting that s = 0 when x = xn, s = 1 when
x = xn+1, and dx = hn+1 ds (Ref. 4, p. 79, (8)),

pn+1 = yn + hn+1

k∑
i=1

φ∗i (n)
∫ 1

0

ci,n(s) ds. (27)

To solve the problem, the integral of ci,n(s) is needed. First, the expression for ci,n(s) is simplified
through a recursion formula,

ci,n(s) =
(
shn+1 + ψi−2(n)
ψi−1(n+ 1)

)
ci−1,n(s), (28)

when i ≥ 3. This expression is further simplified by defining αi(n+ 1) (Ref. 4, p. 77, (4)),

αi(n+ 1) =
hn+1

ψi(n+ 1)
, (29)

so that ci,n(s), (21), can be written (Ref. 4, p. 80),

ci,n(s) =

1 i = 1,
s i = 2,(
αi−1(n+ 1)s+

ψi−2(n)
ψi−1(n+ 1)

)
ci−1,n(s) i ≥ 3.

(30)

8

Focusing on i ≥ 3, the integral of ci,n to an arbitrary point s can be written using (30) (Ref. 4,
p. 80), ∫ s

0

ci,n(s0) ds0 =
∫ s

0

(
αi−1(n+ 1)s0 +

ψi−2(n)
ψi−1(n+ 1)

)
ci−1,n(s0) ds0. (31)

This integral can be solved using integration by parts,∫
u dv = uv −

∫
v du, (32)

where in this case

u =
(
αi−1(n+ 1)s0 +

ψi−2(n)
ψi−1(n+ 1)

)
, (33)

and
dv = ci−1,n(s0) ds0, (34)

which gives (Ref. 4, p. 80, (9)),∫ s

0

ci,n(s0) ds0 =
(
αi−1(n+ 1)s+

ψi−2(n)
ψi−1(n+ 1)

) ∫ s

0

ci−1,n(s0) ds0

− αi−1(n+ 1)
∫ s0

0

∫ s1

0

ci−1,n(s0) ds0 ds1. (35)

Though a double integral has been introduced, it is on a ci−1,n term. Since the integrals of the c1,n

and c2,n terms can be found easily, a recursive formula for the integral of ci,n can be found in terms
of multiple integrals of lower i values of c.

The recursive formula is found by first introducing notation for multiple integrals of ci,n(s) (Ref. 4,
p. 81),

c
(−q)
i,n (s) =

∫ s

0

∫ sq−1

0

∫ sq−2

0

· · ·
∫ s0

0

ci,n(s0) ds0 ds1 . . . dsq−1. (36)

Under this notation (35) may be written (Ref. 4, p. 81)

c
(−1)
i,n (s) =

(
αi−1(n+ 1)s+

ψi−2(n)
ψi−1(n+ 1)

)
c
(−1)
i−1,n(s)− αi−1(n+ 1)c(−2)

i−1,n(s). (37)

The general case is (Ref. 4, p. 81)

c
(−q)
i,n (s) =

(
αi−1(n+ 1)s+

ψi−2(n)
ψi−1(n+ 1)

)
c
(−q)
i−1,n(s)− qαi−1(n+ 1)c(−q−1)

i−1,n (s). (38)

To find the predicted value, (27) indicates that c(−1)
i,n (1) is needed. A variable gi,q is introduced

to simplify the process of finding these values (Ref. 4, p. 81),

gi,q = (q − 1)!c(−q)
i,n (1). (39)

Substituting in the formula for c(−q)
i,n given in (37),

gi,q =
(
αi−1(n+ 1) +

ψi−2(n)
ψi−1(n+ 1)

)
(q − 1)!c(−q)

i−1,n(1)− αi−1(n+ 1)q!c(−q−1)
i−1,n (1)

=
(

hn+1

ψi−1(n+ 1)
+

ψi−2(n)
ψi−1(n+ 1)

)
gi−1,q − αi−1(n+ 1)gi−1,q+1, (40)

where αi−1(n+1) has been replaced with (29) on the second line. This formula is further simplified
by noting that hn+1 + ψi−2(n) = ψi−1(n+ 1) (Ref. 4, p. 82),

gi,q = gi−1,q − αi−1(n+ 1)gi−1,q+1. (41)

9

This equation holds when i ≥ 3.
To write a recursive formula for g, the special cases of i = 1 and i = 2 must be considered. When

i = 1, c1,n = 1, so the integral is

g1,q = (q − 1)!c(−q)
1,n (1) = (q − 1)!

