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This dissertation examines the problem of coordinating two different types of

actors in a vehicular traffic network system, namely: the traffic lights and the con-

nected and automated vehicles traversing the traffic network. The work is motivated

by an extensive previous literature showing that traffic network synchronization has

substantial potential throughput and fuel economy benefits. The literature presents

many algorithms for synchronizing the traversal of intersections by connected and

automated vehicles (CAVs), as well as the synchronization of traffic lights within a

given network. However, the integrated solution of these two synchronization prob-

lems remains relatively unexplored. The main challenge of any algorithm proposed

in this area consists of managing the trade-off between computational efficiency,

communication requirements, and performance.

This dissertation seeks to contribute to the list of proposed coordination strate-

gies for CAVs and smart traffic lights by formulating a decentralized framework



based on combining ideas from gradient-based multi-agent control, trajectory plan-

ning and control barrier functions. The overall proposed control framework consists

of describing vehicles and traffic lights by an extra state that directly or indirectly

represent its timing (i.e arrival time for the vehicles, and switching time for the

traffic lights). This timing variable evolves according to a networked multi-agent

system, where the planned timing of neighboring agents governs the evolution of the

planned timing of the ego agent. The planned timing state is then translated into a

control action for the agents (i.e. acceleration for the vehicles, switching actuation

for the traffic lights), through trajectory planning and safety regulation.

The proposed coordination framework (i) can coordinate both vehicles and

traffic lights, (ii) scales efficiently to large numbers of vehicles and intersections,

(iii) is computationally efficient, (iv) can work under different levels of connectivity

assumptions and in the presence of human drivers, and (v) can allow for different

types of coordination strategies encoded in the underlying ETFs.
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Chapter 1: Introduction

This dissertation examines the problem of coordinating connected and au-

tonomous vehicles plus smart traffic lights to improve the efficiency of urban traffic

intersections. Specifically, we make use of decentralized multi-agent gradient-based

methods for the coordination of both vehicle arrival times and traffic light switching

times, across multiple intersections. The timing coordination is coupled with an

optimal control strategy that generates fuel efficient and safe speed trajectories on-

board vehicle agents. Finally, adequate safety and feasility constraints are handled

by a control barrier function based controller.

We call the problem of coordinating smart traffic network agents the Intel-

ligent Intersection Management (IIM) problem. In this section, we motivate the

importance of studying this problem, we review the relevant literature on this topic,

and we list the contributions of our work to this body of literature.

1.1 Motivation

Congestion and inefficiencies in transportation networks are significant contrib-

utors to wasted fuel and wasted time. According to the Urban Mobility Report [1],

in 2019 U.S. motorists consumed an additional 8.8 billion gallons of fuel and spent an
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extra 3.2 billion hours stuck in traffic. Wasted fuel and time, in turn, are detrimental

to our environment and economy through their impact on emissions and produc-

tivity. Significant research on the use of connectivity and automation by vehicles

and traffic infrastructure shows the potential these technologies have of improving

the efficiency of traffic networks, specifically in urban scenarios. Indeed, in [2], the

authors anticipate that the type of technologies presented in this section can yield

at least between 10 and 20 % savings in energy. The proposed approaches work by

reducing stop-and-go driving at traffic intersections through changing variables such

as traffic light signal phase and timing (SPAT) and vehicle speed trajectories.

1.2 Literature Review

There is a rich body of literature that focuses on solving the IIM problem.

Different approaches are proposed, and they can be categorized into different bodies

of work based on which agents are considered to be controlled, namely, the traffic

lights, the vehicles, or both. Approaches also differ in their formulations of the

problem, and the methods used to determine vehicle and signal control. In the

following sub-sections, we review some of the IIM literature by focusing on which

agents are considered to be controlled, and when relevant, by focusing on approaches

that make use of multi-agent control ideas in general, and gradient-based multi-agent

control specifically.
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1.2.1 Traffic Light Coordination

First, we consider approaches that control the signal phase and timing (SPAT)

of adjacent traffic lights. The objective is to coordinate traffic lights so that their

offsets give rise to “green waves” where vehicles encounter green lights in sequence,

effectively avoiding start-stop behaviour. Another objective is to adapt to traffic

demands as they change throughout the day and across roads. Currently, through

loop detection, traffic lights can adapt their timing using strategies such as SCOOT

[3] and SCAAT [4]. In [5], approaches focus on improving traffic light timing within

a single intersection based on microscopic traffic data gathered from loop detectors.

Most of the literature, however, focuses on the more complex problem of controlling

multiple traffic lights when considering the constraints imposed by their coupled

traffic flows. This problem has been extensively studied from different perspectives,

and approaches based on reinforcement learning [6], fuzzy logic [7], optimal control

[8, 9], and game theory [10,11] among others have been explored.

Of particular relevance to the work proposed in this document are approaches

that tackle the problem of controlling connected traffic lights through multi-agent

control methods. In [12–15] traffic lights are modeled as coupled oscillators, and the

Kuramoto equation [16] is used to achieve synchronization between intersections.

As we show in later sections of this proposal, the Kuramoto model can be thought

of as a gradient-based multi-agent control strategy. In [17], Q-learning rather than

potential function shaping is used in a multi-agent control framework.
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1.2.2 Connected and Autonomous Vehicle Coordination

Second, there is relevant work that focuses on the coordination of connected

and autonomous vehicles (CAVs) as the controlled agents.

Some of this work focuses on vehicles adapting to fixed traffic light timing

information received from upcoming lights. In [18–20], the timing of the traffic

lights and the behaviour of preceding traffic are turned into constraints of a speed

trajectory optimization problem. The minimization objectives can include acceler-

ation, speed variations, and fuel consumption. The resulting behaviour is that of

vehicles softly decreasing or increasing their speeds to catch green lights. In [21,22],

these approaches are extended to consider the impact of mixed traffic in the overall

performance of the network.

Moving on to an assumption of more connectivity and autonomy of the fleet,

most of the work in CAV coordination assumes that traffic lights are not required at

the intersections. Vehicles themselves, or centralized intersection planners, can coor-

dinate safe crossings. In [23–25] extensive reviews of approaches that consider CAVs

exclusively are presented. Several proposed approaches use a similar architecture

as the one we put forth in this dissertation, namely, a hierarchical structure where

the upper layer decides vehicles’ crossing times, and the lower layer decides vehicle

speed trajectories. Approaches of this type differ in how arrival times are negotiated

and how speed trajectories are computed. Reservation-based approaches rely on a

centralized controller that handles requests from incoming vehicles and decides on

their arrival time through heuristic rules [26], optimization [27], or both [28]. In [29],

4



the intersection coordinators are connected across multiple junctions using multi-

agent consensus to improve the performance of the strategy at a network-wide level.

Decentralized approaches negotiate arrival times using different methods. For exam-

ple, in [30] vehicles decide their arrival time through heuristic rules like maintaining

first-in-first-out (FIFO) queue orders and communicating their expected intersection

exit time and speed. In [31, 32], arrival times are determined through a recursive

decentralized minimization of inter-vehicles time gaps, also under a FIFO constraint.

Other approaches also use trajectory planning, but instead of computing exact

arrival times for the vehicles, they include collision or priority constraints in a reced-

ing horizon optimization framework [33–36]. Notably, in [34,35], a consensus-based

multi-agent algorithm is used to negotiate priorities. In [37–39], the authors de-

velop a collision avoidance supervisor based on the forward invariance of a safe-set;

the approach is shown to indirectly solve the scheduling problem for simple traffic

scenarios.

Another type of all-CAV approach makes use of the idea of virtual platoons,

where all vehicles approaching an intersection are mapped into a single virtual road,

and a car following controller tracks a desired headway [40–42]. Naturally, these

approaches preserve FIFO schedules. Interestingly, in [41, 42], the car following

controller makes use of gradient-based multi-agent methods to track inter-vehicle

distances.
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1.2.3 Traffic Light and CAV Coordination

Finally, we can look at the problem of coordinating both traffic lights and

vehicles together, which is most relevant to the future contributions presented in

this proposal. In the literature, this problem is mostly tackled from the perspective

of optimization [43–48]. Proposed approaches generally divide the problem into a

vehicle arrival time and traffic light switching time optimization layer, coupled with

a vehicle speed trajectory optimization layer. The explored methodologies differ in

their chosen traffic light and vehicle models, their optimization objectives, and the

algorithms used to solve the problem. Table 1.1 summarizes the assumptions and

solution approaches considered by several relevant references.
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Reference Assumptions Approach
[47]

· Single intersection controlled, with
multiple lanes, and no overtaking.
· Predetermined signal phase groups.
· Full vehicle autonomy and connec-

tivity

· Rolling horizon centralized travel time minimization of switch-
ing and arrival times, coupled with onboard fuel consumption
minimization of vehicle speed trajectory.
· Timing optimization is achieved by coarse discretization and

brute force methods.
· Speed trajectory optimization is done using pseudo-spectral

methods

[49]
· Single Intersection controlled, with

multiple lanes, and no overtaking.
· Predetermined Signal Phase groups.
· Mixed traffic (CAVs and human-

driven vehicles)

· Rolling horizon centralized co-optimization of switching and
arrival times, coupled with speed trajectory optimization
· Optimization is done using a travel time minimizing dynamic

programming algorithm, with a shooting heuristic sub-routine
for the optimization of vehicle trajectories

[46]
· Cell transmission macroscopic traffic

model with coarse discretization (6
second time step, 80 m long cells).
· Large network of intersections.
· Full vehicle autonomy and connec-

tivity

· Maximization of cumulative throughput and minimization
speed variations.
· The network level MILP is decomposed into intersection level

sub-problems coupled through relaxed interdependent con-
straints between neighboring intersections.

Table 1.1: CAV and Traffic Light Coordination Literature
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1.2.4 Key Lessons

From the above literature, we can learn the following key lessons. First, sig-

nificant fuel and throughput improvements can be achieved from leveraging con-

nectivity and automation of the two main agents in a traffic network: traffic lights

and vehicles. Second, the intelligent intersection management problem has different

temporal and spatial scales that approaches need to consider. Temporally, control

strategies need to adapt to traffic demands that change throughout the day. Spa-

tially, control strategies need to consider the impact of neighboring intersections.

Third, the CAV speed trajectory optimization problem with a given arrival time is

well understood for several optimization objectives (acceleration, fuel consumption),

and for some of these, efficient solution methods are proposed.

1.3 Open Challenges and Research Contributions

The IIM literature shows the great potential connectivity and automation

have of improving traffic networks. However, before true implementation of these

technologies can be achieved, key open challenges still need to be addressed. While

there are many gaps in this literature, here, we focus on the ones that motivate the

contributions of our work. In the following, we identify these open questions and

the corresponding contributions of our work.

First, most of the work cited above focuses on the control of passenger vehicles.

Heavier vehicles suffer from more restrictive power constraints, which make the

optimization of their speed trajectory a more challenging problem. In Chapter

8



2 we explore the benefits of fuel consumption minimization for a heavy-duty truck

traversing an arterial corridor with known SPAT information of the upcoming traffic

lights.

Second, coordination between CAVs themselves, without traffic lights is usu-

ally restricted to interactions within single intersections. Multi-intersection ap-

proaches usually rely on centralized coordinators that handle the coupling between

intersections. As such, most approaches do not explore how network wide coor-

dination can be achieved through decentralized CAV negotiation. In Chapter 3

we address this gap by proposing a synchronization strategy for CAVs travelling

within urban networks based on a non-linear multi-agent consensus equation known

as the Kuramoto equation. The approach models vehicles as travelling waves de-

fined by their phases and frequencies, which are related to their desired positions

and velocities. Through the Kuramoto equation, vehicles synchronize their phases,

and the careful design of the mapping between position and phase guarantees that

synchronized phases correspond to efficient intersection crossings.

Third, the problem of coordinating both traffic lights and vehicles is relatively

unexplored [49]. Specifically, approaches that consider both agents together rely on

optimization methods to determine the timing of traffic light switches and vehicle

arrivals. While optimizing for desired objectives might yield the most improvements

in those objectives, optimization methods can suffer from being computationally

complex, centralized, and difficult to scale. In Chapter 4 we address this challenge

by proposing a gradient-based multi-agent framework for the joint coordination of

traffic light switching times and vehicle arrival times. The method uses logistic
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functions to characterize the potential between two agents whether they are traffic

lights or vehicles. This potential is given by an edge-tension function (ETF). The

strategy is defined and evaluated for single intersections. We note at the end of

the chapter how this framework is a generalization of the strategy presented in the

previous chapter, given that the Kuramoto governed interaction between agents can

be described through suitable ETFs.

Fourth, the above contributions focus mostly on the problem of coordinating

the timing of the agents. Safety constraints are satisfied by either predictive plan-

ning, which requires strong connectivity and computational capabilities, or ad-hoc

imposition of constraints, which suffers from weak mathematical guarantees. In

Chapter 5 we introduce a safety regulator that makes use of theoretical tools of

non-linear controls, namely, control barrier functions. Safety and feasibility con-

straints are formulated for both the traffic lights and vehicles, and using the control

barrier functions associated with these constraints, a controller that modifies the

nominal coordinating strategy is synthesized.
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Chapter 2: Speed Trajectory Optimization for a Heavy-Duty Truck

Traversing Multiple Signalized Intersections: A Dynamic

Programming Study

2.1 Introduction

1 As a motivating starting point, in this chapter we explore the fuel savings that

can be achieved by optimizing the speed trajectory of a heavy-duty truck traversing

a sequence of intersections, under the assumptions that the behavior of the leading

traffic and the timing of the traffic lights is known. Specifically, we look at the

impact of corridor topology (i.e. green cycle lengths, phase offsets) on the expected

fuel savings of the optimized trajectories. This is an important area of research

because vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technology has

the potential to allow autonomous vehicles to reduce fuel consumption, especially

in urban and sub-urban driving scenarios. The literature tackles the problem of ar-

terial corridor trajectory optimization, and shows the potential fuel saving benefits.

However, previous research focuses primarily on passenger vehicles, and often limits

its findings to specific case studies. The main contribution of this chapter is to offer

1The work presented in this chapter is adapted from [50], accepted in the 2018 IEEE Conference
on Control Technology and Applications (CCTA)
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an estimate of the fuel saving potential – for heavy-duty trucks and under different

corridor characteristics – of optimizing trajectories in an urban arterial with V2V

and V2I capabilities.

Several researchers have proposed different formulations and optimization tech-

niques to find a speed trajectory that improves fuel economy for passenger vehicles

traveling through arterial corridors when traffic light timing information is available.

Mandava et al. explores the performance of an algorithm that minimizes accelera-

tion maneuvers for a single vehicle with no leading traffic [18] . In [51], Asadi and

Vahidi propose a hierarchical control structure where a higher level algorithm feeds

constraints that reduce idling at red lights to a model predictive controller (MPC)

that minimizes acceleration and avoids collisions. This strategy is expanded in [19]

to explicitly optimize for fuel efficiency at the MPC layer, and it is further expanded

in [22] to explore the impact of coordination between connected vehicles (CV) on

the fuel savings of the entire fleet for different levels of CV penetration. In [20],

He et al. optimize the speed trajectory for fuel economy with an added constraint

generated by a predicted queue length. In terms of fuel consumption these different

approaches show savings ranging from about 12% when minimizing acceleration [18]

to up to 40% when maximizing fuel efficiency [20] in their particular case studies.

As an optimal control problem, minimizing fuel consumption under the pres-

ence of traffic light constraints is a highly non-convex problem due to the form of

the cost and the constraints. Fuel consumption is a function of power, which is a bi-

linear function of inputs and states. Moreover, the position constraints due to traffic

lights are time-dependent and highly discontinuous. For this reason, the previously
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highlighted literature makes use of heuristic rules and simplifying assumptions in

order to develop algorithms capable of generating online solutions. Their findings,

while promising, focus mainly on passenger vehicles and generally do not solve for

global optimality.

In this chapter, we consider heavy-duty trucks as opposed to passenger vehi-

cles, and we use dynamic programming to find the trajectories that maximize fuel

economy in arterial corridors with different traffic conditions, different light timing

cycles, and synchronization offsets. The solutions are compared to a Gipps model

of human car following behavior, and the fuel savings are related to macroscopic

performance measures.

2.2 Problem Formulation

We consider a string of vehicles approaching a sequence of traffic lights. The

last vehicle in the string is assumed to be an autonomous heavy-duty truck, whose

trajectory is given by the solution of the optimization problem presented in part A.

of this section. The vehicles in the convoy ahead of it follow a car-following driving

pattern governed by a Gipps model modified to handle traffic signals as explained

in part B.

