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Software security bugs — referred to as vulnerabilities — persist as an im-

portant and costly challenge. Significant effort has been exerted toward automatic

vulnerability discovery, but human intelligence generally remains required and will

remain necessary for the foreseeable future. Therefore, many companies have turned

to internal and external (e.g., penetration testing, bug bounties) security experts to

manually analyze their code for vulnerabilities. Unfortunately, there are a limited

number of qualified experts. Therefore, to improve software security, we must un-

derstand how experts search for vulnerabilities and how their processes could be

made more efficient, by improving tool usability and targeting the most common

vulnerabilities. Additionally, we seek to understand how to improve training to

increase the number of experts.

To answer these questions, I begin with an in-depth qualitative analysis of

secure development competition submissions to identify common vulnerabilities de-

velopers introduce. I found developers struggle to understand and implement com-

plex security concepts, not recognizing how nuanced development decisions could



lead to vulnerabilities. Next, using a cognitive task analysis to investigate experts’

and non-experts’ vulnerability discovery processes, I observed they use the same

process, but differ in the variety of security experiences which inform their searches.

Together, these results suggest exposure to and in-depth understanding of potential

vulnerabilities as essential for vulnerability discovery.

As a first step to leverage both experts and non-experts, I pursued two lines

of work: education to support experience development and vulnerability discovery

automation interaction improvements. To improve vulnerability discovery tool inter-

action, I conducted observational interviews of experts’ reverse engineering process,

an essential and time-consuming component of vulnerability discovery. From this, I

provide guidelines for more usable interaction design. For security education, I be-

gan with a pedagogical review of security exercises to identify their current strengths

and weaknesses. I also developed a psychometric measure for secure software devel-

opment self-efficacy to support comparisons between educational interventions.
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Chapter 1: Introduction

Many security bugs are discovered every year in production code [75,82,277].

These issues, known as vulnerabilities, can be exploited by malicious actors to catas-

trophic effect [111, 126, 319, 391, 437]. Further, even if companies are able to iden-

tify them before an attacker, they still cost significant time and effort to remedi-

ate [38, 243,303,374,390,441].

One approach to this problem is automated vulnerability discovery. Significant

advances have been made toward automatically identifying — and in some cases

remediating — vulnerabilities prior to code release [16,25,26,106,264,349,368,382,

383]. However, these results are currently fairly limited: Human intelligence remains

necessary at least for the foreseeable future.

In practice, companies rely on multiple rounds of manual code review by the

development team themselves, internal security experts, and in some cases external

experts (e.g., contracted penetration tests and bug bounties). This approach has

the benefit of potentially drawing many eyes to the problem, but each party is

inherently limited. Development team members have a deep understanding of their

specific component’s functionality, but may lack the security expertise necessary

to identify vulnerabilities [113, 322]. Conversely, security experts are tasked with
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considering the full codebase, limiting their ability to review and understand the

nuances of all components completely [322,340].

In this thesis, I focus on developing an understanding of the humans—at all

levels of expertise—at the center of vulnerability discovery. Specifically, I investigate:

1. What types of vulnerabilities do developers introduce? (Chapter 3)

2. How do experts’ and non-experts’ search for vulnerabilities? (Chapter 4 and 5)

3. What are the educational strengths and weaknesses of current online security

exercises? (Chapter 6)

In this thesis, we answer these questions through a series of research studies.

First, in Chapter 3, I describe my review (with colleagues) of 94 project submissions

to the Build it, Break it, Fix it (BIBIFI) secure-coding competition series [347].

In these competitions, teams develop programs to meet a given specification with

multiple security and functionality requirements. Then, teams attempt to find and

exploit vulnerabilities in other teams’ submissions. Scores are determined based

functionality, performance, and security.

We reviewed project’s code and the 182 unique security vulnerabilities associ-

ated with those projects. This manual analysis of this dataset provides implications

for improving secure-development training, security-relevant APIs [6, 155, 283], and

vulnerability discovery tools.

Simple mistakes, in which the developer attempts a valid security practice

but makes a minor programming error, were least common. Mitigations to these
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types of mistakes are plentiful. For example, in our data, minimizing the trusted

code base (e.g., by avoiding duplication of security-critical code) led to significantly

fewer mistakes. Moreover, we believe that modern analysis tools and testing tech-

niques [20, 22, 61, 62, 105, 117, 177, 196, 218, 358, 367, 435] should uncover many of

them. All but one of the mistakes in our dataset were found and exploited by op-

posing teams. In short, this type of bug appears to be both relatively uncommon

and amenable to existing tools and best practices, suggesting it can be effectively

managed.

On the other hand, vulnerabilities arising from misunderstanding of security

concepts were significantly more common. In examining these errors, we identify

an important distinction between intuitive and unintuitive security requirements;

for example, several teams used encryption to protect confidentiality but failed to

also protect integrity. In 45% of projects, teams missed unintuitive requirements

altogether, failing to even attempt to implement them. When teams implemented

security requirements, most were able to select the correct security primitives to use,

but made conceptual errors in attempting to apply a security mechanism. For exam-

ple, several projects failed to provide randomness when an API expects it. Although

common, these vulnerabilities proved harder to exploit, and our qualitative labeling

identified 35% as difficult to exploit (compared to none of the simple mistakes).

These more complex errors expose a need for APIs less subject to misuse, better

documentation, and better security training that focuses on less-intuitive concepts

like integrity.

Overall, our findings suggest rethinking strategies to prevent and detect vul-
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nerabilities, with more emphasis on conceptual difficulties rather than mistakes. To

understand how these conceptual difficulties arise between experts and non-experts

in security, in Chapter 4, my colleagues and I performed 25 semi-structured in-

terviews with security experts and non-experts, focusing on the process of finding

vulnerabilities in software.

We found that both experts and non-experts describe a similar set of steps for

discovering vulnerabilities. Their success in each step, however, depends on their

vulnerability discovery experience, their knowledge of underlying systems, available

access to the development process, and what motivates them to search for vulnera-

bilities.

Of these variables, interviewees reported that experience — which differed

greatly between experts and non-experts – is most significant to success in vulner-

ability finding. Differences in experience stem primarily from the fact that experts

were typically exposed to a wider variety of vulnerabilities through a broad array of

sources including employment, online security exercises, communication with peers,

and prior vulnerability reports. On the other hand, we found non-experts were

typically exposed to only a narrow set of vulnerabilities through fewer sources, as

they primarily search for vulnerabilities in only a single code base, only read bug re-

ports associated with their program, and only participate in small, internal hacking

exercises, if any.

Building on the finding that experience is critical for vulnerability discovery,

the remainder of this thesis takes first steps toward better leveraging the existing

experience of experts (Chapter 5) and increasing non-expert exposure to vulnerabili-
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ties (Chapters 6 and 7). To improve human-automation interaction for vulnerability

discovery, I sought to develop a develop a theoretical model of the RE process—

the central step in the vulnerability discovery process identified in Chapter 4. In

Chapter 5, along with my colleagues, I conducted a 16-participant, semi-structured

observational study. In each session, we asked participants to recreate a recent

RE experience while we observed their actions and probed their thought process.

Throughout, we tracked the decisions made, mental simulation methods used, ques-

tions asked, hypotheses formulated, and beacons (recognizable patterns) identified.

We found that in general, the RE process can be modeled in three phases:

overview, sub-component scanning, and focused experimentation. REs begin by

establishing a broad view of the program’s functionality (overview). They use

their overview’s results to prioritize sub-components—e.g., functions—for further

analysis, only performing detailed review of specific sub-components deemed most

likely to yield useful results (sub-component scanning). As REs review these sub-

components, they identify hypotheses and questions that are tested and answered,

respectively, through execution or in-depth, typically manual static analysis (focused

experimentation). The last two phases form a loop. REs develop hypotheses and

questions, address them, and use the results to inform their understanding of the

program. This produces new questions and hypotheses, and the RE continues to

iterate until the overall goal is achieved.

Further, we identified several trends in REs’ processes spanning multiple phases.

We found that REs use more static analysis in the first two phases and switch to

dynamic simulation methods during focused experimentation. We also observed
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that experience plays an important role throughout REs’ decision-making processes,

helping REs prioritize where to search (overview and sub-component scanning),

recognize implemented functionality and potential vulnerabilities (sub-component

scanning), and select which mental simulation method to employ (all phases). Fi-

nally, we found REs choose to use tools to support their analysis when a tool’s input

and output can be closely associated with the code and when the tools improve code

readability. Based on these results, we established five guidelines for designing RE

tools.

Switching my focus to consider educational improvements for non-experts,

in Chapter 6, my colleagues and I performed an in-depth qualitative review of 30

popular online hacking exercises (68% of all online exercises we identified). As part of

our analysis, we completed a sample of 306 unique challenges from these 30 exercises.

We evaluated each exercise against a set of recommended pedagogical principles

grounded in learning theory [13,47]. We based our approach on previous curriculum

evaluation efforts [220], tailoring the specific pedagogical principles we examine for

applicability to hacking exercises. Further, we interviewed the organizers of 14

exercises to understand the challenges they face.

We found that no exercise implemented every pedagogical principle, but most

were implemented by at least some exercises, some in thoughtful and creative ways.

Notable shortcomings include that many exercises lack sufficient structure to help

students organize knowledge, and enough feedback to guide their progress through

learning objectives. Few organizers had considered metacognition, or helping stu-

dents understand what and how much they have learned. We find that some learning
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principles are in tension with each other — such as balancing difficulty with realism

— while others are in tension with the competitive origin of many exercises. Finally,

we find that community participation brings many benefits to an exercise, but must

be carefully managed to ensure educational structures are maintained.

While this work presents likely strengths and weaknesses of current educational

interventions, further research measuring actual student outcomes is necessary to

confirm our findings and determine optimal ways to balance conflicting pedagog-

ical decisions. Unfortunately, current methods for measuring student educational

improvement are severely limited or cumbersome. In Chapter 7, I present mine

and my colleagues work developing a light-weight psychometric measure targeted at

closing this gap. Specifically, we developed a scale to measure developers’ secure-

development self-efficacy—belief in one’s ability to successfully perform a task—

which correlates with actual skill in other contexts [32]. This scale measures devel-

opers’ belief in their ability to complete tasks, such as identifying security problems

during software design or implementation. To develop the scale, we followed Nete-

meyer et al.’s 4-step scale creation process [285]. Throughout this process, our scale

was evaluated with 311 software developers and 22 security experts. The final scale

consists of 15 items measuring two underlying factors: vulnerability discovery and

mitigation, and security communication. We show that our scale performs reliably

over multiple samples and behaves as expected with respect to relevant measures

from prior work.
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Chapter 2: Background and Related Work

We discuss related work across four key areas: the characteristics of and rea-

sons for vulnerabilities developers introduce; the way security experts and non-

experts find vulnerabilities; vulnerability discovery tool interaction; security educa-

tion; and secure development efficacy measures.

2.1 Vulnerabilities Developers Introduce

Several researchers have investigated the types of vulnerabilities developers

introduce and the factors associated with their introduction.

