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Energy retrofits of existing buildings reduce grid requirements for new gen-

eration and reduce greenhouse gas emissions. However, it is difficult to estimate

energy savings, both at the individual building and entire building stock level, be-

cause building energy models are poorly calibrated to actual building performance.

This uncertainty has made it difficult to prioritize research and development and

incentive programs for building technologies at the utility, state, and federal level.

This research seeks to make it easier to generate building energy models for existing

buildings, and to calibrate buildings at the stock level, to create accurate commer-

cial building load forecasts. Once calibrated, these building models can be used

as seeds to other building energy model calibration approaches and to help utility,

state, and federal actors to identify promising energy saving technologies in com-

mercial buildings. This research details the economics of a building energy retrofit

at a singular building; contributes significantly to the development of ComStock, a

model of the commercial building stock in the U.S.; identifies important parameters



for calibrating ComStock; and calibrates ComStock for an example utility region of

Fort Collins, CO against individual commercial building interval data. A study of

retrofit costs finds that measure cost and model uncertainty are the most signifi-

cant sources of variation in retrofit financial performance, followed financing cost. A

wide range of greenhouse gas pricing scenarios show they have little impact on the

financial performance of whole building retrofits. A sensitivity analysis of ComStock

model inputs across an exhaustive range of models identifies 19 parameters that ex-

plain 80% of energy use and 25 parameters that explain 90% of energy use. Building

floor area alone explains 41% of energy use. Finally, a comparison of ComStock to

Fort Collins, CO interval meter data shows a 6.92% normalized mean bias error

and a 16.55% coefficient of variation of root mean square error based on normalized

annual energy per floor area. Improvements in meter classification and ComStock

model variability will further improve model fit and provide an accurate means of

modeling the commercial building stock.
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Chapter 1: Introduction

1.1 Energy Use in Commercial Buildings

Energy savings in existing buildings is an area for sizable, cost-effective energy

use reduction and greenhouse gas mitigation for economic and environmental bene-

fits [1,2]. Buildings are capital intensive and long-lasting, with a median lifetime of

70 years [3]. A building is often renovated over the course of its lifespan to incorpo-

rate new uses, tenants, and bring the building up to code. 86% of all construction

costs go toward renovations of existing buildings rather than new construction [4],

yet renovation rates are only 2.2% of the annual building stock, with an 11% av-

erage energy savings [5]. The expense and scale of this infrastructure means that

large scale shifts in energy use and predominant fuel sources take decades. Without

increased investment and focus on energy retrofit of existing buildings, as much as

80% of 2005 thermal energy consumption may remain past 2050 [6]. Along with

decarbonization of the electric grid, the building renovation rate will need to in-

crease several times over, and average energy savings per project improve to >50%

energy savings, to meet greenhouse gas emission reduction targets and Architecture

2030 goals [5]. Few projects in the U.S. have achieved this level of energy savings,

with one recent study identifying only 50 such projects, known as deep or advanced
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energy retrofits [7, 8]. There is a need to understand why these projects are un-

common, what factors influence savings, and develop analysis tools to make these

projects more feasible.

1.2 Energy Retrofits

The paucity of deep energy retrofit projects can be attributed to a host of

factors. Chief among these is the codependent influence of capital constraints and

investment uncertainty. Lack of access to capital, insufficient payback, and energy

savings uncertainty are the top barriers to making energy retrofits more prevalent

[9, 10]. Most projects are funded with limited internal capital, sometimes with

assistance from grants, rebates, and other incentives. These projects have tended

toward specific lighting, controls, and Heating, Ventilating, and Air Conditioning

(HVAC) equipment measures with reliable savings, as it can be very expensive to

go through an extensive energy audit to identify further measures and may not

significantly reduce the energy savings uncertainty. When many Energy Efficiency

Measures (EEMs) are done together, savings interaction will increase the overall

savings uncertainty. EEMs are often selected by simple-payback which results in

good financial payback on a per-measure basis, but this ranking does not consider

how measure integration can unlock greater energy savings by lowering heating

and cooling loads to enable alternative mechanical systems. Lower heating and

cooling loads enable downsizing of central mechanical equipment, which allows the

significant equipment replacement cost savings to be used to pay for other measures.
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This means that choosing measures with optimal payback individually may not yield

the optimal retrofit decision overall. The uncertainty in savings for larger retrofit

projects targeting deeper savings has meant greater expense in measurement and

selecting EEMs to be able to verify savings. The larger the project scope and options

considered, the greater the expense in data collection. It takes an enormous amount

of effort to develop a fully calibrated energy model of a building that can be used to

accurately determine measure savings. In most buildings, the data is not available.

But even in buildings with newer building management systems (BMS) that trend

hundreds of points, the sensors go out of calibration, there may be multiple systems

to collect data in different formats, and the effort to clean, process, and make this

data usable for actionable decisions requires an expense that is well beyond the

budget available. Faced with this challenge, an energy auditor must triage data

collection and may omit EEMs simply because it is too difficult to estimate savings.

Overall, uncertainty and capital budgets make energy retrofits an economic problem,

not just a physical one.

1.3 Stock Models

The challenge of energy retrofits and low energy design extends to the entire

commercial building stock. Utilities, states, and governments are under increasing

pressure to decarbonize the electric grid through a mix of energy efficiency and

renewable energy generation. Knowing which technologies to support for further re-

search and development and which technologies to scale up through market incentive

3



programs is critical to this goal. From the individual building up to the commercial

building stock, there is need for representative, calibrated building energy models

to use a starting point for individual building energy model calibration and to best

estimate retrofit technologies for large scale development and deployment.

1.4 Dissertation Structure

This chapter, (Chapter 1), frames the issue of energy use in buildings and

the difficulties of energy retrofits. Chapter 2 presents a literature review of en-

ergy retrofit analysis methods, building energy modeling (BEM), and calibration

approaches. Chapter 3 presents the research hypothesis and objectives of the dis-

sertation. Chapter 4 presents methodology for analyzing energy retrofits under un-

certainty, and a methodology for quickly creating exploratory reduced-order building

energy models that will later be used in the calibration process. The chapter also

includes a description of the proposed calibration methodology for targeting data

collection and details how this will be tested. Chapter 5 details ComStock, a com-

mercial building stock modeling tool. Chapter 6 studies the feature importance

in ComStock to develop priorities to investigate further for calibration. Chapter 7

presents an example calibration of ComStock for Fort Collins, CO. Lastly, Chap-

ter 8 summarizes the work and contributions made to the field of building energy

modeling and explores how this work can be used in future analysis.
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Chapter 2: Literature Review

This chapter presents an overview of methodologies for selecting EEMs, how

energy savings are calculated, the basics of building energy modeling, and the ap-

proaches to calibrating building energy models.

2.1 Energy Retrofits

Currently, in industry, it is common for energy efficiency measures to be se-

lected based on the preferences of the energy auditor or facility manager. Figure

2.1 shows how this expert process can produce very different recommendations for

a given building, with measure costs and payback estimates varying by a factor of

two [11]. In cities where audits of commercial buildings are required, audits have a

small impact on reducing energy use, with primary savings limitations being audit

quality, limited access to capital, and uncertainty in energy savings projections [12].

The energy retrofit literature has sought to improve energy audit and recom-

mendation repeatability and reliability by establishing methodologies for choosing

EEMs in energy retrofits [13]. However, only a subset of the literature considers

the integrative aspects of measure selection, and even fewer consider the uncer-

tainty involved in both endogenous factors to the building (baseline parameter un-

5



Figure 2.1: This graphic presents EEM recommendations for a office
building in Philadelphia, PA, from three different energy auditors [11].
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certainty, measure performance, and building use) and exogenous factors (energy

price, weather, energy policy, and greenhouse gas policy variability). These factors

are listed in Table 2.1.

Table 2.1: Endogenous and Exogenous Factors Influencing Retrofit Savings

Endogenous Factors Exogenous Factors

Factors internal to the building and
building operation

Factors external to the building

Baseline model parameter uncertainty Weather
Measure performance Measure cost
Building use and operational changes Energy price

Government regulations and policy
Greenhouse gas policy

One recent study demonstrated how the ideal measure package changes with

uncertainty of technology performance, capital costs, energy prices, carbon tariffs,

and grid decarbonization [14]. This study also evaluated the range of outcomes un-

der three decision criteria: maximum weighted average of options, maximum under

the most pessimistic scenario, and the smallest regret to minimize difference in ex-

pected outcome. This approach captures the interactions among retrofit measures,

and found that technology performance, capital costs, and energy prices caused the

most significant difference in financial performance. This study implemented all

measures at once, which is not always feasible, depending on available capital and

desire to wait until end-of-life to replace equipment. Another study demonstrated

a process to implement measures in a package ordered depending on capital avail-

ability [15]. This approach reduced financial risk exposure of a large retrofit project

by staying within an internal budget, but it did not consider what measure package

7



would result in the optimal savings. In both approaches, measure integration and

packaging are important. Interestingly, extending the project timeline incorporates

major equipment replacements, that are already embedded in capital plans, into

a comprehensive retrofit package. This allows targeted load reductions to precede

equipment replacement, which can reduce the equipment cost for replacement equip-

ment, with the potential cost of forgoing possible energy cost savings. This trade-off

between replacing equipment before the expected end of its service life and forgoing

possible energy savings from implementing measures sooner is an important con-

sideration in energy retrofits and deep energy retrofits. This trade-off has not been

explored in depth to see how it may influence measure selection and constitutes the

first research objective.

2.2 Energy Efficiency Evaluation

After EEMs are selected, there is a separate approach in the industry to deter-

mine actual energy savings, known as Measurement and Verification. MEasurement

and verification standards are governed by the International Performance Measure-

ment and Verification Protocol (IPMVP) [16] and established in ASHRAE Guide-

line 14 [17]. There are several methods for determining energy savings for an energy

retrofit project, detailed in Table 2.2.

The retrofit isolation approaches are most common for small, one-off, easy to

measure EEMs, like installing VFDs on pumps and fans, or replacing older T8 or

T12 fluorescents with T5 or LED lamps. However, for larger projects that involve
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Table 2.2: IPMVP Energy Savings Estimation Methods [16]

IPMVP Option Savings Calculation Application

Retrofit Isolation Isolated measurement of
key parameters influenc-
ing EEM

Single, simple EEMs that are eas-
ily metered before and after im-
plementation. Does not include
measure interaction.

Whole Facility Regression model of
whole building utility
data

Major renovation targeting many
building systems. Unable to esti-
mate savings a priori.

Calibrated Simulation EEMs implemented in an
energy model calibrated
to whole building utility
data

Major renovation targeting many
building systems; changes ex-
pected in building use.

multiple, interactive EEMs, it is not possible to isolate and properly attribute energy

savings to individual EEMs. To capture savings for larger retrofit projects where

interactive effects are substantial, there are two different approaches. A whole-

building statistical black-box model approach, where building utility data is used

with other predictors to construct a generalized regression model to predict energy

use as if the baseline building kept operating, and a physical model approach where

the building physics are represented and EEMs and overall savings are modeled

explicitly [18,19]. These two methods are explained in further detail in the following

sections.

2.2.1 Measurement and Verification Model Calibration Standards

Whole building energy models are simplified representations of all the com-

plex parameters and interactions that determine how much energy a building uses,
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including weather, occupants, and innate characteristics of building systems. In

measurement and verification, the whole-building model is matched to energy data,

creating a baseline building model, which is the building before EEMs are imple-

mented. This model is then used to predict energy use in the period after retrofit,

using real weather and occupancy from the post-retrofit period. This prediction is

compared against actual utility data to determine energy savings.

To make an accurate savings estimate, the baseline model must be a good pre-

dictor of baseline building energy use. The measurement and verification standards

community has established Normalized Mean Bias Error (NMBE) and Coefficient of

Variation of the Root Mean Square Error (CVRMSE) as the two metrics to establish

model calibration, shown in to Eqns.2.1 and 2.2 [17].

CV RMSE = 100

√∑n
i=1 (yi−ŷi)2
(n−p)

ȳ
(2.1)

NMBE = 100

∑n
i=1 (yi − ŷi)
(n− p)ȳ

(2.2)

where yi is the utility data for time i, ȳ is the mean of all utility data, ŷ is the

simulated energy use for timestep i, n is the number of datapoints (12 for monthly

and 8760 for hourly annual calibration), and p is the number of parameters in

the baseline model, taken to be 1 for model calibration. The discrepancy between

simulated energy use and utility data must have a CVRMSE and NBME lower than

the standards specified in Table 2.3.

NBME ensures that the overall energy use in the model is matched to the real

building, so as not to grossly over or under predict aggregate savings. CVRMSE
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Table 2.3: Minimum calibration criteria specified by standards organizations [17]

Monthly Criteria (%) Hourly Criteria (%)

Standard or Guideline NMBE CVRMSE NMBE CVRMSE

ASHRAE Guideline 14-2002 [17] 5 15 10 30

IPMVP [16] - - 5 20

ensures that the model does not over- or under-predict seasonal dependent uses such

as HVAC energy in monthly data, and occupant or lighting related energy use in

hourly data. Recently, there has been some discussion about the suitability of these

metrics to establish model calibration, because while they ensure good agreement

with utility data (low output-side error), this agreement can be reached along with

large discrepancies between specific input values and the real values in a building

(high input-side error) [20]. This discrepancy is primarily a concern for physical

models, and is a focus of this dissertation.

2.2.2 Black-Box Models for Predicting Energy Savings

Black-box models are the most common choice for measurement and verifica-

tion, as they are relatively simple compared to physical models, and most just need

utility data and weather data to create a good prediction. Most common are re-

gression models, where utility data is modeled with a generalized linear model with

terms for outdoor air temperature, day-of-week, hour-of-day, month, and other such

variables [21]. These models meet calibration standards for most buildings, with

75% or more buildings meeting calibration criteria, with an exception of CVRMSE
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for a mean-week model that predicts energy use solely as an average of time-of-

week [21]. Ongoing research seeks to compare and establish wide ranging testing

for measurement and verification models [22] to improve model accuracy and reduce

the largest errors. While useful for measurement and verification, black-box models

cannot predict energy savings as can a physical model, and so cannot be used to eval-

uate EEM options in the first place. If the model relies on data such as occupancy,

which may change substantially in the post-retrofit period, or insufficient baseline

energy data exists to generate a regression model, a physical model is necessary.

2.2.3 Physical Building Energy Models for Measurement and Verifi-

cation

Building Energy Modeling (BEM) was developed in response to the Arab oil

embargo in the 1970s to calculate thermal load and energy requirements for build-

ings [23]. BEM tools have since matured and are used in many applications in

the buildings industry to make early design decisions, perform load calculations,

optimize controls, demonstrate code compliance, and evaluate energy efficiency pro-

grams. Tools range from simple spreadsheets to integrated solvers, such as En-

ergyPlus, that couple thermal processes in building envelopes with HVAC system

models [24]. A detailed comparison of building energy simulation software is avail-

able in [24]. This dissertation uses EnergyPlus [25] and OpenStudio [26], an Ap-

plication Programming Interface (API) for EnergyPlus, as they are are open-source

tools under active development, and the only such open-source tools at present with
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Figure 2.2: Integrated solvers of the EnergyPlus solution manager [25]

substantial analysis and cloud computing support.

EnergyPlus is an integrated ODE solver for calculating air and surface tem-

peratures in a zone from convective, conductive, and radiative exchange, illustrated

in Figure 2.2. The core of the solver assumed a zonal mixed air model which itera-

tively calculates a zone’s air temperature based on internal loads, surface exchange,

and air mixing, as shown in the governing Eqn. 2.3.