2.2.1 Optimization Problem

In this section we formulate the optimization problem whose solution deter-

mines the trajectory of the heavy-duty truck. For a supervisory, motion planning
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algorithm it is reasonable to use the speed v and the position x as the state variables

of the system, and the acceleration u as the control input variable. The position

is initialized a distance Li from each traffic light i in the sequence, and we assume

the vehicle receives information on the interval of time Ri that traffic light i is red.

We also assume that the position xfront(t) of the vehicle ahead is known, either by

predicting it or receiving it through vehicle-to-vehicle connectivity.

Since we will be minimizing for fuel consumption, we begin by developing

a method of computing the mass fuel rate of the truck from its state and input

variables. In this chapter, we will use an empirical brake specific fuel consumption

(bsfc) map taken from a proprietary model of a Volvo truck with a diesel engine.

For simplicity, and to keep the number of state variables and inputs to a minimum,

we assume the truck’s powertrain has a continuously varying transmission and that

the controller can operate the engine at its optimal brake specific fuel consumption

point, , for any demanded engine power . The mass fuel rate will then be given by:

ṁf (t) = Pe(t)bsfc∗(Pe(t)) (2.1)

Where the engine power is given by the product of the propulsive force at the

wheels, the speed of the vehicle, and the lumped powertrain efficiency.

Pe =


ηFpropv Fprop > 0

Pe,idle Fprop ≤ 0

(2.2)

The propulsive force, in turn, is given by the longitudinal force balance on the
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vehicle, which includes aerodynamic drag, rolling resistance and weight:

Fprop = mu+
1

2
cdAfv

2

+mgµ cos(β(x)) +mg sin(β(x))

(2.3)

where m, cd, Af and µ are the mass, drag coefficient, frontal area and rolling resis-

tance coefficient of the truck. The variable β is the road grade, which is a function

of position. In this study, however, we assume a flat road:

Fprop = mu+
1

2
cdAfv

2 +mgµ (2.4)

With a model for ṁf , we are ready to state our optimization problem. Given

that simply minimizing fuel consumption can lead to the trivial solution of having

the vehicle stop and idle, most algorithms attempt to minimize fuel consumption

per distance traveled instead. Rigorously doing so implies that we minimize the

ratio of two integrals: the integral of mass fuel rate over the integral of velocity.

This is usually avoided by simply minimizing the integral of the ratio of fuel rate

over speed. In the interest of exploring the inherent trade-offs between minimizing

fuel consumed and maximizing distance traveled, in this chapter we formulate the

optimization objective as a linear combination of fuel rate and velocity. Using α

as our Pareto weight, we can express this multi-objective optimization problem as
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follows:

min
x,v,u

∫ T

0

[(1− α)ṁf − αv]dt (2.5a)

Subject to:

ẋ(t) = v(t) (2.5b)

v̇(t) = u(t) (2.5c)

x(t) ≤ xfront(t)−Dmin (2.5d)

x(t) /∈ {Li ≤ x(t) ≤ Li + Ii|t ∈ Ri} (2.5e)

0 ≤ v(t) ≤ vmax (2.5f)

umin ≤ u(t) ≤ umax (2.5g)

Pe,idle ≤ Pe(t) ≤ Pe,max (2.5h)

The first and second term in the cost function (2.5a), when integrated, give

the fuel consumed and distance traveled, respectively. The constraints (2.5b) and

(2.5c) are the dynamics of the vehicle, which amount to a double integrator when we

use acceleration as the input variable. Constraint (2.5d) guarantees that the truck

keeps a safe distance from the vehicle in front. The next constraint, (2.5e), states

that the vehicle cannot be within intersection i when the light is red; Li and Ii are

the location and size of the intersection, and Ri is the set of times the intersection
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light is red. The last three constraints are the bounds on the feasible velocities

and inputs; those are given speed limits of the road, drivability considerations, and

power limits of the engine.

2.2.2 Car-Following Model

To model the human-driven vehicles that precede the truck, we follow the

example of [22], and use a Gipps driving model, modified to account for traffic lights.

The Gipps model is an empirical car following model parametrized by the desired

cruising speed, and the maximum acceleration and braking drivers are willing to

undertake [52]. Given the speed vn of vehicle n at time t, the speed at an instant

t+ h, where h is a time step in the order of the reaction time of the driver, is taken

to be the smallest of two limits: va(t+ h), and vb(t+ h).

vn(t+ h) = min[va(t+ h), vb(t+ h), vn,max(t+ h)] (2.6)

The first term governs the behavior when the preceding vehicle is not within

close proximity, and it guarantees the vehicle tracks its desired cruising speed. It is

given by:

va(t+ h) =vn(t)

+ 2.5un,maxh(1− vn(t)

vdn
)

√
0.025 +

vn(t)

vdn

(2.7)

The second terms governs the braking behaviour that drivers undertake to
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keep a safe distance from the vehicle ahead, and it is given by:

vb(t+h) = uminh+

[
u2
n,minh

2 − umin
(

2(xn−1(t)−Dmin − xn(t))− vn(t)h−
v2
n−1

un−1,min

)] 1
2

(2.8)

where un,max, un,min, vdn are the maximum acceleration and maximum braking, and

the desired velocity of vehicle n, which will be set as the speed limit of the road.

Dmin is the safety distance kept by the driver, which is be the same as the one in

eq. (2.5). When the vehicle is the leading vehicle, or there are no vehicles between

itself and the next intersection, we set the position of the preceding vehicle xn−1 to

be the position of the next light that is red. In this situation, the speed vn−1 is set

to be 0.

Finally, the last term in eq. (2.6) is a modification from the original Gipps

model, and it was added to ensure the vehicle does not undertake an acceleration

that results in an unfeasible engine power demand.

2.3 Dynamic Programming Solver

In this section we go through the choices we made in transforming the continu-

ous time optimization problem given by eq. (2.5), into a discrete time problem suit-

able to be solved using the standard dynamic programming approach. We also look

at the Pareto trade-off of minimizing fuel consumption versus maximizing distance

travelled to select our scalarization weight α, and how this compares to maximizing
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fuel efficiency.

2.3.1 Discretization

We define a time step h, which gives N = T/h total time instants to optimize

for. The discrete form of the underlying problem of eq. (2.5) is then:

min
xk,vk,uk

N∑
k=1

[(1− α)ṁf (x̂k, v̂k, uk)− αv̂k]h (2.9a)

Subject to:

xk+1 = xk + vkh (2.9b)

vk+1 = vk + ukh (2.9c)

xk ∈ Xk (2.9d)

vk ∈ Vk (2.9e)

uk ∈ Uk (2.9f)

where x̂k and v̂k are intermediate states; that is:

x̂k = xk + vk
h

2
(2.10a)

v̂k = vk + uk
h

2
(2.10b)
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In using x̂k and v̂k to compute ṁf in eq. (2.9a), we are effectively using a

midpoint rule to approximate the integration. Constraints (2.9b) and (2.9c) are

obtained by approximating the time derivatives using a finite difference. Finally,

constraints (2.9d - 2.9f) lump equations (2.5d - 2.5h) into a single, time dependent,

set constraint for each state and input variable. Xk, Vk, and Uk, are the intersections

between the state and input meshes X0, V0, and U0 and the sets defined by (2.5d -

2.5h), and they are computed at every time step when the dynamic programming

algorithm runs.

The state meshes X0, V0 are chosen to be consistent with the time step h:

X0 = {x = n∆x |x 6 max(xfront(t)) &n ∈ N} (2.11a)

V0 = {v = n∆v | v 6 vmax &n ∈ N} (2.11b)

U0 = {u = umin + n∆u |u 6 umax &n ∈ N} (2.11c)

where the discretization steps must satisfy:

∆v =
∆x

h
(2.12a)

∆u =
∆v

h
(2.12b)
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Vehicle Parameters Optimization Parameters
m 35000 kg ∆x 0.5 m
cd 0.49 ∆v 0.5 m/s
Af 10.67 m2 ∆u 0.5 m/s2

µ 0.01 h 1 s
β 0 rad Dmin 10 m
η 0.90 α 0.3

Table 2.1: Vehicle and Optimization Parameters

To allow for a large number of inputs without extensively compromising com-

putational time, we select ∆x and h to be 0.5 and 1 respectively. It follows that

∆v and ∆u are both 0.5 as well. The rest of the parameters used in subsequent

simulations is summarized in Table 2.1.

2.3.2 Weight Selection

At this point, the only thing we need to define before running simulations is

the scalarization weight α, which lies between 0 and 1. When α is 0, we focus only

in minimizing fuel consumption, which will be achieved by not moving at all and

keeping the engine at idle. When α is 1, we only focus on maximizing range; at

this value, the problem is ill-defined since any solution that reaches the end of the

position state mesh would have the same cost. We will select a sample corridor and

compute the optimal solution for different values of α.

For this section, we look at a 1.2 km stretch of road representing College

Av., State College. This corridor contains 6 signalized intersections, whose timing,

location and dimensions were estimated using live measurements and map data. A

map view of the road in question, along with the relevant measurements is shown
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in Figure 2.1. We consider the scenario where the truck enters the control zone

following a string of 5 vehicles modeled using equation (2.6) and the parameters

given in Table I. We use the values given in Table I for the parameters of the truck,

and solve the optimization problem given by (2.5) using DP, for different values of

α and a time horizon T equal to the time it takes the preceding vehicle to reach the

last light.

Figure 2.1: Case Study: 6 intersection corridor in College Avenue, State College,
PA

Figure 2.2(a) shows the optimal trajectory of the truck for each value of α in a

space-time diagram. The red rectangles represent the times the lights are red, and

the black lines represent the trajectories of human-driven vehicles. Figure 2.2(b)

shows the associated fuel consumption and distance traveled for the multi-objective

optimization problem at hand. We can see a sharp jump in both range and fuel

consumed between α = 0.2 and α = 0.3 after which a change in α does not affect

the cost, or the shape of the solution as much.
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Figure 2.2: Trajectories and costs for minimizing fuel consumption vs maximizing
range over 6 intersections in College Av.
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Based on the shape of the trajectories for this specific case study, and the fact

that our ultimate goal is to maximize fuel efficiency, which in terms of grams of fuel

per meter is the ratio of our two objectives, we select α = 0.3 as our weight for the

rest of the simulations.

2.4 Simulation Results

In this section we assess the ability of trajectory optimization in reducing fuel

consumption by running simulations for different arterial corridor configurations.

The purpose is to estimate the expected fuel savings based on the available traffic

light information. Specifically, we focus on the two main parameters that traffic

light management systems can toggle: the green cycle length and the offset between

one light and the next. A properly designed corridor will optimize the portion of the

cycle that each light is green based on the volume of traffic, and it will synchronize

green lights to allow traffic to flow as uniformly as possible without stopping at the

intersections.

We consider a stretch of road with 4 evenly spaced intersections, and a convoy

of 5 vehicles traveling in front of the truck when it enters the control zone 150 m

from the first light. Each intersection is 20 m long, and is 150 m away from the

previous one. Their traffic lights have a cycle length of 90 s, of which a certain ratio,

the green cycle ratio, corresponds to a green light. The timing cycles of each light

are offset by a certain amount of seconds with respect to the previous light. We will

vary both the green cycle ratio and synchronization ratio independently, and see the
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amount of fuel that can be saved when compared with a truck that follows a Gipps

driving model.
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Figure 2.3: Fuel consumption in grams/m achieved by optimizing the trajectory for
different green cycle ratios and synchronization offsets

We can see in Figure 2.3 the results of our simulation study. The achieved fuel

consumption ranges from 0.29 to 0.51 grams/m, and the scenarios where these occur

correspond, as expected, with the situation where the corridor is properly versus

poorly timed and synchronized. Figures 2.4(a) and 2.4(b) show the optimized

trajectories in both of these extreme cases. When green intervals are short, and

the offset is slower than the speed of the convoy, the worst fuel efficiency occurs;

on the flip side, when the offset matches the speed of the string of vehicles ahead,
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which occurs when it is equal to spacing between intersections divided by the desired

velocity of the traffic, the algorithm achieves its best fuel economy. These differences,

however, are the product of having an optimized corridor, rather than smart look-

ahead driver.

Figure 2.5 shows, in percentages, how much fuel is saved by performing tra-

jectory optimization when compared to a baseline car following model showed as

a dotted line in Figure 2.4. We can see that the improvements range from around

34% to 72% depending on how well the traffic lights are timed and synchronized.

The smallest fuel saving is achieved for an offset of 12 s and green cycle of 20s/90s.

We notice that the maximum fuel savings of above 70%, which occur when the cor-

ridor is poorly timed, do not coincide with the minimum fuel consumption, which

happens at long green cycle ratios and good offset synchronization.

2.5 Conclusion

In the interest of exploring the fuel saving benefits for heavy-duty trucks of

trajectory optimization in the presence of traffic and traffic light information, we use

dynamic programming to minimize fuel consumption. The problem is formulated as

a minimization of two competing objectives, fuel consumed and distance traveled.

We then explore the underlying Pareto trade-off to select an appropriate scalariza-

tion weight of 0.3. Finally, we simulate the performance of the global optimizer for

different light timing parameters to find the expected fuel savings when traversing

different corridors. The fuel savings are determined by comparing to human driving
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(a) Optimized trajectory for the least efficient scenario, where the offset is 4 s
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Figure 2.4: Example trajectories for the best and worst scenarios, including leading
traffic (black), human-driven truck(dotted), and DP optimized trajectory
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behavior as modeled by a Gipps modeled.

Our results show that trajectory optimization in arterial corridors is potentially

more beneficial for heavy-duty trucks than for passenger vehicles. Indeed, we find

fuel savings ranging from 32 to 72%, while values for passenger vehicles reported in

the literature do not usually exceed 40%.

These results motivate further efforts in developing real time speed advisory

optimization algorithms for heavy-duty trucks. Furthermore, since dynamic pro-

gramming solutions guarantee global optimality, they serve as an effective bench-

mark to which compare faster online controllers.
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Chapter 3: Distributed Kuramoto Self-Synchronization of Vehicle Speed

Trajectories in Traffic Networks

3.1 Introduction

3.1.1 Overview

1 The study in the previous chapter motivates the development of coordination

algorithms that reduce stop and go behaviour of vehicles as they traverse intersec-

tions. Moreover, it motivates the importance of considering the interactions between

adjacent intersections. We see from the results of the dynamic programming study

that the value of predictive control and trajectory planning is diminished when the

lights in an arterial corridor are not properly synchronized. As we discuss in Chap-

ter 1, synchronizing traffic lights is an active area of traffic engineering research.

However, the futuristic coordination strategies that coordinate only CAVs typically

do not consider multiple intersections, and are designed locally. In this chapter we

consider the traditional problem of coordinating only CAVs, but we explicitly de-

sign a strategy that considers interactions between vehicles approaching neighboring

intersections. The algorithm proposed here, maintains computational efficiency by

1The work presented in this chapter is adapted from [53,54], accepted in 2019 American Control
Conference (ACC), and IEEE Transactions on Intelligent Transportation Systems respectively.
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relying on a simple decentralized coordination law: the Kuramoto equation, whose

computational complexity grows linearly with the number of agents [55]. We start

by looking at this problem without traffic lights for the purpose of simplicity; in the

next chapters, we explore how this multi-agent consensus strategy can be modified

to include traffic lights as controlled agents.

Indeed, this chapter presents a distributed synchronization strategy for CAVs

in traffic networks. The strategy considers vehicles traveling from one intersec-

tion to the next as waves. The phase angle and frequency of each wave map to

its position and velocity, respectively. The goal is to synchronize traffic such that

intersecting traffic waves are out of phase at every intersection. This ensures the

safe collective navigation of intersections. Vehicles share their phase angles through

the V2X infrastructure, and synchronize these angles using the Kuramoto equation.

This is a classical model for the self-synchronization of coupled oscillators. The

mapping between phase and location for vehicles on different roads is designed such

that Kuramoto synchronization ensures safe intersection navigation. Each vehicle

uses a constrained optimal control policy to achieve its desired target Kuramoto

phase at the upcoming intersection. The overall outcome is a distributed traffic

synchronization algorithm that simultaneously tackles two challenges traditionally

addressed independently, namely: coordinating crossing at an individual intersec-

tion, and harmonizing traffic flow between adjacent intersections. Simulation studies

highlight the positive impact of this strategy on fuel consumption and traffic delay

time, compared to a network with traditional traffic light timing.
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3.1.2 Literature review

Coordinating traffic at intersections requires solving two different problems,

at two different scales. The first is servicing conflicting flows at an intersection so

that vehicles do not collide with each other; in other words, deciding who crosses

when. We refer to this problem as the intra-junction coordination problem. The

second problem is harmonizing the flow between adjacent intersections to reduce

the amount of energy vehicles waste due to frequent acceleration and braking; we

refer to this problem as the inter-junction coordination problem. As we highlight

in Chapter 1, most of the literature on intersection control focuses on one of these

problems individually. Some approaches combine separate solutions, and evaluate

their performance when combined.

