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In this dissertation, we investigate complex, non-linear interactions in bi-

ological systems. This work is presented as two independent projects. The

mathematics and biology in each differ, yet there is a unity in that both

frameworks are interested in biological responses that cannot be reduced to

linear causal chains, nor can they be expressed as an accumulation of binary

interactions.

In the first part of this dissertation, we use mathematical modeling to

study tumor-immune dynamics at the cellular scale. Recent work suggests

that LSD1 inhibition reduces tumor growth, increases T cell tumor infiltra-

tion, and complements PD1/PDL1 checkpoint inhibitor therapy. In order to

elucidate the immunogenic effects of LSD1 inhibition, we create a delay dif-

ferential equation model of tumor growth under the influence of the adaptive

immune response in order to investigate the anti-tumor cytotoxicity of LSD1-

mediated T cell dynamics. We fit our model to the B16 mouse model data



from Sheng et al. [107]. Our results suggest that the immunogenic effect of

LSD1 inhibition accelerates anti-tumor cytoxicity. However, cytotoxicity does

not seem to account for the slower growth observed in LSD1 inhibited tumors,

despite evidence suggesting immune-mediation of this effect.

In the second part of this dissertation, we consider the partial information

decomposition (PID) of response information within networks of interacting

nodes, inspired by biomolecular networks. We specifically study the potential

of PID synergy as a tool for network inference and edge nomination. We

conduct both numeric and analytic investigations of the Imin
∩ and IPM

∩ PIDs,

from [125] and [45], respectively. We find that the IPM
∩ synergy suffers from

issues of non-specificity, while Imin
∩ synergy is specific but somewhat insensitive.

In the course of our work, we extend the IPM
∩ and Imin

∩ PIDs to continuous

variables for a general class of noise-free trivariate systems. The IPM
∩ PID

does not respect conditional independence, while Imin
∩ does, as demonstrated

through asymptotic analysis of linear and non-linear interaction kernels. The

technical results of this chapter relate the analytic and information-theoretic

properties of our interactions, by expressing the continuous PID of noise-free

interactions in terms of the partial derivatives of the interaction kernel g.
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Chapter 1
Introduction

The aim of this dissertation is to present two perspectives on the inference of

complex, non-linear interactions in biological systems. The mathematics and

biology in each differ, yet there is a unity in that both frameworks are inter-

ested in biological responses that cannot be reduced to linear causal chains,

nor can they be expressed as an accumulation of binary interactions. One per-

spective aims to represent population-level interactions between cancer and

immune cells with a model characterized by full system feedback, in the sense

that none of the state variables are source or sink nodes. The other represents

a lengthy investigation into the multivariate decomposition of synergistic in-

teractions within networks, first using simulations within networks proper,

and then with a formal analysis of trivariate systems. These demonstrate a

diversity of approaches, utilizing both mathematical and computational tools,

to uncover multivariate interactions within living systems. Or, to be more

precise, we investigate the inference of multivariate interaction models, which

better represent the flux of real-life observables, as compared to simpler uni-

directional models [9].

Since the mathematics and biology of each work differ, they are to be

presented in self-contained chapters. The first part (Chapter 2) develops a

delay differential equations (DDE) model for tumor-immune dynamics, and

uses standard modeling approaches to explore potential consequences of LSD1

inhibition on tumor growth, using experiment data from [107]. We both extend

and simplify previous models of tumor-immune dynamics [47, 64] in order to

investigate the impact of the inhibition of the LSD1 gene on tumor growth.

The following chapter (Ch. 3), which comprises the bulk of this dissertation,
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inspects quantities of multivariate synergy and redundancy within model net-

works, inspired by molecular biology. The aim of that work is to explore syn-

ergy measures as instruments for the inference of interactions between genes,

with respect to a target response. To that end, we extend information-theoretic

metrics from the partial information decomposition (PID) literature to contin-

uous interactions in order to understand their behavior. To do so, we extend

the Imin
∩ and IPM

∩ PIDs developed in [125] and [45], respectively, to continu-

ous variables. We are able to distinguish specific and non-specific information

metrics by their treatment of a given interaction kernel, determined by its

analytic properties. The results of this investigation demonstrate a coherence

of analytic and probabilistic perspectives.

This work is structured as follows. The rest of this introductory section

will be devoted to a non-technical discursion on the relationship between in-

teractions and biological complexity. This narrative will serve to frame the

main works of this dissertation within a common intuition of multivariate in-

teractions.1 Then, we will present the two body chapters in turn. Each can be

read as a stand-alone work, as they include all the prerequisite material within

themselves, including mathematical preliminaries and literature review.

1.1 Interacting Systems: Models and Biology

Humans best understand the systems that they themselves build. It is under-

standable that we prefer to recast biological phenomenon in the language of

artificial constructs: brains as computers, bodies as machines, and societies

as networks. The issue with such metaphors is that artificial systems are im-

plemented models, and conform to feed-forward flows of both material and

1Although this framework draws on rigorous work identifying hierarchies of complexity
[5, 60], that is not its purpose here. Rather, we aim to present an intuition that guides the
work in this dissertation.
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information, as is more natural to human understanding. In addition, human-

built systems are likely to minimize unnecessary interactions between parallel

processes, i.e. between distinguished modules, in order to minimize the possi-

bility of unforeseen, synergistic effects that may constitute system ‘failure.’ By

contrast, natural systems emerge dynamically, and are characterized by cyber-

netic feedback loops, which enable their adaptive reconstitution. Moreover, at

every scale of organization, there is significant cross-talk and ‘inter-modular’2

contamination.[9]

Thus, in applying models to biological phenomena, we can take for granted

that the models are at a lower level of complexity. It is far from clear that

any natural system would have an upper-bound on complexity, in the sense

of an upper bound on the complexity of models beyond which we could not

improve, given perfect data. Nonetheless, we never have perfect data, and it

is well-known that beyond a crude level of complexity, models become over-

fit to their data, and their generalizability suffers as a result. In statistical

modeling, it is typical to include an ‘Ockham factor’ [97], usually an infor-

mation criterion, such as the Akaide Information Criterion (AIC) or Bayesian

Information Criterion (BIC), introduced by Akaide in [1] and Schwarz [102],

respectively. Using such measures, a modeler attempts to maximize the ‘fit-

ness’ (log-likelihood), with a penalty for complexity (also called ‘flexibility’ in

[97]).

Describing model complexity, as a more general mathematical task, is a

non-trivial matter. There are many distinct approaches, arguably based upon

completely different understandings of what is meant by the word ‘complexity.’

Nihat Ay et al. argue that there are three main meanings employed for math-

2It is worth noting that, as words, both ‘network’ and ‘module’ have an etymology sug-
gesting artificiality. The frequent use of the word ‘community’ in modern network science
seems more appropriate, given the greater focus on social and biological systems in contem-
porary networks literature.
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ematical complexity: the difficulty in describing or generating an object, the

difficulty in describing the regularities of an object, and the extent to which a

whole object is “more than the sum of the parts” [5].

Central to this third, “Aristotelian” notion of complexity, developed in

[5, 60], are the interactions between components. Indeed, we might refer to

this approach as ‘interaction complexity’. The works of this dissertation are

concerned with inferring or investigating complex interactions, and quantify-

ing the balance of information between interacting components of biological

systems. To that end, we now offer a prefatory formalization of our intuition

of interacting components within a complex system.

1.2 Interacting Systems and Higher Order Complexity

We will first consider the formulation in [60]. Suppose we have a system with

a finite collection of parts V , |V | = N , and that the system and each of its

part can be in one of a finite number of configurations, i.e. we have the full

configuration space

XV =
∏
v∈V

Xv (1.2.1)

where Xv is the finite alphabet of each component v. Real-valued functions of

the system states f : XV → R are equivalent to indexed vectors f ∈ RXV =

R|XV |. Imagining this system as a collection of random variables, we may

associate to it a probability mass function p ∈ P(XV ), where

P(XV ) =

{
p ∈ [0, 1]XV

∣∣∣∣ ∑
x∈XV

p(v) = 1

}
. (1.2.2)
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Using the exponential map, every function f ∈ RXV can be non-orthogonally

projected onto P(XV ) as a Boltzmann distribution:

exp : RXV → P(XV ) f 7→ ef∑
x∈XV e

f(x)
(1.2.3)

For each k = 0, 1, ..., N , we may define the k-interactions on this system to

be the set of real functions that depend on only k of the components, i.e.

Ik =
⋃

A⊂V,|A|=k

IA (1.2.4)

IA =
{
f ∈ RXV |f(xA, xV \A) = f(xA, x

′
V \A) for all x′V \A ∈ XV \A

}
(1.2.5)

Note that Ik ⊂ Ik+1 for all k. Via the exponential map, we may associate

these interaction spaces to an exponential family Ek := exp(Ik). We then have

a hierarchy of distributions:

E1 ⊂ ... ⊂ EN = P(XV ) (1.2.6)

We see, then, that any probability mass function p ∈ P must be a N -

interaction, p ∈ EN . Consider, on the other hand, if p ∈ E1. Then p factors

into a product of single-variable marginals, and we have that the entire set of

N system variables are independent. Note that E0 is the singleton containing

the uniform distribution p(x) = 1
|XV |

. If, for a given p, we set k∗ = min{k|p ∈

Ek}, then we may say that the probabilistic system (XV , p) is a k∗-interaction

system, or has a maximal interaction complexity of k∗. In [60], the authors

went beyond a single metric, and quantified interaction complexity as a vector

successive ‘distances’ (divergences) within the model hierarchy E1 ⊂ ... ⊂ EN .

To make this more precise, for any p ∈ P(XV ) and Ek, we may consider the
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Kullback-Liebler divergence

D(p||Ek) = inf
q∈Ek

D(p||q). (1.2.7)

These divergences may be thought of as measuring the distance of the true

distribution from a k-interaction. For each k > 1, define the k complexity

component:

I(k)(p) = D(p||Ek−1)−D(p||Ek) (1.2.8)

This quantity represents how much ‘closer’ to p one can get by increasing com-

plexity in order to allow for k-interactions. The authors then propose that the

non-negative vector I(p) = (I(k)(p))k ⊂ RN
+ as a complexity measure, quan-

tifying the amount of system information that can be captured by each level

of interaction complexity. They demonstrate the utility of this approach with

multiple discrete dynamical systems. Intuitively, their approach partitions

system information3 into ascending levels of interaction complexity. 4

The theme here that we want to emphasize is identification of model com-

plexity with the order of the interactions composing the model. Let us now

sketch what the generalization of such a framework might look like.

We again begin by identifying our system as havingN components collected

in V = {1, ..., N}, with associated configuration spaces X1, ...,XN . For our

purpose, it is enough to require that each is a linear subspace Xv ⊂ Bv for

some Banach space Bv. For instance, we may consider a finite time ODE of N

3More precisely, ‘system information’ refers to D(p|E0), the ’distance’ from the maximal
entropy distribution.

4For instance, while studying a coupled tent map on a fully-connected network (i.e.
where the dynamics of every v ∈ V are coupled to every other v′ ∈ V ), Kahle et al. tune
the coupling parameter ε. For ε > 0.45, the system enters a phase of synchronized chaos,
in which all system information is captured by pairwise interactions. Here, I(2) dominates
and I(k) = 0 for k > 2. On the other hand, on the ‘edge of synchronized chaos’, i.e. roughly
0.3 < ε < 0.45, more complex dynamics emerge, and I(k) is nonzero for k > 2. This
information collapses down into I(1) and I(2) as ε→ 0.45− and synchronization is reached.
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variables, in which case we have that each component is Xv = C∞([0, tmax]).

Or we may consider a system of N real-valued random variables of bounded

variance, in which case Xv ∈ L2(Ω, µ). We will speak of a realized system

as a point in the full configuration space:

x = (xv)
N
v=1 ∈

N∏
v=1

Xv = X (1.2.9)

This would be a (vector-valued) orbit for the ODE example, or the specification

of well-defined random variables in L2(Ω, µ). Systems are specified by the

introduction of laws or constraints. We may identify a law with a operator

C : X → Y , for some Banach space Y . For a given system, we would restrict

the operators to an allowable collection C. If we have a finite subset of laws

{C1, ..., CM} ⊂ C, we specify a submanifold S of X to be those x ∈ X satisfying

C1(x) = 0

... =
...

CM(x) = 0

where equality is within Y . So, for instance, if our components are random

variables, we could set covariances as laws, and Y = R. On the other hand, the

laws of an ODE might specify that each ẋk−Fk(x) ≡ 0 in C∞. If there exists

a unique x ∈ X satisfying these laws, we may say that the laws C1, ..., CM

specify x.5

In this context, we may now speak of interactions as those elements that

comprise a law. Given a subset of components A ⊂ V , A-interactions IA are

5This is similar to well-posedness, but that term carries an implication of continuity of
x upon the laws.
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those maps:

IA = {f : X → Y|f(xA,xV \A) = f(xA,x
′
V \A), ∀x′V \A ∈ XV \A}. (1.2.10)

We may then define k-interactions for k = 0, ..., N :

Ik =
⋃

A⊂V, |A|=k

IA. (1.2.11)

Analogous to the exponential families Ek from [60], we may consider families

of systems:

Sk = {x ∈ X | x is well specified by {Cα}α ⊂ span Ik}. (1.2.12)

If we are given a dissimilarity measure ρ : X × X → [0,∞], then for any

specified x ∈ X , we might quantify interaction complexity with a vector similar

to that in Eq. 1.2.8:

I(x) = (I(1)(x), ..., I(N)(x)), (1.2.13)

I(k)(x) = ρ(x,Sk) = inf
y∈Sk

ρ(x,y). (1.2.14)

The DDE system under investigation in Chapter 2 would fall within S2 for

the correct framing of X and constraints Cα, i.e. it can be characterized with

laws that depend upon binary interactions.6 In Chapter 3, we investigate

network-response systems numerically, and noise-free trivariate systems T =

g(X, Y ) analytically. If we limit the allowable laws C to be joint distributions

and moments, then these latter interacting systems will fall within S3. This

6Since we defined interactions as maps upon the full components (i.e. the full trajectories
of each state variable, representing a cell population), the delayed terms in Eqs. (2.2.1) do
not complicate matters here.
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difference between the projects can be grasped visually. The DDE system in

Ch. 2 can be represented as a network of binary interactions, as in Fig. 2.2. On

the other hand, to represent the systems under investigation in Ch. 3, either the

simulated response networks or noise-free trivariate systems, we would need to

draw multiedges, since the interactions under investigation represent the effect

of two gene expression predictors X and Y upon a response T , mediated by a

kernel g(X, Y ). We are, however, able to represent the correlational structure

relating gene predictors as standard networks (Figs. 3.1 & 3.5), since these

correspond to laws of binary interactions (covariances) in S2.

From this perspective, it is apparent that interaction complexity is merely

one dimension of complexity among many. For instance, by leaving the ODE

framework and expanding allowable laws in C to include delayed terms, it is

arguable that we have allowed more complexity than the we would have be lim-

iting ourselves to non-delayed ODEs while allowing higher-order interactions

from I3. In Ch. 3, of the two noise-free interaction systems under study, one

of which utilizes a linear kernel and the other utilizing a non-linear sigmoidal

function, both are specified within S3 and not S2. The interdependence be-

tween the three variables is much less simple for the non-linear function, and

we would likewise call this ‘more complex.’

This perspective parallels the discussion of model complexity as ‘flexibility’

in [97]. In that work, Rougier and Priebe discuss the decomposition of log-

evidence, the statistical objective, as a difference of ‘fitness’ (log-likelihood)

and a complexity penalty, which they term ‘flexibility.’ For observations yobs,

the evidence for the fitted parameter vector θ̂ is given by

logE(θ̂) = log f(yobs; θ̂)− log
π?(θ̂)

π(θ̂)︸ ︷︷ ︸
Flexibility

(1.2.15)
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where θ̂ = argmaxθ logE(θ), π is the prior distribution, and π∗ is the posterior.

They describe a model as flexible if the latter term is large, i.e. π∗(θ̂) >> π(θ̂).

This occurs when θ has many degrees of freedom and the prior distribution

is unconstrained. To our way of thinking, interaction complexity is analogous

to a kind of operator dimensionality, while the prior restriction of allowable

laws in C is analogous to a strong prior distribution. In order to ensure that a

model maintains enough rigidity to generalize, a modeler may restrict one or

both of these qualities.

We are now ready to present our contribution to the study of complex

interactions in biological systems. In the two works presented in this disser-

tation, we keep the interactions under investigation simple, in terms of their

k-order as described above (I2 and I3, respectively, for Ch. 2 and Ch. 3).

Our work with DDE modeling of tumor-immune dynamics in Ch. 2 must

be somewhat limited in both the interaction complexity and function com-

plexity (that is, the allowable laws C for the system equations), due to data

sparsity. Our investigation of the partial information decomposition of gene

networks in Ch. 3 is more focused upon the information-theoretic behavior of

network models themselves, rather than the inference of a model from limited

data. In that investigation, interaction complexity is instead limited for rea-

sons of computational tractability and straight-forward interpretability. For

higher-order interactions, PID information atoms become more difficult to in-

terpret, i.e. they mix the very notions of synergy and redundancy that PID is

meant to disentangle [125], and for some measures intuitive sign behavior (i.e.

non-negativity) will break down [96], as was the case in pre-PID measures of

multivariate information such as [10].
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Chapter 2

Modeling LSD1-Mediated Tumor Stagnation

Abstract

LSD1 (KDMA1) has gained attention in the last decade as a cancer

biomarker and drug target. Recent work suggests that LSD1 inhibition

reduces tumor growth, increases T cell tumor infiltration, and comple-

ments PD1/PDL1 checkpoint inhibitor therapy. In order to elucidate

the immunogenic effects of LSD1 inhibition, we develop a mathemati-

cal model of tumor growth under the influence of the adaptive immune

response. In particular, we investigate the anti-tumor cytotoxicity of

LSD1-mediated T cell dynamics, in order to better understand the syn-

ergistic potential of LSD1 inhibition in combination immunotherapies,

including checkpoint inhibitors. To that end, we formulate a nonspa-

tial delay differential equation model, and fit to the B16 mouse model

data from Sheng et al. [107]. Our results suggest that the immunogenic

effect of LSD1 inhibition accelerates anti-tumor cytoxicity. However,

cytotoxicity does not seem to account for the slower growth observed in

LSD1 inhibited tumors, despite evidence suggesting immune-mediation

of this effect. This chapter was previously published in [85].

2.1 Introduction

The gene coding for the histone lysine-specific demethylase LSD1 (KDMA1)

has gained attention in the last decade as a cancer cell biomarker. It has

been shown to mediate disease progression in multiple cancers, including acute

myeloid leukemia [54, 90, 100] as well as carcinomas of the breast[75, 104],
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liver [98], prostate, bladder, colon, and lung [55], among others. Thus, LSD1

has become a promising drug target. By suppressing LSD1 transcription in

cancer cells, LSD1 inhibitors have demonstrated preclinical benefit, first in

leukemia [44, 66] and more recently in carcinomas [130]. Moreover, LSD1

inhibitors have demonstrated benefit in combination therapies [14], including

immunotherapies.

In particular, LSD1 inhibitors have shown preclinical potential in over-

coming resistance to anti-PD1/PDL1 immune checkpoint inhibitors (ICIs)

[31, 95, 107]. ICIs are among the most promising developments in cancer re-

search of the past decade, as recognized by the 2018 Nobel Prize in Medicine.

Despite this potential, the clinical reality is that typically up to 60% of pa-

tients show no response to single-agent ICI therapy [109, 129]. Overlapping

factors contributing to resistance include a lack of T cells at the tumor site,

immunosupressive mechanisms within the tumor microenvironment (TME),

and tumor-intrinsic features that enable immunoescape [109]. Moreover, in

clinical combination therapies, ICIs are frequently administered concurrently

with other treatments, with little regard to the dynamics of the immune re-

sponse [129]. Sheng et al. demonstrated that LSD1 inhibition induces a type

1 interferon response, increasing T cell infiltration into the TME (Fig. 2.1).

By knocking out LSD1 in vivo, they were able to overcome the poor im-

munogenecity of the B16-F10 melanoma cell line, increasing tumor infiltrating

lymphocyte counts (TILs) and sensitizing the tumors to anti-PD1 treatment

[107]. Similarly, Qin et al. combined clinical LSD1 inhibitors with anti-PD1

treatment in xenograft models of triple negative breast cancer [95]. They like-

wise found that LSD1 inhibition overcame the resistance observed in anti-PD1

treatment alone.

Modeling the dynamics of tumor growth and therapeutic response is a

12



LSD1

ERV Transcription

ERVs

RISC

dsRNA Stress Response (MDA5)

Type 1 IFN Response (IFNβ, MHC)

Figure 2.1: The Proposed LSD1-interferon mechanism from [107]. LSD1 both
suppresses transcription of endogenous retroviruses (ERVs) and regulates the RNA-induced
silencing complex (RISC), which typically cleaves ERVs. Through both mechanisms, LSD1
inhibition enables ERV transcription and double-stranded RNA (dsRNA) accumulation.
Through MDA5 and other sensors, dsRNA stress activates a type 1 interferon response in
the cell, leading to tumor immunogenicity.

central focus of mathematical oncology, in which biological and biophysical

knowledge is used to construct a formal model amenable to quantitative in-

vestigation. Among other possibilities, these models may offer a mechanis-

tic explanation of existing data and generate new hypotheses, allow for the

optimization of some experimental or clinical procedure, focus the scope or

direction of future experiments, or inform a speculative, theoretical under-

standing of cancer-immune biology[40]. We refer to [40] for a recent review

of mathematical models of immunology, and [39] for non-spatial modeling of

tumor-immune dynamics. A broader overview of mathematical oncology can

be found in [67, 126]. We briefly review the models that inspire our current

work. Aligning with the data from [107], we specifically considered non-spatial
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ODE models.

The classic model developed by de Pillis et al. in [35] simulates immune-

mediated tumor-growth as the interaction of three populations: tumor cells,

natural killer (NK) cells, and CD8+ cytotoxic T cells. With only three equa-

tions, this model is powerful in its versatility in capturing the dynamics of

tumor growth under the influence of both innate and adaptive immune cyto-

toxicity. However, our focus in this work is on T cell dynamics specifically, since

these are the populations most relevant to PD1/PDL1 checkpoint therapies

and experimentally observed in [107]. Since the publication of the model [35]

in 2005, much has been learned about the complex interplay between different

CD4+ and CD8+ T cells populations. In particular, we wish to account for

the complex management of T cell cytotoxicity by CD4+Foxp3+ regulatory

T cells (Tregs).

Kim and Levy developed a model of the regulated adaptive immune re-

sponse to antigen in [64] and [65]. Their model includes both näıve and ma-

ture compartments for antigen-presenting cells (APCs), CD8+ cytotoxic T

cells, and CD4+ helper and regulatory T cells. A key feature of their model is

the use of constant delay terms to account for the proliferative dynamics of T

cells. The immune dynamics in our model are inspired by this work, although

we exclude both APCs and näıve cell populations.

Part of our work is motivated by that of Gadhamsetty et al. in [47, 48].

In these works, they used cellular Potts models to investigate cytotoxic T cell

killing dynamics. Gadhamsetty et al. analytically derived their killing term

for simple, monogamous killing regimes, and demonstrated in silico that this

function extends to joint and mixed killing regimes [48]. The precise way in

which we use this work is explained in Section 2.2.2.

The model presented in this work simulates the regulated T cell response
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to normal and LSD1-inhibited tumor growth, in order to further investigate

the immunogenic and anti-tumor effects of LSD1 inhibition observed in [107].

This immunogenicity underlies the synergistic potential of LSD1-inhibitors

combined with PD1/PDL1 ICIs.

The structure of this paper is as follows. In Section 2.2 we introduce

our model, its underlying biological assumptions, the data we are using to fit

it, and the alternative models considered. More technical detail is found in

Appendix 2.B. The results of our modeling are presented in Section 2.3. Our

work suggests that LSD1 inhibition accelerates the anti-tumor T cell response,

but does not necessarily enhance T cell cytotoxicity. Rather, LSD1 inhibition

seems to reduce tumor tumor through other immune-mediated mechanisms.

We provide diagnostics and validation for our model in Section 2.4, comparing

it favorably to simpler alternatives. We also explore our model’s robustness to

the removal of data points. Concluding remarks are provided in Section 2.5.

2.2 Model and Methods

2.2.1 Model Overview

We model T cell-mediated tumor growth as a system of delayed differen-

tial equations, representing cancer and immune cell populations within the

tumor microenvironment (Fig. 2.2). Our model has five state variables,

(C,H,K,R, P ), corresponding to tumor cells, helper and cytotoxic “killer”

T cells, regulatory T cells (Tregs), and pro-immune cytokine. The model

equations are:
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Ċ = aC(1− C/µ)︸ ︷︷ ︸
Intrinsic Tumor Growth

− kψ(C,K),︸ ︷︷ ︸
Cytotoxicity

(2.2.1a)

Ḣ = 2mHsHC
σH︸ ︷︷ ︸

Recruitment

− kπ(C,H) + 2kπ(CρH , HρH )︸ ︷︷ ︸
Proliferation

− (dH + r)H︸ ︷︷ ︸
Death+Differentiation

− kRH︸ ︷︷ ︸
Regulation

,

(2.2.1b)

K̇ = 2mKsKC
σK︸ ︷︷ ︸

Recruitment

− kPK + 2kP ρKKρK︸ ︷︷ ︸
Proliferation

− dKK︸ ︷︷ ︸
Death

− kRK︸ ︷︷ ︸
Regulation

, (2.2.1c)

Ṙ = rH︸︷︷︸
Differentiation

−kPR + 2kRρHP ρH︸ ︷︷ ︸
Proliferation

− dHR︸︷︷︸
death

, (2.2.1d)

Ṗ = pHH + pKK︸ ︷︷ ︸
Cytokine Secretion

− dPP︸︷︷︸
Decay

− kP (R +K)︸ ︷︷ ︸
Consumption

, (2.2.1e)

ψ(C,K) =
`CK

C +K + 1
, (2.2.1f)

π(C,H) =
CH

C +H + 1
. (2.2.1g)

In all equations, the superscripts correspond to the delay notation:

Xδ = X(t− δ).

The dimensionality of the populations in our model reflects the data pro-

vided by [107], which measures tumor volume (in mm3). Tumor volume is

proportional to tumor population, and there is little benefit in estimating cell

numbers in the absence of more immune data. Rather, for any of the immune

quantities present, we assume a scale comparable to the tumor volume. The

population scales should be understood as approximating an effective propor-

tionality, rather than absolute cell counts.

Note that our model has only a single compartment for pro-immune cy-

tokine signalling, following the example in [64]. This variable primarily models
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Figure 2.2: Nonspatial population model of immunosurveilled tumor growth. Our
constant-delay ODE model of T cell-medaited tumor growth. The populations modeled are
tumor cells (T ), CD4+ helper T cells (H), CD8+ cytotoxic T cells (K), CD4+FOXP3+
regulatory T cells (R), and a simple pro-immune cytokine compartment (P ).

the known functions of IL-2, e.g. from [83]. We acknowledge that many other

pathways are involved in typical T cell dynamics. However, this simplifica-

tion both limits model complexity while also allowing us to remain agnostic

regarding the topology of extraneous signalling pathways.

Our construction of this model was not agnostic. Nonetheless, we compared

it to simpler alternatives. We will consider the following three alternative mod-

els for tumor growth:
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Ċ = αC(1− C

µ
)

}
Logistic Growth (2.2.2)

Ċ = αC log
( µ
C

) }
Gompertz Growth (2.2.3)

Ċ = αC(1− C

µ
)− CI

İ = βC + γIC − θI

 Two Compartment (2.2.4)

For our results in Section 2.3, we simulate model (2.2.1) by solving

Eqs. (2.2.1a)-(2.2.1e) numerically. The parameters used for model (2.2.1) are

given in Table 2.1. A detailed discussion of parameter fitting and sensitivity

is included in Section 2.4 and Appendix 2.B.

2.2.2 Model Features and Assumptions

1. Tumors intrinsically exhibit logistic growth. The first term in

Eq. (2.2.1a) models intrinsic tumor growth as logistic. We considered

exponential, Gompertzian, and logistic forms of the growth term, and

additionally considered a distinct linear death term for each. We fit

these terms to the tumor growth data in immunodeficient (TCRα KO)

mice, from [107], in order to get a sense of the growth inherent to the

tumor independent of the immune dynamics we seek to model. While

other immunosuppressive mechanisms may still be active in TCRα KO

tumors, those are beyond the scope of our model. We found that the

immunodeficient tumors were best modeled by logistic growth, with no

distinct death term.

2. Delayed T cell recruitment to tumor site following T cell devel-

opment program. In our model, both CD4+ helper and CD8+ cyto-
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toxic T cells are recruited to the tumor microenvironment in proportion

to the cancer population, represented in the first terms of Eqs. (2.2.1b)

and (2.2.1b). The recruitment is delayed to account for the process of

antigen-presenting cell (APC)-induced program of T cell development

and proliferation, as developed in [64, 65]. In [64], antigen stimulation

activates APC cell maturation. APCs, in turn, migrate to the lymph

node to activate the primary adaptive response, which develops accord-

ing to a program of minimal development followed by APC-dependent

expansion. Since we do not have any time series data for immune pop-

ulations, we do not model this full process, excluding both APCs and

näıve T cells. Nonetheless, for each population X = H or K, we dis-

entangle the parameters sX , encompassing näıve T cell availability and

stimulation rate, from the expansion multipliers 2mX . Here, mX is the

fixed number of divisions in the T cell development program. Since the

time delay σX also depends on the number of divisions mX , it is desirable

to allow direct manipulation of the length and magnitude of the T cell

development program in the model independently of the other influences

on supply and recruitment dynamics. For our current work, we fix mX

to the values from [64].

3. Helper T cells proliferate in dual-saturated response to tumor.

The second and third terms of Eq. (2.2.1b) model CD4+ helper cell

proliferation dynamics. Our model assumes that CD4+ helper cells pro-

liferate in response to APCs in the TME, a process which we simplify

to a more direct cell-tumor interaction function π similar to the lysis

function ψ, discussed further below. This saturation in the proliferative

term has the added benefit of mimicking acquired immune resistance,

including mechanisms mediated by the PD1 and CTLA4 immune check-
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points. Unlike CD8+ cells, IL-2 concentration does not seem to signifi-

cantly modulate the proliferative TCR response in CD4+ cells [3]. Thus,

in our model, the proliferative dynamics of CD4+ helper cells are un-

coupled from the pro-immune signalling compartment. To account for

proliferation time, the third term utilizes a constant delay ρH , set to

11/24, corresponding to an 11 hour cell cycle for CD4+ helper cells.

4. Cytotoxic and Regulatory T cells proliferate in mass action re-

sponse to pro-immune signalling. The second and third terms in

Eqs. (2.2.1c) and (2.2.1d) represent the proliferative dynamics of acti-

vated CD8+ and Treg populations. Our model assumes that, unlike

CD4+ helper cells, CD8+ cytotoxic and CD4+ regulatory cells prolif-

erate via cytokine signalling, according to a simplified mass action law.

IL-2 modulates the proliferation of the activated CD8+ population, with-

out significant dependency on further stimulation [3, 61]. By contrast,

low concentrations of IL-2 instead promote the differentiation of mem-

ory phenotype in näıve CD8+ cells, observed both in vivo during viral

infections [61] and in vitro during chimeric antigen-receptor (CAR) T

cell expansion [59]. We acknowledge that despite many in vitro exper-

iments suggesting the necessity of IL-2 for the expansion of the CD8+

cytotoxic cell response, it has been observed that there seem to be re-

dundant mechanisms for CD8+ proliferation in vivo for IL-2R KO mice

[61]. As for Tregs, IL-2 has been well-documented as essential for pe-

ripheral Treg function and expansion [30]. The induction of Tregs by

low-dose IL-2 has emerged in recent years as a promising new treatment

for autoimmune disease [131]. As an additional modeling benefit, the

structure we use captures cytokine competition between CD8+ cells and

Tregs as a distinct mechanism of immunosuppression, due to the fourth
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and fifth terms in Eq. (2.2.1d). This is supported by the the work of

Chinen et al. , which suggests that IL-2 competition is a significant

component of Treg-driven control of CD8+ populations, but not CD4+

populations [30]. Further, by using an identical, non-saturated prolif-

erative mechanism for CD8+ and Treg populations, by design allowing

them to proliferate at a greater rate than CD4+ helper cells post tu-

morigenesis, our model dynamics align with the proliferative patterns

observed experimentally in [107]. Sheng et al. found both Tregs and

cytotoxic cells to be more proliferative than helper T cells. At day 14,

they found that up to 70% of Tregs and 60% of CD8+ cells expressed

the proliferative marker Ki67+, compared to only 30% of helper CD4+

cells. We assume CD4+ regulatory cells have the same 11-hour prolif-

eration time as helper cells (ρH), while CD8+ cells have a proliferation

time (ρK) of 8 hours [3].

5. Helper and cytotoxic T cells produce inflammatory cytokine.

Our model assumes that helper T cells are primarily responsible for

pro-immune signalling, although CD8+ cytotoxic cells also produce pro-

inflammatory signals. Both populations produce cytokine at fixed linear

rates pH , pK . For our present study, we fix these values to those from [64].

Thus, for the moment, the dynamics of cytokine signalling in our model

is rigidly contingent on those of the other compartments. However, we

expect the interferon response induced by LSD1 inhibition to alter the

dynamics of the signalling compartment. We leave this for future work.

6. Differentiation of helper T cells into Tregs. In our model, CD4+

helper cells differentiate into CD4+ Tregs at a fixed rate r, similar to

the Treg dynamics from [64]. Our model does not distinguish between
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peripheral iTregs and thymal nTregs. We note the mechanisms of pe-

ripheral Treg differentiation are still unclear, as is the degree of plasticity

between helper and regulatory CD4+ cell lineages [71].

7. Decay of immune populations. We assume that CD4+ helper and

regulatory cells and CD8+ cytotoxic cells deactivate at fixed linear rates:

dH for both CD4+ populations and dK for CD8+ populations. Further,

positive growth signal decays at rate dP . We take these rates from [64].

8. Cytotoxic T cells lyse tumor cells with double-saturated sig-

moidal dynamics. The second term in Eq. (2.2.1a) represents anti-

tumor cytoxicity from CD8+ T cells. Saturated kill terms for T cell cy-

totoxicity are standard in the literature [39]. more generally, sigmoidal

functional forms are typical for immune response to antigen, and have

been used, for instance, to faithfully model Potts-type lattice simula-

tions of TCR-pMHC binding dynamics [136]. It is desirable to use a

function that saturates with respect to both tumor and immune popu-

lations, as such a property allows the function to handle the dynamics

of both tumor growth and collapse. We take our function from the work

of Gadhamsetty et al. , which simulates T cell cytotoxicity in a Potts

model framework [47, 48]. They heuristically derive a similar function

when T cells follow a monogamous killing regime, and demonstrated in

silico that the function extends to joint and mixed killing regimes [47].

9. Kinetic coefficient. All terms representing cell interactions in the

TME are multiplied by a kinetic coefficient, k. Adjusting this coeffi-

cient affects the speed of population transitions in the transient immune

dynamics. For our current study, we fix k to a constant value of 10.

Our model has several limitations worth highlighting. We excluded these
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dynamics due to their practical unidentifiability in this current work. In partic-

ular, as discussed above, we excluded T cell exhaustion, checkpoint-mediated

immune tolerance, the innate immune response, and myeloid cell dynamics.

Table 2.1: Model parameters. Parameter values replaced with an asterisk (*) were
estimated individually for each mouse model.

Parameter Name Description Value Reference
a Tumor growth rate Controls tumor-intrinsic lo-

gistic growth
* estimated

dH CD4+ death rate Linear death rate for CD4+
helper and regulatory T
cells

0.23 [64]

dK CD8+ death rate Linear death rate for CD8+
cytotoxic T cells

0.4 [64]

dP Cytokine decay rate Linear decay rate for IL-2 5.5 [64]
k Kinetic Coefficient Controls rate of immune in-

teractions in the TME
10 fixed

` Immune-tumor lysis
parameter

Controls CD8+ T cell cy-
totoxicity in kill function
ψ(C,K)

* estimated

µ Tumor carrying ca-
pacity

Limits tumor-intrinsic logis-
tic growth

* estimated

mH CD4+ developmental
divisions

Number of CD4+ cell divi-
sions in APC-driven devel-
opment program in lymph
node

2 [64]

mK CD8+ developmental
divisions

Number of CD8+ cell divi-
sions in APC-driven devel-
opment program in lymph
node

7 [64]

pH CD4+ cytokine secre-
tion

Controls production of IL-2
by CD4+ helper T cells

100 [64]

pK CD8+ cytokine secre-
tion

Controls production of IL-2
by CD8+ T cells

1 [64]

r Treg differentiation
rate

Fractional rate at which
CD4+ helper cells differen-
tiate into Tregs

* estimated

ρH CD4+ division time Length of cell cycle for pro-
liferating CD4+ helper and
regulatory T cells

11 hr [34]
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sH Supply rate of CD4+
cells

Controls delayed supply of
CD4+ cells to TME in re-
sponse to tumor antigen

* estimated

sK Supply rate of CD8+
cytotoxic cells.