Cz
dTz
dt

=

Nsl∑
i=1

Q̇+

Nsurfaces∑
i=1

hiAi(Tsi−Tz)+
Nzones∑
i=1

ṁiCp(Tzi−Tz)+ṁinfCp(T∞−Tz)+Q̇sys

(2.3)

where:

Cz
dTz

dt
= energy stored in zone air

Cz = ρairCpCT

ρair = zone air density

Cp = zone air specific heat
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CT = sensible heat capacity multiplier

Tz = zone air temperature∑Nsl

i=1 Q̇ = sum of zone convective internal loads∑Nsurfaces

i=1 hiAi(Tsi − Tz) = convective heat transfer from zone surfaces∑Nzones

i=1 ṁiCp(Tzi − Tz) = heat transfer from interzone air mixing

ṁinfCp(T∞ − Tz) = heat transfer due to infiltration of outside air

T∞ = outdoor air temperature

Q̇sys = ṁsysCp(Tsup − Tz) = system energy provided to the zone

ṁsys = air system mass flow rate

Tsup = supply air temperature

The air system assumes perfect operation, i.e. the terminal units if present

are controlled ideally, and the plant systems can meet load up to their capacity

if needed. Plant systems are approximated with performance curves for all types

of equipment, including chillers, cooling towers, boilers, fans, pumps, DX heating

and cooling coils, etc. There are hundreds of parameters that go into specifying

a full EnergyPlus model. Most parameters are singular values. However, internal

loads are modeled with a peak value multiplied by a fractional schedule, and most

HVAC equipment performance is specified by quadratic, cubic, or biquadratic curves

with specific curve coefficients. Schedule values and curve coefficients are difficult

to specify as singular variables in calibration, and thus tend to be excluded from

calibration workflows.

Achieving model calibration is comparatively much more difficult for physical
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building energy models than for black-box regression models. This is because of the

hundreds of available parameters to tune and match to the baseline building. Most

importantly, it is possible to achieve calibration criteria without good agreement

between model parameters and real building parameters, as the quantity and simi-

larity of some input parameters can lead to model over-fitting [20, 27]. Section 2.3

goes into greater detail on model calibration and presents current solutions to the

over-fitting problem.

2.2.4 Summary of Energy Savings Measurement and Verification

Energy savings estimation and measurement and verification for energy retrofits

includes a range of analysis methods. Of the analysis methods, only building en-

ergy modeling - representation of the physical model of the building explicitly -

can be used to predict energy savings from a group of EEMs that are highly in-

teractive. BEM is used in this dissertation to explore EEM selection strategies,

develop reduced-order models of buildings to prioritize energy auditing scope, and

estimate savings uncertainty from implementing a retrofit measure package. Many

BEM models together are used to construct a model of the national building stock.

2.3 Building Energy Model Calibration

2.3.1 Overview of Approaches

In order for the building energy model to be used for the retrofit savings pre-

diction, the model must be calibrated to accurately represent the baseline building
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conditions. Calibration involves matching the input model parameters as close to

reality as possible, from on-site audits, standards, and industry benchmarks, so that

the model accurately predicts the energy use in the baseline period. There have been

many varied approaches to building energy model calibration [18,28,29]. When done

well, the building energy model becomes a good representation of the building and

can even be used for model-based commissioning to identify operational issues in

HVAC systems or other faults [30,31]. However, it is rare for a model at first pass to

accurately predict building performance. Model errors arise from four distinct rea-

sons: specification uncertainty [18,32,33], parameter uncertainty [18,34], numerical

uncertainty [18,32], and scenario uncertainty [18,35], detailed in Table 2.4.

16



T
ab

le
2.

4:
C

au
se

s
of

B
u
il
d
in

g
E

n
er

gy
M

o
d
el

U
n
ce

rt
ai

n
ty

U
n
ce

rt
ai

n
ty

S
ou

rc
e

D
es

cr
ip

ti
on

T
y
p
ic

al
In

fl
u
en

ce
on

M
o
d
el

S
p

ec
ifi

ca
ti

on
U

n
ce

rt
ai

n
ty

M
o
d
el

m
is

sp
ec

ifi
ca

ti
on

co
m

es
fr

om
si

m
p
li
fy

in
g

p
h
y
si

ca
l

re
p
re

se
n
ta

ti
on

s
of

th
e

b
u
il
d
in

g,
su

ch
as

co
m

b
in

in
g

zo
n
es

,
om

it
ti

n
g

or
si

m
p
li
fy

in
g

p
ie

ce
s

of
m

ec
h
an

ic
al

eq
u
ip

m
en

t,
an

d
se

tt
in

g
u
p

co
n
tr

ol
s

in
-

co
rr

ec
tl

y

la
rg

e;
(>

10
0%

er
ro

rs
p

os
si

b
le

)

P
ar

am
et

er
U

n
ce

rt
ai

n
ty

m
an

y
p
h
y
si

ca
l
p
ro

p
er

ti
es

or
effi

ci
en

ci
es

in
b
u
il
d
in

gs
ar

e
h
ar

d
to

k
n
ow

ex
ac

tl
y.

S
om

e,
li
ke

in
fi
lt

ra
ti

on
,

ar
e

ve
ry

d
iffi

cu
lt

to
m

ea
su

re
an

d
h
av

e
w

id
e

va
ri

a-
ti

on
s

ov
er

si
m

il
ar

b
u
il
d
in

g
ty

p
es

.
T

h
is

al
so

in
cl

u
d
es

se
n
so

r
an

d
m

ea
su

re
m

en
t

u
n
ce

rt
ai

n
ty

of
en

er
gy

an
d

B
M

S
d
at

a

si
gn

ifi
ca

n
t

so
u
rc

e
of

er
ro

r;
la

rg
e

(>
10

0%
er

ro
rs

p
os

si
b
le

)
w

h
en

m
u
lt

ip
le

p
ar

am
et

er
s

ar
e

fa
r

fr
om

tr
u
e

va
lu

es
.

S
en

so
r

er
ro

r
is

sm
al

l,
ty

p
ic

al
ly

3
to

5%
[3

2]

N
u
m

er
ic

al
U

n
ce

rt
ai

n
ty

N
u
m

er
ic

al
u
n
ce

rt
ai

n
ty

is
ca

u
se

d
b
y

m
o
d
el

in
g

co
n
-

ti
n
u
ou

s
th

er
m

al
p
ro

ce
ss

es
in

d
is

cr
et

e
ti

m
es

te
p
s.

If
ti

m
es

te
p
s

ex
ce

ed
ty

p
ic

al
re

sp
on

se
ra

te
s,

or
co

n
-

tr
ol

lo
gi

c
in

th
e

p
h
y
si

ca
l

sy
st

em
,

th
is

ca
n

le
ad

to
im

p
ro

p
er

in
te

rp
ol

at
io

n
s

an
d

m
is

s
th

in
gs

li
ke

eq
u
ip

m
en

t
cy

cl
in

g.
T

h
is

is
co

n
tr

ol
le

d
w

it
h

sm
al

le
r

ti
m

es
te

p
s

an
d

m
or

e
ac

cu
ra

te
co

n
tr

ol
lo

gi
c

sm
al

l;
er

ro
rs

ty
p
ic

al
ly

<
1%

w
h
en

ti
m

es
te

p
s

ar
e
<

10
m

in
,

th
ou

gh
ca

n
b

e
la

rg
er

if
eq

u
ip

-
m

en
t

sh
or

t-
cy

cl
in

g
is

p
re

se
n
t.

S
ce

n
ar

io
U

n
ce

rt
ai

n
ty

V
ar

ia
b
le

s
li
ke

fu
tu

re
w

ea
th

er
an

d
o
cc

u
p
an

t
b

eh
av

-
io

r
ar

e
in

h
er

en
tl

y
u
n
ce

rt
ai

n
.

T
h
es

e
ca

n
b

e
an

al
y
ze

d
in

d
iff

er
en

t
fu

tu
re

sc
en

ar
io

s,
b
u
t

n
ot

ap
p
re

ci
ab

ly
re

-
d
u
ce

d

m
ed

iu
m

;
er

ro
rs

ca
n

b
e

si
gn

if
-

ic
an

t
fo

r
b

eh
av

io
ra

l
in

fl
u
en

ce
s

[3
5]

,
an

d
w

ea
th

er
ca

n
va

ry
co

n
-

si
d
er

ab
ly

ye
ar

b
y

ye
ar

.

17



As there are many sources of uncertainty, model calibration is typically done

by a building science expert manually adding or removing model components and

adjusting parameter values to improve calibration to meet the criteria given in Table

2.3 [28,36–38]. Modelers focus on values that are highly influential in the simulation,

with common parameters varying by building type and location [20,27,30,37,39–41].

This process is very time consuming, so many have proposed automated methods

to reduce parameter uncertainty [19,28].

Automated methods typically approach the problem by first running a sensitiv-

ity analysis to determine influential model parameters [42], and then once sensitive

parameters are determined, using optimization algorithm to find the parameter val-

ues that best reduce NMBE and CVRMSE [43,44]. This process of using sensitivity

analysis followed by optimization is detailed in ASHRAE RP-1501 [45].

There are, however, several complications with this approach. Most impor-

tantly there is model over-fitting, also known as the identifiability problem, where

in a model with multiple parameters (hundreds in building energy models) many

combinations can produce the same outcome, especially if the output space is small

(e.g., monthly utility data) [18]. This is especially true with building occupants,

lighting, and plug load parameters that have many degrees-of-freedom in fractional

schedules and load values [35]. As there are many combinations of input parameters

than can achieve good performance on calibration criteria, it is easy for parameters

to get stuck at local minimums [32] or at parameter constraints that ultimately

create a bias error when evaluating EEMs [18,46,47]. This can be partly mitigated,

but not avoided, by carefully setting parameter constraints [18, 42].
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Model over-fitting is largely a fault of using monthly utility data for calibration.

Monthly data is used because utilities, namely electricity and gas, are billed on a

monthly cycle. While 15 minute interval data is now common, gas data is still kept

in monthly increments for most buildings. This aggregation to monthly data is a

significant numerical uncertainty problem that makes it impossible to differentiate

the influence of schedules versus parameter values. It does not provide sufficient

resolution to understand the main drivers for electric energy end-uses [48] which can

be important in selecting and estimating savings from energy efficiency measures

[49]. Using monthly data in calibration can miss major discrepancies in model

specification, such as fan curves and equipment capacities, such that values are tuned

to reach calibration performance, even though the model is poorly specified [27]. One

study showed an average hourly bias of 48% HVAC energy use from using monthly

data in calibration [31], meaning many times the model over- or under-predicted

HVAC energy use by 48%. Calibration with monthly data can mask or introduce

faulty parameter values that may be critical to EEM analysis.

For retrofit analysis, it is insufficient to just show a good match to output-side

utility data. A good calibration will also show good model correlation to input-

side data, meaning the parameter values important for retrofit analysis are in good

agreement with real values. One study found that calibration to just monthly data

with ASHRAE Guideline 14 [17] results in a less than a 40% correlation to real

input parameters [36].

The issues with deterministic approaches and inability to reliably produce

input-side parameters have inspired the use of stochastic models that can better
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capture input parameter uncertainty, and therefore energy savings uncertainty, from

an energy retrofit. In particular, Bayesian calibration of models is a means of de-

veloping probability distributions for model parameters [50].

2.3.2 Bayesian Calibration

Bayesian calibration for building energy models is based on the work of Kennedy

and O’Hagan [50], and detailed in several articles and theses [32,51–54]. It is based

on Bayes theorem, given in equation 2.4, which states that the probability of pa-

rameters θ occurring given observed data y is proportional to the prior probability

distributions of parameters p(θ) times the likelihood function p(y|θ):

p(θ|y) ∝ p(θ)p(y|θ) (2.4)

This is expressed in mathematical form by equation 2.5 [48,55]:

y(x) = η(x, θ) + δ(x) + ε(x) (2.5)

where y(x) are energy measurement observations, η(x, θ) is a representation of the

energy simulation at known conditions x and calibration parameters θ, δ(x) is a

model inadequacy parameter meant to represent the discrepancy between the model

and the real building, and ε(x) is an error term for random measurement error. δ(x)

is modeled as a Gaussian process, which interpolates between model points and

gives a probabilistic representation of the energy model. Measurement error ε(x) is
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assumed to be mean zero and independently distributed. Detailed representation is

given in [53,55].

The overall steps of the Bayesian calibration process are as follows:

1. Step 0) Gather a list of prior uncertainty estimates for model parameters

[54, 56]. These are typical ranges of values for common model parameters

and their distributions. Typical distributions are either uniform or triangular.

Prior uncertainty values are difficult to measure, and come from standards or

existing literature [32–34,57–59].

2. Step 1) Create an initial model from building data for use in calibration. The

detail and starting accuracy of the initial model can influence the calibration

results if the model contains significant misspecification errors, especially for

optimization-based deterministic methods [32, 36]. This will place bounds on

uncertain parameters.

3. Step 2a) Run a parameter screening with a sensitivity analysis technique such

as the Morris method [32, 46, 55, 56, 60]. A discussion of sensitivity analysis

methods is available in Hopfe [57] and Menberg [40]. The Morris method is

decent at producing reliable parameter rankings quickly, though it does not

capture all complex parameter interactions that may be present in a model.

The goal of the parameter screening is to reduce the number of parameters

that will be included in the calibration. Non-influential parameters will not

change much in the process, but will add substantial simulation time.

4. Step 2b) Optionally use optimization to estimate starting parameter values
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and ranges for uncertain parameters.

5. Step 3) Run an energy model [32, 56, 61] with Latin Hypercube Sampling

(LHS) to generate a large set of values that cover the parameter ranges.

6. Step 4) Combine input, output, and observation data in a Gaussian Process

Emulator (GPE) that gives a probabilistic representation of the model [32,62].

There are some comparisons of which GPE to use [63,64], and this is an ongoing

area of research.

7. Step 5) Implement Bayes Theorem on a subset of output data with a Markov

Chain Monte Carlo (MCMC) method and iterate until a convergence crite-

ria is achieved to generate the posterior probability distribution. Chong [52]

compares No-U-Turn-Sampler (NUTS), Random-Walk Metropolis, and Gibbs

sampling, and recommends using NUTS as the MCMC algorithm.

The Bayesian Calibration workflow is represented graphically in Figure 2.3.

Bayesian calibration provides a significant improvement in both output and

input side error over a deterministic (optimization) approach [32, 65]. A calibrated

Bayesian model with just as-built drawings and utility data can perform comparably

to an expert-tuned model with more detailed submeter and equipment specification

data [55]. The output of a probability distribution for parameters facilitates easy

calculation of energy savings uncertainty for retrofit measures [46].

Bayesian calibration shows promise, yet so far most implementations have cal-

ibrated against only monthly utility data and investigated few (generally ≤ 4) pa-

rameters [46,54,56,60]. As discussed previously, since monthly data masks dynamic
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Figure 2.3: This graphic presents the typical Bayesian calibration workflow.
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changes, it limits the ability to restrict posterior distribution for schedule-dependent

parameters [32]. Chong [52] extended Bayesian calibration using hourly data by

taking a subset of hourly data instead of a full year, and by using the NUTS algo-

rithm to speed up the MCMC process. There exists ample opportunity to explore

Bayesian calibration with greater numbers of parameters, hourly data, additional

output comparison data, and data targeted to specific energy efficiency measures.

However, Bayesian calibration is currently limited because of lack of knowledge of

input parameters into the model.

2.3.3 Representative Seed Models for Calibration

While Bayesian calibration handles uncertainty nicely, it requires knowing

which parameters a particular model is most sensitive to and reasonable prior dis-

tributions for those parameters. Without good assumptions for input parameters,

Bayesian calibration performs poorly [52]. There exists a need to identify important

model parameters and establish uncertainty bounds [58]. Representative models can

be derived from bottom-up models of a building stock that cover a wide range of

building types and characteristics. So for, such stock models focus on the residential

sector [66], [67] or have limited geography and a limited set of input parameters [68].

Recent work covered in this dissertation develops ComStock [69], a model of the U.S.

commercial building stock. ComStock is, to the authors knowledge, the first attempt

at a bottom-up model of the U.S. commercial building stock.
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2.3.4 Conclusion of Calibration

This section presented the current approaches used in building energy model

calibration and explained the problems in many current approaches that rely on

expert modelers or optimization methods. Bayesian calibration was introduced as a

way of retaining uncertainty through the energy model calibration process to better

predict and give an uncertainty range for retrofit savings. Bayesian calibration

requires knowledge of input parameters and their distributions, which is a significant

limitiation to development of current Bayesian calibration research.
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Table 2.5 summarizes a subset of the recent literature on using automated

methods for building energy model calibration, including sensitivity analysis and

Bayesian calibration methods. Areas that are under-explored in the literature are

Bayesian calibration with hourly data (and calibrating with hourly data generally),

including what submeter data would be helpful in model calibration and retrofit

savings estimation [36, 75]. Collecting extensive submeter data entails significant

expense and expertise, even in buildings with modern BMS systems, and is im-

practical for a many buildings with limited staff and budget. It is not clear how

valuable this data is to determining energy savings from energy efficiency measures,

that is, specifically, it is not clear whether the expense in measurement and model

calibration will often exceed or stay below the corresponding value of uncertainty

reduction the measurement provides. Raftery [27] suggests a hierarchy of model

data, showing the importance of measured, logged data and how measured energy

end uses (and therefore savings estimates from related measures) can change dra-

matically as calibration improves. This implies that some measured submeter data

is vital to reducing uncertainty in input-side error and making savings estimates.