Coordination between adjacent traffic lights for example, aims to solve the

inter-junction problem by synchronizing the timing of the lights. Of specific rele-

vance to the work presented in this chapter, several proposed traffic light control

approaches make use of the Kuramoto equation for self-synchronizing oscillators.

Sekiyama et al. proposed such an approach, where they used Kuramoto synchro-

nization to adjust signal phase and timing [12]. This work was further expanded

in [13–15]. In general the problem can be thought of as material transport problem

in a directed graph, as explained by Lammer et. al. in [14].

Assuming vehicle fleet connectivity, some approaches avoid the use of traffic

lights altogether by having the vehicles coordinate crossing times with each other,

or with a centralized coordinator [23, 24]. In general the problem is solved in two
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layers. The first one determines vehicles’ crossing times or sequence, while the second

controls the vehicles’ speeds to achieve the agreed-upon crossing time. The approach

proposed in this work follows a similar structure. Other approaches based on the

formation of virtual platoons are also of particular relevance to this work, because

they make use of multi-agent consensus strategies, which can be thought of as linear

counter-parts of the Kuramoto equation. Vaio et al. [41] propose a decentralized

protocol that projects vehicles in conflicting roads into the same coordinate system,

namely a distance to the upcoming intersection. Through a heuristic algorithm

vehicles negotiate desired inter-vehicular distances, and they use modified consensus

to achieve the desired formation. The method is evaluated for a single intersection.

Most of the above approaches focus on solving the intra-junction problem at single

intersections.

Some approaches have both connected centralized agents, that can communi-

cate with each other at different intersections, and connected vehicles that exchange

information with the coordinators and among themselves. These approaches can

attempt to solve both the inter-junction and intra-junction problem. In [56], a cen-

tralized reservation-based controller at each intersection communicates its decisions

to both the vehicles it is in charge of scheduling and to the controllers at neighbor-

ing intersections. The crossing time decisions are made by solving a mixed-integer

linear program that considers the information it receives from its adjacent inter-

section managers. The approach is evaluated both with and without coordination

between intersection managers, showing that when intersection controllers can com-

municate with each other, fuel consumption benefits double. A similar approach is
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taken in [29], where connected centralized schedulers take into account each other’s

information when making reservation decisions. In this case, coordination between

the schedulers is achieved by the use of multi-agent consensus, as opposed to opti-

mization.

The above literature highlights the breadth of different approaches that are

proposed to solve the autonomous intersection management problem. From this

literature, we identify the following key lessons. First, Kuramoto models and other

consensus-based approaches have been successfully used to coordinate traffic lights

and centralized intersection coordinators, but they have not been explored as means

to coordinate autonomous vehicles themselves. Second, approaches that consider

multiple intersections and the coupling between them can yield larger fuel savings

compared to localized controls. However, most approaches that solve both intra-

and inter-junction problems rely on some sort of centralized agent that couples in-

tersections. This chapter proposes an approach to solve the autonomous intersection

management problem at both levels using the non-linear consensus equation known

as the Kuramoto model. The use of Kuramoto allows vehicles to first agree upon

the current state of the intersections (i.e. which flow is being serviced), and then to

synchronize with the intersections.

3.1.3 Outline

The rest of the chapter is organized as follows. In Section 2 the proposed

strategy is presented. Section 3 discusses some of the theoretical implications of the
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strategy and its design parameters on traffic flow, throughput, and safety. Finally,

section 4 presents simulation results to validate the proposed strategy.

3.2 Proposed Strategy

We consider a grid of interconnected intersections in an urban traffic network.

We assume that all incoming vehicles are autonomous, capable of vehicle-to-vehicle

(V2V) communication, and can interact with all the vehicles in the network (i.e.

all-to-all connectivity). Less restrictive communication topologies are possible as

shown in the Kuramoto consensus literature [57], and do not alter the fundamental

ideas behind this work.

The idea behind our proposed strategy consists of mapping the position and

velocity of each vehicle to a corresponding virtual phase and frequency. The vehicles

exchange phase information through V2V communication, and compute the dynam-

ics of their phases using the Kuramoto equation. This naturally drives them to syn-

chronize. From the phase trajectories, vehicles determine the times and velocities

at which they need to arrive to the upcoming intersections. With this information,

they formulate a linear quadratic optimal control problem that is solved at each time

step to determine the acceleration command that will place them at the intersection

at the right time, with the right speed. The mapping between phase and position

must satisfy certain constraints for this strategy to produce the desired behaviour,

that is, safe crossing at intersections (which solves the intra-junction problem) and

smooth crossing between intersections (which addresses the inter-junction problem).
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In this section we describe in detail how the proposed strategy can be imple-

mented in a network of roads with or without right turns, where all vehicles are

autonomous and inter-connected.

3.2.1 Kuramoto Synchronization

The literature on traffic light synchronization using the Kuramoto equation

works by describing the agents (i.e the traffic lights) as oscillators and establishing

a mapping between the phase of the agent and a control action (i.e switching from

green to yellow, or red). In our proposed strategy, where the vehicles are the agents

as opposed to the traffic lights, the mapping relates the phase of the vehicles to a

position along the road. For each road segment p, we define a mapping gp(θ) that

relates the phase θi of a vehicle i to the vehicle’s desired distance to the intersection

along the curvature of the road sdi :

sdi = gp(θi) (3.1)

We choose gp to be an affine function of phase; it can therefore be described

by two parameters. We call these parameters the wavelength λ and the offset φ,

where λ is the slope and φ the zero crossing. For a given road p, the mapping is

then:

gp(θi) = (θi − φp)
λp
2π

(3.2)

We can think of this map as having wrapped the length along the road around a
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circle of radius λp
2π

, and rotated it by an angle φp

Assuming steady state tracking of the desired distance to the intersection

sdi , it follows from the definition of gp that a vehicle i on road p will reach the

intersection when its phase θi is equal to the corresponding offset φp. It also follows

that two vehicles on road p with a phase difference of some multiple k of 2π, will be

separated by kλp meters. Mathematically, these two properties of our mapping can

be expressed as:

gp(φp) = 0 (3.3)

gp(θi + 2kπ)− gp(θi) = kλp (3.4)

We have yet to define one of the main descriptors of an oscillator: its natural

frequency. Since phase is mapped onto position, frequency will be mapped onto

velocity. Indeed, from differentiation in time of Eq. (3.2), we have a definition of

desired vehicle velocity:

vdi = θ̇i
λp
2π

(3.5)

Under this definition, it follows that the natural frequency ωi of a vehicle is

simply the frequency corresponding to the constant nominal desired velocity the

vehicle would like to travel at. In our proposed strategy a key constraint is that

all vehicles have the same natural frequency ωi = ω. As such, a road segment p is
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characterized not only by its wavelength λp, but also by a nominal speed vn,p, such

that the following constraint is always satisfied2:

ω = 2π
vn,p
λp

(3.6)

Now that we have a definition of phase and frequency as they relate to desired

position and velocity, we consider the dynamics of this phase variable. Specifically,

we impose that these dynamics be governed by the Kuramoto equation. This equa-

tion was introduced in 1975 to model the dynamics of populations of weakly coupled

oscillators that exhibit self-synchronizing behaviour. Synchronization refers to os-

cillators with different natural frequencies influencing each other to oscillate at the

same frequency and a constant phase difference. This occurs mostly in biological

systems like populations of flashing fireflies. The governing equation, as proposed

by Kuramoto in [16], is as follows:

θ̇i(t) = ωi +
1

N

N∑
j=1

Kij sin(θj(t)− θi(t)) (3.7)

In this formulation, the instantaneous frequency of oscillation θ̇i is given by

the oscillator’s natural frequency ωi plus the coupling term to all other oscillators

based on the sine of their difference in phase multiplied by a coupling term Kij.

For all-to-all symmetric coupling, that is Kij = K, and a monotonic and uni-

modal distribution of natural frequencies p(ω), the behaviour and stability of the

2The possibility of allowing multiple nominal speeds on multi-lane road segments is not pre-
cluded by this problem formulation, since the different lanes can correspond to different wave-
lengths.
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system is well-understood [55]. To illustrate this behaviour, it is useful to express

the model in its mean-field form, by introducing the order parameter:

r(t)eΨ(t) =
1

N

N∑
j=1

eθj(t)i (3.8)

Ψ
𝑟

Figure 3.1: The order parameter has magnitude r (the coherence), and phase Ψ (the
mean phase)

If each oscillator is thought of as a particle orbiting around the unit circle,

the order parameter is the centroid of all oscillators, as shown in Fig. 3.1. The

Kuramoto equation can then be rearranged in terms of r and Ψ:

θ̇i(t) = ωi + r(t)K sin(Ψ(t)− θi(t)) (3.9)

In this form, one can see that the ith oscillator is pulled towards the mean

phase Ψ with an effective coupling Kr. The coherence r takes values from 0 to 1,

where 0 represents all oscillators orbiting incoherently and 1 represents all of them

sharing the same phase.

When the coupling between oscillators is K = 0, agents orbit the unit circle

in complete incoherence and the value of r fluctuates around 0. As the coupling

strength is increased, incoherent behaviour persists until a critical coupling threshold
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Kc is exceeded. For these larger values of K, a subset of oscillators synchronize and

start recruiting more and more oscillators. Indeed, a positive relationship exists

between the coherence r and the coupling strength Kr. From Eq. (3.9) we can see

that the stronger the coupling, the more the oscillator is pulled towards the mean

phase, and as more oscillators orbit near the mean phase, the coherence r increases.

Finally, the value of r saturates at some final value below, but near 1, around which

it fluctuates.

For normal distributions of natural frequencies and large enough coupling, the

resulting behaviour corresponds to all oscillators orbiting with the mean frequency

of the original distribution (this is called frequency entrainment) and maintaining

a constant phase difference between each other (this is called phase-locking). In

the particular case of all natural frequencies being the same, all vehicles phase lock

to the mean phase exactly, with no constant phase difference between them, and r

converges to 1 exactly. Using the frequency given in Eq. (3.6), we can write the

dynamics of θi as:

θ̇i(t) = ω + r(t)K sin(Ψi(t)− θi(t)) (3.10)

where the local mean phase Ψi is the closest projection to θi of the overall mean.

That is:
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Ψi(t) = min
k
{Ψ(t) + 2kπ}

subject to:

−π ≤ ||Ψ(t) + 2kπ − θi(t)|| ≤ π

k ∈ Z

(3.11)

By collapsing the distribution of natural frequencies of the oscillators into a

single point (i.e p(ω) = 1), we force all the phases of the system to converge to the

mean phase plus some multiple of 2π, or, in other words, to its closest mean phase

Ψi(t).

For a population of oscillators with a random distribution of initial phase, the

trajectories of the phase, mean phase, and frequency are shown in Fig. 3.2. Note

that oscillators are basically pulled towards the closest mean phase; we can then

think of the mean phase, and its projections every 2π, as beacons that the vehicles

are attracted to.

Finally, we combine the behavior of a Kuramoto-driven system and the map-

ping between desired position and phase we have defined. This combination con-

stitutes the coordinating layer of our algorithm. Through Kuramoto the vehicles

agree on a mean phase for the entire network, and because of the definition of the

mapping given by Eqs. (3.2) and (3.3), the vehicles then attempt to cross the in-

tersection exactly when the mean phase is equal to the offset of the road. As such,

the synchronizing Kuramoto layer allows vehicles to negotiate the crossing state of

all intersections in the network, regardless of their distance to those intersections.
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(a) Phase and Mean phase trajectories

(b) Evolution of frequencies θi

Figure 3.2: Evolution of phase, mean phase, and frequencies for a population of
oscillators with random initial phase

3.2.2 Phase, Offset and Wavelength Constraints

Three different types of constraints need to be satisfied so that the behaviour

of oscillators shown in Fig. 3.2, corresponds to solving both the intra-junction and

the inter-junction problem; these are:
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1. No two vehicles in the same road segment are being pulled towards the same

beacon; this guarantees spacing between vehicles in the same road.

2. The phase offsets for intersecting roads place the vehicles in the intersection

at different times; this guarantees alternate servicing at the intersection.

3. The phase of a vehicle as it goes from one road segment to the next segment

of the same road (i.e., as it goes straight through an intersection, without

turning) does not change (in the unit circle); this guarantees continuity of

the through flow, thereby reducing energy losses due to re-synchronization.

Vehicles can meet the spacing constraint by properly correcting their phase

when a conflict is detected, which mostly occurs when entering a new road segment.

Recall that Kuramoto feedback pulls an oscillators towards whichever mean-phase

attractor is closer to its current phase. If we define Ψi as the projection of the mean-

phase closest to the phase θi of vehicle i, according to Eq. (3.11), we can write a

phase resetting condition for the vehicles that guarantees the spacing constraint:

θi = min(θi,Ψj − π − ε) ∀j ∈ {j|sj > si} (3.12)

where ε is a very small number. By saturating θi in this way, we make sure that

Ψi 6= Ψj, which means that no two agents on the same road segment are pulled

towards the same attractor.

To write the safe servicing and continuity constraints mathematically, we con-

sider the variable definitions in Fig. 3.3, where we draw a representative intersection
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(a) Inter-junction diagram

(b) Intra-junction diagram

Figure 3.3: Variable definition as seen within and between junctions

zone. Points A1 and B3 correspond to the origins of road segments 1 and 3; that

is, the phase at those points is the offset of the respective road segment. Point C

represents the intersecting point between the trajectories of vehicles going straight

through both roads. Here, and for the rest of the chapter we consider an intersec-

tion of two one-way roads with only two conflicting traffic movements for the sake

of simplicity. More practical traffic scenarios can be accounted for by partitioning

the wavelength into however many flows are necessary.

The servicing constraint, which directly relates to solving the intra-junction

problem, aims to maximally space out vehicles crossing the intersection from dif-

44



ferent roads. It is a constraint on the offset of each road that guarantees that each

traffic flow is serviced during a different portion of the cycle. Considering the sce-

nario drawn in Fig. 3.3 we can see that maximal spacing for vehicle i from the

vehicles that cross the intersection before and after itself occurs if it reaches the

intersection (i.e. point C) exactly between them. Now vehicles i + 1 and i − 1 are

separated by a full wavelength λ1, or by 2π radians in the phase domain (as follows

from eq. (3.4)) . It follows that the distance between vehicle i and i − 1 should

be half a wavelength, or π radians in the phase domain. We can show that this is

achieved if the mappings of roads 1 and 3 satisfy the following constraint, which

relates the phases of point C as mapped by the mappings of each road.

g−1
1 (A1C) = π + g−1

3 (B3C) (3.13)

where g−1
p (s) is the inverse of the mapping (3.1) for road segment p. The arguments

A1C and B3C are the distances between each road’s entrance to the intersection

and the collision point. For our proposed mapping (3.2), the above equation can be

rearranged as:

φ3 − φ1 = 2π(
A1C

λ1

− B3C

λ3

)− π (3.14)

Finally, the inter-junction coordination problem can be solved automatically

by ensuring continuity between mappings as vehicles go from one road segment to

the next. That is, we guarantee that the phases at points A1 and B3 are the same

when mapped by roads 1 and 2, and roads 3 and 4 respectively. Recalling that
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points A1 and B3 are the origins of the intersection region, and using equations

(3.2) and (3.3), this amounts to:

g−1
2 (L2 + A1A

′
1) = g−1

1 (0) = φ1

g−1
4 (L4 +B3B

′
3) = g−1

3 (0) = φ3

(3.15)

Rearranging according to our affine mapping of equation (3.1), we can express

the constraints in terms of the offsets of the roads:

φ1 − φ2 =
2π

λ2

(L2 + ¯A1A′1) (mod 2π)

φ3 − φ4 =
2π

λ3

(L4 + ¯B3B′3) (mod 2π)

(3.16)

It is worth noting that Eq. (3.16) can only partially guarantee continuous flow

as vehicles travel along a corridor of intersections. For one, the constraint cannot be

imposed to turning flows, since the servicing constraint ensures the destination road

segment of a turning vehicle will be π radians out of phase with respect to its road of

origin. Another scenario where flow is disrupted occurs when another vehicle turns

into the destination section of the vehicle going straight. In this situation, because

of the spacing constraint, the latter vehicle will be forced to slow down to catch

the upstream wave. Finally, while the wavelengths can be thought of as adjustable

variables in constraint (3.16), wavelengths are also constrained by their relationship

with frequency and velocity through Eq. (3.6). Specifically, a change in wavelength
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from one section to the next would force a change in desired speed through Eq.