2.1.1 Measuring metadata in production code

Several researchers have measured the association of different metadata prop-

erties from revision-control systems with vulnerability introduction. In two papers,

Meneely et al. investigated metadata from PHP and the Apache HTTP server [270,

272]. They found that vulnerabilities are associated with higher-than-average code

churn, committing authors who are new to the codebase, and interactive churn (edit-

ing others’ code rather than one’s own). Follow-up work investigating Chromium

found that source code reviewed by more developers was more likely to contain a vul-
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nerability, unless reviewed by someone who had participated in a prior vulnerability-

fixing review [271]. Significantly earlier, Sliwerski et al. explored mechanisms for

identifying bug-fix commits in the CVS archives for Eclipse, finding, e.g., that fix-

inducing changes typically span more files than other commits [370]. Perl et al.

used metadata from Github and CVEs to train a classifier to identify commits that

might contain vulnerabilities [318].

Other researchers have investigated trends in CVEs and the National Vulner-

ability Database (NVD). Christey et al. examining CVEs from 2001–2006, found

noticeable differences in the types of vulnerabilities reported for open- and closed-

source operating-system advisories [82]. As a continuation, Chang et al. explored

CVEs and the NVD from 2007–2010, showing that the percentage of high-severity

vulnerabilities decreased over time, but that more than 80% of all examined vulnera-

bilities were exploitable via network access without authentication [75]. Our research

complements this work by examining a smaller set of vulnerabilities in more depth.

While these works focus on metadata about code commits and vulnerability reports,

I instead examine the code itself.

2.1.2 Measuring cryptography problems in production code

Lazar et al. discovered that only 17% of cryptography vulnerabilities present

in the CVE database were caused by bugs in the libraries themselves, while 83%

were caused by developer misuse of the libraries [240]. Egele et al. and Kruger et

al. developed analyzers to recognize specific cryptographic problems and found that
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nearly 88% [114] and 95% [232] — respectively — of the applications on the Google

Play Store make at least one of these mistakes when using cryptographic APIs.

Other researchers used fuzzing and static analysis to identify problems with

SSL/TLS implementations in libraries and in Android apps [123,145]. Focusing on

one particular application of cryptography, Reaves et al. uncovered serious vulnera-

bilities in mobile banking applications related to homemade cryptography, certificate

validation, and information leakage [335]. These works examine specific categories

of vulnerabilities across many real-world programs; my use of contest data allows

me to similarly investigate patterns of errors made when addressing similar tasks,

but explore more classes of vulnerabilities.

The most similar work to my investigation of the mistakes developers make

and the reasons behind these mistakes is that of Nadi et al. [280]. Nadi et al. inves-

tigated the ways developers used Java cryptographic APIs by reviewing the types

of questions they ask on StackOverflow; a sample of API uses in public GitHub

repositories; and two surveys of developers regarding their experiences with these

APIs. They reported that developers found cryptographic libraries hard to under-

stand and use because they were too low-level and did not provide easy-to-follow

documentation. My results produce similar conclusions, but expand the problems

and languages studied. I also provide deeper insights into the problem since I iden-

tified specific errors made by developers and associate these with correlated features

of the developer and their environment to identify reasons for these errors instead

of relying on self-reporting of issues.
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2.1.3 Experiments with developers

In contrast to production-code measurements, other researchers have explored

security phenomena through controlled experiments with small, security-focused

programming tasks. Oliveira et al. studied developer misuse of cryptographic APIs

via Java “puzzles” involving APIs with known misuse cases and found that nei-

ther cognitive function nor expertise correlated with ability to avoid security prob-

lems [302]. Other researchers have found, in the contexts of cryptography and secure

password storage, that while simple APIs do provide security benefits, simplicity is

not enough to solve the problems of poor documentation, missing examples, missing

features, and insufficient abstractions [6,283]. Naiakshina et al. found that security

is not likely to be considered unless participants were primed to think about it.

Further, when it was considered, they regularly misunderstood cryptographic prop-

erties — this was true both for students [284], professionals employed at software

development companies [282], and freelancers [281].

Finifter et al. compared different teams’ attempts to build a secure web ap-

plication using different tools and frameworks [128]. They found no relationship

between programming language and application security, but that automated secu-

rity mechanisms were effective in preventing vulnerabilities.

I further substantiate many of these findings in a different experimental con-

text: larger programming tasks in which functionality and performance were priori-

tized along with security, allowing increased ecological validity while still maintain-

ing some quasi-experimental controls.
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2.2 How Humans Find Vulnerabilities

Previous work has studied how security experts and non-experts find vulner-

abilities. This work has focused on how both populations perform the task of bug

identification and the characteristics and motivations of security experts.

2.2.1 Bug identification processes

Aranda et al. studied how developers and testers found 10 performance, se-

curity, and functionality bugs in a production environment [17]. They reviewed

all reporting artifacts associated with the bugs and interviewed the developers and

testers who found and fixed them. They found that bugs were most commonly dis-

covered through manual testing; close cooperation and verbal communication were

key to helping developers fix bugs.

Assala and Chiasson interviewed 13 developers to understand whether and how

they performed common security tasks during the software development lifecycle,

including design and implementation reviews and code analysis [23]. They found

that developers could be classified as security adopters — meaning they performed

most of the security practices — or security inattentive — they performed very few.

Palombo et al. conducted an ethnographic study, embedding in a software

development company, working alongside developers while observing secure and in-

secure behaviors [310]. They studied the effects of incentive structures, organiza-

tional relationships, work flow, and other contextual factors on developer security

considerations, finding that vulnerabilities are sometimes knowingly introduced or
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overlooked due to organizational or economic pressures.

Other studies have experimentally investigated how effective developers are

at looking for vulnerabilities and reverse engineering programs. Edmundson et al.

conducted an experiment in manual code review: no participant found all three

previously confirmed vulnerabilities, and more experience was not necessarily cor-

related with more accuracy in code review [113]. Other work suggested that users

found more vulnerabilities faster with static analysis than with black-box penetra-

tion testing [353].

Fang et al. surveyed security experts who disclosed vulnerabilities in the Se-

curityFocus repository, asking how participants choose software to investigate, what

tools they use, and how they report their findings [125, 168]. They found that

hackers typically targeted software they were familiar with as users, predominantly

preferred fuzzing tools to static analysis, and preferred full disclosure. Summers et

al. studied problem-solving mental models through semi-structured interviews of

18 hackers [380]. They find that hackers require a high tolerance for ambiguity, be-

cause they seek to find problems that may or may not exist in a system they did not

design. Additionally, Summers et al. observed that hackers rely on discourse with

others or visualization techniques (i.e., mapping system semantics on a white-board)

to deal with ambiguity and identify the most probable issues.

Becker et al. investigated the technical and cognitive processes of hardware

reverse engineering [39]. In their study, Becker et al. asked eight participants to

reverse engineer the function of a sample set of Integrated Circuits. Through their

observations, they produced a hardware reverse engineering process model and found
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participants’ with higher working memory capacity performed tasks more efficiently.

Ceccato et al. reviewed detailed reports by three penetration testing teams

searching for vulnerabilities in a suite of security-specific programs [68]. The partic-

ipating teams were asked to record their process for searching the programs, finding

vulnerabilities, and exploiting them. My work delves deeper into the specific steps

followed to understand a program and identify vulnerabilities. Further, through my

interviews, I was able to probe the vulnerability discovery process to elicit more

detailed responses.

Bryant investigated reverse engineering using a mixed methods approach, in-

cluding three semi-structured interviews with reverse engineers and an observational

study where four participants completed a predesigned reverse engineering task [52].

Based on his observations, Bryant developed a sense-making model for reverse en-

gineering where reverse engineers generate hypotheses from prior experience and

cyclically attempt to (in)validate these hypotheses, generating new hypotheses in

the process. My results in Chapter 5 align with these findings; I expand on them,

producing a more detailed model describing the specific approaches used and how

reverse engineering behaviors change throughout the process. My more detailed

model is achieved through a larger sample size and observation of reverse engineer-

ing processes on different, real-world programs, demonstrating reverse engineering

behaviors to ensure saturation of themes [78, pg. 113-115].

Finally, Thomas et al. interviewed 32 internal security team members [394],

asking participants to discuss the tools they used, how they worked with developers,

and the challenges they face. They found that their participants used both static
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and dynamic analysis tools as a first pass, performing some manual analysis in

limited cases. Additionally, these experts indicated that the biggest issue with the

tools they used were false positives and difficulty in making configuration changes.

I build on this work by studying the steps of expert processes in more depth to

determine how to provide experts with the requested ability to better interact with

their tools.

I expand on all these prior studies by comparing security experts and non-

experts and including participants from multiple companies and bug bounty pro-

grams. Also, I thoroughly investigate participants’ processes, communication about

vulnerabilities and reporting strategies, skill-development, and reasons for using

specific tools.

2.2.2 Security expert characteristics

Al-Banna et al. focus on external security professionals, asking both profes-

sionals and those who hire them which indicators they believed were the most im-

portant to discern security expertise [11]. Similarly, Cowley interviewed 10 malware

reverse engineering professionals to understand the necessary skills and define levels

of professional development [91]. I borrow the concept of task analysis from this

work to guide my interviews while expanding the scope of questions and comparing

security experts to non-experts.

Criminology research has also examined why some individuals who find vul-

nerabilities become cyber criminals, finding that although most hackers work alone,
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they improve knowledge and skills in part through mentoring by peers [192,193,431].

While I explicitly do not consider black-hat hackers, I build on these findings with

further analysis of how security experts learn skills and create communities.

2.2.3 Empirical measurement of motivations through bug bounty

programs

Several researchers have investigated what factors (e.g., money, probability

of success) most influence participation and productivity in vulnerability discovery

through bug bounty programs. Finifter et al. studied the Firefox and Chrome bug

bounty programs [127]. They found that a variable payment structure based on the

criticality of the vulnerability led to higher participation rates and a greater diversity

of vulnerabilities discovered as more researchers participated in the program. Mail-

lart et al. studied 35 public HackerOne bounty programs, finding that hackers tend

to focus on new bounty programs and that a significant portion of vulnerabilities

are found shortly after the program starts [258]. The authors suggest that hackers

are motivated to find “low-hanging fruit” (i.e., easy to discover vulnerabilities) as

quickly as possible, because the expected value of many small payouts is perceived

to be greater than for complex, high-reward vulnerabilities that might be “scooped”

by a competitor.

While these studies suggest potential motivations for hacker behavior based on

observed trends, I directly interview hackers about their motivations. Additionally,

these studies do not explore the full decision process of bug bounty participants. This
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exploration is important because any effective change to the market needs to consider

all the nuances of participant decisions if it hopes to be successful. Additionally,

prior work does not compare experts with non-experts. This comparison is necessary,

as it suggests ways to best train and allocate resources to all stakeholders in the

software development lifecycle.

2.3 Vulnerability Discovery Tool Interaction

Finally, previous work has studied users interactions with vulnerability discov-

ery tools, observing the ways existing tools are used or proposing new interactions.

2.3.1 Usability of current tools

Several researchers have studied the usability of static analysis tools and the

ways users respond to provided alert messages. Baca et al. studied this problem

in the industry setting, finding low adoption rates of static analysis tools among

software developers and attributed this to the high number false-positives generated

by the tool, the high initial cost for integrating these tools into their workflow,

and a lack of understanding how these tools could be valuable [26]. Johnson et

al. produced similar results [209] with users of FindBugs, a popular static analysis

tool [197]. Smith et al. built on this work by identifying the questions developers

ask when using FindBugs, observing that they generally want to know additional

details about the vulnerability, possible attacks, and the ecosystem the program is

deployed into [372]. Layman et al. focused on which factors developers use to decide
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whether or not to heed an error notice. Layman et al. found that developers were

more likely to fix a fault when it was presented while the developer was performing

a relevant programming task, if the developer had been conditioned to believing

the notifications were accurate, and if the notice provided precise descriptions (e.g.

included steps to fix the problem) [239].