Bertagnolio [70] similarly finds the need to collect meter data to reduce input side

error. As energy savings uncertainty is a significant limitation to the uptake of en-

ergy retrofits, there is a need to prioritize building auditing, submetering, and sensor

collection in a way that will improve model calibration and reduce energy savings

uncertainty. Lower savings uncertainty will hopefully lead to more actionable en-

ergy savings projects and less risky financial investment. Building stocks models

calibrated with end use data can help prioritize model input parameters for specific

27



buildings and develop seed models for calibration.
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Chapter 3: Research Hypothesis and Objectives

The objective of this research is to improve the estimation of savings from

energy efficiency measures by determining parameter importance in stock energy

models and establishing a foundation for calibration. This chapter states the re-

search hypothesis, given in Table 3.1 and the research objectives, given in Table 3.2,

that describe the actions taken to achieve these objectives.

Table 3.1: Research Hypothesis

Research Hypothesis Reliable energy retrofit decisions are possible with
new energy modeling approaches based on stock
energy data from actual buildings.

Table 3.2: Research Objectives

1. Develop a methodology to consider interaction effects of energy efficiency mea-
sures, accounting for the influence of (1) capital cost constraints, (2) uncertainty
associated with measure costs, and (3) future energy and carbon tax escalation on
the retrofit decision making.

2. Create a process to develop initial building energy models that compromise stock
models for sensitivity analysis and calibration.

3. Establish calibration metrics and identify important model parameters for stock
model calibration.

4. Demonstrate and report stock model calibration metrics for a region.
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Chapter 4: Energy Retrofit Methodology

The first section focuses on establishing a methodology to consider energy sav-

ings of energy retrofits under exogenous cost factors. The second section presents a

brief overview of software to generate reduced-order models; simplified building en-

ergy models to begin the calibration process. The last section details the sensitivity

and calibration analysis process.

4.1 Energy Savings Under Uncertainty

This section details a methodology established for evaluating the impacts of (1)

capital cost constraints, (2) uncertainty associated with measure costs, and (3) fu-

ture energy and carbon tax escalation on the retrofit decision making. The method-

ology was demonstrated for a case study of an actual building with sub-metered

energy data including interval data for different end-uses deployed to calibrate a

baseline building energy model. The calibrated model enabled considerations of

different retrofit scenarios to include intrinsic and extrinsic uncertainties associated

with the decision making for a building retrofit. Furthermore, this study also de-

veloped software for interoperability with OpenStudio [26] based on R scripts [76],

allowing deployment of the methodology to retrofit decision making for other build-
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ings. A case study for an office building in Philadelphia, PA, demonstrated the

significance of the difference in capital availability on the optimal choice of retrofit

measures.

4.1.1 Retrofit Path Methodology

Energy retrofit measure selection is dependent on capital availability, finan-

cial criteria, and uncertainties in energy savings and energy costs. Including mea-

sure interactions and savings uncertainties is necessary to properly account for a

measure’s impact on overall building performance. This measure integration and

packaging increases the number of options to consider, and requires energy simula-

tions to handle the complexity of measure interactions. Installing measures longi-

tudinally based on a fixed capital budget adds further complexity, as the order in

which measures are installed becomes significant. Load reduction measures allow

equipment downsizing, and there is a performance difference for differently-sized

systems with the same energy efficiency measures. This consideration greatly in-

creases the number of energy simulations. Figure 4.1 shows the analysis process

to generate all possible retrofit path-options, including the downsizing difference,

under capital constraints to calculate their impact on the optimal retrofit measure

package. As indicated in the figure, the established methodology comprises five

steps including (1) Develop a calibrated energy model, (2) Select Energy Efficiency

Measures (EEMs), (3) Generate unique simulations for measure combinations, (4)

Run building energy simulations, (5) Analyze retrofit path options for different
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Figure 4.1: The flowchart of established methodology for retrofit decision
making [49].

financial scenarios, and identify optimal options. The code to demonstrate this

methodology for the case study presented in this paper is available on Github at

(https://github.com/CITY-at-UMD/retrofitLCC).
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4.1.1.1 (Step 1) Develop a calibrated energy model

The first step in the evaluation of different EEMs using building energy sim-

ulation tools requires developing a calibrated baseline building energy model. The

calibrated baseline energy model needs to meet the requirements of the American So-

ciety of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Guide-

line 14 2002 [17]. Most calibrations of building energy models use monthly electricity

and gas consumption from the utility bills due to their ubiquitous availability [77].

However, if sub-metered interval data for a building are available, a more accurate

calibration method uses the sub-metered interval data to calibrate the building en-

ergy model with the 15 minutes sub-metered building energy data [41]. This study

uses 15 minutes sub-metered energy end-uses interval data for the calibration of the

baseline building energy model.

4.1.1.2 (Step 2) Select energy efficiency measures

The selection of EEMs depends on the building principal functionality, age,

size, and financial constraints. Use of the building energy simulations allows iden-

tification of energy end-use breakdown, key load contributions, and measures that

will most likely reduce peak building loads. These measures may not be finan-

cially justifiable on their own, but may be acceptable after including the savings

associated with equipment replacement. They include measures for building enclo-

sure, solar control, plug load / lighting control, and HVAC equipment control or

replacements. Evaluating multiple measures can be time-consuming if it involves
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manually creating an energy model for each measure and combination of measures.

The OpenStudio Parametric Analysis Tool (PAT) [37] implements measures from

the Building Component Library (BCL) [78], and partially automates this process.

This study develops new building component library measures and implements them

with scripts using the OpenStudio API [26,79], an open-source object-oriented soft-

ware for manipulating models in EnergyPlus [25].

4.1.1.3 (Step 3) Generate unique simulations for measure permuta-

tions

Energy efficiency measures can be combined together and installed in different

orders to create unique retrofit paths. To distinguish between retrofit paths, each

measure is given a letter “a”, “b”, “c”, etc. A string of letters identifies a unique

retrofit path. Particularly, this study looks for the benefit that comes from installing

measures that reduce building load prior to replacing the central heating or cooling

equipment, which may be downsized depending on the new loads. These HVAC

measures are dependent on other measures, whereas building lighting or occupancy

sensors are independent of other measures. For example, if HVAC equipment mea-

sure “c” is dependent on measures “a” and “b”, which are independent, then the

measure combination a b f will be identical to b a f, but not a f b. To simulate

sequence a f b, the process is to (1) simulate the model and auto-size the equipment

capacity for a f, (2) read the HVAC equipment capacity for “f” from the output and

hard-size that value in the energy model, and then (3) implement measure “b” and
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run the energy simulation to get the result for a f b. Without this process, if the

model is auto-sized and several measures are implemented that reduce load, the en-

ergy simulation may run the simulation with a lower equipment capacity than what

is present in the building, introducing a small error for the predicted performance.

Once all permutations are generated, a script removes redundant simulations,

e.g. a b f and b a f. Then, another script takes the base model, adds each measure

to it in succession, and saves it as a run script for the energy simulation software.

4.1.1.4 (Step 4) Run building energy simulations

This study uses OpenStudio and R scripts to implement and run the energy

simulations automatically for the selected measures. The developed scripts distin-

guish between path dependent and path independent simulations to facilitate the

process of running multiple simulations in parallel. The 2566 unique energy simula-

tions in this case study are partitioned by the first measure for seven virtual machines

on a central server, reducing simulation time by about three-quarters compared to

running on a single machine. The energy simulation outputs are collected into a

data file on the virtual machines, and then combined together to create a database

of all simulation results.
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4.1.1.5 (Step 5) Analyze retrofit path options for different financial

scenarios

The life-cycle cost analysis is deployed to each unique energy simulation com-

bined together in sequence to create a retrofit path for a given measure order and

financial scenario. This study considers the impact of three financial variables: (1)

Measure cost, (2) Future greenhouse gas price, and (3) Capital availability. It is pos-

sible to include many more financial variables in the analysis, as there is no need to

rerun the energy simulations and the computational cost of evaluating other financial

scenarios is much cheaper than generating unique energy simulations. However, any

measure performance variation or calibration sensitivity,would require additional

measures or choosing a subset of the energy simulations to re-simulate based on

most promising retrofit implementation paths. Therefore, it is important to care-

fully choose the measures and calibrate the model as specified in Steps 1 and 2. The

different measure combinations and financial scenarios in this case study generate a

half million retrofit path options. These are filtered by financial scenario to generate

a ranked list of optimal-path options for a given scenario.

4.1.2 Case Study

This methodology is demonstrated with a case study. The case study is a

commercial office building at the Philadelphia Navy Yard, shown in Figure 4.2. The

building was originally built as a barracks, and underwent major renovation in 1999
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Figure 4.2: Office building at the Philadelphia Navy Yard: (a) Front
side of building and (b) Floor plan in the energy model [49].

to become an office building. The building is approximately 75,000 ft2 (6,968 m2), of

which approximately 60,000 ft2 (5,574 m2) is conditioned space, and approximately

40,000 ft2 (3,716 m2) of that is office space spread over 3 stories and a conditioned

basement. The Energy Utilization Index (EUI) in this study is referenced to the

conditioned floor area only. The building exterior wall is 1.5ft (0.46m) thick brick

and has a window-to-wall ratio of 17%. Three VAV units with DX cooling serve

the building. A gas boiler serves heating coils at each AHU and provides reheat for

terminal boxes in each thermal zone. A gas hot water heaters provide service hot

water.

4.1.2.1 Energy Model Calibration

The building energy model uses OpenStudio [26], an interface-type of middle-

ware for EnergyPlus [25]. The model simplifications include an assumption of an

identical floor plan on each story, which is nearly the case in the building. The fenes-

tration is modeled with a set window-to-wall ratio on each exterior wall, rather than

modeling each window individually, to improve simulation speed with little accuracy
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loss for load calculations [80]. Mechanical equipment and lighting specifications are

detailed from design drawings. Plug loads are modeled with a set area density for

office, conference, and lobby areas from sub-meter data, and equipment schedules

were then adjusted to match the measured hourly plug load profiles [41, 81]. Air

infiltration is assumed to be a uniform, constant 0.2 ACHnat across the exterior

enclosure [82]. The model uses Actual Meteorological Year (AMY) weather data

from the Philadelphia International Airport located a few miles from the building

site. A detailed summary of building instrumentation and calibration are available

in the literature [83,84].

The model is calibrated to 10-month hourly sub-metered energy data for heat-

ing, cooling, service hot water, fan, lighting, total building electric, and total building

gas energy use. Plug load and miscellaneous electric use, including water systems

pumps and elevators use, is assumed equal to the total building electrical energy

use less all other metered electrical loads – cooling, fans, and lighting. January

2012 data are not available, as sub-meter data was not installed until late January.

Furthermore, HVAC sub-meter data in December 2012 are not comparable, as the

building underwent a major controls upgrade. The lack of data for these periods

increases the uncertainty in heating energy use for model calibration, as nearly a

fourth of annual heating degree days occurred in January. The calibration disregards

anomalous service hot water use data in April and May, when water use spiked, co-

inciding with a construction period on the second floor. Table 4.1 shows coefficient

of variation of the root square mean error (CVRSME) and normalized mean bias

error (NMBE) calibration statistics for each end use following ASHRAE Guideline
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14 [17]. The final model calibration adjusted solely building temperature setpoints

to 71.5±1.5◦F (21.9±0.6◦C) for heating and 72.5±1.5◦F (22.5±0.8◦C) for cooling,

to match observed variation in the deadband range for VAV temperature control.

This calibration method based on end-uses was possible with the availability of sub-

meter data. Typically, most of the existing case studies calibrate energy models

with monthly energy use by fuel type due to the lack of sub-meter data.

Table 4.1: Building 101 Energy End Use Calibration Metrics [49]

CVRMSE NMBE Months

Calibration Target 15% 5% All

All Electricity 6.1% -0.6% All

Plug Loads 5.9% -2.1% All

Lighting 4.9% 2.6% All

Fans 9.3% -1.2% Omit December

Cooling 12.6% 3.6% Omit December

All Gas 12.0% 2.3% Omit December

Heating 12.6% 1.7% Omit December

Service Hot Water 9.5% 2.3% Omit April and May

4.1.2.2 Select Energy Efficiency Measures

The baseline building energy end-uses and the component contribution to peak

heating and cooling load are helpful indicators to determine promising EEMs. Fig-

ure 4.3 shows the contribution of each energy end use to total building energy use.

Heating energy use, and then internal equipment and lighting energy use, domi-

nate the energy use of the building. Measures targeting these systems can save a

39



Figure 4.3: Breakout of building energy by end use, which helps to target
EEMs that can reduce the largest energy end uses in the building. EEMs
targeting heating, lighting, and equipment energy use will save the most
energy.

substantial amount of energy.

Figure 4.4 shows that infiltration and conduction through exterior walls and

windows are the main contributors to peak heating loads, and are offset partially by

lighting and internal equipment. Solar heat gain, interior lighting, and equipment

are the main contributors to the peak cooling load. EEMs that reduce these peak

load contributions enable HVAC equipment downsizing upon replacement.

This study considers seven energy efficiency measures, shown in Table 4.2.

Several of these measures, including measure “a”, “b”, and “c”, were commonly
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Figure 4.4: Percent contributions of component loads to thermal zones’
peak heating and cooling. EEMs that reduce fenestration solar gain
will greatly reduce required cooling equipment capacity, and EEMs that
lower infiltration and reduce conduction losses through windows and
walls will reduce required heating equipment capacity.

41



Table 4.2: Energy Efficiency Measure Descriptions [49]

Letter Energy Effi-
ciency Measure

Description Source

a Wall Insulation Add an exterior insulation and
finish system, with 4 in (0.1 m)
EPS board, R-16, reduce infiltra-
tion by 30%

[85]

b Light Power
Density Reduc-
tion

Reduce conference and office
lighting power density from 1.15
to 0.9 W/ft2 (12.38 to 9.69
W/m2)

[86]

c Occupancy Sen-
sors

Reduce lighting fraction from 0.2
to 0.05 during unoccupied hours
on weekdays, and 0.15 to 0.05 on
weekends

[86]

d Infiltration Re-
duction

Reduce outdoor air infiltration by
15%

Engineering
Judgment

e Window Film Reduce Solar Heat Gain Coeffi-
cient (SHGC) from 0.764 to 0.38

[8]

f Condensing
Boiler

Replace boiler with a 90% ef-
ficient condensing boiler, auto-
size capacity and flow rates for
loop, lower supply temperature to
140◦F (60◦C)

[87]

g Condensing Unit Replace condensing units with
auto-sized unit with high speed
Energy Efficiency Ratio (EER)
11.5 and low speed EER 16.2

[88]
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Table 4.3: Energy efficiency measure costs for measures in this study [49].

Energy Effi-
ciency Mea-
sure

Cost / Unit Cost Yr-1
Savings

Simple
Pay-
back
(yrs)

Source

Wall Insula-
tion

$4.78/ft2

($51.45/m2)
wall area

$927,930 $6,301 147 RSMeans,4in.(0.1m)
EPS insulation, Com-
mercial renovation
Exterior Insulation and
Finish System, 25%
mark-up for Multiple
Stories

Light Power
Density Re-
duction

$4.78/ft2

($51.45/m2)
$202,886 $6,323 32 RSMeans,Fluorescent

high-bay 4 lamp fixture,
1W/ft2 (10.76 W/m2),
59FC, 4 fixtures per 1000
ft2 (92.9 m2)

Occupancy
Sensors

$1.06/ft2

($11.41/m2)
$44,991 $2,384 19 RSMeans,5 fixtures per

1000 ft2 (92.9 m2), in-
cluding occupancy and
time switching

Infiltration
Reduction

$150,000 $150,000 $1,749 86 Engineering judgment

Window
Film

$18.93/ft2

($203.76/m2)
glazing

$182,311 $4,259 43 RSMeans,Solar Films
on Glass average of
min/max value

Condensing
Boiler

$20,706 +
$13.82/MBH
($20,706 +
$4.05/kW)

$42,176 $3,960 11 RSMeans,commercial
gas boilers

Condensing
Unit Re-
placement

$7,909 +
$766/ton
($7,909 +
$2693.91/kW)

$116,631 $4,864 24 RSMeans,packaged
air-cooled refrigerant
compressor and con-
denser

43



recommended by energy audits for the cases study building [89], and other measures

were included to reduce peak heating and cooling loads. Cost assumptions come

from RSMeans [90] using standard union rates in Philadelphia and are summarized

in Table 4.3. Energy efficiency measures were implemented as BCL measure scripts

modifying the OpenStudio model of the building.