(3.6) in order to maintain a constant natural frequency, creating an undesirable

acceleration or deceleration event. For the rest of this work, we therefore assume

that wavelengths and desired speeds are the same across all roads in the network,

and we drop the road identifying index p for λ and vd.

In guaranteeing spacing, safety and continuity to solve the coordination prob-

lem at both scales, we have introduced two different types of constraints. The

spacing constraint (3.12) is a constraint on the actual phase of the vehicles; it forces

vehicles to push their desired phase back, and with it the time at which it will cross

the intersection. This constraint needs to be checked for and implemented contin-

uously, although it will mostly become active when vehicles change road segments.

The servicing and continuity constraints, on the other hand, are constraints on the

constant design variables of the network, namely the offsets and wavelengths of the

roads, and they are chosen before any vehicles enter the network. Along with the

desired speed vd, these design variables determine the maximum throughput of the

network as we will discuss in subsequent sections.

3.2.3 Optimal mean-phase tracking

So far we have discussed the dynamics of a vehicle’s desired phase, which is

then mapped to a desired position. In previous work [50], we propose a linear feed-

forward/feedback tracker that uses this signal as reference. Further insight into the

behaviour of the system of coupled oscillators allows us to propose here a more
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sophisticated tracking approach, namely, a model predictive optimal controller that

minimizes the jerk of vehicles using predictions of both the arrival time imposed by

the phase dynamics and the behaviour of other vehicles.

We can show that the synchronizing layer described above determines the time

τi(t) at which the vehicle i should ideally arrive at the intersection. Indeed, the

computation of τi(t) follows from the properties of Eq. (3.9), where the mean-phase

Ψ oscillates with a constant frequency ω [55].

Ψ̇(t) = ω (3.17)

As described in the previous section, vehicle i should reach the intersection

when its phase is already tracking its mean phase beacon, which is in turn equal to

the offset of the road:

θi(τi) = Ψi(τi) = φp (3.18)

It follows from the previous two equations that for vehicle i at time t the

expected time of arrival at the intersection is given by:

τi(t) =
φp −Ψi(t)

ω
(3.19)

Since the vehicle enters the intersection at time τi, in synchrony with its mean

phase beacon, its desired position, velocity and acceleration are also known:
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si(t+ τi) = 0

vi(t+ τi) = vd

ai(t+ τi) = 0

(3.20)

Assuming vehicles can control their jerk, or their change in acceleration, through

accurate lower level powertrain and vehicle dynamics controllers, we model these ve-

hicles as third order dynamical systems. Note that we choose a third order system

here, instead of the second order system traditionally used to model vehicles, be-

cause it will yield smoother acceleration profiles. With the third order model, the

state variables for each vehicle are then: (i) its distance to the intersection, along

the path of the road; (ii) its velocity; and (iii) its acceleration. The input is the jerk

of the vehicle:

ṡi(t) = vi(t)

v̇i(t) = ai(t)

ȧi(t) = ui(t)

(3.21)

The control input ui(t) that places the vehicle at the intersection at the right

time, can be the solution of an optimization problem that minimizes mean square

jerk:
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min

∫ t+τi(t)

t

1

2
ui(τ)2dτ (3.22)

Subject to:

State dynamics (3.21)

Terminal time conditions (3.20)

sj(t)− si(t)− S ≤ 0

ai,min ≤ ai(t) ≤ ai,max

vi,min ≤ vi(t) ≤ vi,max

(3.23)

The additional inequality constraints guarantee that the vehicle stays a safe

distance S from its leading vehicle j, and that the acceleration and velocity are

bounded.

The solution to the problem without the inequality constraints (3.23) can be

determined analytically by performing a Hamiltonian analysis. This approach is

similar to the work of Malikoupoulos et al. in [30, 58], where the solution to a

second order dynamical system, where the input is acceleration rather than jerk, is

presented. In our case, the optimal trajectories for the input and the states, denoted

with an asterisk, are given by:
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u∗(t) = −1

2
c1t

2 + c2t− c3

a∗(t) = −1

6
c1t

3 +
1

2
c2t

2 − c3t+ c4

v∗(t) = − 1

24
c1t

4 +
1

6
c2t

3 − 1

2
c3t

2 + c4t+ c5

s∗(t) = − 1

120
c1t

5 +
1

24
c2t

4 − 1

6
c3t

3 +
1

2
c4t

2 + c5t+ c6

(3.24)

The constants c1,...,6 in the above equations are integration constants, and they

can be solved for by imposing initial and final time conditions. The initial conditions

are given by the current state of the vehicle at time t, and the final conditions are

given in equation (3.20). The resulting system of equations is linear, and it is solved

by inverting a 6-by-6 matrix and multiplying it by the concatenated vector of initial

and final conditions.

The above is the solution to the unconstrained problem; the solution to the

constrained problem can be determined numerically by discretizing and using a

quadratic programming solver. This type of optimization is convex, however it

requires full knowledge of the planned trajectory of the lead vehicle. In this chapter,

our proposed solution method consists of computing the analytical solution to the

unconstrained problem, and checking for constraint activity. If no constraint is

infringed upon by the analytic unconstrained solution, we execute the computed

input trajectory. Otherwise, we use this candidate solution as the initial guess to

the quadratic programming solver and implement the constrained solution instead.

In the next chapters we explore how the analytic solution can be modified in order
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to satisfy safety and feasibility constraints without the need to know or compute

the full trajectory of the leading vehicles.

3.2.4 Summary

To summarize the workings of our algorithm, let us recount the actions vehicle

i takes at any given time t, after it receives the phase and mapping information from

the rest of network:

1. If the vehicle has just entered a new road segment, it selects its initial phase

θi(t) to match its current position according to the mapping of the road.

2. It computes the order parameter of the system of oscillators (i.e the mean-

phase Ψ and coherence r of the network), as well as the projection Ψi of Ψ

closest to its own phase.

3. If both its phase and that of its leading vehicle j are most proximal to the

same mean-phase beacon (Ψi = Ψj), the vehicle pushes its phase backwards

by π + ε radians from the beacon tracked by its leader (θi = Ψj − π − ε).

4. It computes the time it should arrive at the intersection τi(t) given the current

mean-phase.

5. It determines the optimal trajectory of its state and input that minimizes

jerk, according to the analytical solution to the unconstrained optimization

problem.
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6. If the solution violates constraints, it solves the constrained optimization prob-

lem numerically.

7. It updates the value of its phase through the Kuramoto equation.

8. It implements the first input command according to the generated input tra-

jectory.

Fig. 3.4 summarizes this process in a block diagram. The result of following

this protocol is that vehicles cross the intersection at different times, and that accel-

eration maneuvers as they go from one intersection to next are not very aggressive.

3.3 Designing for Traffic Flow and Safety

Before looking at the performance of our strategy in simulation, we can discuss

some of its anticipated implications in terms of traffic flow and density. By virtue

of Kuramoto synchronization, all vehicles oscillate at the same frequency once co-

herence is achieved. In fact, in our current formulation, this frequency corresponds

to the natural frequency we choose for the network:

ω = 2π
vn,p
λp

(3.25)

The flow of vehicles in each road is directly related to this frequency given that

vehicular flow is the product of velocity and density. Maximum density is nothing

more than the inverse of the wavelength, because in each road there can only be

one vehicle per wave, and vehicles are spaced by one wavelength (or more). The
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Figure 3.4: Kuramoto Coordinator Control Architecture

maximum possible flow is then, in its traditional units of vehicles per hour:

q =
vn,p
λp

(3600) =
ωn
2π

(3600) (3.26)

We can then expect that for input flows below the selected natural frequency,

the algorithm will be able to meet the traffic demand. For higher input flows, a
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queue will start to form at the entrances of the network as vehicles wait to track

non-occupied wave crests.

Velocity and wavelength should be chosen to produce a natural frequency

higher than the demand of the road. However, this is not the only constraint on

these two variables, since the spacing of vehicles as they cross the intersection also

depends on these variables. In fact, from analysing Fig. 3.3, we can determine that

the gap in seconds between a vehicle at the collision point of the intersecting paths

and the vehicle that just crossed is given by:

G =
1

vn,p
(
λp
2
− S) (3.27)

Where S is a safety distance that needs to be larger than the occupied portion

of the wave, that is, the length plus the width of the vehicles.

Having defined the relationship between our design variables vn,p and λp, we

can look at the inherent trade-offs between increasing the maximum throughput of

the network and maintaining enough spacing between vehicles at the intersection.

Fig. 3.5 shows this trade-off in our design space. We have drawn lines of constant

throughput and lines of constant safety gap. We can see that to increase the safety

gap, one might decide to choose larger wavelengths; however, since this will reduce

the density of the roads, throughput will be affected. Alternatively, if one wishes

to increase throughput, the simplest way to “cross” dashed-blue lines is to increase

speed, but this comes at the cost of reducing the safety gap. Another inherent trade-

off that does not show up in Fig. 3.5, as it is more difficult to compute analytically,
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Figure 3.5: Relationship between speed, wavelength, flow and safety

is the energy/fuel cost associated with having longer wavelengths. If a vehicle enters

a road completely out of phase, the acceleration/deceleration maneuver it will need

to perform is larger in roads with larger wavelengths. This translates to a higher

kinetic energy change, and with it, some potential waste of fuel.

3.4 Simulation Results

In this section, we study the performance and characteristics of our proposed

strategy in simulation. We consider a network of one-way roads consisting of 9 inter-

sections and 24 road segments where vehicles can either go straight or turn right; a

snapshot of this network is shown in Fig. 3.6. The road segments are approximately
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90 meters long, and the straight segment of the intersections is approximately 10

meters long. The entry roads to the network are assumed to be longer, at 200 me-

ters. For this network, where the origins of the mappings between connected road

segments are 100 meters apart, a 20 meter wavelength would satisfy the continuity

and servicing constraints of Eqs. (3.16) and (3.14) if we choose offsets of 0 and π

for horizontal and vertical roads respectively.

Figure 3.6: Network of 9 intersections used in simulation.
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3.4.1 State Trajectories

Fig. 3.7 shows the distance to the intersection as a function of time for a

group of vehicles approaching the intersection at the center of the network. In this

figure, as in subsequent ones, the color of the curve indicates whether the vehicle

is travelling down a horizontal (dashed red) or a vertical (solid blue) road segment,

and, for clarity, we flip the sign of the distance along the horizontal directions. We

can see that red and blue lines cross the 0 line at different points, meaning that

vehicles enter the intersection at different times. Moreover, the plot illustrates how

vehicles space out evenly along the same road.

Figure 3.7: Example position trajectories for a group of vehicles approaching the
same intersection along the horizontal (red dotted-solid line) and vertical (blue solid
line) roads.

We can also look at the position, velocity and acceleration of a single vehicle
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as it travels through the network, which we show in Fig. 3.8. Here, we have also

plotted in solid blue the vertical segments, and in dashed red the horizontal ones.

We can see that as the vehicle goes straight through the intersections its velocity

profile stays relatively flat, as promoted by the continuity constraint we impose on

the mapping and the fact the consensus occurs at a network level. When the vehicle

turns in the third intersection it needs to adjust its speed to match the offset of the

new road it travels on. The same thing happens as it turns right again in the next

intersection.

Figure 3.8: Example position, velocity and acceleration trajectories for a single
vehicle travelling through the network in horizontal (red solid-dotted) or vertical
roads (solid blue), along with the reference mean phase and frequency (dotted black).
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3.4.2 Fuel Consumption and Delay Time Results

We can evaluate the fuel consumption and delay time of vehicles using our

strategy compared to simulated human drivers controlled by traffic lights. The

baseline drivers are governed by a modified Gipps car following model [52] as im-

plemented in Aimsun, an established traffic simulator. We set the input flow of all

entry roads at 750 vehicles per hour, with a turn percentage of 20%. The arrival

process of vehicles into the network is the main source of stochasticity in our simula-

tion, and it is modeled as a Poisson arrival process, as is traditionally done in traffic

simulation [?]. We choose a traffic light cycle of 60 seconds, with 25 seconds of green

time for each flow and 10 seconds of clearing time. Furthermore we offset the green

time of the lights in pursuit of the ”green wave” effect, which occurs when vehicles

catch several green windows in a row as they travel down an arterial corridor. We

run the baseline simulation for 10 minutes of simulated time, and we replicate the

scenario with the same vehicle injection times and paths, but using our Kuramoto

strategy instead. Fig. 3.9 shows the baseline position trajectories corresponding to

the same vehicles shown in Fig. 3.7 in the last sub-section.

The described simulation consists of about 750 vehicles, but for our compar-

isons we consider only the 100th through 600th vehicles. In this way, we allow for the

network to build some capacity, and we do not consider vehicles who do not finish

their path before the simulation is stopped.

We are interested in looking at two metrics relevant for traffic performance

evaluation: fuel consumption and delay time. The delay time is simply the difference
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Figure 3.9: Example baseline position trajectories for vehicles approaching an in-
tersection controlled by a traffic light.

between a vehicle’s travel time and its corresponding minimum travel time had it

cruised at the desired speed of the road, normalized by the total distance traveled.

To calculate fuel consumption, we use a fuel map for a 1.2 liter gasoline engine.

The map translates every engine torque and speed pair to a fuel rate ṁf . To use

it, we first calculate the wheel power required to meet the acceleration and velocity

trajectories imposed by the driver. We then estimate the corresponding engine power

by assuming an efficiency ratio for the transmission. Finally, we say the vehicle uses

the minimum fuel rate associated with this engine power demand, which assumes

the transmission can operate at the required engine torque and speed combination.

Fig. 3.10 shows the optimal fuel rate vs. engine power line we get.

Fig. 3.11 shows the delay time and fuel consumed by each of the vehicles for
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both the baseline and proposed scenario. When we compare the average of both

point clouds, we find that our proposed strategy leads to a 48% and 57% reduction

in fuel consumption and delay time respectively for this particular scenario. Fur-

thermore, we note a significant reduction in the spread of the point cloud, meaning

that there is less variability in the anticipated behaviour of the vehicles. Indeed,

in the baseline, a vehicle that encounters a desirable green wave of traffic light se-

quences can traverse the network quickly without stop-and-go behaviour, whereas

vehicles that are less lucky are forced to stop at several intersections in sequence.

If we compute the work done by negative propulsive forces (i.e. braking), drag

forces, and rolling resistance forces in our model for longitudinal vehicle dynamics,

we can see where energy losses are incurred. The savings in fuel consumption can

then indeed be attributed to a reduction in energy losses due to braking. In other

words, our strategy improves performance by reducing stop-and-go behaviour, as

expected. Fig. 3.12 shows the result of this energy balance.

3.5 Conclusion

In this chapter we present a control strategy for connected and autonomous

vehicles that solves the intersection coordination problem in both of its scales. That

is, our strategy synchronizes vehicles crossing the same intersection, and it smooths

the flow from one intersection to the next. This is achieved by defining a mapping

between a vehicle’s position and its corresponding phase in a virtual system of

oscillating agents coupled by the Kuramoto equation. The mapping, with its safety
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constraints within the intersection and continuity constraints between intersections,

guarantees the desired behaviour of the reference position. This reference is then

tracked through an optimal control problem that is first solved analytically, and

then numerically if constraints are violated. The resulting strategy saves both fuel

and travel time, and reduces the variability in these metrics seen across the fleet.
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Figure 3.10: Optimal fuel rate vs. engine power for a 1.2 liter gasoline engine

Figure 3.11: Delay time and fuel consumed for each vehicle in the simulation of the
baseline (green) and proposed strategy (blue)
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Figure 3.12: Energy losses by type (brake, drag, and rolling resistance) for the
synchronization strategy and the baseline strategy
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Chapter 4: A Gradient-Based Approach for Coordinating Smart Ve-

hicles and Traffic Lights at Intersections

4.1 Introduction

1 The idea behind the strategy presented in the previous chapter can be gener-

alized beyond the Kuramoto model. Indeed the control architecture can be described

as follows: a coordinating layer governs the planned timing of the vehicles, and a

tracking layer attempts to achieve the current planned timing. Given this general-

ization, in this chapter we present a broader method for describing the interaction

between agents using Edge Tension Functions (ETF) within a gradient-based control

law. For the right ETF, the Kuramoto model can be thought of as a gradient-based

multi-agent controller, and like the Kuramoto model, the complexity of gradient-

based coordination grows linearly with the number of neighbors that agents com-

municate with [60]. In terms of the coordination variable, here, we move from

describing vehicles by their phase, which was then related to their planned arrival

time, to directly describing them by their planned arrival time. Furthermore, the

approach presented in this chapter also includes traffic lights as controlled agents,

1The work presented in this chapter is adapted from [59], accepted in IEEE Control Systems
Letters, (2021)
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described by their planned switching times.