Controls delayed supply of
CD8+ cells to TME in re-
sponse to tumor antigen

* estimated

σH CD4+ development
time

Length of APC-driven
CD4+ T cell development
program in lymph node
(divisions × doubling time)

1.46
days

[64]

σK CD4+ development
time

Length of APC-driven
CD4+ T cell development
program in lymph node
(divisions × doubling time)

3 days [64]

2.2.3 Experimental Data

For data, we used three of the experimental data sets from [107]. First, our tar-

get for modeling was the experimental data set corresponding to [107, Fig. 5E]

which measured the tumor growth in 28 individual B16 murine xenografts.

These are divided into 4 experimental conditions of CRISPR gene silenc-

ing: LSD1 KO, MDA5 KO, LSD1+MDA5 DKO, and a scramble control

(N = 7, 7, 6, 8, respectively). Note that, as described in Fig. 2.1, MDA5 is

an important mediating component for the pro-immunity interferon response

produced by LSD1 inhibition, and the mechanism of focus in [107]. Thus, our

work, we are looking for consistent differences between the LSD1 KO condi-

tion and both the control and LSD1+MDA5 DKO conditions, which would

implicate the LSD1-IFN axis. In addition to this target data set, we also make

use of some of the growth data from [107, Fig. 5C] corresponding to scram-

ble and LSD1 KO tumors within immunodeficient TCRα KO mice. Finally,

in Fig. 2.4, we use the flow cytometry T cell counts from [107, Fig. 6A] in

Fig. 2.4 in order to provide circumstantial evidence for the earlier onset of the

immune response in LSD1 KO tumors.
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2.3 Results

2.3.1 Immune Response Accounts for Interrupted Tumor Growth

Many of the mouse tumors from [107] have irregular growth in the second or

third week, usually in the 10-15 day range. A similar pattern can be observed

in other subcutaneous B16 models in [58, 69, 127]. After a week or two of

tumorigenesis and steady growth, the tumor stagnates or even regresses for

a few days. Then, in typical B16 tumors, growth resumes, often at an accel-

erated rate. By design, our model hypothesizes that we can account for this

irregularity via the tumor’s interaction with the primary adaptive immune

response.

As described in Section 2.2 and Appendix 2.B, we opted to parameter-

ize independently for each tumor growth time series. In most tumor-specific

simulations of the immune response, a stereotypical script emerges, as seen

in Fig 2.3. Both helper and cytotoxic T cells are recruited to the tumor

site, although helper T cells are usually recruited more quickly. Helper T

cells proliferate when stimulated by the tumor cells, and release pro-immune

cytokines, including IL-2. These cytokines stimulate cytotoxic T cell prolifer-

ation, inducing significant cytotoxicity that interrupts steady tumor growth.

Note that this pattern conforms to the B16 immune data from [93], which saw

CD4+ helper cells peak a few days before CD8+ cytotoxic cells. The helper

T cell population differentiates into Tregs at a fixed rate, and regulatory cells

likewise proliferate in the presence of pro-immune signalling. The regulatory

T cells deactivate both the helper and cytotoxic populations while consuming

most of the remaining pro-immune signal for their own proliferation. Once

Tregs dominate the immune populations, tumor stagnation ends and growth
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Figure 2.3: Simulations of immune-mediated tumor growth. Our model (black)
infers an underlying adaptive immune response as responsible for temporary tumor growth
stagnation, from linearly interpolated tumor growth data (red) from [107]. The graphs, from
top to bottom, show simulated dynamics over 30 days for tumor volume, CD4+ helper T
cells, CD8+ cytotoxic T cells, CD4+FOXP3+ regulatory T cells, and pro-immune cytokine.

resumes.

2.3.2 Simulated Immune Response Activates and Peaks Earlier

in LSD1 KO Tumors

In our simulations, both the CD4+ helper and CD8+ cytotoxic cell popula-

tions tended to reach their peak earlier in the LSD1 KO condition, compared to

both control and LSD1/MDA5 DKO tumors. On average, helper cells reached

their maximal helper (cytotoxic) T cell population at day 14.01 (14.2), while

control and DKO tumors peaked at day 17.11 (16.68) and 18.53 (17.62), re-

spectively (Fig. 2.4, A-B). However, after adjusting for multiple testing, only

the difference in timing between LDS1 KO and LSD1/MDA5 DKO tumors
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rises to statistical significance in our small sample. Even so, this agrees well

with a separate experiment from [107] under similar experimental conditions,

in which flow cytometry revealed elevated levels CD4+ and CD8+ T cells in

LSD1 KO tumors on day 14, relative to control and DKO tumors. (Fig. 2.4D,

or Fig. 6A from [107]).

We emphasize that this difference appears only in LSD1 KO tumors where

the dsRNA sensor MDA5 has not likewise been knocked out. Thus, our model

suggests that the LSD1-dsRNA-IFN axis under investigation in [107] acceler-

ates the anti-tumor T cell response.

Interestingly, our model not demonstrate an increase in effective cytotoxic-

ity under LSD1 inhibition. At the time of peak immune response, we simulated

no difference in the fractional kill rate (C−1ψ in our model, Eqs. 2.2.1a,2.2.1f),

as seen in Fig. 2.4D and Fig. 2.5. This coincides with unpublished experimen-

tal evidence collected by Sheng et al. that LSD1 inhibition does not enhance

the cytotoxicity of individual T cells. Moreover, as noted in [107], RNAseq re-

vealed that PD-L1 was upregulated in LSD1 KO tumors, possibly suppressing

the anti-tumor immunity of CD8+ T cells. This agreement between model and

experiment furhter supports the notion that LSD1 inhibition does not directly

enhance anti-tumor cytotoxicity. The significantly retarded tumor growth in

LSD1 inhibited tumors, as observed in [107] and [95], must be attributed to

other factors. Nonetheless, the process is likely to be immune-mediated, given

the rescuing effect of MDA5 inhibition. Further, if LSD1-inhibition reduces

T cell cytotoxicity through a mechanism besides the upregulation of PD-L1,

then countering that mechanism and restoring full CD8+ functionality would

maximize the effect of combination anti-PD1 therapy.
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Figure 2.4: Inferred dynamics of T cell response. In subfigures (A) and (B), we present
the time (days post-tumor injection) at which the CD4+ helper and CD8+ cytotoxic T cells
reach their maximum population within our model, grouped by experimental condition.

2.3.3 Growth Dynamics

As noted in Section 2.3.2, the simulated cytotoxicity in our model suggests

that LSD1 inhibited tumors see a quicker onset of the adaptive immune re-

sponse, accounting for the increased number of tumor infiltrating lymphocytes.

However, this does not convincingly account for the decreased tumor growth

observed LSD1 KO tumors.

Beyond the immune dynamics incorporated into our model, LSD1 inhi-

bition appears to slow tumor growth via other mechanisms. We see that,

despite comparable distributions for the carrying capacity parameter µ, the

tumor growth rate parameter α is lower for LSD1 KO tumors, compared to

both control and LSD1/MDA5 DKO tumors. In our model, this difference

manifests in early tumorigenesis, when tumor volume is well below capacity
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Figure 2.5: Effective anti-tumor immunity in model. In subfigures (A) and (B), we
present the simulated fractional and absolute kill rates (in our model, C−1ψ(C,K) and
ψ(C,K), respectively) over time. We do not see any consistent and appreciable difference
indicating that LSD1 inhibition increases anti-tumor immunity. For comparison, we include
the observed tumor growth data from [107], which demonstrates an appreciable reduction
of tumor-growth (C).

and growth is approximately exponential with rate α. Thus, when we re-

move T cell dynamics, our model still has LSD1 KO tumors growing more

slowly in silico (see Fig. 2.6). Interestingly, this pattern does not appear in
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the immunocompromised mice from [107]. When Sheng et al. used mice with-

out functioning T cell receptor alpha (TCRα), they observed no difference

in growth between LSD1 KO and control tumors. Similarly, when we fit the

logistic growth model to the TCRα KO data (Fig. 2.6D, Table 2.3), we do not

observe the difference captured in our T cell free model for immunocompetent

mice.

***
***

ns

0.3

0.4

0.5

0.6

G
ro

w
th

 P
ar

am
et

er
, 

α

Growth Rate (Model)

ns
ns

ns

0

5000

10000

15000
Ca

pa
ci

ty
 P

ar
am

et
er

, 
μ

Tumor Capacity (Model)

Condition

LSD1 KO

LSD1+MDA5 DKO

Scramble

0

2500

5000

7500

10 20 30 40

Time (days)

Tu
m

or
 V

ol
um

e

T Cell Free Growth
(Model)

0

2500

5000

7500

10000

10 20 30 40

Time (days)

Tu
m

or
 V

ol
um

e

TCR α-KO Growth
(Logistic)

ns
ns

*

0.4

0.8

1.2

G
ro

w
th

 P
ar

am
et

er
, 

α

Growth Rate
(Two Compartment)

0

2500

5000

7500

10000

10 20 30 40

Time (days)

Tu
m

or
 V

ol
um

e

Immune Free Growth
(Two Compartment)

A B

D

F

C

E

Figure 2.6: T cell dynamics alone do not fully account for slowed tumor growth
in LSD1 KO tumors. We present the T cell-independent growth dynamics of our model.
In the top two figures, we present the values of the model parameters for intrinsic growth
(A) and tumor capacity (B). In (C), we simulate T cell free tumor growth by eliminating
immune cell dynamics from our parameterized model (i.e. reducing our model to logistic
growth with parameters a,MC). We see that, despite comparable carrying capacities, the
LSD1 KO tumors seem to exhibit slower ‘intrinsic’ tumor growth, separate from the model’s
T cell dynamics. This suggests that the anti-tumor effects of LSD1 inhibition include the
innate immune response and/or tumor-intrinsic factors. Since this pattern is not observed
in TCRα KO tumors (D, fit to simple logistic growth curves, see Table 2.3), the T cell
response is still implicated as a mediator.
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Assuming that our model accurately captures T cell dynamics, we consider

two non-mutually-exclusive explanations for the ‘intrinsic’ reduction in tumor

growth within our model. First, our system does not comprehensively model

tumor-immune cytotoxicity. For instance, natural killer (NK) cells and mem-

ory T cells are not accounted for in our model. Another possibility is that

tumor growth mechanisms themselves may be slowed by LSD1 inhibition, me-

diated by the MDA5-dsRNA-immune stress response.

It is possible that the reduction in the growth parameter is at least partially

accounted for by the presence of continuous cytotoxic immunity not otherwise

included in our model. Indeed, RNAseq analysis in [107] found the innate

immune response to be upregulated. Innate cytotoxicty from, e.g., NK cells, is

not included in our model. The nature of model (2.2.1) is such as to specifically

capture the rapid-onset, well-regulated adaptive response to antigen. Although

regulatory T cells do suppress NK cells in the TME[28], the timing for this

will not align with the immune dynamics of our model. Moreover, T cell

cytotoxicity itself is not limited to the sharp onset-regulation dynamic of our

model. Our work emphasizes peak T cell response, at the cost of both ongoing

and memory T cell dynamics, which are less clearly understood [128].

To explore this possibility, we examine the two compartment model (2.2.4),

which, unlike our primary model, allows for sustained cytotoxicity. We do see

that that the difference in the growth parameter α between LSD1 KO and

control tumors is no longer significant in the two compartment model, despite

a greater magnitude (Fig. 2.6E). Nonetheless, we have reason to suspect the

ability of the two compartment model to capture T cell-independent tumor

growth. Inspection reveals that the two compartment model has a tendency to

estimate relatively high growth rates that do not, qualitatively, resemble tumor

growth in TCRα KO mice (Fig. 2.6F). In particular, the two compartment
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model tends to predict a higher rate of unencumbered tumor growth than we

observe both when we fit a logistic growth model to immune-compromised

(TCRα KO) mice, and when we fit our other models to the primary dataset

of immunocompetent mice (Fig. 2.9).

We consider also tumor-intrinsic explanations for the reduced growth pa-

rameter. We considered EMT- and CSC-related pathways, looking at the

RNAseq data from [107], and found no convincing evidence for them. Alter-

natively, we consider that a major limiting factor on growth is proper tumor

angiogenesis. There is evidence that LSD1 regulates angiogenesis [62]. The

RNAseq data from [107] suggests that the Notch pathway is activated in LSD1

KO tumors (Fig. 2.7). Notch regulates angiogenesis via the VEGF pathway,

balancing tip and stalk cell populations in the fomration of new blood ves-

sels. Its effect on tumor angiogenesis is context-dependent, e.g. [73] vs [103].

Recently, Augurt et al. found that LSD1 inhibitors reactivate the Notch path-

way in small cell lung cancer, inhibiting tumor growth [4]. In the in vivo data

collected by Sheng et al. , we see that the Notch activation in LSD1 KO tu-

mors is less pronounced in LSD1/MDA5 DKO tumors. Moreover, Notch was

not activated in vitro. This suggests the possibility that the LSD1-dsRNA-

interferon axis induces Notch activation, which could restrain tumor growth.

However, the significance of Notch activation to anti-tumor LSD1 inhibition

remains hypothetical.

2.4 Model Fitting and Diagnostics

2.4.1 Model Fitting and Validation

For the DDE model described in Section 2.2.2, Eqs. (2.2.1a)–(2.2.1g), we

adapted many of the parameters from [64], and fixed the kinetic coefficient k
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to an arbitrary value. Thus, for the purposes of model fitting and validation,

we limit our degrees of freedom to six parameters: tumor growth parameters

α, µ, immune recruitment parameters sK , sH , the cytotoxicity parameter `,

and the rate of Treg differentiation r. The full list of model parameters is

given in Table 2.1.

For the one-dimensional models (2.2.2) and (2.2.3), we allowed our initial

condition C0 to vary as a third parameter. For our main model (2.2.1) and

the two compartment model (2.2.4), we used a uniform initial condition for

all tumors. All immune populations were initialized at 0. For the main DDE

model (2.2.1), we assumed all state variables were 0 for t < 0.

For the one-dimensional curves, our models become the closed-form so-

lutions of the logistic and Gompertz equations. For our main model (2.2.1)

and the two compartment model (2.2.4), we solved our equations numerically.
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We fit our model parameters using a Markov chain Monte Carlo, taking the

point-estimates from the posterior distribution. We linearly interpolated our

data prior to fitting. More technical details are provided in Appendix 2.B, and

paramter estimates in Appendix 2.C. Figure 2.12 in Appendix 2.D provides a

visualization of the prior and posterior distributions for one of our fittings. As

can be seen, although the posteriors are sometimes multimodal, the model is

locally identifiable.

We compare our model to the alternatives by computing the Bayesian Infor-

mation Criterion (BIC) for each model, using the point-estimated parameters

(Fig. 2.8). A lower BIC indicates a more explanatory and/or parsimonious

model. Using a signed rank test, we found that our model was generally fa-

vored over all three of the alternatives (Fig. 2.8). Unsurprisingly, model (2.2.1)

was heavily favored over the logistic and Gompertz models, with a mean BIC

improvement of −40.2 and −40.3, respectively. More importantly, for 17 of

the 28 tumors, model (2.2.1) was preferred to the two compartment model

(2.2.4), albeit with a more modest mean difference of −3.4. For 5 tumors, the

magnitude of BIC improvement of model (2.2.1) was greater than 10, while

for only one tumor was (2.2.4) preferred by more than 4.

As an additional point of comparison, we consider the model-inferred rates

of intrinsic tumor growth. Both models (2.2.1) and (2.2.4) assume that, in

the absence of competitive immunity, tumor growth is logistic. Thus, param-

eterizing each involves estimating a rate of ‘intrinsic’ growth apart from the

model’s immune dynamic. To validate these estimates, we can use the tu-

mor growth data from immunodeficient (TCRα KO) as a rough experimental

proxy of immune-free growth. As previously discussed in Section 2.3.3 and

Fig. 2.6F, we fit logistic growth to the TCRα KO mice tumors. In Fig. 2.9,

we compare the growth rates of models (2.2.1), (2.2.2), and (2.2.4), fit to our
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Figure 2.8: Model comparison. For each of the 28 tumors, we computed the the BIC
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each tumor time series from [107], we compare our model (2.2.1) to each alternative, i.e.
BICAlt−BICMain. In B, we compare the alternatives to (2.2.1) as paired populations, using
the Wilcox signed rank test and adjusting for multiple testing. We see that our primary
model significantly improves on the three alternatives, although the improvement is typically
modest when we consider the two compartment alternative.

primary data set, to the growth rates estimated for the TCRα KO data. We

see that the two compartment model tends to estimate much higher growth

rates than those estimated for the immunodeficient control. By contrast, the

primary model estimated growth rates comparable to those of the TCRα KO
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tumors. That is to say, they were not statistically differentiable.
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Figure 2.9: Tumor growth rate estimates in immunodeficient and immunocom-
petent mice. We compare the estimated value of the tumor growth parameter α for
immunocompetent mice, using models (2.2.1), (2.2.2), and (2.2.4), to those rates estimated
from the tumors in TCRα KO mice, using model (2.2.2).

2.4.2 Model Sensitivity (Data Removal)

We examined the robustness of our model fitting to the exclusion of key data

points. To that end, we examined two specific, tumor growth time series from

our data set: one from a control tumor and another from an LSD1 KO tumor.

For each, we considered two modifications to the data.

First, for each time series, we removed an intermediate interval of data

corresponding to a single irregular observation. We chose the removed obser-

vation to be one that suggests a period of particularly irregular growth and
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stagnation. This allows us to consider the possibility that an interruption in

growth, which our modeling attributes to T cell cytotoxicity, is instead due

to a ‘blip’ of errorful measurement. This is key to the validity of our current

work.

Second, for each time series, we removed the last two observation (and

the associated interpolated points). This allows us to examine the forecasting

potential of our model and its ability to recover the dynamics of immunoescape

and tumor recovery from early growth data. Forecasting future growth was not

the objective of our present modeling work. Nonetheless, it is an informative

test of the limitations of our model.

In Fig. 2.10, we present the result of this first modification to our model

fitting. For both data sets, we see that removing an interval of irregular

growth does not affect the timing of the immune response. The intensity

of the immune reaction decreases, somewhat, as a smoother, more regular

trajectory is fit to the missing interval. This is seen with particular clarity in

the LSD1 KO tumor data. The timing of the peak T cell reaction is robust to

the removal of the observation at day 18, indicating that more than a single

outlying observation is suggestive of significant tumor stagnation. Though the

biological mechanism assumed by our model is hypothetical, our inference of

immune dynamics seems robust.

In Fig. 2.11, we present the result of the second modification to model

fitting, in which we truncate the final few days of tumor growth. The two

data sets under consideration demonstrate qualitatively different sensitivities

to this exclusion. For the scramble control tumor, the exclusion of the final

data points leads to a fitting in which the final remaining data point is close

to capacity. Thus, the projected future growth levels out. This a significant

divergence from both the actual data and the original fit. In contrast, for the
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LSD1 KO time series considered, the projected future growth still reasonably

resembles future data. We additionally note that, for the control time series,

the entire timing of the estimated immune response is shifted to an earlier

window. For the LSD1 KO tumor, the timing of the immune response remains

the same. Taken together, our model does not show itself to be a reliable tool

for future growth forecasting.

Figure 2.10: Model refitting after data exclusion (intermediate interval). We
present the original and modified fittings of model (2.2.1) for two of our time series. For
the modified fitting, we excluded one intermediate real observation and the associated in-
terpolated points, shown in green to distinguish from the remaining (red) data points. For
the scramble control (LSD1 KO) tumor, we excluded all points between days 13 and 18 (15
and 20).

2.5 Discussion

We created a simple mathematical model of the adaptive immune response

to tumor growth in order to infer the potential effects of LSD1 inhibition on

T cell dynamics. Our model suggests that LSD1 inhibition accelerates tumor
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Figure 2.11: Model refitting after data exclusion (final data). We present the original
and modified fittings of model (2.2.1) for two of our time series. For the modified fitting,
we excluded the final two real observations and the associated interpolated points, shown in
green to distinguish from the remaining (red) data points. For the scramble control (LSD1
KO) tumor, we excluded all points after day 18 (20).

infiltration of T cells, via the MDA5-mediated interferon response studied in

[107]. We further found that, despite increased levels of tumor-infiltrating T

cells observed at day 14 in vivo, our model does not imply that LSD1 inhibition

alone increases the instantaneous rate of T cell cytotoxicity in TME. This sug-

gests that the synergistic effect of combination anti-LSD1/anti-PD1 treatment

observed in vivo in [95, 107] is not due to additive anti-tumor effects. Rather,

our modeling suggests that, if there is any benefit of LSD1 inhibition to ef-

fective anti-tumor T cell cytotoxicity, it only occurs if PD1/PDL1 is likewise

targeted. However, as previously observed in [107] and [95] and discussed in

Section 2.3.3, we still have that LSD1 inhibition alone reduces tumor growth.

Moreover, this reduction is eliminated when MDA5 is also knocked out, im-

plicating the interferon response from [107] and, by extension, the immune

system.
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It is unclear why the increased level of T cells in LSD1-inhibited tumors

may not translate to increased cytotoxicity. As we have noted, [107] found

the PDL1 was upregulated in LSD1 KO tumors. This could explain part of

the discrepancy, as PDL1 would deactivate T cells in the absence of anti-

PD1/PDL1 ICIs. There are other plausible explanations. LSD1 inhibition

both induces an IFN-β response and upregulates TGF-β. IFN-β is commonly

used to reduce autoimmunity in multiple sclerosis [63, 133], inhibiting memory

T cell activation. It is possible that the type 1 inteferon response sustaining

T cell activity in the TME of LSD1 KO tumors is simultaneously suppressing

elements of anti-tumor immunity. Alternatively, the upregulation of TGF-β

may also reduce activation, proliferation, and/or cytotoxic function in CD8+

cells [82, 91]. Despite its potential to increase and sustain T cell infiltration,

if LSD1 inhibition can simultaneously undermine anti-tumor immunity in the

TME, the mechanism responsible needs to be identified for effective therapeu-

tic targeting. Given two tumors with distinct immune profiles, it is entirely

plausible that LSD1 inhibitors could sensitize one to checkpoint therapies,

while disabling immunosurveillance in the other.

In future work, we intend to investigate and model the effect of LSD1 inhi-

bition on many tumor-immune mechanisms currently excluded from the model.

The effect of LSD1 inhibition on mechanisms of PD1-mediated immune toler-

ance is still unclear. Additionally, our current work does not consider myeloid

cell dynamics. Recent work suggests that LSD1 promotes immunosuppressive

myeloid cells, and that its inhibition reduces the differentiation of these pop-

ulations in the TME. Condamine et al. found that LSD1 inhibitors reduced

the differentiation of myeloid derived suppressor cells (MDSCs) and polymor-

phonuclear (PMN) cells in vitro and in vivo, synergistically enhancing the

effect of anti-PDL1 agent [31]. With the appropriate data, we hope to later
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explore the dynamic interplay between myeloid and T cell populations in the

TME under the effect of LSD1 inhibitors, clarifying the tumor-immune sig-

natures favorable to anti-LSD1/anti-PD1 combination therapy. Finally, more

investigation is warranted into T cell exhaustion in LSD1 inhibited tumor-

immune systems. While LSD1 inhibition increases T cell tumor infiltration,

complementing anti-PD1 treatment in the short-term, we cannot discount the

possibility that an LSD1-mediated interferon response might also accelerate

other (non-PD1) forms of T cell exhaustion. This would have serious im-

plications for the long-term efficacy of LSD1 inhibitors as compliments to

immunotherapy.
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2.A Statistical Comparisons in Figures

For the pairwise comparisons in Figs. 2.4, 2.6, 2.8, and 2.9, we used an unpaired

Student’s t-test. For each panel, we applied a Benjamini-Hochberg adjustment

for multiple-testing. In order to validate the chocie of a t-test, we used the

Shapiro-Wilk test for normality. We cannot reject normality for the samples

in Figs. 2.4, 2.6, and 2.8 (P > 0.05). For Fig. 2.9, two of the samples were

somewhat non-normal. Left to right in Fig. 2.9, the S-W statistic had values

0.93, 0.85, 0.90, 0.98 corresponding to P = 0.17, 8.8e − 4, 9, 0.010.81. We used

the same comparison for Fig. 2.4D as in [107].

41



For the differential gene expression (DGE) analysis for Fig. 2.7, we used

the gene counts from [107] (data accessible at NCBI GEO database, accession

GSE112230), and the R package edgeR. We normalized the counts using the

TMM method, and removed minimally expressing genes, leaving us with 12305

genes remaining. We fit a linear model to compare gene expression between

the three experimental tumor conditions: scramble control, LSD1 KO, and

LSD1/MDA5 DKO tumors. Our workflow was based upon the tutorial in [32].

When adjusting for multiple testing, we used the BH method as before, and

adjusted for all three pairwise contrasts (between our experimental conditions)

for the full set of expressing genes, together.

2.B Description of Statistical Model and MCMC Fitting

Consider the tumor growth data for tumor i as a time series yi = (yi(tj))
ni
j=1.

We assume a statistical model of the form

yi(t) = f(pi, t) + εi(t) (2.B.1)

εi(t1), ..., εi(tn) ∼iid N(µi, σi) (2.B.2)

where f(pi, ·) is a deterministic model and εi(·) is the measurement noise,

parameterized by pi, µi, σi individually for each tumor time series i. The model

f(pi, ·) is the solution to either our main DDE model (2.2.1) described in

Section 2.2.1, (2.2.1), or one of the alternative ODE models in Section 2.2.1

(2.2.2, 2.2.3, 2.2.4). We use f(pi) to denote (f(pi, tj))j, i.e. the estimated

time series from our model, corresponding the data yi. For our measurement

noise, we ideally would have µi = 0 for each tumor. We make this assumption

for model fitting, but estimate µi for the purposes of model validation below,

in order to strengthen the likelihood of simple alternative models.
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Given a model f and parameters pi, µi, σi, the conditional log-likelihood is

given by

logL(yi | f,pi, µi, σi) =− ni log(
√

2πσi) (2.B.3)

− 1

2

ni∑
j=1

(
yi(tj)− f(pi, tj)− µi

σi

)2

For the purposes of model fitting, we estimated p̂i for fixed σi using a Markov

chain Monte Carlo,1 under the assumption that µi = 0. We linearly inter-

polated our data yi 7→ ỹi so that we had 5 data points per day, in order to

ensure smooth fits. Per standard practice, we employ the `2 error as the target

function g, for which eg ∝ L:

g(ỹi | f, p̂i, µi, σi) = −||ỹi − f(p̂i)||2`2 (2.B.4)

= −
ni∑
j=1

(ỹi(tj)− f(p̂i, tj))
2

To find f(pi), we need to solve systems (2.2.1, 2.2.2, 2.2.3, 2.2.4). The

one-dimensional systems 2.2.2, 2.2.3 have well-known closed-form solutions:

C(t) = µ exp

[
e−αt log

(
C0

µ

)]
(2.B.5)

C(t) =
µC0

C0 + (µ− C0)e−αt
(2.B.6)

For our main model (2.2.1) and the two compartment model (2.2.4), we solved

our equations numerically using the R package diffeqr, which is a convenient

wrapper for the Julia suite DifferentialEquations.jl.

To validate our model, we compared it to each of the alternative choices of

1We use the MCMC implementation from the R package BayesianTools, employing the
differential evolution sampler ‘DEzs’.
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f , for each tumor i, using the standard Bayesian Information Criterion (BIC):

BICi = Np log(ni)− 2 log L̂ (2.B.7)

where Np is the number of free parameters for our model, i.e. the length of

(pi, σi). In particular, these are 7, 4, 4, 6 for models (2.2.1),(2.2.2),(2.2.3), and

(2.2.4), respectively. Substituting (2.B.3) into (2.B.7) and using our estimate

pi, we have

BICi = Np log(ni) + 2ni log
√

2πσ̂i +
1

σ̂2
i

||yi − f(p̂i)||2`2 (2.B.8)

BICi = Np log(ni) + 2ni log(σ̂i) + ni(1 + log(2π)) (2.B.9)

where σ̂2
i =
||yi − f(p̂i)||2`2

ni

(2.B.10)

44



2.C Supplementary Tables

Table 2.2: Estimated model parameter values. The estimated values of the (non-fixed)
model parameters for each mouse tumor (from the experiment for Fig. 5E in [107]), based
on tumor volume time series data.

Tumor α µ ` r sH sK

Scramble 1 4.60E-01 2.62E+03 1.50E-01 5.27E-02 1.50E-07 5.13E-04

Scramble 2 4.69E-01 6.91E+03 1.43E-01 1.83E-02 3.17E-06 2.74E-04

Scramble 3 4.52E-01 2.86E+03 1.45E-01 2.04E-02 3.94E-06 4.20E-05

Scramble 4 3.94E-01 3.74E+03 2.69E-02 4.79E-04 4.72E-06 1.67E-05

Scramble 5 4.80E-01 5.21E+03 7.77E-02 1.49E-02 1.01E-08 9.99E-04

Scramble 6 3.85E-01 8.49E+03 1.21E-01 1.10E-02 2.22E-08 1.89E-06

Scramble 7 3.72E-01 1.24E+03 9.75E-03 9.07E-02 5.35E-04 1.36E-08

Scramble 8 5.12E-01 4.71E+03 1.10E-01 2.26E-02 3.94E-08 9.59E-04

LSD1 KO 1 2.98E-01 1.67E+03 5.20E-02 7.06E-02 1.03E-06 2.80E-05

LSD1 KO 2 2.81E-01 8.99E+03 1.89E-02 6.80E-02 1.07E-04 1.12E-08

LSD1 KO 3 2.32E-01 2.55E+03 3.99E-02 7.95E-02 7.51E-05 4.99E-06

LSD1 KO 4 3.80E-01 6.30E+03 1.22E-01 7.92E-02 3.03E-05 9.23E-04

LSD1 KO 5 3.56E-01 4.63E+03 7.19E-02 1.73E-03 5.54E-08 1.74E-06

LSD1 KO 6 2.83E-01 8.16E+03 1.02E-03 2.77E-03 6.24E-04 2.56E-04

LSD1 KO 7 2.84E-01 5.03E+02 6.68E-02 1.56E-02 7.29E-05 3.13E-04

LSD1 MDA5 DKO 1 4.65E-01 3.39E+03 1.17E-01 2.38E-02 2.05E-07 1.71E-04

LSD1 MDA5 DKO 2 4.72E-01 3.47E+03 7.70E-02 4.00E-02 1.61E-07 9.65E-04

LSD1 MDA5 DKO 3 3.96E-01 5.18E+03 1.34E-01 1.14E-02 4.86E-08 1.32E-05

LSD1 MDA5 DKO 4 4.34E-01 3.94E+03 2.48E-02 9.29E-04 1.44E-06 8.81E-06

LSD1 MDA5 DKO 5 5.04E-01 3.34E+03 9.27E-02 2.71E-02 1.04E-08 9.64E-04

LSD1 MDA5 DKO 6 5.03E-01 7.25E+03 1.11E-01 2.76E-02 3.21E-08 9.55E-04
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Table 2.3: Logistic growth for immune deficient tumors. To account for the possibility
of immune-independent mechanisms of inhibited growth in LSD1 KO tumors, we estimated
the logistic growth model (2.2.2) for TCRαKO and TCRα/LSD1 DKO tumors (from Fig. 5C
in [107]). We compare the means of parameters α, µ, and C0 between the two conditions via
unpaired t-test. Even pre-FDR adjustment, we find no significant difference between µ and
C0 of our samples (t = 0.73, 1.36, and P = 0.476, 0.193, respectively), and marginal evidence
that the LSD1 KO condition has a higher immune-deficient growth rate than the control
scramble (t = −2.35, P = 0.038). This latter difference vanishes after adjustment. Thus,
for immunodeficient mice, we see no evidence for any anti-tumor effects of LSD1 inhibition.

Tumor α µ C0

Scramble TCRα KO 1 0.563743699 3912.194739 0.052569707

Scramble TCRα KO 2 0.480629132 4581.405315 0.137067466

Scramble TCRα KO 3 0.533601886 9990.79188 0.124822197

Scramble TCRα KO 4 0.262316687 9999.356249 9.160142923

Scramble TCRα KO 5 0.452943779 2437.152773 0.551289523

Scramble TCRα KO 6 0.349057835 5360.823555 1.827053661

Scramble TCRα KO 7 0.509650981 9987.564364 0.214161265

Scramble TCRα KO 8 0.580677922 2852.511648 0.229292158

LSD1 KO TCRα KO 1 0.334763587 9978.038937 2.40658147

LSD1 KO TCRα KO 2 0.289841785 7179.317676 7.514285629

LSD1 KO TCRα KO 3 0.339625003 3870.760716 4.572794932

LSD1 KO TCRα KO 4 0.299030515 9999.841561 2.850807521

LSD1 KO TCRα KO 5 0.36148731 9979.685307 7.152464226

LSD1 KO TCRα KO 6 0.366512912 9979.305856 0.294670011

LSD1 KO TCRα KO 7 0.293537226 7208.25365 8.984451724

LSD1 KO TCRα KO 8 0.382124921 1886.942171 1.05053347

LSD1 KO TCRα KO 9 0.526204655 2787.05914 0.088720404

LSD1 KO TCRα KO 10 0.417661279 9996.276858 1.062130233

Scramble TCRα (Avg) 0.46657774 6140.225065 1.537049863

LSD1 KO TCRα (Avg) 0.361078919 7286.548187 3.597743962
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2.D Marginal Parameter Densities

0.0 0.5 1.0 1.5 2.0

0
1

0
0

2
0

0
3

0
0

4
0

0

alpha

d
e

n
s
it
y

Marginal Parameter Densities (LSD1-KO #5)

2000 6000 10000

0
e

+
0

0
4

e
-0

4
8

e
-0

4

Max_C

d
e

n
s
it
y

0.00 0.05 0.10 0.15

0
1

0
2

0
3

0
4

0
5

0
6

0

ell

d
e

n
s
it
y

0.00 0.04 0.08

0
1

0
0

2
0

0
3

0
0

r

d
e

n
s
it
y

3 4 5 6 7 8

0
1

2
3

4

nlog(s_H)

d
e

n
s
it
y

3 4 5 6 7 8

0
.0

0
.5

1
.0

1
.5

nlog(s_K)

d
e

n
s
it
y

posterior prior

Figure 2.12: Prior and posterior parameter distribution for main model fitting
(LSD1 KO #5). Presented are the prior and posterior distribution of the parameters pi
of model 2.2.1, taken from the MCMC, where i is one of the LSD1 KO tumors. In order
from left to right, the panels here correspond to α, µ, `, r, log10(sH), log10(sK).
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Chapter 3

Signed and Unsigned Partial Information Decompositions of

Continuous Network Interactions

Abstract

Motivated by the task of drug-specific network inference in cancer

biology, we investigate the potential of the partial information decompo-

sition (PID) framework as a tool for network inference and edge nomina-

tion. In contrast to previous metrics of ‘synergy’ based upon interaction

information, which frames synergistic and redundant information as op-

posing quantities, the PID framework offers a means of disentangling

the two. Thus, PID may be able to identify pairs of expressing genes

that affect a response synergistically, even in the presence of redundant

information due to network dependencies.

To that end, we conduct both numeric and analytic investigations

of the Imin
∩ and IPM

∩ PIDs, from [125] and [45], respectively. In the

course of our work, we extend the IPM
∩ and Imin

∩ PIDs to continuous

variables for a general class of noise-free trivariate systems. We exam-

ine how each PID apportions information into redundant, synergistic,

and unique information atoms within the source-bivariate framework.

Although the synergy of the IPM
∩ PID is quite sensitive to interactions,

both our simulation experiments and analytic inquiry uncover that IPM
∩

is non-specific, and cannot distinguish interacting pairs from univariate

signals. By contrast, the Imin
∩ PID is quite specific, perhaps to a fault,

as it is not sensitive to interacting gene pairs when multiple interactions

determine the network response. We see that the IPM
∩ PID does not re-

spect conditional independence, while Imin
∩ does, demonstrated through
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asymptotic analysis of linear and non-linear interaction kernels.

The main technical contribution of our paper is the work extend-

ing the Imin
∩ and IPM

∩ PIDs to noise-free interactions of the form

T = g(X,Y ) for a well-behaved kernel g and jointly Gaussian predic-

tors X and Y . We provide straight-forward computations of the Imin
∩

and IPM
∩ PIDs for noise-free linear interactions, which serve as an in-

tuitive foundation. We then demonstrate a general form of the unique

information, for each Imin
∩ and IPM

∩ , for arbitrary kernel g. This form

is the expectation of a function that incorporates ratios of the partial

derivatives of g. In this way, we are able to connect the analytic and

information-theoretic behavior of our trivariate systems. We conclude

with an application of our framework to a non-linear sigmoidal switch

kernel, employed also in our network simulations.

3.1 Introduction

The development of high-throughput molecular assay technologies brought

molecular biology into the era of ‘big data’, providing high-dimensional mul-

tiomic measurements of cellular samples. Network science has emerged as a

core framework through which this data may be organized in a comprehen-

sive vision of cellular biology and disease pathology [70, 89]. The inference of

molecular networks from multiomics data has become a common method of

investigation. The emergence of single-cell sequencing technologies in the past

decade has been especially fruitful, as this allows investigators to account for

biological heterogeneity within sample. However, network inference methods

often grapple with unfavorable statistical power and noisy data.

Although less common than other methods, information theoretic tools

have been widely applied to gene network analysis. Information-theoretic
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methods are non-parametric and well-suited to capturing complex, non-linear

dependency between variables. Mutual information (MI) has commonly

been employed in place of Pearson correlation to create association networks

([18, 19, 25]). However, much like Pearson correlation and other crude pair-

wise methods, MI cannot distinguish between direct and indirect associations.

