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General Aviation airports play a pivotal role in the aviation system of the US, with over 5000 small airports 

existing and operating across the country. Serving almost exclusively small aircraft, these airports have a 

unique activity profile, compared to larger commercial airports. Like their larger cousins, they occasionally 

see the need to apply for federal funding for capacity enhancement projects, a process that requires rigorous 

documentation of the demand and capacity situation at the airport. Existing models for capacity estimation 

have been calibrated to reflect the much larger scale features that dominate large airports. The main 

challenge is to develop a method to provide precise data for small airports that operate mainly with small 

single or multi-engine aircraft. These airports are typically not towered and, hence, do not benefit from 

traditional automated data collection technologies. This research addresses the issues of a) collecting 

aircraft data at local airport environments from aircraft equipped with Automated Dependent Surveillance 

– Broadcast (ADS-B) technology, b) processing the data to determine and classify flights, and c) assessing 

elements of the operational performance of these aircraft. The thesis proposes a method to extract aircraft 

approach speeds and runway occupancy times, which are important contributors to capacity estimation. We 

applied and validated our method in three small airports.  
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Chapter 1: Introduction 

 

As the demand for air transportation increases worldwide, so does the demand for General Aviation (GA) 

airports. GA airports constitute an important part of the US air transportation system, with thousands of 

them operating across the US and contributing highly to the daily air traffic within the National Airspace. 

The small aircraft, which mainly operate at these airports, will not often perform long journeys, but it is 

common for them to operate at a local level, flying in circles around their base airport or completing short 

and frequent trips between neighboring airports. Even though most GA airports do not have Air Traffic 

Control (ATC) towers to monitor the operations, it is still important to have a process that can collect and 

provide information about their daily activity. 

An airport’s major goal is to control the flow of traffic in the most strategic and efficient way, to maximize 

its capacity. Optimizing capacity requires comprehensive knowledge of the existing conditions and demand 

levels of the airport, and therefore making the most appropriate decisions that will match both the geometry 

of the airport and the type of activity it accommodates. For the case of GA airports, this procedure has been 

proven more challenging because small aircraft activity varies widely in terms of aircraft performance and 

operations, and in many cases relies on the decisions of the pilots. Therefore, aircraft activity cannot be 

easily predicted or estimated, but rather must be captured at the moment it is occurring [1][2].   

Section 1.1: Background 

As in the case of larger airports, small airports will eventually reach the need to request federal funding to 

either expand and maintain existing facilities or construct additional facilities. In order to be eligible for 

such funding, airports need to submit proof that supports the need for expansion, and most importantly to 

establish that the airport is operating at capacity levels. For this to be possible, an airport needs the 

appropriate tools that will ensure both reporting accurate numbers of operations and calculating its actual 

capacity. Providing self-reported data collected from manual counts can be questionable and generally 

would not constitute sufficient support for funding. Additionally, as further explained in chapter 2, current 

capacity estimation models are not suitable for GA airports that accommodate mainly small aircraft.  

Small airports often host flight schools, resulting in training aircraft performing multiple takeoffs and 

landing in short time intervals, creating a unique and dense flight pattern. Thus, when studying the capacity 

of a small airport it is important to consider the existence of an active flight school and examine its activity 

closely. However, a high proportion of touch-and-go activity can accommodate a lot more takeoffs and 

landings, resulting in an increased runway throughput. When an aircraft is obliged to do a full-stop landing, 

it will require a significant reduction of its speed to be able to turn and exit the runway, and therefore will 

lead to an increased runway occupancy time.  

Section 1.2: Aim of the Research 

The aim of this research is twofold: a) to develop a data collection scheme that will provide the necessary 

inputs for capacity estimation, and b) to utilize the data collected to extract capacity metrics. As thoroughly 

explained in chapter 3, the proposed method includes collecting Automatic Dependent Surveillance (ADS-

B) data from aircraft, a technology that is becoming increasingly popular over the past years. Collecting 

data that are communicated directly by the aircraft provides a comprehensive and fairly accurate description 
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of each operation because it minimizes human error. For the case of GA airports, it is important to collect 

data that are as detailed as possible, because small alterations in the performance can affect significantly 

the operations of the airport. The ability to utilize the collected ADS-B data to calculate the necessary 

metrics for capacity estimation, such as Average Approach Speed and Runway Occupancy Time, can set 

the basis for creating an accurate capacity estimation model for small GA airports. 

Section 1.3: Methodology of the Research 

The methodology followed for this research includes the following steps:  

a) Literature Review:   

Existing information relevant to the topics discussed throughout the thesis was reviewed and 

revealed that neither the methods for data collection in small airports were standardized, nor the 

existing models for airport capacity estimation were suitable for GA airports. At this point, the 

objectives of this research were delineated. 

b) Data Collection:   

After investigating existing databases, it was decided to proceed with collecting our own data, 

directly from the study locations. The technology chosen as most appropriate for this study was 

ADS-B. After understanding the inner workings of ADS-B, receivers were installed at three 

participating airports, to collect aircraft data. Data collection proceeded for several months. 

c) Data Analysis and Preparation:   

Preliminary analysis of the collected data provided useful insight and led to the detection of several 

anomalies. Further analysis and processing were necessary to recognize all the discrepancies in the 

data and to add “flags” or correct the data before moving to the next steps. Detecting erroneous 

values and correcting any problems before utilizing the data increases the reliability of the output.  

d) Extracting Capacity Metrics:   

After the data are cleaned, they can be utilized to extract important metrics for capacity estimation. 

In this research, we chose to analyze two of the factors that determine runway capacity: the Average 

Approach Speed of aircraft classes and the Average Runway Occupancy Times. The values for 

these two parameters were calculated for each airport. 

In our analysis, the following software was used:  

i. R: The collected data volume is high and therefore it was decided to R for both the preparation 

steps and the extraction of metrics. R allows the processing of large amounts of data and the 

visualization of the results. Graphs and plots throughout the Thesis have been produced using 

R.  

ii. Postgres SQL: All data collected are stored in the online Postgres SQL database created for 

this project. The two most important tables of the database, the “adsb_messages” table which 

includes all the messages collected and the “flights” table which includes information per flight 

and the “flags” that have been generated by the preparation steps, are discussed in detail in 

section 3.  

iii. QGIS: Various tools were created and used on the QGIS geographic information system 

software platform to visualize and analyze the relevant performance characteristics of 

individual flights. QGIS was also used for mapping the data and understanding the different 

operations.   
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Chapter 2: Literature Review 

 

Detecting and counting aircraft can be challenging, especially in the case of small aircraft. Visual detection 

or radar sensors may not always be effective with small size and low velocity aircraft. Capacity studies 

require data to be collected over long periods of time; hence, manual observations are not feasible. Small 

airports typically do not have any kind of surveillance radar or other automated data collection mechanisms 

already installed. Therefore, other techniques must be investigated for data collection in small airports. The 

aim of this study is to recognize and stratify data collected at small General Aviation (GA) airports. General 

Aviation refers to all air traffic that is not commercial or military. The GA airports play a pivotal role in the 

economy and the aviation system of the US, with over 5000 small airports existing and operating across the 

country. As these airports tend to have different characteristics and unique activity, compared to regular 

airports, collecting and stratifying data becomes even more complex.  