Specifically, we consider both the traffic light and the approaching vehicles

as smart connected agents and we define a suitable edge tension function in terms

of their planned timing for each connection between agents. The agents then run

a decentralized gradient descent control policy that drives them towards a desir-

able sequence of intersection crossing times. As we have seen in previous chapters,

the problem of coordinating CAVs at intersections has been widely explored, with

different algorithms being proposed.

From the perspective of optimal control and multi-agent system control, most

of the work considers the problem of coordinating connected and autonomous vehi-

cles without the use of traffic light signals. For extensive literature reviews covering

the different proposed approaches, we refer back to Chapter 1. The most common

architecture for the proposed control strategies distributes the problem into a two-

layer hierarchy, where the upper layer determines vehicle crossing times, and the

lower layer determines the optimal speed trajectory vehicles need to follow to ar-

rive at the time determined by the upper layer. We can distinguish the different

strategies under this category by the methods they use to coordinate arrival times

and the objectives they optimize at the vehicular level. In [53], arrival times are

negotiated in a decentralized manner using the Kuramoto nonlinear consensus equa-

tion. In [28], a combination of optimization and heuristic rules such as maintaining

first-in-first-out crossing sequences and grouping vehicles into bubbles are used to

determine their crossing times.

The approaches considered above do not make use of traffic light signals. When
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it comes to coordination of both traffic lights and CAVs, the problem has been

mostly explored through optimization methods, as we summarize in Table 1.1 in

Chapter 1. References [45, 47, 49] use a microscopic model of traffic, and tackle the

problem using centralized optimization for individual intersections. The trajectory

planning problem is simplified through heuristic approximations and included as a

subroutine of an arrival and switching time optimization problem. In [49], Tajalli

et al. use a cell-transmission model of traffic to model a network of intersections

and formulate an optimal coordination problem that minimizes speed variations

and maximizes throughput. Through insightful relaxations, the problem is solved

online in a decentralized manner. While these optimization approaches can yield

significant performance improvements, coordinating both traffic lights and vehicles

can be computationally prohibitive, especially as we consider more agents and larger

networks.

In this chapter we propose the use of decentralized gradient-based multi-agent

coordination of both CAVs and traffic lights. As such, the main contributions of

this work are:

· A hierarchical control architecture that allows vehicles and traffic lights to

negotiate their timing in a decentralized and computationally efficient manner,

through the use of edge tension functions (ETF), while considering feasibility

and safety constraints.

· A candidate ETF that drives the agents to desirable behaviours.

· Simulation studies that show the ability of the strategy to adapt to varying
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traffic demands, different levels of CAV penetration, and different intersection

geometries.

4.2 Proposed Strategy

In this section we present our proposed solution to the problem of controlling

CAVs and smart traffic lights at single intersections. The approach consists of rep-

resenting both the vehicles and traffic light by their planned time to arrival or time

to switching. The agents then modify their planned timing through a decentralized

gradient-based control law, with suitable bounds on the possible arrival and switch-

ing times. Then, vehicle agents analytically determine an acceleration-minimizing

input trajectory, based on their current planned time to arrival. This trajectory is

implemented if it is deemed safe, otherwise the vehicle saturates its input based on

safe inter-vehicle spacing and traffic light constraints.

4.2.1 Problem Formulation

We consider an intersection controlled by a traffic light, with R lanes feeding

into it. We assume that there exists a control zone that extends a distance L from

the stop line along the length of each lane.

4.2.1.1 Traffic Light Model

We assume that the actuated traffic light follows a predetermined sequence of

P phases, where each phase is built by grouping a subset of compatible movements
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at the intersection. The traffic light switches from flashing green for a given phase

group to the next in the sequence at specific time instants. At all time instants k, we

consider the set L(k) of all of the traffic light’s desired times till switching (DTTS)

over the upcoming considered time horizon TH . Each DTTS i ∈ L(k) is given by

τi(k). When τi(k) reaches 0 the traffic light switches from one phase to the next.

More specifically, the light switches to yellow for the current phase, and after a set

amount of yellow time τyellow, the light switches to enable the next phase group in

the sequence. The evolution of τi(k) is given by:

τi(k + 1) = STi(k+1)(τi(k)− h+ ui(k)) (4.1)

where h is the simulation time step, ui(k) is a control input the traffic light can

implement to modify its planned timings, and STi(τ) is a saturation function onto

the domain Ti(k) = [τi,min(k), τi,max(k)]:

STi(k)(τ) =



τi,min(k) τ < τi,min(k)

τ τ ∈ [τi,min(k), τi,max(k)]

τi,max(k) τ > τi,max(k)

(4.2)

The bounds on each DTTS are set so that they do not cross each other, and the

sequence of phases is preserved. That is, τi,min(k) = τi−1(k) and τi,max(k) = τi+1(k),

where the i − 1 and i + 1 indices refer to the desired times till switching that are

right before and after the ith DTTS.

When the DTTS reaches 0, it is removed from L. Moreover, a new DTTS is
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spawned at τi(k) = TH(k) when the latest planned switch reaches a minimum green

interval Gmin,p, associated with the intended phase p at TH .

4.2.1.2 Vehicle Model

At any time instant k, we consider the set V(k) of vehicles approaching the

intersection. Each agent i ∈ V is modeled as a discrete second-order dynamic system

with synchronous time step h, so that its longitudinal dynamics are given by:

si(k + 1) = si(k) + hvi(k) +
1

2
h2ai(k)

vi(k + 1) = vi(k) + hai(k)

(4.3)

where si is the vehicle’s station distance along its lane, vi is its longitudinal speed,

and ai its longitudinal acceleration. Note that the double integrator model used here

can be obtained from a more traditional longitudinal point-mass vehicle dynamics

model through feedback linearization. To represent constraints imposed by the road

and the vehicle’s powertrain, we assume bounds on velocity and acceleration, which

for simplicity are set to be the same for all vehicles:

vmin ≤ vi(k) ≤ vmax

amin ≤ ai(k) ≤ amax

(4.4)

Moreover, we can define a bound on acceleration based on a safe following

headway with the vehicle in front (or the stop line of the intersection, given a red

light). Indeed, to avoid rear-end collisions and stop at red lights a vehicle’s velocity
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at the next time step is bounded above by some safe velocity vi,b(k + 1), which can

be a function of the current velocity of the vehicle, and the velocity and position of

its leader (in the case of a red light, the leader can be treated as a virtual vehicle

stopped at the intersection stop line). As such the acceleration must satisfy:

ai(k) ≤ 1

h
(vi,b(k + 1)− vi(k)) (4.5)

In traditional car following models the vehicles follow a free flow acceleration

control law:

ai,ff (k) =
1

h
(vi,a(k + 1)− vi(k)) (4.6)

From equations (4.3) through (4.6) we can simulate human driven vehicles.

Indeed, we can use the Gipps car following model to obtain the expressions for vi,b

and vi,a.

4.2.1.3 Multi-Agent Network Model

We assume that both the vehicles and the traffic lights are capable of com-

municating state information with each other, thereby forming a network of inter-

connected agents. This network can be represented by an undirected graph where

each node represents an agent and each edge represents the ability of neighboring

agents to exchange state information. An example of the topology of the network

is shown in Fig. 4.1. By assumption, the vehicles traveling down the same lane are

connected, and each vehicle is connected to the traffic light.
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Figure 4.1: Illustrative example of graph connectivity

We represent both types of agents, vehicles and traffic lights, by a virtual

state variable that governs when vehicles arrive at the intersection and when the

light changes phases. For the traffic light we use the previously defined desired time

till switching (DTTS). The traffic light can have multiple switches planned in the

considered time horizon. To account for this, we think of each DTTS as a separate

agent. For the vehicles, the virtual state is a desired time till arrival (DTTA), also

denoted by τi(k), but for i ∈ V . The DTTA evolution of the vehicles is governed by

the same dynamics as that of the traffic light’s DTTS, which is given by (4.1). In

the case of the vehicles, the bounds in (4.2) are chosen to maintain feasible arrival

times and they are expressed in subsection 4.2.3.2.

4.2.1.4 Problem Statement

Given the above model, the problem at hand consists of the following. First,

we must define the coordinating control input ui(k) that drives the DTTA and

DTTS of the agents to a suitable configuration where vehicles are planning to arrive

during green windows. Second, we must define the arrival time bounds to ensure
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the agents can actually achieve the planned timings. Finally, we must define the

acceleration control input ai(k) of each vehicle to place it at the intersection at the

planned arrival time while maintaining safety and feasibility constraint of (4.4) and

(4.5).

4.2.2 Gradient-Based Multi-agent Control

Multi-agent systems can be controlled by defining pairwise, positive semi-

definite potential functions between connected agents, called edge tension functions

(ETFs), that are locally defined with respect to the states of the ego agent and

its neighbors. The agents then set their control input along the direction of the

negative gradient of their total potential with respect to their respective states.

This approach is commonly used in navigation and formation control problems [61].

The driving input ui(k) of (4.1) is then given by the negative gradient of a potential

function defined by the local ETFs Vij:

ui(k) =
∑
j∈Ni

− ∂

∂τi
Vij(τi, τj) (4.7)

where Ni is the set of neighbors of agent i in the multi-agent network. To drive the

arrival and switching times of the agents we choose a logistic function as our ETF

Vij:

Vij =
1

1 + e−κij(τi−τj)
(4.8)

The logistic function is a suitable candidate for two main reasons. First, by
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changing the growth-rate parameter κij from positive to negative, we change the

direction of the force experienced by the ego agent from its neighbor. As such we

can have interactions that accelerate or decelerate a given agent based on the relative

DTTA/DTTS of the pair of agents. Second, the logistic function flattens out away

from its midpoint, which in (4.8) corresponds to the arrival/switching time of the

ego agent’s neighbor. This means that agents further apart in the planned time

domain do not interact with each other strongly. As such, the proposed approach

leads to local solutions for the coordination problem.

The sign of the rate parameter κij in the above equation determines whether

the DTTA/DTTS of agent i is hastened or delayed by its interaction with agent

j. The magnitude of κij determines the interval of planned time in which inter-

actions are non-negligible, with larger values of κij resulting in steeper and more

localized transitions of the ETF. We choose this parameter accordingly to achieve

the following:

· The DTTA of Vehicles are hastened by traffic light switches to red (to catch an

earlier green window) and delayed otherwise (to catch a later green window).

Given the localized nature of the ETF this ”pulls” a vehicle’s arrival time

towards the closest green window.

· The DTTA of vehicles are delayed by preceding vehicles and hastened by

following vehicles. This maintains headways between vehicles in a queue.

· Traffic light switching times are delayed by earlier switching times, and has-

tened by later ones.
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To formally characterize the sign of κij we first define the following set. For

all i ∈ V (i.e., for all vehicle agents) let Gi ⊆ Ni∩L be the set of traffic light agents,

neighbors of vehicle i, that correspond to a switch to green for i. Then κij, and

specifically its sign, is defined in Table 4.1.

Agent j
j ∈ V j ∈ L

A
ge

n
t
i i ∈ V sj < si κij = κ1 j ∈ Gi κij = κ3

sj > si κij = −κ2 j /∈ Gi κij = −κ4

i ∈ L i ∈ Gj κij = κ5 τi < τj κij = κ7

i /∈ Gj κij = −κ6 τi > τj κij = −κ8

Table 4.1: Sign of ETF growth or decay rate κij based on the type of agents i and
j and their relative timing or position

In Table 4.1, κ`, ` = 1, 2, . . ., are the values of the growth or decay rate which

determine the steepness of the transition in the logistic function. Lower values of κ`

correspond to wider intervals of interaction between agents. We define the interval

of interaction ∆τα, as the interval around τj beyond which the ETF is smaller than

α or larger than 1 − α, where α is a user-defined parameter that indicates what

is considered a non-neglible interaction (we can use α = 0.01). From (4.8), we

can derive the relationship between the growth/decay rate κij and the interaction

interval ∆τα:

κij =
1

∆τα
ln

α

1− α
(4.9)

To illustrate how the use of the logistic function as an ETF drives the DTTA/DTTS

of the agents to a desirable configuration, we show an example scenario in Fig. 4.2.

There are two vehicles approaching a junction from two conflicting directions and

there is a single planned traffic light switch in the considered time horizon. In the
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top plot we see a snapshot of the current configuration at at particular time instant

where the black dot represents the DTTS of the light, while the blue and red dots

represent the DTTA of each vehicle. At this particular time instant the red vehicle

plans to arrive in a green window and the blue vehicle plans to arrive in a red win-

dow. Given these relative timings, from Table 4.1 we can then find the parameters

that define whether the ETFs between the agents have positive or negative gradi-

ents. From the top, the second, third, and bottom plots show the ETFs for the

light, the blue vehicle, and the red vehicle, respectively. Since there are no other

vehicles on each road, the blue and red vehicles are only influenced by the light, so

their ETFs are given by a single line. The light, or black agent, is communicating

with both vehicles, so its ETF is the sum of two curves (in black). Looking at the

shape of the ETFs, the gradient-descent control law (4.7) implies that the black

and red dot are pushed to the right and the blue dot is pushed to the left. In fact,

for the light, we can see the aggregate effect of both edge tensions with the vehicle

neighbors produces a valley that the DTTS will fall into through gradient descent

control. As the agents coordinate, once that configuration is reached, both vehicles

will be planning to arrive within a green window.

Remark In the previous chapter, timing coordination occurs through the

Kuramoto model. However, as we mention in the introduction of this chapter, a

Kuramoto system can be thought of as a gradient-based system. The corresponding

ETF would be:
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Figure 4.2: Illustrative example of proposed Edge Tension Functions (ETF)

Vij = ωiθi + sin2

(
θj − θi

2

)
(4.10)

Given this similarity, we note how the proposed framework of this dissertation,

can admit different types of coordinating strategies by encoding them into different

ETFs.

4.2.3 Longitudinal Vehicle Control

While traffic lights can change their planned switching times instantaneously,

vehicles must consider their dynamics when modifying their planned arrival times.

A suitable speed profile must be followed for the vehicle to actually reach the inter-

section at the planned arrival time. Furthermore, because of constraints on speeds

and accelerations of the vehicles, not all arrival times will be feasible for each of
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them. As such, a vehicle must constrain how much it modifies its DTTA in the con-

sensus layer of the algorithm. In this subsection, we develop an optimal controller

for planned arrival time tracking and we determine the corresponding bounds on

planned arrival time that the optimal tracker imposes on the multi-agent consensus

layer.

4.2.3.1 Optimal Arrival Time Tracking

The negotiated arrival time can be tracked by the vehicles using a simple

optimal controller. At any time instant k, the nominal acceleration is the outcome

of the following optimal control problem.

a∗i (t) = argmin
ai(ξ=0)

∫ τi(t)

0

1

2
ai(ξ)

2dξ (4.11)

Subject to:

ṡi(ξ) = −vi(ξ)

v̇i(ξ) = ai(ξ)

si(ξ = τi(t)) = 0

si(ξ = 0) = si(k)

vi(ξ = 0) = vi(k)

(4.12)

Following the work presented in [62], the above optimization problem can be

solved analytically by defining co-states λsi and λvi , constructing the Hamiltonian,

and imposing necessary conditions for optimality.