In gene regulatory networks (GRNs) and protein-protein interaction (PPI)

networks, we expect a highly interdependent structure, in which indirect as-

sociations are not immediately distinguishable from direct via any pairwise

comparison. Thus, these methods have an unacceptably high false discovery

rate; any networks inferred with them will include too many spurious associ-

ations for the biologically meaningful ones to stand out [110]. Thus, the next

generation of information methods moved beyond MI in two keys ways. First,

they attempted to remove indirect associations by accounting for redundancy

[116], e.g. [74, 80, 84, 110, 118, 134, 135]. Second, attempts were made to

specifically identify interacting genes by quantifying synergistic information

that can be acquired from neither gene alone [2, 123, 124].

Meanwhile, an initially parallel development within information theory has

emerged in the past two decades that addresses both concerns. First the neuro-

science ([15, 49]) and later the more general network communities rediscovered

the formalism of interaction information, whose first known use was by McGill

in [81] (see also [10, 117]). This quantity, initially termed synergy in the net-

works literature [2, 15, 49], is a signed extension of MI, distinguishing synergis-

tic and redundant information as opposites. A positive interaction information

indicates synergy, while a negative value indicates redundancy. However, this

quantity assumes that redundancy and synergy are opposing possibilities, and

provides no framework for the possibility of the simultaneous presence of re-

dundant and synergistic information between predictor variables [116]. This
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would be a major concern in any highly interdependent network, such as a

GRN or the human brain, where we might expect a large amount of synergy

and redundancy to each occur in distinct contexts for the same pair of nodes.

This lead into the development of the Partial Information Decomposition

(PID) framework, in order to addresses this limitation. Disentangling the syn-

ergy and redundancy of interaction information into distinct atoms [125], PID

is also able to highlight the presence of unique information atoms, which would

normally be cancelled out in the computation of interaction information. For

the purposes of network inference, the PID framework offers the possibility

of controlling the redundancy in interdependent gene expression data without

neglecting the useful information remaining, be it unique to a single predic-

tor or synergistic among multiple. The PID framework was met with much

enthusiasm within a community of researchers meeting at the intersection of

information theory, networks, complex systems, and neuroscience. However,

there is still dispute and no clear consensus over the correct definition of ‘re-

dundancy’, from which all other PID atoms follow. Multiple alternatives to

the original redundancy measure(function? metric?) Imin
∩ of [125] have been

proposed (e.g. [12, 45, 53, 56], see [77] for others). It seems likely that there

may not be any definition of redundancy that will be universally appropriate

to all or even most applications.

The PID framework offers a clarification of the confused concepts of synergy

and redundancy within information theory and theoretical(computational?)

neuroscience [116]. It took a few years for this work to migrate into the gene

networks literature. The PIDC method for single-cell GRN inference ([24])

was the first to apply the PID paradigm to the task of gene network inference

(see also [22, 23]), and has inspired [20]. This work used the unique informa-

tion atoms of the original Imin
∩ PID (see Definition 14) to remove redundant
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information from edge inference. The PID framework has not seen much use,

however, in the building of synergistic gene networks, similar to the interaction

information-based method of Watkinson et al. in [124]. Unlike the networks

inferred by [24], a synergy network is specifically interested in the network by

which genes create a particular biological response or phenotype. For instance,

Watkinson et al. considered a Boolean cancer/not-cancer variable [124]. In

[27], Chatterjee et al. construct synergy networks using a definition of synergy

identical to that of the minimal mutual information (MMI) PID of [6], which

under appropriate conditions encapsulates many non-negative PIDs includ-

ing the original of [125]. To our knowledge, no previous work has examined

the potential of the IPM
∩ PID to construct response-specific synergy networks,

transcriptomic or otherwise.

Moreover, there is still relatively little research into the effective use of PID

for continuous variables. Part of the original appeal of MI and information

theory for the construction of relevance networks lay in the ready adaptability

of MI to representations of gene expression data as continuous distributions,

via standard kernel methods [18]. To our knowledge, there are three other

efforts aimed at extending the PID framework to continuous variables ([6, 92],

and another ongoing work building upon [78]). We will be covering these

efforts in greater depth. Overall, the conceptual scaffolding for a continuous

partial information decomposition is still under construction [77].

The contribution of this chapter, then, is two-fold. First, we explore the

potential of PID as a tool for the inference of synergy networks, particularly

the PM PID of [45] (see Definition 15 for the relevant definition of PID in

this setting). The IPM
∩ PID is unusual in that it allows for signed information

atoms. We explore the implications of this in both simulation and analysis, and

find that it allows for counter-intuitive behavior that undermines the specificity
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of the synergy defined by the IPM
∩ PID. We see this in simulation, and also

analytically for a degenerate system of random variables (X, Y, T ), for which

T = g(X, Y ) is a deterministic response of the jointly Gaussian predictors X

and Y . Our second contribution, then, is to be the first work to extend the both

the Imin
∩ and IPM

∩ PIDs to such a system. We highlight that in Theorem 4 of

Section 3.8, we are able to provide an explicit integral formula for the unique

information in such systems for a general class of kernels g. This formula

depends upon the relative magnitude of the partial derivatives of g, connecting

the analytic properties of g to the probabilistic properties of (X, Y, T ). We

note that our work parallels the recent work done by Pakman et al. in [92]

for the IBROJA PID [12], in that both our work and theirs is concerned with

computing the unique information atom for continuous variables. There is

strong resemblance between the noise-free interaction that we are considering

(Eq. E4) and the example neural models (III.1) and (III.2) in [92]. Besides

our focus on different PIDs (Imin
∩ and IPM

∩ rather than IBROJA), our approach,

focus, and conclusions are also distinct.

The layout of this chapter is as follows.

In the rest of Sec. 3.1, we will review the previous work in the literature

relevant to our current work. We will review the application of information

theoretic tools to gene network inference, the development of the concepts

of redundancy and synergy in the networks literature, and the development

of the PID framework. We will review previous attempts to apply PID to

gene network inference as well as previous work on the application of PID to

continuous variables.

In Section 3.2, we will present the idealized gene network inference problem,

which motivates our investigation of the Imin
∩ and IPM

∩ PIDs to follow. We

are interested in examining their synergies as a tool for edge nomination,
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with respect to correlational networks and a response variable paired to them

(Def. 1).

In Section 3.3, we present three experiments, in which we simulated and

discretize network data in order to evaluate the (discrete) PID synergies as

inference tools. These experiments will provide a baseline understanding of

the distinguishing behaviors of the Imin
∩ and IPM

∩ PIDs, in the context of our

network inference problem.

In Section 3.5, we present the information theory that we will be needing

for our mathematical investigation of continuous interactions.

In Section 3.6, we present the conceptual framework for our investigation

of continuous PIDs. We will present a mathematical formulation of bivariate

interactions T = g(X, Y ), which simplify the network interaction framework

and will serve as our primary object of investigation. We also introduce the

definition of the Imin
∩ and IPM

∩ PIDs in the continuous setting.

In Section 3.7, we present a fully worked-out example of the continuous

PID concepts introduced in Sec. 3.6, using a linear interaction kernel. From

this simple example, we will already be able to gain insight into some of the

unusual behavior that the IPM
∩ PID exhibits in the experiments in Sec. 3.3.

In Section 3.8, we present a general integral formula for the unique in-

formation of noise-free interactions in Theorem 4, for both the Imin
∩ and IPM

∩

PIDs. Although the integrals set up by this formula tend to be non-trivial, it

nonetheless provides us with a deeper insight into the relationship between the

analytic properties of an interaction kernel g, and the informational relation-

ship between predictors X, Y and target T under the constraint T = g(x, Y ).

Besides allowing us to examine asymptotic conditional independence of pre-

dictors using Corollary 3 (applied later in Prop. 3.9.1), it also allows us to

relate the behavior of the IPM
∩ PID observed in this work to the concepts of
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informative and misinformative probability mass exclusions, as originally de-

veloped in [46]. These concepts grounded the development of IPM
∩ in [45], and

thus, in Sec. 3.8.2, we are able to tie our own investigations into this literature.

Penultimately, In Section 3.9, we use Thoerem 4 from the previous section

to analytically bound the unique information UPM
X of the sigmoidal interac-

tion kernel used for the experiments in Sec. 3.3. We are able to demonstrate

that this unique information, UPM
X , is negative, much as it was in all of our

simulations in Sec. 3.3.

We conclude this chapter in Section 3.10, with a thematic summary, some

final thoughts, and directions for future investigations.

3.1.1 Research Biography

Before discussing previous work in detail, it may be helpful to the reader to

understand the problem space within which this current work emerged. The

reader may skip to Sec. 3.1.2 without missing anything of essential importance

to the rest of this work.

Our work in the partial information decomposition began from earlier ef-

forts to identify interacting genes pairs in a small network of candidate genes

with limited data. Discussions with collaborators in cellular and cancer biol-

ogy made it apparent that they expected gene-drug interactions to be heavily

context-dependent. A single gene and its expressed proteins perform multi-

ple functions. Biological response can be hormetic and otherwise non-linear.

Moreover, a single gene may contribute to distinct pathways that simultane-

ously facilitate and inhibit drug action. Standard, low-complexity regression

was ineffective at identifying the relationships between candidate genes in our

data set. Insofar as our data was already statistically under-powered, more

complex regressions would have been useless. We thus turned to information
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theoretic methods, as many of these are non-parametric and do not require

model assumptions that are untestable without further experiments. Our ini-

tial aim was to identify collections of genes worth investigating together, as

potential interacting agents. Once these pairs are properly identified, siRNA

gene knockdown experiments could be used to test for a causal relationship

between the two genes and the response. The question of formulating and

testing a particular interaction model would have been the follow-up direction

for methodological and experimental research.

The collaborative effort did not materialize prior to the 2020 COVID epi-

demic, at which point experimental collaboration became impossible. During

the preparation for experimental collaboration, however, we ran many simu-

lated experiments to investigate the information theoretic tools available, and

determine those appropriate for evaluating in-lab experimental data. These

simulations serve as the pseudo-experimental foundation of our current inves-

tigation. Given the current state of affairs, these will suffice for the moment.

3.1.2 Previous Work

In this section, we review the literature relevant to our current work. Although

we will pay detailed attention to those works most pertinent to our own, we

are also interested in providing a coherent narrative for the intersection of

two distinct branches of research: the PID literature, and the ’omics network

literature. Although ours is not the first work at the intersection of these

fields ([13, 20, 24, 50], the overlap is still relatively sparse. Most experimental

applications of PID have been in neuroscience [77], which falls within the

broader field of network science, but is distinguished from the mainstream

’omics network research.

We begin by reviewing the history of the application of information-
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theoretic tools to the task of network inference, with an emphasis on the

inference of gene regulatory networks (GRNs) from bulk or single-cell gene

expression data (Sec. 3.1.2.1). We will often refer to ‘gene networks’ as a more

generic label, which includes both GRNs, which merely describe inter-gene re-

lationships, and also synergistic networks, in which associations between genes

represent a synergistic interaction by which the two genes affect a target bi-

ological response. We will discuss the early uses of mutual information as an

alternative statistic of association between genes. We will then discuss subse-

quent attempts to remove confounding redundant information, analogous to

the use of partial correlation in place of pairwise correlation for associational

networks. We will also cover the subsequent interest, first in neuroscience and

then in gene networks, of quantifying ‘synergy’ within a network structure.

This discussion will lead us in the foundation of PID by [125], and the

subsequent developments within that literature (Sec.3.1.2.2). We will discuss

previous attempts to apply PID to gene network inference, and also the work

that has been done to extend PID to continuous variables.

We will then devote subsections to three previous works in need of at-

tention. We will review the PIDC methodology of PID-based GRN inference

as developed in [24] (Sec. 3.1.2.3). We will review the continuous MMI PID

for Gaussian variables developed in [6] (Sec. 3.1.2.4). Finally, we will cover

a brief evaluation of entropy-based gene-gene interaction methods [72], which

highlights many of the same themes that we will emphasize in our work, in-

cluding non-specificity and conditional (in)dependence of predictor variables

(Sec. 3.1.2.5).
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3.1.2.1 Information Theory and Network Inference

Multiple information theoretic approaches to network inference have been de-

veloped over the past two decades. Our current work focuses upon the Partial

Information Decomposition (PID) framework, which can be understood as a

branch within the broader computational information theory literature. We

will first sketch the development of information theoretic methods as they

have been applied to the inference of molecular networks, in order motivate

the emergence of the PID paradigm. A recent overview of information theo-

retic methods in computational biology can be found in [25]. A comprehensive

(as of 2015) enumeration and categorization of the use of information methods

for molecular network inference can be found in the two-part series [88] and

[87]. The PID literature began in 2011 with with [125]. Thus, for our pur-

poses, reviewing the development of generic (non-PID) information theoretic

methods, up to that point in time, is sufficient background to motivate the

application of PID to biological network inference.

Mutual information (MI) has commonly been used to build associational

networks, as it offers a non-linear, non-parametric alternative to correlation

and other traditional statistical options. One of the early applications of MI to

gene network inference was in the development of relevance networks from gene

expression data by Butte and Kohane in [16]. Originally, they used pairwise

correlation [17], before employing mutual information in [16]. In choosing MI,

they claimed, among other advantages [18]:

1. MI can better handle irregularly distributed variables.

2. MI can handle more complex interactions, including negative regulation

and mid-range expression activity.

3. MI can easily extend to models where expression levels are modeled with

58



noise, i.e. as distributions.

4. MI can naturally incorporate other, qualitatively distinct variables (e.g.

phenotype).

However, MI suffers from many of the same issues as Pearson correlation for

network inference. Neither can distinguish direct from indirect interactions,

which is especially problematic for dense gene networks [80, 110]. For cancer-

specific gene networks, in particular, there is reason to suspect more cross-

talk, i.e. more active network edges, within molecular networks, and thus

more indirect interaction. When networks are inferred via isolated pairwise

comparisons, type II errors become a structural concern, and not merely a

statistical problem to be overcome with more data.

Thus, the next generation of information-theoretic inference methods

aimed at controlling FDR due to indirect associations. A head-to-head com-

parison of a few of these, compared to traditional MI relevance networks, can

be found in [41]. Some of the more popular methods from this next generation

include:

• The ARACNE method [7, 80] attempts to eliminate indirect associations

in a two-part process. First, it nominates edges using MI, taking all gene

pairs with MI above a cutoff I0, determined from an empirical MI dis-

tribution estimated via data shuffling. Then, it examines all nominated

triangles, and removes the edge with the lowest MI. They motivate this

work with the data processing inequality (DPI). If X, Y, Z are a triplet

of genes and X → Y → Z is a Markov chain, then the DPI gives us

I(X;Z) ≤ min [I(X;Y ), I(Y ;Z)]. Hence, their triplet pruning is guar-

anteed to remove any edge between conditionally independent genes.

• MRNET [84] takes a sequential approach to edge nomination in MI.
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Each potential neighbor to a target gene Y is evaluated on the difference

between its MI with the target, I(Xj, Y ), and the cumulative redundancy∑
k I(Xj, Xk) for each previously selected neighbor Xk of Y . This is an

application of the minimum redundancy-maximum relevance (MRMR)

method from [37].

• The MIDER method [118] is also a two-part process, with the first step

nominating edges via MI. In the second step, indirect associations are

sequentially filtered out by requiring nominated edges to meet a thresh-

old in entropy reduction, conditioned on already accepted neighbors.

This is mathematically synonymous with a relative conditional mutual

information (CMI) threshold.

• The work in [110] is likely the first to explicitly consider CMI in net-

work inference. Soranzo et al. offer a head-to-head comparison of many

Pearson correlational and information methods of inference, including

the ARACNE framework.

• Many other works [74, 76, 134, 135] also use CMI to control for indirect

associations.

What unifies all these of works is their concern with the information con-

tained in indirect associations, which accounts for the high FDR of isolated

pairwise comparisons. We may say that they all aim, directly or indirectly,

to exclude gene pairs with high MI but low CMI. The ARACNE method, al-

though it does not directly employ CMI or a related quantity, is essentially

an indirect method of eliminating edges with high MI but low CMI when

conditioned on a mutual neighbor of both genes. The authors of MRNET

understand their instantiation of the MRMR criterion to be an approximation

of CMI [84]. The MIDER method’s entropy reduction criterion is synony-
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mous with normalized CMI. Thematically, what ties together this literature

is a wariness of what we may term redundancy. The highly complex depen-

dency structure within GRNs leads to an information landscape characterized

by redundant information, or the sharing of uncertainty among more than

two variables.

While this branch of research aimed at limiting redundancy, a parallel effort

aimed to capture and employ the equally elusive quality of synergy. Whereas

redundancy characterizes indirect associations that ought to be discarded, a

synergy ought to locate truly multivariate associations between variables that

are not reducible to pairwise interactions. The neuroscience literature intro-

duced synergy into the networks literature in [15, 49]. Within a signal, neural

spikes convey less information in isolation than when they are taken together

in their succession. Brenner et al. [15] introduced1 the following definition:

the synergy level of X1 and X2 with respect to the variable Y is

SynY (X1;X2) = I(X1;X2|Y )− I(X1;X2).

A positive value is said to indicate synergy, while a negative value indicates

redundancy. This formula for synergy was previously defined in the informa-

tion literature as interaction information [81] which we will turn to presently.

Dimitris Anastassiou applied this definition of synergy framework to gene ex-

pression data in [2]. John Watkinson, a student of Anastassiou’s, was to our

knowledge the first to apply synergy to gene network inference in [124] and

[123], both as part his dissertation research [122]. In [124], Watkinson et al.

inferred gene ‘synergy networks’ for a specific cancer phenotype, formalized

as a Boolean variable. In [123], the same group used synergy to augment the

1Brenner et al. introduced the notion of synergy in an NEC technical note in 1998, cited
in [49]. The author has not located this original note, and the work in [15] does not reference
it.
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CLR algorithm, an extension of MI relevance networks previously developed

in [42].

Interaction information, equivalent to Brenner’s synergy for three variables,

was first introduced by McGill in [81], and is formalized in contemporary

notation2 as an extension of mutual information:

I(T ;X;Y ) = I(T ;X|Y )− I(T ;X). (3.1.1)

where T is the received signal and X and Y are the transmitted signals3 In

this definition, the three variables are said to have a positive interaction when

knowledge of one variable increases the information flow between the others,

i.e. when I(T ;X|Y ) > I(T : X). As discussed above, this phenomenon has

come to be understood as signifying synergy [116, 125]. By contrast, a negative

interaction occurs when knowledge of one variables reduces the information

shared between the other two, i.e. I(T ;X|Y ) ≤ I(T ;X). This is understood

as signifying redundancy [116, 125].

Let us consider an example relevant to gene networks. Suppose X, Y, and T

signify the expression levels of genes, where there is cross-talk between X and

Y , and both are suspected of activating a cellular process involving T . It may

be that, by gaining knowledge of activation of Y , X becomes more informa-

tive about T because the activation of both X and Y would suggest a broader

2McGill’s original formulation uses the terminology of transmission information in place
of mutual information, and assumed empirical distributions. His definition of interaction
information for three variables can be found in Eq. 13-14 on p. 101 of [81]. Interaction
information is defined for more than three variables, however. Furthermore, up to a differ-
ence of sign convention, it is equivalent to the quantity developed by Hu Kuo Ting in [117]
and Anthony Bell in [10]. Ting defines this alternative quantity as an additive set function,
said to quantify multivariate amounts of information, but does not give it a particular name
[117]. Bell designates the quantity as co-information. In this work, we discuss only interac-
tion information in the three variable case, taking the sign convention used in [81]. This is
the setting in which the PID framework is situated [125].

3The quantity is symmetric in the three arguments, and thus the designation of target
signal is arbitrary.
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functional context, e.g. anaerobic respiration. Thus, I(T ;X|Y ) ≥ I(T ;X)

because X informs on T within a specific context that Y can affirm, reducing

the uncertainty in the relationship between X and T . However, it is also quite

possible that the relationship that X has to the activation of T is largely me-

diated through Y . Here, any information that X provides about T is shared

or redundant with that information in Y , and thus I(T ;X|Y ) < I(T ;X),

i.e. we have a negative interaction. In an idealized, biologically implausible

version of this scenario, we might have that X → Y → T forms a Markov

chain, and so I(T ;X|Y ) = 0. Thus, interaction information is pure redun-

dancy: I(T ;X, Y ) = −I(T ;X). In general, if X and Y are independent, then

the interaction information is strictly non-negative, exactly equal to the con-

ditional mutual information I(X;Y |T ), and so the interaction is non-negative

(synergistic or zero). If either X or Y is conditionally independent of T , given

the other, then the interaction is non-positive (zero or redundant). Schneid-

man refers to the condition I(T ;X;Y ) = 0 as ‘information independence’, as

a third type of ‘independence’ after typical and conditional, i.e. I(X;Y ) = 0

and I(X;Y |T ) = 0, respectively [101].

Identifying genes that act synergistically is indeed a fundamental problem

in molecular biology. For instance, it is a commonplace that transcription

factors behave synergistically [99, 119]. It is not difficult to see the shortcom-

ing of the interaction information approach, which classifies triplets as net

synergistic or net redundant. In truth, synergy and redundancy are not

incompatible opposites. In reality, we expect the two to often co-occur within

the same variables. When there is significant cross-talk and dependency be-

tween X and Y , then we expect some quantity of redundant information about

any significant causal relationship X → T or Y → T . On the other hand, we

expect, for many gene pairs of interest, some element of synergy. GRNs are
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generally characterized by a good deal of pathway redundancy and robustness,

and this becomes especially pronounced in cancer cells4 Thus, between alter-

native feedback mechanisms and topological cyclicity involving genes outside

{X, Y, T}, we do not generally expect a situation where X → Y → T is a

Markov chain. To the contrary, the knowledge of both X and Y together

will often better inform us regarding activated processes than either alone,

providing synergistic information about T . Synergy should estimate that in-

formation as an explicit quantity beside, and not in opposition to, redundancy

induced by cross-talk between the genes. The PID framework attempts to

disentangle these two quantities of synergy and redundancy [116, 125]., thus

offering an attractive framework for the inference of response-specific synergy

networks. We will now turn to the development of PID and its current state

in the literature.

3.1.2.2 Partial Information Decomposition (PID)

The PID paradigm was introduced by Williams and Beer in [125]. Their work

was motivated by interaction information, and aimed to address the conflation

of synergy and redundancy within I(T ;X;Y ). In particular, they sought to

decompose the information provided about T by predictors X and Y into four

atoms of information: redundancy, synergy, and unique information for each

4See, for instance, literature on network entropy [36, 79] and on signaling entropy [113,
114, 115]. The former is more theoretical, while the latter is grounded within computational
biology and transcriptomic data analysis.
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predictor. The atoms would fulfill the following equations:

I(T ;X, Y ) = R(T ;X, Y )︸ ︷︷ ︸
Redundant Info.

+UX(T ;X, Y ) + UY (T ;X, Y )︸ ︷︷ ︸
Unique Infos.

+ S(T ;X, Y )︸ ︷︷ ︸
Synergistic Info.

(E1)

I(T ;X) = R(T ;X, Y ) + UX(T ;X, Y ) (E2)

I(T ;Y ) = R(T ;X, Y ) + UY (T ;X, Y ) (E3)

This type of decomposition is generally referred to as ‘bivariate’, since it in-

cludes only two predictor variables. The framework in [125] is defined for

an arbitrarily large (though finite) number of predictors. A PID can be

uniquely defined by its redundancy function I∩. Strictly speaking, it is an

order-preserving function on a lattice of ascending collections of sources, the

designation for subsets of predictor variables. Williams and Beer cited, among

others, the information lattice structure from [10], in developing their own lat-

tice formalism in [125]. We will not be utilizing this formalism in our current

work except in passing, as we are restricting ourselves to the bivariate case,

with the four PID elements R,UX , UY , S corresponding to the lattice elements

{X}{Y }, {X}, {Y }, and {X, Y } respectively [125].

If one of these four atoms is defined, then the other three will follow from

Eqs E1-E3. Williams and Beer introduced one measure of redundancy, the

Imin
∩ function that we will present in Def. 14 (typically denoted Imin in [125]

and elsewhere). This redundancy function, in turn, defines all four of these

atoms Rmin, Smin, Umin
X , and Umin

Y . With their definition, Williams and Beer

achieved the aim of decomposing interaction information:

I(T ;X;Y ) = Smin(T ;X, Y )−Rmin(T ;X, Y ) (3.1.2)

Their work opened a novel approach to multivariate information. It offered
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a welcome break from the previous perspective on synergy and redundancy,

which held them to be mutually exclusive quantities as captured by the sign of

interaction information [77, 116]. This is especially attractive to our interest

in gene network analysis, where we expect both redundancy and synergy in

any pair of interacting genes.

However, the Imin
∩ redundancy function was not widely accepted as the op-

timal choice for quantifying redundant information [77], and multiple alterna-

tives have been proposed [12, 45, 53, 56]. One of the most common complaints

is that the Imin
∩ function does not distinguish the same information from the

same amount of information. Specifically, regarding each outcome T = t of

the target variable, Imin
∩ compares the amount of information each predictor

provides about that outcome, regardless of the degree of overlap of the out-

comes in which each predictor informs upon T . Harder et al. constructed a

particularly striking example of the draw-back to this approach [53] (see also

[52]), later dubbed the ‘two-bit copy’ problem [56, 77]. When T = (X, Y ) is

a two-bit copy of i.i.d. one-bit binary variables X and Y — i.e. H(T ) = 2

and H(X) = H(Y ) = 1 — the Imin
∩ function assigns one bit each of redun-

dant and synergistic information to the decomposition of I(T ;X, Y ). For any

t = (x, y) ∈ {0, 1}2, we have that X and Y provide the same amount of infor-

mation about that outcome, on average. Thus, all the information contained

within I(T ;X) (and I(T ;Y )) is assigned to redundancy, and the synergy atom

follows. Much of the PID community believes that it is more intuitive for a

PID to designate R = S = 0 and UX = UY = 1. A more thorough review

of the objections and alternatives to the Imin
∩ PID can be found in the review

[77], the overview of a 2018 special issue of Entropy on the PID framework.

This cover paper also serves as a helpful gateway to the emergent PID canon,

as it was co-written by notable senior researchers in the field.
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Despite the rich development of the PID framework over the past decade,

there are two key areas of research that remain relatively unexplored. First, the

literature on the application of PID to the task of gene network inference has

been relatively sparse. The most visible effort has been in the development

by Chan et al. of the PID and context (PIDC) methodology for network

inference [22, 24], which we will cover in greater detail presently (Sec. 3.1.2.3).

More recently, Cang and Qin applied a similar approach to spatial single-cell

sequencing data [20]. We will describe this in greater detail below.

Second, the PID literature has largely been confined to the study of discrete

or discretized variables [77]. Adam Barrett contributed an early foray into

the PID analysis of continuous variables in [6], in which he considered the

extension of the PID framework to jointly Gaussian variables, both static

and dynamic. In the specific context of jointly Gaussian variables, Barrett

demonstrated that for a large class of potential PIDs (including those in [125],

[52], and [12], but excluding [45] and [56]), the PID of a trivariate jointly

Gaussian system must necessarily take the same form, which they term the

minimal mutual information (MMI) PID. We will review this work in greater

detail in Sec. 3.1.2.4, as there is significant overlap with our own analysis of

the Imin
∩ PID, particularly in Sec. 3.7. We present a stand-alone proof that

aligns with the narrative focus upon interaction kernels g(X, Y ) that we will

be exploring in this effort. Besides MMI PID for Gaussians, there are other,

much more recent works relevant to extending PID to continuous variables.

Ari Pakman has extended the IBROJA PID ([12]) to continuous variables [92].

Abdullah Makkeh and his colleagues have made a major stride is developing a

PID redundancy function that is differentiable with respect to the underlying

probability mass function in [78]. This development is a crucial step for their

continuous extension of the PID framework, and we anticipate forthcoming
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work from the same group.

Besides the PIDC, we are aware of only the one other applications of the

partial information framework to gene network inference [20], and handful of

other related works [13, 50]. We briefly summarize these in turn. Zixuan Cang

and Qing Nie developed an ambitious methodology for inferring inter-cellular

signaling networks from limited spatial scRNAseq data [20], using optimal

transport methods. They employed the unique information atom of the Imin
∩

PID in order to infer intercellular signaling within a spatial neighborhood,

with a formalism similar to that from the PIDC method.

In a biostatistical application of PID unrelated to gene networks as such,

Granada et al. used PID as part of the information-theoretic analysis of cellu-

lar predictors of the response to cisplatin, a common chemotherapeutic agent

[50]. As discrete predictors, they examined both proliferative history and cell

cycle state, in addition to cisplatin dosage. An MI-based analysis indicated

that cisplatin dose was the most informative sole predictor. However, employ-

ing the IPM
∩ PID from [125], they found synergistic and redundant information

for the combination of cisplatin dosage and proliferative history as predictors.

They noted that for low and medium cisplatin dosage, proliferative history

seemed to shift the likelihood of cell arrest versus cell death, with a higher

proliferative index favoring non-lethal arrest.

Finally, Ayan Biswas conducted a PID-based investigation of a two-step

cascade, modeling the transcriptional motif S → X → Y as a system of

stochastic differential equations [13]. Using Barrett’s continuous extension [6]

for Gaussian variables, the author examined relative PID components under a

varying ‘fitness’ parameter controlling the expected population of the source

species S. There is some resemblance between this work and the simulation

analysis we conduct in Section 3.3 and Section 3.7.3, at least in terms of the
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visualizations used to examine relative PID components.

3.1.2.3 PID for GRN Inference: The PIDC Method

Our work applies the PID framework to the study of gene regulatory networks,

which is a surprisingly sparse niche of the literature. To our knowledge, the

first application of PID to GRN inference lies in the development of the PIDC

algorithm [24], central to the dissertation work [22]. In [24], Chan et al. de-

velop a similarity score designated as the proportional unique contribution

(PUC). For the collection of genes in their network V (denoted S in their pa-

per), for each candidate pair (X, Y ) they define the PUC (originally denoted

µX,Y ) as

PUCX,Y =
∑

Z∈V\{X,Y }

Umin
X (Y ;X,Z)

I(X;Y )
+
Umin
Y (X;Y, Z)

I(X;Y )
. (3.1.3)

The idea behind this quantity is as follows. Consider the first term in the sum-

mand, Umin
X (Y ;X,Z)/I(X;Y ). This considers the Imin

∩ PID of the bivariate

system in which Y is the target variable, and X is paired with every other gene

Z as potentially overlapping (i.e. redundant) predictors of Y . The fraction

quantifies the proportion of mutual information I(Y ;X) that is not redundant

with the other gene Z. This proportion is computed and summed over every

other gene Z. Likewise, for the symmetric scenario in which X is the the

target and Y is paired with each Z as a predictor, we have the second term

in the summand. The statistic PUCX,Y is then compared to the empirical

distribution of scores for each gene to arrive at a confidence scoring.

This approach is more interested in using PID to eliminate redundancy,

rather than discover synergy, as compared to what we will be presenting in

this paper. We see it as akin to the earlier methods of reducing redundancy
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that we have previously discussed, including ARACNE, MRNET, and MIDER

[80, 84, 118]. PIDC uses the Imin
∩ redundancy function, but any question of

which PID redundancy function to use reduces to the question of how a given

redundancy chooses to partition the MI between candidate genes I(X;Y ) into

unique and redundant information for each candidate confounder Z. If the

relationship between X and Y is conditionally independent of every other

gene, then PUCX,Y achieves its maximal value of 2.

PIDC has had mixed results in benchmarking exercises. Chen and Mar

evaluated PIDC along with four other methods for GRN inference from single

cell expression data in [29]. Two other information-based methods were also

examined: the ARACNE method [80] described above, and the CLR method

from [42]. Using simulated networks and also experimental data sets matched

to the STRING network (STRINGv10, [111]) they found none of the methods

examined to be particularly powerful. For one simulation of 100 genes (Sim1

in Fig. 2a in [29]), the ROC curve is indistinguishable from random guessing.

Pratapa et al. conducted another recent benchmarking exercise [94] that found

that PIDC was relatively favored, compared to many other methods. PIDC

performed well for some experimental data sets (with the STRING network

taken as ground truth) and Boolean models curated from the literature. The

authors ultimately recommend PIDC along with tree-based methods GENIE3

[57] and the related GRNBoost2 [86], citing both the accuracy and stability of

PIDC and GENIE3. One of the interesting results from [94] was that methods

that performed well for synthetic data sets created with GeneNetWeaver (sim-

ilar to those in [24]) did not perform as well for literature-curated Boolean

models or experimental data sets (paired to the STRING network). Taken

together, these two exercises suggest that PIDC appears at least as reliable as

other popular methods of GRN inference from single-cell data, and performs
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reasonably well for models and data based on the current understanding of bio-

logical reality. However, we do want to emphasize that the methods examined

in [24] and [94] are still a limited subset of those popular in the literature.

GRN inference and synergy network inference are distinct tasks: the for-

mer is interested only in the relationships between genes, while the latter is

interested in how these relationships relate to a biological response. The for-

mer task, by its nature, may only be interested in PID synergy insofar as it

is interested in discovering multiedges. Our work in this paper, in motiva-

tion, is more interested in the latter task. Even so, much of our theoretical

investigation, particularly that in Sections 3.8 & 3.9, is examining unique in-

formation. If there is a stronger connection between our work and the PIDC

method besides a high-level interest in gene network inference using PID, it

is not apparent to us. We leave the exploration of that possibility to future

work.

3.1.2.4 PID of Gaussian Variables and the Minimal Mutual In-

formation (MMI) PID

Adam Barrett made the first effort at extending the PID framework to con-

tinuous variables in [6]. He studied three jointly Gaussian variables of mean

zero and unit variance, which we represent here:

(X, Y, T ) ∼ N(0,Σ) (3.1.4)

Σ =


1 ρX,Y ρX,T

ρX,Y 1 ρY,T

ρX,T ρY,T 1


Using the IBROJA PID developed in [12] and [53], the bivariate PID was
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computed for this triplet, which was proven to be identical for a large class

of potential PIDs, including the original from [125]. When Bertschinger et al.

introduced the IBROJA PID in [12], they introduced the condition (?) for a

PID. This new condition requires that unique information, i.e. UX and UY in

any PID of I(T ;X, Y ), must depend only upon the marginals pX,T , pY,T , and

pX,Y . The Imin
∩ PID fulfills this condition, as does IBROJA. For both of these

PIDs, then, we may present one of Barrett’s main results (the WB Axioms,

labeled equations (M), (P), (SR), (S), appear in Section 3.6.2).

Theorem 1 (Barrett 2014). Let I∩ be a PID redundancy function (Def. 13)

that satisfies the WB axioms, and for which the induced unique information

atoms in the bivariate PID also satisfy condition (?) from [12], i.e. they depend

only upon the marginal distributions pX,Y , pX,T , and pX,T . Then for variables

(X, Y, T ) as in Eq. 3.1.4, I∩ induces the following bivariate PID:

R(T ;X, Y ) = min(I(T ;X), I(T ;Y ))

UX(T ;X, Y ) = I(T ;X)−min(I(T ;X), I(T ;Y ))

UY (T ;X, Y ) = I(T ;Y )−min(I(T ;X), I(T ;Y ))

S(T ;X, Y ) = I(T ;X, Y )− I(T ;X)− I(T ;Y ) + min(I(T ;X), I(T ;Y ))
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If we assume |ρX,T | ≤ |ρY,T |, then we have that

R(T ;X, Y ) = I(T ;X) =
1

2
log

1

1− ρ2
X,T

UX(T ;X, Y ) = 0

UY (T ;X, Y ) = I(T ;Y )− I(T ;X) =
1

2
log

1− ρ2
X,T

1− ρ2
Y,T

S(T ;X, Y ) = I(T ;X, Y )− I(T ;Y )

=
1

2
log

(1− ρ2
X,Y )(1− ρ2

Y,T )

1− (ρ2
X,Y + ρ2

X,T + ρ2
Y,T ) + 2ρX,Y ρX,TρY,T

In particular, this decomposition holds for both the Imin
∩ and IBROJA PIDs

developed in [125] and [12, 53] respectively.

The demonstration of this decomposition in [6] proceeds as follows. First,

the IBROJA PID from [12] is extended to continuous Gaussian variables

(X,T, T ), and the above decomposition is demonstrated for that PID. Then,

by invoking Lemma 3 from [12], it follows that this decomposition provides

an upper bound on unique information for any decomposition induced by a

redundancy I∩ satisfying the (bivariate) WB axioms and (?) conditions. If

UBROJA
X = 0, it follows that UX = 0 for any such I∩. Thus, the same PID

follows, regardless. Barrett terms this the minimal mutual information (MMI)

PID.

Our investigation to follow builds upon this work, particularly in Sec-

tion 3.7. In that section, we are considering a noise-free linear interaction

T of jointly Gaussian predictors X and Y . With appropriate renormaliza-

tion, our variables (X, Y, T ) in Sec. 3.7 are identical to a singular limit of the

(X, Y, T ) above, and our result in Theorem 2 is essentially identical to that

in Theorem 1. Indeed, Barrett anticipates this limit (pg. 7 of [6]). Our ap-

proach to Theorem 2 is distinguished from that in [6] in that it (a) directly
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employs Imin
∩ in its continuous form, whereas [6] uses IBROJA and (b) explores

how Imin
∩ behaves in noise-free (i.e. degenerate) interactions. We present it as

a stand-alone theorem because of these features, plus the narrative continuity

it provides in conjunction with Theorem 3 and the more general Theorem 4

in the following section.