Section 2.1: Airport capacity  

Capacity estimation is a very important procedure for any airport and requires careful steps when it comes 

to small airports, with higher sensitivity and multiple limitations. Small airports are affected more by minor 

changes in aircraft activity, weather conditions or sudden events. Existing capacity models were calibrated 

to reflect the much larger scale features that dominate large airports; they do not provide meaningful results 

when it comes to small airports, since small aircraft and the discriminating features of small airports have 

low impact on the final result. This can be an important problem for airports that operate mainly with small 

aircraft. Therefore, the main challenge is to create a method that will provide precise data for small airports 

that operate mainly with small single or twin-engine aircraft. 

Before describing the ways to estimate airport capacity, we first have to define it. Airfield capacity is the 

maximum number of aircraft that can be accommodated by an airport in a given period of time, and it can 

be measured either as airside capacity or runway capacity. However, airport capacity does not provide 

enough information on its own, unless it is compared to a measure of demand. A demand-capacity 

comparison would provide enough information to understand the performance of an airport and its ability 

to accommodate aircraft. There are several computer simulation models that can be used for capacity 

estimation, which require a variety of inputs. However, these models usually provide the most accurate 

results for larger, commercial airports. 

The need to update airfield capacity models is even greater for small airports. The existing capacity 

estimation methods proposed by the “ACRP Report 79: Evaluating Airfield Capacity” are inadequate for 

small airports or small aircraft [3]. These airports may encounter capacity issues only during the peak hour, 

which may not be reflected in the available analysis techniques. The “ACRP Report 79” and the “Airfield 

Capacity Spreadsheet” are mostly effective for large airports. Additionally, the Advisory Circular (AC) 

150/5060-5 contains only one short section (4-5) which refers to capacity estimation for single runway 

airports or airports used by small aircraft (class A and B) [4]. This technique takes into account only:  

• Runway configuration and 

• Percent of touch-and-go activity 
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and provides results of hourly capacity for Visual Flight Rules (VFR) and Instrument Flight Rules (IFR) 

conditions. These two characteristics might be important for an airport’s performance but are not definitive 

for capacity estimation. Since technology provides the means to collect and analyze more data, these 

methods ought to be revised and updated, especially for small airports [3][4][5].  

Subsection 2.1.1: Airport capacity characteristics and metrics 

Capacity estimation models must consider both static and dynamic characteristics of an airport. Some of 

the most important factors include:  

Static Characteristics 

1. Runway Configuration:   

It defines the layout of the runway or runways of an airport. Both the number and the position of 

the runways affect the airport’s capacity.  

2. Control Tower Availability:   

It describes the presence or not of an Air Traffic Control (ATC) tower. Although one may assume 

that all airports have ATC towers, it is often that small airports do not have ATC or share towers 

with another airport.  

3. Runway Exits and Parallel Taxiway Availability:   

Runway exits are used by the aircraft to move from a runway to a taxiway or the opposite. The 

number of exits on a runway is related to its length. A short runway usually has exits only at the 

two ends of the runway and therefore aircraft have to cross the whole runway to exit. Longer 

runways may have multiple exits along their length.  

Dynamic Characteristics 

1. Average Approach Speed of Aircraft Classes:   

It is the speed of the aircraft while approaching the runway for landing. This speed will vary for 

different segments of an approach as well as by aircraft weight and configuration. 

2. Average Arrival Runway Occupancy Time (AROT) of Aircraft Classes:   

It is the average time an aircraft (or certain type of aircraft) occupies a runway after its landing and 

is measured from the time the aircraft crosses the runway threshold, until the time it fully exits the 

runway. An aircraft is able to exit a runway either at the end of the runway, or (if available) using 

an exit at some other point of the runway, leading to the taxiway.  

3. Aircraft Separation:   

It describes the spacing (either longitudinal or time) between consecutive aircraft approaching for 

landing or aircraft getting ready to depart. This spacing can be prescribed either by Air Traffic 

Control (ATC) or by the pilots.  

4. Touch-and-Go Operations:   

Touch-and-Go describes the type of activity where an aircraft arriving to the runway makes a 

touchdown and immediately (without slowing down or stopping) takes off again. This operational 

pair is counted as one arrival and one departure and therefore two operations. This type of activity 

is common in the case of small airports with associated flight schools, where training aircraft 

perform multiple touch-and-go’s daily for practice purposes. This type of activity is not regular for 

larger airports and in those locations may only be performed in case of an emergency.  
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The first three factors can be easily identified, whereas the remaining four constitute important metrics 

related to the airport’s activity and require aircraft movement data to be properly measured and identified 

[3].  

Section 2.2: Previous attempts 

While the importance of collecting and processing accurate and real-time aircraft data is omnipresent, the 

challenge of completing this task successfully and effortlessly is yet to be solved. Various attempts have 

been made for automated aircraft data collection and some of the most relevant will be listed below. 

Multiple methods have been researched and patents have been filed related to automated aircraft counting 

with acoustic technology. The first related patent was filed in Dec. 2005; it refers to an automated acoustic 

data collection system using an Unmanned Aerial Vehicle (UAV) equipped with an antenna array. The 

UAV is able to collect data while in flight. However, the major challenges encountered include wind noise 

and the UAV’s engine noise. Also, this system can only detect the appearance of something (e.g., aircraft) 

in the environment, with no additional data. Therefore, such a method would only be useful to provide a 

rough number of operations counts or only the detection of activity during non-busy hours (e.g., late night) 

[6]. 

More recently, another patent was filed (Nov. 2011), which claims to achieve low-cost aircraft detection in 

areas where ground surveillance radars do not exist or are limited. Referring to both a method and the 

apparatus needed to detect aircraft in an airport environment, the system takes advantage of the acoustic 

emissions of the aircraft and translates them to “positional” and “aircraft type” information. Aircraft can be 

detected and, in some cases, identified by their acoustic emissions. A strong advantage of the system is that 

it does not require any additional equipment to be carried by the aircraft, since it relies solely on the acoustic 

emissions. At the same time, this remains one of the main disadvantages, since acoustic emissions do not 

provide any additional information regarding precise positional information, and the type of aircraft is only 

estimated by the emission detected by the acoustic sensors, and not communicated by the aircraft [7].  

These methods would be considered effective in detecting small aircraft, since they do not rely on the size 

or type of the aircraft, but only on their acoustic emissions. Also, another significant advantage is that both 

methods do not require additional equipment to be installed on the aircraft. However, they can only provide 

gross information regarding the position and in some cases the type of the aircraft. Airport capacity 

estimation requires detailed data for all the aircraft approaching, taking off or taxiing around the airfield. 

Such data would require either additional equipment for wider coverage and more detailed collection, or 

more elaborate procedures for data extraction, processing, and interpretation. In most cases, these data types 

simply cannot be gathered by these methods.  

Subsection 2.2.1: Existing data sources 

The next step was to investigate existing data sources that might be able to provide the data needed. These 

data sources could be either private or open-source databases utilized for research purposes or commercial 

use. However, the common disadvantage of such databases is that, even though they may contain all the 

necessary data types that would theoretically be helpful for capacity estimation, they tend to focus on larger 

airports, of major concern, and prove to be inadequate for small airports. As mentioned, small airports tend 

to have different behavior and need to be observed closely. For example, the number of based aircraft at a 

small airport is generally known, but quite often a significant percentage of the based aircraft do not 
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participate in many flying operations per year, so they do not represent the actual activity of the airport. 

Moreover, flight schools are often located in small airports, and these tend to have aircraft that are utilized 

more often and contribute highly to the airport’s traffic.  