The Hamiltonian is:
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H =
1

2
ai(ξ)

2 − λsi (ξ)vi(ξ) + λvi (ξ)ai(ξ) ∀ξ ∈ [0, τi] (4.13)

From the input stationarity condition we have that the optimal acceleration

a∗i follows:

∂

∂ai
H = a∗i (ξ) + λvi (ξ) = 0

∴ a∗i (ξ) = −λvi (ξ)
(4.14)

From the co-state equations we can solve for the co-states in terms of integra-

tion constants c1 and c2:

λ̇si (ξ) = − ∂

∂si
H = 0

λ̇vi (ξ) = − ∂

∂vi
H = λsi

∴ λsi (ξ) = −c1

∴ λvi (ξ) = −c1ξ − c2 ∀ξ ∈ [0, τi]

(4.15)

It follows from (4.14) and (4.15), as well as from further integration of accel-

eration and position, that the optimal trajectories are:
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a∗i (ξ) = c1ξ + c2

v∗i (ξ) =
1

2
c1ξ

2 + c2ξ + c3

s∗i (ξ) = −1

6
c1ξ

3 − 1

2
c2ξ

2 − c3ξ + c4

(4.16)

We can solve for the integration constants by enforcing the boundary condi-

tions: s∗i (0) = si(t), v
∗
i (0) = si(t), s

∗
i (τi(t)) = 0 and −λvi (τi(t)) = 0.

c1 = 3
c3τi(t)− c4

τi(t)3

c2 = −c1τi(t)

c3 = vi(t)

c4 = si(t)

(4.17)

Finally, we can get the nominal acceleration input as the value of a∗i at ξ = 0,

which from (4.16) and (4.17) yields :

a∗i (t) = 3
si(t)− vi(t)τi(t)

τi(t)2
(4.18)

4.2.3.2 Additional Constraints

The above optimal control problem does not consider the constraints (4.4) and

(4.5). We can guarantee that these constraints are satisfied by imposing suitable

bounds τi,min(k) and τi,max(k), and by saturating the output of the optimal controller
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according to (4.5).

First, let’s consider how bounds on DTTA can guarantee that the constraints

(4.4) are satisfied. From the structure of the solution to the unconstrained problem

of the previous section, we can derive an a priori range of values of DTTA τi(k)

for which acceleration and speed constraints (4.4) are satisfied. In [62] a detailed

derivation of this range is presented. Given the current state of the vehicle and its

bounds on speed and acceleration, the minimum and maximum DTTA are:

τi,min(k) = max{ 3si(k)

vi(k) + 2vmax
,

−3vi(k) +
√

9vi(k)2 + 12aminsi(k)

2amin
}

τi,max(k) = min{ 3si(k)

vi(k) + 2vmin
,

−3vi(k) +
√

9vi(k)2 + 12amaxsi(k)

2amax
}

(4.19)

We use these values as the bounds of the saturation function in (4.2). By doing

this, the solution to optimization problem (4.11) will adhere to constraints (4.4).

Finally, the ideal acceleration from (4.11) is compared to the acceleration

limit corresponding to safe inter-vehicle spacing in (4.5). If the ideal acceleration is

larger, the vehicle is forced to apply the safe vehicle acceleration from (4.5). For the

model of vi,b in (4.5), we use the Gipps car following model [52] which is designed

to maintain a safe headway from the preceding vehicle. When this acceleration is

used, collision safety-related constraints override the solution to the vehicle speed

trajectory optimization problem, and vehicle arrival at the upcoming intersection

is delayed. Since coordination happens at every time step, this delay is eventually
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Figure 4.3: Example intersection with three lanes feeding the junction and a traffic
controller

taken into account in the coordination layer.

4.3 Simulation Results

To showcase the strengths of the proposed strategy we simulate it under three

different scenarios. The first scenario is a simple two-way intersection scenario,

where the goal is to compare the performance with that of fixed time traffic lights

and human driven vehicles for different saturation ratios. The second considers a

three-way T-Junction scenario where the goal is to consider multiple levels of CAV

penetration rates to show how the strategy has the flexibility to integrate with legacy

technology. Finally, we consider a four-f way intersection, where we simulate changes

and asymmetries in the traffic volume to showcase the ability of the approach to

adapt to changing traffic conditions.
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4.3.1 Simulation Parameters

The parameters κ` for our logistic functions are chosen according to a desired

interaction interval between agents as discussed in the previous section. The vehicle-

to-vehicle parameters κ1 and κ2 are set to 3. The vehicle-to-light parameters κ3 and

κ4 are set to 1. The light-to-vehicle parameters κ5 and κ6 are set to 2. Finally the

light-to-light parameters κ7 and κ8 are set to 2. For the minimum green window

Gmin,p we use 5 seconds and for the look-ahead time horizon TH we use 30 seconds.

As such, the traffic light adds a new DTTS agent switch, with τi = 30s, when its

latest DTTS reaches 25s.

4.3.2 Baseline

For the baseline simulation we consider human drivers plus fixed time traffic

lights at the intersection. The human drivers are modeled using the Gipps car follow-

ing model. The timing of the traffic light is determined using Webster’s method [63].

4.3.3 Measures of Effectiveness

We analyze the results of the simulations based on two metrics: fuel consump-

tion and delay. Fuel consumption, in grams per kilometer, is computed for each

vehicle using longitudinal dynamics and an engine map for passenger cars. The

delay, in seconds, corresponds to the difference between the time the vehicle stays in

the network and the time it would have taken had it travelled at the desired speed.

We set the desired speed for all vehicles to be 10m/s for all simulations. Delay and
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Saturation Ratio: 0.644 0.75 0.84 0.92 0.987

Fuel Consumption: -12.61% -9.40% -7.7% -7.1% 3.08%
Delay: -22.15% -22.81% -27.1% -30.7% -13.45%

Table 4.2: Changes in average fuel consumption and delay, from Baseline to Coor-
dinated strategy, for Two-Way Junction simulation

fuel consumption are then averaged over all vehicles.

4.3.4 Case Study 1: Two-Way Junction and Saturation Rate Study

The first scenario replicates the configuration studied in [63]. It consists of one

intersection of two, singled-lane, one way roads. Assuming a saturation flow rate

of 1800 vehicles/hr/lane, we simulate the scenario for varying levels of saturation

ratio, with balanced flow rates in each incoming lane. For example, a saturation

ratio of 0.644 corresponds to a balanced input flow rate of 580 vehicles/hr in each

lane. The simulation is run for 30 minutes.

In Table 4.2 we show the obtained changes in average fuel consumption and

delay when comparing the baseline to the proposed strategy. We can see that our

approach saves fuel and time for all but the most saturated scenario, where delay

is reduced, but fuel consumption is not. In [63], comparisons between a similar

baseline and different adaptive traffic light schemes for this scenario show savings

in delay of 40% to 50%. This indicates that, while our approach has delay benefits

as is, further gains can potentially be achieved, perhaps through better tuning of

parameters.
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4.3.5 Case Study 2: Three-Way Junction and CAV Penetration Study

In this study we simulate our approach for a three-way scenario (see Fig. 4.3),

with varying numbers of human-driven cars compared to CAVs following the pro-

posed strategy. For this simulation we assume that human-driven vehicles do not

keep an arrival time state that is negotiated among other vehicles and the traffic

light. However, we do assume that controlled agents, both smart cars and traffic

lights, can sense the positions and velocities of human-driven vehicles. The con-

nected agents then estimate the desired arrival time of unconnected vehicles vi,a

using the free flow Gipps model from (4.6) integrated forward in time.

Figure 4.4 shows the results of this connected vehicle penetration rate study.

All simulations are performed using the same vehicle injection times, which corre-

sponds to an arrival rate of 500 vehicles/hour, for a saturation ratio of 0.83. We

can see that fuel consumption decreases steadily with the relative number of con-

nected vehicles. The delay exhibits a more surprising behaviour, with increases in

connectivity of the fleet not necessarily translating into less delay till roughly 50%

penetration, when the trend reverses. This suggests the possibility that having more

cars modify their arrival time along with the traffic light is only advantageous if some

critical percentage of vehicles is doing so.
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Figure 4.4: Fuel consumption and delay for T-Junction for different levels of CAV
penetration rates

4.3.6 Case Study 3: Four-Way Junction and Varying Input Flow

Rate Study

In this study, we consider a four-way intersection, with 8 incoming lanes

grouped into 4 phases. Compatible left turns are grouped into phases 1 and 3,

and straight and right turns in each direction (North-South and East-West) are

grouped into phases 2 and 4. We simulate our strategy and the baseline for a sat-

uration ratio of 0.667, which corresponds to a balanced flow of 300 vehicles/hr in

each lane. However, we simulate two different varying input profiles for the duration

of the simulation. The first, Arrival Profile I, starts with a balanced 300 vehicles/h

in all lanes for 1000 seconds, then switches to an asymmetric 200 vehicles/hr in the

North-South direction versus 400 vehicles/h in the East-West direction for the next

1000 seconds. Finally, it reverses the flow to 400 vehicles/hr in the North-South

direction versus 200 in East-West direction for the last 1000 seconds. Arrival Profile
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II follows the same pattern, starting at a balanced 300 vehicles/h, but then alternat-

ing between 500 versus 100 vehicles/s over the following 2000 seconds. The baseline

traffic light timing is optimized for the first 1000 seconds of simulation, where the

flow is balanced. The results are shown in Table ??. We can see that in both cases

our strategy saves fuel and delay.

Changing Traffic Volume: Arrival Profile I Arrival Profile II

Average Fuel Consumtpion (g/km)

Webster Fixed Opt. 39.4 46.2
Smart Lights, 100%CAV 32.9 (-16.5%) 40.9 (-11.5%)

Average Delay (s/veh)

Webster Fixed Opt. 34.5 70.5
Smart Lights, 100%CAV 23.0 (-33.3%) 53.7 (-23.9%)

Table 4.3: Results of Four-Way Intersection simulation with time varying arrival
processes

4.4 Conclusion

In this chapter we propose a decentralized coordinating control strategy for

both connected vehicles and traffic lights (agents) in an urban intersection. The

framework consists of defining a potential energy field based on the logistic func-

tion that agents use to change their planned arrival/switching times. The potential

function encodes suitable repulsion and attraction forces between these planned time

states that drive the system into a desirable configuration. We define an optimal

tracking controller for the vehicles to reach the intersection at the negotiated time

and we use the characteristics of this controller to properly bound the coordinating

upper layer of the algorithm. By using these bounds we guarantee that the nego-
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tiated arrival time can be tracked by the unconstrained optimal controller, which

maintains the computational efficiency of the approach. We show that the proposed

framework saves both time and fuel compared to fixed time traffic light control and

that it does so for varying levels of autonomous vehicle penetration and saturation

ratio.
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Chapter 5: Vehicle and Traffic Light Control Through Gradient-Based

Coordination and Control Barrier Function Safety Reg-

ulation

5.1 Introduction

5.1.1 Motivation

1 So far, we have developed a control framework that coordinates vehicles and

traffic lights, either by negotiating their planned timing directly or indirectly through

their phases. The coordinated timing is then tracked by a trajectory planning con-

troller. Safety and feasibility constraints have been considered in two different ways

in the previous two chapters. In chapter 3, the Kuramoto-based strategy relied on

the assumption that vehicles knew the entire planned trajectory of their leaders, this

could happen either by communicating it, or by computing it themselves. Given

the full trajectory of the leader, the trajectory planning algorithm would account

for actuation bounds and safe car following requirements as explicit constraints of

a numerical optimization problem. Notice, that this requires either heavy com-

1The work presented in this chapter is adapted from [64], under review in Journal of Dynamic
Systems, Measurement and Control , (2021)
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putational or connectivity capabilities. In chapter 4, the logistic-function based

coordinator accounted for safety and feasibility constraints as an added saturation

layer that overrides the acceleration command of vehicles. These ad-hoc constraints

on the acceleration of the vehicles and on the planned arrival times are an interesting

way of ensuring safety without increasing the complexity of the trajectory planner.

However, they are implemented using the empirical Gipps car following model, and

they do not account for the safety concerns regarding the traffic light changing its

switching times in such a way that vehicles are forced to arrive on red. In this

chapter we derive a safety regulator for both vehicles and traffic light agents within

our coordinating control framework based on the use of control barrier functions.

The work in this chapter builds on existing research on safe-set nonlinear

control methods to tackle the intelligent intersection management problem. Here, we

integrate the use of the different approaches introduced in the previous chapter with

control barrier functions to present a comprehensive control architecture that can

flexibly coordinate the timing of both vehicles and traffic lights, while maintaining

safety and feasibility.

Recall from Chapter 1 that a rich body of work explores the control of CAVs

approaching unsignalized intersections. In [23, 25], comprehensive reviews of such

approaches are presented. Like the approach presented in chapter 3, a common issue

encountered by most of this work lies in the computational complexity and connec-

tivity requirements of optimally tracking a given arrival time while considering other

vehicles. Indeed, the work presented in [62] explores in detail the analytical solution

to the arrival time tracking trajectory planning problem, and shows the difficulty of
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finding closed form solutions when considering all safety constraints. An alternative

approach of particular relevance to the work presented here consists of generating

a controller based primarily on safety considerations. For example, in [65] control

barrier functions (CBFs) are used to synthesize a safety-critical decentralized con-

trol strategy for the vehicle merging problem, which is similar to the intelligent

intersection management problem. The work is further extended in [66] to include

a reference velocity that is explicitly related to coordinated desired arrival times.

5.1.2 Chapter Contributions

In this chapter we consider the decentralized control of both vehicles and

traffic lights. Moreover, we are interested in the predictive control of these agents

through the use of a timing state that governs when vehicles plan to arrive at

the intersection and when the lights plan to switch. Indeed, such a control strategy

continuously modifies not only the acceleration of the vehicles, but the planned state

trajectories into the future of both the vehicles and the lights. As we discussed in the

previous paragraphs, considering safety and feasibility constraints over a planning

time horizon becomes computationally prohibitive. To address this issue, in this

chapter, we make use of safe-sets and control barrier functions (CBFs) to generate a

safety regulator that modifies a nominal controller that negotiates arrival times and

plans acceleration trajectories (without explicitly considering safety and feasibility

constraints). The main differences between this and previous contributions that

use CBFs (i.e [65, 66]) are the inclusion of traffic lights and the consideration of an
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explicit state variable that governs the arrival times of the vehicles.

In the previous chapter we explore the coordinating and tracking control strate-

gies that we use here as nominal controllers. There, coordination of arrival times

is performed using gradient-based multi-agent methods, and arrival tracking is per-

formed using analytical unconstrained optimal trajectory planning. In this previous

work, car following safety constraints are implemented based on the Gipps model

overriding the nominal acceleration commands, and actuation constraints are im-

plemented by saturating the range of allowable arrival times of the vehicles. The

interactions between different safety and feasibility constraints, and between traffic

lights and vehicles were not formally analyzed. Thus, one of the main contributions

of this work is the derivation of a safety regulating controller in conjunction with

previously explored coordinating strategies.

5.1.3 Outline

The rest of the chapter is organized as follows. In Section 2 we describe

the system and its dynamics. In Section 3 we give an overview of the proposed

strategy. In Section 4 we define our nominal controllers. In Section 5 we derive the

safety regulator which modifies the nominal control signals. Finally, in Section 6 we

evaluate our controller in simulation.
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5.2 Problem Formulation

The system consists of a multi-agent fleet of vehicles inside a control zone

around a traffic intersection, plus the traffic light servicing the different flows at

the intersection. The control zone is given by a maximum distance L from the

intersection stop lines, along the lengths of the roads approaching it. In this sec-

tion, we define the states, control inputs, and dynamics of these agents, as well as

assumptions about their connectivity, autonomy and allowed behaviour.

We assume that once the vehicles enter the control zone, they can no longer

change lanes. With regards to connectivity, we assume that all agents exchange

their current state information with each other according to the following network

topology. Vehicles in the same road can communicate with each other and with

the upcoming traffic light. The traffic light, in turn, can exchange information with

all vehicles approaching from all roads. As such, we can represent the network of

interconnected agents as nodes in a bi-directional graph, and their connections as

edges. We call Ni the set of neighbors of agent i.

5.2.1 Vehicle Dynamics

We consider the set V(t) of all vehicle agents currently approaching the inter-

section. We assume the ith vehicle’s state is given by its distance to the intersection

si, its speed vi, and its current planned desired time till arrival (DTTA) τi. The

vehicle can control its acceleration ai, and can change its DTTA by an added rate

ui. The dynamics of the vehicle are then:
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ṡi(t) = −vi(t)

v̇i(t) = ai(t)

τ̇i(t) = −1 + ui(t)

(5.1)

The underlying assumption of using this longitudinal vehicle model is that

lane keeping and powertrain controllers can keep the vehicle in its lane and meet

the acceleration command used in Eqn. (5.1). We show the sate of three vehicles

approaching a three way intersection in Fig. 5.1. The set V here contains agents

1, 2 and 3. In the spatial representation we can see the current distance to the

intersection for each car, and in the timing domain we can see their planned arrival

times.