3.1.2.5 Lee et al. Investigate the Non-Specificity of Entropy-

Based Synergy Inference Methods

Finally, we conclude our review of the literature by noting that our inves-

tigation of PID synergy builds upon many of the themes highlighted in the

concise article [72]. In this work, Lee et al. considered multiple entropy and

MI-based methods for detecting gene-gene interactions for a binary trait. They

were working within the elementary framework in which a binary phenotype

Y may be synergistically influenced by discrete SNP predictors X1 and X2.

They considered the entropy methods from [38], [43], and [132], with their

analysis of the latter applicable to the similar measure proposed in [26]. They

highlighted the lack of specificity in entropy-based methods of edge nomina-

tion. Thematically, this is related to a central topic within our own work as

well: the non-specificity of the IPM
∩ PID.

The authors observed that only the method from [38] was guaranteed to

assign a zero score to a system in which X2 is conditionally independent of

Y , given X1. Similarly, in our own work, we will continually highlight how,

unlike the Imin
∩ PID or any PID satisfying the WB axioms, the IPM

∩ PID will

not necessarily assign zero synergy to a pair of predictor genes even if one of

the genes is conditionally independent of the target variables. Ironically, it is

by assigning too much redundancy to such cases that the IPM
∩ PID also assigns

too much synergy (Eq. 3.6.33).
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3.2 Motivation: Gene Network Inference Problem

Our current work is motivated by the application of partial information meth-

ods to the task of network inference, with the specific goal of developing tools

for edge nomination in cancer biology applications. To create clinically useful

models of drug action and sensitivity, it is important to identify key molecular

agents and interactions, and to distinguish them from auxiliary pathways. The

Partial Information Decomposition (PID) extension to information theory of-

fers an agnostic, non-parametric approach to identifying the most informative

combinations of predictor variables. Consider, for example, a drug response

metric, e.g., the half inhibitory concentration (IC50), as a target and the ex-

pression levels of active genes as candidate predictors. The PID framework

then gives us a means of identifying and coupling synergistic biomarkers while

eliminating redundant pathway information.

Going forward, we will restrict our terminology in order to distinguish be-

tween ‘edges’ and ‘interactions’ in a network, where ‘edges’ will correspond

to a meaningful relationship between the node variables (in our case, correla-

tions), and ‘interactions’ will refer to the joint effect that the node variables

have upon a response variable.5 In this work, our motivation is in developing

the appropriate metrics for the task of inferring a response-specific network

of interacting genes from transcriptomic data. The interactions are taken to

represent the joint contribution of two expressing genes to a drug response.

Although we focus on gene-interaction networks as our main motivation, these

methods can be applied to many of the biological (and social) interaction net-

workse. To frame this problem mathematically, we consider a simple model

5This is in contradistinction to, for instance, a protein-protein interaction (PPI) network,
which has no associated response variable and by ‘interaction’ indicates a biomolecular
relationship. Rather, our use of ‘interaction’ is more akin to the edges in synergy networks
[124].
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of a gene interaction network paired to a drug response, in which genes are

modeled via standard normal variables. Gene expression is often modeled as

either log-normal or Gamma distributed [8]. Assuming log-normal distribu-

tions, our predictors can be interpreted as expression levels that have been log

transformed and normalized.

Definition 1 (Gene Interaction Network). Let (V , E) be an undirected graph

of n = |V| genes, and Sgn : E → {±1} an edge attribute signifying positive or

negative regulation. Let X ∼ N(0,Σ) be an n-dimensional Gaussian vector,

where each Xi signifies the expression of gene i. For a given constant

ρ ∈ (0, 1), X has covariance structure:

Σi,j =


1, i = j

0, {i, j} 6∈ E

±ρ, Sgn({i, j}) = ±1

(3.2.1)

Let E ′ ⊂ {(i, j)|{i, j} ∈ E} be a subset of directed edges, called interactions.

The (drug) response T is the real-valued variable of the form

T =
∑

(i,j)∈E ′
g(Xi, Xj) (3.2.2)

where g : R2 → R is the interaction kernel. The interacting genes E ′

model the subset of the total interactions that significantly alter the response

T . We refer to this full collection of objects as a gene interaction network,

denoted N .

We may refer to a mixed gene interaction network when, for some

subset of vertices S ⊂ V, and associated coefficient vector β ∈ R|S|, the re-
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sponse T takes the form

T =
∑

(i,j)∈E ′
g(Xi, Xj) +

∑
s∈S

βsXs (3.2.3)

for a non-linear kernel g.

Given a gene interaction network N , our goal is to identify the pairs of

interacting genes E ′ from sample data drawn from (X, T ). Here, we seek a

statistic that discriminates interacting pairs from non-interacting pairs, i.e.,

between the hypotheses (i, j) ∈ E ′ and (i, j) 6∈ E ′. For this network inference

task, we will use measures of synergistic information from the PID literature

to infer membership (or lack thereof) in E ′. Given the expression of two genes

Xi and Xj and the response T , the PID framework allows us to decompose

the mutual information between predictors and response into four atoms of

information:

I(T ;X, Y ) = R(T ;X, Y )︸ ︷︷ ︸
Redundant Info.

+UX(T ;X, Y ) + UY (T ;X, Y )︸ ︷︷ ︸
Unique Infos.

+ S(T ;X, Y )︸ ︷︷ ︸
Synergistic Info.

(E1)

I(T ;X) = R(T ;X, Y ) + UX(T ;X, Y ) (E2)

I(T ;Y ) = R(T ;X, Y ) + UY (T ;X, Y ) (E3)

We discuss these atoms in more detail in Section 3.6.2.1. While the original

PID framework from [125] defines redundant information as in Def. 14, multi-

ple other PIDs have been proposed [12, 45, 56]. In this paper, we are mainly

concerned with the decompositions proffered in [125] and [45], and to distin-

guish amongst these in the subsequent motivating experiments and theory, we

shall adopt the following notation: we will let Imin
∩ denote the general PID

framework of [125] with Smin, Rmin, Umin
X , and Umin

Y denoting the respective

synergistic, redundant, and unique informations in the Imin
∩ framework; simi-
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larly, we use IPM
∩ to denote the general PID framework of [45] with SPM, RPM,

UPM
X , and UPM

Y denoting the respective synergistic, redundant, and unique

informations in the IPM
∩ framework.

From each of the above PID frameworks, we will attempt to infer mem-

bership in E ′ via an estimate (denoted Ŝ) of the synergistic information atom

S(T ;Xi, Xj) (i.e, Smin(T ;Xi, Xj) and SPM(T ;Xi, Xj)) derived from the empir-

ical distribution. To this end, if two genes i and j contribute to the response in

Eq. (3.2.2), then for some fixed c > 0 we would expect synergistic information

to satisfy

S(T ;Xi, Xj) > S(T ;Xi′ , Xj′) + c

for some c > 0 and any (i′, j′) 6∈ E ′, and hence

EŜ(T ;xi, xj) > EŜ(T ;xi′ , xj′) + c.

We explore this further in three illustrative examples considered in the next

section.

3.3 Synergistic Information Discrimination in Network Simula-

tion Experiments

In order to evaluate the multiple competing definitions of PID synergy, we

first simulate gene interaction networks and evaluate the performance of sam-

ple synergy as a discriminator of true interactions from random pairs of genes,

i.e. direct vs indirect associations as discussed in Sec. 3.1.2.1. These simple

experiments will serve to illustrate that not all PID frameworks are equally

useful for a given interaction inference task. To this end, we consider a sig-
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moidal switch interaction kernel of the following form:

g(X, Y ) =
Y

1 + eα−X
(E4)

Sigmoidal functions are a typical choice, among others (including Hill func-

tions), when modeling biomolecular activation in transcriptional networks

[120, 121]

In Experiment I, we will naively compare four competing definitions of

PID synergy, evaluating their performance at identifying four intercorrelated

interactions on the same gene network hub (Section 3.3.1). We will see that

the IPM
∩ PID’s synergy, ŜPM, seems to outperform the other synergies at this

task. In particular, this experiment will highlight the sensitivity of the IPM
∩

PID for our network inference task.

In Experiment II, we will use a mixed interaction network to demonstrate

the limitation of MI as a network inference methodology, as it fails to dis-

tinguish between truly interacting gene pairs and those where only one gene

contributes to the response signal. Moreover, we will see that the IPM
∩ PID

shares this limitation, whereas the original Imin
∩ PID behaves in a more intu-

itive and desirable manner. This experiment will demonstrate the specificity

of the Imin
∩ PID, that is: its tendency to avoid type II errors in edge nomination.

In Experiment III, we revisit the network inference task in Experiment I,

now analyzing the effect of the parameter α in Eq. (E4) upon the IPM
∩ and Imin

∩

PIDs. While we expect the joint information that X and Y provide regarding

g(X, Y ), and thus toward the total response T , to remain similar, altering α

ought to affect the balance of information, so-to-speak, between the variables

X and Y with regards to T . In the analysis of this experiment, we will also

take the opportunity to present some preliminary heuristics to suggest the
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Figure 3.1: Gene interaction network topology for Experiment I We simulate a
network of n = 50 genes, as described in Def. 1 with 25 edges (E) edges arranged in 5
4-stars. The drug response (Eq. 3.3.1) is computed on the edges of one of the stars, using
the interaction kernel (E4).

relationship between the analytic properties of the interaction kernel (E4) and

the information decomposition of predictor information.

Taken together, these three experiments will demonstrate that although

IPM
∩ produces PID atoms sensitive to the overall informative potential of a

gene pair, it is the Imin
∩ that will behave more intuitively toward less synergistic

pairs of predictors. In heavily interdependent and noisy molecular interaction

networks, edge nomination methodologies must anticipate ‘false’ interactions

and indirect associations that may become nominated through a combination

of the true informative importance of one predictor and the spurious relevance

of another.

3.3.1 Experiment I

We first simulate a gene network of n = 50 nodes, with 25 isolated nodes,

and 25 nodes arranged into 5 disjoint 4-stars, so that we have 20 degree-1
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‘spokes’, 5 degree-4 hubs (Fig 3.1). On each star, two edges are correlated and

two are anti-correlated (i.e., Σi,j < 0). For our interactions, we choose the 4

edges of one of the stars. In other words, given the interaction kernel (E4),

our response T is the sum

T =
4∑
i=1

Y

1 + e−Xi
(3.3.1)

where, for convenience, we let Y denote the gene expression of the hub, and

X1, ..., X4 denote the expressions of the spoke genes. We ran 20,000 simulations

of this network, broken into 100 batches of 200 replicates (simulating the

small batch size typical of clinical experiments). Each batch of the data is

represented by a data matrix D where each row k = 1, ..., 200 is a data point

Dk = (X(k), T (k)). For each batch, we discretized D column-wise into 3

equal-width data bins, discretizing each variable individually.

In order to evaluate the performance, for each simulation and for each pair

of nodes (i, j), we computed the discrete PID of the Î(T ;Xi, Xj) = I(T̂ ; X̂i, X̂j)

into its four component atoms (R̂, ÛXi , ÛXj , Ŝ), using the PID definitions from

[12, 45, 56, 125]. For each simulation, we ranked pairs (i, j) according to their

synergistic information under these definitions. In particular, we are interested

in the ranking of our true interaction pairs, as synergy is only a useful quantity

if it statistically distinguishes true interactions from null pairs.

We present the ranked synergy distributions from this first experiment in

Fig 3.2, the full ranked PIDs of interacting pairs in Fig 3.3, and the distri-

butions of PID atoms in Fig 3.4. The IPM
∩ PID of [45] produces the only

decomposition to consistently rank true interactions in the top 5% of syn-

ergistic information in the simulations (Fig 3.2). That is, ŜPM out-performs

Ŝmin, ŜCCS, and ŜBROJA at discriminating interacting gene pairs from null pairs.
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Figure 3.2: Performance comparison of PID synergies for Experiment I We com-
pare the performance of different PID synergies as discriminators of network interactions,
as part of our first experiment with the network in Fig 3.1. For each batch of 200 replicates,
we computed the synergy atom of the bivariate PID (Eq. E1) for each pair of genes in our
network, and then converted these values into ranked scores from 0 to 1. Shown here are
the distributions of these scores, for interacting pairs and non-interacting pairs, the latter
serving to approximate an empirical null distribution. As can be seen, only SPM consistently
ranks true interactions in the top 5% of gene pair synergies.

Taking this result in isolation, we might conclude the the IPM
∩ PID is the ap-

propriate choice of PID for gene network inference. As we shall see, this is not

the conclusion that we will ultimately reach.

To better understand the differences between our candidate PID syner-

gies, we examine the distributions of the full 4-atom PIDs, as ranked scores in

Fig 3.3 and as (pre-ranked) information atoms in Fig 3.4. We see that, com-

pared to the other PIDs, IPM
∩ assigns more synergistic information and less

unique information to the ‘switch’ gene X, the first argument in the kernel

(E4); see Fig 3.3. In fact, when we look at the information distributions in

Fig 3.4, we see that IPM
∩ alone is consistently assigning negative unique infor-

mation ÛPM
X . In Eqs E1-E3, there is a trade-off between the synergistic and
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redundant information atoms on the one hand, and unique informations on

the other. The monotonicity property of the Imin
∩ PID in [125] guarantees

R(T ;Xi, Xj) = Imin
∩ (T ;Xi, Xj) ≤ I(T ;Xi) ≤ I(T ;Xi, Xj)

and thus, in turn, guarantees that the other information atoms UX , UY are non-

negative as UX = I(T ;X) − R(T ;X, Y ) (and similarly for UY ). By contrast,

IPM
∩ does not guarantee monotonicity, and thus allows for negative informa-

tion atoms, as we see in our simulations. We note that the ICCS∩ PID from

[56] also allows for negative information atoms, and is second only to IPM
∩ in

discriminating true interactions from null pairs in this experiment. This is a

strange, unintuitive feature of the IPM
∩ PID. Later, we will explore the natu-

ral question: What does negative information indicate about the relationship

between the predictor X and the target variable T?

The simulations from our first experiment suggest that SPM is better suited

to our network inference task than the other synergies. Moreover, every infor-

mation atom of the PM PID distinguishes true interactions from null pairs,

while synergy does not for the WB PID, as can be seen in Table 3.1 and

Figs 3.3-3.4. However, we see that mutual information itself strongly suggests

the true pairs (Fig. 3.3), which is a limitation of this particular simulation. If

it were the case that MI can distinguish interacting pairs as well as any PID

atom, then what PID might offer in place of MI is potential interpretability.

By itself, this does not make for a compelling case for the application of PID

to network inference. In our next two experiments, we explore the distinc-

tion between mutual information and PID atoms, and will make the case for

the indispensability of the latter. This will highlight the drawbacks that IPM
∩
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Figure 3.3: Ranked bivariate PID atoms for interactions in Experiment I For the
simulated data from Experiment I, we present the ranked scores of the four bivariate PID
information atoms S,R,UX , UY and the mutual information I(T ;Xi, Xj) for true interaction
pairs (i, j) ∈ E ′, as computed from the empirical distributions of each batch of simulated
data. Although synergy only distinguishes true interactions for the IPM

∩ PID (as in Fig. 3.3),
mutual information itself discriminates them. Thus, other atoms (R and UY especially)
distinguish true interactions for all four PIDs.

shares with MI for this particular type of task.

3.3.2 Experiment II

The benefit of a PID approach over a mutual information approach to gene

network inference becomes apparent when we instead consider mixed gene

interaction networks (Def. 1). In our next experiment, we run a second set

of simulations in which we consider a mixed gene interaction network, again

of n = 50 nodes, this time with 20 edges (Fig 3.5). Our network topology is

comprised of two disjoint 10-stars, with hub predictors we will denote as Y1
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PID Info. Atom KS Stat pval Mean Rank Mean Rank

(Intxn) (Null)

WB Smin 0.232 2.769e-02 0.585 0.500

WB Rmin 0.997 7.897e-35 0.998 0.499

WB Umin
X 0.800 1.447e-22 0.102 0.502

WB Umin
Y 0.966 9.069e-33 0.965 0.499

WB I(T ;X, Y ) 0.966 9.069e-33 0.992 0.499

PM SPM 0.963 1.501e-32 0.977 0.499

PM RPM 0.965 1.167e-32 0.986 0.499

PM UPM
X 0.966 9.069e-33 0.025 0.502

PM UPM
Y 0.911 3.898e-29 0.969 0.499

PM I(T ;X, Y ) 0.966 9.069e-33 0.992 0.499

Table 3.1: Kolmogorov-Smirnov comparison of PID atoms, as ranked scores, between true
interactions and non-interacting null pairs from our first network simulation experiment
(Figs 3.1-3.4).

and Y2, and with spokes X1, ..., X10 and X11, ..., X20 respectively. This network

was paired to the response

T =
Y1

1 + e−X1
+ βY2 (3.3.2)

for a given real parameter β. Put into words, the response is the sum of a

paired interaction on the first star and a univariate signal from the second

hub. Moreover, we also experimented with the number of interactions k on

the first hub. For 1 ≤ k ≤ 10, then, we have the more general response:

T =
k∑
i=1

Y1

1 + eXk
+ βY2. (3.3.3)
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Figure 3.4: Bivariate PID atoms for interactions in Experiment I For the same
bivariate PID data as in Fig 3.2 & 3.3, we present the full distributions of all PID atoms
and mutual information, for both true interactions (i, j) ∈ E ′ and null pairs (i, j) /∈ E ′. We
can see that the IPM

∩ PID assigns more synergy SPM to the interactions and negative unique
information UPM

X to the switch gene.
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Figure 3.5: Gene interaction network topology for Experiment II For our second experiment,
we simulated a network of the same size as before (N = 50), this time with with 20 edges,
arranged in two 10-stars. The drug response is determined by the sum of a sigmoidal switch
interaction on the first star and a univariate signal βY2 from the hub of the second star, for
a given parameter β (Eq. (3.3.2)).

For this experiment and the next (Exp. III), we used the same batch size and

discretization method as in Experiment I. We used 30 simulated batches for

each parameter choice, as we observed no meaningful change after this.

The goal of this type of network is to disentangle the PID atoms from

mutual information, that is, R(T ;Xi, Yj), UX(T ;Xi, Yj), UY (T ;Xi, Yj) and

S(T ;Xi, Yj) from the total mutual information I(T ;Xi, Yj), for a given pair

(Xi, Yj). Mutual information does not necessarily distinguish between a true

interaction hub-spoke pair (X1, Y1) on the first star and a ‘fake’ interaction

hub-spoke pair (Xj, Y2) on the second star, since the latter hub contributes

linearly to the response in Eq. (3.3.2). As discussed in Sec. 3.1.2.1, unadjusted
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MI-based GRNs are known to struggle with type II errors. By adjusting the

parameter β, we can make the MI of an interaction pair I(T ;X1, Y1) indis-

tinguishable from the MI I(T ;Xj, Y2) for any spoke Xj, 11 ≤ j ≤ 20 on the

second star. For our experiments, we consider β = 0.54, as this was sufficient

to demonstrate the desired effect. Data-adaptively choosing an optimal β to

allow for maximal discrimination ability of the PID framework is a natural

next step, though we do not pursue it further here.

From our simulations, we discover that Ŝmin is able to distinguish the true

interaction (X1, Y1) from any ‘false’ interaction (Xj, Y2), independent of mu-

tual information. By contrast, ŜPM only distinguishes when the mutual infor-

mation is able do so. In Fig 3.6 and Table 3.2, we compare the ranked scores

of synergy and mutual information between true and false interactions, for

β = 0.54. In Fig 3.7, we vary β, and see that the difference in SPM between

true and false pairs tracks closely with the difference in MI. For β sufficiently

large, the univariate signal βY2 is a stronger informer of the response T then

the true interaction, and thus the false pairs on the Y2 star are ranked above

the true interactions on the Y1 star, in terms of both MI and SPM. By con-

trast, Smin consistently separates true and false interactions, with the former

mostly located in the top decile of synergistic pairs, and the latter hovering

around the distributional median. What’s most striking is that this synergy

difference appears largely uncoupled from the ratio between the empirical mu-

tual informations Î(T ;X1, Y1) and Î(T ;Xj, Y2). At higher values of β, true

pairs continue to demonstrate more synergy in the Imin
∩ lattice than false pairs

despite the greater contribution of Y2 to the value of T than X1 and Y1 com-

bined.

Thus the crucial difference that we observe in this experiment is that the

atoms of the IPM
∩ PID track closely with mutual information, while the Imin

∩
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Figure 3.6: Synergy (Smin and SPM) and mutual information of mixed interactions
in Experiment II We compare the percentile distributions of PID synergy and mutual
information for the network in Fig 3.5, with response T as in Eq. 3.3.2, with parameter
β = 0.54. We examine the tendency of these statistics to distinguish between the true
interaction (X1, Y1) and false interactions (Xj , Y2). Since Y2 contributes directly to the
response, the mutual information of true and false interactions are comparably high, relative
to the null distribution (RIGHT). We see that Smin (LEFT) seems to distinguish true and
false interacting gene pairs, while SPM does not (MIDDLE). See also Table 3.2.

atoms do not (Fig 3.8). Moreover, as can be seen in Fig 3.8, every atom of the

IPM
∩ PID tracks closely to mutual information. For false interactions on Y2,

RPM, SPM, and UPM
Y2

all grow with mutual information, and UPM
Xj

shrinks, be-

coming more negative. By contrast, for the Imin
∩ PID of false interactions, Rmin

and Smin retain the same low value, Umin
Xj
≡ 0, and only Umin

Y2
grows linearly

with MI. This is what we would intuitively expect, as mutual information is

growing with β, and only Y2 contributes to the βY2 term in Eq. (3.3.2).

Although the Imin
∩ PID assigns less synergy to true interactions than

the IPM
∩ PID, it nonetheless assigns a consistently low value of synergy to

fake interactions Smin(T ;Xj, Y2), regardless of the mutual information value

I(T ;Xj, Y2). We will demonstrate in Proposition 7 that Smin must be zero for

such false interactions, regardless of the dependency structure between X and
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Y .

PID Info. Atom KS Stat pval Mean Rank Mean Rank

(Intxn) (Null)

WB Smin 0.748 8.882e-16 0.918 0.468

WB Rmin 0.652 1.507e-11 0.985 0.808

WB Umin
X 0.178 3.299e-01 0.205 0.133

WB Umin
Y 0.715 3.708e-14 0.936 0.967

WB Total MI 0.356 1.577e-03 0.975 0.965

PM SPM 0.152 5.241e-01 0.942 0.940

PM RPM 0.219 1.345e-01 0.951 0.957

PM UPM
X 0.422 7.807e-05 0.093 0.041

PM UPM
Y 0.237 8.397e-02 0.883 0.933

PM Total MI 0.356 1.577e-03 0.975 0.965

Table 3.2: Kolmogorov-Smirnov comparison of PID atoms, as ranked scores, between true
and fake interactions from our second network simulation experiment (Figs 3.5-3.7). Here,
the ‘true’ interaction is the spoke-hub pair (X1, Y1) that contributes the sigmoidal term
g(X1, Y1) to the response in Eq (3.3.2), while the ‘fake’ interaction is any spoke-hub pair
(Xj , Y2) on the second star. Note that, since Y2 contributes a univariate signal to (3.3.2),
the mutual informations of the two types of pairs are comparable, while the WB synergy is
not.
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Figure 3.7: Relative synergy (Smin and SPM) of true and false interactions in
Exp. II as a function of parameter β in Eq. (3.3.2) Expanding upon our analysis
of the network in Fig 3.5 & 3.6, we examine the ranked scores of synergy and mutual
information as we vary the parameter β (Eq. (3.3.2)).
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Figure 3.8: Relationship between mutual information and bivariate Imin
∩ and IPM

∩
atoms, for mixed interactions in Experiment II . In this figure, we display the re-
lationship between mutual information and the (unranked) PID information atoms for Ex-
periment B (Figs 3.5-3.7). Each connected scatter plot maps mutual information against a
PID atom, for true and false interactions.
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The inability of MI and SPM to distinguish between real and fake interac-

tions suggest their limitations as methods of network analysis. Consider the

application in which we wish to infer a mechanistic gene network for a drug’s

effectiveness. Many oncogenes are major hubs in the underlying human gene

network, and activate multiple, highly interdependent pathways. It is quite

likely that many such hubs correspond to the Y2 in our simulations, in the

sense that they partially predict or facilitate drug response. Even if we were

to limit the candidate edges of our network inference task to known edges

(Xj, Y2) from the literature for a given hub, mutual information could falsely

implicate many such edges despite the irrelevance of Xj to the response. Simi-

larly, although SPM demonstrates a sensitivity to interactions in Experiment I

( Section 3.3.1), this experiment demonstrates that it lacks the specificity to

distinguish between true interacting gene pairs and those with only one rele-

vant gene.

Considering SPM as a method of network inference, the previous experiment

provided a point in its favor due to apparent sensitivity, while this experiment

provides a point against due to the lack of specificity. In our final experiment

to follow, we will return to the previous network-interaction topology in order

to better examine the apparent sensitivity of the IPM
∩ PID.

3.3.3 Experiment III

Our choice of a sigmoidal switch interaction kernel corresponds to an approx-

imation of boolean or otherwise discrete logic circuits within the ’omic regu-

latory system of a biological organism. The gene X in Eq. (E4) is the ‘switch’

gene, with higher values of X turning the interaction on, and lower values

turning it off. We allow the parameter α to recenter this transition, which is

equivalent to recentering X. In Experiment I , we chose α = 0, which allows
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both the ‘on’ and ‘off’ regime to be observed with high probability. However,

by choosing another α, the interaction can be made to default to one state or

another.

In our final experiment, we again simulate the network in Fig 3.1, with the

same response T as in Eq. 3.3.1. This time, we allow α to vary. As before,

we see that even as we vary α, SPM consistently places the interactions in the

top 5% of synergistic pairs, while Smin does not (Fig 3.9). However, insofar as

we expect a change in α to affect the balance of information between genes X

and Y in the PID of I(T ;X, Y ), the behavior of SPM is counterintuitive. If we

accept that SPM is tracking the MI of the interaction itself, i.e. I(T ;X, Y ), as

was the case in the previous experiment, then SPM’s behavior makes sense.

A clearer picture emerges when we examine the individual atoms of each

bivariate PID in Fig 3.10. We see that the proportional amount of positive and

negative information assigned to each atom of the IPM
∩ PID remains relatively

constant across α ∈ [−4, 4]. In the Imin
∩ PID framework, by contrast, we will

see that as α increases, Smin also increases modestly whereas Umin
Y decreases.

This aligns with the expected behavior of our interactions. Indeed, consider

the second-order Taylor expansion of our kernel (E4) about the mean (X, Y ) =

(0, 0):

g(x, y) ≈ 1

1 + eα︸ ︷︷ ︸
∂yg

y +
eα

(1 + eα)2︸ ︷︷ ︸
∂x,yg

xy. (3.3.4)

The term ∂yg dominates ∂x,yg for lower α, but the terms converge as α in-
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creases. That is

(∂yg, ∂x,yg)→ c(α)

(
1

2
,
1

2

)
as α→∞, (3.3.5)

where c(α) = |∂yg|+ |∂x,yg|.

Of course, our response in Eq. (3.3.1) is the sum of four such interactions:

T = f(X1, X2, X3, X4, Y ) =
∑

i g(Xi, Y ). Expanding this as above gives us

f(x1, x2, x3, x4, y) ≈ 4

1 + eα︸ ︷︷ ︸
∂y

y +
4∑
i=1

eα

(1 + eα)2︸ ︷︷ ︸
∂xi,yg

xiy (3.3.6)

and thus

(∂yf, ∂xi,yf)→ c(α)

(
1

2
,
1

8

)
as α→∞, (3.3.7)

where c(α) = |∂yg|+
4∑
i=1

|∂xi,yg|.

We might expect, then, that for any of our four interactions (Xi, Y ), most of

the mutual information I(T ;Xi, Y ) will be located within a PID in the unique

information UY in proportion to magnitude of ∂yf relative to that of ∂xyf .

We see in Fig 3.10 that Imin
∩ and not IPM∩ locates most of the information in

Umin
Y . In Fig 3.11, we directly compare Umin

Y and UPM
Y to the relative value

of ∂yf as above (∂yf/c(α)), and see that Umin
Y nearly tracks this expression,

unlike UPM
Y . This exposition suggests that the Imin

∩ framework demonstrates

the more intuitive behavior for a PID.

It not immediately clear whether the joint sensitivity of T to both X and

Y , captured in ∂xyf , ought to be accounted for as synergistic or as redundant

information. On the one hand, the contribution of either predictor to this
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term, and thus to T , depends on and modifies the value of the other, suggesting

synergy. On the other hand, for our unit variance, zero centered predictors X

and Y , their correlation is ρX,Y = EXY , the monomial associated to ∂xyg in

Eq. 3.3.6. We expect any joint information found in the correlation between

X and Y to be accounted for in redundancy, not synergy. After all, if two

variables are near-perfectly correlated, we almost certainly know one from the

other, and thus any information provided by either regarding T will follow

from knowledge of only one. To get around this conceptual uncertainty, we

look at the sum of synergy and redundancy in Fig 3.11, both Smin + Rmin

and SPM + RPM, and compare these to the relative value of ∂xyf as above

(∂xyf/(c(α)). Much in the same way that Umin
Y tracks with ∂yf , we see that

the joint synergy-redundancy of the Imin
∩ PID loosely tracks with the second-

order term ∂xyf . By contrast, the IPM
∩ PID assigns a good deal more synergistic

and redundant information than the relative magnitude of this joint sensitivity

would suggest.

Moreover, as in the previous experiments, UPM
X is consistently negative in

more-or-less constant proportion to the total MI of the interaction (Fig 3.10,

as compared to Figs 3.8 & 3.4 for previous experiments). We hypothesize that

this feature is important to the non-specific sensitivity of the IPM
∩ atoms, and

the synergy SPM in particular, to any pairs of genes providing information

on the response. As we have seen in this experiment, the sensitivity of SPM

completely ignores the relative sensitivity of the response to the predictors

X and Y , which we posit is the analytic analogue of ignoring the balance of

information between X and Y concerning T .
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Figure 3.9: Synergy and mutual information of interactions as a function of switch
parameter α, from Experiment III From the simulations in Experiment III , we
compare the mean ranked scores of PID synergy and MI for both interacting and non-
interacting pairs, as we vary parameter α for the network response in Eq. (3.3.1). We
see that, for the four interacting pairs (Xi, Y ), i = 1, ..., 4, both MI and SPM will rank true
interactions in the top 5% of synergistic pairs, while Smin will not. The insensitivity of these
two metrics to changes in α is not necessarily desirable, and certainly compatible with the
non-specificity observed in Experiment II . For values of α far below zero, the dependence
of T upon the switch genes Xi should be significantly decreased, even though the MIs of
I(T ;Xi) and I(T ;Y ) ought to be comparable.
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Figure 3.10: Bivariate PID atoms (normalized) as a function of the switch pa-
rameter α from Experiment III We present the four PID atoms of the Imin

∩ and IPM
∩

PIDs for Exp. III , in which we vary the parameter α in the response (Eq. 3.3.1). Here, each
atom has been normalized by the average MI of the interaction pairs, so as to discount for
the effect of total MI varying with α.

98



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
fo
rm

at
io
n 
(n
or
m
al
ize

d)
WB PID

Unique Info (Y)
PM PID

Unique Info (Y)

−4 −3 −2 −1 0 1 2 3 4
Switch Parameter α

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
fo
rm

at
io
n 
(n
or
m
al
ize

d)

Synergy + Redundancy

−4 −3 −2 −1 0 1 2 3 4
Switch Parameter α

Synergy + Redundancy

 ariable
Mean (Interaction)
Mean (Null Pairs)
∂yT
∂xyT

Figure 3.11: Relationship between bivariate PID atoms and sigmoidal kernel
derivatives in Experiment III Continuing our analysis of Exp. III, we examine both
the unique info UX of the hub gene Y and the sum of synergy and redundancy S + R for
our interaction pairs (Xi, Y ), in light of the expansion of the response in Eq. (3.3.6). We see
that, as we vary α, Umin

Y tracks the normalized term ∂yf/c(α), where c(α) = |∂yf |+ |∂xyf |,
while Smin + Rmin tracks ∂xyf/c(α). The former term corresponds to the linearized sensi-
tivity of the response T to Y alone near X = Y = 0, while the latter tracks the sensitivity
to the product XY .

3.3.4 Experimental Summary: Sensitivity and Specificity of PID

Synergies

The PID problem is the task of quantifying—within the context of a statistical

model—the redundant, synergistic, and unique information provided by sub-

99



sets of predictor variables about a target. Our interest in the problem stems

from the idea that the PID toolbox holds promise for the task of network

inference. However, which PID framework is appropriate to this task, and

how it ought to be employed, are both unclear. This is still an active area

of research, and we do not presume to provide either a tentative answer or

prospective methodology in this chapter. We rather hope to illuminate desir-

able (and undesirable) features that a PID might possess to be appropriate

(or inappropriate) for the task of gene network inference.

In Experiment I , we investigated the potential of four bivariate synergies,

Smin, SPM, SBROJA, and SCCS, as metrics of synergy network inference, using

the network in Fig. 3.1. At first glance, SPM outperformed the others in this

respect, as it was the only synergy to consistently rank interacting pairs above

the 95% percentile using the empirical distribution of all gene pairs from the

simulated experiment. However, this was a network in which MI itself was

highly predictive of interactions, independent of any PID.

In Experiment II , we created a network with a simpler response, com-

posed of one sigmoidal interaction g(X1, Y1) and one univariate signal βY2

(Eq. (3.3.2)). This allowed us to simulate a situation in which MI is an un-

reliable metric for inferring interactions, as pairs that include the univari-

ate contributor Y2 will have comparable total information about the response

as (Xj, Y2). In this situation, we saw that SPM was sensitive but non-

specific for interactions. By contrast, we saw that Smin ranked false interac-

tions (Xj, Y2) around the mean for all pairs within the network, while ranking

(X1, Y1) highly. Although Smin has not demonstrated the desired sensitivity

to network interactions that might hope for, it nonetheless has a quality of

specificity to its synergy. In highly interdependent networks, such as gene-

regulatory networks, specificity is crucial, as many genes are involved in and
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activate multiple overlapping pathways. Identifying pairs that are jointly im-

portant to a response requires a metric that can distinguish joint and unique

contributions to the information of that response.

In Experiment III , we adjust the sigmoidal switch interaction kernel itself,

via the parameter α in Eq. (3.3.1). This allows us to explore the relationship

between the analytic properties of a given network interaction kernel and the

observed PIDs in network simulations using that kernel. Put differently, the

suitability of a given PID (Imin
∩ or IPM

∩ or another) for network inference may

depend upon computable properties of the interactions under investigation, or

at least the computable properties of a reasonable model of them.

Our network interactions, however, live in continuous probability space,

whereas PID has primarily been investigated for discrete variables [77]. In the

next few sections, we extend the Imin
∩ and IPM

∩ PIDs to continuous variables

in order to continue our analytic investigation of the potential of these PIDs

as tools of network inference. These are first steps, but they already shed

considerable light on the peculiarities of the Imin
∩ and IPM

∩ PIDs, previewed

already in the experiments of this section. In the continuous extension of

PID, it becomes evident that the specificity issue of IPM
∩ is structural to the

definition. We will see that, whereas the continuous extension of Imin
∩ will

have Umin
X → 0 as a predictor X tends toward conditional independence of

the target, UPM
X will remain negative. In this way, we take the first steps of

an analytic argument for the non-specific nature of the IPM
∩ PID that we see

in these experiments, as the persistence of negative unique information for

irrelevant genes inflates the synergistic information in our discrete estimates.

3.4 Mathematical Notation and Formatting

A few notes about the style of this work are in order.
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First, we suggest that this document be read within software or on an e-

reader amenable to internal hyperlinks, as we make frequent use of them. Due

to its length, we aimed to make this paper as interconnected and internally

referential as possible. As is typically the case, the author aimed to write a

work that he would find enjoyable to read and later review, and perhaps erred

on the side of repetition: both themes and internal references will be repeatedly

reintroduced in order to maintain the conceptual forest for the trees.

3.4.1 Equation Numbering

Throughout this work, we will generally number equations by section. Equa-

tions that are especially important and frequently referenced throughout the

paper will be denoted with a capital letter - number combination. Moreover,

within proofs, we will sometimes number equations with ?’s when they will

be used later within that same proof, in order to distinguish them from less

interesting intermediate equations. We will typically denote a sequence of

multiline, successively equations with a single label.

3.4.2 Logarithms

Throughout this work, we use logarithms to define our information quantities.

The choice of base is arbitrary, for the purpose of our investigation. In keeping

with standard conventions, we will use bits (log2) for discrete variables, and

nats (loge) for continuous variables, denoting both as log.