∫ 1

0

∫ sq−1

0

· · ·
∫ s1

0

ds0 ds1 . . . dsq−1 =
(q − 1)!
q!

=
1
q
. (42)

When i = 2, c2,n = s, so the integral is

g2,q = (q − 1)!
∫ 1

0

∫ sq−1

0

· · ·
∫ s1

0

s ds0 ds1 . . . dsq−1 =
(q − 1)!
(q + 1)!

=
1

q(q + 1)
. (43)

Now a recursive formula for the coefficients gi,q is available (Ref. 4, p. 82, (10)),

gi,q =

1
q

i = 1,

1
q(q + 1)

i = 2,

gi−1,q − αi−1(n+ 1)gi−1,q+1 i ≥ 3,

(44)

and the predictor formula (11), (27), can be written (Ref. 4, p. 82, (11)),

pn+1 = yn + hn+1

k∑
i=1

gi,1φ
∗
i (n). (45)

This formula is the Shampine-Gordon predictor. The predictor is followed by an evaluation, and
then the corrector.

Corrector

After the predicted value pn+1 is found, the function f(x, y) is evaluated at the new point, giving
a predicted function value, fp

n+1 = f(xn+1, pn+1). The superscript p is used to indicate the value
is predicted. The corrector then uses an interpolating polynomial that is one degree higher than
Pk,n(x), interpolating through all the same points as Pk,n(x) plus the new point fp

n+1. This new
polynomial P ∗

k+1,n(x) can be written in terms of Pk,n(x) (see Divided Differences Section) (Ref. 4,
p. 84),

P ∗
k+1,n(x) = Pk,n(x) + ck+1,n(s)φp

k+1(n+ 1). (46)

The new modified divided difference, φp
k+1(n+ 1), is calculated from the previous modified divided

differences, φi(n), and the new function value fp
n+1. From the definition of divided differences, (7),

and the definition of modified divided differences, (13), the relation from φp
i (n+ 1) to φi(n) can be

found,

φp
i (n+ 1) = φi−1(n+ 1)− ψ1(n+ 1) · · ·ψi−1(n+ 1)

ψ1(n) · · ·ψi−1(n)
φi−1(n), (47)

where φp
1(n + 1) = fp

n+1. This relation is simplified by the definition of βi, (18), and the definition
of φ∗i (n), (23) (Ref. 4, p. 85, (14)),

φp
1(n+ 1) = fp

n+1,

φp
i (n+ 1) =φp

i−1(n+ 1)− φ∗i−1(n+ 1). (48)

This relation motivates why β is introduced into the derivation of the predictor.
The corrected value at point (n+ 1), yn+1, may be found by integrating P ∗

k+1,n(x),

yn+1 = yn +
∫ xn+1

xn

[
Pk,n(x) + ck+1,n(s)φp

k+1(n+ 1)
]
dx. (49)

10

Combining the terms already known to comprise pn+1, and changing the integration variable to s,
the expression is

yn+1 = pn+1 + hn+1

∫ 1

0

ck+1,n(s)φp
k+1(n+ 1) ds. (50)

The integral term may be replaced with gk+1,1 (Ref. 4, p. 85),

yn+1 = pn+1 + hn+1gk+1,1φ
p
k+1(n+ 1), (51)

which is the Shampine-Gordon corrector formula.
After the corrected value is found, another function evaluation is performed, to find fn+1 =

f(xn+1, yn+1). A new set of differences, φi(n + 1) are found from a relation analogous to (48)
(Ref. 4, p. 85, (15)),

φ1(n+ 1) = fn+1,

φi(n+ 1) =φi−1(n+ 1)− φ∗i−1(n+ 1). (52)

These differences are used by the predictor in the next step.