The Aviation System Performance Metrics (ASPM) database was investigated, and it was found that it 

contains information only for 77 ASPM airports and for the ASPM carriers. This led to the conclusion that 

it does not contain complete records for small airports [8]. Next, the System Wide Information Management 

System (SWIM) was examined. It can be considered a useful database since it provides real-time, relevant 

aeronautical, flight and weather information. However, it also proved to be insufficient for small airports 

and small aircraft [9]. Finally, the Traffic Flow Management System (TFMS) was considered, which 

contributes data to both ASPM and SWIM. TFMS provides Aircraft Situation Display (ASDI) data, which 

include aircraft scheduling, routing, and positional information. As in the previous cases, TFMS also lacks 

data on small aircraft [10].  

Aviation related open-source databases collect data from individuals who are willing to set up devices to 

collect and feed data from any part of the world to a central database. In this way large amounts of data can 

be collected instantly, with no regional restrictions. Therefore, it was deemed more plausible to find data 

for small airports in such databases. The first database considered was “FlightAware”, which collects and 

provides aircraft data, mostly for commercial flight tracking purposes. It also provides access to the 

collected data to researchers or individuals willing to place tracking equipment (receivers) in their own 

space. The data provided are mostly accurate and useful for the purposes of this study and include 

information for General Aviation airports as well. However, FlightAware focuses on applications such as 

flight progress tracking, and visual displays. These do not need high resolution data, and the specific 

behavior of the aircraft at the endpoints of its journey are not important. As a result, these data tend to be 

heavily filtered. Unfortunately, it is the data around the airports that are most important for the present 

purposes, and the en route data are the ones that are irrelevant. Finally, because FlightAware and other such 

services are essentially crowd sourced, they are restricted to locations where volunteers have installed 

equipment, which does not include many small airports. The resulting data are only as good as the 

implementation (e.g., software quality, hardware quality, antenna placement, robustness to communications 

dropouts and power outages, etc.), which we have no control over when using crowd sourced data. 

Another open-source database for aviation related data is “Opensky”, which is a community-based receiver 

network collecting air traffic surveillance data. The main advantage of the Opensky network database is 

that it keeps all the raw unfiltered data as collected by the receivers. The reason this database was rejected 

is its lower coverage, especially across the US. It is still a developing network and therefore receives data 

mostly from areas closer to major airports, lacking data for small airports. The heat map in Fig. 1 indicates 

the reception coverage of the network, with the darker spots (higher reception) concentrated around major 

airports and big cities. Again, it is subject to the vagaries in the volunteer installations. 
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Figure 1: Opensky network coverage across the US (opensky-network.org) 

Therefore, all mentioned databases were decided to be inadequate for the purposes of this study.  

Finally, after identifying the data needed for capacity estimation, and investigating the available databases, 

it was decided that the most preferable option is to develop a novel system to collect the necessary data 

from General Aviation airports. Since the mentioned approaches of aircraft detection do not seem to provide 

the information needed, the use of ADS-B (Automatic Dependent Surveillance – Broadcast) technology 

appeared to be the most appropriate method. A more detailed description of ADS-B technology and the 

data it yields, will be given in the following chapter. 
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Chapter 3: Data Collection and Preparation 

 

For this study, data were collected from specific General Aviation (GA) airports in various locations across 

the US. The data collection was performed using the ADS-B technology, which is an integral part of air 

transportation. Automatic Dependent Surveillance – Broadcast (ADS-B) is a technology intended to 

supplement ground-based radars by enabling participating aircraft to broadcast their own kinematic data 

(position, altitude, and speed), as well as other relevant data at regular intervals. According to the FAA, all 

aircraft that want to fly in controlled airspace must be equipped with ADS-B out, making ADS-B data 

widely available. Aircraft can be equipped with 1090ES or UAT transponders and transmit messages at the 

1090 or 978 MHz frequency, respectively. ADS-B 1090ES is required for aircraft flying above 18,000 ft., 

or for locations outside the USA. UAT transponders are limited to use within the United States and for 

aircraft flying at lower altitudes. Ground stations receive and repeat messages both in 978 MHz (UAT) and 

1090 MHz (1090ES) and an aircraft transmits a message twice every second. ADS-B receivers collect 

aircraft data from any equipped aircraft that is detected within range. Thus, ADS-B can help in automated 

data collection and accurate operation counts. 

 

Figure 2:ADS-B system architecture 

The ADS-B technology is shown schematically in Figure 2. An aircraft receives its position information 

from a constellation of GPS (Global Positioning System) satellites. Using its ADS-B transponder, it feeds 

the position information along with other data to ADS-B receivers. Receivers feed their collected raw data 

to larger databases and retransmit the information to other aircraft [11][12][13][14]. 

Section 3.1: Data Collection 

For the data collection, ADS-B receivers have been placed at each location, in this case at each airport 

participating in the study (presented in subsection 3.3.1). Two receivers are set at each airport, one for 1090 

MHz and one for 978 MHz frequency messages. Technically, it is possible to receive both types of messages 

with one receiver; however, this division was selected for convenience and to avoid possible corruption of 
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messages in the cases where a lot of messages arrive at the same time. An ADS-B receiver is composed of 

the antenna, bandpass filter, and RF (radio frequency) amplifier (the analog section), a software-defined 

radio (SDR, the digital section), and some processing unit. To ensure high quality ADS-B reception, the 

antenna must have good line-of-sight. In this study it was ensured that in all cases the antenna had direct 

line-of-sight to the runway(s) and was close to the runway level. As mentioned, two receivers were placed 

in each location, meaning two separate antennae and two separate processors to handle the incoming data, 

all of which then feed the data to a common server [14]. 

Subsection 3.1.1: Explaining the data 

After the receivers have been set, they automatically start collecting any data from aircraft within reception 

range. At this point, it is important to mention that the gain of the RF amplifier has to be adjusted 

accordingly based on the location and the amount of activity in the area. If the airport at which the receivers 

are set is located close to other airports and experiences a lot of overflight activity from larger commercial 

aircraft, then a lot of messages will be detected at the same time. This will cause issues, especially in the 

case of the 1090 receiver, since this is the frequency mostly used by large aircraft. As a result, the receiver 

will end up collecting corrupted messages and missing the ones that are important for the airport. Lowering 

the gain might help reduce the number of messages received from overflights and will increase the reception 

of activity near and on the runway. Examples of the effect of different gain will also be presented later in 

this chapter. 

The messages collected must be filtered and decoded to provide meaningful information. Once it is 

demodulated in the SDR, each message appears as a string of 112 binary bits, which are mapped into 16 

hexadecimal characters. Of those 112 bits, 24 bits are the unique ICAO (International Civil Aviation 

Organization) aircraft identification number (actually the ID of the transponder) and 56 bits are the ADS-

B data. The remaining bits are used for parity checking and other communications details. The following 

table describes the structure of the ADS-B message. 