4.1.2.3 Scenario Parameters

Life-cycle costs for different retrofit scenarios are compared to life-cycle cost

for a baseline scenario. The baseline scenario assumes that the expected lifespan

of the outdoor air-cooled condensing units is 20 years, meaning a replacement in 5

years, and that the expected lifespan of the boiler is 25 years, meaning a replace-

ment in 10 years [91]. The resulting energy costs, capital costs, and greenhouse

gas emissions costs over the building lifetime are combined into a cash flow that

is then discounted to calculate the Net Present Value (NPV) of the scenario. The

scenarios assume a lifetime of 20 years with a real discount rate of 3%. Natural gas

and electricity prices are adjusted according to the NIST energy price escalation

rates for census region 1 [92]. In addition, four greenhouse gas emissions prices are

considered: no cost for emissions, and the default, low, and high greenhouse gas

price scenarios from NIST. Lastly, measure costs for each measure are considered at

full price and half-price, reflecting the possibility of measure cost reductions and sig-

nificant additional efficiency incentives that are not accounted for in the greenhouse

gas price. Each scenario for ordering retrofit measures is considered under five cap-
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ital availability scenarios: $1.00/ft2 ($10.76/m2), $2.00/ft2 ($21.53/m2), $3.00/ft2

($32.29/m2), $5.00/ft2 ($53.82/m2) and $100.00/ft2 ($1076.39/m2), reflecting dif-

ferent annual capital allotments available to fund energy efficiency measures. The

$100.00/ft2 ($1076.39/m2) scenario is an intentionally high value that practically

imposes no financial limitation to implementing measures, meaning all measures for

a given retrofit scenario are able to be implemented in the first year. In the other

scenarios, the capital limitation causes a delay in implementation for an energy

efficiency measures.

4.1.3 Results

The NPV of the baseline case where the equipment is replaced ranges from -

$35.58/ft2 (-$382.98/m2) to -$42.63/ft2 (-$458.87/m2), depending on the greenhouse

gas price scenario and the cost modifier for the measures. This includes the cost

of replacing the central HVAC equipment and the energy costs over the project

lifetime. The equipment will need to be replaced at the end of its service life, so

the relative financial performance of a retrofit path is measured in reference to this

baseline with equipment replacements and no other measures. For example, in the

default NIST GHG price scenario, and measures at full costs meaning a cost modifier

of 1.0, the net present value of the baseline case is -$38.50/ft2 (-$414.41/m2). If a

retrofit path were to have a net present value of -$39.50/ft2 (-$425.17/m2), it would

mean that it is $1.00/ft2 more expensive than the baseline case.

Figure 4.5 shows the comprehensive range of all possible retrofit paths relative
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to this baseline case for different financial scenarios, including the cost modifier,

greenhouse gas price, and capital availability. Retrofit paths are shown based on

the average annual site energy use of the building over the 20 year financial life-

time, and the net present value compared to the baseline case for the same financial

scenario. The majority of the retrofit paths show negative net present value rel-

ative to baseline, with the greatest differences between retrofit paths determined

by whether they include the wall insulation measure, which greatly reduces the net

present value of retrofit paths that include it. Another major source of variation is

the cost modifier that adjusts the measure costs. Figure 4.5(a) shows the retrofit

paths for measure costs at full price (cost modifier of 1.0, gray) and measure costs

at half price (cost modifier of 0.5, black). Each cost modifier scenario shows two

distinct clusters of retrofit measures; the retrofit paths that include the wall insu-

lation measure comprise the cluster with lower net present value. The box (b) in

Figure 4.5(a) is the domain in Figure 4.5(b), expanded to show the influence of the

greenhouse gas price scenario. For most retrofit paths, there is a difference of less

than $0.75/ft2 ($8.07/m2) between the high and no greenhouse gas price scenarios

for most retrofit paths. Within a given greenhouse gas price scenario, there is a

further difference in retrofit path financial performance depending on the capital

availability. In general, the capital availability yields a more significant difference

than does the choice of greenhouse gas price scenario.
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Figure 4.6 shows the optimal paths relative to the baseline case for a range of

financial scenarios. Optimal paths are those that have the most positive net present

value relative to the baseline case, and include equipment replacements before the

end of the service life of the equipment. The optimal paths include a combination of

the measures reducing lighting intensity (measure “b”), occupancy sensors (measure

“c”), replacing the boiler (measure “f”), and replacing condensing units (measure

“g”). In the scenario with measure costs at full price, only permutations of path

g f c, implementing the equipment replacements and then the occupancy sensors,

show a positive net present value. Furthermore, when measure costs are at half

price to model the hypothetical case where efficiency measures are much cheaper

than they are at present, the g f c path remains the optimal option for all but the

highest greenhouse gas price scenario. In the highest greenhouse gas price scenario,

the optimal path includes reducing the lighting intensity before the other three

measures. In Figure 4.6, each retrofit path is presented by a line, with the points

showing a specific financial scenario. The shape of the point indicates the NIST

GHG Scenario, and the color of the point indicates the capital availability. For each

retrofit path, reducing the capital availability reduces the net present value of that

option, and increase the average annual site energy use of the building over the

20 year financial lifetime. This makes intuitive sense: as the amount of available

annual capital increases, measures are able to be implemented sooner, which means

a longer time over which energy cost savings can accrue. In this case study, not

having enough money to implement the optimal path at once greatly reduces the

achievable financial benefits from that retrofit option.
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Figure 4.6: Optimal path options depending on the financial scenario [49].
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Another consideration is how the financial performance depends on the order

of measure instillation. Figure 4.7 shows the influence of changing the measure or-

der for the b g f c path for all financial scenarios. The maximum difference is the

difference between the optimal ordering of measures and the worst ordering of mea-

sures within a given financial scenario. For this measure path, the largest difference

between the optimal and worst ordering occurs in the lowest capital availability

scenario. In this scenario, the size of the difference is comparable in magnitude

to the net present value of the retrofit path. This means that when capital is not

available to install measures, choosing which measures to install first can be as im-

portant as choosing which measures to install. The influence of measure order is less

important in higher capital availability scenarios. In the case of no capital restric-

tions, the $100.00/ft2 ($1076.39/m2) scenario, the maximum difference in measure

ordering is around $0.05/ft2 ($0.54/m2), which is much smaller than the variation

in financial scenarios shown in Figure 4.5 and 4.6. This finding suggests that for

this case study, the importance of installing measures with the optimal financial

return is much more important than making sure they are ordered correctly to get

the downsizing benefit, and that difference in financial performance under capital

restriction is mostly explained by not implementing the measures with the optimal

energy savings sooner. Overall, Figure 4.7 shows that for the optimal retrofit path,

the difference in net present value between the optimal and the worst ordering of

measures depends on the amount of capital available to implement energy efficiency

measures. Furthermore, Figure 4.8 shows that for retrofit paths with a positive net

present value relative to the baseline case, the maximum relative greenhouse gas
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Figure 4.7: Net present values with changing capital availability resulting
in different implementation order from the optimal retrofit path, worst
retrofit path, which changes depending on the financial scenario [49].

emissions reductions possible over 20 years is 85% of the emissions of the baseline

case. With measures at full price, fewer paths are available, and only a 5% emission

reduction is possible.

4.1.4 Discussion

The aim of selecting the considered energy efficiency measures in this study

is to reduce overall energy use and reduce peak demand served by the central heat-

ing and cooling equipment. However, none of the measures has a simple payback

under the typical 7 year requirement of institutional investors, shown in Table 4.3.

51



Figure 4.8: Violin plot showing the relative 20-year greenhouse gas emis-
sions dependent on the capital availability and measure costs for retrofit
paths with positive net present value relative to the net present value for
the baseline case. The x-axis shows the capital availability per year avail-
able for retrofit, and the y-axis shows relative ghg emissions as a fraction
of baseline emissions. Results from all measure packages with positive
NPV are included in the violin density plots, and form clusters as more
measures are able to be adopted when their costs are cheaper as shown
by the different cost multipliers. Even at unlimited capital availability,
there is only a 5% reduction in 20-yr ghg emissions when measures are at
full price. Half cost measures allows more to be adopted, scaling to a 15%
reduction in 20-yr ghg emissions with unlimited capital availability [49].
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A life-cycle cost approach opens up further options, especially assuming an exist-

ing planned replacement cost of the HVAC systems. The load reduction benefits

are minimal, and other factors dominate the financial performance of the retrofit

options.

4.1.4.1 Minimal Impact of Load Reduction Benefits

While the selected measures reduce peak load considerably, this is reflected

only in the replacement costs for the HVAC equipment and does not extend to

significantly reduced energy use, and therefore cost, over the year. Furthermore,

some measures have counteracting effects that negate the load reduction savings. For

example, the window film measure reduces cooling loads, and thus annual electricity

use by 8%, but this is offset by an increase in heating requirements for the building,

raising annual gas use by 13%. The net result is a 1% increase in annual site energy

use, but a 4% decrease in annual source energy use, a 3% decrease in annual energy

cost, and 5% decrease in greenhouse gas emissions. The wall insulation measure

behaves similarly. When wall insulation is added, the annual natural gas use reduces

by 35% and the annual electricity use increases by 7%, for a net 11% energy savings,

but is neutral for annual energy cost and greenhouse gas emissions. The reason for

the electric use increase is that there was a modest cooling effect in the shoulder

seasons for the building with lower insulation that offset the cooling requirements.

This countering effect could be mitigated by reducing plug load consumption, or

including natural ventilation or other free-cooling option. In addition, the natural

53



gas rate per unit energy is cheaper than the electricity rate in this study, so electricity

use is more significant for marginal energy cost savings.

For all measures, the improvement in financial performance from the demand

reduction is of secondary importance to the aggregate savings of an energy efficiency

measures, and often smaller than the marginal increase in heating that some of the

cooling measures provided or vice versa. This does not negate demand reduction

as a consideration for choosing energy efficiency measures, but suggests that this

impact is only significant in cases where downsizing opens up further technology

options to meet building loads instead of simply replacing equipment with a more

efficient model, or if there are other significant demand response financial incentives

that were not considered here.

4.1.4.2 Important Parameters for Financial Performance

For a given measure selection, the most significant determination in retrofit

path financial performance comes from variations in measure cost. This matches a

similar case study that considered uncertainty in measure performance and financial

scenarios, which found measure cost and energy price to be the most significant

determinants of measure package performance [14]. The case study presented here

found less energy and greenhouse gas emissions savings opportunity, with only 10%

emissions mitigated over the 20 year lifetime compared to the baseline that includes

equipment replacement, and only 14% emissions mitigated compared to the baseline

scenario that does not include equipment replacement. Part of the explanation for
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this difference is the case study present in this paper did not consider a micro

Combined Heat and Power (CHP) system, which would offset the emissions from

the relatively coal-intensive energy supply where the case study is located. The

savings estimates in this case study are less than what was found in prior energy

audits [89, 93], with discrepancies from the difference in weather assumptions and

increased occupancy in the building after the audits. The later study considered

more EEMs, and found a retrofit package including daylight dimming, upgraded

lighting, and weatherization reduces site energy use by 23% and source energy use

by 24%, with simple payback of 7.6 years assuming no incentives. The difference in

recommendations is attributed to the different types and technical performance of

EEMs considered, and the inclusion of a daylight dimming measure.

Uncertainty associated with measure costs and future measure costs are a

significant part of financial performance uncertainty within this study and between

studies. For example, newer LED technology could replace the fluorescent tube

lighting common to most commercial buildings. This study assumed measures at

full price and half price to represent potential reduced measure costs from cheaper

technology or market scaling. As measure prices and financial scenarios are likely

to change frequently, this study provides the developed code so others can test

different financial scenarios and measures available on Github at (https://github.

com/CITY-at-UMD/retrofitLCC).

Lowering the capital availability reduces the financial benefit from implement-

ing measures, as the energy cost savings accrue over a smaller portion of the project

lifetime, and later implementation is more heavily discounted. For a given retrofit
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path, the impact of the capital availability was as significant as the difference in

greenhouse gas pricing scenarios, meaning that limited capital for energy retrofit

projects imposed a similar barrier to achieving a given energy savings or emission

reduction level. This is significant, because it suggests that funding retrofits through

an annual budget or a revolving loan fund whereby the accrued energy cost savings

is used to fund further retrofits may limit the extent of energy savings and emission

reductions.

For a given selection of measures, measure order matters more with limited

capital availability. However, the difference in load reduction is small compared

to the difference in energy cost savings from implementing more cost-saving mea-

sures sooner. This effect is smaller than the uncertainty estimated for measure

performance in the existing literature [14], suggesting that measure analysis should

include measure uncertainty and interaction, but the impact of marginal load reduc-

tion is not as necessary for consideration. Furthermore, this study benefited from

sub-meter calibration to help determine load reduction opportunity. This level of

meter detail is rarely available in most buildings undergoing a retrofit, and imposes

significant risk from the uncertainty of meeting buildings loads with demand re-

duction, given that building energy models can be prone to over-specification and

mis-characterization of the source of buildings loads.
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4.1.5 Conclusion

Building energy retrofit projects often use a single-measure ranking based on

simple payback to analyze the financial performance of retrofit options. Such a

ranking does not include the potential financial savings from load reduction mea-

sures that also reduce the cost of replacement heating and cooling equipment. This

study considered the life-cycle cost of several Energy Efficiency Measures (EEMs)

over an exhaustive list of measure combinations based on the building cooling and

heating loads as well as financial scenarios with different capital availability. The

selected EEMs are (1) wall insulation, (2) lighting power density reduction, (3) occu-

pancy sensors, (4) infiltration reduction, (5) window film, (6) condensing boiler, (7)

condensing unit replacement. The scenarios include consideration of NIST green-

house gas pricing projections, full and half-price measure costs, and capital avail-

ability ranging from $1.00/ft2-yr, a minimum value for the capital constrains, to

$100.00/ft2-yr, a representative of no capital constraint. In the most pessimistic

scenario where measure costs are full-price, a capital constraint of $1.00/ft2-yr

($10.76/m2-yr), and no greenhouse gas emissions price, the net present value is

$0.22/ft2 ($2.37/m2). For the most optimistic scenario, where the measure costs are

half-price, no capital constraint, and the highest greenhouse gas emissions price, the

net present value is $1.33/ft2 ($14.32/m2).

Measure costs were the most significant source of variation in financial perfor-

mance, followed by the capital availability and greenhouse gas pricing scenario. The

difference in measure ordering, and the importance of load reduction were relatively
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insignificant compared to the importance of the financial scenario, and are smaller

than typical uncertainty measure performance and model calibration. Therefore, un-

til model calibration of building loads and uncertainty of measure performance are

more reliable, it is not useful to consider marginal capital cost savings on equipment

from demand reduction or difference in measure installation order. Larger energy

savings targets, for this building in excess of around 40% site energy savings or un-

der 60 kBtu/ft2-yr (189.3 kWh/m2-yr) for this climate, will require more substantial

building component and heating and cooling equipment changes than the marginal

improvements considered in this case study, and will likely entail behavioral change

and internal equipment load reductions as well. While low energy savings potential

depends on the particular building and range of measures considered, this method-

ology suggests that the nonlinear dependence of energy and greenhouse gas savings

potential on capital availability, and the relative lack of significance of the green-

house gas price on financial performance implies that measures cost reduction and

increasing capital availability are key concerns for emissions reductions. Therefore,

increasing investment in energy retrofits is key to reducing greenhouse gas emissions.
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Chapter 5: Reduced-Order Models and ComStock

This section details the process used to generate reduced-order models that

are the starting point for calibration efforts.