Step-Size Control

The step size is controlled by keeping the local error at each step below a user-defined tolerance, ε.
The local error is estimated by subtracting from the corrected value yn+1 a value given by a lower
order corrector yn+1(k) (Ref. 4, p. 101),

len+1(k) ≈ yn+1 − yn+1(k). (53)

The value of yn+1(k) comes from integrating a (k− 1)th degree interpolating polynomial P ∗
k,n which

passes through the predicted point fp
n+1. This polynomial can be written by adding a term to the

polynomial Pk,n,
P ∗

k,n(x) = Pk,n(x) + ck,n(s)φp
k+1(n+ 1). (54)

Using this polynomial in place of P ∗
k+1,n in (49) leads to an expression for yn+1(k) (Ref. 4, p. 85),

yn+1(k) = pn+1 + hn+1gk,1φ
p
k+1(n+ 1). (55)

The local error, (53), is estimated by subtracting (55) from (51) (Ref. 4, p. 101),

len+1(k) ≈ hn+1(gk+1,1 − gk,1)φ
p
k+1(n+ 1). (56)

At each step, this local error estimate is compared to the tolerance. If the local error is above the
tolerance, the step fails, and is tried again with half the step size, hn+1 = 0.5hn+1 (failed) (Ref. 4,
p. 117). Note that this error estimate is made with φp

k+1(n + 1), before the second evaluation is
performed. Therefore, if a step fails, the second evaluation does not need to be performed.

If the step succeeds, the next step size, hn+2, is chosen as a multiple of the current step size,
hn+2 = rhn+1, to keep the local error at the next step (Ref. 4, p. 111),

len+2(k) ≈ hn+2(gk+1,1 − gk,1)φ
p
k+1(n+ 2), (57)

as close as possible to the tolerance. The modified divided difference at the next step (Ref. 4, p.
111),

φ∗k+1(n+ 2) = ψ1(n+ 2) · · ·ψk(n+ 2)fp[xn+2, . . . , xn+2−k], (58)

is unknown. However, it may be approximated from φk+1(n + 1) if the divided differences are
assumed to be slowly varying (Ref. 4, p. 111).

Because the step size hn+2 appears in the values of ψi(n + 2), and is needed to calculate the
coefficients gk+1,1 and gk,1, there is no easy way to solve (56) for a value of hn+2 that meets the

11

tolerance. Instead, a value of hn+2 is found that meets the tolerance if all the preceeding steps were
also taken with hn+2. Using this assumption, and the assumption that the divided differences are
slowly varying, the modified divided difference at (n+ 2) is approximated (Ref. 4, p. 111),

φp
k+1(n+ 2) ≈ (rhn+1)(2rhn+1) · · · (krhn+1)fp[xn+2, . . . , xn+2−k]

≈ rkσk+1(n+ 1)φp
k+1(n+ 1), (59)

where σi(n+ 1) is defined (Ref. 4, p. 111),

σ1(n+ 1) =1,

σi(n+ 1) =
hn+1 · 2hn+1 · · · (i− 1)hn+1

ψ1(n+ 1) · ψ2(n+ 1) · · ·ψi−1(n+ 1)
i > 1. (60)

When the step size is constant, the coefficients gk+1,1 and gk,1 become the fixed step Adams-
Bashforth predictor coefficients, γk and γk−1 (Ref. 4, p. 83). The local error estimate, (57), using
hn+2 = rhn+1 can now be approximated (Ref. 4, p. 112),

len+2(k) = rk+1hn+1γ
∗
kσk+1(n+ 1)φp

k+1(n+ 1), (61)

where γ∗k is the difference between the constant step size coefficients, γ∗k = γk − γk−1. The value of
σk+1(n+ 1) can be found through a recursive formula (Ref. 4, p. 112),

σ1(n+ 1) =1,
σi(n+ 1) = (i− 1)αi−1(n+ 1)σi−1(n+ 1) i > 1. (62)

To solve for the value of r to get the next step size, hn+2 = rhn+1, the Shampine-Gordon
integrator calculates the approximated error (ERK) that would be made if the previous steps had
been taken with hn+1 (Ref. 4, p. 112),

ERK = |hn+1γ
∗
kσk+1(n+ 1)φp

k+1(n+ 1)|. (63)

From (61), the approximated error at the next step with a step size of rhn+1 is rk+1ERK, so the
optimal value of r to satisfy the tolerance ε can be found (Ref. 4, p. 115),

r =
(ε

ERK

) 1
k+1

. (64)

However, because of the assumptions made in this derivation, the integrator uses a so-called “chicken
factor” (Ref. 8) of 0.5, giving a more conservative value of r (Ref. 4, p. 116),

r =
(

0.5ε
ERK

) 1
k+1

. (65)