3.5 Information Theory Preliminaries

Before we define the Imin
∩ and IPM

∩ PIDs for continuous random interactions,

we will first present some definitions and concepts from information theory.
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Symbol Description Definition

(Ω, µ) Sample space NA

X, Y, Z, T ∈ R Random variables NA

X,Y ∈ P(R) Random sources Sec. 3.5.1

(AX , µX) Probability Space induced by X NA

pX Density (continuous) or mass (discrete) function NA

X, Y,Xi, Yi Predictor variables NA

T Target variable NA

u(X)
ω
= v(Y ) Almost surely equal as r.v.’s Def. 3

D(pX |pY ) KL Divergence (when AX = AY ) Def. 8

H(X) Entropy (discrete X) Def. 6

h(X) Differential entropy (continuous X) Def. 6

I(X;Y ) Mutual information Def. 7

I∩ Generic redundancy function Def. 13

Imin
∩ WB redundancy function Def. 14, [125]

IPM
∩ Pointwise mutual redundancy function Def. 14, [45]

IX : AT → R Specific information function Def. 9, [125]

IPM,+
∩ Redundant specificity function Def. 15, [45]

IPM,−
∩ Redundant ambiguity function Def. 15, [45]

d = (R, S, UX , UY ) Bivariate PID of I(T ;X, Y ) Eqs. E1-E3

Table 3.3: Table of commonly used notations.
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Readers familiar with the fundamentals of both discrete and continuous en-

tropies and informations are welcome to move ahead. To more efficiently

compartmentalize background knowledge, this section will be split into three

parts. In Subsection 3.5.1, we specify our terminology of discrete and continu-

ous random sources. In Subsection 3.5.2, we introduce and define information

theoretical quantities for discrete sources and continuous sources that admit

densities. Finally, in Subsection 3.5.3, we provide a more general framework

to handle edge cases and, at times, to simplify computations.

3.5.1 Random Variables and Random Sources

Let (Ω,B, µ) be our assumed probability space. A random variable X is a

measurable mapping Ω→ AX , where AX is the alphabet of X. In this paper,

all alphabets are subsets of Rk for some k. We say that X is a discrete

variable if AX is countable. We say that X is continuous if it admits a density

pX on R. More precisely, we say that X is continuous if it induces a measure

µX on R that is absolutely continuous with respect to Lebesgue measure λ

(denoted µX � λ ), in which case the density is the Radon-Nikodym derivative

pX = dµX
dλ

.

It is more useful to define the notion of a random source, which we take

to be a finite collection of random variables. One can think of a random source

X = {X1, ..., XN}, with associated alphabets AX1 , ...,AXN as a random vari-

able X on the product alphabet AX =×i
AXi . Nonetheless, we distinguish

the two concepts for clarity, and reserve ‘random variable’ to refer to univari-

ate real-valued variables. Moreover, we may elect to treat a random source

X = {Xi}i as a random vector X = (Xi)i when convenient, e.g. when we

want to admit a density pX on Rk.6 We similarly use (AX , µX) to denote the

6We implicitly assume throughout that every function of random sources that makes use
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induced probability space. We will denote the image of an event E ⊂ Ω in

AX as πX(E), where πX is here synonymous with the random vector X as a

mapping Ω→ AX .

Definition 2 (Random Sources). A finite collection of random variables X =

{X1, ..., Xk} on the space (Ω, µ) is called a random source.

• If every variable Xi is discrete, we say that X is a discrete source.

• If every variable Xi is continuous, we say that X is marginally con-

tinuous.

• We say that X is (jointly) continuous if the joint distribution of

X1, ..., Xk admits a joint density pX . Equivalently, X is jointly continu-

ous if it induces a measure µX on Rk such that µX � λk, in which case

pX = dµX
dλk

.

• We say that X is non-degenerate if it is discrete or continuous. It is

degenerate otherwise.

We will focus upon non-degenerate sources for most of this section. For the

density of a continuous source, we may represent it as p(X) := pX(X) when

the subscript is obvious from context. Moreover, for a continuous source, we

exclude from the alphabet AX all points x for which pX(x) = 0. We may

still allow singular sets of measure zero that are possible, in the sense that

arbitrary neighborhoods have positive probability.7

We highlight a few immediate properties.

of their joint densities is invariant under permutation of labels. For instance, when we define
entropy H({X1, ..., Xk}), we use the density pX1,...,Xk(x1, ..., xk), but the entropy would be
the same if we used pXσ(1),...,Xσ(k)(xσ(1), ..., xσ(k)) instead.

7For instance, in Section 3.9, we will have that the random source {Y, T} admits a density
pY,T almost everywhere, but not when Y = 0, an event with zero probability. Nonetheless,
any neighborhood of (Y, T ) = (0, 0)— i.e. any event E = π−1Y,TBε(0, 0), where Bε denotes
an open ε-disk — will have positive probability. Thus, we include (0, 0) ∈ AX,T .
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Proposition 1 (Remarks on Continuous Sources). For random sources X,Y ,

we have the following

1. If X is continuous, then it is marginally continuous.

2. If X is jointly (respectively, marginally) continuous, then every subset

X ′ ⊂X is also jointly (respectively, marginally) continuous.

3. If X and Y are both marginally continuous, then so is X ∪ Y .

4. If X and Y are both continuous, it is not necessary that X ∪ Y be

continuous.

The first two properties follow from the fact that the integration of a contin-

uous function is continuous. The third property is trivial. The final property

is demonstrated by the following counterexample.

Example 1 (Non-Degenerate Bivariate Gaussian). Suppose X, Y ∼ N(0,Σ)

where Σ =
(

σ2 σ2ρ
σ2ρ σ2

)
. Then {X, Y } is a continuous source if and only if

|ρ| < 1.

Example 2 (Degenerate Bivariate Gaussian). If we allow ρ = ±1 in our

previous example, we have identical Gaussians with the joint distribution

pX,Y (x, y) = 1√
2π
δ(y ∓ x)e−x

2/2, which is not a density but a distribution or

generalized function. We still have that {X} and {Y } are continuous sources,

but {X, Y } is only marginally continuous and degenerate.

We will typically work within induced probability spaces (RN , µX) for a

continuous source X. However, in situations when X ∪ Y is not jointly con-

tinuous, we will instead often have to move between distinct spaces (RN , µX)

and (RN , µY ) by a µ-preserving change of variables X → Y . For instance,

{X, Y, T} will be jointly degenerate for noiseless interactions (Def. 11), but
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every subset of this collection will admit a density in R or R2, and in Propo-

sition 9 we relate the densities pX,T and pY,T to pX,Y . In Section 3.7, we

will easily move between (X, Y )-space (R2, µX,Y ), (X,T )-space (R2, µX,T ), and

(Y, T )-space (R2, µY,T ) by using standard results regarding invertible transfor-

mations of Gaussian vectors. We emphasize that expectation E, and all def-

initions that depend upon it, must properly be understood as an integral on

the sample space (Ω, µ):

Ef(X) =

∫
AX

f(x)pX(x)dx =

∫
Ω

f(x(ω))dµ(ω). (3.5.1)

This is crucial for well-defined information quantities. We will leave this tech-

nicality implicit where we can, as we can dispense with it for most of our

computations. However, in a few circumstances where we need to highlight

the underlying probabilistic context, the following notation and terminology

will serve as a helpful shorthand:

Definition 3 (ω-Equivalence). For the random sources X and Y , consider

the functions f : AX → R and g : AY → R. We say that f(X) and g(Y ) are

almost surely equal as random variables, denoted f(X)
ω
= g(Y ), when

the following holds:

f(X(ω)) = g(Y (ω)) for µ-a.e. ω ∈ Ω. (3.5.2)

We may also regard this relationship as an equivalence relationship on

function-source pairs. We will synonymously say that (f,X) and (g,Y ) are

ω-equivalent, denoted (f,X)
ω
= (g,Y ):

f(X)
ω
= g(Y )⇐⇒ (f,X)

ω
= (g,Y )⇐⇒ f(x(ω)) = g(y(ω)) a.e. [µ]. (3.5.3)
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What we refer to as ω-equivalence or a.s. equality of f(X) and g(Y ) when

considered as random variables refers to the essential equality of the pullback

functions π?Xf and π?Y g on Ω. We want to take care to distinguish this from

(essential) equality of our functions on the Euclidean alphabets of X and Y .

Almost sure equality f(X)
ω
= g(Y ) is a distinct property from, and neither

sufficient nor necessary for, equality or near-equality of f and g as functions

on coinciding alphabets AX = AY .

Almost sure equality as random variables is more than sufficient for equality

in expectation:

f(X)
ω
= g(Y ) =⇒ Ef(X) = Eg(Y ). (3.5.4)

Consider the following example.

Example 3. Let X ∼ N(0, 1) and Y = 2X, i.e. X, Y ∼ N(0,Σ) where

Σ = ( 1 2
2 4 ). Then {X, Y } is marginally continuous and degenerate, with joint

distribution:

pX,Y (x, y) = δ(y − 2x)pX(x) =
1√
2π
δ(y − 2x)e−x

2/2 (3.5.5)

= δ(x− y

2
)pY (y) =

1

2
√

2π
δ(x− y

2
)e−y

2/8. (3.5.6)

Consider the marginal distributions as random functions. In this case,

pX(X)
ω

6= pY (Y ), but instead pX(X)
ω
= 2pY (Y ).

We may now define conditional sources for non-degenerate distributions,

using their mass and density functions.

Definition 4 (Conditional Random Sources). Let X,Y be random sources,

either both discrete or jointly continuous. Let y ∈ AY such that pY (y) > 0.
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The conditional source X given Y = y is denoted X|Y =y = X|y, and is

the discrete (continuous) random vector with alphabet AX|y ⊂ AX , with mass

function (density):

p(xi|yj) :=
p(xi,yj)

p(yj)
(discrete sources) (3.5.7)

pX|Y (x|y) :=
pX,Y (x,y)

pY (y)
(continuous sources).

Pointwise information is measured as a specific transformation of the of

the distribution functions, typically referred to as the surprisal.

Definition 5. Let X be a discrete or continuous random source. Then the

pointwise surprisal sX is defined as the function

sX(x) = log
1

p(x)
(3.5.8)

=


log 1

p(xi)
(discrete source)

log 1
pX(x)

(jointly continuous source)

(3.5.9)

For discrete sources, sX takes AX as its domain. For continuous sources, sX

is defined where µX admits a nonzero density pX .

If X and Y are both discrete or jointly continuous, we define the condi-

tional surprisal of x given Y = y as

sX|Y (x|y) = log
1

p(x|y)
(3.5.10)

=


log 1

p(xi|yj) (discrete source)

log 1
pX|Y (x|y)

(jointly continuous source)

(3.5.11)

Surprisal can be thought of as the unlikelihood of a particular outcome.

For discrete sources, these quantities are always positive, as probability mass
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p(xi) is always in (0, 1). For continuous sources, this is no longer true (indeed,

the conditional surprisal may be negative).

It is worth noting that conditional surprisal is the difference between the

joint and individual surprisals, that is,

sX|Y = s(x,y)− s(x) (3.5.12)

In the discrete case, it is clear that this difference is positive, as the intersection

event x ∩ y must be more unlikely than x. In the continuous case, this is

quantity is not necessarily positive.

3.5.2 Discrete and Density Information Theory

The Shannon entropy, originally defined in [106], quantifies the uncertainty

in the value of a discrete variable X. We introduce the general definition for

a random source that admits a tractable pointwise ‘probability’, whether a

proper probability mass function (if X is discrete) or density function (if X

is continuous).

Note that we notationally distinguish between discrete and continuous en-

tropy H and h, but not mutual information I. This is typical, and reflects the

sense in which continuous mutual information is the limit of discrete mutual

information, and the two are the same object within a more general definition

(Sec. 3.5.3), whereas discrete and continuous entropies meaningfully diverge.8

8Kolmogorov’s definition of MI (Sec. 3.5.3) covers both the discrete and continuous case,
the relationship between them, and distributions that are not quite either, e.g. contain point-
masses and smooth portions alike. In a simpler setting, for successively finer discretizations
of continuous random variables, the discrete MI converges to the continuous. By contrast,
discrete entropy H diverges for successively finer discretizations of a continuous variable.
Moreover, insofar as continuous entropy h is extended to deal with point masses, we have
that h(X) = −∞ for any discrete variable X. Thus, an infinite gulf separates H and h
on the same objects, whereas MI is essentially the same object. See [33, ch. 7] for a more
extended discussion of these limits.
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Definition 6 (Shannon Entropy for Random Sources). Let X be a random

source, either discrete or continuous. Then the entropy of X is defined as:

H(X) = EsX(x) = −
∑

p(Xi) log p(Xi) (discrete source)

h(x) = EsX(x) = −
∫
pX(x) log pX(x)dx (continuous source) (3.5.13)

If Y is another source, such that either both X and Y are discrete or

X ∪ Y is continuous, then the conditional entropy of X given Y is

H(X|Y ) = EsX|Y (x|y) = −
∑
i,j

p(xi,yj) log
p(xi,yj)

p(yj)
(discrete source)

h(x|y) = EsX|Y (x|y) = −
∫
pX,Y (x,y) log

pX,Y (x,y)

pY (y)
d(x,y) (continuous source)

(3.5.14)

Recall that the surprisal sX(x) (also sometimes called the information

content) quantifies the point-wise unlikelihood of an outcome. Entropy is the

expectation of this quantity: a distribution with high entropy is likely to have

an unlikely outcome. In practice, a distribution that maximizes entropy is one

that spreads out its probability mass as evenly as possible among outcomes.

The following example comes from [33, Theorem 8.4.1].

Example 4 (Entropy of a Gaussian Vector). Let X ∼ N(0,Σ) be a k-

dimensional Gaussian random vector, with a positive definite covariance ma-

trix Σ. Then

h(X) =
k

2
log(2πe) +

1

2
log |Σ| (3.5.15)

where |Σ| designates the determinant of the covariance matrix. In particular,
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when X ∼ N(µ, σ), we have

h(X) = log(
√

2πe) + log(σ) (3.5.16)

Thus, we see that h(X) for a Gaussian variable can be any real number,

positive or negative, depending upon its variance σ2. Notice that h(X)→ −∞

as σ → 0 and h(X) → ∞ as σ → ∞. This makes the continuous version of

Shannon entropy somewhat less intuitive than the discrete version. For a dis-

crete variable with a single, certain outcome, H(X) = 0. For a ‘continuous’

variable approaching an analogous situation, h(X) → −∞.9 Thus, the sit-

uation h(X) = 0 itself has no recognized significance, nor does the sign of

differential entropy.

If the entropy of a random source X quantifies its uncertainty, then the

mutual information between two random sources X and Y quantifies the

shared uncertainty between them. Here, we provide the definition for discrete

and jointly continuous sources. We will provide the general form later, in

Def. 10 of Sec. 3.5.3.

Definition 7 (Mutual Information for Random Sources). Let X and Y be

random sources such that either both are discrete or X ∪ Y is continuous.

Then the mutual information of X and Y is given by

I(X;Y ) = E log
sX(X)sY (Y )

sX,Y (X,Y )
= E log

p(X,Y )

p(X)p(Y )
(3.5.17)

=


∑
i,j

p(xi,yj) log
p(xi,yj)

p(xi)p(yj)
(discrete source)∫

pX,Y (x,y) log
pX,Y (x,y)

pX(x)pY (y)
d(x,y) (continuous source)

9Moreover, if we represent a discrete distribution as the sum of point masses, and attempt
to apply the definition of differential entropy (using the theory of distributions or a similar
method, and extending differential entropy continuously to degenerate distributions), we
will likewise have h(X) = −∞.
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If Z is another source and either X,Y ,Z are all discrete or X ∪ Y ∪ Z is

continuous, then the conditional mutual information of X and Y given Z is

I(X;Y |Z) = E(X,Y ,Z) log
p(x,y|z)

p(x|z)p(y|z)
(3.5.18)

=


∑
i,j,k

p(xi,yj, zk) log
p(xi,yj|zk)

p(xi|zk)p(yj|zk)
(discrete source)∫

pX,Y Z(x,y, z) log
pX,Y |Z(x,y|z)

pX|Z(x|z)pY |Z(y|z)
d(x,y, z) (cont. source)

Shannon originally referred to mutual information as the “rate of trans-

mission” of a communications channel, in which X is a transmitted signal

and Y is the received signal. Another intuition for the meaning of mutual

information comes from the following property:

I(X;Y ) = H(X)−H(X|Y ) (3.5.19)

In this sense, mutual information is the reduction in uncertainty of X gained

from learning Y . This is the sense in which mutual information is shared

uncertainty.

We make use of some common conventions for notation that allow us to

treat entropy and information as functions of variables and lists of variables
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as well as sources. The following conventions hold:

H(X) := H({X})

I(X;Y ) := I({X}; {Y })

H(X1, ..., Xk) := H({X1, ..., Xk})

I(X1, ..., Xk;Y1, ..., Y`) := I({Xi}; {Yj})

H(X1, ...,Xk) := H(∪iXi)

I(X1, ...,Xk;Y1, ...,Y`) := I(∪iXi;∪jYj)

We review common properties of discrete and continuous information.

Proposition 2 (Properties of Entropy and Mutual Information). Let X,Y ,Z

be random sources. Then the following properties hold, where the use of H (re-

spectively, h) implies the combined source is discrete (respectively, continuous):

1. Non-Negativity

• H(X) ≥ 0, where H(X) = 0 if and only if X is degenerate, i.e.

P (X = x) = 1 for some x.

• H(X|Y ) ≥ 0, where H(X|Y ) = 0 if and only if X is conditionally

degenerate with respect to Y , i.e. for every y, P (X = x|Y = y) =

1 for some x.

• I(X,Y ) ≥ 0, where I(X,Y ) = 0 if and only if X and Y are

independent.

• I(X,Y | Z) ≥ 0, where I(X,Y | Z) = 0 if and only if X and Y

are conditionally independent with respect to Z.

2. Chain Rules (Entropy)

• H(X,Y ) = H(X) +H(Y |X)
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• H(X,Y |Z) = H(X|Z) +H(Y |X,Z)

• h(X,Y ) = h(X) + h(Y |X)

• h(X,Y |Z) = h(X|Z) + h(Y |X,Z)

For an arbitrary number of sources:

• H(X1, ...,Xk) =
∑

iH(Xi;Xi−1, ...,X1)

• h(X1, ...,Xk) =
∑

i h(Xi;Xi−1, ...,X1)

3. Chain Rule (MI)

•

I(X;Y ,Z) = I(X;Y ) + I(X;Z|Y ) (3.5.20)

For an arbitrary number of sources:

•

I(Y ;X1, ...,Xk) =
∑
i

I(Y ;Xi|Xi−1, ...,X1) (3.5.21)

4. Identities for Entropy and Information

•

I(X;Y ) = H(X)−H(X|Y ) (3.5.19)

•

I(X;Y ) +H(X,Y ) = H(X) +H(Y ) (3.5.22)

We may now extend Example 4 to MI and use it to demonstrate the com-

mon properties of entropy and MI.

Example 5 (Information of a Bivariate Gaussian Variable). Let X and Y be
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jointly Gaussian, i.e. (X, Y ) ∼ N(µ,Σ) and

σ =

 σ2
X σXσY ρ

σXσY ρ σ2
Y

 .
We then have that

h(X, Y ) = log(2πe) + log(σX) + log(σY )− log(
1√

1− ρ2
) (3.5.23)

I(X;Y ) = log(
1√

1− ρ2
) (3.5.24)

Suppose σ = σX = σY as in Example 1. Then

h(X) = h(Y ) =
1

2
log(2πe) + log σ, (3.5.25)

h(X|Y ) =
1

2
log(2πe) + log σ +

1

2
log(1− ρ2), (3.5.26)

h(X, Y ) = log(2πe) + 2 log σ +
1

2
log(1− ρ2), (3.5.27)

I(X;Y ) = −1

2
log(1− ρ2). (3.5.28)

Note that the Chain Rule (3.5.20) and Eq (3.5.19) hold. Further, as the vari-

ables become more strongly correlated/anti-correlated, i.e. as ρ → ±1, we

see that entropy becomes arbitrarily small and mutual information arbitrarily

large.

Note that, for Eq (3.5.23), the joint entropy is maximized when ρ = 0,

i.e. X and Y are independent. On the other hand, it approaches −∞ as

ρ→ ±1. Similarly, mutual information is zero when ρ = 0, and I(X;Y )→∞

as ρ→ ±1. This example demonstrates some of the issues that can arise when

dealing with degeneracies in random variables with non-finite (“continuous”)

alphabets.
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An early application of Shannon information theory to statistics was made

by Solomon Kullback and Richard Liebler in 1951. In a concise paper [68], they

used Shannon (‘Shannon-Wiener’) information formalism to measure the ‘in-

formation for discrimination’ between hypotheses, which they give as the differ-

ence in hypothesis-specific surprisals for observed data. This work firmly con-

nected (while distinguishing) Shannon-Wiener information with Fisher infor-

mation, and used Shannon-Wiener formalism to characterize sufficient statis-

tics. In doing so, they defined a divergence function that serves, among other

purposes, as a pseudo-distance between probability distributions.

Definition 8 (Kullback-Liebler Divergence). Suppose X and Y are random

sources, either both discrete or individually continuous, on the same alphabet

A = AX = AY . Then the Kullback-Liebler (KL) divergence between their

distributions is given by

D(pX |pY ) = E [sY (X)− sX(X)] (3.5.29)

=


∑
xi∈A

pX(xi) log
pX(xi)

pY (xi)
(discrete source)∫

pX(x) log
pX(x)

pY (x)
dx (continuous source)

We use D to represent KL divergence between distributions, and use D when

we taking the random variables as arguments:

D(X|Y ) = D(pX |pY ) (3.5.30)

KL divergence is often described as measuring the ‘distance’ or dissimilarity

between probability distributions on a shared alphabet. It is not a distance, as

it is not symmetric and does not obey the triangle inequality. Moreover, KL

117



divergence can be infinite, if µX and µY are not both absolutely continuous

with respect to each other.

Proposition 3 (Properties of KL Divergence). KL Divergence has the follow-

ing properties:

• D(pX |pY ) ≥ 0 with equality if and only if pX(X)
ω
= pY (X).

• Suppose X and Y are discrete or jointly continuous random sources.

Then

I(X;Y ) = D(pX,Y |pXpY ). (3.5.31)

In other words, mutual information is the divergence between the joint

distribution pX,Y and the product distribution pXpY on the product al-

phabet AX ×AY .

Proposition 4. Let p and q be two Gaussian densities, p ∼ N(µ1, σ
2
1) and

q ∼ N(µ2, σ
2
2). Then the Kullback-Liebler (KL) Divergence between them is

given by

D(p||q) = log

(
σ2

σ1

)
+

1

2

(
σ2

1 + (µ1 − µ2)2

σ2
2

)
− 1

2
.

To define the Williams-Beer PID later, it is useful to introduce the concept

of specific information. For two sourcesX and Y , specific information is an

intermediate quantity between mutual information I(X;Y ), which is defined

in expectation, and the pointwise mutual information function log p(x,y)
p(x)p(y)

.

Specific information is a pointwise function of one of the two sources, taken in

expectation of the other source.

Definition 9 (Specific Information). Let X and Y be discrete or jointly con-

tinuous. Then for any y ∈ AY such that pY (y) > 0, we define the specific
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information of X about Y = y to be

IX(y) = D(pX|Y =y||pX). (3.5.32)

Moreover, we let IX(y) = 0 whenever pY (y) = 0.

This concludes most of our preliminary review of classical information the-

ory. We have covered everything in the contexts in which we are working with

discrete distributions or densities. In the section that follows, we will introduce

enough of the general case to handle the degenerate distributions of noise-free

interactions in Sec. 3.6.

3.5.3 General Information Theory

We have covered the usual definitions of information quantities, particularly in

how they are typically applied by computational scientists and mathematicians

alike. Recall, for instance, from Example 5, that mutual information between

correlated Gaussians is given by:

I(X, Y ) = log
1√

1− ρ2
. (3.5.24)

Clearly, I(X, Y )→∞ as ρ→ ±1. This may seem more a matter of mathemat-

ical interest than practical concern. For the continuous, noise-free interaction

model that we introduce in Sec. 3.6, however, we will have such an idealized

situation. Our predictor genes X and Y will perfectly determine a response T ,

and we will be taking the PID of I(T ;X, Y ) =∞. Thus, it is worthwhile for us

to briefly cover the more general case of mutual information. Our discussion

draws from the references [33, ch. 7] and [51, ch. 7].

We need a few more definitions. If X is a random source with alphabet
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AX , let P be a (countable) partition of AX , i.e.

A =
⊔
Pi∈P

Pi.

Then let [X]P be the random variable with alphabet P such that

[X]P(ω) = Pi

m

X(ω) ∈ Pi.

In other words, [X]P is the variable that takes value Pi whenever X = x for

some x ∈ Pi. This variable [X]P is called the discretization of X with respect

to the partition P . This definition does not just cover continuous variables.

If X is a discrete variable, we can represent it as a sum of point-masses, i.e.

pX(x) =
∑

i δxi(x). For a sufficiently fine discretization [X]P such that no

Pi contains within it more than one point xi, we will have that X and [X]P

are almost surely equal as random variables. Assuming we index such that

xi ∈ Pi, we would have that P (X = xi) = P ([X]P = Pi).

Definition 10. Let X and Y be two random sources, with alphabets AX and

AY . The mutual information between X and Y is given by

I(X;Y ) = sup
P,Q

I([X]P ; [Y ]Q) (3.5.33)

where the supremum is taken over all discretizations of X and Y .

The supremum term is monotonically increasing for successively finer par-

titions P and Q. Thus, this definition can be approached with standard

methods from real analysis and measure theory. For our purposes, we use this
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definition only to demonstrate the following proposition.

Proposition 5. Let X,Y be two random sources, each individually continu-

ous, but such that X ∪ Y is not continuous. Then I(X;Y ) =∞.

The proof is conceptually identical to that of Lemma 7.4 in [51].

Proof. Let n = |X| (the dimension of X), and m = |Y |. Since X,Y are

each continuous, their induced measures µX and µY are absolutely continuous

with respect to Lebesgue measure λn and λm. Thus, µX × µY � λn+m. If

µX,Y � µX × µY , then we would have µX,Y � λn+m, which would imply

X ∪ Y continuous. Thus, µX,Y 6� µX × µY .

This implies there is a set P ⊂ Rn+m such that

µX,Y (P ) > 0 and (µX × µY (P )) = 0.

For the partition P = {P, PC}, we have that I(XP ;YP) =∞, and our result

follows from Def. 10.

Corollary 1. Let X,Y be two random sources with joint distribution

pX,Y (x,y) =
M∑
i=1

δ(gi(x,y))pX(x) (3.5.34)

where {gi} is a collection of real-valued functions with isolated zeros. Then

I(X,Y ) =∞. (3.5.35)

In such a situation, we may say that X provides perfect (or infinite)

information information about Y . We will use the two words, perfect and

infinite, interchangeably, depending on whether we want to emphasize either
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the collapse of uncertainty or the quantitative irregularity (i.e. infinite-valued

information functions).

This concludes our review of information theory. We may now introduce

our extension of the Imin
∩ and IPM

∩ PIDs to continuous interactions of random

variables.
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3.6 PID for Bivariate Interactions

3.6.1 Bivariate Interaction Problem

Part of the aim of this work is to extend the partial information framework of

Williams and Beer [125], and the follow-up work by Finn and Lizier in [45], to

interactions of continuous variables. In this section, we will introduce the PID

framework within the continuous setting in which we are interested, using the

discrete case as a starting point from which we will develop our continuous

extension. We direct those interested in a detailed background of the discrete

theory to [12, 45, 125] and to [77] for a recent overview of the current state

of PID research. For simplicity, we only present the bivariate setting in which

two predictors inform upon a single target variable.

Consider three random variables: two predictors {X, Y } and a target T .

We consider two types of situations:

• (Noise-free) We model T as a deterministic function of X and Y via

T = g(X, Y ) (3.6.1)

where g is a non-random function. The conditional entropy of T given the

predictors is H(T |X, Y ) = 0 in the discrete case and h(T |X, Y ) = −∞

in the continuous setting.

• (Noisy) We model T as a noisy realization of g(X, Y ), where the noise

model is given by

T = g(X, Y ) + Z (3.6.2)

where Z is a zero-mean variable independent of (X, Y ). In this case,

the conditional entropy (depending on the distribution of Z) may be
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non-degenerate.

Consider the noisy model. Assuming the regularity of these variables, one can

think of them as having the joint density:

pX,Y,T (x, y, t) = pX,Y (x, y)pZ(t− g(x, y)) (3.6.3)

If the noise Z tends to be relatively small in both magnitude and variance

compared to g(X, Y ), then we can intuitively understand that X and Y pro-

vide most of the information available regarding T . For a given realization,

observing X and Y substantially constrains the uncertainty in T .

We can understand this formally. The mutual information between our

target T and the collection {X, Y } is the nonnegative quantity

I(T ;X, Y ) = h(T )− h(T | X, Y )

= h(g(X, Y ) + Z)− h(Z).

This quantity represents the gap between the full uncertainty of T and the

reduced uncertainty of T given knowledge of X and Y . If h(g(X, Y ))� h(Z),

then h(T ) ≈ h(g(X, Y )). Moreover, as the noise becomes arbitrarily small,

the information becomes arbitrarily large:

I(T ;X, Y )→∞ as Var(Z)→ 0 since h(Z)→ −∞ (3.6.4)

In the noise-free case, the three variables will instead have a degenerate joint

distribution:

pX,Y,T (x, y, t) = pX,Y (x, y)δ(t− g(x, y)) (3.6.5)

Applying Corollary 1 of Proposition 5, we have that I(T ;X, Y ) =∞. This can
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be seen to follow from (3.6.4) if one understands (3.6.5) as the limit distribution

of (3.6.3).

Before moving on, we present formal definitions of noisy and noise-free

bivariate interactions.

Definition 11 (Bivariate Interaction (Noise-free)). Let X, Y, T be real-valued

random variables and g be a continuous function such that Eq. (3.6.1) holds

for every realization, i.e.

T (ω) = g(X, Y )(ω) for every ω ∈ Ω. (3.6.6)

We call the triplet (X, Y, T ) a noise-free bivariate interaction, and denote

it X, Y → T . If (X, Y ) ∼ N(µ,Σ), we refer to the interaction as Gaussian,

denoted X, Y →Σ T . If µ = 0 and Σ = (1, ρ; ρ, 1), we denote it X, Y →ρ T .

Definition 12 (Bivariate Interaction (Noisy)). Let X, Y, Z, T be real-valued

random variables and g be a continuous function such that Eq. (3.6.2) holds.

Further, assume Z is independent of X and Y . We call the tuple (X, Y, Z, T )

a noisy bivariate interaction, and denote it X, Y
Z→ T . If X, Y are jointly

Gaussian, we refer to the interaction as Gaussian. Analogous to the notation

in Definition 11, we use the notation X, Y
Z→Σ T and X, Y

Z→ρ T .

Now that we have an understanding of continuous interactions as jointly ran-

dom variables, we may extend the PID framework to this class of objects.

3.6.2 Partial Information Decomposition

3.6.2.1 The PID Framework

For the moment, consider a nondegenerate (i.e., non-deterministic Z) noisy

interaction X, Y
Z→Σ T , so that I(T ;X, Y ) < ∞. If I(T ;X, Y ) is the total
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information about T found in X and Y together, we might ask the following

questions (see [77] for related discussions):

1. How much information about T is contained in X and Y individually?

2. How much of that information about T can be learned from either X or

Y ?

3. How much information about T can be learned from only X and not Y ?

From Y and not X?

4. How much information about T can be learned only from both X and

Y , yet neither individually?

The answer to the first question is found in the MIs I(T ;X) and I(T ;Y ).

The PID framework was developed to answer questions 2-4 for discrete

variables. Respectively, these information atoms are referred to as redun-

dant information R(T ;X, Y ), unique informations UX(T ;X, Y ), UY (T ;Y,X),

and synergistic information S(T ;X, Y ). The total and individual MIs

I(T ;X, Y ), I(T ;X), I(T ;Y ) decompose into these atoms according to Eqs E1-

E3, reproduced here:

I(T ;X) = R(T ;X, Y ) + UX(T ;X, Y ) (E1)

I(T ;Y ) = R(T ;X, Y ) + UY (T ;X, Y ) (E2)

I(T ;X, Y ) = R(T ;X, Y ) + UX(T ;X, Y ) + UY (T ;X, Y ) + S(T ;X, Y ) (E3)

Per standard practice [125], we can represent this decomposition visually

as a Venn diagram (Fig. 3.12). When convenient, we will abbreviate these four

atoms as R, S, UX , UY , denoted collectively as the tuple d. All these quantities

become well-defined if a redundancy function I
(α)
∩ is provided (defined later in
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Figure 3.12: Bivariate PID diagram Venn diagram representation of the PID decompo-
sition of total MI I(T ;X,Y ).

Def. 13), for which α is an arbitrary label, e.g. ‘min’ for Imin
∩ . We then denote

the labeled PID:

dα = (R(α), S(α), U
(α)
X , U

(α)
Y ),

where

R(α) = I
(α)
∩ (T ;X, Y ),

U
(α)
X = I(T ;X)− I(α)

∩ (T ;X, Y ),

U
(α)
Y = I(T ;Y )− I(α)

∩ (T ;X, Y ),

S(α) = I(T ;X, Y )− I(T ;X)− I(T ;Y ) + I
(α)
∩ (T ;X, Y ).

We focus upon two choices for the redundancy function: Imin
∩ and IPM

∩ .

Before we introduce these functions, we present a common example for the

PID of discrete variables (X, Y, T ), to provide a helpful intuition for the atoms

in a PID.

Example 6 (Bivariate XOR). Consider the following distribution T = X⊕Y :
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X Y T p

0 0 0 1/4

0 1 1 1/4

1 0 1 1/4

1 1 0 1/4

Then any partial information decomposition d of I(T ;X, Y ) satisfying Eqs E1-

E3 will be of the following form:

R = −UX = −UY (3.6.7)

S −R = 1 (3.6.8)

This follows readily from the observation that I(T ;X, Y ) = 1 bit and

I(T ;X) = I(T ;Y ) = 0. If we further require that every information atom

is nonnegative (as is the case for Imin
∩ ), then R = 0 and S = 1, i.e. X and Y

have one bit of synergistic information about T and zero redundant and unique

information.

As stated above, a PID dα is defined by its redundancy function I
(α)
∩ . Before

we move on, we need introduce a general definition of a redundancy function

and the associated axioms. We will first present a definition of redundancy

functions that accords with what have become known as the Williams-Beer

(WB) Axioms. These were originally stated as properties of Imin
∩ in [125],

but were later taken as axiomatic by the community [12]. We follow the

enumeration from [11], which includes nonnegativity (there, referred to as

global positivity).

0. Nonnegativity. Redundant information is a nonnegative quantity.

I∩(T ;X1, ...,Xn) ≥ 0 (P)
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1. Symmetry. Redundant information is invariant under permutations of

sources:

I∩(T ;X1, ...,Xn) = I∩(T ;Xσ(1), ...,Xσ(n)) (S)

2. Monotonicity. Every additional source included can only decrease the

amount of redundant information.

I∩(T ;X1, ...,Xn) ≤ I∩(T ;X1, ...,Xn−1) (M)

3. Self-Redundancy. The redundant information of a single source is the

mutual information between that source and the target.

I∩(T ;X) = I(T ;X) (SR)

Many, though not all, of the redundancy functions in the literature ac-

cept this framework, There are notable exceptions (including IPM
∩ and ICCS∩ ).

Thus, we will then present our own definition that encapsulates these. From

our perspective, self-redundancy is the indispensable axiom. Insofar as PID

is meant to extend mutual information, this axiom must hold. The symme-

try axioms, although uncontested in the literature, may be superfluous. The

lattice framework in [125] defines the redundancy function Imin
∩ as acting on

collections of sources, not ordered tuples. In this framework, symmetry must

be implicit in order for any redundancy I∩ to be well-defined. Thus, we will

dispense with it in our definition.

Definition 13 (Redundancy Function). Let R be a finite collection of pre-

dictor variables for a target variable T , and assume all variables are discrete

or jointly continuous. Using P to denote the powerset, let S = P(P(R))

be the set of all collections of subsources of R. A redundancy function
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I∩ : S→ R, must have the following property

I∩(X) = I(T ;X) Self-Redundancy (SR)

It may also have the following optional properties:

I∩(X1, ...,Xm) ≥ 0 Nonnegativity (P)

I∩(X1, ...,Xm−1) ≥ I∩(X1, ...,Xm) Monotonicity (M) (M)

Associated with a redundancy function I∩ is a Möbius inverse, Π, that

computes the PID atoms associated with ascending a lattice of sources [125].

In the bivariate case, for instance:

R = Π(T ; {X}, {Y }) = I∩(T ; {X}{Y })

UX = Π(T ; {X}) = I∩(T ; {X})︸ ︷︷ ︸
I(T ;X)

−I∩T ; {X}{Y }

UY = Π(T ; {Y }) = I∩(T ; {Y })︸ ︷︷ ︸
I(T ;Y )

−I∩T ; {X}{Y }

S = Π(T ; {X, Y }) = I∩(T ; {X, Y })︸ ︷︷ ︸
I(T ;X,Y )

−
∑
β

Π(β)

where we range β = {X}, {Y }, {X}{Y }.

Since we are concerned with networks and the bivariate PID in this work,

we do not treat the full lattice framework here. For the development of PID

lattices, see the Appendix of [125]. 10

It immediately follows that if a redundancy function I∩ fulfills all three

axioms (SR), (P), and (M), then the four atoms of the bivariate PID d will be

10Information lattices enjoy a broad treatment in the information theory literature. The
earliest treatment of an ‘information lattice’ of which we are aware can be found in a brief
preliminary sketch by Shannon [105].
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non-negative. More generally, this property is equivalent to the non-negativity

of the Π function [125].

We now turn to the two redundancy functions that will be the focus of our

study. Imin
∩ will fulfill both axioms, and IPM

∩ will only fulfill (SR).