Bit No. of bits Abbreviation Information 

1-5 5 DF Downlink Format 

6-8 3 CA Transponder 

capability 

9-32 24 ICAO ICAO aircraft 

address 

33-88 56 ME Message, 

extended squitter 

(33-37) (5) (TC) (Type code) 

89-112 24 PI Parity/Interrogator 

ID 

Table 1: Structure of ADS-B frame 

The most useful amount of information is contained in the Type Code. More specifically, the data frames 

include the aircraft identification, the surface position, the airborne position, the airborne velocities, and 

aircraft status messages. In our system, each hexadecimal message is stored along with its timestamp, the 
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Downlink Format, and the ICAO address. The timestamp must be added by the downstream data collection 

process because raw ADS-B messages do not contain any inherent timing information. Once it is stored, 

the next step is to decode the message to make it comprehensible. The messages get decoded using the 

pyModeS library, which is a Python library designed to decode Mode-S messages, including ADS-B 

messages. This large amount of data collected and decoded is then loaded into a PostGreS SQL database 

and populates the tables. Figure 3 depicts the process of collecting and storing the data on the online 

database [16][17][18][19]. 

 

Figure 3: Storing the collected data (AWS architecture) 

The processing system of the receivers (Raspberry Pis) is able to run autonomously. Thus once installed no 

further intervention is required. This system includes the following important features: 

a) The configuration script that contains necessary information related to the location of the receiver 

(such as airport lat/long coordinates and altitude) as well as the receiver’s frequency. 

b) Data are decoded and stored on the receiver and then transmitted to an Amazon Web Services 

(AWS) portal in real time over the MQTT protocol, to support real-time mapping and flight display 

applications (Figure 4). 

c) The receiver holds complete logs of system events, message transactions, etc. 

d) At the beginning of each hour, any recent data and log files are uploaded via SCP to an AWS EC2 

computing instance, and subsequently archived on the local computer, where they are retained for 

a month. In the event of a communications malfunction, this operation is re-attempted at every 

hourly upload event until it is successful. Files older than a month are deleted from local storage, 

because by this time they have been uploaded to AWS and stored in several places. 

e) The system monitors real-time communications coming from AWS through the MQTT protocol, 

which allows the users to ping the receivers, remotely reboot them, tunnel into them to provide 

terminal window access, and change the gain levels on the Radio Frequency amplifier (Section 

3.4). 
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f) Available upgrades on the AWS database are downloaded and installed automatically and the 

system reboots. This check is performed every hour after the collected files have been uploaded to 

the EC2. 

The AWS Cloud software (the main part in Figure 3) consists of the following components: 

a) The EC2 computing instance, which initially receives the data collected and the log files that are 

uploaded each hour. Then the data are decoded, filtered, and loaded into the PostGreSQL database, 

as shown in Figure 5. The filtering referred here removes data transmitted by aircraft that are too 

far from the studied airport and therefore not related to this study. Further processing and 

organizing of the data is described in Section 3.2. 

b) Lambda functions, of which one processes the MQTT data submissions and populates a Dynamo 

DB with the last 5 minutes of real time data for the mapping and flight list web pages and the other 

processes PULL requests from the mapping, flight list, and dashboard web pages, and invokes the 

AWS API to send responses to the associated HTTP requests. 

c) The S3 bucket is used as the final archive for all decoded message strings. It is also the project web 

server, hosting the mapping, flight list, and dashboard web pages, as well as a project information 

web page meant for research dissemination. 

d) Cloudwatch watches various system functions and issues alerts. This helps optimize the storage 

and processing levels and warns the users of possible remote unit failures.  

 

 

Figure 4: Instance of the real-time map at KOSU 

The real-time map, apart from being an illustration of the data collection and processing, is also a useful 

tool for instantly identifying discrepancies in the data, or malfunction of the receivers. A map that fails to 

update the position of the aircraft indicates that the receivers have stopped collecting or feeding data to the 

AWS system. If something unreasonable appears on the map, it is first checked through the recorded data 

before proceeding to any alterations. In some cases, the data might have been decoded and stored properly, 

but failed to be properly handled by the mapping process. Additionally, for the case of the Ohio State 

University (KOSU), the map provides access to the ATC tower communication. Therefore, listening to the 

aircraft communication with the tower, and at the same time seeing the respective aircraft on the map, 
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provides extra validation for the performance of the method. Moreover, the real-time map is provided to 

the airport managers of the participating locations, as an additional monitoring tool. 1 

The result of this first process is stored in a table of data (“adsb_messages” table) containing the following 

columns:  

• Message id in an increasing numbering,  

• Timestamp in seconds since January 1st, 

1970,  

• ICAO address,  

• Latitude (lat),  

• Longitude (long),  

• Altitude (alt) in ft,  

• Groundspeed (gs) in knots,  

• Track (trk),  

• Rate of climb (roc) in ft per second, and  

• Callsign.  

 

 

Figure 5: Example of the data after been decoded 

Subsection 3.1.2: Initial Processing 

An aircraft transmits a message twice every second and each message received is stored individually. When 

received, a message does not provide immediate information on its own. The messages must be organized 

into groups, which from now on will be called flights, which are created by clustering the messages based 

on their ICAO address and their timestamps. If an aircraft fails to transmit a message in 600 secs (a number 

selected after tests on collected and decoded data) or more, then a new flight is created in the database. 

Each flight has a unique flight_id. Messages received continuously and from the same aircraft, receive the 

same flight_id. This new column is added to the table of messages, along with the location and the frequency 

(freq) column, which are provided by the configuration files created for each airport. The final structure of 

the messages table called “adsb_messages” is shown in Figure 6. 

 
1 The AWS storing and processing system as well at the real-time map and flight list were implemented by Dr. Lovell. 

Each step was validated and monitored by the student’s analysis.  
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Figure 6: Final structure of adsb_messages table 

Apart from the “adsb_messages” table, a “flights” table was also created on the Postgres database. Both 

tables get populated once every hour, with the new data that have been collected by the receivers over the 

previous hour. The “flights” table holds information about every flight detected by the receivers, and each 

row corresponds to a different flight with a unique flight_id. Each row includes the following fields: the 

flight_id, the icao address of the aircraft, the callsign of the flight, the first and last timestamp of the series 

of messages collected for the flight, and the location at which it was detected. The structure of the “flights” 

table can be seen at Figure 7. 

 

Figure 7: Example of data in "flights" table 

 

This table was created to provide a quick view of the data collected and overall information for each flight. 

It will later be populated with more useful metrics for each flight [20][22].  

A preliminary version of this analysis was demonstrated in Mitkas & Lovell, 2020 [25] and presented at 

the ICRAT 2020 virtual conference.  

 

Subsection 3.1.3: Collected Data Volume 

Given that an aircraft transmits a message twice every second and that the aircraft operating at GA airports 

will often fly close or around the airport and consequently remain within the radius of the receivers, the 

amount of data collected is significant. An overview of the data values collected until April 24, 2021 is 

provided in Table 2.  
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Airport 

No. of ADS-

B messages 

No. of 

Detected 

Flights 

Date of 

receiver 

installation 

KCGS 4,992,640 80,353 July 2020 

KOSU 36,839,529 105,868 June 2020 

KFRG 
21,175,178 53,145 

October 

2020 

Table 2: Collected Data Volume 

 

Section 3.2: Data Preparation 

To ensure the accuracy of the results, the data must go through some preparation steps. Feeding data with 

major discrepancies to a model would produce unreliable outputs. The initial steps take place at the message 

level, while the messages are received, decoded, and stored. The first stage includes checking if the message 

received is more than 5nm (nautical miles) away from the airport. Each message’s latitude and longitude 

are used to calculate the distance of the aircraft from the airport; if the distance is more than 5nm from the 

center of the airfield, the message is considered not significant for the analysis of the particular airport and, 

therefore, is discarded. In addition, it must be mentioned that if a message is received with missing 

positional data, it has already been rejected by the system. The 5nm radius was selected because, for a GA 

airport, anything at a greater distance will most probably not affect its activity. Since subsequent analysis 

will focus on the operations of a specific airport and not the overall activity in the National Airspace (NAS), 

there is no need to burden the database with unnecessary data.  