5.1 Introduction to Reduced-Order Models

Reduced-order models are simplified building energy models that condense the

number of zones, space types, and HVAC systems in a model while still retaining the

underlying building energy model physics and HVAC system operation [94]. The

intent of these models is to trade-off some model accuracy due to model misspec-

ification with much simpler model creation [95]. The U.S. DOE prototype models

of the national building stock are reduced-order models that are widely used to

analyze retrofit savings of EEMs and develop energy policy [96], and such syn-

thetic models are regularly used to create synthetic data for which to test against

for comparative purposes [36, 55, 61, 72]. Reduced-order models need to be able to

approximate building surfaces areas, exterior exposure, ventilation rates, and per-

centages of spaces types to be representative of a building. Heidarinejad [97] has

shown the influence of building shape and extended building simulation software to

generate several basic shapes that together can capture most building geometries.
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Raftery [27] proposed the idea of zone typing that suggested thermal zones can

be grouped without loss of model fidelity if they share a similar space type, exte-

rior adjacency, and conditioning method. This means that for most buildings, core

and perimeter models with care taken to match shape, space type percentages, and

HVAC system layout can serve as an accurate representation of a building without

the effort needed to model each HVAC thermal zone exactly.

5.1.1 Creating Reduced-Order Models from High Level Input Data

Generating a reduced-order model for a specific building requires an energy

audit or knowledge of the buildings characteristics. Several characteristics are easy

to determine, such as building use type, size, age, and HVAC system type. Oth-

ers require a walk-through survey, such as lighting power density and construction

type, and some require metering or analysis of BAS system data, such as supply

temperatures and plug load schedules. Unfortunately the importance of building

characteristics on performance does not correlate nicely with ease of determination.

Plug load densities and part load efficiencies of HVAC equipment are difficult to

determine but are highly important parameters [41]. For such parameters, it is pru-

dent to use representative data from studies of similar buildings as a starting point

for calibration, as the cost of data collection may be prohibitive.

The U.S. DOE prototype models [96] are a commonly used source for building

parameter assumptions. These models are based on ASHRAE Standards, especially

ASHRAE Standard 90.1 [86] for performance characteristics. The prototype models
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Figure 5.1: ComStock combines distributions and building characteris-
tics of the U.S. building stock with building energy modeling.

are maintained by PNNL with performance characteristics and model generation

methods available through openstudio-standards [26], a library for OpenStudio to

generate the prototype building models and perform ASHRAE 90.1 baseline model

generation for code compliance and LEED reporting.

5.2 ComStock

While containing useful building parameter assumptions, the DOE prototype

models are limited in their scope, not representing the wide range of size, shape,

HVAC systems, and other characteristics present in the building stock. For this

reason, NREL developed stock modeling tools ResStock [67] and ComStock [69] for
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Figure 5.2: Example parameter probability distributions for ComStock.
Floor area is dependent on building type, while year of lighting code
replacement is independent based on a retrofit probability that increases
with lighting system age. A large sampling from this distribution of
dependent and independent parameters generates a representative model
set of the building stock that can then be weighted to capture total
energy use.

the residential and commercial building stock respectively to better represent the

variability present in buildings, as shown in Figure 5.1. Instead of modeling one pro-

totype building, many buildings are modeled with characteristics sampled from high

level distribution data available from CBECS [98], CoStarTM, and a Department of

Homeland Security Database. Figure 5.2 gives an example distribution sampling of

two parameters for a retail building. Building parameters can be independent or

dependent on other parameters, for example building size being dependent on build-

ing type. Lighting power density is independent of other parameters and based on

ASHRAE Standard 90.1 values matched to the code year when the lighting sys-

tem was last renovated. A full list of input parameters in the macro sampling is

given in Table 5.1. Input parameters then feed into the ’Create Typical Building
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From Model’ OpenStudio measure using methods from the openstudio-standards li-

brary [26]. A full ComStock run comprises 350,000 building energy models. These

are run on Eagle, a supercomputer at NREL, taking between 5-30 minutes per sim-

ulation. The full timeseries enduse data from a ComStock run is over 600 GB and is

uploaded to a Amazon Web Services S3 bucket and transfered to an Amazon Web

Services Athena database for queries.

The actual count of buildings is aggregated from CoStarTM, a real estate com-

pany that maintains a database of all leasable commercial buildings in the U.S..

The buildings in CoStarTM are classified by size and building type and used to get

accurate counts and floor area of buildings in a given region. The aggregate of these

building models creates a stock model and can be used to construct prior parameter

distributions for a given building when only high level characteristics are known.

Geometry for ComStock uses an abstracted dual-bar method that mimics the

building’s exposure and surface area to volume ratio. The dual bar method uses

two separated rectangles placed perpendicular to each other. Given an aspect ratio,

perimeter ratio, and orientation, the width and height of the bars are adjusted to

have the same the same surface exposure in each orientation as a similar building

of a single shape. Figure 5.3 gives an example. Each building type is composed of

a percentage of different space types, with default ratios from the DOE prototype

models [96], and are allocated to core and perimeter zones. Some space types such

as lobby areas or retail may be fixed to the first floor, and large single-height spaces

such as gymnasiums can be separated out from the dual bars entirely and modeled

as a separate rectangle.
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Figure 5.3: Example dual bar created for a building. This is a 4-story
building with an aspect ratio of 2.0 and perimeter multiplier of 2.0. The
different colors represent different space types within the building.

While some building characteristics are easily available in national survey data

[98] such as building type, size, location, and HVAC systems, others require more

detailed survey data such as lighting [99]. Some data, such as plug load schedules,

are not readily available for all building types and need to be carefully inferred from

calibration of ComStock to utility data.
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Table 5.1: Macro level parameters used to specify a particular building energy model
in ComStock.

Parameter Description

Climate Zone, County
ID, State ID

Location parameters used to determine the building lo-
cation for weather file selection and aggregation to the
county, state, and utility territory level

Building Type (15) different building type categories representing di-
verse use cases

Year Built, Built Code The year of construction used to determine which one
of (8) ASHRAE 90.1 code sets to use for building prop-
erties and the starting year for retrofit frequency deter-
mination

HVAC System Type (67) unique varieties of HVAC systems, including RTUs,
centralized VAV systems, zonal systems, and small res-
idential systems

Floor Area The floor area of the building, binned into (10) different
size bins

Number of Stories Number of above-ground floors, with buildings between
15-25 stories and over 25 stories grouped as separate
bins

Building Shape (11) unique building shapes

Aspect Ratio The building aspect ratio, the width versus length, from
1 to 6

Rotation Degrees of rotation from North (0 degrees)

Service Water Heating
Fuel

Gas or Electric

Weekday/Weekend
Start Times and
Duration

The occupancy start time and duration for both week-
days and weekends, used for creating schedule variability

Building System Code
Year

Separate code year to use for a given building systems
(envelope, HVAC, SWH, interior and exterior lighting,
interior equipment) depending on a retrofit frequency
for that system
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Chapter 6: Parameter Importance for Calibration

6.1 Parameter Importance Analysis for Commercial Building Stock

Modeling

Parameter importance analysis is used to determine highly influential parame-

ters to adjust during calibration. This is especially important in commercial building

models where hundreds of variables across different building types determine how

the building uses energy. Parameter importance is closely linked with sensitivity

analysis. Most sensitivity analysis methods generate a sample space and then eval-

uate a function against that sample space. In our situation, the function (a building

energy model) is computationally expensive. Even a small set of 30 parameters

with 2 values each means 230 simulations for a full factorial analysis for just one

building type, which is computationally prohibitive. Methods such as Latin hy-

percube sampling greatly reduce the number of function evaluations, sampling the

parameter space uniformly while accounting for variation. The 350,000 simulations

in ComStock are a sample of the millions commercial buildings that exist. Given

the computational expense, this study determines feature importance by developing

a regression model based on the ComStock run outputs and determining parameter
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importance by their weight in the regression model.

Most building energy modeling sensitivity studies preceding calibration use

total annual energy use as the output variable [18] [28] . However, for purposes of

hourly or HVAC calibration, this is insufficient. In residential buildings, using the

regression parameters of temperature-dependent change-point models better identi-

fies important heating or cooling variables than use of total annual use alone [100].

Commercial buildings, having greater variability and being much more likely to be

driven by internal loads, are less explainable with change-point models, requiring a

different set of output variables to determine hourly and HVAC energy influences.

These output variables are known as quantities of interest (QOIs).

6.1.1 Quantities of Interest (QOIs)

Quantities of Interest (QOIs) are numerical properties of a set of comparison

data used to determine the model fit. These are similar to the concept of shape

factors [21] [101] used to condense high dimensional time series data, such as daily

hourly load profiles, down into a few parameters to represent the data. Quantities

of interest are based on a comparison of annual hourly electric load data, typi-

cally 8760 hours. To condense this down into QOIs, the data is split into seasons

(heating/winter, cooling/summer, and shoulder) and base and peak magnitudes.
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6.1.2 Detailed Quantities of Interest

• Annual Energy Use, kWh (1) Average annual electric consumption for

the whole year. Sum all 8760 hrs.

• Average Daily Base Magnitude By Season, kW (3) Average minimum

daily magnitude (kW). For each season, create an average daily load profile

from all days in that season. The base magnitude is the minimum value that

occurs during the average day.

• Average Daily Peak Magnitude By Season, kW (3) Average maximum

daily magnitude (kW). For each season, create an average daily load profile

from all days in that season. The peak magnitude is the maximum value that

occurs during the average day.

• Average Daily Peak Timing By Season, hr (3) Average maximum daily

timing (hr). For each season, create an average daily load profile from all days

in that season. The peak timing is the hour when the maximum value occurs

during the average day.

• Top 10 Daily Peak Magnitude By Season, kW (2) Top 10 daily mag-

nitude (kW). For heating and cooling seasons only, create an average daily

load profile from days with the 10 highest peaks in that season. The peak

magnitude is the maximum value that occurs during the average top 10 day.

• Top 10 Daily Peak Timing By Season, hr (2) Top 10 daily timing (hr).
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For heating and cooling seasons only, create an average daily load profile from

days with the 10 highest peaks in that season. The peak timing is the hour

when the maximum value occurs during the average top 10 day.

These quantities of interest can be calculated at three different levels:

• Stock Total The QOI is calculated using the entire aggregate data from all

buildings in the stock model and the LRD data. This represents how closely

the stock model matches the LRD data at a system level.

• Individual Building The QOIs are calculated for an individual building.

This allows buildings and building types to be compared against each other,

say comparing the peak magnitude and timing distributions for retail buildings

vs office buildings.

• Individual Building in Relation to the Aggregate This calculates the

QOIs at the building level in relation to the aggregate building model data. For

example, the average daily peak magnitude QOI represents the magnitude of

building energy use that coincides with the system aggregate peak magnitude.

In this case, the timing QOIs are the difference between the individual building

peak and the aggregate system peak.

Additionally, energy use (kWh) and rate (kW) QOIs can be normalized by

floor area. As building size is the overwhelmingly most significant parameter in

determining building energy use across the stock, normalizing by floor area helps to

determine which buildings contribute disproportionately to QOIs per area.
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6.1.3 QOI Seasonal Determination

Seasonal determination helps to separately calibrate building operation when

the building is likely to be under different HVAC operational modes. These seasons

will vary by location and also by building type and building characteristics. For

example, a natatorium is likely to have heating year round, and a large office building

with a data center will have cooling year round. There are three considerations when

determining season classification:

• The number of seasons This is perhaps the easiest to stipulate, as build-

ings can either be in heating mode, cooling mode, or in mixed-neutral mode.

This translates nicely to three seasons: summer-cooling, winter-heating, and

shoulder-mixed-neutral.

• The variable used to determine seasons E.g. Outdoor drybulb temper-

ature, outdoor sol-air temperature, percent of time building is a heating or

cooling regime, etc. are all viable parameters. Some parameters like outdoor

air temperature emphasize seasonality and time-of-year, whereas others like

actual building heating or cooling load try to capture the building regime di-

rectly. There is a trade-off between accurately capturing the building mode

and keeping a broad enough determination that is generalizable across all

buildings. For this reason, outdoor air temperature is the chosen parameter.

• Time resolution of seasons Seasons can be determined at the monthly level

down to the daily level, based on average outdoor air temperature. Greater
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Figure 6.1: This graphic presents shows the seasonal determination for
Chicago, IL when seasons are determined by daily outdoor average dry-
bulb temperature.

resolution will better capture the building mode, but at a greater risk that all

buildings in a utility territory do not follow the same season.

Based on the seasonal determination considerations, seasons here are deter-

mined by monthly average outdoor dry bulb temperature. Daily average temper-

atures <55◦F are winter-heating, >=55◦F and <=70◦F are shoulder, and >70◦F

are summer-cooling. Considering the seasonal time resolution, Figures 6.1 and 6.2

compare using daily vs. monthly average outdoor drybulb temperatures. Monthly

seasons maintain the same season across the same grid territory with limited loss in

resolution.

Most utility regions serve a geographic area contained within one climate zone.

However, to determine feature importance across the entire stock, it is helpful to

break out feature importance by climate zone. As climate zones can span a large

area (climate zone 4A for instance includes both Wichita, KS and New York, NY,
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Figure 6.2: This graphic presents shows the seasonal determination for
Chicago, IL when seasons are determined by monthly outdoor average
drybulb temperature.

it is necessary to choose which months represent each season for that climate zone.

Figure 6.3 describes this method. All weather files for the region are processed

to determine the season for each month. Then, like seasons profiles are grouped

together by building count and the modal season profile is selected to represent the

climate zone.
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Figure 6.3: A visual description of the method for determining the season
to use for each month for a given climate zone.
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6.1.4 Parameters for Sensitivity Analysis

Building energy use is determined by a wide range of building characteristics,

with hundreds of parameters in commercial building energy models [25]. Only a

subset of these are particularly impactful, but this varies by building type, location,

and other high-level characteristics. Several studies have put forward parameters to

use for commercial building sensitivity analysis [33] [41] [70]. The parameters used

for ComStock sensitivity analysis are drawn from these studies, as well as additional

parameters to include a wider range of end uses and building types. Figures 6.1, 6.2,

6.3, 6.4, and 6.5 detail the parameters used for the ComStock sensitivity analysis.

Some parameters are easy to capture and have limited variability, e.g. gas furnace

nominal efficiency, while others are trickier to capture in a single variable, e.g. plug

load schedule. Qualities of building parameters are explained in more detail below.

Categorical vs. Continuous Parameters. Some characteristics such as

building service water heating fuel are categorical variables, and some are continu-

ous, such as roof U-value. Sensitivity analysis works best with continuous variables.

There are several methods to convert categorical variables to continuous. For this

sensitivity analysis, categorical variables with few options, such as building type, are

converted to onehot variables. Each building type becomes a separate column with

1 if the building is of that type and 0 if otherwise. Categorical variables with many

options, such as HVAC system archetype, are converted to continuous numerical

values by averaging the total annual energy use of all buildings with that charac-

teristic. This includes the variable in the output, showing which system archetypes
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are more energy intensive than others. The presence of certain high energy use

HVAC systems being highly correlated with certain building types is controlled for

by including floor area and building type variables in the parameter set.

Implicit vs. Explicit Modeling Parameters. Building characteristics can

be captured in several different ways in an energy model. Building wall construction

is a good example. At the level of thermal balance calculation, specific heat, material

density, thermal resistance, and absorptance at different spectra are the primary

determinants of how the wall behaves. These parameters are rarely explicitly set

by modeling practitioners however. Instead, modelers will choose a wall assembly

which will implicitly define the set of thermal characteristics of the wall from either

measured data or detailed thermal modeling analysis. The ComStock sensitivity

study uses direct, continuous parameters where possible, which may be set explicitly

(building aspect ratio) or implicitly (Wall U-value determined from wall construction

type and vintage).

Schedule Parameters. Schedule parameters are highly influential in de-

termining building energy use [41] but are very difficult to quantify as they are

composed of values for each hour or sub-hourly increment and may be different

by season or day of week. Schedules can be reduced down to a set of shape fac-

tors [21] [101] to describe the schedule. This study condenses schedules down to

equivalent annual full load hours (EFLH), which calculates the number of hours a

load would need to run at full load to match the aggregate integration of schedule

value over time for the full year.