3.6.2.2 Redundancy Functions Imin
∩ and IPM

∩

In this section, we present the redundancy functions that we will be studying.

Both of these measures were originally defined for discrete sources. We will

present a general definition for discrete and continuous sources.

Williams and Beer defined the redundancy function Imin
∩ in [125]. For a

collection of sourcesX1, ...Xm, they defined the redundant information among

them regarding T to be:

Imin
∩ (T ;X1, ...,Xm) =

∑
j

p(tj) min
k
I(T = tj;Xk) (3.6.9)

where

I(T = t;Xk) :=
∑
i

p(xi|t)
(

log
1

p(t)
− log

1

p(t|xi)

)
(3.6.10)

Note that in the case where there is only one predictor source, this definition

is identical to the mutual information I(T,X). Written in this form, one

can see that the pointwise redundant information at T = t is the minimal

reduction in surprisal log 1
p(t)

caused by conditioning on a source. We expand

their definition to our context.

Definition 14 (Definition of Imin
∩ ). Let T be a target variable and X1, ...Xm

be a collection of sources. Suppose further either that all are discrete, or each
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Xi is jointly continuous with T , i.e. Xi ∪ {T} is continuous for each i. Then

the redundant information provided by the sources {Xi} about T is given by:

Imin
∩ (T ;X1, ...,Xm) = ET min

k
IXk

(T ). (3.6.11)

Here, IXk
(t) denotes the specific information function (Def. 9):

IX(t) := D(pX|T=t||pX) (3.6.12)

= EXk|T=t log
pX,T (X, t)

pX(x)pT (t)
(3.6.13)

=


∑
i

p(xi|t) log
p(xi, t)

p(xi)p(t)
(discrete source)∫

pX,T (x, t)

pT (t)
log

pX,T (x, t)

pX(x)pT (t)
dx (continuous source)

Intuitively, we can be think about this definition of redundant information

in the following way. At every pointwise instantiation of T , we consider how

much uncertainty in T is eliminated, locally near a specific outcome T = t, by

each Xi individually. Then, when we take the minimum, we take the value

corresponding to the minimal reduction in local uncertainty possible when

learning one of the sources. As has been frequently discussed in the literature

[11, 45, 77] this approach conflates variables containing the same information

about a target outcome T = t with the same amount of information about

that outcome. We discuss this and the ‘two-bit copy’ problem in Sec. 3.1.2.2,

above.

From Def. 14 and Eqs. E1-E3, the definitions of the atoms of the bivariate
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Imin
∩ PID dmin follow:

Rmin(T ;X, Y ) = Imin
∩ (T ;X, Y ) (3.6.14)

Umin
X (T ;X, Y ) = I(T ;X)− Imin

∩ (T ;X, Y ) (3.6.15)

Umin
Y (T ;X, Y ) = I(T ;Y )− Imin

∩ (T ;X, Y ) (3.6.16)

Smin(T ;X, Y ) = I(T ;X, Y )− I(T ;X)− I(T ;Y ) + Imin
∩ (T ;X, Y ) (3.6.17)

We emphasize that the Imin
∩ PID fulfills all of the properties discussed in

Definition 13.

Proposition 6. The redundancy function Imin
∩ fulfills the properties (SR), (P),

and (M) in Def. 13. Moreover, in the continuous bivariate setting Imin
∩ , Umin

X ,

and Umin
Y are all nonnegative. In the discrete bivariate setting Imin

∩ , Umin
X ,

Umin
Y , and Smin are all nonnegative.

The proofs of these properties in the discrete case can be found in the

Appendix of [125]. The only subtlety in our case in that we are working with

continuous variables.

Proof. Self-redundancy (SR) follows from Def. 14 and Def. 7. For non-

negativity (P), we note that since IX(t) is a KL-divergence, it is nonnegative on

its domain. Thus, mink IXk
(t) is likewise non-negative, and nonnegativity of

Rmin(T ;X, Y ) follows. Monotonicity (M) follows from pointwise monotonicity:

min
k=1,...,m

(IXk
(t)) ≤ min

k=1,...,m−1
(IXk

(t)).

In the bivariate setting, the nonnegativity of Umin
X (and analogously, that of

Umin
Y ) follows from the monotonicity that we have just demonstrated:

Rmin(T ;X, Y ) = Imin
∩ (T ;X, Y ) ≤ Imin

∩ (T ;X) = I(T ;X).
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As was hinted in Section 3.3.2, the Imin
∩ PID has a particular virtue that

makes it well-suited to our network inference problem. Consider the case where

a pair of predictor genes (X, Y ) provides a significant amount of information

about a response T simply because one of them is important to the response

and the other is not (i.e., I(T ;X, Y ) > I(T ;Y ) � I(T ;X|Y )). We contend

that synergy ought to distinguish a pair of predictors that jointly influence

a response T from a pair where one predictor is conditionally independent

of the response. The conditional independence is important, as dependency

structure may cause both I(T ;X) and I(T ;Y ) to stand out, with each gene

identified as a relatively strong predictor.

More specifically, consider a gene interaction network (Def. 1), where T

is an interaction on a network of predictors X. Let Xi be one of the ‘true’

predictors of T , i.e. (i, i′) ∈ E ′ for some other gene i′, and so g(Xi, Xi′) ap-

pears in Eq. (3.2.2). Let j be some other gene that is not a true predictor,

i.e. {(j, k), (k, j)|k ∈ [n]} ∩ E ′ = ∅. Since Xj plays no role in determining

T , we would want our inference statistic to distinguish between (Xi, Xi′) and

(Xi, Xj), and to not distinguish between (Xi, Xj) and (Xj, Xk) for any other

non-predicting gene k. In other words, we would want a statistic that demon-

strates specificity in expectation. The following proposition demonstrates that

this specificity follows for any non-negative PID.

Proposition 7. Let X, Y, T be jointly discrete or continuous random variables.

Suppose further that X is conditionally independent of T given Y , i.e. X ⊥

T |Y . Let d be a bivariate PID of I(T ;X, Y ), induced by a redundancy function
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I∩ that induces a non-negative Π function. Then we have that:

I(T ;X, Y ) = I(T ;Y )

S(T ;X, Y ) = UX(T ;X, Y ) = 0

Proof. By the MI chain rule, Eq. (3.5.20), we have that

I(T ;X, Y ) = I(T ;Y ) + I(T ;X|Y ). (3.6.18)

Since X and T are conditionally independent, we have that I(T ;X|Y ) = 0,

and thus

I(T ;X, Y ) = I(T ;Y ). (3.6.19)

Usings Eqs. (E1)-(E3), we have

R + UX + UY + S = R + UY . (3.6.20)

Since all atoms are non-negative, it follows that UX = S = 0.

We turn now to the other PID that we consider in this work: the IPM
∩ PID

from [45]. Let us again consider the separation of mutual information into

entropic components, as we did in Eq. (3.6.10). The pointwise MI function

can be split into a difference of surprisals in more than one way:

log
p(x, t)

p(x)p(t)
= log

1

p(t)
− log

1

p(t|x)
(3.6.21)

= log
1

p(x)
− log

1

p(x|t)
(3.6.22)

Such decompositions are the pointwise analogue of the relationship between

MI and (conditional) entropy. Note that (3.6.21) is the pointwise counterpart
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to (3.6.10). The IPM
∩ PID is concerned instead with (3.6.22), as this is the

decomposition of the two that fulfills the axiomatic approach in [46].

Whereas the surprisal functions (pointwise entropy) are always nonnega-

tive for discrete sources, pointwise mutual information can be negative even for

discrete sources, if p(t|x) < p(t) (equivalently, p(x|t) < p(x)). In Eq. (3.6.22),

pointwise mutual information is decomposed into two positive quantities: the

surprisal of a predictor, and the surprisal of the predictor conditioned on the

target. Using this decomposition, Finn and Lizier [45] provided an alterna-

tive definition of redundant information that relies upon a pointwise axiomatic

approach developed in [46]. In their definition, redundancy minimizes each en-

tropic component separately. This has the consequence of allowing the signed

nature of pointwise mutual information to carry over to their PID atoms in

expectation. Their framework allows each information atom in the PID in

Fig 3.12 to be decomposed into the difference of two components, which they

call specificity and ambiguity. We first define their redundancy function,

IPM.

Definition 15. Let T be a target variable and X1, ...Xm be a collection of

sources, such that the conditions of Definition 14 hold. Then the redundant

information provided by the sources {Xi} about T is defined as the difference

of the redundant specificity IPM,+∩ and the redundant ambiguity IPM,−∩ :

IPM∩ (T ;X1, ...,Xm) = IPM,+∩ (T ;X1, ...,Xm)− IPM,−∩ (T ;X1, ...,Xm) (3.6.23)
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where

IPM,+∩ := E min
k=1,...,m

sXk
(Xk) (3.6.24)

IPM,−∩ := E min
k=1,...,m

sXk|T (Xk|T ) (3.6.25)

In fact, this latter definition allows one to decompose every atom of infor-

mation from our bivariate PID into its specificity and redundancy:

RPM(T ;X, Y ) = R+(T ;X, Y )−R−(T ;X, Y ) (3.6.26a)

UPM
X (T ;X \ Y ) = U+(T ;X \ Y )− U−(T ;X \ Y ) (3.6.26b)

UPM
Y (T ;Y \X) = U+(T ;Y \X)− U−(T ;Y \X) (3.6.26c)

SPM(T ;X, Y ) = S+(T ;X, Y )− S−(T ;X, Y ) (3.6.26d)

where

R±(T ;X, Y ) = IPM,±
∩ (T ;X, Y ) (3.6.26e)

U±(T ;X \ Y ) = IPM,±
∩ (T ;X)− IPM,±

∩ (T ;X, Y ) (3.6.26f)

U±(T ;Y \X) = IPM,±
∩ (T ;Y )− IPM,±

∩ (T ;X, Y ) (3.6.26g)

S±(T ;Y \X) = IPM,±
∩ (T ; {X, Y })− IPM,±

∩ (T ;X) (3.6.26h)

− IPM,±
∩ (T ;Y ) + IPM,±

∩ (T ;X, Y )

To more clearly see the difference between these two definitions, consider

the following discrete example.

Example 7 (PIDs of AND and OR Distributions). Consider the follow dis-

tributions T = X ∨ Y and T = X ∧ Y
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X Y T (AND) T (OR) p

0 0 0 0 1/4

0 1 0 1 1/4

1 0 0 1 1/4

1 1 1 1 1/4

For both of these, we have mutual informations (where log is base 2 in the

below computations):

I(T ;X, Y ) = 2− 3

4
log 3 ≈ 0.8113, (3.6.27)

I(T ;X) = I(T ;Y ) =
3

2
− 3

4
log 3 ≈ 0.3113. (3.6.28)

Then any partial information decomposition of I(T ;X, Y ) satisfying Eqs E1-

E3 will be of the following form:

UY = UX , (3.6.29)

R =

(
3

2
− 3

4
log 3

)
− UX , (3.6.30)

S =
1

2
− UX . (3.6.31)

For the Imin
∩ and IPM∩ PIDs, we have

PID R UX UY S

Imin
∩

3
2
− 3

4
log 3 0 0 1

2

IPM∩
7
4
− 3

4
log 3 −1

4
−1

4
3
4

This example demonstrates an important principle for finite PIDs. Namely,

that given two PIDs d1, d2 of a distribution, we have that R(1) ≤ R(2) if and
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only S(1) ≤ S(2). In fact, looking at Eqs E1-E3, we see that

S(T ;X, Y )−R(T ;X, Y ) = I(T ;X, Y )− I(T ;X)− I(T ;Y ) (3.6.32)

Although S and R depend on the PID used, the right-hand side contains only

mutual informations, which are defined independently of our choice of PID.

Thus, in the case when all the atoms are finite, we have that

R(2) −R(1) = S(2) − S(1) = −(U
(2)
X − U

(1)
X ) = −(U

(2)
Y − U

(1)
Y ) (3.6.33)

This means that synergistic and redundant information must increase or de-

crease by the same amount when one changes their PID definition.

We have now introduced both the notion of a continuous interaction and

defined Imin
∩ and IPM

∩ for both discrete and continuous variables. We will now

proceed to a simple example of a continuous interaction in order to demon-

strate the explicit computation and use of the continuous PIDs.
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3.7 Continuous PID of Linear Interactions

Now that we have defined bivariate interactions, the PID framework, and our

two redundancy functions Imin
∩ and IPM

∩ , we may present a fully worked out

example of the PID of a continuous interaction. A simple linear interaction

kernel can be solved analytically without much difficulty (Theorems 2 & 3).

These computations will prove quite instructive in elucidating the difference

between these two measures — that is, between Imin
∩ and IPM

∩ . As noted in

Sec. 3.1.2.4, our results in this section for the Imin
∩ PID overlap with those

in [6], although the approach is different. In the following example, we will

see how the continuous Imin
∩ induces a fully non-negative PID dmin, while IPM

∩

allows for negative atoms. Crucially, the limiting properties of these PIDs will

analytically support the specificity (and lack thereof) in Smin (SPM) that we

observed in our experiments in Sec. 3.3.

Consider the following noiseless Gaussian interaction X, Y →ρ T :

T = aX + bY where 0 < a < b (3.7.1)

It immediately follows that

T ∼ N(0, a2 + b2 + 2ρab) (3.7.2)

Since this interaction is noiseless, we know that I(T ;X, Y ) = ∞ (Sec. 3.6.1).

We affirm that I(T ;X) and I(T ;Y ) are finite, however.

Proposition 8. Let X, Y →ρ T be the linear interaction as in Eq. (3.7.1).

140



Then the mutual informations between T and each predictor separately are

I(T ;X) = − log b+ log σT + I(X;Y ) (3.7.3)

= log

√
a2 + b2 + 2abρ

b
√

1− ρ2

I(T ;Y ) = − log a+ log σT + I(X;Y ) (3.7.4)

= log

√
a2 + b2 + 2abρ

a
√

1− ρ2

Proof. Consider (X, Y ) → (X,T ) as defined by (3.7.1) as an invertible linear

interaction from one bivariate Gaussian vector to another. Per Rule 1 in the

Appendix, we have that

µX,T = (0, 0),

ΣX,T =

 1 a+ ρb

a+ ρb σ2
T

 ,
σ2
T = a2 + b2 + 2ρab.

Moreover, we have the correlation coefficient:

ρX,T =
a+ ρb

σT
. (3.7.5)

From Example 5, the MI between two correlated Gaussians (U, V ) with corre-

lation ρ is given by:

I(U ;V ) = −1

2
log(1− ρ2). (3.7.6)

Using this formula and Eq. (3.7.5), we arrive at Eq. (3.7.3). The argument for

Eq. (3.7.4) is identical, with a and b permuted in the expressions for ΣY,T and

ρY,T .
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We see immediately that, since a < b, we have I(T ;Y ) > I(T ;X). In fact,

we will see that, under the continuous extension of the Imin
∩ PID, the redun-

dant information Rmin coincides with I(T ;X), while I(T ;Y ) = I(T ;X) + UY

for the unique atom UY . Compare with the work in [6] and the MMI PID

(Sec. 3.1.2.4).

Before we move on to the continuous PIDs of this interaction, we examine

the behavior of mutual information to anticipate what we might intuitively

expect from a PID. In particular, what happens as a becomes arbitrarily small

relative to b, and X approaches conditional independence of T? Observe that,

as a → 0+, we have I(T ;Y ) → ∞. This makes sense, as we are approaching

T = bY , in which case Y and T have a degenerate joint distribution (see

Proposition 5 and Corollary 1). However, we do not necessarily have that

I(T ;X) → 0 as a → 0+. When ρ 6= 0 and our predictors are dependent, we

instead have that

lim
a→0+

I(T ;X) = I(X;Y ) = log
1√

1− ρ2
. (3.7.7)

Even if X does not directly affect T , the dependency between X and Y still

leads to positive mutual information between X and T . Only when ρ = 0 and

X informs on neither Y nor T can we claim I(T ;X) = 0. On the other hand,

as |ρ| → 1, this limit tends toward ∞, as X tends toward perfect information

of Y , which in turn provides perfect information of T . Stepping back to the

intermediate case 0 < |ρ| < 1, the existence of positive MI despite conditional

independence (of X and T given Y when a = 0) hints at what we might hope

to see in the continuous PID. Since I(T ;X) = R+UX , any positive information

must be located in one of these two atoms. We would hope, if the information

is purely mediated through the correlated information between X and Y , that
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exactly this information would be located in R, while UX would be zero. As

we shall see, IPM
∩ does not behave in such a manner.

3.7.1 Computation of Continuous PIDs dmin and dPM

In this section, we compute the Imin
∩ and IPM

∩ PIDs — Theorems 2 & 3, re-

spectively — for the continuous interaction in Eq. (3.7.1). The structure of

this section is as follows. First, we state both theorems without their proofs

(proofs to follow). Next, since the Imin
∩ PID depends upon the computa-

tion of the specific information functions IX(t) and IY (t), we present these in

Lemma 1, followed by its proof. We then provide the proof for Theorem 2,

which follows immediately from Lemma 1 and the MIs from Prop. 8. It is worth

highlighting that this computation is particularly simple due to the convenient

property that IY (t) ≥ IX(t) for all t, which is a necessary and sufficient con-

dition for the coincidence of Imin
∩ redundancy and minimal predictor MI, i.e.

I(T ;X) = Rmin(T ;X, Y ). We then turn to the IPM
∩ PID. Since this PID is

the difference of the decomposition of specificity I+(T ;X, Y ) and ambiguity

I−(T ;X, Y ), we compute each of those lattices in turn, in Lemmas 2 & 3.

With those proven, we conclude this section on the computation of our PIDs.

Theorem 2 (PID dmin for Linear Interaction). Let X, Y →ρ T be a linear

interaction as in Eq. (3.7.1). Then, using Imin
∩ as defined in Def. 14, it has
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the following PID dmin:

R = − log b+ log σT + I(X;Y ) (3.7.8)

= log

√
a2 + b2 + 2abρ

b
√

1− ρ2
(3.7.9)

UX = 0 (3.7.10)

UY = log
b

a
(3.7.11)

S =∞ (3.7.12)

Theorem 3 (PID dPM for Linear Interaction). Let X, Y →ρ T be a linear

interaction as in Eq. (3.7.1). Then, using IPM as defined in Def. 15, it has

the following PID dPM = d+
PM − d−PM:

R = log

√
a2 + b2 + 2abρ

a
√

1− ρ2
− 1

π

√
1− ρ2 (3.7.13)

UX =
1

π

√
1− ρ2 − log

(
b

a

)
(3.7.14)

UY =
1

π

√
1− ρ2 (3.7.15)

S =∞ (3.7.16)

We begin with the Imin
∩ lattice dmin. In order to demonstrate Theorem 2,

we need to first compute the specific information functions for each predictor

variable.

Lemma 1 (Specific Information Functions for Linear Interaction). Let

X, Y →ρ T be a linear interaction as in Eq. (3.7.1). Then the specific infor-

mation functions IX(t) and IY (t) as given in Def. 9 are given as the following:
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IX(t) = − log b+
1

2σ4
T

[
b2(1− ρ2)σ2

T + (a+ ρb)2t2
]

+ c (3.7.17a)

IY (t) = − log a+
1

2σ4
T

[
a2(1− ρ2)σ2

T + (b+ ρa)2t2
]

+ c (3.7.17b)

where

c = log σT − log
√

1− ρ2 − 1

2
(3.7.17c)

σ2
T = a2 + b2 + 2ρab (3.7.17d)

Moreover, their difference IY − IX is positive, given by:

IY (t)− IX(t) = log
b

a
+

1

2σ4
T

[
(1− ρ2)(b2 − a2)(t2 − σ2

T )
]

(3.7.17e)

Proof of Lemma 1. As in the proof of Prop 8, we have that

µX,T = (0, 0),

ΣX,T =

 1 a+ ρb

a+ ρb σ2
T

 ,
σ2
T = a2 + b2 + 2ρab,

ρX,T =
a+ ρb

σT
.

Using Rule 2, this gives us a conditional distribution XT=t = (X|T = t) for

any choice of t:

XT=t ∼ N(µX|T=t, σ
2
X|T=t)
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where

µX|T=t =
(a+ ρb)t

σ2
T

(∗)

σ2
X|T=t =

b2(1− ρ2)

σ2
T

(∗∗)

This allows us to compute the specific information at T = t as the KL

divergence between X|T=t and X. Both are univariate Gaussians, so we use

Prop. 4, and have that

IX(t) = D(XT=t||X)

= log

(
1

σX|T=t

)
+

1

2

(
σ2
X|T=t + µ2

X|T=t

)
− 1

2
.

We plug in Eqs (∗) and (∗∗) to arrive at the form in Eq. 3.7.17a. In particular,

with c as in Eq. 3.7.17c, note that

log

(
1

σX|T=t

)
− 1

2
= − log b+ c,

σ2
X|T=t + µ2

X|T=t =
1

σ4
T

[
b2(1− ρ2)σ2

T + (a+ ρb)2t2
]
.

The proof for Eq. 3.7.17b is identical under the transposition of a and b.

From Eq. 3.7.17a and Eq. 3.7.17b, we have that Eq. 3.7.17e follows by

simply expanding terms and cancelling. To demonstrate that this difference

is strictly positive, it suffices to consider the worst-case scenario of (3.7.17e)

where t = 0:

IY (0)− IX(0) = log
b

a
− 1

2σ2
T

[
(1− ρ2)(b2 − a2)

]
We make the substitution b = γa, and the above becomes a function f of

γ (and ρ, implicitly):
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f(γ) := log γ − 1(1− ρ2)(γ2 − 1)

2(γ2 + 2ργ + 1)
(3.7.18)

Note that γ > 1 since 0 < a < b. In Computation 4, we demonstrate this

function is strictly increasing for γ ≥ 1, under the assumption ρ ∈ [−1, 1].

Since f(1) = 0, it follows that f(γ) > 0 for any γ > 1 and ρ ∈ [−1, 1].

We are now ready to prove Theorem 2.

Proof of Theorem 2. The form of Imin
∩ follows from IX(t) ≤ IY (t) for all t and

hence Imin
∩ = E(IX(T )) where IX(T ) has the form of Eq. (3.7.17c). It is im-

mediate that Umin
X = 0 and the form of Umin

Y follows from combining equations

Eq. (3.7.4) and Eq. (3.7.17c). Lastly, Smin =∞ follows from I(T ;X, Y ) =∞

and Eq. (3.6.17).

We now turn to the proof of the IPM
∩ PID in Theorem 3. This PID follows

readily from computing the specificity and ambiguity lattices, which we do in

Lemmas 2 and 3, respectively. The specificity lattice does not depend on the

interaction itself, only the distribution of the predictors X and Y . Thus

Lemma 2 (IPM Specificity Lattice for Gaussian PID). Let X, Y →ρ T be a

Gaussian bivariate interaction, noisy or noiseless. Then the specificity lattice

d+
PM as defined by Def. 15 has the following form:

R+ = log(
√

2πe)− 1

π

√
1− ρ2 (3.7.19)

U+
X =

1

π

√
1− ρ2 (3.7.20)

U+
Y =

1

π

√
1− ρ2 (3.7.21)

S+ = log(
√

2πe) + log(
√

1− ρ2)− 1

π

√
1− ρ2 (3.7.22)
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Proof. We begin by computing the redundant specificity

R+ = EX,Y r+(X, Y )

where

r+(x, y) = min(− log(pX(x)),− log(pY (y))).

We take the expectation over X×Y space. Since pX = pY ∼ N(0, 1), we have

that

pX(u) = pY (u) =
1√
2π
e
−u2
2

and so

− log pX(x) ≤ − log pY (y)⇔ x2 ≤ y2.

This yields that (where we use the fact that 2 min(x, y) = x+ y − |x− y|

EX,Y r+(X, Y ) = log(
√

2π) +
1

2
E(min(X2, Y 2))

= log(
√

2π) +
1

4

(
EX2 + EY 2 − E(|X2 − Y 2|)

)
= log(

√
2π) +

1

4
(2− E(|X − Y |)E(|X + Y |))

= log(
√

2π) +
1

4

(
2− 2

π

√
4− 4ρ2

)
= log(

√
2π) +

1

2
− 1

π

√
1− ρ2,

where we used above the fact that X −Y ∼ Norm(0, 2− 2ρ) is independent of

X + Y ∼ Norm(0, 2 + 2ρ) (indeed, the covariance is Cov(X − Y,X + Y ) = 0),

and for W ∼Norm(0, σ2), E(|W |) = σ
√

2/π.
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We now turn to the unique specificities U+
X and U+

Y . The specificity compo-

nents I+(T ;X) and I+(T ;Y ) of the mutual informations are just the entropies

h(X) and h(Y ), by definition. Since X and Y are standard normal variables

in their marginal distributions, we have that

I+(T ;X) = I+(T ;Y ) = log(
√

2πe).

Thus, unique specificity becomes

U+
X = U+

Y = I+(T ;Y )−R+

=
1

π

√
1− ρ2

Finally, we compute synergistic specificity. Again, the specificity compo-

nent of the mutual information I(T ;X, Y ) is the joint entropy:

I+(T ; {X, Y }) = h(X, Y ) = log(2πe) + log(
√

1− ρ2).

So, by Eq. (3.6.26h), we have that

S+ = log(
√

2πe) + log(
√

1− ρ2)− 1

π

√
1− ρ2

Whereas the specificity lattice depends only upon the distribution of the

predictors, the ambiguity lattice depends upon the actual interaction. This is

also the component where the synergistic component blows up for a noiseless

interaction.

Lemma 3 (IPM Ambiguity Lattice for Linear Interaction). Let X, Y →ρ T

be a linear interaction as in Eq. (3.7.1). Then the ambiguity lattice d−PM, as
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defined by Def. 15 has the following form:

R− = log(
√

2πe) + log
√

1− ρ2 + log

(
a√

a2 + b2 + 2abρ

)
(3.7.23)

U−X = log

(
b

a

)
(3.7.24)

U−Y = 0 (3.7.25)

S− = −∞ (3.7.26)

Proof. We begin with redundant ambiguity. A change of variables reveals that,

for a given allowable triplet (X, Y, T ) = (x, y, t):

pX,T (x, t)

pT (t)
=

1

b

pX,Y (x, y)

pT (t)
(∗)

pY,T (y, t)

pT (t)
=

1

a

pX,Y (x, y)

pT (t)
(∗∗)

We see that, since 0 < a < b, we have that

− log
pY,T (y, t)

pT (t)
≤ − log

pX,T (x, t)

pT (t)

and so, using Def. 15:

R− = E
(
− log

pY,T (y, t)

pT (t)

)
(∗ ∗ ∗)

= log a+ h(X, Y )− h(T )

Using the formulae in Eqs 3.5.16 and 3.5.27, as well as Eq. 3.7.2, we have that

h(T ) = log
√

2πe+ log(σT )

h(X, Y ) = log(2πe) + log(
√

1− ρ2)
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Thus, redundant ambiguity becomes

R− = log
√

2πe+ log
√

1− ρ2 + log

(
a

a2 + b2 + 2ρab

)
.

We can now turn to the unique ambiguity atoms U−X and U−Y . By Def. 15,

Eqs (3.6.26f) and (3.6.26g), we have that

U−X = E
(
− log

pX,T (x, t)

pT (t)

)
−R−

U−Y = E
(
− log

pY,T (y, t)

pT (t)

)
−R−

By plugging in Eq. (∗ ∗ ∗), we arrive at

U−Y = 0

U−X = E
(
− log

pX,T (x, t)

pT (t)

)
− E

(
− log

pY,T (y, t)

pT (t)

)

We expand U−X with Eqs (∗) and (∗∗):

U−X = E
(
− log

pX,T (x, t)

pT (t)

)
− E

(
− log

pY,T (y, t)

pT (t)

)
= (log b+ h(X, Y )− h(T ))− (log a+ h(X, Y )− h(T ))

= log

(
b

a

)

We have computed finite values for the atoms R−, U−X , and U−Y . Since

I(T ;X, Y ) = ∞, we note that I−(T ;X, Y ) = −∞, and thus Eq. (3.6.26h),

when rewritten in the following form:

I− = R− + S− + U−X + U−Y
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makes it determinate that S− = −∞.

Thus, we have the exact values of the continuous PIDs dmin and dPM for

the linear interaction. We now turn the question of which PID, dPM or dmin,

is preferable (and in what sense) for this interaction (3.7.1).

3.7.2 Properties, Limits, and Insights of the PIDs of Linear In-

teractions

Now that we have computed the PIDs of the linear interaction, we may ask

if their behavior sheds light on the issues of comparative specificity that we

saw in Section 3.3. Recall Experiment II , in which we considered a network

of two 10-stars centered on hubs Y1 and Y2, and a response of the form:

T = g(X1, Y1) + βY2

where g is the kernel from Eq (E4), and β a positive constant. We recall

that Smin could distinguish between the true interaction (X1, Y1) and a ‘false’

one (Xj, Y2) for any Xj on the second star. Moreover, the Imin
∩ PID tended

to properly locate most of the information of a false pair I(T ;Xj, Y ) in the

unique atom Umin
Y , whereas the IPM

∩ PID behaved less intuitively (Fig. 3.8).

Putting aside the WB axioms, for the moment, we would like to identify

behavior that we consider intuitive for the bivariate PIDs of ‘true’ and ‘false’

interactions. Many of these are mathematically trivial, relative to the strength

of the axioms from which they follow. Our purpose is to emphasize the full

implications of what is lost in the absence of the WB axioms: core properties

of information formalism that strongly align with technical intuition. Consider

the following expected properties:
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1. Monotonicity Bound on Redundant Information

For any Xi, Yj, we expect

R(T ;Xi, Yj) ≤ min(I(T ;Xi), I(T ;YJ)).

Put into words, the redundant information in both predictors is no

greater than the total information in either predictor, with respect to

the target.11

2. Data Processing Inequality of Redundant Information

If (Xi, Yj) is a false interaction, then

R(T ;Xi, Yj) ≤ I(Xi;YJ)

In words, given a Markov chain Xi → Yj → T , where Yj is a true

predictor and Xi is independent of T except for its dependency on Y ,

then the redundant information of both predictors is no greater than the

information between Xi ↔ Yj.
12

3. Specificity of Unique Information:

If Xi, Yj are a false interaction, with Xi ⊥ T |Yj, then we expect

UXi(T ;Xi, Yj) = 0. In words, given a Markov chain Xi → Yj → T ,

there should be no information overlap or ‘flow’ of any kind between Xi

and T , if we have accounted entirely for Yj.

The first property is just a special case of the monotonicity property (M) in

Def. 13. The second property follows from the first and the Data Processing

Inequality. The third is Proposition 7 from Section 3.6. The Imin
∩ PID (at least

11Compare with the MMI PID for jointly Gaussian variables in [6], discussed more in
Sec. 3.1.2.4.

12Compare with (3.7.7) in the introduction to the current Sec. 3.7.
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in discrete settings), and similarly every PID that induces only non-negative

information atoms, will fulfill these properties. The IPM
∩ PID will not. We saw

in Section 3.3 that such counter-intuitive behavior arguably detracts from the

the utility of SPM as a statistic for edge nomination.

The linear interaction under consideration in this section is different, in

many respects, from the experiments we conducted in Section 3.3. First, in

this section, we are considering a continuous extension of PID, applied to the

theoretical distributions of the predictors and targets, whereas all the experi-

ments in Section 3.3 used discretized data, i.e. used empirical distributions for

a discretization of all variables. In addition, in this section, we consider only

two predictors, and a single interaction of a linear form. This discretization

alone has major consequences, as we have seen, since continuous MI and PID

information can be infinite. Nonetheless, the differences between how the Imin
∩

and IPM
∩ PIDs treat both true and false interactions have as much to do with

how redundant and unique information atoms are assigned, since synergy is

entirely determined by the balance of information in I(T ;X) and I(T ;Y ) in

the atoms R,UX , UY . For instance, in Fig. 3.8 and Fig. 3.14, we see that the

elevated ŜPM of both true and false interactions is more or less the mirror of

the negative ÛPM
X . The following limiting properties of the linear interaction

in this section conform to this phenomenon.

Corollary 2. Let {X, Y →ρ T}a be the collection of linear interactions as in

Eq (3.7.1), where b > 0 and 0 < ρ < 1 are fixed and only a ∈ (0, b) varies.

Then as a→ 0+, we have the following limits:
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Rmin → I(X;Y ) (3.7.27a)

= − log
√

1− ρ2

Umin
X = 0 (3.7.27b)

Umin
Y →∞ (3.7.27c)

Smin =∞ (3.7.27d)

RPM →∞ (3.7.28a)

UPM
X → −∞ (3.7.28b)

UPM
Y =

1

π

√
1− ρ2 (3.7.28c)

SPM =∞ (3.7.28d)

where equality denotes a fixed value for all a ∈ (0, b) (and hence trivial limit).

Moreover, the following ratios have limits:

Umin
Y

I(T ;Y )
→ 1 (3.7.29a)

Rmin

I(T ;Y )
→ 0 (3.7.29b)

UPM
X

I(T ;Y )
,
UPM
X

RPM
→ −1 (3.7.30a)

RPM

I(T ;Y )
→ 1 (3.7.30b)

Combined, this provides

UPM
X

Umin
Y

→ −1 (3.7.31)

Umin
Y

RPM
→ 1 (3.7.32)

Proof. The limits are readily computable with calculus, given the expressions

in Theorems 2 & 3. The ratio limits are most easily computed via disentangling
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the logarithms:

UPM
X = log a+ c1(b, ρ)

Umin
Y = − log a+ c2(b)

RPM = − log a+ c3(a, b, ρ)

I(T ;Y ) = − log a+ c4(a, b, ρ)

where the ci are either fixed terms of b and ρ or functions of a, b, ρ that converge

to a finite term as a→ 0+.

We will now attempt to provide an interpretation of these limits according

to our understanding. We begin with the Imin
∩ PID. As a→ 0+, the redundant

information Rmin approaches the total shared information between X and

Y (3.7.27a). Since T becomes asymptoptically determined by Y (that is,

I(T : Y )→∞), as a→ 0+, this makes intuitive sense: any shared uncertainty

between X and Y is exactly X’s shared uncertainty with any variable exactly

determined by Y . It is also intuitive that Umin
Y →∞ (3.7.27c). Since |ρ| < 1,

the mutual uncertainty X shares with Y (and thus T ) is not all of either’s

uncertainty: X and Y share finite, rather than perfect, information of each

other. The gap from finite to perfect information is infinite, formally rendered

I(T ;Y ) − Rmin(T ;X, Y ) = ∞, and so Umin
Y = ∞ (3.7.27c), i.e. if Y has

perfect information regarding T , then it must be unique to Y . Less intuitive,

on the other hand, is that Umin
X = 0 even when a > 0 (3.7.27b). Though

we might desire that Umin
X → 0 as a → 0+, so long as a > 0 and |ρ| < 1,

there is some portion of uncertainty that X shares with T and not with Y .

This is another manifestation of the common critique of Imin
∩ , which is that it

does not distinguish the same information contained in the predictors from the

same amount of information given by the predictors regarding a given outcome
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T = t. Since the expected total information that X gives about any T = t will

always be less than that of Y (as a < b), Imin
∩ will assign the full uncertainty

that X shares with T to redundant information.

Let us now consider the IPM
∩ PID dPM. To contextualize the limits of unique

information, we note that this PID pseudobounds13 UPM
X and UPM

Y above by

the unique specificities UPM,+
X and UPM,+

Y . Since Y has zero unique ambiguity,

UPM,−
Y = 0, we have that UPM

Y = UPM,+
Y , a fixed quantity depending only upon

the marginal distribution pY . We see that, as a→ 0+ and I(T ;Y )→∞, the

IPM
∩ PID treats the perfect information that Y holds regarding T as shared

between the predictors (i.e., captured by the redundancy; see Eq. 3.7.30b),

and it treats the finite information in I(T ;X), which approaches zero, as what

one may imprecisely think of as an infinite shortcoming (see Eq. 3.7.30a) of

X as a predictor. Explicitly, for the expression for UPM
X in Eq. (3.7.14), this

shortcoming is quantified as the term − log b
a
, which grows without bound in

magnitude in proportion to the discrepancy between the information in X and

Y .

In Section 3.8, we will generalize this understanding of unique information

to well-behaved kernels, providing a framework to link the analytic and infor-

mation properties of our variables. This will allow us to see the relationship

between the motivation underlying the IPM
∩ PID developed in [45, 46], and the

curious phenomenon of asymmetric negative unique information that we have

seen in bivariate interactions. In the discrete context in which PID is typically

applied to data, there would not of course be any infinite discrepancies between

information atoms. Nonetheless, we contend that these limits demonstrate the

intrinsic orientation of the PIDs towards the concepts of redundancy, synergy,

13In the discrete case, redundancy and ambiguity atoms are non-negative, and UPM
X is

indeed bound above by UPM,+
X . This is no longer true in the continuous case, e.g. consider

|ρ| → 1 in Lemmas 2 & 3.
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and uniqueness of information. We now return to the discrete PID analysis of

network simulations in order to further relate the computational analysis of

this section with the motivating experiments in Section 3.3.