Shampine-Gordon places further restrictions on changes to the step size (Ref. 4, pp. 115-118). If the
calculated value of r is greater than 2, the step size is only doubled. The step size is not changed
at all if the calculated value of r is between 0.9 and 2. And if r is less than 0.5, the step size is
cut in half. These restrictions serve two purposes. First, bounding changes in the step size between
0.5 and 2 keeps the method stable. Second, not changing the step size when r is between 0.9 and 2
keeps the step size constant for a significant number of steps. Shampine and Gordon sought to keep
a constant step size as much as possible. With a constant step size, the coefficients g do not have
to be calculated, because they are simply the known Adams-Bashforth coefficients. Not needing
to calculate the coefficients provides a reduction in overhead when the step size is constant. Also,
keeping a constant step size allows the order of the method to be increased, which is described in
the following section.

12

Variable Order

Shampine-Gordon also controls the local error by adjusting the order of the method (Ref. 4, pp.
112-115). Local error estimates, similar to (63), are made for (k − 1) and (k − 2), and the order is
reduced from k to (k − 1) if these estimates indicate that reducing the order would give less error.
These estimates rely on φp

k(n+ 1) and φp
k−1(n+ 1), so they are made before the second evaluation

is performed. Therefore, the order can be reduced if the step fails.
The step size is increased only when the step size has been kept constant. A local error estimate

is made for (k + 1), and the order is increased if the estimate indicates the error would be reduced.
The local error estimate for (k + 1) uses the value φk+2(n + 1) (Ref. 4, p. 113), so the second
evaluation must be performed before increasing the order can be considered.

The variable-order algorithm allows Shampine-Gordon to be a self-starting method. The method
is started as first order (k = 1), so only the initial conditions are required. The order is then increased
at every step until either a step fails, the order selection algorithms indicate to lower the order, or
the maximum order of 12 is reached (Ref. 4, pp 118-120).

DOUBLE INTEGRATION

Second-order differential equations, of the form

y′′ = f(x, y, y′) (66)

can be solved by double integration. This method is especially useful when the contribution of
y′ is small. A variable-step double-integration method can be derived using the concepts in the
derivation of Shampine-Gordon. However, the proposed implementation differs from Shampine-
Gordon in several ways. Only one evaluation is performed per step, for a PEC implementation, which
significantly reduces the run-time of the method. Because the second evaluation is not performed,
the method is not variable order, because the second evaluation would be necessary to estimate when
the order should be increased. Finally, because our main goal is to reduce run-time, and because we
are not considering order increases which require a constant step, less restrictions are placed on the
factor r which changes the step size. The argument that keeping the step size constant reduces the
overhead does not apply, because the force model used in orbit propagation is so expensive that the
overhead associated with calculating the coefficients is insignificant.

Predictor

To solve for y, take the double integral of each side in (66),∫ xn+1

xn

∫ x̃

xn

y′′(x) dx dx̃ =
∫ xn+1

xn

∫ x̃

xn

f(x, y, y′) dx dx̃. (67)

Performing the integration on the left side of (67) gives

yn+1 = yn + hn+1y
′
n +

∫ xn+1

xn

∫ x̃

xn

f(x, y, y′) dx dx̃. (68)

This equation contains a first derivative term, y′n, which must be removed for a truly double in-
tegration formula. To remove the first derivative term, take a step backward (Ref. 9, p. 290),∫ xn−1

xn

∫ x̃

xn

y′′(x) dx dx̃ =
∫ xn−1

xn

∫ x̃

xn

f(x, y, y′) dx dx̃, (69)

which leads to the relation

0 = yn − yn−1 − hny
′
n +

∫ xn−1

xn

∫ x̃

xn

f(x, y, y′) dx dx̃. (70)

13

The first derivative term is removed by adding (hn+1/hn) (70) to (68),

yn+1 =
(

1 +
hn+1

hn

)
yn −

hn+1

hn
yn−1 +

∫ xn+1

xn

∫ x̃

xn

f(x, y, y′) dx dx̃

+
hn+1

hn

∫ xn−1

xn

∫ x̃

xn

f(x, y, y′) dx dx̃. (71)

As with single integration, the interpolating polynomial Pk,n is used in place of f(x, y, y′) to give an
expression for the predicted value, pn+1,

pn+1 =
(

1 +
hn+1

hn

)
yn −

hn+1

hn
yn−1 +

∫ xn+1

xn

∫ x̃

xn

Pk,n(x) dx dx̃

+
hn+1

hn

∫ xn−1

xn

∫ x̃

xn

Pk,n(x) dx dx̃. (72)