Yakdan et al. studied usability issues facing hackers with respect to decompiled

code readability [432]. Yakdan et al. found that a simple set of code transforma-

tions could significantly increase both students’ and professionals’ ability to reverse

engineer malware.

I also investigate the tools used by security experts and non-experts and issues

they face, but perform further in-depth investigations into how they use these tools

within the full process of vulnerability discovery, how they learned to use these

tools, and what differences exist between experts and non-experts. Differentiating

between these two groups helps tailor systems to meet the needs of the different

populations and understand if and why adoption differs.

2.3.2 Improved usability for vulnerability discovery

The most similar approach to mine is that by Do et al. who created a Just-in-

time static analysis framework called CHEETAH, based on the result user studies

investigating the way developers interact with static analysis tools [209,372]. CHEE-

TAH allows developers to run static analyses incrementally as they write new code.

This approach allows developers to put the analyses results in context and reduces
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the overwhelming feeling of a “wall of alerts”. While I follow a similar approach —

qualitative user studies to inform tool development —, I focus on manual vulnerabil-

ity discovery processes by a wider range of users to identify new, richer interaction

models.

Shoshitaishvili et al. propose a tool-centered human-assisted paradigm for

vulnerability discovery [368]. They suggest a new interaction pattern where users

provide on-demand feedback to a automated agent by performing well-defined sub-

tasks to support the agent’s analysis. This model leverages the human insights to

overcome the agent’s deficiencies, while allowing the system to scale significantly

beyond limited human resources. To demonstrate this model, Shoshitaishvili et al.

present HaCRS, an automated vulnerability discovery agent which allows users to

provide seed input to a fuzzing-based system. The system uses this input as a seed

for a mutation based fuzzer and returns the amount of path coverage increase from

the given seed—therefore, incentivizing seeds that increase coverage. However, the

demonstrated interaction model specifically targets non-expert users who cannot

understand program internals (e.g., code, control flow diagrams, etc.) and therefore

treat the program as a black box.

Focusing on expert users, Kruger et al. propose a specification language to

allow cryptography experts to state the requirements for secure usage of crypto-

graphic APIs [232]. Unfortunately, this approach still requires the expert to learn

a new language that can be very complicated — hundreds of lines of code for each

API.

Nosco et al. consider the problem at the team level, proposing an assembly-
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line process to leverage team members of differing skill in conjunction with varying

automation support [291]. They find that this coordinated approach provides sig-

nificant improvements in vulnerability discovery efficiency as opposed to all team

members operating independently.

Finally, Sadowski et al. created the TRICORDER program analysis platform,

which includes a set of guidelines for usable program analyses, a developer-workflow-

integrated environment, and developer feedback support. By integrating in the

development environment and incentivizing analyses that are responsive to user

needs (through direct user feedback), TRICORDER provides over 93,000 analysis

results across the entire Google codebase daily while producing significant positive

feedback from developers.

While I agree that these are useful models, my work takes a step back to

answers a question necessary to unlocking their potential; what is the best way for

security experts to communicate with a tool?

2.4 Computer Security Education

A significant amount of effort has gone into determining what topics should

be covered by computer security education, with several organizations (e.g., NIST,

AIS SIGSEC, NCSC) setting up multi-year task forces and holding conferences of

security experts and educators to answer this question [58,71,151,204,287,311,332].

One common thread from the guidelines produced by these groups is that secure

software development is an essential component for education [171]. However, they
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do not prescribe any particular pedagogy. While many educators rely on a lecture-

based approach, several researchers have proposed novel educational interventions

to supplement or replace lectures.

2.4.1 Hands-on exercises

Educators and practitioners have long recognized the benefit of hands-on prac-

tice for computer security education, suggesting the inclusion of hacking competi-

tions into the academic pipeline [48, 90, 346]. This has led several researchers to

propose exercise development guidelines to teach educators how to build these types

of exercises and improve educational outcomes [219, 314, 325, 326]. While many of

these guidelines provide limited recommendations for specific pedagogy, Pusey et

al. provide suggestions for tailoring challenges to student prior experience [325] and

establish a supportive environment for underrepresented populations [326]. In this

thesis, I not only consider a broader range of pedagogical dimensions, but also eval-

uate whether—and why not—these are applied in practice.

New exercises to address specific pedagogy. Several researchers have also pro-

posed novel educational interventions to implement and evaluate particular pedagog-

ical principles. Several researchers have proposed attack oriented exercises, generally

in a competition setting to engage participants [44, 83, 110, 112, 135, 208, 346, 423].

Similarly, others have created exercises where students perform attacks against

robots [242] and virtual reality headsets [76], presenting security in a visual and

easily accessible context. Others have incorporated elements of peer-based instruc-
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tion, having students participate in teams of varying experience levels, encouraging

collaboration and discussion among and between teams [27, 275, 276, 306]. Other

exercises have been developed to go beyond the traditional program exploitation

challenges. This includes challenging students to design and implement secure sys-

tems [110, 136, 327, 347] and perform penetration testing, navigating through so-

phisticated network topologies and pivoting from machine-to-machine [44]. Reed

et al. evaluate the value of presenting challenges in the context of an overarching

narrative, finding students were more likely to complete challenges associated with a

storyline [336]. Chung and Cohen outline challenges related to extraneous load (e.g.,

difficulty getting technology set up to be able to participate) and propose technical

solutions to limit initial student burden [83].

Significant effort in this space has focused on evaluating and improving chal-

lenge difficulty, to provide feedback and ensure challenges are appropriate for learner

experience. Chung and Cohen reflect on years of experiences running the CSAW

CTF [234], highlighting the importance of quality assurance in challenge develop-

ment to ensure appropriate difficulty and feedback within challenges [83]. Owens

et al. introduced more easy and medium difficulty challenges into picoCTF [77], to

provide a more gradual difficulty slope for beginning students [306]. They found

this increased student engagement and reduced participant dropout over previous

years of the exercise. Several researchers have added time-on-task tracking for each

challenge to compare student behavior (time spent working on a challenge), student-

reported feedback, and original assigned challenge difficulty [257,336,416], using this

data to tailor future exercise progressions and challenge difficulty ratings. Maennel
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et al. further suggested this information could be used by organizers in real-time to

identify unintentionally difficult challenges and support struggling students [257].

Each of these studies have shown the benefit of particular pedagogical princi-

ples within a given context. My work takes these principles, but asks whether they

are being applied broadly in the larger exercise ecosystem and therefore impacting

student education.

Broad exercise educational reviews. While much of the literature in security

education has focused on individual exercises, there has been some research focused

on the ecosystem more broadly. Tobey et al. studied engagement among beginning

students in three exercises in the National Cyber League, finding that experienced

students are more likely to be engaged and continue participation [395]. However,

the authors do not indicate reasons for this lack of engagement. By reviewing the

way exercises are organized, we hope to provide some indication insights into how

the exercises themselves might impact student participation trends.

Karagiannis et al. reviewed 4 open source platforms for exercise deployment

to evaluate their usability with respect to setup and administration for academic

purposes [215]. In Chapter 6, we ask an orthogonal question, focusing on students’

experiences with specific exercises, not educators’ experiences setting up exercises

generally.

Burns et al. provide an extensive review of 3600 challenges, outlining the con-

cepts covered and developing a framework to assess the difficulty of each [59]. This

work offers a useful complement to our own, as it investigates what content exercises
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teach and we evaluate how they teach.

Finally, Taylor et al. review 36 CTFs, highlighting their organization and struc-

ture (e.g., whether content is dynamic or static, whether the exercise is open source).

Our work in Chapter 6 provides additional depth to this survey as we consider how

specific implementation details impact exercises’ educational characteristics.

2.4.2 Other studies of security education

In addition to these hands-on hacking exercises, other work has proposed a

variety of security-related educational interventions. These interventions employ

some of the pedagogical principles we discuss. Multiple researchers have proposed

and evaluated adding secure development education into the developer’s daily work-

flow [324,420,424]. Whitney et al. incorporate security nudges into the IDE, provid-

ing security context as developers write code [424]. This tool was shown to provide

more insights into security flaws than dedicated teaching assistants [389]. Similarly,

Nguyen et al. created FixDroid, an Android Studio IDE plugin, which using an An-

droid Linter to flag potentially vulnerable patterns [288]. They also showed that this

approach resulted in the introduction of less security errors. While this approach

provides significant benefits, providing the right information at the right time, it

relies on being able to quickly identify vulnerable code patterns. Therefore it can

only be used for a subset of vulnerabilities at this time.

Weir et al. take a Participatory Action Research approach, embedding a se-

curity researcher in the development team to support security decision-making and
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evaluate this approach’s effect over time [420]. Similarly, Poller et al. evaluate the

impact of third-party security reviews on security behaviors over time [324]. Other

researchers have suggested narrative-based education for computer security. Sher-

man et al. and Rowe et al. present case studies around exploited systems and have

students discuss the cause and potential mitigations [346,360]. Blasco and Quaglia

had students discuss attacks and defenses portrayed in fictional scenarios from popu-

lar culture (e.g., Star Wars: Rogue One) [43]. Other researchers have had students

share stories of relevant experiences [101, 210]. Denning et al. developed a table-

top card game designed to expose participants to general security problems and

adversarial thinking through its overarching storyline [99]. Relatedly, Frey et al.

developed a tabletop game in which players defend cyber-physical infrastructure, to

help players reflect on security-relevant decision processes and strategies [139].

While I do not consider these alternative methods for security education di-

rectly in this thesis, the creation of a light-weight measure of secure development

self-efficacy makes direct comparison of these interventions possible in future work.

2.5 Secure Development Efficacy Measurement

While human-centered secure development is a growing subfield, work re-

lated scale development in this area is limited. Woon and Kankanhalli’s secure-

development intentions scale focuses on development and includes self-efficacy ques-

tions [430]. However, it is a much broader measure, intended to assess several fac-

tors influencing secure-development practice adoption. Therefore, their self-efficacy

25



questions are limited and less concrete than mine (e.g., “I would feel comfortable car-

rying out secure development of applications on my own”). By focusing specifically

on self-efficacy, I provide a more precise measure and identify underlying factors.

Because this scale has received only preliminary validation, I did not use it to es-

tablish discriminant validity. Rajivan et al. developed a measure assessing security

expertise by asking participants if they have performed several network defense and

system administration tasks (e.g., configuring a firewall) along with two open-ended

questions asking participants to describe security concepts (i.e., certificates and

phishing). While this scale targets expert users, it again measures an orthogonal

domain (e.g., network defense and system administration). Finally, Campbell et al.

propose a metric for cybersecurity aptitude—potential to develop skills necessary for

cybersecurity tasks—as opposed to my measure targeted at current skill level [64].