Parameter Interaction. Buildings are non-linear systems, which means
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some variables are highly co-dependent and require careful treatment in sensitivity

analysis to capture their impact. Window solar heat gain and window-to-wall ratio

are examples: window solar heat gain matters much more in building with a high

window-to-wall ratio. Accounting for parameter interaction is handled by the choice

of analysis method, which is explained in the next section.

Table 6.1: Parameters relating to high-level building characteristics.

Parameter Description

Building Type The building primary use and occupancy type

Location The building location, represented by climate zone.

Size Rentable floor area of the building.

Vintage The age of the building, used in inferring the age of
building systems, components, and efficiencies
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Table 6.2: Sensitivity parameters relating to the building envelope.

Parameter Description

Aspect Ratio The ratio of length to width of the building, with length
referring to the East-West axis of the building

Internal mass area ra-
tio to floor area

The amount of internal thermal mass in the form of
furniture and equipment, normalized by floor area

Number of floors Number of above-ground floors

Orientation The amount of rotation from the north axis

Roof absorptance The absorptance of the roofing material

Roof U-value The roof thermal resistance

Topographic projec-
tion index

The height of the building relative to neighbors, used to
estimate the impact of shading from surrounding build-
ings

Wall U-value The wall thermal resistance

Window-to-wall ratio The ratio of window area as a portion of total wall area

Window U-value The window thermal resistance
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Table 6.3: Parameters relating to building loads including lighting, plug loads, oc-
cupancy, and miscellaneous process loads.

Parameter Description

Daylight control space
fraction

Fraction of lighting in a space controlled by a daylighting
sensor

Elevator energy use Energy use for elevators in the building

Exterior lighting
power

Exterior lighting power for facade, parking, entrance,
and signage lighting

Infiltration Rate Annual average infiltration rate per exterior wall area

Interior lighting power
density

Interior lighting power normalized by floor area

Interior lighting
schedule

Equivalent annual full load hours of interior lighting

Occupant density Number of people normalized by floor area

People schedule Equivalent annual full load hours of occupants

Plug load power den-
sity

Interior equipment power normalized by floor area

Plug load schedule Equivalent annual full load hours of interior equipment

Refrigeration Annual energy use used for low and medium tempera-
ture refrigeration

Service water heater
fuel type

Gas or electric

Service water heating
water use

Total annual volume of hot water consumed by the
building
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Table 6.4: Parameters relating to building HVAC equipment including thermostat
setpoints, component efficiencies, and control characteristics.

Parameter Description

Air system fan mini-
mum flow fraction

Average single-zone and multi-zone air system fan min-
imum airflow fraction, weighted by annual air flow rate

Air system fan static
pressure

Average single-zone and multi-zone air system fan static
pressure, weighted by annual air flow rate

Air system fan
weighted efficiency

Average single-zone and multi-zone air system fan total
efficiency, weighted by annual air flow rate

Air system outdoor
airflow fraction

Average annual outdoor air fraction, used for determin-
ing DOAS vs. VAV operation

Boiler efficiency Nominal thermal efficiency of the boiler, if present

Building fraction
cooled

Fraction of building floor area that is conditioned for
cooling

Building fraction
heated

Fraction of building floor area that is conditioned for
heating

Chiller efficiency Annual and design COP of the chiller, accounting for
part-load performance

DX cooling coil effi-
ciency

Annual and design COP of DX cooling equipment, ac-
counting for part-load performance

DX heating coil effi-
ciency

Annual and design COP of DX heating equipment, ac-
counting for part-load performance

Gas coil efficiency Nominal thermal efficiency of gas furnaces
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Table 6.5: Parameters relating to building HVAC equipment including thermostat
setpoints, component efficiencies, and control characteristics.

Parameter Description

HVAC system type The type of HVAC system archetype, indicating fuel
types and whether it is single-zone or multi-zone

Has System Boolean variables for whether a building includes spe-
cific HVAC equipment. Separate variables for boilers,
chillers, DX cooling, DX heating, zone HVAC system,
zone HVAC fans, and multizone HVAC.

Plant loop pump head Non-service water heating water loop pump head,
weighted by plant loop annual mass flow rate

Plant loop pump min-
imum flow fraction
head

Non-service water heating water loop pump minimum
flow fraction, weighted by plant loop annual mass flow
rate

Plant loop pump mo-
tor efficiency

Non-service water heating water loop pump motor effi-
ciency, weighted by plant loop annual mass flow rate

Thermostat setpoint
schedule cooling
maximum

Cooling setback temperature

Thermostat setpoint
schedule cooling
minimum

Cooling setpoint temperature

Thermostat setpoint
schedule heating
maximum

Heating setpoint temperature

Thermostat setpoint
schedule heating
minimum

Heating setback temperature

Ventilation rate Design outdoor air rate and average outdoor air fraction,
normalized by floor area

Zone HVAC fan mini-
mum flow fraction

Average zone HVAC equipment fan minimum airflow
fraction for VAV systems, weighted by design air flow
rate

Zone HVAC fan static
pressure

Average zone HVAC equipment fan static pressure,
weighted by design air flow rate

Zone HVAC fan
weighted efficiency

Average zone HVAC equipment fan total efficiency,
weighted by design air flow rate
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6.1.5 Parameter Importance Calculation Method

The parameter importance method determines how sensitive a given QOI is

to the input parameters in the model. In the language of machine learning, the

input parameters are features input into a regression model whose output is the

QOI. The relative weight of feature importance determines how strongly a given

QOI is influenced by that feature. Features can be explicit inputs, implicit inputs,

or unit-less features from a cluster or principal components analysis to condense the

parameter space [21] [101]. For the regression model considered here, features in the

regression model are one-to-one mappings of the model input parameters.

There are many regression models and methods available for sensitivity analy-

sis. Prior work for building sensitivity analysis has typically used the one-at-a-time

(OAT) method, also known as the Morris Method, as this is simple and easy to

implement [28], [33], [100]. One-at-a-time and other simple linear regression meth-

ods are not able to properly capture parameter interaction. While features can be

constructed that include interactions of two parameters, inclusion of all such inter-

actions results in too large of a feature space and not enough training data, resulting

in model overfitting. Also, as described in the introduction to this section, sensitiv-

ity analysis method typically require a pre-defined sample which is computationally

prohibitive.

For these reasons, the feature importance method for this project uses an

ensemble random forest method constructed by sampling from many decision trees

[102]. Decision trees have a set number of branches and leafs, with each branch
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Figure 6.4: A visual example of a decision tree for determining total
building energy use.

in the tree determined by a feature (building input parameter). Figure 6.4 gives

an extremely simplified decision tree for determining total annual building energy

use. At each step, the branch taken is based whether the input parameter is over or

under a given value. This continues until it reaches a leaf, which will determine the

value of the output variable. The decision tree for calculating quantities of interest

is based on 66 feature inputs with 400 estimators.

Decision trees can be very accurate, but tend to overfit their data. By taking

an ensemble of decision trees, known as a random forest, it is possible avoid the

overfitting issue while still retaining model accuracy [102]. This was used successfully

in developing a simplified regression model of a set of office building energy modeling

results for the EnergyStar program [103]. To determine model accuracy, 20% of the

data is reserved as testing data and the model is trained on the remaining 80%. A
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large decrease in the accuracy between the training and testing datasets indicates

model overfitting. Accuracy is determined by mean square error. The training

and testing data split and the random forest regression were implemented using the

python scikit-learn package [104].

The relative importance of a decision node in a tree, namely how close to the

root it is, will give a relative weight of the importance of that feature. Averaging

the relative locations of features in a decision tree will reduce the variance in the

feature importance for that parameter, a metric known as mean decrease in impurity

[105]. This is the method used in scikit-learn to determine feature importance.

The resulting feature importance metric assigns each feature a value of importance

relative to other features, with all values summing to 1.

Give how sensitive building energy use is to floor area, that parameter was

initially excluded from the model. However, the model has poor accuracy, with a

significant drop in the testing set as shown in Table 6.6. Features that are highly

correlated with large floor area, such as elevator use, show up highly in the feature

importance because of this. To avoid this issue, floor area was included in the model

and an additional set of QOIs were added to normalize total kWh and kW values

by floor area.
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Table 6.6: Comparison of random forest model accuracy including and excluding
total building floor area for determining the average top 10 peak summer magnitude
(kW).

Model Training
Accuracy

Testing
Accuracy

Model excluding total
building floor area

91.7% 77.1%

Model including total
building floor area

94.5% 95.9%
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6.2 Parameter Importance Results

The results of the sensitivity analysis are rankings of feature importance (sum-

ming to 1) for each QOI and the random forest regression model training and testing

accuracy. The results are based on a sample region of Fort Collins, CO, which is

in climate zone 5B. Figure 6.5 shows the model accuracy for different sets of QOIs.

QOIs are grouped based on whether they are calculated in relation to the individual

building or in relation to the aggregate stock, and whether the values are floor area

normalized or not. The training model accuracy is greater than 80% for all QOIs

except those that related to peak timing. Summer QOIs have high accuracy, while

winter QOIs generally have poor accuracy, especially the winter peaks. This is likely

because winter peaks most often coincide with peak heating demand, driven by sub-

stantial fan and heat pump energy use. Heating is mostly gas, and the QOIs are

all electric, so minor differences in base fan or cold weather heat pump performance

can result in substantial differences in energy use.

The random forest models are most accurate at predicting the average daily

summer maximum. Feature importance calculated at the building level to determine

the average daily maximum use in summer is shown in Figure 6.6. Comparing the

feature importance unnormalized vs. normalized by floor area shows several differ-

ences. First, building floor area drops from being the most overwhelming significant

parameter, though still high, suggesting that there are second-order effects to size

that are not captured by other variables. Exterior lighting also drops significantly. It

is unclear why this variable ranks so highly in the model for summer QOIs; it could
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Figure 6.5: The testing and training accuracy of the random forest model
for run 6.
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Figure 6.6: The relative feature importance for input parameters in the
unnormalized and normalized case for the building average daily maxi-
mum use in summer, kW.

be that buildings with high summer peaks are more likely to have exterior lighting

(restaurants, retail stores). Once controlling for floor area, hot water use (indica-

tive of restaurants) shows up significantly in the dataset. Other variables appear in

roughly similar ranking - outdoor air flow rate, occupant density, the presence of DX

cooling equipment, interior lighting schedule full load hours, refrigeration density,

and interior plug load density, and are influential for most individual building QOI

values. These are parameters to consider when calibrating at the individual building

level.

Stock model calibration prioritizes a different set of parameters. While a given
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Figure 6.7: The relative feature importance for input parameters in the
unnormalized and normalized case for the aggregate average daily max-
imum use in summer, kW.

parameter may be influential if it significantly contributes to individual building

load, such has high hot water use, it may not be significant to the total grid load

if there are relatively few buildings with those characteristics. Figure 6.7 shows the

same feature importance rankings but in relation to the aggregate commercial build-

ing load on the grid, rather than individual building. Notably, the interior lighting

schedule full load hours is much more important, indicating it drives total load, and

hot water use no longer shows up in the top ten most important parameters.

For the sake of brevity, there is no need to include the ranked feature impor-

tance for each QOI here. A few features are significant for most QOIs, so feature
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importance can be summed across QOIs to determine an overall feature importance.

To do this, QOIs are grouped into one of four sets based on whether the QOIs are

at the individual building level or in relation to the aggregate, and whether the data

is normalized or not. Aggregate unnormalized QOIs are most significant for stock

model calibration. To give an overall weighting, the feature importance values for

each aggregate QOIs were summed together by parameter. These QOIs are listed

in Figure 6.5 and the weighted feature importance is given in Figure A.7. Results

for other sets and QOIs are listed in the Appendix. 80% of the feature importance

comes from 12 input parameters, and 90% from 20 input parameters. Besides floor

area, interior equipment and lighting densities, equipment schedules, outdoor air

flow rate, heating setpoints, occupant density, and the presence of rooftop units

are the most significant parameters. This suggests special attention should be paid

to internal load power densities and schedules, thermostats setpoints, and roof top

units for calibrating the Fort Collins, CO stock model.

The full ComStock model simulates buildings across many climate zones, and

features that show as important in Fort Collins, CO may not accurately represent

the full building stock across the U.S.. To calculate the feature importance for the

full U.S. stock, feature importance was calculated for each climate zone, weighted

by the number of buildings in that climate zone, and then summed together and

normalized to sum to 1. The result is shown in Figure B.3. The major differences

between the full ComStock feature importance and Fort Collins, CO are that hot

water use and gas coil efficiency show up much higher - indicating heating fan

energy use and hot water heating are significant parameters for other regions of
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Figure 6.8: The weighted feature importance of input parameters for
aggregate unnormalized QOIs.
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the country. Hot water use density and gas coil efficiency are likely important not

because they have a direct casual influence, but because they are highly correlated

with other influential variables, as shown in the correlation matrix in Figure 6.10.

Hot water use is highly correlated with equipment power density, indicating that

is a strong predictor of high electric kitchen equipment. Equipment power density

is largely bimodal, as shown in Figure 6.11. Hot water use is a better indicator of

buildings with kitchens that contain high equipment power density than equipment

power density directly. Gas coil efficiency has two values in the model, 78% and 80%,

depending on the code year, making it the strongest correlate for building code year.

Built code year is itself not as high, largely because retrofits of other equipment can

occur in the model so the gas coil efficiency is a better predictor of HVAC system

age. The variables indicate that a better accounting for kitchen equipment, making

it explicit in the model, and making sure we are modeling code year and retrofit

frequency accurately are critical for calibrating the full stock model.

6.3 Parameter Importance Conclusions

QOI feature importance for Fort Collins, CO and the full ComStock run

showed similar results. Besides floor area, internal loads such as interior equipment

power density and lighting schedules were among the most significant parameters

in both sets. Also significant were hot water use density, gas coil efficiency, the

presence of DX cooling equipment (RTUs), exterior lighting power density, outdoor

air flow rates, and thermostat setpoints. Hot water use density, indicative of high
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Figure 6.9: The weighted feature importance of input parameters for
aggregate QOIs for the full U.S. commercial building stock.
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Figure 6.10: A correlation matrix for model input parameters for the
full ComStock run.
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Figure 6.11: A histogram of equipment power density in ComStock
Buildings. The highest cluster of the bimodal distribution represents
buildings with kitchens.

electric kitchen equipment loads, and gas coil efficiency, indicative of building code

year, are indirect parameters. These are calibration priorities to improve model

accuracy across all QOIs.
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Chapter 7: Stock Model Calibration

This section details the process of calibrating ComStock to utility data and

end use meter data for Fort Collins, CO, shown in Figure 7.1.

7.1 Advanced Metering Infrastructure (AMI) data

Utilities in recent years have installed Advanced Metering Infrastructure (AMI)

capable of capturing how much electricity a building uses on an interval basis, typ-

ically 15 minutes. For this project, AMI data was available for all buildings served

by the electric municipal utility in Fort Collins, CO. AMI data is available for years

2014 through 2019, though 2014 and 2015 have sparse data as the metering pro-

gramming was finishing the AMI roll-out. Weather data is available for 2016, so

this project uses 2016 as the calibration year.

Each meter in the AMI serves a premise and is tagged with a unique premise

identification (premise id). Several meters (premises) may exist on the same parcel

of land, which is what CoStarTM and tax assessor data reference. The mapping

of the three datasets - utility data, CoStarTM, and the tax assessor database, is

shown in Figure 7.2. Unique to Fort Collins, CO, the utility was willing to provide

the mapping of premise ids to parcels (parcel ids), allowing us to match specific
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Figure 7.1: The region served by the Fort Collins, CO municipal utility.

Figure 7.2: A diagram detailing how utility data is matched to building
characteristics including size, physical address, and building type.
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building meter data to a physical address. In all other regions, only the CoStarTM

building classification is known, as the physical addresses can’t be persisted and is

not available from the utilities. CoStarTM includes a building type classification,

which were each mapped to a ComStock building type. This allows us to tag each

building with a ComStock building type, and then remove AMI data for buildings

that are not represented in the ComStock model. Table 7.1 shows the number of

buildings of each ComStock building type in the Fort Collins utility dataset.

Table 7.1: The number of buildings of each ComStock building data available for
comparison.