The second step relates to Altitude, one of the message parts that has been observed to be the most unstable. 

At the same time, altitude is one of the most important metrics when dealing with aircraft and classifying 

activity types at an airport. Before explaining the different cases, it is important to understand why some of 

these anomalies occur in the altitude data. Aircraft measure their pressure altitude while in flight and report 

it through their ADS-B transponder. However, deviations of environmental temperature and pressure from 

standard conditions cause the altitude estimate to be slightly erroneous. Also, most transponders have a 

“standby” operation, to which the aircraft can switch either when they do not want to transmit altitude 

anymore or when instructed to do so to reduce clutter in a high traffic area. When in “standby” mode, the 

aircraft will continue to transmit positional information and will not be lost from the receiver. It is common 

for aircraft to switch the transponder to “standby” mode after landing, in which case the transponder is still 

able to report an altitude equal to zero if the speed is low enough for it to be impossible for an aircraft to be 

flying. This is a clear example in which the aircraft do not transmit the actual pressure (or barometric) 

altitude, at any airport that is not at sea level.  

In this phase, the altitude of each message is compared to zero; if it is negative, then the “negative_alt” field 

of the corresponding flight is set to true, meaning that at least one of the messages of the flight has negative 

altitude. Once set to true, this field will not change again. The case of negative altitude can be due to 

corrupted messages, or wrongful installation of the aircraft’s altimeter, or because in some cases the aircraft 

might transmit their barometric altitude (baroaltitude) instead of their actual Above Ground Level (AGL) 
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altitude. This phenomenon is mostly observed at airports with low airfield elevation altitude (lower than 

100 ft). At this point, the negative altitude is not modified or neglected, it remains as is in the database.  

The next stage could be characterized as a premature clustering of the flights and populates the “on_ground” 

field based on the messages of each flight. Every incoming message’s altitude and groundspeed is checked. 

If the altitude is equal to zero (alt=0), meaning that the aircraft was at some point on ground level then the 

“on_ground” field is set to true. If not, then the groundspeed is checked; if the groundspeed is less than 20 

knots, then the aircraft is considered to be on ground level. An aircraft cannot be flying if its groundspeed 

is lower than 20 knots unless it is a helicopter. In the case of helicopters, the latter check is not performed. 

To determine if an aircraft is a helicopter, its ICAO address is used to extract information about the aircraft 

type, model, engines, etc. from the FAA registry. If none of these checks are positive, the “on_ground” 

field remains false. This labeling gives a rough estimation of operation counts in each airports, since all the 

“on_ground”=true flights are possible airport operations. This estimation is not definitive for operation 

counts but could be indicative of the level of airport activity. 

The flowchart for the steps performed during the pre-processing of a message is depicted in Fig. 8. 

 

Figure 8: Pre-processing at message level 

The following steps are performed at the flight level, meaning that the messages must be already grouped 

into a flight and the flight must be completed before starting them. Altitude is again the main concern of 

the following checks and procedures. As a first step, the minimum positive altitude (min_alt) of the flight 

is observed. Aircraft tend to transmit their sea level altitude while on flight and switch to AGL altitude 

when on the runway or taxiway. This might cause problems, especially at the airports with high field 

elevation. For example, in an airport with field elevation of 800ft an landing aircraft will transmit a 

decreasing altitude until 800ft, until it touches the runway. Once the aircraft is on ground and has decreased 

its groundspeed, the transponder will be switched to AGL altitude, communicating a message of zero 

altitude. This will create “jumps” in the altitude profile of the flight, from 800 to 0ft, which initially would 

seem wrong, but the data are accurate. This applies to takeoffs as well. Collecting the minimum positive 
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altitude of each flight provides information about the field elevation of each location (as it was understood 

in that time and place according to atmospheric parameters) and rationalizes this anomaly in the altitude 

data. However, this is not a correction that can be applied permanently to the data, because it differs from 

airport to airport based on its elevation, and even for the same airport, it will differ from day to day based 

on the weather conditions (temperature and pressure).  

To address this “jump” an AGL normalization process is performed. Specifically, if the minimum positive 

altitude collected is far from zero (more than 10 ft), and the flight has the “On_ground” field set to TRUE, 

then the “min_alt” is subtracted from the entire altitude profile and the result indicates the actual Above 

Ground Level altitude. This process also improves the cases were the transponder does not remain steady 

at alt=0 after the aircraft has landed and switches between 0 and some higher altitude (e.g. 800 ft). Before 

applying the AGL normalization, the messages are checked to ensure that the aircraft’s speed is low enough 

that it would not be possible for it to be flying.  

Next, the maximum time gap (max_dt) between consecutive messages is identified. Large time gaps (Δt) 

between messages can affect the data consistency and cause misinterpretation. A time gap is created when 

the aircraft leaves from the line-of-sight of the transponder or travels far enough at such a distance that it is 

not within the radius of the receiver or the transponder fails to transmit messages. This Δt cannot be greater 

than 600secs, which has been chosen as the threshold to separate flights of the same aircraft. It is important 

to know this gap, to be used to explain some of the anomalies that might occur. 

The third metric collected is the maximum altitude (max_alt) of a flight. The maximum altitude can also 

provide a rough estimation of the accuracy of the data and the relativeness to the airport operations. If 

max_alt is found to be high (e.g. 30,000 ft) then the flight is most probably a commercial large aircraft 

flight, not related to the traffic of the GA airport. However, this cannot be a solid conclusion because this 

increased altitude can be just one or more corrupted altitude messages while the rest of the data remain 

accurate. The max_alt is also used in the next and final step of the data preparation process. 

 

Figure 9: Pre-processing at flight level 
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The flow chart in Figure 9 illustrates the processing steps described above. The blue text in the boxes 

indicates the values that are collected for each flight either for correction purposes (AGL normalization) or 

for system monitoring purposes (major gaps in messages, max_dt). The right part of the graph illustrates 

the steps followed for identifying if a flight has unreliable altitude, as described below. 

As stated previously, altitude can be really sensitive to data corruption and therefore, it is important to know 

from the start whether a flight has incorrect altitude data. For this reason, the average |Δalt/Δt| of each flight 

is computed and compared to a threshold, which is currently set at 7500fpm (ft/min). This number was 

selected based on the type of aircraft and their climb power, that operate mainly at GA airports. A small 

aircraft cannot reasonably change its altitude by more than 7500ft in one minute. For the calculation of the 

average |Δalt/Δt|, this finite difference of rate of climb is computed for each pair of consecutive messages. 

In case the altitude is missing, the row is ignored. If a result exceeds the threshold, the unreliable_alt flag 

is set to True, and it indicates that some messages have extreme changes in altitude, or an altitude value 

that would not be expected in that phase of the flight. There is one additional case where the flight’s altitude 

is deemed unreliable, which is when the altitude is constantly negative and the aircraft communicates the 

actual altitude only while on ground (alt=0). It is obvious that a constant negative altitude cannot be rational 

and therefore those flights also have unreliable_alt set to true. Some examples of these cases are shown in 

the flight profiles in Figure 10, in which the altitude data (top graph) seem completely incomprehensible, 

while groundspeed and rate of climb have reasonable values for fixed wing single-engine aircraft taking 

off.  