Substituting (24) for Pk,n gives

pn+1 =
(

1 +
hn+1

hn

)
yn −

hn+1

hn
yn−1 +

∫ xn+1

xn

∫ x̃

xn

k∑
i=1

ci,n(s)φ∗i (n) dx dx̃

+
hn+1

hn

∫ xn−1

xn

∫ x̃

xn

k∑
i=1

ci,n(s)φ∗i (n) dx dx̃. (73)

The integration variable can be changed to s by noting that s = −hn/hn+1 when x = xn−1,

pn+1 =
(

1 +
hn+1

hn

)
yn −

hn+1

hn
yn−1 + h2

n+1

k∑
i=1

φ∗i (n)
∫ 1

0

∫ s̃

0

ci,n(s) ds ds̃

+
h3

n+1

hn

k∑
i=1

φ∗i (n)
∫ −hn

hn+1

0

∫ s̃

0

ci,n(s) ds ds̃. (74)

This expression can be written with the simplified notation c(−q)
i,n using (36),

pn+1 =
(

1 +
hn+1

hn

)
yn −

hn+1

hn
yn−1 + h2

n+1

k∑
i=1

φ∗i (n)c(−2)
i,n (1) +

h3
n+1

hn

k∑
i=1

φ∗i (n)c(−2)
i,n

(
−hn

hn+1

)
(75)

The coefficients gi,2, already found for single integration, can be used to calculate the first
integration term. A new set of coefficients, g′i,q, is needed to find the second integration term.
Define g′i,q as

g′i,q = (q − 1)!c(−q)
i,n

(
−hn

hn+1

)
. (76)

Using (38), for i ≥ 3, (76) is

g′i,q =
(
αi−1(n+ 1)

−hn

hn+1
+

ψi−2(n)
ψi−1(n+ 1)

)
(q − 1)!c(−q)

i−1,n

(
−hn

hn+1

)
− αi−1(n+ 1)q!c(−q−1)

i−1,n

(
−hn

hn+1

)
. (77)

Using the definition of α, (29), and noting that −hn + ψi−2(n) = ψi−3(n − 1), the expression
simplifies,

g′i,q =
ψi−3(n− 1)
ψi−1(n+ 1)

g′i−1,q − αi−1(n+ 1)g′i−1,q+1, (78)

14

for i ≥ 3. To implement a recursive formula for g′, the expressions for i = 1 and i = 2 are needed.
When i = 1, change the limit of integration in (42),

g′1,q = (q − 1)!
∫ −hn

hn+1

0

· · ·
∫ s1

0

ds0 . . . dsq−1 =
(q − 1)!
q!

(
hn

hn+1

)q

=
1
q

(
hn

hn+1

)q

. (79)

For i = 2, change the integration limit in (43),

g′2,q = (q − 1)!
∫ −hn

hn+1

0

· · ·
∫ s1

0

s ds0 . . . dsq−1 =
(q − 1)!
(q + 1)!

(
hn

hn+1

)q+1

=
1

q(q + 1)

(
hn

hn+1

)q+1

. (80)

Now a recursive formula for g′i,q is available, similar to (44) for gi,q,

g′i,q =

1
q

(
hn

hn+1

)q

i = 1,

1
q(q + 1)

(
hn

hn+1

)q+1

i = 2,

ψi−3(n− 1)
ψi−1(n+ 1)

g′i−1,q − αi−1(n+ 1)g′i−1,q+1 i ≥ 3.

(81)

Note that for i = 3, ψi−3(n− 1) = 0.
Using the coefficients g and g′, the double-integration predictor formula (75) can be written

pn+1 =
(

1 +
hn+1

hn

)
yn −

hn+1

hn
yn−1 + h2

n+1

k∑
i=1

φ∗i (n)gi,2 +
h3

n+1

hn

k∑
i=1

φ∗i (n)g′i,2, (82)

or, combining the terms,

pn+1 =
(

1 +
hn+1

hn

)
yn −

hn+1

hn
yn−1 + h2

n+1

k∑
i=1

(
gi,2 +

hn+1

hn
g′i,2

)
φ∗i (n). (83)

This expression is the predictor formula for double integration.