Building Type AMI Number of Buildings ComStock Number of Buildings

full service restaurant 72 119
large hotel 8 30
large office 4 26

medium office 28 89
outpatient 96 136

primary school 21 55
quick service restaurant 29 38

retail 181 429
small hotel 7 33
small office 369 771
strip mall 223 626
warehouse 153 933

total 1191 3329

As there are many commercial buildings in the Fort Collins, CO dataset that

can’t be mapped to a ComStock building type or otherwise classified, this analysis

compares energy use on a kWh per floor area basis, with total floor area sampled

from CoStarTM. To calculate kWh per floor area values, the utility data is summed

to generate electricity use timeseries for each parcel id (kWh). Then, all parcel ids
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belonging to a specific building type are summed and divided by the total area of

those parcel ids. The result is an hourly timeseries for each building type of the

mean hourly kWh per square foot. The total kWh per square foot for the stock

can then be calculated by multiplying each building type timeseries by the floor

area of that building type in ComStock, summing the result, and the dividing by

the total floor area in the ComStock sample. The ComStock sample is based on

CoStarTM counts, as the AMI data represents a fraction of the building stock and is

not as representative as CoStar for the relative weights of different building types.

This total timeseries can then be used to calculate QOIs for the utility data and

compare against the ComStock results. An initial load duration curve comparison,

with all 8760 values ordered by magnitude for the utility data and ComStock results,

is shown in Figure 7.3. The initial results show poor model fit, with the AMI data

several times higher than the ComStock data. The initial AMI data has a total

annual average electric EUI of 23.7 kWh/ft2, or 80.7 kBtu/ft2, which is very high

for commercial buildings. A comparison of CBECS [98] results for the Mountain

region, ComStock, and AMI data in Table 7.2 confirms that the AMI data is high,

particularly for warehouse buildings. This suggests that AMI data may contain

several outliers.

7.1.1 AMI Outlier Filtering Methods

A review of individual building parcel data explains the reasons for the high

EUIs and suggests using an outlier filtering method on the AMI data to identify
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Figure 7.3: The initial load duration curve of uncalibrated ComStock
results compared with raw AMI data for all buildings.

misclassified buildings and produce a more representative electricity use timeseries

for comparison.

To identify problematic AMI data, the annual electric EUI for each parcel id is

calculated and plotted as a distribution for each building type. As an example, Fig-

ure 7.4 shows the distribution for warehouses, with one particular building showing

an electric EUI of 6600 kWh/ft2, which turns out to be an electronics manufacturing

facility. Investigations of several other high end use outliers show several gas sta-

tion/convenience stores and restaurants included in the strip mall or retail category,

autobody shops in the warehouse category, manufacturing facilities in the small of-

fice category, nursery and greenhouses in the retail category, and a few buildings

in the quick service restaurants category where high drive-thru service is driving
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Table 7.2: A comparison of annual EUI kWh/ft2 by building type for the CBECS
2012 Mountain region, AMI, and ComStock.

Building Type CBECS type CBECS AMI Comstock

full service restaurant food service 35.3 38.1 67.1
large hotel lodging 18.2 12.1 19.7
large office office 12.2 13.9 13.8

medium office office 12.2 13.2 12.1
outpatient outpatient 14.1 15.3 22.9

primary school education 10.1 9.6 16.1
quick service restaurant food service 35.3 95 73.8

retail retail 18.7 22 14.9
small hotel lodging 18.2 4.8 24.9
small office office 12.2 15.5 10.9

strip mall strip mall 18.3 15.1 15.7
warehouse warehouse 4.1 51.1 5.2

total all buildings 13.9 23.7 10.8

energy use instead of floor area. To identify outliers, several filtering methods are

proposed and described below. The results of each outlier method, including how

many buildings are removed are shown in Table 7.3.

7.1.1.1 Outlier Methods

• No Filter Keep all data. There are extreme high and low outliers; the high

outliers overwhelm the averages and skew the data high.

• IQR Filter Remove values if the exceed a metric based on the interquartile

range, given in Equation 7.1 [94]. This removes the highest values, but leaves

low EUIs as Q1 − IQR is often negative, leaving in vacant and misclassified

buildings for some building types.
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Figure 7.4: The distribution of EUIs for warehouse buildings in the Fort
Collins, CO AMI data.

• Ln IQR Filter Remove values base on the interquartile range method, but

use ln(kwh per sf). EUI distributions tend to follow a log-normal distribution,

so this method enables the interquartile range filter to remove lower values.

As the IQR is quite large, it leaves in many high, misclassified buildings.

• Quartile 2nd and 3rd Filter Keep only values in the second and third

quartiles, based on the distribution of EUIs by building type. This is the

most restrictive filter, and removes buildings that have well clustered EUIs

are properly classified, such as large office and large hotel.

• 5 Times Median Filter Remove values 5 times greater than or smaller than

the median. Only removes extreme cases of high use misclassified buildings.
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• 3 Times Median Filter Remove values 3 times greater than or smaller than

the median. Removes extreme high and lower outliers similar to the iqr filter

and ln iqr filter methods, but is much less restrictive than the qrt23 filter.

outlier =



true if x < Q1− 1.5 ∗ IQR

true if x > Q3 + 1.5 ∗ IQR

false else

(7.1)

where:

Q1 = median of lower half of the data (x < median)

Q3 = median of upper half of the data (x > median)

IQR = Q3 - Q1

Table 7.3: The result average EUI for each building type and number of buildings
remaining, given as EUI kWh/ft2(# of buildings).

Building Type none iqr ln iqr qrt23 5x median 3x median

full service restaurant 38.1 (72) 34.2 (69) 39.3 (70) 36 (36) 37.9 (68) 38.6 (62)
large hotel 12.1 (8) 12.1 (8) 12.1 (8) 11.6 (4) 12.1 (8) 12.1 (8)
large office 13.9 (4) 13.9 (4) 13.9 (4) 15.5 (2) 13.9 (4) 13.9 (4)

medium office 13.2 (28) 12.5 (27) 14.4 (26) 13.7 (14) 14.4 (26) 15.7 (23)
outpatient 15.3 (96) 9.2 (92) 11.5 (82) 8.8 (48) 16.9 (84) 10.9 (80)

primary school 9.6 (21) 9.6 (21) 9.9 (19) 8.3 (11) 9.6 (21) 9.9 (19)
quick service restaurant 95.0 (29) 87.9 (27) 91.5 (28) 94.7 (15) 95 (29) 91.5 (28)

retail 22.0 (181) 15.3 (165) 18.9 (175) 12.0 (91) 16.1 (158) 16.0 (124)
small hotel 4.8 (7) 4.8 (7) 4.8 (7) 7.9 (5) 9.4 (6) 9.6 (5)
small office 15.5 (369) 10.4 (341) 12.6 (351) 9.0 (185) 12.2 (343) 10.9 (311)

strip mall 15.1 (223) 12.4 (199) 17.5 (213) 15.8 (113) 17.3 (186) 15.5 (158)
warehouse 51.1 (153) 3.0 (135) 6.4 (135) 5.4 (77) 6.5 (128) 6.3 (108)

total 23.7 (1191) 11.1 (1095) 15.0 (1118) 12.7 (601) 14.9 (1061) 14.0 (930)

Most buildings removed by filtering methods are misclassified, but there are
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several correctly classified buildings that represent true EUI variability for a given

building type. Currently, ComStock has limited sources of variability through chang-

ing building system vintage and varying occupancy start time and duration. The

wide variability in certain building types suggest that future improvements to Com-

Stock should account for wider variability, particularly in space type ratios and

equipment intensity. Some building types, particularly quick service restaurants

with drive-thrus, may best be compared using some other metric instead of EUI

as energy use is not entirely driven by floor area. For the purposes of generating

comparison data for region 1, the 3x median filter method provides the best balance

between removing both high and low outliers while including many more buildings

than the filtering method that only takes the second and third quartiles.

7.2 Application of Feature Importance to ComStock Calibration

The sensitivity analysis identified several highly important parameters for

stock model calibration. This section details the changes and improvements made

based on metered data to improve the stock model calibration of ComStock, includ-

ing results.

7.3 Model Changes

Three major changes were included in ComStock based on the sensitivity anal-

ysis: 1) lighting schedules and power densities, 2) equipment schedules and power

densities, and 3) thermostat setpoint schedules. New values for these parameters
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Figure 7.5: A graphical depiction of the method to pre-processes the end
use data code by enduse and building type, and then using that subme-
ter data to generated average schedules by building type for lighting,
equipment, and thermostat setpoints.

were derived from analysis of two large end use meter datasets from two private

submetering companies which requested they not be named in publications. The

processing for this is detailed in Figure 7.5. Affected building types and method for

calculating updated model inputs are listed below.

7.3.0.1 Description of Model Changes

• Update lighting schedules

Building types: retail, full service restaurant, warehouse, office, primary school,
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secondary school

Approach: Calculated average daily profiles (hourly interval) for each build-

ing type and day of week. School buildings differentiate between the academic

period and summer break.

• Update lighting power density

Building types: retail, full service restaurant, warehouse, office

Approach: The design lighting power density is assumed to be (5%) higher

than the peak power in the dataset. The schedules are normalized against this

peak power.

• Update plug load schedules

Building types: retail, full service restaurant, grocery, warehouse, office, pri-

mary school, secondary school

Approach: Calculated average daily profiles (hourly interval) for each build-

ing type and day of week. School buildings differentiate between the academic

period and summer break.

• Update plug load power density

Building types: retail, full service restaurant, grocery, warehouse, office, pri-

mary school, secondary school

Approach: Peak power in dataset used to approximate difference in design

peak power and peak power in the normalized schedule. The schedules are

normalized against this peak power.
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• Update thermostat setpoint schedules

Building types: retail, strip mall, quick service restaurant, full service restau-

rant, grocery, office

Approach: Calculated average daily profiles (hourly interval) for each building

type and day of week.

Each model change was implemented in ComStock sequentially, starting with

lighting schedules, then equipment schedules, and finally thermostat setpoint sched-

ules. Lighting, equipment, and thermostat schedules are not monolithic for each

building type. There is variability, for example full service restaurants clustering

into those that serve lunch and dinner vs. only dinner. This variability is partly

captured in the start time and duration inputs in ComStock, but there is room for

improvement in capturing the range of schedule variation in real buildings.

ComStock model runs

• com reg1 02 2016 The initial ComStock run without any model changes.

• com reg1 03 2016 Adjust lighting schedules.

• com reg1 04 2016 Re-normalize lighting schedules to annual peak and adjust

lighting power density.

• com reg1 05 2016 Adjust equipment schedules and equipment power density.

• com reg1 06 2016 Adjust thermostat setpoint schedules.

106



7.4 Calibration Results

Assessing calibration results is a mix of quantitative and qualitative, graphical

analysis. Qualitative methods compare load duration curves and stacked area graphs

of enduse for each building type, broken out by weekday/weekday and QOI season.

This shows the major constituents of energy use and shows how well the building

matches a particular profile. Quantitative metrics include CVRMSE and NMBE,

as well as QOIs. The initial calibration shows a decent match between ComStock

and the AMI data 7.6. Peak timings are well matched, but a small amount of

nighttime base load is missing, more pronounced during the summer seasons. The

first round of changes, runs 3 and 4, adjusted lighting schedules and lighting power

densities. Figure 7.7 shows the impact of lighting schedule changes on the daily load

profile shapes for retail buildings. The new averaged schedules extend retail lighting

into the evening hours, which better matches the load curve for retail buildings.

However, exterior lighting turning on in the evenings is causing a bump in energy

use that interrupts the evening ramp down of energy use. Figure 7.8 shows the

implementation of run 5, updated equipment schedules. Restaurant equipment is

now much more stable, and more closely aligns with average restaurants begin open

for lunch and dinner but not breakfast. Lastly, Figure 7.9 shows the impact of run 6,

updated thermostat schedules, on large offices. There is a slight increase in cooling

and fan energy use, but it is not enough to overcome the underestimation of energy

use, suggesting ComStock is missing some internal equipment or lighting load.

Figure 7.10 shows the enduse comparison for the total load and Figure 7.11
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Figure 7.6: The average daily load profiles for weekdays and weekends
for each season, broken out by enduse for the baseline ComStock run.
The AMI data is shown with +-5% error.
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Figure 7.7: Before and after the implementation of updated lighting
schedules and power densities for retail buildings.
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Figure 7.8: Before and after the implementation of updated lighting
schedules and power densities for full service restaurants.
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Figure 7.9: Before and after the implementation of updated thermostat
setpoint schedules for large office buildings.
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compares the load duration curve. There is no longer underestimation of nighttime

loads, however some building types appear worse, such as warehouses, Figure 7.12.

This suggests that while the total load curve may be accurate, it is important to

consider each building type individually to show model fit. The total load evening

peak comes from warehouses, which were a tricky building type to classify, and one

where there were only 26 buildings in the enduse dataset to use for schedules. It’s

likely that these weren’t representative – the company that provided the enduse

data was the one to specify the building type to keep their client confidentiality,

and as indicated in the analysis of the AMI data, warehouses are tricky to classify

and often get mis-characterized. It could also be the case that warehouses in the

enduse dataset are from one chain that has a different use profile, more typical of a

distribution center, than what ComStock assumes. In looking at the enduse data,

half the warehouses have erratic operation, with some operation only half of the year.

The other building types did not have this issue because classification errors were

less likely and there were more of them. Because warehouses are a significant portion

of the stock, an additional run 7 reverts the changes to teh warehouse equipment

and lighting schedule changes to warehouses, which provides a better fit, shown in

Figure 7.13.
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Figure 7.10: The average daily load profiles for weekdays and weekends
for each season, broken out by enduse for ComStock run 6.
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Figure 7.11: The load duration curve for each ComStock run as com-
pared to AMI data.
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Figure 7.12: The average daily load profile for weekday and weekends
for warehouse buildings. The ComStock data is far off, suggesting that
warehouses are misclassified in the end use data processing.
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Figure 7.13: The average daily load profiles for weekdays and weekends
for each season, broken out by enduse for ComStock run 7.
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Table 7.4: Model calibration statistics of total electric load compared to AMI data.
Positive error values mean the model overestimates the value. Positive minute values
indicated the model peak occurs later than the AMI data.

metric run 2 run 3 run 4 run 5 run 6 run 7 Improved?

avg. min summer kw err(%) -18.5 2.1 -15.8 -7.3 -7.2 -19.2 FALSE
avg. max summer kw err(%) 3.7 -2.9 -8.9 -13 -7.3 5.1 FALSE

avg. top10 peak summer kw err(%) -0.1 -8.4 -13.9 -18.2 -13 -2.7 FALSE
avg. min winter kw err(%) 1.4 13.1 -0.8 14.4 14.6 0.2 TRUE
avg. max winter kw err(%) 23.7 22 15.2 15.5 16.5 25.8 FALSE

avg. top10 peak winter kw err(%) 27.4 23.1 17.3 17.2 16.1 24.2 TRUE
avg. min shoulder kw err(%) -6.5 15.2 -0.9 13.7 13 -1 TRUE
avg. max shoulder kw err(%) 17.2 14.1 6.5 4.4 8.8 22 FALSE

avg. top10 peak shoulder kw err(%) 11.1 3 -3.8 -9.1 -3.5 8.7 TRUE
avg. min timing summer hour (err minutes) -47 -20 37 89 98 90 FALSE
avg. max timing summer hour (err minutes) 17 46 57 127 81 21 FALSE

avg. top10 peak timing summer hour (err minutes) 11 30 41 68 68 -6 TRUE
avg. min timing winter hour (err minutes) 180 167 60 124 132 119 TRUE
avg. max timing winter hour (err minutes) 85 214 256 308 328 108 FALSE

avg. top10 peak timing winter hour (err minutes) 57 305 312 396 396 143 FALSE
avg. min timing shoulder hour (err minutes) 113 137 59 92 82 126 FALSE
avg. max timing shoulder hour (err minutes) 32 67 116 263 217 39 FALSE

avg. top10 peak timing shoulder hour (err minutes) 36 36 54 99 60 8 TRUE
annual electricity use kwh per sf err(%) 5.96 12.4 2.13 3.93 6.23 6.92 FALSE

cvrmse (%) 16.46 20.19 16.91 21.8 20.79 16.55 FALSE

Table 7.4 gives the calibration statistics for each run, showing the largest

improvements came from updates to the lighting schedules. Lastly, Figure 7.14

shows the percentage error in daily minimum and maximum kW per ft2 for each

season, as well as the error in the timing of seasonal peaks, represented in minutes.