There have also been several efforts to develop scales for efficiently measur-

ing end-user security. Egelman and Peer created the Security Behavior Intentions

Scale (SeBIS) [115] and Faklaris et al. established a measure for Security Attitudes

(SA-6) [124]. Together these scales cover participants’ security thoughts and behav-

iors; however, due to the difference in domains, my scale measures an orthogonal

construct.
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Chapter 3: Exploring the Vulnerabilities Developers Introduce

This chapter 1 presents a systematic, in-depth examination (using best prac-

tices developed for qualitative assessments) of vulnerabilities present in software

projects. In particular, we looked at 94 project submissions to the Build it, Break

it, Fix it (BIBIFI) secure-coding competition series [347]. In each competition,

participating teams (many of which were enrolled in a series of online security

courses [147]) first developed programs for either a secure event-logging system,

a secure communication system simulating an ATM and a bank, or a scriptable

key-value store with role-based access control policies. Teams then attempted to

exploit the project submissions of other teams. Scoring aimed to match real-world

development constraints: teams were scored based on their project’s performance,

its feature set (above a minimum baseline), and its ultimate resilience to attack.

Our six-month examination considered each project’s code and 866 total exploit

submissions, corresponding to 182 unique security vulnerabilities associated with

those projects.

The BIBIFI competition provides a unique and valuable vantage point for

examining the vulnerability landscape, complementing existing field measures and

1Published as [411]
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lab studies. When looking for trends in open-source projects (field measures), there

are confounding factors: Different projects do different things, and were developed

under different circumstances, e.g., with different resources and levels of attention.

By contrast, in BIBIFI we have many implementations of the same problem carried

out by different teams but under similar circumstances. As such, we can postulate

the reasons for observed differences with more confidence. At the other end of the

spectrum, BIBIFI is less controlled than a lab study, but offers more ecological

validity—teams had weeks to build their project submissions, not days, using any

languages, tools, or processes they preferred.

3.1 Data

This section presents the Build It, Break It, Fix It (BIBIFI) secure-programming

competition [347], the data we gathered from it which forms the basis of our analysis,

and reasons why the data may (or may not) represent real-world situations.

3.1.1 Build it, Break it, Fix it

A BIBIFI competition comprises three phases: building, breaking, and fixing.

Participating teams can win prizes in both build-it and break-it categories.

In the first (build it) phase, teams are given just under two weeks to build

a project that (securely) meets a given specification. During this phase, a team’s

build-it score is determined by the correctness and efficiency of their project, assessed

by test cases provided by the contest organizers. All projects must meet a core set of

28



functionality requirements, but they may optionally implement additional features

for more points. Submitted projects may be written in any programming language

and are free to use open-source libraries, so long as they can be built on a standard

Ubuntu Linux VM.

In the second (break it) phase, teams are given access to the source code of

their fellow competitors’ projects in order to look for vulnerabilities.2 Once a team

identifies a vulnerability, they create a test case (a break) that provides evidence of

exploitation. Depending on the contest problem, breaks are validated in different

ways. One is to compare the output of the break on the target project against that

of a “known correct” reference implementation (RI) written by the competition

organizers. Another way is by confirming knowledge (or corruption) of sensitive

data (produced by the contest organizers) that should have been protected by the

target project’s implementation. Successful breaks add to a team’s break-it score,

and reduce the target project’s team’s build-it score.

The final (fix it) phase of the contest affords teams the opportunity to fix

bugs in their implementation related to submitted breaks. Doing so has the po-

tential benefit that breaks which are superficially different may be unified by a fix,

preventing them from being double counted when scoring.

2Source code obfuscation was against the rules. Complaints of violations were judged by contest orga-
nizers.
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3.1.2 Data gathered

We analyzed projects developed by teams participating in four BIBIFI compe-

titions, covering three different programming problems: secure log, secure commu-

nication, and multiuser database. (Appendix B.1 provides additional details about

the makeup of each competition.) Each problem specification required the teams to

consider different security challenges and attacker models. Here we describe each

problem, the size/makeup of the reference implementation (for context), and the

manner in which breaks were submitted.

Secure log (SL, Fall 20143and Spring 2015, RI size: 1,013 lines of OCaml).

This problem asks teams to implement two programs: one to securely append records

to a log, and one to query the log’s contents. The build-it score is measured by

log query/append latency and space utilization, and teams may implement several

optional features.

Teams should protect against a malicious adversary with access to the log and

the ability to modify it. The adversary does not have access to the keys used to

create the log. Teams are expected (but not told explicitly) to utilize cryptographic

functions to both encrypt the log and protect its integrity. During the break-it phase,

the organizers generate sample logs for each project. Break-it teams demonstrate

3The Fall’14 contest data was not included in the original BIBIFI data analysis [347]. It had only
12 teams and was organizationally unusual; notably, build-it teams were originally only allocated 3 days
to complete the project, but then were given an extension (with the total time on par with that of later
contests). Including Fall’14 in the original data analysis would have required adding a variable (the contest
date) to all models, but the small number of submissions would have required sacrificing a more interesting
variable to preserve the models’ power. In this paper, including Fall’14 is not a problem because we are
performing a qualitative rather than quantitative analysis.

30



compromises to either integrity or confidentiality by manipulating a sample log file

to return a differing output or by revealing secret content of a log file.

Secure communication (SC, Fall 2015, RI size: 1,124 lines of Haskell).

This problem asks teams to build a pair of client/server programs. These represent

a bank and an ATM, which initiates account transactions (e.g., account creation, de-

posits, withdrawals, etc.). Build-it performance is measured by transaction latency.

There are no optional features.

Teams should protect bank data integrity and confidentiality against an adver-

sary acting as a man-in-the-middle (MITM), with the ability to read and manipulate

communications between the client and server. Once again, build teams were ex-

pected to use cryptographic functions, and to consider challenges such as replay

attacks and side-channels. Break-it teams demonstrate exploitations violating con-

fidentiality or integrity of bank data by providing a custom MITM and a script of

interactions. Confidentiality violations reveal the secret balance of accounts, while

integrity violations manipulate the balance of unauthorized accounts.

Multiuser database (MD, Fall 2016, RI size: 1,080 lines of OCaml). This

problem asks teams to create a server that maintains a secure key-value store.

Clients submit scripts written in a domain-specific language. A script authenticates

with the server and then submits a series of commands to read/write data stored

there. Data is protected by role-based access control policies customizable by the

data owner, who may (transitively) delegate access control decisions to other prin-
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cipals. Build-it performance is assessed by script running time. Optional features

take the form of additional script commands.

The problem assumes that an attacker can submit commands to the server,

but not snoop on communications. Break-it teams demonstrate vulnerabilities with

a script that shows a security-relevant deviation from the behavior of the RI. For

example, a target implementation has a confidentiality violation if it returns secret

information when the RI denies access.

Project Characteristics. Teams used a variety of languages in their projects.

Python was most popular overall (39 teams, 41%), with Java also widely used (19,

20%), and C/C++ third (7 each, 7%). Other languages used by at least one team

include Ruby, Perl, Go, Haskell, Scala, PHP, JavaScript Visual Basic, OCaml, C#,

and F#. For the secure log problem, projects ranged from 149 to 3857 lines of code

(median 1095). secure communication ranged from 355 to 4466 (median 683) and

multiuser database from 775 to 5998 (median 1485).

3.1.3 Representativeness: In Favor and Against

Our hope is that the vulnerability particulars and overall trends that we find

in BIBIFI data are, at some level, representative of the particulars and trends we

might find in real-world code. There are several reasons in favor of this view:

• Scoring incentives match those in the real world. At build-time, scoring

favors features and performance—security is known to be important, but is not (yet)

a direct concern. Limited time and resources force a choice between uncertain benefit
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later or certain benefit now. Such time pressures mimic short release deadlines.

• The projects are substantial, and partially open ended, as in the real world.

For all three problems, there is a significant amount to do, and a fair amount of

freedom about how to do it. Teams must think carefully about how to design their

project to meet the security requirements. All three projects consider data security,

which is a general concern, and suggest or require general mechanisms, including

cryptography and access control. Teams were free to choose the programming lan-

guage and libraries they thought would be most successful. While real-world projects

are surely much bigger, the BIBIFI projects are big enough that they can stand in

for a component of a larger project, and thus present a representative programming

challenge for the time given.

• About three-quarters of the teams whose projects we evaluated participated

in the contest as the capstone to an on-line course sequence (MOOC) [147]. Two

courses in this sequence — software security and cryptography — were directly rele-

vant to contest problems. Although these participants were students, most were also

post-degree professionals; overall, participants had a average of 8.9 years software

development experience. Further, prior work suggests that in at least some secure

development studies, students can substitute effectively for professionals, as only

security experience, not general development experience, is correlated with security

outcomes [8, 9, 282,284].

On the other hand, there are several reasons to think the BIBIFI data will not

represent the real world:

• Time pressures and other factors may be insufficiently realistic. For example,
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while there was no limit on team size (they ranged from 1 to 7 people with a median

of 2), some teams might have been too small, or had too little free time, to devote

enough energy to the project. That said, the incentive to succeed in the contest in

order to pass the course for the MOOC students was high, as they would not receive

a diploma for the whole sequence otherwise. For non-MOOC students, prizes were

substantial, e.g., $4000 for first prize. While this may not match the incentive

in some security-mature companies where security is “part of the job” [174] and

continued employment rests on good security practices, prior work suggests that

many companies are not security-mature [23].

• We only examine three secure-development scenarios. These problems in-

volve common security goals and mechanisms, but results may not generalize outside

them to other security-critical tasks.

• BIBIFI does not simulate all realistic development settings. For example, in

some larger companies, developers are supported by teams of security experts [394]

who provide design suggestions and set requirements, whereas BIBIFI participants

carry out the entire development task. BIBIFI participants choose the programming

language and libraries to use, whereas at a company the developers may have these

choices made for them. BIBIFI participants are focused on building a working

software package from scratch, whereas developers at companies are often tasked

with modifying, deploying, and maintaining existing software or services. These

differences are worthy of further study on their own. Nevertheless, we feel that the

baseline of studying mistakes made by developers tasked with the development of a

full (but small) piece of software is an interesting one, and may indeed support or
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inform alternative approaches such as these.

• To allow automated break scoring, teams must submit exploits to prove the

existence of vulnerabilities. This can be a costly process for some vulnerabilities that

require complex timing attacks or brute force. This likely biases the exploits iden-

tified by breaker teams. To address this issue, two researchers performed a manual

review of each project to identify and record any hard to exploit vulnerabilities.

• Finally, because teams were primed by the competition to consider secu-

rity, they are perhaps more likely to try to design and implement their code se-

curely [283, 284]. While this does not necessarily give us an accurate picture of

developer behaviors in the real world, it does mirror situations where developers are

motivated to consider security, e.g., by security experts in larger companies, and it

allows us to identify mistakes made even by such developers.

Ultimately, the best way to see to what extent the BIBIFI data represents

the situation in the real world is to assess the connection empirically, e.g., through

direct observations of real-world development processes, and through assessment of

empirical data, e.g., (internal or external) bug trackers or vulnerability databases.

This paper’s results makes such an assessment possible: Our characterization of the

BIBIFI data can be a basis of future comparisons to real-world scenarios.

3.2 Qualitative Coding

We are interested in characterizing the vulnerabilities developers introduce

when writing programs with security requirements. In particular, we pose the fol-

35



lowing research questions:

RQ1 What types of vulnerabilities do developers introduce? Are they conceptual

flaws in their understanding of security requirements or coding mistakes?

RQ2 How much control does an attacker gain by exploiting the vulnerabilities, and

what is the effect?

RQ3 How exploitable are the vulnerabilities? What level of insight is required and

how much work is necessary?