3.7.3 Network Simulation Analysis of Linear Interactions

We return to simulating network data, this time to bridge our theoretic inves-

tigation of the continuous Imin
∩ and IPM

∩ PIDs in this section with our earlier

experimental investigation in Section 3.3. In this section, we run analogous

simulation experiments to those previously presented, except now we will uti-

lize the linear interaction kernel (3.7.1). For this kernel, we run into the

issue that multiple ‘interactions’ are non-identifiable (i.e., all genes are con-

tributing to the interaction at the individual and not the paired level). The

total response will be a linear combination of some subset of genes, with no

meaningful pair distinction. Nonetheless, we will be able recreate—and bet-

ter understand—similar PID behavior to that observed in Section 3.3, when

we were considering more paired/identifiable interactions. We use the same

network and procedure as in Experiments I & III (Secs. 3.3.1, 3.3.3). Our

response will similarly be sum of four identical interactions on the same hub.

Applying the kernel in (3.7.1), this becomes the (pairwise undifferentiated)

response:

T =
4∑
i=1

aXi + 4bY. (3.7.33)

Note that, in this random experiment, the pairwise contribution of Xi and Y

to the response is now aXi + 4bY , and Y is the more informative gene in the

pair whenever a < 4b, rather than a < b as in the isolated bivariate system in

Secs.3.7.1-3.7.2.

We present the values of the bivariate IPM
∩ and Imin

∩ PIDs in Fig. 3.13, nor-
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malized by the mean Î(Xi, Y ) as in previous visualizations. We see a strong

resemblance to Experiment III and Fig. 3.10, albeit with more pronounced

limiting behavior. Notably, when a/b is small and the information is concen-

trated highly in Y , then we see that d̂min locates almost all information in

UY . As a → 4b−, this atom’s share of Î(Xi, Y ) recedes as the information is

redistributed. By contrast, d̂PM locates a relatively large amount of positive

information in synergy and redundancy, and less in UY even in the a/b small

case. Moreover, we see UPM
X takes a negative value to offset the inflated syn-

ergy and redundancy. As in Fig. 3.10, the negative of the estimated UPM
X (i.e.,

−ÛPM
X ) resembles the estimated RPM and SPM when a < 4b (corresponding to

I(T ;X) < I(T ;Y )).

We have repeatedly highlighted this relationship between significant neg-

ative information in UPM
X and the inflated values of SPM and RPM, as this

phenomenon is responsible for the non-specificity of the IPM
∩ PID for our mo-

tivating problem of edge nomination (Sec. 3.3, particularly 3.3.2). In order to

connect our analytic and simulated explorations, we examined the estimated

ratio ÛX/R̂ in Fig. 3.14, for both our current linear interaction simulations

and the results from Experiment III , earlier presented in Fig. 3.10. As refer-

ence, we also include the theoretical ratio UX/R for a linear interaction, using

the PIDs we just computed in Theorems 2-3 14. We see that, as a/b becomes

small, the estimated ratio ÛPM
X /R̂PM approaches a value near -1, similar to the

asymptotic behavior from Corollary 2 in Sec. 3.7.2.

Taken together, this provides evidence that the discrete IPM
∩ PID, as ap-

plied to network data, exhibits the same pathologies as the continuous IPM
∩

PID explored in this section, at least in the case where the network response

T is a linear interaction. Neither the continuous nor discrete IPM
∩ PID respect

14In order to make the isolated interaction more comparable to the four-fold sum, we used
a substitution b→ 4b in the analytic expressions, as plotted in all figures.
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asymptotic independence in the way we would hope for, as both will locate

a large amount of target-predictor MI I(T ;X, Y ) in the redundancy atom

RPM(T ;X, Y ). If I(T ;X) is small, both the discrete and continuous IPM
∩ PID

will account for a large redundancy atom, RPM � I(T ;X) (and so the syn-

ergy also increases problematically in the discrete case as well), by assigning

a proportionate share of negative information to UPM
X . In the next section, we

will see that this phenomenon will hold for a more generic class of continuous

interactions and kernels g.
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Figure 3.13: Bivariate PID atoms (normalized) for linear kernel simulations, as
a function of coefficient ratio log a/b For the linear interaction kernel (Eq 3.7.1), we
ran a fourth network simulation experiment on the same network topology as Exps. I and
III (Fig. 3.1), and computed the PIDs of the four ‘interactions’ and all null pairs, as in
Section 3.3.
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in simulations of sigmoidal and linear interaction kernels From the experiments in
Secs. 3.3.3 & 3.7.3, we plot the ratio of unique information of X to redundant information,
ÛX/R̂, for both a sigmoidal (Experiment III , Sec. 3.3.3) and linear (Sec. 3.7.3) interaction
kernel.
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3.8 Unique Information for a Generic Interaction Kernel

We have seen that the difference between the Imin
∩ and IPM

∩ PID frameworks can

be better understood by examining how each treats unique information. As

we saw in Eqs (3.6.33), for discrete bivariate PIDs there is a trade-off between

the positive information assigned to redundancy and synergy and the unique

information atoms. We have emphasized that, since the IPM
∩ PID does not

fulfill the (M) WB axiom, its redundancy and synergy atoms can behave non-

intuitively for predictors with asymmetric relationships to the target, e.g., if

one is conditionally independent of the target, given the other. In this section,

we have a two-fold purpose. First, we wish to expand the analytic analysis of

the continuous Imin
∩ and IPM

∩ PIDs to a large class of interactions, including

the sigmoidal switch kernel in Eq. (E4). This will provide a more general prin-

ciple to explain IPM
∩ ’s non-specificity for edge nomination, including negative

unique information and inflated redundancy. We demonstrate a general form

for unique information that is approachable with calculus.

Second, from this more general principle, we will show in Sec. 3.8.2 that the

IPM
∩ remains loyal the principles underlying the specificity-ambiguity informa-

tion decomposition that the work of Finn and Lizier takes as its starting point

(the entropic decomposition in Eq. 3.6.21). Up to this point, we have mostly

highlighted the shortcomings of the IPM
∩ PID in a specific network inference

context and under certain assumptions about how a PID ‘ought’ to behave

with respect to response-irrelevant predictors. The IPM
∩ PID was developed as

the result of thoughtful reflections upon the nature of pointwise information,

and the probability mass exclusions that it quantifies [45]. To our knowledge,

we are the first to investigate the continuous IPM
∩ PID and its response to the

analytic relationships between target and predictor variables. While we show
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IPM
∩ is not as suitable for edge nomination, we here tie our continuous exten-

sion back to the important motivating roots and contributions of the original

IPM
∩ framework in [45] and [46].

3.8.1 Unique Information for a Generic Kernel

In the previous section, we were able to compute every atom of the Imin
∩ and

IPM
∩ PIDs explicitly for a linear interaction. We were able to do so because, as

a linear combination of Gaussian variables, T itself had a normal distribution.

It is less clear what distribution T takes on when we instead use, for instance,

the sigmoidal switch kernel in Eq (E4). By limiting our attention to unique

information, we may sidestep the question of T ’s distribution.

We will demonstrate that for well-behaved interaction kernels g, the

unique information for the IPM
∩ lattice becomes the positive expectation of

the log-ratio between the its partial derivatives — that is, the expectation of

log |∂yg|/|∂xg| where it is positive. This will make it clear that, if the relative

sensitivity of the kernel g upon the predictor X is much smaller than that of

Y , UPM,−
X will become large. Given |∂yg| bounded away from 0, we will see

that

UPM,−
X → −∞ as |∂xg| → 0

which in turn implies that

UPM
X →∞ as |∂xg| → 0.

We will make this more precise in Corollary 3. In this way, we generalize the

limiting behavior of the IPM
∩ PID that we saw in Section 3.7.2. We thereby also

give a theoretical explanation for the negative unique information estimated

for conditionally independent, non-predicting variables in Section 3.3. Recall
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that this behavior coincided with inflated values for estimated redundancy

and synergy, R̂PM and ŜPM, that undermined the ability of the IPM
∩ PID to

distinguish true interactions from univariate signals in Exp II .

We now provide the statement of our main result for this section.

Theorem 4 (Unique Information for Continuous Imin
∩ and IPM

∩ PIDs). Let

(X, Y )→ T be a noise-free bivariate interaction with associated kernel g, and

let us further assume that there exists an open set U ⊂ AX,Y of measure

µX,Y (U) = 1 such that g satisfies the following conditions:

i. The function g is continuously differentiable on U , i.e. g ∈ C(1)(U);

ii. The partials |∂yg(x, y)| > 0, |∂xg(x, y)| > 0 for (x, y) ∈ U .

Then the unique informations for the decompositions dmin and dPM are given

by

Umin
X (T ;X, Y ) = E

[
1A

(
log

pY (Y )

pX(X)
− log

|∂yg|
|∂xg|

)]
(3.8.1)

UPM
X (T ;X, Y ) = E

[
1B log

pY (Y )

pX(X)

]
︸ ︷︷ ︸

(UPM
X )+

−E
[
1C log

|∂yg|
|∂xg|

]
︸ ︷︷ ︸

(UPM
X )−

(3.8.2)

where 1 is the indicator function for the events:

A = {IX(T ) ≥ IY (T )}

B = {pX(X) ≤ pY (Y )}

C = {|∂xg|(X, Y ) ≤ |∂yg|(X, Y )}

In particular, if (X, Y )ρ → T is a normalized Gaussian interaction, then
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we have that

Umin
X (T ;X, Y ) = E

[
1A

(
log(e)

2
(X2 − Y 2)− log

|∂yg|
|∂xg|

)]
, (3.8.3)

UPM
X (T ;X, Y ) =

log(e)

2

√
1− ρ2 − E

[
1C log

|∂yg|
|∂xg|

]
. (3.8.4)

Before we prove this result, we state the following general change of vari-

ables formula.

Proposition 9. Let (X, Y )→ T be a noise-free bivariate interaction under the

same conditions as in Theorem 4. Then the densities on the induced probability

spaces (AX,T , µX,T ) and (AY,T , µY,T ) are defined a.e. (where we write ∂yg for

∂yg(x, ỹ) and similarly for ∂xg)

pX,T (x, t) =
1

|∂yg|
pX,Y (x, ỹ) a.e. [µX,T ], (3.8.5)

pY,T (y, t) =
1

|∂xg|
pX,Y (x̃, y) a.e. [µY,T ], (3.8.6)

where

ỹ(x, t) = (g(x, ·))−1(t), (3.8.7)

x̃(y, t) = (g(·, y))−1(t). (3.8.8)

Moreover, we may regard these densities as random variables that are almost

surely equal (where we write ∂yg for ∂yg(X, Y ) and similarly for ∂xg):

pX,T (X,T )
ω
=

1

|∂yg|
pX,Y (X, Y ) (3.8.9)

pY,T (Y, T )
ω
=

1

|∂xg|
pX,Y (X, Y ) (3.8.10)

Proof. Let U ⊂ AX,Y be the full measure open set as in the statement of
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Theorem 4. Consider the transformation Φ : U → R2 given by Φ : (x, y) 7→

(x, g(x, y)). Since g ∈ C1(U), the Jacobi matrix JΦ is defined, and we have

that | det JΦ| = |∂yg| > 0 on U . By the Inverse Function Theorem, it follows

that Φ is a diffeomorphism on U
∼=−→ Φ(U). We arrive at our density pX,T by

a standard change of variables (see, for instance, Section 4.3 of Casella and

Berger [21]).

We now proceed to prove our main result.

Proof of Theorem 4. Let g and U be given as in the statement of Theorem 4.

On the almost sure event E = π−1
X,Y (U), note that via Proposition 9, the

densities pX,Y , pX,T , and pY,T are well-defined. Moreover, since we can choose

U to ensure pT (t) > 0 over (x, y) ∈ U , the conditional densities pX|T and pX|T

are likewise defined.

We begin with (3.8.1). We recall from Def. 14 that Imin
∩ (T ;X, Y ) =

Emin(IX(T ), IY (T )), so

Umin
X = I(T ;X)− Imin

∩ (T ;X, Y )

= EIX(t)− Emin(IX(T ), IY (T ))

= E [1A(IX(T )− IY (T ))]

where A is the event in which IX(t)−IY (t) > 0. If pT (t) = 0, IX(t) = IY (t) = 0,
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so we may assume pT (t) > 0. Then observe that

(IX(T )− IY (T )) = E
(

log
pX,T (X,T )

pX(X)pT (T )

∣∣∣∣T)− E
(

log
pY,T (Y, T )

pY (Y )pT (T )

∣∣∣∣T)
(3.8.11)

= E
(

log
pX,T (X,T )

pX(X)
− log

pY,T (Y, T )

pY (Y )

∣∣∣∣T) (3.8.12)

= E
(

log
pY (Y )

pX(X)
− log

pY,T (Y, T )

pX,T (X,T )

∣∣∣∣T) (3.8.13)

By Proposition 9, we have that

log
pY (Y )

pX(X)
− log

pY,T (Y, T )

pX,T (X,T )
ω
= log

pY (Y )

pX(X)
− log

|∂yg|
|∂xg|

Thus, considered as random functions of T ,

IX(T )− IY (T )
ω
= E

(
log

pY (Y )

pX(X)
− log

|∂yg|
|∂xg|

∣∣∣∣T) . (3.8.14)

Now, 1A is a function of T so that

E
[
1AE

(
log

pY (Y )

pX(X)
− log

|∂yg|
|∂xg|

∣∣T)]
= E

[
E
(
1A

(
log

pY (Y )

pX(X)
− log

|∂yg|
|∂xg|

∣∣T))]
= E

[
1A log

pY (Y )

pX(X)
− log

|∂yg|
|∂xg|

]

and Eq. 3.8.1 follows.

The expression for unique specificity UPM,+
X in Eq. (3.8.1) follows easily

from Def. 15 and Eq. (3.6.26f).
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To find the expression for unique ambiguity in Eq. 3.8.2, we have that

UPM,−
X = IPM,−

∩ (T ;X)− IPM,−
∩ (T ;X, Y )

= E log
1

pX(X)
− Emin(

1

pX|T (X|T )
,

1

pY |T (Y |T )
)

= E
[
1C log

pY |T (Y |T )

pX|T (X|T )

]

where C ⊂ E is the event

C = {pX|T (X|T ) > pY |T (Y |T )} ∩ E.

Note that C may be empty or probability zero, in which case UPM,−
X = 0.

Prop. 9 gives us the almost sure equality of the random variables

log
pX|T (X|T )

pY |T (Y |T )
ω
= log

|∂xg(X, Y )|
|∂yg(X, Y )|

. (3.8.15)

Thus, our expression in Eq. (3.8.2) follows, as does our definition of the event

C stated in the theorem.

For the specific case where (X, Y )ρ → T , then we have that both marginals

are the standard normal Gaussian density pX(z) = pY (z) = 1√
2π
e−z

2/2. Thus,

log
pY (y)

pX(x)
=

log(e)

2
(x2 − y2)

and Eq. (3.8.3) follows. The expression for UPM,+
X was demonstrated in

Lemma 2 of Section 3.7.1.

As we mentioned earlier in this section, Theorem 4 allows us to understand
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how the Imin
∩ PID comes to assign negative unique information to a particular

predictor X, versus a more informative predictor Y . We can see, explicitly

in Eqs. (3.8.1-3.8.4), how the amount of unique information assigned to a

predictor X shrinks as the the relative sensitivity of the kernel function to X,

quantified in |∂xg|/|∂yg|, similarly shrinks. It is easy to see how Umin
X could be

zero and UPM
X negative when this ratio becomes very small.

We conclude this section with a corollary to Theorem 4 that can be thought

of as a generalization of our results in Section 3.7.2. In the context of a noiseless

interaction (X, Y ) → T , it provides a framework in which we may say that,

as X approaches conditional independence of T given Y , Umin
X → 0 while

UPM
X → −∞. Whereas, in our linear interaction, we formalized this as the

limit as a/b → 0+, here we instead have the more general situation where

|∂xg|/|∂yg| → 0.

Corollary 3. Let {X, Y →ρ T(n)}n∈N be a sequence of noiseless Gaussian

interactions, associated to the sequence of kernels {gn}. Let us further as-

sume that each gn satisfies the conditions of Theorem 4, on the same com-

mon, full measure open set U ⊂ AX,Y . Assume also that Umin
X (T(1);X, Y ) and

UPM
X (T(1);X, Y ) are finite.

Then the following monotonic limit of random variables

|∂xg(n)|
|∂yg(n)|

(X, Y ) ↓ 0 as n→∞ almost surely (3.8.16)

implies the following information limits:

Umin
X (T(n);X, Y )→ 0, (3.8.17)

UPM,−
X (T(n);X, Y )→∞, (3.8.18)

UPM
X (T(n);X, Y )→ −∞. (3.8.19)
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Proof. Consider the events

E =

{
ω s.t.

∂xgn
∂ygn

(X, Y )(ω) ↓ 0

}
Ẽ = E ∩ U

and note that Ẽ has full measure. Note that for ω ∈ Ẽ, there exists an n(ω)

such that for n > n(ω),

log(e)

2
(X(ω)2 − Y (ω)2)− log

|∂ygn|
|∂xgn|

(X, Y )(ω) < 0

and hence 1An(ω) = 0. Hence (as the point-wise convergence in E is mono-

tone), for ω ∈ Ẽ, 1An(ω)
(

log(e)
2

(X(ω)2 − Y (ω)2)− log |∂ygn||∂xgn|(X, Y )(ω)
)
↓ 0.

As we have integrability when n = 1 and the n = 1 case upper bounds the

other cases pointwise on Ẽ, the Dominated Convergence Theorem yields the

desired convergence to 0 of Umin
X (T(n);X, Y ).

We will now demonstrate Eqs. (3.8.18) & (3.8.19). From Theorem 4, we

have

UPM
X (T ;X, Y ) =

log(e)

2

√
1− ρ2 − E

[
1C log

|∂yg|
|∂xg|

]
︸ ︷︷ ︸

UPM,−
X

(3.8.4)

Consider again the limit in Eq. (3.8.16), which defines our event E. This limit

implies, for every ω ∈ Ẽ ∩ C:

[
1C log

|∂yg(n)|
|∂xg(n)|

]
(ω)↗∞.

Since this random variable is non-negative (by the indicator), it follows from

the Monotone Convergence Theorem that UPM,−
X → ∞, i.e. Eq. (3.8.18).

Hence, Eq. (3.8.19) as well.
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It is straight-forward to demonstrate that Eqs (3.7.27b, 3.7.28b) are imme-

diate applications of this corollary. A more interesting example is the sigmoidal

switch kernel (E4) used for simulations in Sec. 3.3. We will approach this ker-

nel presently, in Section 3.9.1. For the moment, we turn to a more thorough

discussion of Finn and Lizier’s work in [45] and [46] to comprehend our result

within the narrative context of the IPM
∩ redundancy measure.

3.8.2 The Curse of Ambiguity: Vanishing Partials, Flat Condi-

tionals, and Negative Information

In this section, we aim to incorporate our current effort into the narrative de-

velopment of the IPM
∩ PID in [45] and [46]. Although the IPM

∩ has not demon-

strated itself to be a desirable tool for edge nomination in network inference,

we nonetheless affirm that it quantifies exactly the probability mass exclusions

that it was meant to, and obeys its own logic in this respect. Although our

current application may not be the appropriate one for such a perspective,

perhaps a continuous elaboration of the principles of the IPM
∩ PID will aid in

understanding the meaning of the specificity and ambiguity lattices defined in

[45].

In section 3.8.2.1, we review the notion of informative and misinformative

probability mass exclusions from [46], and how they motivated the construction

of the IPM
∩ PID in [45]. In section 3.8.2.2, we relate these concepts more firmly

to our results in Theorem 4, and what we have uncovered, more generally,

about the behavior of the IPM
∩ PID for continuous interactions.
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3.8.2.1 Probability Mass Exclusions and the Axiomatic Devel-

opment of the IPM
∩ PID

The IPM
∩ PID, like many others, was developed with the intention of correcting

the limited perspective inherent in the Imin
∩ PID. In order to overcome the issue

of quantifying the same information versus the same amount of information

regarding a target outcome T = t, Finn and Lizier examined the pointwise

value of information in [45] and [46]. As observed in [46], information theory

is built upon the understanding that a gain in information is exactly a re-

duction in uncertainty. With this in mind, they closely examined how mutual

information accounts for exclusions of probability mass — that is, excludes

sources of uncertainty — at every pointwise realization of elementary events.

We give an abbreviated summary of the investigation conducted in [46],

without regard for formal rigor. We direct those seeking more detail to the

original work. Adopting notation similar to that in [46] and [45], consider

a discrete system with a predictor random variable X and target random

variable T . Let us fix realized, elementary events x and t. We denote the

complementary events as x{ and t{. Observe that, by taking intersections, we

may divide our probability space into four probability masses:

p(t, x) + p(t, x{)︸ ︷︷ ︸
p(t)

+ p(t{, x) + p(t{, x{)︸ ︷︷ ︸
p(t{)

= 1. (3.8.20)

Pointwise mutual information, denoted i, is given by

i(t;x) = log
p(t, x)

p(x)p(t)
= log

p(t|x)

p(t)
(3.8.21)
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and we may in turn decompose p(t|x) into the ratio of probability masses:

p(t|x) =
p(t)− p(t, x{)

1− p(t, x{)− p(t{, x{)
. (3.8.22)

Taken together, pointwise mutual information may then be rewritten as:

i(t;x) = log
1− p(t, x{)/p(t)

1− p(t, x{)− p(t{, x{)
. (3.8.23)

The conditioned probability mass p(t|x) accounts for two probability mass

exclusions that determine the information that the event X = x provides

about T = t. First, we see that for fixed p(t), pointwise information i(t;x)

is a strictly increasing function of the mass p(t{, x{). Finn and Lizier refer to

this as an informative probability mass exclusion, as it quantifies how

much of the probability mass of the complementary target event T 6= t is

excluded by conditioning on X = x. On the other hand, for fixed p(t), we

have that i(t;x) is a strictly decreasing function of p(x{, t). They refer to

this as a misinformative probability mass exclusion. The understanding

provided is that, when conditioning on X = x, one loses probability mass

associated with the target event.

Finn and Lizier observed that pointwise MI i(t;x) is signed, and can be

negative when the misinformative exclusion p(x{, t) is relatively large and the

information exclusion p(x{, t{) relatively small. Although MI, in expectation,

is non-negative, the pointwise signed nature reveals that, at every point x, t,

information and misinformation are being conflated. Thus, they proposed that

i(t;x) be decomposed into the difference of two non-negative components:

i(t;x) = i+(t;x)− i−(t;x) (3.8.24)
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Finn and Lizier provided three axioms (termed ‘postulates’ in [46]) to charac-

terize this pointwise decomposition:

FL Axiom 1 (Decomposition) The information provided by x about

t can be decomposed into two non-negative components,

such that i(t;x) = i+(t;x)− i−(t;x).

FL Axiom 2 (Monotonicity) The functions i+(t;x) and i−(t;x) should

satisfy the following conditions:

a. For all fixed p(t, x) and p(t, x{), the function i+(t;x)

is a continuous, increasing function of p(t{, x{).

b. For all fixed p(t{, x) and p(t{, x{), the function

i−(t;x) is a continuous, increasing function of p(t, x{).

c. For all fixed p(t, x) and p(t{, x), the functions

i+(t;x) and i−(t;x) are increasing and decreasing

functions of p(t{, x{), respectively.

FL Axiom 3 Self-Information. An event cannot misinform about

itself, hence i+(x;x) = i(x;x) = log 1/p(x).

FL Axiom 4 Chain Rule. The functions i+ and i− satisfy a chain

rule; i.e.,

i±(t;x, y) = i±(t;x) + i±(t; y|x)

= i±(t; y) + i±(t;x|y)

where the conditional notation denotes the same function

only with conditional probability as an argument.
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Axioms 1, 3, & 4 provide a framework for the desired decomposition. Ax-

iom 2 asserts the desired relationship of positive and negative information

components to informative and misinformative probability mass exclusions.

The positive component ought to increase with informative exclusions, and the

negative component with misinformative exclusions. Finn and Lizier demon-

strated that, for discrete variables, these axioms are satisfied for unique func-

tions i+ and i−.

Theorem 5 (Finn & Lizier, [46]). The unique functions satisfying Axioms 1-3

are the pointwise surprisals:

i+(t;x) = log
1

p(x)
(3.8.25)

i−(t;x) = log
1

p(x|t)
(3.8.26)

The refer to the positive information component i+ as specificity, and the

negative component i− as ambiguity. In expectation, these become H(X) and

H(X|T ), respectively. We may rewrite them in terms of the probability masses

from Eq. (3.8.20):

i+(t;x) = − log
(

1− p(t, x{)− p(t{, x{)
)

(3.8.27)

i−(t;x) = − log

(
1− p(t, x{)

p(t)

)
(3.8.28)

In Fig. 3.15, we provide a visualization of the probability mass exclusions and

their relationship to pointwise mutual information.

In [45], Finn and Lizier use this pointwise decomposition to develop the

discrete IPM
∩ PID, as we defined back in Section 3.6. This PID decomposes

the specificity and ambiguity of predictor sources separately, corresponding to

the informative and misinformative probability mass exclusions, respectively
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(Eqs. 3.8.25-3.8.26, Def. 15). What we have seen repeatedly throughout this

work is that the IPM
∩ PID frequently assigns negative unique information to

less informative predictors.

Pointwise, unique information in the IPM
∩ PID, for discrete variables, takes

the form:

u−X(t;x, y) = i−(t;x)−min(i−(t;x), i−(t; y)) (3.8.29)

=


i−(t;x)− i−(t; y) when p(t, x) ≤ p(t, y)

0 when p(t, x) ≥ p(t, y)

(3.8.30)

Assuming that p(t, y) > p(t, x), we use Eq. (3.8.28) to rewrite Eq. (3.8.30),

and have that

u−X(t;x, y) = log
1− p(t, y{)
1− p(t, x{)

(3.8.31)

We see that the pointwise unique ambiguity of x, then, grows monotonically

with the misinformation that x contributes to the target event t, while it

shrinks as the misinformation contributed by y. More precisely, it grows with

the misinformative probability mass exclusion p(t, x{), and shrinks as the ex-

clusion p(t, y{) grows. Moreover, the condition for which u−X > 0 is equivalently

stated as a comparison of the sizes of these misinformative exclusions:

u−X(t;x, y) > 0 ⇐⇒ p(t, y)

p(t, x)
> 1 ⇐⇒ p(t, x{)

p(t, y{)
> 1. (3.8.32)

This concludes our review of the probability mass exclusions that motivated

the development of the IPM
∩ PID in [46] and [45]. We will now relate these

ideas to our analytic characterization of unique information in Theorem 4.
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3.8.2.2 Unique Information and the Continuous Analogue of

Misinformative Probability Mass Exclusions

Consider the case of a continuous interaction (X, Y ) →ρ T under the condi-

tions of Theorem 4. Let (x0, y0) be a point in the open set U , and let xδ, yδ

and tε be radius δ and ε intervals about x0, y0, and t0 = g(x, y) such that

xδ × yδ ⊂ U and g(xδ × yδ) ⊂ tε. Observe that15

1− p(tε, y{
δ)

1− p(tε, x{
δ)

=
p(tε, yδ)

p(tε, xδ)
≈ εδpY,T (y0, t0)

εδpX,T (x0, t0)
=
|∂yg|
|∂xg|

(x0, y0) (3.8.33)

Note that the right-most expression is the pointwise unique information for

the continuous PID from Eq. (3.8.2) of Theorem 4. And thus, for this δ-ε

discretization, we have that

u−X(tε; xδ, yδ)︸ ︷︷ ︸
Discretized u−X

= log
1− p(tε, y{

δ)

1− p(tε, x{
δ)︸ ︷︷ ︸

Function of Relative Misinformation

≈ |∂yg|
|∂xg|

(x0, y0)︸ ︷︷ ︸
Continuous u−X

.

(3.8.34)

Pointwise, we see that the probabilistic discrepancy between the misinfor-

mative exclusions — favoring the mass p(tε, x
{
δ) over p(tε, y

{
δ) — corresponds

to an analytic discrepancy between the (absolute) partial derivatives of the

kernel — favoring |∂yg| over |∂xg|.

This is meaningful in the following sense. If |∂yg| >> |∂xg|, then that

means that the kernel g, and thus the response T , is much more sensitive to a

perturbation in Y rather than X. Consider the probability mass of our target

neighborhood p(tε), and split it into the realized event and misinformative

15We might have used a discretization approach to define or investigate the continuous
Imin
∩ and IPM

∩ PIDs. This can be done by extending standard methods of demonstrating
convergence of discrete and continuous MI and (log ε-corrected) entropy, see Ch. 7 in [33].
We leave this approach to future work.
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exclusion of each predictor:

p(tε) = p(tε, xδ) + p(tε, x
{
δ) (3.8.35)

= p(tε, yδ) + p(tε, y
{
δ) (3.8.36)

If T is more sensitive to changes in Y than in X, we expect that effective

(probable) range of values T = t to diverge from t0 more quickly with growing

perturbations of Y . Assuming nice global properties, significant probability

mass will then be concentrated in p(tε, yδ) relative to p(tε, y
{
δ), since for y, |y−

y0| > δ, it is relatively more likely that |t − t0| > ε as well. By contrast,

since |∂xg| is relatively small, then X will have a much smaller impact on the

probable value of T . Thus, there is a greater likelihood of t ∈ tε and x ∈ x{
δ, i.e.

more of the mass in p(tε) will be spread out into the misinformative exclusion.

To summarize, the take-away of this discursion is the following. In the

context in which T is determined by X and Y via an interaction kernel g,

a relatively small sensitivity of T upon X, quantified analytically as |∂xg|,

corresponds to a larger misinformative probability mass exclusion. In the

development of the IPM
∩ PID, this was taken to be the negative component in

pointwise mutual information. In this way, we see why the IPM
∩ PID will assign

negative unique information to predictors with little-to-no impact upon the

target T . As a measure of the balance between informative and misinformative

probability mass exclusions, IPM
∩ behaves as we would expect.
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Probability Mass Exclusions

p(t{, x{)

p(t{, x)

p(t, x{)

p(t, x)

Misinformative

Exclusion

Informative

Exclusion

p(t{)

p(t)

Mutual Information

I(T ;X) = H(X)−H(X|T ) Entropic Decomposition of MI

i(t;x) = i+(t;x)− i−(t;x) Pointwise Decomposition

i+(t;x) = − log
(

1− p(t, x{)− p(t{, x{)
)

Specific Information

i−(t;x) = − log
(

1− p(t, x{)/p(t)
)

Ambiguous Information

Pointwise Mutual (PM) PID

IPM
∩ = IPM,+

∩ − IPM,−
∩ PM Redundancy

IPM,+
∩ (T ; {Xk}) = Emin

k
i+(t;xk) Redundant Specificity

IPM,−
∩ (T ; {Xk}) = Emin

k
i−(t;xk) Redundant Ambiguity

Figure 3.15: Probability mass exclusions and the IPM
∩ PID We present a probability

mass diagram similar to those in [46] and [45], presenting the decomposition of the sample
space into four masses as in Eq. (3.8.20). In the PM PID, pointwise mutual information
i(t;x) between a target event t and source event x is decomposed into the difference of
two non-negative components, the positive component i+ and the negative i−, referred
to as specificity and ambiguity in [45]. Specificity grows with both the informative and
misinformative probability mass exclusions, p(t{, x{) and p(t, x{) (signified in cyan and
orange, respectively, in place of the cross-hatching used in [46]).
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3.9 Continuous Unique Information in the Sigmoidal Switch In-

teraction

We will conclude this work with an analytic investigation into noise-free bi-

variate interactions with a sigmoidal switch interaction kernel, as in Eq. (E4).

This was the kernel that we used in our motivating simulations (Eq. (E4))

back in Sec. 3.3. This section will demonstrate an application of the generic

approach developed in Theorem 4.

First, we will apply the asymptotic results from the previous section to com-

plete our analysis of Experiment III in Sec. 3.3.3. Recall that in Experiment

III , we conducted network simulations in which we allowed the parameter α

to vary, affecting the kernel sensitivity upon x and y and thus altering the

balance of information between X and Y . Via Corollary 3, we demonstrate

that UPM
X → −∞ and Umin

X → 0 as α→ −∞.

Then, we will apply Theorem 4 to directly investigate the unique informa-

tion of the switch gene X for a noise-free bivariate interaction with the kernel

(E4). Specifically, we present an upper bound β(ρ, α) on this quantity UPM
X .

This is sufficient to demonstrate that, for the continuous PID, UPM
X < 0. This

agrees with our simulation experiments in Sec. 3.3, and demonstrates that the

generic framework we have developed for the continuous IPM
∩ PID may shed

light on its behavior when applied to discretized simulations of continuous

phenomenon.

3.9.1 Limiting Behavior of UPM
X and Umin

X

In Experiment III in Sec. 3.3.3, we conducted a series of network simulations

with the sigmoidal kernel, in which we allowed the switching parameter α

to vary. We then examined the effect this had upon the PID of interacting
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pairs of genes. Altering α has the effect of re-centering the predictor X about

X = α in the interaction. This has the effect of shifting the relative sensitivity

of g(X, Y ) upon each argument X and Y near their mean µX = µY = 0, and

thus in expectation as well. More precisely, we saw that the expansion of the

sigmoidal kernel takes the form

g(x, y) ≈ 1

1 + eα︸ ︷︷ ︸
∂yg

y +
eα

(1 + eα)2︸ ︷︷ ︸
∂x,yg

xy. (3.3.4)

for (x, y) ≈ (0, 0), which we emphasize is the probable scenario. Thus, as

α → −∞, we have that g(x, y) ≈ y and g(X, Y ) approaches conditional in-

dependence of X given Y . We saw in Fig. 3.10 that UPM
X was consistently

negative for a range of α.16 For a linear kernel, we saw in Sec. 3.7.2 that

UPM
X → −∞ as X approaches conditional independence. A core contention of

ours in this work is that, in such a scenario, we ought to see unique information

UX → 0 as X becomes less conditionally dependent, as otherwise the bivariate

PID inflate both redundancy and synergy, R and S. The Imin
∩ PID behaves in

this way, but the IPM
∩ PID does not.

Using Corollary 3, we may demonstrate that, similar to the linear in-

teraction limits in Cor. 2, we have that Umin
X → 0 and UPM

X → −∞ as

α → −∞. For the sigmoidal interaction kernel g as in Eq. (E4), we have

g(x, y) ≈ y as α→ −∞., and thus X is approaching conditional independence

of T = g(X, Y ), given Y . Thus, the themes explored in Sec. 3.7.2, regarding

how the Imin
∩ and IPM

∩ PIDs treat conditionally independent, ‘false’ interac-

tions, are also analytically apparent in the sigmoidal interaction kernel as well

as in the linear interaction kernel. Moreover, since we are now examining the

16The minimal α in Fig. 3.10 is α = −4, which corresponds in ∂yg, for instance, to
1

1+eα−x ≈ 0.982 + 0.018x. We consider this sufficient for anticipating the trend as α→ −∞
in simulation.
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sigmoidal kernel, the work in this section helps to explain the behavior we saw

in our experiments in Sec. 3.3, particularly regarding the behavior of the Îmin
∩

and ÎPM
∩ PIDs in Experiment II toward ‘false pairs’ and in Experiment III as

α becomes small.

Proposition 10. Let {X, Y →ρ T(α)}α∈R be the family of noise-free Gaussian

interactions with kernel g(α) from Eq. E4, parametrized by the real parameter

α.

Then we have the following limits:

Umin
X (α)→ 0 as α→ −∞ (3.9.1)

UPM,−
X (α)→ −∞ as α→∞ (3.9.2)

UPM
X (α)→ −∞ as α→ −∞ (3.9.3)

Proof. We may apply Corollary 3 to our continuously parametrized family of

interactions via the sequential characterization of continuous limits. Observe

that

|∂xg|
|∂yg|

=
|Y |eα−X

1 + eα−X

It is easy to see that for any (x, y) = (X, Y )(ω), α ≤ 0,

|∂xg|
|∂yg|

↓ 0 as α→ −∞.

We take α = 0 as our starting point, so that all that remains to be shown is

that Umin
X (0) and UPM

X (0) are finite.
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Consider the following series of expansions

1

2
|x2 − y2|+

∣∣∣∣ln |∂xg||∂yg|

∣∣∣∣ =
1

2
|x2 − y2|+

∣∣ln |y|+ (α− x)− log(1 + eα−x)
∣∣

≤ 1

2
|x2 − y2|+ |ln |y||+ α + |x|+

≤eα−x︷ ︸︸ ︷
log(1 + eα−x)

≤ x2

2
+
y2

2
+ α + |x|+ |ln |y||+ eα−x

Set α = 0, and consider the functions f1 and f2:

f1(x, y) :=
1

2
|x2 − y2|+

∣∣∣∣ln |∂xg||∂yg|

∣∣∣∣
≤ x2

2
+
y2

2
+ α + |x|+ |ln |y||+ eα−x =: f2(x, y)

All the terms in f2 have finite expectation when integrated against the

marginal

pX(z) = pY (z) =
1√
2π
e−

z2

2

and so Ef1(X, Y ) ≤ Ef2(X, Y ) <∞.

Moreover, from the forms of Umin
X and UPM

X in Theorem 4, we have that

|Umin
X (0)| ≤ Ef1(X, Y ),

|UPM
X (0)| ≤ Ef1(X, Y ) + c,

for a finite constant c > 0. Thus, Umin
X (0) and UPM

X (0) are finite.