           

Figure 10: Example of flights with "unreliable_alt"=TRUE 

The altitude data appear to be the most unstable, but also comprise one of the most important metrics; the 

rest of the data contained in each message tend to be generally stable and trustworthy. Thus, when the 

altitude is unreliable, it can be estimated by integrating the rate of climb, which provides the increase or 

decrease of the altitude in ft per minute. This process has been validated using flights with good altitude 

and when the data are adequate the results between the actual altitude and the estimated are almost identical. 
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The denser the messages, the better the results. Some examples of flight data that were used to validate this 

method can be seen in Figure 11, where blue color indicates the altitude transmitted from the receiver, and 

the light green color indicates the altitude estimated from the rate of climb. Deviations might occur in the 

parts where the messages are not as dense, such as the beginning or the end of the flight, when the signal is 

not as strong or stable.  

         

Figure 11: Estimating altitude from rate of climb (method validation) 

Therefore, by estimating the altitude from rate of climb, the examples from Figure 10 will be transformed 

as follows.  

            

Figure 12: Examples of estimating altitude from rate of climb (unreliable_alt=TRUE cases) 
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At this point the preparation process of the data is concluded and useful information has been collected for 

each flight at this preliminary stage. The final structure of the “flights” table, including the additional 

columns, can be seen in Figure 13. The last column (ac_type) indicates the type of the aircraft, which as 

mentioned before is extracted from the FAA registry, using the ICAO address of each aircraft.  

 

Figure 13: Final structure of the "flights" table 

The last column (ac_type) indicates the type of the aircraft and each number corresponds to a different 

aircraft type as shown in Table 2.  

 

Ac_type Description 

1 Glider 

2 Balloon 

3 Blimp/Dirigible 

4 
Fixed wing 

single engine 

5 
Fixed wing 

multi engine 

6 Rotorcraft 

7 
Weight-shift-

control 

8 
Powered 

Parachute 

9 Gyroplane 

H Hybrid Lift 

O Other 

U Unknown 

Table 3: Aircraft type list of codes 

 

Results of this process were presented in the Opensky Symposium 2020, poster session [26]. 
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Section 3.3: Study locations 

For this research, specific study locations were selected, at which the ADS-B receivers have been placed. 

These locations are small General Aviation airports with significant activity. The participating airports are: 

1. College Park Airport (KCGS), College Park, Maryland 

2. The Ohio State University Airport (KOSU), Columbus, Ohio 

3. Republic Airport (KFRG), Farmingdale, New York 

The aim was to select airports with different characteristics that would provide various inputs to this 

research. Eventually, our options were limited by the COVID-19 travel restrictions and our final choice 

was determined by our ability to drive to these airports to install the equipment. There are plans to add more 

airports for the duration of the project. The most imminent addition will be the airports at Grand Forks, ND 

(KGFK) and Daytona Beach, FL (KDAB). More detailed information for each current airport are given in 

the following section. 

Subsection 3.3.1: Airport characteristics 

College Park Airport (KCGS) 

KCGS is a public airport located in the City of 

College Park, Maryland. It has a single runway, 

runway 15/33, which accommodates on average 62 

operations per week, of which 70% are local GA 

aircraft, 26% are transient GA aircraft, and the 

remaining are air taxi or military operations. The 

airport has a total of 31 based aircraft, of which 26 

are single engine, 4 are helicopters, and the last one 

is a glider. The airport’s average field elevation is 

45ft above sea level. The airport might not have as 

much activity as other GA airports; however, it was 

selected for its proximity to the University of 

Maryland campus, providing the opportunity for in-

person observations of the operations [21].  

 

 

 

The Ohio State University airport (KOSU) 

KOSU is a public airport located 6 miles northwest of Columbus, Ohio and is owned and operated by The 

Ohio State University. It is a three-runway airport with two parallel runways, one intersecting runway, and 

one helipad (H1). Runways 9R/27L and 9L/27R are used the most, while 5/23 usually serves as a taxiway, 

except in unusual crosswind situations. The airport has on average 246 operations per day, of which 45% 

are local GA, 34% are transient GA, 20% are air taxi and the rest are military and commercial flights. 

Figure 14: KCGS airport diagram 
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KOSU has 148 based aircraft, which are divided into 121 

single engine, 11 multi engine, 12 jet airplanes and 4 

helicopters. The airport’s average field elevation is 905ft. 

The important aspect of this airport, apart from its different 

configuration, is the based OSU flight school. Training 

flights contribute highly to the airport’s daily operations and 

to the percentage of touch-and-go activity [21].  

 

 

 

 

 

 

 

 

 

 

Republic airport (KFRG) 

KFRG is a regional airport located in East Farmingdale, 

New York. It has two intersecting runways and two helipads 

(H1 and H2). Runways 14/32 and 1/19 accommodate a 

significant number of aircraft each day, with the first 

handling the most traffic. The airport has an average of 543 

operations per day, with 49% being local GA, 45% transient 

GA and the remaining are air taxi, military, and commercial 

operations. KFRG has 350 based aircraft, of which 238 are 

single engine, 47 are multi engine, 54 are jet airplanes and 

11 helicopters. The airport’s average field elevation is 80ft. 

KFRG hosts multiple flight schools and jet aviation services 

creating a complex and demanding airport environment. 

Moreover, its proximity to one of the largest commercial 

airports (JFK) affects the behavior of aircraft using KFRG 

[21].  

 

 

 

Figure 15: KOSU airport diagram 

Figure 16: KFRG airport diagram 
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Section 3.4: Adjusting the RF gain 

As mentioned before, it is important to select the gain settings of the RF amplifier accordingly. The gain is 

selected based in the location and the amount of aircraft activity in the area. Specifically, for the case of 

KFRG airport, adjustments needed to be made to the gain of the receivers. KFRG is located close to other 

airports and really close to one of the largest commercial airports in the US (JFK) and therefore experiences 

a lot of overflight activity from aircraft approaching to land. This causes a lot of message load for the 

receivers to be able to process correctly and eventually causes message corruption. This is especially true 

in the case of the 1090 receiver, which is the frequency that most large commercial aircraft use. Because of 

this situation, it was observed that the receiver would miss aircraft approaching to land at KFRG, or taxiing 

on the runways, but would still receive message from far way. Therefore, it was decided to lower the gain 

(originally set to 40 dB), of the KFRG receivers, to 10 dB. This change enhanced the reception of aircraft 

moving close to the airport; however, it also created some blind spots, mostly at the northwest side of the 

airport. Later, the gain was increased slightly and set to 20 dB. The result of the gain adjustments can be 

seen in the density maps of Figure 17. From left to right, the maps show gain set to 40 dB, 10 dB, and 20 

dB, respectively. A useful feature of the software architecture is that the gain on any of the units can be set 

remotely by issuing commands from the AWS dashboard over the MQTT messaging protocol. 

             

 

Figure 17: Adjustment of gain at KFRG airport 

 

This adjustment not only brought favorable results in the reception of messages on or near the runway, but 

it also improved the quality of the data. The reduction of the gain reduced also the amount of messages 

received at the same time and therefore, lowered the probability of message corruption. This improvement 

Gain = 20 dB 

Gain = 10 dB Gain = 40 dB 



23 

 

was measured by checking the amount of “unreliable_alt” flights in our database, with every gain setting. 