Answers to these questions can provide guidance about which interventions—

tools, policy, and education—might be (most) effective, and how they should be

prioritized. To obtain answers, we manually examined 94 BIBIFI projects (67% of

the total), the 866 breaks submitted during the competition, and the 42 additional

vulnerabilities identified by the researchers through manual review. We performed

a rigorous iterative open coding [379, pg. 101-122] of each project and introduced

vulnerability. Iterative open coding is a systematic method, with origins in quali-

tative social-science research, for producing consistent, reliable labels (‘codes’) for

key concepts in unstructured data.4 The collection of labels is called a codebook.

The ultimate codebook we developed provides labels for vulnerabilities—their type,

attacker control, and exploitability—and for features of the programs that contained

them.

This section begins by describing the codebook itself, then describes how we

produced it. An analysis of the coded data is presented in the next section.

4Hence, our use of the term “coding” refers to a type of structured categorization for data analysis, not
a synonym for programming.
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Variable Levels Description Alpha [179]

Type (See Table 3.2)
What caused the vulnerability to
be introduced

0.85, 0.82

Attacker
Control

Full / Partial
What amount of the data is
impacted by an exploit

0.82

Discovery
Difficulty

Execution /
Source / Deep

Insight

What level of sophistication would
an attacker need to find the
vulnerability

0.80

Exploit
Difficulty

Single step / Few
steps / Many

steps /
Probabilistic

How hard would it be for an
attacker to exploit the vulnerability
once discovered

1

Table 3.1: Summary of the vulnerability codebook.

3.2.1 Codebook

Both projects and vulnerabilities are characterized by several labels. We refer

to these labels as variables and their possible values as levels.

3.2.1.1 Vulnerability codebook

To measure the types of vulnerabilities in each project, we characterized them

across four variables: Type, Attacker Control , Discovery Difficulty , and Exploit Dif-

ficulty . The structure of our vulnerability codebook is given in Table 3.1.5 Our

coding scheme is adapted in part from the CVSS system for scoring vulnerabili-

ties [129]. In particular, Attacker Control and Exploit Difficulty relate to the CVSS

concepts of Impact, Attack Complexity, and Exploitability. We do not use CVSS

directly, in part because some CVSS categories are irrelevant to our dataset (e.g.,

none of the contest problems involve human interactions). Further, we followed

5The last column indicates Krippendorff’s α statistic [179], which we discuss in Section 4.3.
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qualitative best practices of letting natural (anti)patterns emerge from the data,

modifying the categorizations we apply accordingly.

Vulnerability type. The Type variable characterizes the vulnerability’s underly-

ing source (RQ1). For example, a vulnerability in which encryption initialization

vectors (IVs) are reused is classified as having the issue insufficient randomness.

The underlying source of this issue is a conceptual misunderstanding of how to im-

plement a security concept. We identified more than 20 different issues grouped into

three types; these are discussed in detail in Section 3.3.

Attacker control. The Attacker Control variable characterizes the impact of a

vulnerability’s exploitation (RQ2) as either a full compromise of the targeted data

or a partial one. For example, a secure-communication vulnerability in which an

attacker can corrupt any message without detection would be a full compromise,

while only being able to corrupt some bits in the initial transmission would be

coded as partial.

Exploitability. We indicated the difficulty to produce an exploit (RQ3) using

two variables, Discovery Difficulty and Exploit Difficulty . The first characterizes

the amount of knowledge the attacker must have to initially find the vulnerabil-

ity. There are three possible levels: only needing to observe the project’s inputs

and outputs (Execution); needing to view the project’s source code (Source); or

needing to understand key algorithmic concepts (Deep insight). For example, in
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the secure-log problem, a project that simply stored all events in a plaintext file

with no encryption would be coded as Execution since neither source code nor deep

insight would be required for exploitation. The second variable, Exploit Difficulty,

describes the amount of work needed to exploit the vulnerability once discovered.

This variable has four possible levels of increasing difficulty depending on the num-

ber of steps required: only a single step, a small deterministic set of steps, a large

deterministic set of steps, or a large probabilistic set of steps. As an example, in

the secure-communication problem, if encrypted packet lengths for failure messages

are predictable and different from successes, this introduces an information leakage

exploitable over multiple probabilistic steps. The attacker can use a binary search

to identify the initial deposited amount by requesting withdrawals of varying values

and observing which succeed.

3.2.1.2 Project codebook

To understand the reasons teams introduced certain types of vulnerabilities,

we coded several project features as well. We tracked several objective features

including the lines of code (LoC) as an estimate of project complexity; the IEEE

programming-language rankings [203] as an estimate of language maturity (Popu-

larity); and whether the team included test cases as an indication of whether the

team spent time auditing their project.

We also attempted to code projects more qualitatively. For example, the

variable Minimal Trusted Code assessed whether the security-relevant functionality
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was implemented in single location, or whether it was duplicated (unnecessarily)

throughout the codebase. We included this variable to understand whether ad-

herence to security development best practices had an effect on the vulnerabilities

introduced [58, pg. 32-36]. The remaining variables we coded (most of which don’t

feature in our forthcoming analysis) are discussed in Appendix B.2.

3.2.2 Coding Process

Now we turn our attention to the process we used to develop the codebook

just described. Our process had two steps: Selecting a set of projects for analysis,

and iteratively developing a codebook by examining those projects.

3.2.2.1 Project Selection

We started with 142 qualifying projects in total, drawn from four competitions

involving the three problems. Manually analyzing every project would be too time

consuming, so we decided to consider a sample of 94 projects—just under 67% of

the total. We did not sample them randomly, for two reasons. First, the numbers

of projects implementing each problem are unbalanced; e.g., secure log comprises

just over 50% of the total. Second, a substantial number of projects had no break

submitted against them—57 in total (or 40%). A purely random sample from the

142 could lead us to considering too many (or too few) projects without breaks, or

too many from a particular problem category.

To address these issues, our sampling procedure worked as follows. First, we
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bucketed projects by the problem solved, and sampled from each bucket separately.

This ensured that we had roughly 67% of the total projects for each problem. Sec-

ond, for each bucket, we separated projects with a submitted break from those

without one, and sampled 67% of the projects from each. This ensured we main-

tained the relative break/non-break ratio of the overall project set. Lastly, within

the group of projects with a break, we divided them into four equally-sized quartiles

based on number of breaks found during the competition, sampling evenly from each.

Doing so further ensured that the distribution of projects we analyzed matched the

contest-break distribution in the whole set.

One assumption of our procedure was that the frequency of breaks submitted

by break-it teams matches the frequency of vulnerabilities actually present in the

projects. We could not sample based on the latter, because we did not have ground

truth at the outset; only after analyzing the projects ourselves could we know the

vulnerabilities that might have been missed. However, we can check this assumption

after the fact. To do so, we performed a Spearman rank correlation test to compare

the number of breaks and vulnerabilities introduced in each project [421, pg. 508].

Correlation, according to this test, indicates that if one project had more contest

breaks than another, it would also have more vulnerabilities, i.e., be ranked higher

according to both variables. We observed that there was statistically significant

correlation between the number of breaks identified and the underlying number of

vulnerabilities introduced (ρ = 0.70, p < 0.001). Further, according to Cohen’s

standard, this correlation is “large,” as ρ is above 0.50 [85]. As a result, we are

confident that our sampling procedure, as hoped, obtained a good representation of
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the overall dataset.

We note that an average of 27 teams per competition, plus two researchers,

examined each project to identify vulnerabilities. We expect that this high number

of reviewers, as well as the researchers’ security expertise and intimate knowledge

of the problem specifications, allowed us to identify the majority of vulnerabilities.

3.2.2.2 Coding

To develop our codebooks, I and another researcher first cooperatively ex-

amined 11 projects. For each, we reviewed associated breaks and independently

audited the project for vulnerabilities. We met and discussed their reviews (totaling

42 vulnerabilities) to establish the initial codebook.

At this point, I and a third researcher independently coded breaks in rounds

of approximately 30 each, and again independently audited projects’ unidentified

vulnerabilities. After each round, we met, discussed cases where our codes differed,

reached a consensus, and updated the codebook.

This process continued until a reasonable level of inter-rater reliability was

reached for each variable. Inter-rater reliability measures the agreement or consen-

sus between different researchers applying the same codebook. To measure inter-

rater reliability, we used the Krippendorff’s α statistic [179]. Krippendorff’s α is a

conservative measure which considers improvement over simply guessing. Krippen-

dorff et al. recommend a threshold of α > 0.8 as a sufficient level of agreement [179].

The final Krippendorff’s alpha for each variable is given in Table 3.1. Because the
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Types observed in the MD problem were very different from the other two problems

(e.g., cryptography vs. access control related), we calculated inter-rater reliability

separately for this problem to ensure reliability was maintained in this different

data. Once a reliable codebook was established, the remaining 34 projects (with

166 associated breaks) were divided evenly between myself and the other researcher

and coded separately.

Overall, this process took approximately six months of consistent effort by two

researchers.

3.3 Vulnerability Types

Our manual analysis of 94 BIBIFI projects identified 182 unique vulnerabili-

ties. We categorized each based on our codebook into 23 different issues. Table 3.2

presents this data. Issues are organized according to three main types: No Imple-

mentation, Misunderstanding , and Mistake (RQ1). These were determined system-

atically using axial coding, which identifies connections between codes and extracts

higher-level themes [379, pg. 123-142]. For each issue type, the table gives both the

number of vulnerabilities and the number of projects that included a vulnerability

of that type. A dash indicates that a vulnerability does not apply to a problem.

This section presents descriptions and examples for each type. When pre-

senting examples, we identify particular projects using a shortened version of the

problem and a randomly assigned ID. In the next section, we consider trends in

this data, specifically involving vulnerability type prevalence, attacker control, and
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exploitability.

3.3.1 No Implementation

We coded a vulnerability type as No Implementation when a team failed to

even attempt to implement a necessary security mechanism. Presumably, they did

not realize it was needed. This type is further divided into the sub-type All Intuitive,

Some Intuitive, and Unintuitive. In the first two sub-types teams did not implement

all or some, respectively, of the requirements that were either directly mentioned in

the problem specification or were intuitive (e.g., the need for encryption to provide

confidentiality). The Unintuitive sub-type was used if the security requirement

was not directly stated or was otherwise unintuitive (e.g., using MAC to provide

integrity [5]).

Two issues were typed as All Intuitive: not using encryption in the secure

log (P=3, V=3) and secure communication (P=2, V=2) problems and not perform-

ing any of the specified access control checks in the multiuser database problem

(P=0, V=0). The Some Intuitive sub-type was used when teams did not implement

some of the nine multiuser database problem access-control checks (P=10, V=18).

For example, several teams failed to check authorization for commands only admin

should be able to issue For Unintuitive vulnerabilities, there were four issues: teams

failed to include a MAC to protect data integrity in the secure log (P=16, V=16)

and secure communication (P=7, V=7) problems; prevent side-channel data leak-

age through packet sizes or success/failure responses in the secure communication
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(P=11, V=11) and multiuser database (P=4, V=4) problems, respectively; prevent

replay attacks (P=7, V=7) in the secure communication problem; and check the

chain of rights delegation (P=4, V=4) in the multiuser database problem.

3.3.2 Misunderstanding

A vulnerability type was coded as Misunderstanding when a team attempted to

implement a security mechanism, but failed due to a conceptual misunderstanding.

We sub-typed these as either Bad Choice or Conceptual Error .

3.3.2.1 Bad Choice

Five issues fall under this sub-type, which categorizes algorithmic choices that

are inherently insecure.