5.2.2 Traffic Light Dynamics

The traffic light is modeled by its desired times till switching (DTTS), where

each switch is considered its own independent agent for the purposes of the multi-

agent control strategy described in the following section. We therefore consider the

set L(t) of all upcoming planned DTTS, governed by the same dynamics as the

DTTA of the vehicles:

τ̇i(t) = −1 + ui(t) (5.2)
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We assume here that the actuated lights follow a predetermined sequence of

phases. If the intersection is organized around compatible movements grouped into

P phases, we can index each phase from 1 to P , and assume that transitions happen

in ascending order. Furthermore we define a minimum fixed yellow time Tyellow that

separates the transition between phases. When the leading DTTS reaches Tyellow,

the light switches from green to yellow for the current phase. When it reaches 0 the

light switches from yellow to red for the current phase, and from red to green for

the next phase in the sequence. We assume that the traffic light plans some time

horizon TH into the future, and that new planned traffic light switching events only

spawn at TH.

We illustrate the state of a traffic light controlling three flows in Fig. 5.1. In

this example, agents 4, 5 and 6 belong to L(t). In the spatial domain, we can only

see the current state of the light, which is servicing phase 1 at this time. In the

timing domain, we can see the planned switches of the light over the coming TH

seconds.

5.3 Proposed Strategy

Given the above system of interconnected vehicle and traffic light agents, our

objective is to synthesise a control strategy that generates the inputs ai and ui for

all agents. Compared to human-driven and fixed-time traffic light control strategies,

the controller should reduce the energy and delay incurred by having to stop at the

light, while maintaining safety and feasibility constraints.

96



Figure 5.1: Vehicles and Traffic Light represented in the spatial and timing domain.

The proposed approach consists of having the agents continuously negotiate

their timing by changing their DTTA/S. Negotiation is done through decentralized

multi-agent methods; here, we use a gradient-based strategy. Then, a decentralized

safety regulator for each agent considers constraints on inter-vehicle spacing, vehicles

arriving on green periods, and consistent traffic light timings.

For each vehicle agent the proposed control strategy is illustrated in Fig. 5.2.

A trajectory planning controller uses the current position, speed and DTTA of the
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vehicle to compute the nominal acceleration a∗i that would place the vehicle at the

intersection at the current DTTA, assuming the underlying safety constraints are

satisfied. Simultaneously, a coordinating controller uses the communicated DTTA/S

information from neighboring agents to determine the nominal change in timing u∗i ,

assuming feasibility of the current DTTA is satisfied. Finally, a quadratic program

(QP) controller minimizes the deviation from the nominal control input under safety

and feasibility barrier certificate constraints.

For the traffic light the proposed control strategy is illustrated in Fig. 5.3. The

approach is similar to that of the vehicles with a few key differences. The traffic light

controller does not need a tracking algorithm, since there are no physical constraints

on the rate at which it can change its DTTS. Furthermore, while each vehicle only

controls its own DTTA, the traffic light controls all of its planned switching times

together.

5.4 Nominal Controller

The nominal controller aims to coordinate the vehicles and lights by modifying

their timings, and tracking the desired arrival times through trajectory planning

optimal control, assuming that the underlying safety regulator will handle the safety

and feasibility constraints. We denote the nominal control signals as u∗i and a∗i .

Since the main goal of this chapter is the derivation of the safety regulator, here

we use the same coordinating potential function and the same tracking controller

presented in the previous chapter. First, the ETFs Vij between pairs of connected
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Figure 5.2: Control Architecture for a vehicle agent

agents i and j are defined using the logistic function:

Vij =
Kij

1 + e−κij(τi−τj)
(5.3)

Second, the nominal acceleration control input that aims to place the vehicle

at the intersection in τi(t) seconds is:

a∗i (t) = 3
si(t)− vi(t)τi(t)

τi(t)2
(5.4)

5.5 Safety Regulator

Given the nominal acceleration and coordinating input, the safety regulator

will modify this input to maintain safety and feasibility constraints. To do this,
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Figure 5.3: Control Architecture for the traffic light

we make use of safety-critical control methods. Specifically, we seek the forward

invariance of a safe set in the state space by the defining control barrier functions

and enforcing their induced barrier certificates.

5.5.1 Background: Control Barrier Functions

The control barrier function method has been recently developed for safety-

critical control applications, and a comprehensive introduction to the method can be

found in [67]. Here, we recall the main definitions and theorems from [67] required

in the formulation of our safety regulator.

We start by defining a control affine system, with states x ∈ D ⊂ Rn, input

u ∈ U ⊂ Rm, and locally Lipschitz dynamics f : Rn → Rn and g: Rn → Rn×m:

ẋ = f(x) + g(x)u (5.5)
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Definition 1 A set C is forward invariant if for every initial condition x(0) = x0 ∈

C, x(t) ∈ C for all time t.

Definition 2 Set C is the superlevel set of a continuously differentiable function h:

D ⊂ Rn → R if:

C = {x ∈ D ⊂ Rn : h(x) ≥ 0} (5.6)

Definition 3 An extended class K∞ function is a strictly increasing function κ:

R→ R with κ(0) = 0.

Definition 4 The continuously differentiable function h: D ⊂ Rn → R is a control

barrier function (CBF) if there exists an extended class K∞ function κ such that for

the system (5.5):

sup
u∈U

[
Lfh(x) + Lgh(x)Tu + κ(h(x))

]
≥ 0 (5.7)

for all x ∈ D

The above definition uses the Lie derivative formalism to express the time

derivative of the function h. Indeed, ḣ(x,u) = Lfh(x) + Lgh(x)Tu.

Intuitively, the condition says that, if there exists some input u and some

extended class K∞ function κ such that ḣ(x,u) ≥ −κ(h(x)), we call h a con-

trol barrier function. This is useful because applying any input u that makes
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ḣ(x,u) ≥ −κ(h(x)) will render the super-level set of h forward invariant. In fact,

this constitutes the main theorem involving control barrier functions.

Theorem 1 ( from [67]) Let C ⊂ R be the superlevel set of a continuously differ-

entiable function h: D ⊂ Rn → R. If h is a control barrier function and ∇xh(x) 6= 0

for all x ∈ ∂C, then any Lipschitz continuous controller u(x) ∈ Kcbf (x) such that:

Kcbf (x) = {u ∈ U : Lfh(x) + Lgh(x)Tu + κ(h(x)) ≥ 0} (5.8)

renders the set C forward invariant and asymptotically stable in D

The constraints on the input that define the set of allowable controllers are

affine in the input. Given this property, we can synthesize a safe and computationally

efficient controller using a linear or quadratic program, as shown in [68]. Given

a nominal controller u∗(x) that is not guaranteed to be safe, but that aims to

achieve some other control objectives, a quadratic programming (QP) problem can

be designed to minimize the deviation from the nominal controller subject to the

CBF constraint on the input:

u(x) = argmin
u∈U

1

2
||u(x)− u∗(x)||22

Subject to:

Lfh(x) + Lgh(x)Tu + κ(h(x)) ≥ 0

(5.9)

The solution to this problem is shown to be Lipschitz continuous in [68]. When

we have multiple constraints, or other constraints on the input, we can define candi-

date CBFs and formulate the above QP problem with one input constraint for each
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candidate CBF. In this case, the candidate CBFs would be valid CBFs if the QP

problem has a solution for all x ∈ D.

In fact, there is another theorem that is helpful in generating multiple CBFs

that are valid in the presence of each other, of other input constraints, or on higher

relative degree dynamics. The idea consists of synthesizing CBFs from an initial

candidate that may not be a valid CBF in the desired domain, plus a nominal

controller that satisfies other input constraints. In [67], the candidate function is

called a performance function and is denoted by ρ. The nominal controller is denoted

by β : D → U . The state of the system for any time time t > 0 is xβ(t,x), when it

is initialized at x and input β is applied.

Theorem 2 (from [67]) Let ρ(x) : D → R be a continuously differentiable per-

formance function, β(x) : D → U be a nominal controller such that ẋ(x, β) is

continuously differentiable, and xβ(t,x) be the state of the system at time t when it

is initialized at x and input β is applied. If:

h(x) = inf
t∈[0,∞)

ρ(xβ(t,x)) (5.10)

then:

· h is a CBF;

· C = {x ∈ D : h(x) ≥ 0} ⊆ {x ∈ D : ρ(x) ≥ 0}

· β(x) ∈ Kcbf (x)
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5.5.2 Vehicle Safety and Feasibility Constraints

In the following section we make use of the above theoretical framework to

synthesize a safety regulator for the vehicles. To do this, we introduce constraints

on the states of the vehicles so that they remain in a safe configuration. The con-

straints are then translated into candidate control barrier functions, which are in

turn transformed into barrier certificate constraints on the inputs.

Before defining the candidate barrier functions, we first establish the equiva-

lence between our system (5.1), and the control affine system (5.5). For the vehicle

agents, we use the following definitions for the state and input vectors and their

dynamics:

xi = [si, vi, τi]
T

ui = [ai, ui]
T

f = [−vi, 0,−1]T

g =


0 0

1 0

0 1



(5.11)

In the following, each new candidate CBF we consider is denoted by hq(x), for

q = 1, 2, .., 8 (i.e. we define up to 8 different constraints on the states). Each hq is

associated with its own safe-set Ci,q, and its induced allowable input space Ui,q(x)

as defined in Eq. (5.8). Since the barrier certificates are linear constraints on the

input, we can organize them together into a single matrix inequality A(i)ui ≤ b(i).
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The rows of the inequality define Ui,q(x):

Ui,q(xi) = {ui ∈ R2 : A
(i)
q,1ai + A

(i)
q,2ui ≤ b(i)

q } (5.12)

Once all constraints are considered, any input ui ∈ Ui(xi) will maintain the

vehicle i inside of the safe set, where:

Ui(xi) =

Q⋂
q=0

Ui,q(xi) (5.13)

where Q is the total number of considered constraints.

Constraint 1[Acceleration bounds]

The first feasibility assumption we make for the vehicles is that their acceler-

ation is constrained.

amin,i ≤ ai ≤ amax,i (5.14)

In practice, the values of amin,i and amax,i can be derived from the limitations

of the vehicle’s powertrain and the road.

Note that the acceleration constraints are not constraints on the states, but on

the input, as such no CBF is associated with them. They define an initial admissible

input set Ui,0 ⊂ R2

Ui,0 = {[ai, ui]T ∈ R2 : amin,i ≤ ai ≤ amax,i, ui ∈ R} (5.15)

Constraints 1-2[Speed Limitations] Vehicles are constrained by the speed

105



limits of the road, so that:

vmin ≤ vi ≤ vmax (5.16)

These constraints can be directly turned into candidate control barrier func-

tions

h1(xi) = vi − vmin (5.17)

h2(xi) = vmax − vi (5.18)

To compute the corresponding barrier certificates, we choose a linear extended

class K∞ function κ(hp) = γi,php, where a different value of γ > 0 can be used for

each CBF:

ai + γi,1(vi − vmin) ≥ 0 (5.19)

− ai + γi,2(vmax − vi) ≥ 0 (5.20)

Using the notation of Eq. (5.12) we define the coefficients of the matrix in-

equality:
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A
(i)
1,1 = −1

A
(i)
1,2 = 0

b
(i)
1 = γi,1(vi − vmin)

(5.21)

A
(i)
2,1 = 1

A
(i)
2,2 = 0

b
(i)
2 = γi,2(vmax − vi)

(5.22)

Constraints 3-6[Arrival Time Feasibility]:

The next constraints we consider limit the range of possible desired times

till arrival (DTTAs) τi to those that are consistent with the vehicle’s speed and

acceleration limitations. In fact, we will limit the DTTAs to those whose nominal

acceleration a∗i and speed v∗i trajectories (eq. (4.16)) do not violate acceleration and

speed constraints (eqs. (5.14) and (5.16)).

From Eq. (4.16) we can see that the nominal trajectories for acceleration and

speed are affine and quadratic functions of time respectively. What is more, for

t < ξ < t+ τi, acceleration does not change signs; it starts at its extremum at ξ = t,

then either increases or decreases until a∗i (ξ = t+ τi) = 0. It follows that maximum

or minimum speed occurs at ξ = τi. From this analysis we can find corresponding

constraints on the state space:

amin,i ≤ a∗i (ξ = t) ≤ amax,i (5.23)
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vmin ≤ v∗i (ξ = t+ τi) ≤ vmax (5.24)

Using (4.16) and (4.17), we can rewrite these constraints as candidate CBFs:

h3(xi) = amax,i − 3
si(t)− vi(t)τi(t)

τi(t)2
(5.25)

h4(xi) = 3
si(t)− vi(t)τi(t)

τi(t)2
− amin,i (5.26)

h5(xi) = vi(t) + 3
si(t)− vi(t)τi(t)

2τi(t)
− vmin (5.27)

h6(xi) = vmax − vi(t)− 3
si(t)− vi(t)τi(t)

2τi(t)
(5.28)

Taking time derivatives of hq, we can compute the corresponding coefficients

of Eq. (5.12) :

A
(i)
3,1 =

3

τ
ai

A
(i)
3,2 =

3vi
τ 2
i

− 6(viτi − si)
τ 3
i

b
(i)
3 = −6(viτi − si)

τ 3
i

+ γi,3h3(xi)

(5.29)
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A
(i)
4,1 = −3

τ
ai

A
(i)
4,2 = −3vi

τ 2
i

+
6(viτi − si)

τ 3
i

b
(i)
4 =

6(viτi − si)
τ 3
i

+ γi,4h4(xi)

(5.30)

A
(i)
5,1 =

1

2

A
(i)
5,2 =

3vi
2τi
− 3(viτi − si)

2τ 2
i

b
(i)
5 = −3(viτi − si)

2τ 2
i

+ γi,5h5(xi)

(5.31)

A
(i)
6,1 = −1

2

A
(i)
6,2 = −3vi

2τi
+

3(viτi − si)
2τ 2
i

b
(i)
6 =

3(viτi − si)
2τ 2
i

+ γi,6h6(xi)

(5.32)

Constraint 7[Safe Car Following]: The next constraint we introduce considers

the spacing between the vehicle and its leader. For notation, let l(i) := j if j is the

directly ahead of vehicle i in its lane. We can then write a spacing constraint that

requires vehicles to maintain a minimum distance Dmin between them:

si − sl(i) ≥ Dmin (5.33)

Remark: This is the first constraint to depend on the states of another agent.

In centralized formulations this is not a problem, as the inputs of both agents can be

modified by the regulator. With decentralized regulators, where each vehicle is in

charge of its own safety, the corresponding barrier certificate can be “split” between
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the agents, and still achieve good performance without sacrificing a large area of the

admissible input space. In our case, we take a more conservative approach, where

we assume a worse case input for the other agent.

The corresponding candidate CBF is:

ρ7(xi,xl(i)) = si − sl(i) −Dmin (5.34)

We denote the function using ρ7 instead of h7 because, unlike previous ones,

this constraint presents a more apparent issue when transforming it directly into

a candidate barrier function. Namely, the constraint is on position, and its time

derivative will be input independent (i.e. Lgρ(xi) = 0). This is not necessarily a

problem as long as (5.7) is still satisfied in some domain Di,7, with Ci,7 ⊆ Di,7. In

this case, the certificate is:

ρ̇7(xi,xl(i)) = −vi + vl(i) ≥ −γ7ρ7(xi,xl(i)) (5.35)

However, at the boundary of Ci,7, ρ7(x) = 0, and the above inequality reduces

to vl(i) > vi. This means that the largest possible domain where ρ7 is a valid

CBF will be Di,7 = {xi,xl(i) ∈ R3 : vl(i) ≥ vi}. Intuitively this makes sense: if the

vehicle’s leader is travelling faster than itself and it is more than Dmin distance away,

the vehicle cannot possibly reduce its spacing without first overtaking its leader in

terms of speed and entering a set where the function is no longer a valid CBF.

Therefore, we need a different candidate CBF.

Given the above discussion, when vl(i) ≥ vi no barrier certificate is needed to
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ensure safe car following. For vl(i) ≤ vi, we derive a barrier function by assuming

a nominal controller ai = βi(xi) that represents the maximum braking maneuvers

for both vehicles. The maximum braking maneuver is given by the constraints on

acceleration and the barrier certificate on minimum velocity. Assuming vmin = 0,

this is given by the largest of two values: βi(vi) = max(amin,i,−γi,1vi). We can then

integrate the system forward in time under this control action, and compute the

value of ρ7 into the future. We then define the new candidate barrier function as

the infima in time of ρ7, as explained in Th. 2.