While the total load may show decent model fit, some building types are

still far off from the AMI dataset, especially warehouses. This presents a risk of

Simpsons paradox, where several poorly fitting building type comparisons could

sum together to show a good model fit overall. Warehouses were the only building

type to show a worse model fit after calibration however, and reversal of the changes
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Figure 7.14: Calibration Quantities of Interest for run 6 compared
against the AMI data with no outlier removal and the 3x median fil-
ter outlier removal method.
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to warehouses would likely improve total model accuracy, suggesting there is not a

Simpsons paradox here. As to why the warehouse model fit is worse, the enduse

data used to generate updated warehouse equipment and lighting schedules included

26 buildings and the classification of these buildings as warehouses was determined

by the data providers. The subset of warehouses from this dataset is likely not

representative of warehouse buildings in general and contains different use cases than

the warehouses in Fort Collins. It could also be the case that warehouse buildings

in the AMI dataset include several buildings that act more like offices, such as auto

body shops. In either case, there is a need for additional studies of the range of use

cases for warehouses, their operating schedules, and typical equipment and lighting

profiles. Retail, restaurant, office, and school buildings are easily classified and tend

to have more homogeneous uses compared to warehouses. There were also more of

them in the enduse datasets, so they did not suffer the same issues of being poorly

representative of that building type in ComStock.

7.5 Calibration Conclusions

The model changes show little improvement to the total load fit but better

performance for some specific building types, particularly retail, restaurants, school,

and offices. The most significant changes came not from changes to ComStock, but

rather establishing a filter to improve classification in the AMI data set. ComStock

model adjustments changed total energy use by less than 20%, while AMI data

changes were typically 10% to 15%, up to 60% depending on how extreme values
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were identified. This suggests that future calibration efforts should work to ensure

proper building type classification in truth data sets and establish larger error bound

for calibration. The final model has a 6.92% normalized mean bias error (NMBE)

and 16.55% coefficient of variation of root mean square error (CVRMSE) based

on normalized annual energy per floor area. Typical calibration statistics given in

the literature review suggests a calibration goal of hourly CVRMSE less than 20

or 30% and NBME less than 5 or 10%. All runs meet the CVRMSE criteria, and

several meet the NMBE criteria, however run 7 is above 5% NMBE, suggesting

further room for model improvement. For the QOIs, seasonal maximum and mini-

mum magnitudes were under 20%, except for peak winter magnitude at 258% error.

Peak timing was within 2 hours except winter peak time which was 2.5 hours off.

Investigation of the enduse plots provides some direction on future work to improve

ComStock calibration.

7.5.1 Areas for Further ComStock Model Improvement

• Code Adoption

Building efficiency levels in ComStock are currently set assuming the most

recent ASHRAE Standard 90.1 [86] when the building was constructed, with

updates to building systems following a retrofit frequency approach. In reality,

the version of ASHRAE 90.1 is adopted on a state-by-state basis, with some

states still still using 90.1-2004 and 90.1-2007 in 2020. This most significantly

influences envelope performance in states that are slow to adopt new versions
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of 90.1.

• RTU Efficiency Degradation

ComStock consistently underestimates peak energy use, typically occurring

during peak summer cooling. Most cooling is served by rooftop DX cooling

equipment. Currently, ComStock assumes the same performance characteris-

tics for the HVAC equipment over its lifetime, when in reality there is minor

performance drop each year from coil fouling and refrigerant leakage. An in-

tern at NREL in the summer of 2020 analyzed performance data in DX RTU

units and those assumptions for performance degradation will be incorporated

into future versions of ComStock.

• Exterior Lighting

Exterior lighting is a sizeable portion of nighttime load, and causes a bump in

evening electricity use that is not seen in the AMI data. Exterior lighting is ap-

plied in ComStock as a mix of parking lot and facade lighting with allowances

in 90.1 for each building type. As these are allowances, not installed light-

ing, there is likely room for improvement in estimating representative exterior

amounts for each building type.

• Warehouse End Use Data

The warehouse enduse data is likely not representative and serious classifica-

tion issues remain in both the enduse and AMI datasets. Separating warehouse

building types (differentiating between predominantly storage vs. sorting and

distribution centers) and seeking additional enduse data is likely necessary to
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improve ComStock accuracy.

• Restaurant Kitchen Equipment

Restaurant kitchen equipment, including hot water use from commercial dish-

washers, is the most significant end use in full service restaurant buildings.

Likewise kitchen equipment is the most significant use in quick service restau-

rants, where energy use is not directly tied to floor area. ComStock over-

estimates late evening electric equipment use in full service restaurants and

underestimates electric equipment use in quick service restaurants, suggest-

ing a need to break out major electric equipment explicitly in the model and

separating energy use for kitchen and dining areas.

• Variability

ComStock current uses the same averaged lighting and equipment schedule for

each building, adjusted to building start times and duration. In reality, there

are several distinct schedule patterns for equipment and lighting use within

a given building type, and these can be incorporated to show proper end use

distribution between buildings of the same type.

Calibration of ComStock is an ongoing project. This chapter covers calibration

for the first region of ComStock, and is a foundation to for improving calibration in

other regions. The next region will focus on a hot, humid climate in the southeastern

U.S.. ComStock region 1 metrics will continued to be tracked with future model

improvements.
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Chapter 8: Results and Conclusions

8.1 Conclusions

This body of work sought to improve the foundation on which energy models

are generated and calibrated for the purpose of building energy retrofits. An analysis

of a case study building found that for energy retrofits typically executed through

energy savings performance contracts, measure costs and capital availability are

the most significant constraints on long term financial performance and greenhouse

gas emission reduction potential. Greenhouse gas prices, colloquially referred to

as the social cost of carbon, do not influence decisions until they reach several

hundreds of dollars per metric ton, which is far beyond the range considered in

current policy making. Furthermore, there was little difference in measure ordering

- the idea of placing load reduction measures first to downsize HVAC equipment

- and that this savings was well within the noise of typical measure performance

uncertainty. This suggests that energy savings measures should be targeted with

most cost effective and reliable savings first, and that lower measure costs and access

to cheap capital will be necessary to retrofit the building stock. Currently there are

two ways to access cheap capital: through direct government investment and in

the private sector by greatly reducing the financial risk involved in energy savings
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projects. Reducing risk means reducing energy savings uncertainty, which is where

energy model calibration is needed, especially for projects that will address multiple

building systems at once.

To reduce calibration uncertainty, this work programmatically generated cali-

brated end-use models of the commercial building stock to reduce parameter uncer-

tainty and serve as a starting point for calibration efforts for individual buildings.

As the current metrics for demonstrating annual hourly calibration (NMBE and

CVRMSE) are insufficient to properly calibrate several enduses, this work devel-

oped a set of Quantities of Interest to calibrate buildings to an hourly basis for each

season. A random forest regression model is able to accurately determine which

model parameters matter most for each QOI, which allows energy modelers to focus

on improving model fit specific to each building type, season, and climate zone.

Only a subset of the 66 model features are important; when taken at the stock level

across all U.S. climate zones, 25 parameters explain 90% of the stock energy use

and are critical for model calibration. These include direct, causal parameters such

as lighting and equipment schedules, as well as a few indirect parameters such as

hot water use and gas heating coil efficiency which are proxies for electric kitchen

equipment and HVAC system age respectively.

These important model parameters were determined for a stock model of Fort

Collins, CO and used to calibrate the stock model to utility AMI data. Building

classification, that is choosing how to best represent existing buildings with meter

data as a specific building type, is the largest source of calibration uncertainty.

For Fort Collins, CO, classification uncertainty caused changes from 10% to 60%
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depending on how many extreme misclassified buildings were removed, while the

energy model changes were all less than 20%. A 3x median filter approach can best

help identify outlier and misclassified buildings in the AMI data to provide a proper

point of comparison for calibrating the stock model. The final stock model has a

6.92% NMBE and 16.55% CVRMSE based on normalized annual energy per floor

area, and QOIs show decent agreement with the exception of winter peak magnitude

and timing. Analysis of enduses during times of large model disagreement suggests

several areas for ComStock improvement.

8.2 Contributions

To enable use by the building energy modeling community, the software de-

veloped as part of this dissertation is open source and publicly available on Github.

The details of the retrofit methodology to analyze sources of external un-

certainty and findings were shared in a primary author paper, Building Energy

Retrofits Under Capital Constraints and Greenhouse Gas Pricing Scenarios [49], and

available at (https://github.com/CITY-at-UMD/retrofitLCC). This methodol-

ogy does not apply to deep energy retrofits, which typically involve a complete gut

retrofit of a building, replacing the exterior facade, installing a new HVAC system,

and often conversion to an all-electric system. These projects are relatively rare and

are more appropriately considered as new construction.

The method for generating reduced-order models was pursued through two

paths, initially through Virtual Pulse, described in a co-authored paper Demonstra-
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tion of reduced-order urban scale building energy models [106], and then later with

much more rigorous treatment through development of the openstudio-standards

ruby gem [26], available at (https://github.com/NREL/openstudio-standards).

Though not detailed here, this work required substantial development, debugging,

and validation of building energy models generated through openstudio-standards.

These methods are then accessed through the Create Typical Building Measure,

available on the OpenStudio Building Component Library (https://bcl.nrel.

gov/) and summarized in a co-authored conference presentation Automatic Gen-

eration of Highly Customizable Energy Models from High Level Input Data [107].

This work has been used extensively by a range of projects, including a co-authored

report ENERGY STAR for Tenants: An Online Energy Estimation Tool for Com-

mercial Office Building Tenants [103], an analysis of load forecasts for the Los An-

geles Department of Water and Power, the forthcoming ASHRAE Net Zero Energy

Multifamily Design Guide [108] [109], and several commercial building energy mod-

eling software interfaces. ComStock is available at (https://github.com/NREL/

ComStock) and a ComStock output web viewer is available on NREL’s website.

Hopefully building energy modeling practitioners will find this software useful in

improving the built environment.

A forthcoming article will share the QOIs and how to apply them to building

energy model calibration. If there is one major take-away from this dissertation, it

should be to include seasonal daily load profile comparisons, ideally broken out by

end use, to assist with building energy model calibration. The feature importance

results from ComStock can be atomized to the climate zone, building type, and sea-
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son level, allowing building modeling practitioners to focus on the input parameters

most likely to influence the energy savings for their particular retrofit project.

Lastly, the 3x median filter can be applied to other AMI datasets where direct

address matching is not available to provide reasonable truth data for comparison

when calibrating stock models. This filter method will be applied to assist in cal-

ibrating future regions of ComStock. The identified areas of model disagreement

provide a detailed list of further enduse data needs and areas for future research to

accurately represent the building stock.

8.3 Future Work

This dissertation laid the groundwork for calibrating stock energy models and

prioritized data collection efforts. The most immediate next steps are to continue

calibration efforts for additional regions, adding in model improvements summarized

in Chapter 7. Most important of these is re-assessing building classification to

improve truth data, potentially adding additional building types and space type

distributions within a given building type, as well as including additional schedule

and load variability. Once the stock model has been calibrated to a reasonable level,

it enables a wide range of future work in the building energy model space.

First, utilities and research and development agencies, like NREL and the DOE

Building Technologies Office, can use ComStock to prioritize building technologies

for further investment. ComStock is currently being used by the Los Angeles Depart-

ment of Water and Power to prioritize research into new building technologies that
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will help the utility reach its goal of 100% renewable energy. This summer 2020,

the author supervised an intern that analyzed the national potential for behind-

the-meter thermal energy storage (BTMS), identifying retail building RTUs as the

greatest market for BTMS and determining storage rate and capacity requirements.

Coupling ComStock with a cost model will allow building load to be explicitly ex-

pressed in NREL’s dispatch models for the electric grid, allowing building technolo-

gies to compete directly as grid services. Utility load resource planning currently

treats building energy efficiency as a small, static, uniform reduction in load. Ex-

plicitly breaking out commercial building load in grid models and being able to

predict reliable reductions in load through efficiency will open up inexpensive grid

infrastructure capital to building energy efficiency projects, removing a significant

limitation to building energy retrofits as demonstrated in Chapter 4.

The second major use case is to use an ensemble of building energy models

from ComStock as a starting point for individual building model calibration and

savings estimation. As noted in Chapter 2, calibration efforts are hampered by

model overfitting and the lack of prior parameter distributions for model inputs.

The range of climate zones, building types, HVAC systems and other major factors

can greatly influence which parameters are significant for a given building, and using

a subset of models generated from ComStock down-selected to specific building char-

acteristics will provide more accuracy than generalized case studies or practitioner

inference. This is critical for the success of Bayesian calibration approaches, which

while promising, are dependent on accurate prior distributions [62]. For smaller

commercial buildings, where having a practitioner perform energy auditing, data
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collection, and model calibration may be prohibitively expensive given the available

energy savings, an ensemble modeling approach may provide an alternative means to

estimate efficiency savings with much better accuracy than current deemed savings

approaches.

Hopefully better energy savings estimation from building energy model cal-

ibration will create a positive feedback loop by encouraging greater adoption of

building energy efficiency leading to further investment in efforts to reduce energy

savings uncertainty.
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Appendix A: Feature Importance for ComStock run 6, Fort Collins,

CO

Feature importance for select QOIs and QOI sets for ComStock run 6, Fort

Collins, CO.
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Figure A.1: The ranked feature importance for total site electricity for
buildings in relation to the total commercial building load for ComStock
run 6.
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Figure A.2: The ranked feature importance for maximum summer de-
mand for buildings in relation to the total commercial building load for
ComStock run 6.
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Figure A.3: The ranked feature importance for maximum winter de-
mand for buildings in relation to the total commercial building load for
ComStock run 6.
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Figure A.4: The ranked feature importance for minimum shoulder de-
mand for buildings in relation to the total commercial building load for
ComStock run 6.
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Figure A.5: The ranked feature importance for individual buildings for
ComStock run 6.
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Figure A.6: The ranked feature importance for individual buildings nor-
malized by floor area for ComStock run 6.
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Figure A.7: The ranked feature importance for buildings in relation to
the total commercial building load for ComStock run 6.
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Figure A.8: The ranked feature importance for buildings in relation to
the total commercial building load normalized by floor area for Com-
Stock run 6.
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Appendix B: Feature Importance for ComStock, entire U.S.

Feature importance for individual QOIs and QOI sets in individual climate

zones are available upon request.
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Figure B.1: The ranked feature importance for individual buildings for
ComStock nationally.
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Figure B.2: The ranked feature importance for individual buildings nor-
malized by floor area for ComStock nationally.
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Figure B.3: The ranked feature importance for buildings in relation to
the total commercial building load for ComStock nationally.
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Figure B.4: The ranked feature importance for buildings in relation to
the total commercial building load normalized by floor area for Com-
Stock nationally.
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Appendix C: Building Type Calibration Results for ComStock run

7, Fort Collins, CO
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Figure C.1: Stacked area enduse plots by season and day type for full
service restaurants, ComStock run 7, Fort Collins, CO.
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Figure C.2: Stacked area enduse plots by season and day type for large
hotels, ComStock run 7, Fort Collins, CO.
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Figure C.3: Stacked area enduse plots by season and day type for large
offices, ComStock run 7, Fort Collins, CO.
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Figure C.4: Stacked area enduse plots by season and day type for
medium offices, ComStock run 7, Fort Collins, CO.

148



Figure C.5: Stacked area enduse plots by season and day type for out-
patient, ComStock run 7, Fort Collins, CO.
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Figure C.6: Stacked area enduse plots by season and day type for primary
schools, ComStock run 7, Fort Collins, CO.
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Figure C.7: Stacked area enduse plots by season and day type for quick
service restaurants, ComStock run 7, Fort Collins, CO.
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Figure C.8: Stacked area enduse plots by season and day type for retail,
ComStock run 7, Fort Collins, CO.
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Figure C.9: Stacked area enduse plots by season and day type for small
hotels, ComStock run 7, Fort Collins, CO.
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Figure C.10: Stacked area enduse plots by season and day type for small
offices, ComStock run 7, Fort Collins, CO.
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Figure C.11: Stacked area enduse plots by season and day type for strip
malls, ComStock run 7, Fort Collins, CO.
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Figure C.12: Stacked area enduse plots by season and day type for ware-
houses, ComStock run 7, Fort Collins, CO.
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Figure C.13: Stacked area enduse plots by season and day type for total
of all buildings, ComStock run 7, Fort Collins, CO.
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