The first three issues relate to the incorrect implementation of encryption

and/or integrity checks in the SL and SC problems: use of an algorithm without

any secret component, i.e., a key (P=8, V=8), weak algorithms (P=4, V=5), or

homemade encryption (P=2, V=2). As an example of a weak algorithm, SL-69

simply XOR’d key-length chunks of the text with the user-provided key to generate

the final ciphertext. Therefore, the attacker could simply extract two key-length

chunks of the ciphertext, XOR them together and produce the key.

The next issue identifies a weak access-control design for the MD problem,

which could not handle all use cases (P=5, V=6). For example, MD-14 implemented

delegation improperly. In the MD problem, a default delegator may be set by the
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administrator, and new users should receive the rights this delegator has when they

are created. However, MD-14 granted rights not when a user was created, but

when they accessed particular data. If the default delegator received access to data

between time of the user’s creation and time of access, the user would be incorrectly

provided access to this data.

The final issue (potentially) applies to all three problems: use of libraries that

could lead to memory corruption. In this case, team SL-81 chose to use strcpy when

processing user input, and in one instance failed to validate it, allowing an overflow.

Rather than code this as Mistake, we considered it a bad choice because a safe

function (strlcpy) could have been used instead to avoid the security issue.

3.3.2.2 Conceptual Error

Teams that chose a secure design often introduced a vulnerability in their im-

plementation due to a conceptual misunderstanding (rather than a simple mistake).

This Conceptual Error sub-type manifested in six ways.

Most commonly, teams used a fixed value when an random or unpredictable

one was necessary (P=26, V=26). This included using hardcoded account passwords

(P=8, V=8), encryption keys (P=3, V=3), salts (P=3, V=3), or using a fixed IV

(V=12, N=12).

var nextNonce uint64 = 1337

...

func sendMessage(conn *net.Conn , message

[]byte) (err error) {

var box []byte
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var nonce [24] byte

byteOrder.PutUint64(nonce[:], nextNonce)

box = secretbox.Seal(box , message , &nonce ,

&sharedSecret)

var packet = Packet{Size: uint64(len(box)),

Nonce: nextNonce}

nextNonce ++

writer := *conn

err = binary.Write(writer , byteOrder , packet)

...

}

Listing 3.1: SC-76 Used a hardcoded IV seed.

Sometimes chosen values were not fixed, but not sufficiently unpredictable

(P=7, V=8). This included using a timestamp- based nonce, but making the ac-

cepted window too large (P=3, V=3); using repeated nonces or IVs (P=3, V=4);

or using predictable IVs (P=1, V=1). As an example, SC-76 attempted to use a

counter-based IV to ensure IV uniqueness. Listing 3.1 shows that nonce nextNonce

is incremented after each message. Unfortunately, the counter is re-initialized every

time the client makes a new transaction, so all messages to the server are encrypted

with the same IV. Further, both the client and server initialize their counter with

the same number (1337 in Line 1 of Listing 3.1), so the messages to and from the

server for the first transaction share an IV. If team SC-76 had maintained the

counter across executions of the client (i.e., by persisting it to a file) and used a

different seed for the client and server, both problems would be avoided.
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Other teams set up a security mechanism correctly, but only protected a sub-

set of necessary components (P=9, V=10). For example, Team SL-66 generated a

MAC for each log entry separately, preventing an attacker from modifying an entry,

but allowing them to arbitrarily delete, duplicate, or reorder log entries. Team SC-

24 used an HTTP library to handle client-server communication, then performed

encryption on each packet’s data segment. As such, an attacker can read or ma-

nipulate the HTTP headers; e.g., by changing the HTTP return status the attacker

could cause the receiver to drop a legitimate packet.

In three cases, the team passed data to a library that failed to handle it prop-

erly (P=3, V=3). For example, MD-27 used an access-control library that takes

rules as input and returns whether there exists a chain of delegations leading to the

content owner. However, the library cannot detect loops in the delegation chain.

If a loop in the rules exists, the library enters an infinite loop and the server be-

comes completely unresponsive. (We chose to categorize this as a Conceptual Error

vulnerability instead of a Mistake because the teams violate the library developers’

assumption as opposed to making a mistake in their code.)

self.db = self.sql.connect(filename , timeout =30)

self.db.execute(’pragma key="’ + token + ’";’)

self.db.execute(’PRAGMA kdf_iter=’

+ str(Utils.KDF_ITER) + ’;’)

self.db.execute(’PRAGMA cipher_use_MAC = OFF;’)

...

Listing 3.2: SL-22 disabled automatic MAC in SQLCipher library.

Finally, one team simply disabled protections provided transparently by the
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library (P=1, V=1). Team SL-22 used the SQLCipher library to implement their

log as an SQL database. The library provides encryption and integrity checks in

the background, abstracting these requirements from the developer. Listing 3.2

shows the code they used to initialize the database. Unfortunately, on line 5, they

explicitly disabled the automatic MAC.

3.3.3 Mistake

Finally, some teams attempted to implement the solution correctly, but made

a mistake that led to a vulnerability. The mistake type is composed of five sub-types.

Some teams did not properly handle errors putting the program into an observably

bad state (causing it to be hung or crash). This included not having sufficient checks

to avoid a hung state, e.g., infinite loop while checking the delegation chain in the

MD problem, not catching a runtime error causing the program to crash (P=5,

V=9), or allowing a pointer with a null value to be written to, causing a program

crash and potential exploitation (P=1, V=1).

def checkReplay(nonce ,timestamp ):

#First we check for tiemstamp delta

dateTimeStamp = datetime.strptime(timestamp ,

’%Y-%m-%d %H:%M:%S.%f’)

deltaTime = datetime.utcnow () - dateTimeStamp

if deltaTime.seconds > MAX_DELAY:

raise Exception("ERROR:Expired nonce ")

#The we check if it is in the table

global bank

if (nonce in bank.nonceData ):
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raise Exception("ERROR:Reinyected package")

Listing 3.3: SC-80 forgot to save the nonce.

Other mistakes led to logically incorrect execution behaviors. This included

mistakes related to the control flow logic (P=5, V=10) or skipping steps in the

algorithm entirely. Listing 3.3 shows an example of SC-80 forgetting a necessary

step in the algorithm. On line 10, they check to see if the nonce was seen in the

list of previous nonces (bank.nonceData) and raise an exception indicating a replay

attack. Unfortunately, they never add the new nonce into bank.nonceData, so the

check on line 10 always returns true.

3.4 Analysis of Vulnerabilities

This section considers the prevalence (RQ1) of each vulnerability type as re-

ported in Table 3.2 along with the attacker control (RQ2), and exploitability (RQ3)

of introduced types. Overall, we found that simple implementation mistakes (Mis-

take) were far less prevalent than vulnerabilities related to more fundamental lack of

security knowledge (No Implementation, Misunderstanding). Mistakes were almost

always exploited by at least one other team during the Break It phase, but higher-

level errors were exploited less often. Teams that that were careful to minimize the

footprint of security-critical code were less likely to introduce mistakes.
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3.4.1 Prevalence

To understand the observed frequencies of different types and sub-types, we

performed planned pairwise comparisons among them. In particular, we use a Chi-

squared test—appropriate for categorical data [140]—to compare the number of

projects containing vulnerabilities of one type against the projects with another,

assessing the effect size (φ) and significance (p-value) of the difference. We similarly

compare sub-types of the same type. Because we are doing multiple comparisons, we

adjust the results using a Benjamini-Hochberg (BH) correction [40]. We calculate

the effect size as the measure of association of the two variables tested (φ) [92, 282-

283]. As a rule of thumb, φ ≥ 0.1 represents a small effect, ≥ 0.3 a medium effect,

and ≥ 0.5 a large effect [85]. A p-value less than 0.05 after correction is considered

significant.

Teams often did not understand security concepts. We found that both

types of vulnerabilities relating to a lack of security knowledge—No Implementation

(φ = 0.29, p < 0.001) and Misunderstanding (φ = 0.35, p < 0.001)—were signifi-

cantly more likely (roughly medium effect size) to be introduced than vulnerabilities

caused by programming Mistakes. We observed no significant difference between No

Implementation and Misunderstanding (φ = 0.05, p = 0.46). These results indicate

that efforts to address conceptual gaps should be prioritized. Focusing on these

issues of understanding, we make the following observations.
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Unintuitive security requirements are commonly skipped. Of the No Imple-

mentation vulnerabilities, we found that the Unintuitive sub-type was much more

common than its All Intuitive (φ = 0.44, p < 0.001) or Some Intuitive (φ = 0.37,

p < 0.001) counterparts. The two more intuitive sub-types did not significantly

differ (φ = 0.08, p = 0.32) This indicates that developers do attempt to provide

security — at least when incentivized to do so — but struggle to consider all the

unintuitive ways an adversary could attack a system. Therefore, they regularly leave

out some necessary controls.

Teams often used the right security primitives, but did not know how

to use them correctly. Among the Misunderstanding vulnerabilities, we found

that the Conceptual Error sub-type was significantly more likely to occur than Bad

Choice (φ = 0.23, p = .003). This indicates that if developers know what security

controls to implement, they are often able to identify (or are guided to) the correct

primitives to use. However, they do not always conform to the assumptions of

“normal use” made by the library developers.

Complexity breeds Mistakes. We found that complexity within both the prob-

lem itself and also the approach taken by the team has a significant effect on the

number of Mistakes introduced. This trend was uncovered by a poisson regression

(appropriate for count data) [63, 67-106] we performed for issues in the Mistakes

type.6

6We selected initial covariates for the regression related to the language used, best practices followed
(e.g., Minimal Trusted Code), team characteristics (e.g., years of developer experience), and the contest
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Table 3.3 shows that Mistakes were most common in the MD problem and

least common in the SL problem. This is shown in the second row of the table. The

log estimate (E) of 6.68 indicates that teams were 6.68× more likely to introduce

Mistakes in MD than in the baseline secure communication case. In the fourth

column, the 95% confidence interval (CI) provides a high-likelihood range for this

estimate between 2.90× and 15.37×. Finally, the p-value of < 0.001 indicates that

this result is significant. This effect likely reflects the fact that the MD problem

was the most complex, requiring teams to write a command parser, handle network

communication, and implement nine different access control checks.

Similar logic demonstrates that teams were only 0.06× as likely to make a

mistake in the SL problem compared to the SC baseline. The SL problem was

on the other side of the complexity spectrum, only requiring the team to parse

command-line input and read and write securely from disk.

Similarly, not implementing the secure components multiple times (Minimal

Trusted Code) was associated with an 0.36× decrease in Mistakes, suggesting that

violating the “Economy of Mechanism” principle [352] by adding unnecessary com-

plexity leads to Mistakes. As an example of this effect, MD-74 reimplemented their

access control checks four times throughout the project. Unfortunately, when they

realized the implementation was incorrect in one place, they did not update the

other three.

problem. From all possible initial factor combinations, we chose the model with minimum Bayesian
Information Criteria—a standard metric for model fit [329]. We include further details of the initial
covariates and the selection process in Appendix B.3, along with discussion of other regressions we tried
but do not include for lack of space.
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Mistakes are more common in popular languages. Teams that used more

popular languages are expected to have a 1.09× increase in Mistakes for every one

unit increase in popularity over the mean Popularity7 (p = 0.009). This means,

for example, a language 5 points more popular than average would be associated

with a 1.54× increase in Mistakes. One possible explanation is that this variable

proxies for experience, as many participants who used less popular languages also

knew more languages and were more experienced.