Corrector

As in single integration, the corrector uses the interpolating polynomial P ∗
k+1,n, given in (46). The

corrected value at point (n+ 1), yn+1, is found by replacing Pk,n with P ∗
k+1,n in (72),

yn+1 =
(

1 +
hn+1

hn

)
yn −

hn+1

hn
yn−1 +

∫ xn+1

xn

∫ x̃

xn

[
Pk,n(x) + ck+1,n(s)φp

k+1(n+ 1)
]
dx dx̃

+
hn+1

hn

∫ xn−1

xn

∫ x̃

xn

[
Pk,n(x) + ck+1,n(s)φp

k+1(n+ 1)
]
dx dx̃. (84)

This expression is simplified by combining the terms known to be pn+1 and by changing the inte-
gration variable to s,

yn+1 = pn+1 + h2
n+1

∫ 1

0

∫ s̃

0

ck+1,n(s)φp
k+1(n+ 1) ds ds̃

+
h3

n+1

hn

∫ −hn
hn+1

0

∫ s̃

0

ck+1,n(s)φp
k+1(n+ 1) ds ds̃. (85)

The integrals can be written in terms of the coefficients g and g′,

yn+1 = pn+1 + h2
n+1

(
gk+1,2 +

hn+1

hn
g′k+1,2

)
φp

k+1(n+ 1), (86)

15

giving a corrector formula for double integration. To reduce run-time, a second evaluation is not
performed, so only a PEC implementation is used. Results show this implementation to be stable.
Without the second evaluation the differences used by the predictor in the next step are simply
φi(n+ 1) = φp

i (n+ 1).

Step-Size Control

The step size is controlled by estimating the local error at each step, through (53). For double
integration, the value of yn+1(k) is found by replacing P ∗

k+1,n(x) with P ∗
k,n(x), (54), in (84),

yn+1(k) = pn+1 + h2
n+1

∫ 1

0

∫ s̃

0

ck,n(s)φp
k+1(n+ 1) ds ds̃

+
h3

n+1

hn

∫ −hn
hn+1

0

∫ s̃

0

ck+1,n(s)φp
k(n+ 1) ds ds̃. (87)

The integrals may be written in terms of the coefficients g and g′,

yn+1(k) = pn+1 + h2
n+1

(
gk,2 +

hn+1

hn
g′k,2

)
φp

k+1(n+ 1). (88)

The local error is estimated by subtracting (88) from (86),

len+1(k) ≈ h2
n+1

(
gk+1,2 − gk,2 +

hn+1

hn
(g′k+1,2 − g′k,2)

)
φp

k+1(n+ 1). (89)

To choose the step size at the next step, hn+2 = rhn+1, the local error at that step is approxi-
mated, analogous to (57),

len+2(k) ≈ h2
n+2

(
gk+1,2 − gk,2 +

hn+2

hn+1
(g′k+1,2 − g′k,2)

)
φp

k+1(n+ 2). (90)

As with single integration, this expression is approximated assuming that the differences are slowly
varying and the previous steps were also taken at rhn+1, analogous to (61),

len+2(k) ≈ r2h2
n+1(λk − λk−1)rkσk+1(n+ 1)φp

k+1(n+ 1), (91)

where λi are the Störmer-Cowell predictor coefficients (Ref. 10). Introducing λ∗k = λk − λk−1

simplifies the expression,

len+2(k) ≈ rk+2h2
n+1λ

∗
kσk+1(n+ 1)φp

k+1(n+ 1). (92)

To calculate the value of r, the error using a step size of hn+1 is found, as in (63),

ERK = |h2λ∗kσk+1(n+ 1)φp
k+1(n+ 1)|. (93)

Using a chicken factor of 0.5, the factor r for the next step is found similarly to (65),

r =
(

0.5ε
ERK

) 1
k+2

. (94)

For stability, the calculated value of r is bounded between 0.5 and 2. However, no other restrictions
are placed on r, so that unlike Shampine-Gordon step-size increases between 1 and 2 can be made.
This technique allows the step size to increase as soon as possible, which reduces overall run-time.
Because of the expensive force model it is better to make a small increase in the step size, even
though the coefficients g and g′ must be recomputed.