3.9.2 Upper Bound on Unique Information (PM PID) for the

Switch Gene UPM
X in a Bivariate Sigmoidal Interaction

We will demonstrate the following result:
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Theorem 6 (Upper Bound for Unique Information of Switch Gene). Let

(X, Y )ρ → T be a noiseless bivariate interaction, where T = g(x, y) for g

defined in Eq E4. Assume α < 2. Then the unique information of the switch

gene UPM
X is bounded above by the function β

UPM
X (T ;X, Y ) ≤ β(ρ, α) = βρ(ρ) +

α

4
(3.9.4a)

where

βρ(ρ) = c1 + c0

√
1− ρ2 −

√
1− ρ+

√
1 + ρ

4
√
π

− − log(1− ρ2)

8
(3.9.4b)

+

√
1 + ρ (− log(1− |ρ|)) (Φ(ρ))

16
√
π(1− ρ)1/4

Φ(ρ) =

√
ρ
√

1− ρ+ 2φ(ρ) (3.9.4c)

φ(ρ) = arcsin(ρ) + arctan(

√
1− ρ√
1 + ρ

) (3.9.4d)

c0 =
16− 3(2 ∗K + π ∗ ln(2))

16π
≈ 0.079 (3.9.4e)

c1 =
ln 2− γE

8
≈ 0.0145 (3.9.4f)

(3.9.4g)

The difficult part of this result lies in bounding UPM,−
X , which we do in

Sec. 3.9.3. Moreover, this is exactly where improvement upon the bound can

be made. Once we are satisfied with a bound for unique ambiguity, the rest

of the theorem follows readily.

Proof of Theorem 6. Under the conditions of our theorem, from Lemma 4, we

have that

L(ρ, α) ≤ UPM,−
X

where this function L is as in Eqs. (3.9.5a-h). Moreover, in Lemma 2 in
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Section 3.7.1, we computed

UPM,+
X =

1

π

√
1− ρ2.

Thus, by combining terms, we arrive at our upper bound:

UPM
X = (UPM,+

X − UPM,−
X )

≤ 1

π

√
1− ρ2 − L(ρ, α)

By collecting terms, this bound takes the form of β in Eqs. (3.9.4).

Our bound for UPM
X is somewhat unwieldly. It is, nonetheless, decidedly

negative for |ρ| < 0.9. We present a graph of this bound in Fig. 3.16. Notable,

our bound is negative for all ρ < 0.9. Thus, we have the UPM
X is negative when

the predictors are at least mildly distinguished, as variables.

3.9.3 Unique Ambiguity UPM,−
X for the Switch Gene X

As mentioned in the previous section, the ‘hard’ part of computing (or bound-

ing) unique information of a bivariate interaction under the IPM
∩ PID lies in

computing the ambiguity atom. To establish our upper bound UPM
X ≤ β(ρ, α)

in the previous section, we must establish a lower bound L(ρ, α) ≤ UPM,−
X .

We do so in the following lemma, and devote the rest of this subsection to the

proof and its component computations.

Lemma 4 (Lower Bound for Unique Ambiguity of Switch Gene). Let

(X, Y )ρ → T be a noiseless bivariate interaction, where T = g(x, y, α) for

g defined in Eq. E4. Assume α < 2. Then the unique ambiguity of the switch
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Figure 3.16: Upper bound for unique information of the switch gene in a noise-
free, sigmoidal switch interaction Here, we plot the function βρ(ρ) from Theorem 6,
which bounds-above the unique information UPM

X of the switch gene (in nats), under the
assumption α ≤ 0. For α < 2, we have the modified bound UPM

X ≤ βρ(ρ) + α
4 .

gene UPM,−
X is bounded below

L(ρ, α) ≤ UPM,−
X (T ;X, Y ) (3.9.5a)
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where

L(ρ, α) = L1(ρ) + L2(α) (3.9.5b)

L1(ρ) =

√
1− ρ+

√
1 + ρ

4
√
π

+
− log(1− ρ2)

8
− c1 (3.9.5c)

+
3c2

√
1− ρ2

16π
−
√

1 + ρ (− log(1− |ρ|)) (Φ(ρ))

16
√
π(1− ρ)1/4

L2(α) = −α
4

(3.9.5d)

Φ(ρ) =

√
ρ
√

1− ρ+ 2φ(ρ) (3.9.5e)

φ(ρ) = arcsin(ρ) + arctan(

√
1− ρ√
1 + ρ

) (3.9.5f)

c1 =
ln 2− γE

8
≈ 0.0145 (3.9.5g)

c2 = 2K + π log(2) ≈ 4.0095 (3.9.5h)

where γ is Euler’s constant and K is the Catalan constant.

Proof of Lemma 4. From Eq. 3.8.2 in Theorem 4, we have that

UPM,−
X = E

[
1C

(
log
|∂yg|
|∂xg|

)]
. (3.9.6)

For α < 2, we have that

C̃ := {(x, y)|x > 0, |y| < x} ⊂ πX,Y (C). (3.9.7)

We demonstrate this claim in Computation (3) using elementary methods of

little interest.

For the rest of our computations in this section, we no longer take care

to distinguish events E ⊂ Ω from their image πX,Y (E) ∈ AX,Y . Via Theo-

rem 4, we have all the tools we need to work in the induced probability space

(AX,Y , µX,Y ), and so no confusion need arise.
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For our computations, we will typically divide C̃ into its components in

the upper and lower half-plane of (X, Y )-space:

C̃ = C+ t C−

C+ = {(x, y) | 0 < y ≤ x} (3.9.8)

C− = {(x, y) | 0 < −y ≤ x} (3.9.9)

Since log |∂yg||∂xg| is nonnegative on C ⊃ C̃, we have that

UPM,−
X = E

[
1C

(
log
|∂yg|
|∂xg|

)]
≥ E

[
1C̃

(
log
|∂yg|
|∂xg|

)]
.

We expand log |∂yg||∂xg| :

log
|∂yg|
|∂xg|

= log
1 + eα−x

|y|eα−x

= log(1 + eα−x)− log(|y|) + (x− α)

≥ (x− α)− log(|y|)

We have that

UPM,−
X ≥ E1C̃X − E1C̃ log |Y | − αµX,Y (C̃)

≥ E1C̃X − E1C̃ log |Y | − α

4

We compute E1C̃X explicitly in Computation 1 and find an upper bound

for E
[
1C̃ ln |Y |

]
in Computation 2. Eqs (3.9.5a-h) follow readily by combining
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terms.

In our computations, we will exploit the following symmetry property,

which will allow us to take expectations in the symmetric regions C+ and

C− by merely flipping the sign on the correlation ρ between X and Y . Let H+

denote the open upper half-plane, and H− the lower half-plane, i.e.

H+ = {(x, y)|y > 0}

H− = {(x, y)|y < 0}.

Proposition 11 (Symmetry Property). Let (X, Y ) ∼ N(0,Σ) where Σ =

[1, ρ; ρ, 1]. By E1Af(X, Y )(ρ), we denote the expectation of a function of X

and Y over region A ⊂ R2 given correlation ρ. Let A ⊂ H+ be an open set

in the upper half-plane, and A† denote its reflection into the lower half-plane,

i.e. (x, y) ∈ A ⇐⇒ (x,−y) ∈ A†. Let r : A ∪ A† → R be a function for

which r(x, y) = r(x,−y) for (x,±y) ∈ A ∪ A†. Then we have that, for any

ρ ∈ (−1, 1),

E1A†r(X, Y )(ρ) = E1Ar(X, Y )(−ρ). (3.9.10)

In particular, for V+ and V− as defined as in Eqs. (3.9.8) & (3.9.9), we have

that

E1V+r(X, Y )(ρ) = E1V−r(X, Y )(−ρ). (3.9.11)

Proof. For (X, Y ) ∼ N(0,Σ) as above, we have joint density (parametrized

by ρ)

pX,Y (x, y)(ρ) =
1

2π
√

1− ρ2
e

1
2(1−ρ2)

(x2+y2−2ρxy)
.

Thus, we see that

pX,Y (x, y)(−ρ) = pX,Y (x,−y)(ρ). (3.9.12)
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Applying a change of variables (x, y)→ (x,−y) to the integral

∫
A†

[r(x, y)px,y(x, y)] (ρ)d(x, y),

our result follows.

Computation 1 (Expectation of X on C̃). Let (X, Y ) ∼ N(0,Σ) where

Σ = [1, ρ; ρ, 1], and C̃ be as in Eq. (3.9.7). Then

EC̃X =
1

4
√
π

(
√

1− ρ+
√

2ρ). (3.9.13)

Proof. For convenience, let a = (2π
√

1− ρ2)−1 and b = (2(1− ρ2))−1, so that

we may represent the joint density of X and Y as

pX,Y (x, y) = ae−b(x
2+y2−2ρxy). (3.9.14)

We first compute our expectation on V+:

E1C+X = a

∫ ∫
xe−b(x

2+y2−2ρxy)

= a

∫ π/4

0

cos(θ)

∫ ∞
0

r2e−br
2(1−ρ sin(2θ))drdθ

= a

∫ π/4

0

√
π

[
cos(θ)

4b3/2(1− ρ sin(2θ))3/2

]
dθ

=
a
√
π

4b3/2

∫ π/4

0

[
cos(θ)

(1− ρ sin(2θ))3/2

]
dθ

=
a
√
π

8b3/2

[√
2
√

1− ρ+ 2ρ

1− ρ2

]

=

√
2

8
√
π

(
√

2
√

1− ρ+ 2ρ)

=
1

4
√
π

(
√

1− ρ+
√

2ρ)
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Using the symmetry property from Prop. 11,

E1C−X(ρ) = E1V+X(−ρ)

=
1

4
√
π

(
√

1 + ρ−
√

2ρ)

We conclude by taking the sum

E1C̃X =
(
E1C−X

)
+
(
E1C+X

)
=

1

4
√
π

(
√

1− ρ+
√

1 + ρ).

Computation 2 (Expectation of log(|Y |) on Ṽ ). The expectation E [1C̃ log(|Y |)],

for the region C̃ defined in (3.9.7), is bounded above by

E1C̃ log(|Y |) ≤ 1

8

(
−(γ − log(2)) + log(1− ρ2)

)
(3.9.15)

+

√
1 + ρ (− log(1− |ρ|))

16
√
π(1− ρ)1/4

√
ρ
√

1− ρ+ 2φ(ρ)

+
−3
√

1− ρ2

16π
(2K + π log(2))

φ(ρ) = arcsin(ρ) + arctan(

√
1− ρ√
1 + ρ

) (3.9.16)

Proof. By applying the symmetry property (Prop. 11)

E1C̃ log(|Y |)(±|ρ|) = E1C+ log(|Y |)(±|ρ|) + E1C− log(|Y |)(±|ρ|)

= E1C+ log(|Y |)(±|ρ|) + E1C+ log(|Y |)(∓|ρ|)

Thus, we will proceed accordingly. We fix |ρ| ∈ (0, 1). We consider the

expectation on C+, first with ρ = |ρ| ∈ (0, 1) and then with ρ = −|ρ| ∈ (−1, 0),
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and find upper bounds:

E
[
1C+ log(Y )(|ρ|)

]
≤ I,

E
[
1C+ log(Y )(−|ρ|)

]
≤ Ī .

By summing these two bounds, respectively, we have an upper bound on

the full expectation on C̃ for ρ = ±|ρ|.

We first break our expectation up into manageable integrals. As in our pre-

vious proof for Computation 1, we again use the shorthand a = (2π
√

1− ρ2)−1

and b = (2(1− ρ2))−1.

E
[
1C+ log(Y )

]
=

∫ ∞
0

∫ x

0

log(y)pX,Y (x, y)dydx

= a

∫ ∞
0

∫ x

0

log(y)e−b(x
2+y2−2ρxy)dydx

= a

∫ π/4

0

∫ ∞
0

r log(r sin θ)e−br
2(1−ρsin(2θ))drdθ

= a

∫ π/4

0

[∫ ∞
0

r log(r)e−br
2(1−ρsin(2θ))dr

]
︸ ︷︷ ︸

ζ1(θ)

+ log(sin θ)

[∫ ∞
0

re−br
2(1−ρsin(2θ))dr

]
︸ ︷︷ ︸

ζ2(θ)

dθ (?)

We compute the inner integrals to arrive at ζ1(θ) and ζ2(θ):

ζ1(θ) = −γ + log(b) + log(1− ρ sin 2θ))

4b(1− ρ sin 2θ)
,

ζ2(θ) =
1

2b(1− ρ sin 2θ)
.
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We substitute these formulas into (?), and factor out (4b)−1, and our ex-

pectation becomes

E
[
1C+ log(Y )

]
=

√
1− ρ2

4π

∫ π/4

0

[
− γ + log(b)

1− ρ sin 2θ

]
︸ ︷︷ ︸

J1

+

[
− log(1− ρ sin 2θ)

1− ρ sin 2θ

]
︸ ︷︷ ︸

J2

+

[
2 log(sin θ)

1− ρ sin 2θ

]
︸ ︷︷ ︸

J2

dθ

We have thus split up the integral I into three terms:

I = J1 + J2 + J3

J1 =

√
1− ρ2

4π

∫ π/4

0

− γ + log(b)

1− ρ sin 2θ
dθ

J2 =

√
1− ρ2

4π

∫ π/4

0

− log(1− ρ sin 2θ)

1− ρ sin 2θ
dθ

J3 =

√
1− ρ2

4π

∫ π/4

0

2 log(sin θ)

1− ρ sin 2θ
dθ

We begin with the first term, J1. Observe that

∫ π/4

0

[
1

1− ρ sin 2θ

]
dθ =

φ(ρ)√
1− ρ2

φ(ρ) = arcsin(ρ) + arctan(

√
1− ρ√
1 + ρ

)

Thus, our first term simplifies
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J1 =

√
1− ρ2

4π

∫ π/4

0

[
− γ + log(b)

1− ρ sin 2θ

]
dθ

=
φ(ρ)

4π

(
−(γ − log(2)) + log(1− ρ2)

)
For J̄1, we have that

J̄1 =
φ(−ρ)

4π

(
−(γ − log(2)) + log(1− ρ2)

)
Since φ(ρ) + φ(−ρ) = π/2,

J1 + J̄1 =
1

8

(
−(γ − log(2)) + log(1− ρ2)

)
We will now examine the second term, J2.

J2 =

√
1− ρ2

4π

[∫ π/4

0

− log(1− ρ sin 2θ))

1− ρ sin 2θ
dθ

]

We use Holder’s Inequality:

‖− log(1− ρ sin(2θ))

1− ρ sin(2θ)
‖1 ≤

(
‖ 1

1− ρ sin(2θ)
‖2

)
(‖ − log(1− ρ sin(2θ))‖2)

We find our first L2 norm by computing the integral via a computer algebra
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system:

∥∥(1− ρ sin(2θ))−1
∥∥

2
=

(
ρ
√

1− ρ2 + 2φ(ρ)

2 (1− ρ2)3/2

)1/2

=

√
ρ
√

1− ρ+ 2φ(ρ)√
2(1− ρ)3/4

We will now bound the second L2 norm. We use the triangle inequality to

bound it above by the following series:

‖− log(1− ρ sin 2θ))‖2 =

∥∥∥∥∥
∞∑
k=1

(ρ sin 2θ)k

k

∥∥∥∥∥
2

≤
∞∑
k=1

∥∥(ρ sin 2θ)k
∥∥

2

k
.

We bound this term:

∥∥(ρ sin(2θ))k
∥∥

2
=

√∫ π/4

0

(ρ sin(2θ))2kdθ

=

√√
πρ2kΓ

(
k + 1

2

)
4Γ(k + 1)

=

√
π|ρ|k

2

√
(2k − 1)!!

(2k)!!

≤
√
π|ρ|k

23/2
.

Thus, we have bounded our second L2 norm:
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‖− log(1− ρ sin 2θ))‖2 ≤
√
π

23/2

∞∑
k=1

|ρ|k

k

= −
√
π

23/2
log(1− |ρ|)

Putting our two L2 norms back together, we get:

∥∥∥∥− log(1− ρ sin 2θ))

1− ρ sin(2θ)

∥∥∥∥
1

≤
(∥∥∥∥ 1

1− ρ sin(2θ)

∥∥∥∥
2

)
(‖− log(1− ρ sin 2θ))‖2)

=

√
π (− log(1− |ρ|))

4(1− ρ)3/4

√
ρ
√

1− ρ+ 2φ(ρ)

So J2 is bounded above:

J2 =

√
1− ρ2

4π

[∫ π/4

0

− log(1− ρ sin 2θ))

1− ρ sin 2θ
dθ

]

=

√
1− ρ2

4π

∥∥∥∥− log(1− ρ sin 2θ))

1− ρ sin(2θ)

∥∥∥∥
1

≤
√

1 + ρ (− log(1− |ρ|))
16
√
π(1− ρ)1/4

√
ρ
√

1− ρ+ 2φ(ρ).

On the other hand, the term J̄2 ≤ 0 is of neglible magnitude, relative to

J2, Thus, we will ignore it for our upper bound, and assume the worst case

scenario (i.e. J̄2 = 0).

We will now examine our third term, J3:

J3 =

√
1− ρ2

4π

[∫ π/4

0

2 log(sin θ)

1− ρ sin 2θ
dθ

]
=

√
1− ρ2

2π

[∫ π/4

0

log(sin θ)

1− ρ sin 2θ
dθ

]
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Observe that J3 ≤ 0, so our upper bound for this term will ultimately have

a lower magnitude.

∫ π/4

0

log(sin θ)

1− ρ sin 2θ
dθ ≤

∫ π/4

0

log(sin θ)dθ

=
−1

4
(2K + π log(2))

≈ −1.00238

where K is Catalan’s constant. So,

J3 ≤
−
√

1− ρ2

8π
(2K + π log(2))

On the other hand, when we repeat the computations for for J̄3, we have

J̄3 =

√
1− ρ2

2π

∫ π/4

0

log(sin θ)

1 + ρ sin 2θ
dθ

≤
√

1− ρ2

4π

∫ π/4

0

log(sin θ)dθ

=
−
√

1− ρ2

16π
(2K + π log(2))

So

J3 + J̄3 ≤
−3
√

1− ρ2

16π
(2K + π log(2))

Collecting our bounds on I + Ī = J1 + J̄1 + J2 + J3 + J̄3, we arrive at the

expression in (3.9.15).
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Computation 3. Let g be the interaction kernel from Eq. (E4), on AX,Y ⊂

R2, and let V be the image in AX,Y of the event as in Theorem 4, i.e.

C = {(x, y)|∂yg
∂xg

(x, y) ≥ 1}.

Let C̃ = C+ t C− be as in Eqs. (3.9.7-3.9.9). Then for α < 2, we have that

C̃ ⊂ C.

Proof. Observe that

|∂yg|
|∂xg|

(x, y) =
1 + eα−x

|y|eα−x

and so |∂yg| ≥ |∂yg| if and only if

|y| ≤ 1 + eα−x

eα−x︸ ︷︷ ︸
r(x)

.

Thus, we can think of C as the region between the curves y = r(x) and

y = −r(x), for the positive real function r.

The region C̃ is bounded above and below in the (X, Y )-plane by the lines

y = ±x. If x < r(x) for all x ∈ R, then it follows that C̃ ⊂ C, since the

identity line y = x will always be beneath y = r(x), and similarly for the

lower bound. Thus, it suffices to demonstrate that the following real function

is strictly positive for α < 2:

h(x) = r(x)− x.

It is clear that h is continuous on R, and that h(0) = r(0) > 0. It suffices to

show that h is non-vanishing.
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Let h̃(x) = eα−xr(x) = 1 + (1 − x)eα−x, and observe that h(x) = 0 ⇐⇒

h̃(x) = 0. Using the first derivative h̃′(x), we see that h̃ has a global minimum

at x = 2, where

h̃(2) = 1− eα−2.

If α < 2, then h̃(2) > 0, and so h̃ > 0. This in turn implies that h is non-

vanishing.

200



3.10 Concluding Thoughts: Perspective on the Specificity of

Edge Nomination

In this chapter, we have evaluated the appropriateness of the Imin
∩ and IPM

∩

PIDs as tools of network inference. We have also extended these PIDs to con-

tinuous interactions, in order to better understand their behavior. In order

to address the problem of gene network inference, we initially paid special at-

tention to the bivariate synergies Smin and SPM, which hypothetically might

serve to nominate response-relevant edges in gene networks or other multiomic

frameworks. To better understand the behavior that we saw in our simulations

in Sec. 3.3, we have taken a multifaceted approach, examining both discrete

and continuous PIDs, the former in network simulations, and the latter in

noise-free systems of three variables. This chapter may better be character-

ized as an extended discursion around the central problem (Sec. 3.2), rather

than a single straight-forward attempt to develop and prescribe a methodology.

If we had taken this latter approach, we would have instead found ourselves

proposing a theoretical ‘solution’ to what may be considered a bioinformatics

question.17 Instead, we developed a perspective with which to better under-

stand the behavior of PIDs as applied to numerically or analytically tractable

models of interacting gene networks. We have examined the discrete PIDs of

simple networks, and have also extended them to continuous, noise-free inter-

actions, in order to understand how they might capture non-linear, synergistic

relationships between interacting gene pairs and a biological response variable,

such as drug effectiveness.

17As observed in [94], simulated network and those ‘known’ to the biological literature do
not always or even typically align, in the sense that different methods may be appropriate
for synthetic and real biological networks (see Sec. 3.1.2.3 and the accompanying discussion
of the PIDC method). This was the case for synthetic networks built upon models much
less elementary than our own. Thus, we do not aim in this work to develop nor to prescribe
a network inference methodology.
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To that end, we may now summarize the conclusions that we have drawn

about the IPM
∩ and Imin

∩ PIDs, as they are applied to the network inference

problem formulated in Section 3.2. We will also highlight the major findings

of our computational and analytic investigation as they relate to this problem,

so that the reader may more easily weigh the strength of our evidence and

conclusions.

1. The IPM
∩ PID is ill-suited to synergy-network inference, as SPM

is not specific.

(a) Our experiments in Section 3.3 suggest that ŜPM has a non-specific

sensitivity to pairs (X, Y ) with high mutual information toward T ,

independent of the balance of information between the predictors.

This non-specificity extends also to inflated redundancy RPM and

negative unique information UPM
X for the less informative predictor.

• As we saw in the experiments in Section 3.3, although ŜPM

is fairly sensitive to interactions that are informative of the re-

sponse variable, this tracks closely with the total MI I(T ;X, Y )

of the pair (X, Y ). The ŜPM synergy cannot distinguish be-

tween pairs demonstrating synergy, in which Î(T ;X, Y ) can-

not be explained by Î(T ;X) or Î(T ;Y ), and ‘false interactions’

in which only one predictor is informative of the response, i.e.

when Î(T ;X, Y ) ≈ Î(T ;Y ). Experiment II was particularly

striking in this regard, as a false interaction (Xi, Y2) was as-

signed greater synergy than a true interaction (X1, Y1) when

the univariate signal from βY2 was stronger than the joint sig-

nal from g(X1, Y1).

• Expanding upon these observations, we also saw in our experi-
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ments that the inflated value of ŜPM relative to other synergies

(for both ‘true’ and ‘false’ interactions) mirrored the inflated

value of R̂PM for these pairs, in the sense that R̂PM > Î(T ;X),

which is impossible for any PID obeying the monotonicity WB

axiom (M). Moreover, this inflated value of RPM is accounted

for (in the sense of Eq. (E1)) by a correspondingly negative

value of ÛPM
X for the less informative switch gene X. See

Figs. 3.4, 3.8, 3.10, specifically. See also Eq. (3.6.33), in which

we noted that between any two bivariate PIDs of finite infor-

mation,

∆S = ∆R = −∆UX .

Thus, we suggest that the non-specificity of the IPM
∩ is due to its

allotment of too much positive information to RPM, accounted

for with negative unique information UPM
X for the less relevant

predictor in a pair.

• This investigative turn toward redundancy R and unique infor-

mation UPM
X , as opposed to the synergy S, allows us to approach

noise-free continuous interactions, in which I(T ;X, Y ) = ∞,

and thus S = ∞ even when I(T ;X) and I(T ;Y ) are finite.

We may nonetheless demonstrate the inflated redundancy (and

negative unique information) for less relevant predictors in such

a case, in order to indirectly suggest a structural mechanism of

non-specificity for ŜPM in our experiments, manifested in a con-

tinuous information and PID context.

(b) When the IPM
∩ PID is extended to continuous, noise-free interac-

tions, its non-specificity can be demonstrated analytically, in the

203



sense that RPM assigns positive redundant information and UPM
X

assigns negative unique information to the non-informative predic-

tor X. In particular, we demonstrate that the continuous

IPM
∩ PID does not respect conditional independence.

• For the continuous IPM
∩ PID of the noise-free linear interaction

T = aX + bY where 0 < a < b, (3.7.1)

we saw that UPM
X → −∞ and UPM

X /RPM → −1 as a/b → 0+

(Corollary 2), i.e. as X and T approached conditional indepen-

dence. Note that, by contrast, Umin
X → 0.

• For the continuous IPM
∩ PID of the noise-free sigmoidal switch

interaction used in our earlier experiments (Sec. 3.3), given by

the kernel:

T =
Y

1 + eα−X
(E4)

we saw that UPM
X → −∞ as α→ −∞, i.e. for α small enough

that T ≈ Y (Prop. 10). By contrast, Umin
X → 0.

• More generally, in Section 3.8 we consider the continuous IPM
∩

PID of a noise-free interaction with a kernel g that satisfies

the requirements of Theorem 4. Under appropriate conditions,

UPM
X → −∞ as |∂xg|/|∂yg| → 0 (Cor. 3). As discussed in

Sec. 3.8.2, this increasingly negative unique information can be

understood as the unbounded growth (in relative terms) of a

misinformative probability mass exclusion, as described

in the theoretical foundation of the IPM
∩ PID in [46] and [45].

2. The Imin
∩ treats false interactions in an intuitive way, and has
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many desirable properties with respect to specificity. Many of

these follow from the Monotonicity WB axiom (M). However, our exper-

iments in Sec. 3.3 suggest that Smin may be insufficiently sensitive

for edge nomination.

(a) Our experiments in Section 3.3 suggest that Ŝmin distinguishes

true interactions from false ones, and is sensitive to changes

in the balance of information between predictors X and Y .

Thus, for instance, when one predictor X has small conditional in-

formation about the target T given the other predictor Y (i.e. ap-

proaching conditional independence), the empirical Imin
∩ PID will

locate most of the information in Î(T ;X, Y ) in the unique informa-

tion atom Ûmin
Y , and little of it in Ŝmin or Ûmin

X . However, Ŝmin is

not very sensitive, in the sense that Ŝmin does not reliable rank

interacting pairs highly compared to random (null) pairs, even when

the MI Î(T ;X, Y ) is greater than most other pairs.

• Experiment I demonstrated the insensitivity of Smin to asym-

metric, non-linear interactions. In this experiment, we exam-

ined a network with a response that was the sum of four sig-

moidal switch interactions on the same 4-star, i.e.

T =
4∑
i=1

Y

1 + e−Xi
. (3.3.1)

Ŝmin did not consistently rank true interactions above most ran-

dom gene pairs in our network, in terms of the synergistic in-

formation provided by the pair regarding the response. Indeed,

SPM was the only synergy to consistently locate true interac-

tions in the top 95% of the empirical distribution of S over all
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pairs. This is striking, as the MI Î(T ;X, Y ) itself ranked true

pairs in in the top 5%. Thus, only ŜPM was as useful as MI,

let alone more useful, for this experiment.

• In Experiment II , on the other hand, we saw that Smin was

somewhat more sensitive and specific in its ability to nominate

a sigmoidal interaction within a simpler response, which took

the form:

T =
Y1

1 + e−X1
+ βY2. (3.3.2)

By adjusting β, we engineer a situation in which MI cannot

distinguish the true pairs from a false pairs, and neither could

ŜPM, as discussed above. Ŝmin reliably ranked the true inter-

action highly, while ranking false pairs that included Y2 near

the mean of random pairs, see Fig. 3.6. Thus, we saw that

whatever its sensitivity shortcomings for multiple interactions,

Ŝmin respects conditional independence in simulation (and in

theory, Prop. 7).

• Much in the same way that the negative value of UPM
X for an

irrelevant predictor X can be used to account for the non-

specificity of the IPM
∩ PID, we may consider Umin

Y to demon-

strate a mirror phenomenon. In Exp II , for a false pair (Xj, Y2),

we saw that that the Imin
∩ PID properly assigns most of the in-

formation from the term βY2 to the unique information Ûmin
Y ,

and that Ûmin
Y increases linearly with Î(T ;Xi, Y2),, as we in-

crease β (Fig. 3.8). The amount of redundant information Rmin

constant, reflecting the constant level of dependency between

Xi and Y2.
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• The Îmin
∩ PID demonstrates that it is sensitive to the

balance of information between variables X and Y , un-

like the IPM
∩ PID. We saw this most clearly in Experiment III

, in which we considered the Imin
∩ and IPM

∩ PIDs, normalized

by MI, as we adjusted the α paramter in the sigmoidal switch

kernel (E4). We saw that the proportion of MI assigned to

ÛPM
Y , on the one hand, and the combined joint information

Ŝmin + R̂min, on the other, followed similar patterns to the bal-

ance between the relative magnitudes of the Taylor coefficients

|∂yg| and |∂xyg|, respectively (Fig. 3.11).

(b) When the Imin
∩ PID is extended to continuous, noise-free interac-

tions, its specificity can be demonstrated in that it accounts for

the balance of information between predictors X and Y by resem-

bling the MMI PID (from [6]), assigning no unique information

(Umin
X = 0) and only redundant information (Rmin = I(T ;X)) for

a minimally informative predictor X. In particular, we demon-

strate that the continuous Imin
∩ PID does respect condi-

tional independence, unlike the IPM
∩ PID.

• For the continuous IPM
∩ PID of the noise-free linear interac-

tion (3.7.1) as above, we had that Umin
X = 0 when a < b

and I(T ;X) < I(T ;Y ), as in [6]. As we let the response

approach a univariate function, i.e. a/b → 0+, we had that

Umin
Y /I(T ;Y )→ 1 and Rmin → I(X;Y ) (Cor. 2), i.e. as X and

T approached conditional independence.

• For the continuous Imin
∩ PID of the noise-free sigmoidal switch

interaction (E4), given above, we have that Umin
X → 0 as α →

−∞, i.e. when T ≈ Y (Prop. 10) .

207



• More generally, in Section 3.8 we consider the continuous Imin
∩

PID of a noise-free interaction with a kernel g that satisfies

the conditions of Theorem 4. Under appropriate conditions,

Umin
X → 0 as as |∂xg|/|∂yg| → 0 (Cor. 3).

Without discounting the importance of measure sensitivity, specificity is of

central importance to any gene network inference task. For cellular biologists,

a false negative may be less costly and disruptive than a false positive, and

the complexity of gene networks heightens the risk of spurious associations.

To that end, we consider it crucial that a bivariate PID respect

conditional independence, so that indirect and spurious associations might

be discounted in expectation.

The approach that we have begun developing in Cor. 2 & 3 for the Imin
∩

and IPM
∩ PIDs offers a means of evaluating the specificity of these PIDs for a

particular interaction. By continuously or sequentially altering kernel param-

eters, we have been able to explore the specificity of the PIDs as we alter the

analytic balance of information contained within source variables about the

target.

There are three directions in which we would aim to expand our current

effort. First, we would expand our analysis to noisy bivariate interactions.

Although exact computations of PID atoms may not prove tractable, the

marginals pX,T and pY,T for noisy interactions would resemble convolutions

of the noise-free marginals in Prop. 9. Thus, we may be able to bound the

unique information atoms around formulas like those in Theorem 4.

Second, there are many other PIDs worth considering in the synergistic

network context. The recent work extending IBROJA to continuous variables

is promising [92]. However, Experiment I in Section 3.3 casts doubt on the

sensitivity of IBROJA. It seems probable that IBROJA will resemble Imin
∩ in
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demonstrating specificity without sufficient sensitivity to synergistic interac-

tions. We suspect that both Imin
∩ and IBROJA tend to revert to the MMI PID

(Sec. 3.1.2.4) for many non-linear interactions. The ICCS∩ PID, on the other

hand, did almost as well in Experiment I as the IPM
∩ PID. It would be helpful

if future work could establish whether or not the ICCS∩ PID has similar issues

with specificity as the IPM
∩ PID. Both of them violate the monotonicity WB

axiom (Axiom M) [45, 56]. It is not clear, however, that this necessarily im-

plies that the ICCS∩ PID likewise does not respect conditional independence,

as does the IPM
∩ PID.

Finally, and perhaps more ambitiously, it would be worthwhile to extend

a similar analysis to simple continuous-time stochastic processes. Barrett al-

ready considered discrete time MVAR processes in [6]. Consider the follow-

ing general model of a GRN. For a network of time-varying gene expressions

X1(t), ..., Xn(t), consider, for instance, a system of the form

Ẋ1 =
∑

(i,j)∈E ′1

gi,j(Xi, Xj|θi,j) + ε1 (3.10.1)

...
...

Ẋn =
∑

(i,j)∈E ′n

gi,j(Xi, Xj|θi,j) + εn (3.10.2)

where E ′k represent the Xk-targeting synergistic interactions in the network, in

which two genes Xi and Xj jointly impact Xk, gi,j represent specific kernels

dependent on parameters θi,j, and εi are mean zero, unit variance noise terms,

with Eεiεj = ±ρ when (i, j) ∈ E , i.e. associational edges. Such synergistic

activity is typical in genetic circuits. For instance, translated transcription

factors are known to activate other genes synergistically [99, 119]. Could we

use PID synergy to infer the transcriptional circuits in such a network? We
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would consider the simpler model

Ẋ = s(t)− pYX − dXX + εX

Ẏ = pYX − dY Y + εY

Ṫ = g(X, Y |θ)− dTT + εT

If we took a sequence of parameters θi such that |∂xg|/|∂yg| → 0, we would be

approaching a system in which T (t) and X(t) are conditionally independent as

processes, given the data Y (t). Although it is not immediately apparent to us

how PID ought best be applied to such a system, any measure of ‘synergistic’

regulation within a dynamical GRN ought to approach zero in such a limit.

Ours is among a handful of works applying PID to continuous variables,

and the only one (to our knowledge) extending the definitions of Imin
∩ and IPM

∩

directly. 18 Our emphasis has been on the source bivariate PIDs of trivariate

model systems, in which the target is a noise-free realization of a smooth func-

tion of the predictors. This is the preliminary form of our central perspective,

which seeks to understand a response variable as a (potentially noisy) realiza-

tion of a regression on the source variables. This perspective is distinct, at

least in emphasis, from the other work on continuous PIDs [6, 92], and has its

limitations. The designation of source and target variables may be arbitrary

for real systems evaluated from an objective perspective, as complex biologi-

cal systems are structurally characterized by feedback and loops rather than

feed-forward information flows [9]. Nonetheless, the perspective is arguably

the correct one for experimentalists interested in manipulating a system, e.g.

killing tumor cells. It is also the appropriate framework for merging continu-

ous PIDs into statistical inference and regression analysis, both in a classical

18The work in [6] computes Imin
∩ indirectly, using IBROJA.
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setting and within complex networks.

3.A Auxiliary Proofs

3.A.1 Useful Rules for Gaussian Interactions

Rule 1. In general, if U ∼ N(µU ,ΣU ) and V ∼ N(µV ,ΣV ) are k-

dimensional Gaussian vectors such that V = AU for an n×n real, nonsingular

transformation A, then

µV = AµU ,

ΣV = AΣUA
T .

Rule 2. Let X1, X2 be two Gaussians with correlation ρ, means µ1, µ2, stan-

dard deviations σ1, σ2. Then

X1|X2=x(2) ∼ N(µ, σ2),

where

µ = µX + ρ
σ1

σ2

(x(2) − µ2),

σ2 = σ2
1(1− ρ2).

3.A.2 Computations

In this section, we keep details for computations that use elementary methods

of little technical interest.

Computation 4 (The function f(γ) in Eq 3.7.18 is increasing.). For any

ρ ∈ (−1, 1), the function f(γ) from Eq 3.7.18, reproduced below, is increasing

in γ on [1,∞):
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f(γ) = log γ − log(e)(1− ρ2)(γ2 − 1)

2(γ2 + 2ργ + 1)
(3.7.18)

Proof. When we take the derivative of this function with respect to γ, we have

f ′(γ) =
1

γ
− 2(γ2 + 2ργ + 1)2γ(1− ρ2)− (1− ρ2)(γ2 − 1)2(2ρ+ 2γ)

4(γ2 + 2ργ + 1)2

=
4(γ2 + 2ργ + 1)2 − 4γ2(γ2 + 2ργ + 1)(1− ρ2) + γ(1− ρ2)(γ2 − 1)2(2ρ+ 2γ)

4γ(γ2 + 2ργ + 1)2

Positivity of the derivative follows then from

4(γ2 + 2ργ + 1)2 − 4γ2(γ2 + 2ργ + 1)(1− ρ2)

= (γ2 + 2ργ + 1)(4 + 8ργ + 4γ2 − 4γ2 + 4γ2ρ2)

= (γ2 + 2ργ + 1)4(1 + ργ)2 >

which is > 0 as desired.
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Chapter 4

Concluding Remarks

In this dissertation, we have studied complex, non-linear interactions in real

and simulated biological systems. In the body composed of Chapters 2 and 3,

we have examined both dynamical DDE systems and static random network

models, corresponding to the cellular and molecular scales in biology, respec-

tively. Each chapter has a more extensive denouement, in Secs. 2.5 and 3.10,

respectively, in which we discussed the significant of our results and directions

of future work. We emphasize the discussion at the end of Sec. 3.10, as it

is here that we hint at a direction that lies at the intersection of both works

presented: the use of continuous PIDs to track multivariate information flows

in continuous time dynamical systems and stochastic processes.
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