Finally, while the LoC were found to have a significant effect on the number

of Mistakes introduced, the estimate is so close to one as to be almost negligible.

No significant effect observed for developer experience or security train-

ing. Across all vulnerability types, we did not observe any difference in vulnerabil-

ities introduced between MOOC and non-MOOC participants or participants with

more development experience. While this does not guarantee a lack of effect, it is

likely that increased development experience and security training have, at most, a

small impact.

3.4.2 Exploit Difficulty and Attacker control

To answer RQ2 and RQ3, we consider how the different vulnerability types dif-

fer from each other in difficulty to exploit, as well as in the degree of attacker control

they allow. We distinguish three metrics of difficulty: our qualitative assessment

of the difficulty of finding the vulnerability (Discovery Difficulty); our qualitative

7The mean Popularity score was 91.5. Therefore, C—whose Popularity score of 92 was nearest to the
mean—can be considered representative the language of average popularity.
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Figure 3.1: # vulnerabilities introduced for each type divided by Discovery Diffi-
culty , Exploit Difficulty and Attacker Control .

assessment of the difficulty of exploiting the vulnerability (Exploit Difficulty); and

whether a competitor team actually found and exploited the vulnerability (Actual

Exploitation). Figure 3.1 shows the number of vulnerabilities for each type with

each bar divided by Exploit Difficulty , bars grouped by Discovery Difficulty , and

the left and right charts showing partial and full attacker control vulnerabilities,

respectively.

To compare these metrics across different vulnerability types and sub-types,

we primarily use the same set of planned pairwise Chi-squared tests described in

Section 3.4.1. When necessary, we substitute Fisher’s Exact Test (FET), which is

more appropriate when some of the values being compared are less than five [130].

For convenience of analysis, we binned Discovery Difficulty into Easy (execution)

and Hard (source, deep insight). We similarly binned Exploit Difficulty into Easy

(single-step, few steps) and Hard (many steps, deterministic or probabilistic).

Misunderstandings are rated as hard to find. Identifying Misunderstand-

ing vulnerabilities often required the attacker to determine the developer’s exact
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approach and have a good understanding of the algorithms, data structures, or li-

braries they used. As such, we rated Misunderstanding vulnerabilities as hard to

find significantly more often than both No Implementation (φ = 0.52, p < 0.001)

and Mistake (φ = 0.30, p = 0.02) vulnerabilities.

Interestingly, we did not observe a significant difference in actual exploitation

between the Misunderstanding and No Implementation types. This suggests that

even though Misunderstanding vulnerabilities were rated as more difficult to find,

sufficient code review can help close this gap in practice.

That being said, Misunderstandings were the least commonType to be actually

exploited by Break It teams. Specifically, using a weak algorithm (Not Exploited=3,

Exploited=2), using a fixed value (Not Exploited=14, Exploited=12), and using

a homemade algorithm (Not Exploited=1, Exploited=1) were actually exploited

in at most half of all identified cases. These vulnerabilities presented a mix of

challenges, with some rated as difficult to find and others difficult to exploit. In

the homemade encryption case (SL-61), the vulnerability took some time to find,

because the implementation code was difficult to read. However, once an attacker

realizes that the team has essentially reimplemented the Wired Equivalent Protocol

(WEP), a simple check of Wikipedia reveals the exploit. Conversely, seeing that a

non-random IV was used for encryption is easy, but successful exploitation of this

flaw can require significant time and effort.

No Implementations are rated as easy to find. Unsurprisingly, a majority

of No Implementation vulnerabilities were rated as easy to find (V=42, 58% of No

56



Implementations). For example, in the SC problem, an auditor could simply check

whether encryption, an integrity check, and a nonce were used. If not, then the

project can be exploited. None of the All Intuitive or Some Intuitive vulnerabilities

were rated as difficult to exploit; however, 45% of Unintuitive vulnerabilities were

(V=22). The difference between Unintuitive and Some Intuitive is significant (φ =

0.38, p = 0.003), but (likely due to sample size) the difference between Unintuitive

and All Intuitive is not (φ = 0.17, p = 0.17).

As an example, SL-7 did not use a MAC to detect modifications to their

encrypted files. This mistake is very simple to identify, but it was not exploited

by any of the BIBIFI teams. The likely reason for this was that SL-7 stored the

log data in a JSON blob before encrypting. Therefore, any modifications made

to the encrypted text must maintain the JSON structure after decryption, or the

exploit will fail. The attack could require a large number of tests to find a suitable

modification.

Mistakes are rated as easy to find and exploit. We rated all Mistakes as easy

to exploit. This is significantly different from both No Implementation (φ = 0.43,

p = 0.001) and Misunderstanding (φ = 0.51, p < 0.001) vulnerabilities, which were

rated as easy to exploit less frequently. Similarly, Mistakes were actually exploited

during the Break It phase significantly more often than either Misunderstanding

(φ = 0.35, p = 0.001) or No Implementation (φ = 0.28, p = 0.006). In fact, only

one Mistake (0.03%) was not actually exploited by any Break It team. These results

suggest that although Mistakes were least common, any that do find their way into
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production code are likely to be found and exploited. Fortunately, our results also

suggest that code review may be sufficient to find many of these vulnerabilities. (We

note that this assumes that the source is available, which may not be the case when

a developer relies on third-party software.)

No significant difference in attacker control. We find no significant differences

between types or sub-types in the incidence of full and partial attacker control. This

result is likely partially due to the fact that partial attacker control vulnerabilities

still have practically important consequences. Because of this fact, our BIBIFI did

not distinguish between attacker control levels when awarding points; i.e., partial

attacker control vulnerabilities received as many points as full attacker control. The

effect of more nuanced scoring could be investigated in future work. We do observe

a trend that Misunderstanding vulnerabilities exhibited full attacker control more

often (V=50, 70% of Misunderstandings) than No Implementation and Mistake

(V=44, 61% and V=20, 51%, respectively); this trend specifically could be further

investigated in future studies focusing on attacker control.

3.5 Discussion and Recommendations

Our results are consistent with real-world observations, add weight to existing

recommendations, and suggest prioritizations of possible solutions.

Our vulnerabilities compared to real-world vulnerabilities. While we com-

piled our list of vulnerabilities by exploring BIBIFI projects, we find that our list
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closely resembles both Mitre’s CWE and OWASP’s Top Ten [278,305] lists. Overlap-

ping vulnerabilities include: broken authentication (e.g., insufficient randomness),

broken access control, security misconfiguration (e.g., using an algorithm incorrectly

or with the wrong default values), and sensitive data exposure (e.g. side-channel

leak).

Get the help of a security expert. In some large organizations, developers

working with cryptography and other security-specific features might be required

to use security-expert determine tools and patterns to use or have a security expert

perform a review. Our results reaffirm this practice, when possible, as participants

were most likely to struggle with security concepts avoidable through expert review.

API design. Our results support the basic idea that security controls are best

applied transparently, e.g., using simple APIs [155]. However, while many teams

used APIs that provide security (e.g., encryption) transparently, they were still

frequently misused (e.g., failing to initialize using a unique IV or failing to employ

stream-based operation to avoid replay attacks). It may be beneficial to organize

solutions around general use cases, so that developers only need to know the use

case and not the security requirements.

API documentation. API usage problems could be a matter of documentation,

as suggested by prior work [6, 283]. For example, teams SC-18 and SC-19 used

TLS socket libraries but did not enable client-side authentication, as needed by the
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problem. This failure appears to have occurred because client-side authentication is

disabled by default, but this fact is not mentioned in the documentation.8 Defaults

within an API should be safe and without ambiguity [155]. As another example, SL-

22 (Listing 3.2) disabled the automatic integrity checks of the SQLCipher library.

Their commit message stated “Improve performance by disabling per-page MAC

protection.” We know that this change was made to improve performance, but it is

possible they assumed they were only disabling the “per-page” integrity check while

a full database check remained. The documentation is unclear about this.9

Security education. Even the best documented APIs are useless when teams fail

to apply security at all, as we observed frequently. A lack of education is an easy

scapegoat, but we note that many of the teams in our data had completed a cyberse-

curity MOOC prior to the competition. We reviewed lecture slides and found that

all needed security controls for the BIBIFI problems were discussed. While only

three teams failed to include All Intuitive requirements (5% of MOOC teams), a

majority of teams failed to include Unintuitive requirements (P=33, 55% of MOOC

teams). It could be that the topics were not driven home in a sufficiently meaning-

ful manner. An environment like BIBIFI, where developers practice implementing

security concepts and receive feedback regarding mistakes, could help. Future work

should consider how well competitors from one contest do in follow-on contests.

8https://golang.org/pkg/crypto/tls/#Listen and https://www.openssl.org/docs/manmaster/

man3/SSL_new.html
9https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
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Vulnerability analysis tools. There is significant interest in automating security

vulnerability discovery (or preventing vulnerability introduction) through the use of

code analysis tools. Such tools may have found some of the vulnerabilities we ex-

amined in our study. For example, static analyses like SpotBugs/Findbugs [20,196],

Infer [62], and FlowDroid [22]; symbolic executors like KLEE [61] and angr [367];

fuzz testers like AFL [435] or libfuzzer [358]; and dynamic analyses like libdft [218]

and TaintDroid [117] could have uncovered vulnerabilities relating to memory cor-

ruption, improper parameter use (like a fixed IV [105]), and missing error checks.

However, they would not have applied to the majority of vulnerabilities we saw,

which are often design-level, conceptual issues. An interesting question is how au-

tomation could be used to address security requirements at design time.

Determining security expertise. Our results indicate that the reason teams

most often did not implement security was due to a lack of knowledge. However,

neither years of development experience nor whether security training had been

completed had a significant effect on whether any of the vulnerability types were

introduced. This finding is consistent with prior research [302] and suggests the

need for a new measure of security experience. In Chapter 4, we investigate the

divide between experts and non-experts in vulnerability discovery and in Chapter 7

we present a lightweight psychometric scale for measuring this difference.
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Secure log Secure Comms. Multiuser database
Issue P=521 V=532 P=27 V=64 P=15 V=65

N
o

Im
p

le
m

en
ta

ti
o

n A
ll

In
t. No encryption 3 (6%) 3 (6%) 2 (7%) 2 (3%) – –

No access control – – – – 0 (0%) 0 (0%)

Total 3 (6%) 3 (6%) 2 (7%) 2 (3%) – –

S
o

m
e

In
t. Missing some access

control
– – – – 10 (67%) 18 (28%)

Total – – – – 10 (67%) 18 (28%)

U
n

in
tu

it
iv

e No MAC 16 (31%) 16 (30%) 7 (26%) 7 (11%) – –
Side-channel – – 11 (41%) 11 (17%) 4 (15%) 4 (6%)
Replay attack – – 7 (26%) 7 (11%) – –
No recursive
delegation check

– – – – 4 (27%) 4 (6%)

Total 16 (31%) 16 (30%) 18 (67%) 25 (39%) 8 (53%) 8 (12%)

Total 17 (33%) 19 (36%) 18 (67%) 27 (42%) 12 (80%) 26 (40%)

M
is

u
n

d
er

st
a

n
d

in
g

B
a

d
C

h
o

ic
e

Unkeyed function 6 (12%) 6 (11%) 2 (7%) 2 (3%) – –
Weak crypto 4 (8%) 5 (9%) 0 (0%) 0 (0%) – –
Homemade crypto 2 (4%) 2 (4%) 0 (0%) 0 (0%) – –
Weak AC design – – – – 5 (33%) 6 (9%)
Mem. corruption 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total 13 (25%) 14 (26%) 2 (7%) 2 (3%) 5 (33%) 6 (9%)