We can characterize the trajectory of ρ7 as it is integrated into the future by

noticing that, since 0 ≤ vl(i) ≤ vi, ρ7 monotonically decreases until both vehicles

are completely stopped. We can therefore find its minimum value by adding the

braking distance of each vehicle to the initial value of ρ7. The braking distance

of vehicle i under βi is based on whether or not it starts at a speed larger than

vi,T = −amin,i

γi,1
, which is the speed at which the braking controller transitions from

from being amin,i to being −γ1vi. After computing the appropriate braking distance

for each vehicle, based on their current speeds relative to vi,T and vl(i),T , we can

define the new candidate CBF:
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h7(xi,xl(i)) =



for vi ≥ vi,T ∧ vl(i) ≥ vl(i),T :

ρ7(xi,xl(i)) +
v2i

2amin,i
−

v2
l(i)

2amin,l(i)

+
amin,i

2γ21
− amin,l(i)

2γ2
1,l(i)

for vi ≥ vi,T ∧ vl(i) < vl(i),T :

ρ7(xi,xl(i)) +
v2i

2amin,i
+

amin,i

2γ21
+

vl(i)
γ1,l(i)

for vi < vi,T ∧ vl(i) < vl(i),T :

ρ7(xi,xl(i)) + vi
γ1

+
vl(i)
γ1,l(i)

(5.36)

where vi,T corresponds to the speed where the maximum deceleration switches from

being amin,i to being −γ1vi. That is, vi,T = −amin,i

γ1
.

Simply put, the above candidate CBF consists of the original CBF h7 plus the

maximum braking distance of each vehicle when applying the maximum deceleration

profile given by the constraints on acceleration and speed. The maximum braking

distance of each vehicle depends on its current velocity. It should be noted that the

above CBF candidate is continuously differentiable with respect to the state; this

can be verified by evaluating h7 and its gradient from both sides at each potential

discontinuity point.

Differentiating in time, and assuming the leader uses its allowed maximum

deceleration we get the barrier certificate constraint on the input.
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A
(i)
7,1 =


− vi
amin,i

if vi ≥ vi,T

1
γi,1

if vi < vi,T

A
(i)
7,2 = 0

b
(i)
7 = −vi + γ7h7(xi,xl(i))

(5.37)

Remark: To get this constraint, we need to assume that the deceleration

parameters of the leader amin,l(i) and γ1,l(i) are known.

Constraint 8[Safe Crossing Constraint]: Finally we introduce a constraint

that guarantees that the vehicle only enters the intersection when it is planning to

arrive on green.

The idea consists of reproducing the previous barrier function h7 but assuming

the leader’s distance to the intersection and speed are both zero, as if there was a

vehicle stopped at the intersection stop line.

h8(xi) =


si −Dmin +

v2i
2amin,i

+
amin,i

2γ21
vi ≥ vi,T

si −Dmin + vi
γ1

vi < vi,T

(5.38)

The induced admissible set of inputs is given by:
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A
(i)
8,1 =


− vi
amin,i

if vi ≥ vi,T

1
γi,1

if vi < vi,T

A
(i)
8,2 = 0

b
(i)
8 = −vi + γi,8h8(xi)

(5.39)

The above constraint is only used when the vehicle is planning to arrive during

a red period of time. Notice then that h8 can only become negative when the vehicle

is planning to arrive on green. When h8 is negative, the vehicle will no longer delay

its DTTA (i.e. ui ≥ 0), and the traffic light will ensure that the light’s planning

does change in such a way that the vehicle is then forced to arrive on red. This is

explained in following sections.

Definition 5 Let G(i) be an indicator function that is 1 when vehicle i is planning

to arrive on green, and 0 when it is planning to arrive on red.

5.5.3 Vehicle QP Safety and Feasibility Regulator

We can now define the QP safety regulator for each vehicle i.
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ui(xi,xj) = argmin
ai,ui

1

2
(ai − a∗i (xi))2 +

1

2
(ui − u∗i (xi,xj))2

Subject to:

amin,i ≤ ai ≤ amax,i

A
(i)
q,1ai + A

(i)
q,2ui ≤ b(i)

q for q = 1, ..., 6

A
(i)
7,1ai + A

(i)
7,2ui ≤ b

(i)
7 if vi > vl(i)

A
(i)
8,1ai + A

(i)
8,2ui ≤ b

(i)
8 if G(i) = 0

ui ≥ 0 if h8(xi) ≤ 0

(5.40)

5.5.4 Traffic Light Safety Constraints

For the traffic light we also establish constraints on the allowable rate with

which the planned switching times can be changed based on candidate CBFs. We

then formulate a safety regulating QP controller that modifies the nominal change

in timing generated by the coordinating gradient-based control strategy.

While we consider each DTTS of the light as separate agent for the purposes

of gradient-based coordination, in this section we derive a single QP safety regulator

for all the DTTS of a single light. This is different from the regulator derived for

the vehicles, which assumes only the acceleration and rate of change of τi are control

variables. Here, ui for all i ∈ L(t) are optimization variables of the QP regulator.

We therefore define the vector state of the light xL and the vector input uL as a

concatenation of all τi and ui for all i ∈ L(t).

Constraint 9 Given that we are assuming the light follows a predetermined
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sequence of phases, and that transitions occur whenever the leading DTTS reaches

−Tyellow, we can guarantee the safe operation of the traffic light by ensuring that

the DTTS do not overtake each other and always stay Tyellow seconds apart in the

planned timing domain.

h9(τi, τj) = τj − τi − Tyellow

∀i, j ∈ {i, j ∈ L(t) : τi < τj} (5.41)

The barrier certificate input constraints are then:

uj − ui ≥ −γi,9h9(τi, τj)

∀i, j ∈ {i, j ∈ L(t) : τi < τj} (5.42)

Constraint 10 The second set of constraints on the DTTS ensures that once

a vehicle can no longer stop at the upcoming intersection, the light does not change

its plan in such a way that the vehicle arrives in red. This constraint is used once

a vehicle’s h8 CBF is negative (which can only happen if the vehicle is planning to

arrive on green). In other words, once the vehicle crosses a safe stopping threshold,

the light cannot hasten or delay its switches and make the vehicle arrive on red.
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h10(τi, τj) =


τi − τj if τi ≥ τj

τj − τi if τi < τj

∀i ∈ L(t) and

∀j ∈ {j ∈ V(t) : h8(xj) ≤ 0} (5.43)

Assuming that vehicle j uses uj = 0, the barrier certificate input constraints

are then:


ui ≥ −γi,10h10(τi, τj) if τi ≥ τj

−ui ≥ −γi,10h10(τi, τj) if τi < τj

∀i ∈ L(t) and

∀j ∈ {j ∈ V(t) : h8(xj) ≤ 0} (5.44)

5.5.5 Traffic Light QP Safety Regulator

We can now define the QP safety regulator controller for each traffic light.
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uL(xL,xj) = argmin
uL

1

2
||uL − u∗L(xL,xj)||2

Subject to:

Eqs. (5.42)

Eqs. (5.44)

(5.45)

Remark: The above QP controller for the traffic light simply attempts to

preserve the order of the DTTS. When some vehicles can no longer stop at the

intersection, it also attempts to preserve the order of the DTTA of these vehicles

relative to the DTTS of the light. We can see that there exists at least one feasible

solution by noting that ui = 0 ∀i ∈ L satisfies all of the constraints. Indeed, if

the agents start in a certain order, and they all set their inputs to 0, they should

preserve that order, given their homogeneous affine dynamics.

5.5.6 Constraint Relaxations

As we have discussed previously, the QP-CBF formulation has been derived

using candidate CBFs, which are only valid CBFs in the presence of each other if

the QP problem has a feasible solution (Ui 6= ∅) for all points inside the safe set

(xi ∈ Ci). In this section, we consider the possibility of the set Ui being empty for

the vehicles, and we introduce appropriate constraint relaxations to ensure that the

QP always has a solution. Remark 3 in the previous subsection discusses how this

is not necessary for the traffic light.

In Fig. 5.4 we show an example of the vehicle’s constrained input space
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Ui(xi,xl(i)), for a given value of xi and xl(i). The allowable input space is left

uncolored, and it is the intersection of all the individual barrier certificates.

In the previous sections, we derive constraints 7 and 8 to be explicitly compat-

ible with constraints 0 and 1 using Theorem 2, and we can show their compatibility

with constraint 2 as this constraint cannot become active when the vehicle is braking

as long as vmax > vmin. This implies that in Fig.5.4 the vertical region between Ui,1

and Ui,7 (and Ui,8) will always be non-empty. In other words, Ui,7 (and Ui,8) will

always be to the right of Ui,1.

On the other hand, the derivation of constraints 3 through 6 does not consider

any constraint interactions. As such, the polytope formed by these four lines might

become empty, or it might not intersect with the vertical region formed by Ui,1 and

Ui,7 (or Ui,8). Given this possibility, we introduce a constraint relaxation input δi,q

in Ui,q, for q = 3, 4, 5, 6, as follows:

Ui,q(xi) ={ui ∈ R2 : A
(i)
q,1ai + A

(i)
q,2ui + δi,q ≤ b(i)

q }

∀q ∈ {3, 4, 5, 6}
(5.46)

We can relax the vehicle’s QP safety regulator defined in Eq.(5.40) by adding

the δi,q as optimization variables, replacing the appropriate constraints by the ones

defined above (Eq. (5.46)), and replacing the optimization objective by the follow-

ing:

1

2
(ai − a∗i (xi))2 +

1

2
(ui − u∗i (xi,xj))2 +R

6∑
q=3

δ2
i,q (5.47)
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The relaxation weight R is chosen to be a very large number to heavily dis-

courage the controller form violating the constraint.

Remark: In practice, there are other reasons to relax the constraints and

heavily penalize their violation. First, in the field and in simulation this strategy

will be implemented as a discrete-time controller where, near the boundary of the

safe-set, the forward invariance of the set may not be guaranteed if the integration

time step size is not small enough. Second, in real roads with human drivers, some

of the assumptions about the behaviour of the leading traffic could be violated,

unwillingly placing the vehicle outside its safe set.
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Figure 5.4: Example schematic of the allowable input set Ui(xi,xl(1)) for a given
value of xi and xl(i).
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5.6 Simulation Results

In this section, we evaluate our control strategy in simulation. We consider a

three-way intersection controlled by a traffic light, the same configuration as shown

in Fig. 5.1.

We assume that vehicles arrive in each lane according to a Poisson arrival

process, given by an input flow rate in vehicles per hour. Arrivals are delayed to

the extend that they would have the vehicle enter outside of the safe-set. For the

“arrival” of traffic light switching events, if the light plans a time horizon TH into

the future, a new DTTS is added at τi = TH when the last DTTS is some minimum

time Tmin into the planned timing domain.

Assuming a 2 second headway, the saturation flow rate of each lane is 1800

veh/hr. We simulate our proposed strategy and baseline at different ratios of the

saturation flow rate using the parameters summarized in Table 5.1. For each satu-

ration ratio we generate 10 realizations of the arrival process, and we use the same

generated arrival times for both the baseline and the proposed strategy.

5.6.1 Baseline

The baseline strategy consists of human drivers and fixed time traffic lights

at the intersection. The human drivers are modeled using the Gipps car following

model [52], with a desired speed vdes. The timing of the traffic light is determined

using Webster’s method [63], based on the demand (i.e. arrival rate) at each road.
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Parameter Value Units
L 100 m

amin,i -5 m/s2

amax,i 3 m/s2

vmin 0 m/s
vmax 15 m/s
vdes 10 m/s
Dmin 7 m
κ1, ...κ8 1 -
Kij 10 -

γi,1, γi,2 5 1/s
γi,3, ...γi,10 1 -

R 106 -
TH 5 s
Tmin 5 s
Tyellow 2 s

Table 5.1: Parameter values used in simulation

5.6.2 Results

We can look at the savings in fuel and delay incurred by using our proposed

strategy over the baseline. In Fig. 5.5 we show the average savings per vehicle in

both delay and fuel respectively. We can see that the coordination strategy reliably

saves energy and time at all saturation ratios, and that in general, at higher volumes

the savings are more substantial.

Remark: Fuel consumption is calculated from acceleration using an engine

map for passenger vehicles. Delay is calculated as the difference between the time it

would have taken the vehicle to traverse the network at a speed vdes and the actual

travel.

To understand these results we can first look at the time-space diagrams for one

lanes in one of the simulations. In Fig. 5.6, we show the trajectories of all vehicles
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that traverse the one of the lanes for both the baseline and proposed strategy. We can

graphically see that the coordinating strategy generates smoother trajectories and

reduces stopped time, which explains the reduction in delay and fuel consumption.

From the savings results, we can also see the strategy saves significantly more

in delay than it does in fuel consumption. We believe this happens because the

control strategy sometimes accelerates vehicles in order to catch a green light, a

behaviour that is not usually modelled by the Gipps car following model. We can

see that this is the case in Fig. 5.7. Here we plot the distribution of speeds for all

vehicles at all time steps for the 0.7 saturation rate simulation. We can see the the

coordinating strategy not only has the vehicles stopped less often, but it sometimes

sees the vehicles traveling at speeds higher than the desired speed.

5.7 Conclusion

The main objective of the work in this chapter is to create a safety regulating

controller that takes the negotiating strategy presented in previous chapters, and

modify it in order to ensure safe operation, while maintaining a computationally

efficient trajectory planning nominal controller. The regulator is synthesized using

control barrier certificates implemented through a quadratic program that aims to

minimize deviations from the nominal coordinating control. The overall control

strategy, include the coordination strategy of Chapter 4 and the safety regulator

derived in this chapter, is tested in simulation and compared to traditional traffic

light and human-driven behaviour to showcase the improvement in fuel consumption
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and delay.
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Figure 5.5: Average fuel savings per vehicle, for different saturation ratios
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scenario at 0.7 saturation rate
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Chapter 6: Conclusion

This dissertation proposes a decentralized coordination control framework for

smart vehicles and traffic lights in urban intersections. A rich body of literature

establishes the benefits of leveraging connectivity and automation to improve the

performance of traffic networks. However, proposed approaches focus mostly on

coordinating either only vehicles or only traffic lights. When both of these types of

agents are considered in a single framework, approaches generally use optimization

methods. In contrast, the framework presented in this dissertation uses gradient-

based methods coupled with a control-barrier function safety regulator. Gradient-

based methods have advantages in terms of scalability and computational simplic-

ity. What is more, the use of safe-set methods to ensure safety allows the trajectory

planning algorithm to remain computationally tractable and to not require excessive

amounts of information from the leading traffic. Another interesting characteristic of

the proposed framework is its flexibility. The approach is designed to accommodate

different edge-tension functions, and can therefore work with different coordination

strategies. We show both an approach based on the Kuramoto model for synchro-

nization, and an approach based on logistic functions that hasten and delay the

timing of neighboring agents.
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Throughout the dissertation, the above framework is developed in 6 chapters,

each progressively contributing to its final derivation. As such, the main body of

this document can be summarized as follows:

· Chapter 1 presents a comprehensive review of the literature on the intelli-

gent intersection management (IIM) problem. We summarize the different

approaches other researchers have proposed to solve this problem, and we

highlight the need for decentralized, scalable and efficient methods that in-

clude both smart vehicles and traffic lights.

· Chapter 2 explores our own motivating study into the IIM problem. The

results from this chapter showcase the complexity of the trajectory planning

problem in the presence of other vehicles and traffic lights, and the important

role that coordination across adjacent intersections can play.

· Chapter 3 introduces our first iteration of the proposed framework in this

dissertation: a multi-layer strategy where gradient-based coordination of a

virtual variable that governs the agents’ timing is followed by tracking that

attempts to meet the planned timing. In this chapter we consider only CAVs,

and we describe planned timings across multiple intersections using a novel

definition of a vehicle’s phase. The gradient-based strategy is given by the

Kuramoto model for the synchronization of non-linear oscillators.

· Chapter 4 defines, in a similar framework, a new coordination strategy that

includes both vehicles and traffic lights based on logistic function that define

the interaction between agents.
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· Chapter 5 derives a safety regulator for the proposed strategy that modifies

the nominal controllers presented in previous chapters. As such, safety con-

straints do not need to be handled by the coordination or trajectory planning

layers, which allows for more computational efficiency and looser connectivity

requirements.

We have developed and validated a control framework that opens the door

for productive future research. The approach we lay out it here lends itself to

account for more complex traffic scenarios. Indeed, as we consider interactions

between multiple intersections with traffic lights, we can combine the coordinating

approaches of Chapters 3 and 4 to create ETFs between different types of agents at

different intersections. In fact, the contributions of Chapter 5 allow us to explore a

panacea of coordinating strategies through diverse designs of ETFs without needing

to worry about safety considerations at the level of timing coordination. As such,

we could even explore coordinating strategies through the use of machine learning

approaches in the design of the ETFs that coordinate the timing of agents.
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