The results are shown in Table 3, where the reduction in flights reporting “unreliable_alt” can be clearly 

observed.  

 

 No. of flights No. of flights 

unreliable_alt=TRUE 

Percentage 

Gain = 40 dB 

(2/3-7/2021)2 
1466 128 8.9% 

Gain = 10 dB 

(3/3-7/2021) 
2440 259 10% 

Gain = 20 dB 

(3/10-14/2021) 
2655 66 2.5% 

Table 4: Results of gain change in the quality of data 

 

 

  

 
2 Indicates the period of measurements for each gain change. The number of days is the same (5) in all three cases.  
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Chapter 4: Extracting Capacity Metrics 

 

Having collected, organized, and processed such a large amount of data, from three different locations, the 

next step is to utilize the data for the initial purpose of this project, to extract metrics necessary for capacity 

estimation. The results in the following section are mostly for KOSU and KFRG airports, since KCGS has 

a much lower activity and did not present as much interest. Table 4 includes the aircraft approach speeds 

per aircraft category given by the FAA Advisory Circular AC 150/530-13.  

Aircraft 

Category 

Approach Speed 

(knots) 
Example 

A <91 Cessna 172 

B 91 to <121 King Air 200 

C 121 to <141 B-737 

D 141 to <166 B-767 

E 166 or more SR-71 

Table 5: Aircraft approach speed categories (FAA) 

 

Section 4.1: Approach Speed 

The first metric computed and analyzed was approach speed. As explained earlier, approach speed is the 

speed that aircraft have before approaching the runway to land. To measure the approach speed, it is first 

necessary to identify all the possible runway options that an aircraft has to land at each airport. Usually all 

runways, from all ends, are used for landing, depending on the day and the winds. However, it is often that 

some runways are not used as much and mostly serve as taxiways. In the case of KOSU, runway 5/23 is 

used only in extreme crosswind situations, and in the case of KFRG, runway 1/19 is rarely used.  

           

Figure 18: Possible options for landing at KOSU and KFRG airports 
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The steps for calculating approach speed for either runway at either airport are as follows. Boundary boxes 

were created at either end of each runway studied. Each box started at the end of the runway and spanned 

a couple of miles beyond it. The length of the box depends on the length of the runway. The longer runways 

can be used by heavier aircraft, which will start their landing procedure a lot earlier. The width of the boxes 

is slightly larger than the width of the runway, so as not to miss any points that might be slightly off. Once 

the latitude and longitude dimensions of each box are set, the last metric used is track. Track is involved in 

the procedure to ensure that all points captured within the box are from aircraft heading to land at the correct 

direction. For example, for aircraft approaching to land on runway 9L at KOSU, the track should be between 

87 and 92 [22].  

 

 

Figure 19: Boundary boxes used to collect approach speed 

 

The approach speed was collected for samples of data and was categorized based on aircraft type. An 

example of the results of aircraft landing on runway 9R at KOSU airport is depicted in the graphs of Figure 

20.  
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Figure 20: Approach speed results for runway 9R at KOSU 

As seen, the approach speed ranges from 50 to 120 knots, with most points gathered between 55 and 70 

knots and the predominant value being 60 knots. This runway is expected to experience a variable approach 

speed, since it is the longer runway of the airport and is utilized both by small, fixed wing single engine 

aircraft and larger fixed wing multi engine aircraft. Bigger aircraft arrive at a higher speed. The overall 

results for all runways and both airports can be seen in Table 5. 

Airport 
Runway used 

for landing 

Groundspeed 

range (knots) 

Average Approach Speed per aircraft type 

(knots)3 

Fixed wing  

single engine 

Fixed wing  

multi engine 

KOSU 9L 60-75 66 62.5 

 9R 60-110 71 68 

 27R 60-80 70 69.5 

 27L 60-110 71 73 

 5 55-65 58 63 

 23 55-65 59 60 

KFRG 14 55-85 62 82 

 32 50-85 68 83 

 1 Not used   

 19 Not used   

Table 6: Approach speed results 

At KOSU, runway 9L/27R is mostly used by small training aircraft and therefore the approach speed is 

expected to be lower compared to runway 9R/27L, which is used by both small and larger aircraft. This 

also explains the bigger range of values for runway 9R/27L. Lower approach speeds are found on runways 

accommodating solely the smaller single engine aircraft (KOSU 9L) and aircraft operating on crosswind 

runways when headwinds tend to be greater (KOSU 5/23). 

At KFRG the runway mainly used is 14/32, and usually aircraft take off at 14 and land on 32, unless weather 

conditions require a change in the pattern. The range of approach speed is particularly steady between 50 

and 85 knots. This runway is also used by both single and multi-engine aircraft. 

 
3 Results computed for the same number of days in each case (4 days).  
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Section 4.2: Runway Occupancy Time 

Runway occupancy time indicates the time an aircraft spends on the runway, from the moment it passes the 

runway threshold until the moment it turns and exits the runway and poses an important limitation to the 

runway’s capacity. Runway occupancy time (ROT) is not only related to the type and speed of the aircraft 

landing, but also to the geometric characteristics of the runway (i.e., runway length, number of exits, 

position of exits etc.). The steps for calculating ROT at either runway are as follows. The first point a 

landing aircraft is seen on the runway or right before the runway is recorded as the Touch Time (𝑡𝑡). The 

point at which the same aircraft exits the runway is recorded as Exit Time (𝑡𝑒). To identify the Touch Time, 

a small boundary box is used at either end of the runway. To identify the Exit Time, the position of the 

aircraft is compared to the position of the exits. If the track of the aircraft changes near an exit, then the 

aircraft is exiting the runway and that moment is distinguished as the Exit time [23][24].  

         

Figure 21: Runway thresholds and Exit positions 

The exit used at each landing depends on how quickly the aircraft manages to decelerate after its landing. 

In order for an aircraft to turn and exit the runway it must have adequately lowered its speed. If the speed 

is still high, then the aircraft will have to taxi all the way to the end of the runway. In the case of runway 

9L/27R, the runway is short and does not have exits that can be used, therefore, all aircraft landing on this 

runway must exit at the far end of the runway. The results for the Average Runway Occupancy Time 

(AROT) for each runway and for the different exits used, are shown in Table 6.  

The blank cells of the table indicate that either the runway is not frequently used by that aircraft type (multi 

engine aircraft do not operate on short runways), or the exit cannot be used by that aircraft type. Specifically, 

multi engine aircraft will not use the exit closer to the runway threshold and single engine aircraft rarely 

taxi to the end of the runway if there is a sooner exit. Figure 21 indicates the different runways and different 

exit locations at the two airports. 
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Airport 
Runway used 

for landing 

Exit used for 

landing 

AROT per aircraft type (secs)4 

Fixed wing  

single engine 

Fixed wing  

multi engine 

KOSU 9L End of runway 43 -- 

 9R Exit C 34 -- 

 9R Exit D 48 34 

 9R End of runway -- 64 

 27R End of runway 49 67 

 27L Exit D 28 -- 

 27L Exit C 45 30 

 27L End of runway -- 98 

 5 End of runway 82 -- 

 23 End of runway 80 -- 

KFRG 32 Exit A5 29 30 

 32 Exit A4 33 34 

 32 Exit B 42 40 

 14 Exit B 29 -- 

 14 Exit G 32 36 

 14 Exit A5 -- 50 

Table 7: Average Runway Occupancy Time 

 

As expected, the further the exit is from the runway threshold, the more time the runway is occupied by the 

aircraft. However, the expected lower values for multi-engine aircraft, which, as seen previously, approach 

the runway with a higher speed and therefore should cover the distance in less time, were not confirmed. 