16

IMPLEMENTATION

The double-integration variable-step integrator is implemented with a Shampine-Gordon style single-
integration integrator to solve the differential equation y′′(x) = f(x, y, y′). The double-integration
integrator is used to find y and the single-integration integrator is used to find y′. The integrators
are implemented together to use the same step size, which is the smaller of the two step sizes
given by their respective step-size control algorithms. The single-integration integrator differs from
Shampine-Gordon in that the order of the method remains fixed, the step size is allowed to change
by a factor between 0.9 and 2, and only one evaluation is performed per step, just as with the
double-integration integrator.

Because the method is not variable order, a start-up method is required. A fourth-order Runge-
Kutta integrator is first used to take (k − 1) steps forward, so k backpoints are available when the
method begins. Because Runge-Kutta is a lower order method, the step size used must be adequately
small so the values meet the desired tolerance. An alternative to using Runge-Kutta for start-up
would be to use a start-up routine similar to Shampine-Gordon in which the method starts as a
first-order method and increases the order at each step, until the desired order is reached. A second
evaluation per step would be required only during this start-up phase.

After the start-up has been performed, the predictor-corrector cycle begins. At each step (n+1),

1. The new step size is calculated, hn+1 = rhn.

2. The values of ψi(n+ 1), ψi(n), and ψi(n− 1) are calculated, (14).

3. The values of αi(n+ 1) are calculated, (29).

4. The coefficients are calculated, g, (44), and g′, (81).

5. The values of βi are calculated, (18), and the values of φ∗i , (23).

6. The predicted values of pn+1, (83), and p′n+1, (51), are found.

7. The function is evaluated at the predicted point.

8. The new differences φi(n+ 1) are calculated, (52).

9. The corrected values of yn+1, (86), and y′n+1, (51), are found.

10. The error is estimated for y, (89), and y′, (56).

11. If either error estimate is above the tolerance, the step fails, the differences are reset, r is set
to 0.5, and the procedure returns to step 1.

12. The value of ERK is calculated for double integration, (93), and single integration, (63).

13. The factor r recommended for double integration, (94), and single integration, (65) is calcu-
lated.

14. The factor r is set to the lower of the two recommended values.

15. The factor r is bounded between 0.5 and 2.

16. The step n is incremented and the procedure returns to step 1.

17

RESULTS

Two separate implementations show the integrator to be effective. The first implementation is in
Matlab. The Matlab implementation is used to integrate the second order differential equation
y′′ = −y, with initial conditions y(0) = 0, y′(0) = 1, over 0 ≤ x ≤ 10π. The exact solution of this
problem is y(x) = sin(x). Because this problem has no dependence on y′, only the double-integration
method has been implemented. The method is started using Runge-Kutta, with a step size of 0.1.
Nine backpoints are used in the implementation, k = 9. A tolerance of ε = 1× 10−13 is used in the
integration. Figure 2 shows a plot of the numerical solution, the step sizes used, and the total error
at each step, |yn − sin(xn)|.

0 5 10 15 20 25 30 35

0.1

0.2

h

Step Size

0 5 10 15 20 25 30 35
−1

0

1

y

Numerical Solution

0 5 10 15 20 25 30 35
0

1

2

3
x 10−11 Error

x

|y
−s

in
(x

)|

Figure 2: Results of integrating y′′ = −y.

Figure 2 shows that the step size fluctuates periodically between approximately 0.1 and 0.15.
There is a slight offset between the peaks of the solution and the peaks of the step-size curve. The
error curve also behaves periodically, with peaks of the error correlating to peaks of the solution. The
error grows as the integration progresses, which is expected. The maximum error is 2.33× 10−11.

A Fortran implementation has also been used to test the integration method on orbit propagation.
The full implementation of both the variable-step double and single-integration integrators described
in the Implementation Section has been implemented into Special-K (Ref. 5). A fourth-order Runge-
Kutta integrator is used to start the method. Again, nine backpoints are used. Table 2 shows error
ratios in a two-body test of various test case orbits. A tolerance of ε = 1× 10−12 is used in the tests.
These preliminary results show the integrator to be effective.

18

Table 5: Variable-Step Double-Integration Results, Two Body

Height (km) Eccentricity Error Ratio
300 0.00 6.41× 10−10

300 0.25 7.49× 10−11

300 0.50 2.04× 10−11

300 0.75 1.98× 10−11

500 0.00 6.23× 10−10

500 0.25 5.99× 10−11

500 0.50 2.20× 10−11

500 0.75 2.04× 10−11

1000 0.00 5.81× 10−10

1000 0.25 5.97× 10−11

1000 0.50 2.14× 10−11

1000 0.75 2.31× 10−11

FUTURE WORK

Now that this integrator has been developed, extensive testing comparing it to other integration
methods is required to show where it has an advantage. In particular, speed testing on a range
of eccentricities will indicate at what eccentricities the method should be used, and how much
computation time can be saved.

Several issues regarding the implementation of this integrator remain. One issue is the start-up
method. Though using Runge-Kutta for start-up is effective, starting up by using a variable-order
version would reduce the complexity of the implementation because an additional integrator would
not be required.

A second issue is interpolation of the solution values. In orbit propagation and orbit deter-
mination, solution values are required at specific time values. These time values do not normally
correspond to the integration steps, so an interpolator is used to find the solution at the required
time. In Special-K, as in other programs, that interpolation is done outside the integration, and in
fact is of lower order than the integrator, causing a loss in accuracy. Because Shampine-Gordon is
derived based on integrating an interpolating polynomial, the method allows values to be found at
times other than the integration steps, without a loss of accuracy or additional evaluations (Ref. 4,
pp. 91-93). Such a technique could also be used for the double-integration method.

Another implementation issue involves choosing the factor r by which to modify the step size.
Two values are available, one for single integration and one for double integration. The conservative
approach used here is to choose the smaller of the two values. However, in problems where the
velocity does not give a significant contribution to the force model, always using the value for double
integration may give adequately accurate results at a faster run-time. Also, because the tolerance is
set as an absolute value, yet the units are different for position and velocity, it may be appropriate
to use different tolerances for single and double integration. Further study into this topic is needed.

ACKNOWLEDGEMENTS

We thank Chris Hall for his comments on the paper.

19

REFERENCES

[1] Berry, M. and Healy, L., “Implementation of Gauss-Jackson Integration for Orbit Propagation,”
In Advances in Astronautics, San Diego, CA, August 2001. American Astronautical Society AAS
01–426.

[2] Berry, M. and Healy, L., “Accuracy and Speed Effects of Variable Step Integration for Orbit
Determination and Propagation,” In Advances in Astronautics, San Diego, CA, August 2003.
American Astronautical Society AAS 03–664.

[3] Berry, M. and Healy, L., “The Generalized Sundman Transformation for Propagation of High-
Eccentricity Elliptical Orbits,” In Advances in Astronautics, San Diego, CA, February 2002.
American Astronautical Society AAS 02–109.

[4] Shampine, L. F. and Gordon, M. K., Computer Solution of Ordinary Differential Equations,
W. H. Freeman and Company, San Francisco, 1975.

[5] Neal, H. L., Coffey, S. L., and Knowles, S., “Maintaining the Space Object Catalog with Special
Perturbations,” In Hoots, F., Kaufman, B., Cefola, P., and Spencer, D., editors, Astrodynamics
1997 Part II, volume 97 of Advances in the Astronautical Sciences, pp. 1349–1360, San Diego,
CA, August 1997. American Astronautical Society AAS 97–687.

[6] Merson, R. H., Numerical Integration of the Differential Equations of Celestial Mechanics,
Technical Report TR 74184, Royal Aircraft Establishment, Farnborough, Hants, UK, January
1975. Defense Technical Information Center number AD B004645.

[7] Berry, M. and Healy, L., “Comparison of Accuracy Assessment Techniques for Numerical Inte-
gration,” In Advances in Astronautics, San Diego, CA, February 2003. American Astronautical
Society AAS 03–171.

[8] Danby, J. M. A., Computing Applications to Differential Equations, Reston Publishing Com-
pany, Reston, Virginia, 1985.

[9] Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, John Wiley and Sons,
New York, 1962.

[10] Maury, J. L. and Segal, G. P., Cowell type numerical integration as applied to satellite orbit
computation, Technical Report X-553-69-46, NASA, 1969. NTIS #N6926703.

20

	Introduction
	motivation
	variable-step
	dble-vs-sngl
	Shampine-Gordon
	divided-differences
	sngl-predictor
	sngl-corrector
	sngl-step-size
	variable-order
	double-integration
	double-predictor
	dbl-corrector
	dble-step-size
	implementation
	results
	future-work