After examining the case of multi-engine aircraft closer, it was observed that even though the aircraft touch 

the runway at a higher speed, in many cases they slow down more abruptly and then taxi at a low speed 

until the exit. As long as an aircraft is still on the runway, no other aircraft can use the runway to either take 

off or land, until the runway is completely cleared. Therefore, as the runway occupancy time increases, the 

number of aircraft that can be accommodated by the runway, within a given period of time, decreases. 

  

 
4 Results computed for the same number of days in each case (2 days). 
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Chapter 5: Conclusions and Future Work 

 

The aim of this research was to develop an efficient aircraft data collection process for General Aviation 

airports, which would yield the necessary information that, in turn, would enable the extraction of capacity 

metrics. The previous chapters presented the data collection method that was selected and the challenges 

that emerged by this decision, as well as the extraction of the average approach speed and the average 

runway occupancy time, two important capacity metrics, from the collected data.  

Section 5.1: Conclusions  

This section will sum up the conclusions both for the data collection method and the results on the extracted 

capacity metrics.  

Subsection 5.1.1: The use of ADS-B data 

Overall, the results of this research have shown that leveraging ADS-B data to understand aircraft 

performance and enhance the capacity estimation procedure for General Aviation airports, has been 

effective. ADS-B data can provide adequate information for the detailed tracking of aircraft both while on 

flight and when taxiing, by receiving direct information communicated by the aircraft and not estimated by 

the system. This method can become an important and useful tool equally for research purposes as well as 

for traffic management and monitoring around the airport environment, especially for non-towered airports.  

As in most cases, when dealing with raw data some pre-processing steps were required before using them 

for any computation. However, this procedure did not become an impediment, but assisted the further 

refinement of the information received. In most cases, ADS-B messages were consistent and dense, creating 

a comprehensive profile for each flight captured by the receivers. For cases where anomalies are detected, 

such as the case of unreliable altitude, an effective procedure has been created to identify those 

discrepancies and normalize the data to approach reality. Also, the three airports that participated in this 

initial study provided multivariate data and different airfield environments that helped creating a stable and 

trusted data collection system, which will be able to adapt in any GA airport.  

Subsection 5.1.2: Extracted metrics 

Initial performance measures of aircraft approach speeds and runway occupancy times extracted from the 

ADS-B data are a good representation of aircraft behavior at GA airports and can form the basis for a 

capacity estimation model. Regarding approach speed the results were anticipated, based on the values 

provided by the FAA, and as expected, were higher for the longer runways that are used both by single and 

multi-engine aircraft. Longer runways provide additional length for an aircraft to slow down when landing 

with a higher speed and being heavier. Higher approach speeds will allow higher throughput rate; however 

major discrepancies between approach speeds on the same runway can lead to various challenges when 

trying to maintain the separation between aircraft. 

Runway Occupancy Time is an important limitation for an airport’s capacity, since a higher ROT invariably 

leads to fewer operations per runway. Apart from the optimal design of runways and exit position, aircraft 

characteristics will also affect ROT. Carefully collecting and calculating the AROTs for each runway at 

each airport is key to accurate capacity estimation. The further the exit from the runway threshold, the more 
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time is needed for an aircraft to adequately lower its speed. However, an exit located really close to the 

runway threshold would not provide a solution to this, as it would be missed by most aircraft. Moreover, 

even though multi engine aircraft might land at a higher speed, and would be anticipated to cover the length 

of the runway in less time, this was not confirmed as aircraft are required to reduce their speed enough and 

are not able to exit earlier. After all, both average approach speeds and average runway occupancy times, 

along with other characteristics (e.g., minimum separation requirements, average aircraft fleet mix etc.) 

must be used to estimate the maximum sustainable airport capacity.  

Section 5.2: Future Work 

The use of ADS-B data to measure aircraft performance is still at an initial stage, especially for GA airports. 

There are more steps that can be taken to further develop and refine the data collection method proposed or 

to include more parameters in the performance analysis.  

Subsection 5.2.1: Including more airports in the study 

One of the next steps of this research will be to include more airport environments, that will provide 

different and equally significant data. The main reasons behind this step are a) to evaluate the validity and 

performance of the already designed procedures, b) to determine how well they can adapt to new conditions, 

and c) to identify different operational characteristics and constraints at airports with higher activity or 

unique geographical positions. The airports that we have already decided to include are the Grand Forks 

International Airport, ND (KGFK) and the Daytona Beach International Airport, FL (KDAB). KGFK has 

four runways (17R/35L, 09L/27R, 17L/35R, 09R/27L), two of which are intersecting, and 12 helipads. The 

airport’s average field elevation is 845 ft. KDAB has three runways (07L/25R, 16/34, 07R/25L), of which 

two are parallel and one intersecting, and the average field elevation is 34 ft [21]. The airports participating 

at the moment are not confronted with capacity issues, however both KDAB and KGFK are known to have 

high aircraft activity, and to often operate at capacity limits. Therefore, it will be interesting to see how both 

the data collection method and the extraction process will adapt in these environments. The steps that have 

already been implemented, regarding the data preparation, will help to quickly identify any anomalies and 

to rectify the data, if needed.   

Subsection 5.2.2: Refining and validating the extraction method 

Repeating the extraction of metrics for larger datasets, over longer periods of time, will help to identify any 

anomalies that might not have been observed yet. This procedure will ensure the accuracy of the method 

and its adaptability to any ADS-B dataset. Having validated the method, it will then be possible to automate 

the procedures and incorporate them to the system and have the ROT and average Approach Speed of each 

flight stored at the “flights” table of the online database.  

Subsection 5.2.3: Incorporating weather data in the analysis  

One more important parameter that needs to be considered in the analysis is the impact of varying weather 

conditions, and how they affect each airport’s operations and therefore capacity levels. Processing data for 

longer time intervals will cover the different seasons and will also provide input for a comparative analysis 

of aircraft performance from “good” weather to extreme winds or rainy days with wet surfaces. Especially 

for locations where inclement weather conditions are frequent and the option to shift operations from one 

runway to another, to avoid strong crosswind, is not available, this additional analysis will provide 

significant results.  
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Section 5.3: Extensions 

The data collected using the method presented in this Thesis may give rise to several applications, in 

addition to the improvement of the operation and the facilities of a GA airport. 

• Flight schools may use the data to generate flight patterns of their trainees and help them improve 

their piloting skills. One can imagine a student being able to observe their approach to the runway 

or their taxiing maneuvers.  

• The FAA may use the data to identify aircraft with malfunctioning ADS-B transponders and/or 

wrong aircraft ids in their database. These aircraft can be informed about their faulty equipment or 

other deficiencies. 

• Since several small airports lack automated data collection systems and are not staffed 24/7, they 

cannot record the full extent of their activity. Installing a system like the one developed in this 

project will greatly improve their flight monitoring (and reporting) capabilities. 

• Widespread use of automated data collection systems in the majority of small airports in the country 

will provide a wealth of data to the FAA and enable the Agency to redesign the rules for General 

Aviation and to improve the overall capacity of the National Airspace. 
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