C
o

n
ce

p
tu

a
l

E
rr

o
r Fixed value 12 (23%) 12 (23%) 6 (22%) 6 (9%) 8 (53%) 8 (12%)

Randomness 2 (4%) 3 (6%) 5 (19%) 5 (8%) 0 (0%) 0 (0%)
Security on data
subset

3 (6%) 3 (6%) 6 (22%) 7 (11%) 0 (0%) 0 (0%)

Library cannot
handle input

0 (0%) 0 (0%) 1 (4%) 1 (2%) 2 (13%) 2 (3%)

Disabled protections 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Resource exhaustion 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (7%) 1 (2%)

Total 17 (33%) 19 (36%) 15 (56%) 19 (30%) 9 (60%) 11 (17%)

Total 28 (54%) 33 (62%) 15 (56%) 21 (33%) 10 (67%) 17 (26%)

M
is

ta
ke

–
Insufficient error
checking

0 (0%) 0 (0%) 8 (30%) 8 (12%) 4 (27%) 4 (6%)

Runtime error 0 (0%) 0 (0%) 1 (4%) 1 (2%) 4 (27%) 8 (12%)
Ctrl flow mistake 0 (0%) 0 (0%) 1 (4%) 1 (2%) 4 (27%) 9 (14%)
Skipped step 0 (0%) 0 (0%) 4 (15%) 6 (9%) 1 (2%) 1 (2%)
Null write 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total 1 (2%) 1 (2%) 11 (41%) 16 (25%) 8 (53%) 22 (34%)

1 Number of projects submitted to the competition
2 Number of unique vulnerabilities introduced
3 Total percentages are based on the counts of applicable projects

Table 3.2: Number of vulnerabilities for each issue and the number of projects each
vulnerability was introduced in.
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Log
Variable Value Estimate CI p-value

Problem SC – – –
MD 6.68 [2.90, 15.37] < 0.001∗
SL 0.06 [0.01, 0.43] 0.006*

Min Trust False – – –
True 0.36 [0.17, 0.76] 0.007*

Popularity C (91.5) 1.09 [1.02, 1.15] 0.009*
LoC 1274.81 0.99 [0.99, 0.99] 0.006*

*Significant effect – Base case (Log Estimate defined as 1)

Table 3.3: Summary of regression over Mistake vulnerabilities. Pseudo R2 measures
for this model were 0.47 (McFadden) and 0.72 (Nagelkerke).
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Chapter 4: Exploring the Vulnerability Discovery Processes of Ex-

perts and Non-Experts

Observing that developers commonly introduce vulnerabilities due to misun-

derstandings of security concepts, we next consider how people try to identify and

remedy these vulnerabilities in practice. The job of finding vulnerabilities prior to

release is often assigned to software testers who typically aim to root out all bugs —

performance, functionality, and security — prior to release. Unfortunately, general

software testers do not typically have the training or the expertise necessary to find

all security bugs, and thus many are released into the wild [113].

Consequently, experts freelancers known as “white-hat hackers” examine re-

leased software for vulnerabilities that they can submit to bug bounty programs,

often aiming to develop sufficient credibility and skills to be contracted directly

by companies for their expertise [258, 431]. Bug bounty programs offer “bounties”

(e.g., money, swag, or recognition) to anyone who identifies a vulnerability and

discloses it to the vendor. By tapping into the wide population of white-hat hack-

ers, companies have seen significant benefits to product security, including higher

numbers of vulnerabilities found and improvements in the expertise of in-house

software testers and developers as they learn from the vulnerabilities reported by
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others [55, 127,163,258,269,438].

This vulnerability-finding ecosystem has important benefits, but overall it re-

mains fairly ad-hoc, and there is significant room for improvement. Discovering

more vulnerabilities prior to release would save time, money, and company rep-

utation; protect product users; and avoid the long, slow process of patch adop-

tion [38,243,303,374,390,441]. Bug bounty markets, which are typically dominated

by a few highly-active participants [55,127,163,269], lack cognitive diversity1, which

is specifically important to thoroughly vet software for security bugs [26, 258]. Bug

bounty programs can also exhibit communication problems that lead to low signal-

to-noise ratios [438]. Evidence suggests that simply raising bounty prices is not

sufficient to address these issues [199,439].

To improve this overall ecosystem, therefore, we must better understand how it

works. Several researchers have considered the economic and security impact of bug

bounty programs [12,127,214,307,331]; however, little research has investigated the

human processes of benign vulnerability finding. In this chapter 2, along with my

colleagues, I take a first step toward improving this understanding. We interviewed

25 software testers and white-hat hackers (collectively, practitioners), focusing on

the process of finding vulnerabilities in software: why they choose specific software

to study, what tools they use, how they develop the necessary skills, and how they

communicate with other relevant actors (e.g., developers and peers).

1The way people think and the perspectives and previous experiences they bring to bear on a prob-
lem [381, pg. 40-65].

2Published as [413]
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4.1 Methodology

To understand the vulnerability discovery processes used by our target popula-

tions, we conducted semi-structured interviews with software testers and white-hat

hackers (henceforth hackers for simplicity) between April and May 2017. To sup-

port rigorous qualitative results, we conducted interviews until new themes stopped

emerging (25 participants) [78, pg. 113-115]. Because we interview more than the

12-20 participants suggested by qualitative research best practices literature, our

work can provide strong direction for future quantitative work and generalizable

design recommendations [158].

Below, we describe our recruitment process, the development and pre-testing

of our interview protocol, our data analysis procedures, and the limitations of our

work. This study was approved by our university’s Institutional Review Board

(IRB).

4.1.1 Recruitment

Because software testers and hackers are difficult to recruit [17, 125, 168], we

used three sources to find participants: software testing and vulnerability discovery

organizations, public bug bounty data, and personal contacts.

Related organizations. To recruit hackers, we contacted the leadership of two

popular bug bounty platforms and several top-ranked Capture-the-Flag (CTF) teams.

We gathered CTF team contact information when it was made publicly available on
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CTFTime.org [97], a website that hosts information about CTF teams and compe-

titions.

To reach software testers, we contacted the most popular Meetup [268] groups

with ”Software Testing” listed in their description, all the IEEE chapters in our geo-

graphical region, and two popular professional testing organizations: the Association

for Software Testing [1] and the Ministry of Testing [2].

Public bug bounty data. We also collected publicly available contact information

for hackers from bug bounty websites. One of the most popular bug bounty plat-

forms, HackerOne [164], maintains profile pages for each of its members which com-

monly include the hacker’s contact information. Additionally, the Chromium [148]

and Firefox [279] public bug trackers provide the email addresses of anyone who has

submitted a bug report. To identify reporters who successfully submitted vulnera-

bilities, we followed the process outlined by Finifter et. al. by searching for specific

security-relevant labels [127].

Personal contacts. We asked colleagues in related industries to recruit their co-

workers. We also used snowball sampling (asking participants to recruit peers) at

the end of the recruitment phase to ensure we had sufficient participation. This

recruitment source accounts for three participants.

Advertisement considerations. We found that hackers were highly privacy-

sensitive, and testers were generally concerned with protecting their companies’ in-
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tellectual property, complicating recruiting. To mitigate this, we carefully designed

our recruiting advertisements and materials to emphasize the legitimacy of our re-

search institution and to provide reassurance that participant information would be

kept confidential and that we would not ask for sensitive details.

Participant screening. Due to the specialized nature of the studied populations,

we asked all volunteers to complete a 20-question survey to confirm they had the

necessary skills and experience. The survey assessed participants’ background in

vulnerability discovery (e.g., number of security bugs discovered, percent of income

from vulnerability discovery, programs they have participated in, types of vulnerabil-

ities found) and their technical skills (e.g., development experience, reverse engineer-

ing, system administration). It also concluded with basic demographic questions.

We drew these questions from similar surveys distributed by popular bug bounty

platforms [55,163]. We provide the full set of survey questions in Appendix A.1.

We selected participants to represent a broad range of vulnerability discovery

experience, software specializations (i.e., mobile, web, host), and technical skills.

When survey responses matched in these categories, we selected randomly. To

determine the participants’ software specialization, we asked them to indicate the

percent of vulnerabilities they discovered in each type of software. We deem the

software type with the highest reported percentage the participant’s speciality. If no

software type exceeded 40% of all vulnerabilities found, we consider the participant

a generalist (i.e., they do not specialize in any particular software type).
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4.1.2 Interview protocol

We performed semi-structured, video teleconference3 interviews, which took

between 40 and 75 minutes. All interviews were conducted by a single interviewer.

Using a semi-structured protocol, the interviewer focused primarily on the set of

questions given in Appendix A.2, with the option to ask follow-ups or skip questions

that were already answered [176]. Each interview was divided along three lines of

questioning: general experience, task analysis, and skill development.

Prior to the main study, we conducted four pilot interviews (two testers, two

hackers) to pre-test the questions and ensure validity. We iteratively updated our

protocol following these interviews, until we reached the final protocol detailed be-

low.

General experience. We began the interviews by asking participants to expand

on their screening-survey responses regarding vulnerability discovery experience.

Specifically, we asked their motivation behind doing this type of work (e.g. altruism,

fun, curiosity, money) and why they focus (or do not focus) on a specific type of

vulnerability or software.

Task analysis. Next, we asked participants what steps they take to find vulnerabil-

ities. Specifically, we focused on the following sub-tasks of vulnerability discovery:

• Program selection. How do they decide the pieces of software to investigate?

3Interviews were conducted via video teleconference because it was geographically infeasible to meet
face-to-face.
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• Vulnerability search. What steps are taken to search for vulnerabilities?

• Reporting. How do they report discovered vulnerabilities? What informa-

tion do they include in their reports?

To induce in-depth responses, we had participants perform a hierarchical task

analysis focused on these three sub-tasks. Hierarchical task analysis is a process

of systematically identifying a task’s goals and operations and decomposing them

into sub-goals and sub-operations [15]. Each operation is defined by its goal, the

set of inputs which conditionally activate it, a set of actions, and the feedback or

output that determine when the operation is complete and which follow-on oper-

ations are required. Hierarchical task analysis was developed to analyze complex,

non-repetitive, cognitively loaded tasks to identify errors or inefficiencies in the pro-

cess. We adopted this for our study, as it provides a useful framework for eliciting

details from experts who typically perform some parts of tasks automatically and

subconsciously [15].

For each sub-operation identified, we also asked participants to discuss any

specific tools they use, what skills are useful to complete this step, how they learned

and developed their process for completing the necessary actions, and how the steps

they take differ across software and vulnerability types.

Skill development. Finally, we asked participants to describe how they developed

the skills necessary to find vulnerabilities. Here, we focused on their learning process

and how they interact with other members of their respective communities.
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During the task analysis portion of the interview, we asked participants to

explain how they learned how to complete certain tasks. In this segment, we broad-

ened this line of questioning and asked what development steps they recommend

to newcomers to the field. This question was intended to elicit additional learn-

ing sources that may have been missed previously and highlight steps participants

believe are the most important.

Finally, we asked each participant to describe their interactions with other

members of their local community and the vulnerability discovery and software

tester community at large. Specifically, we discussed who they interact with, the

forms of their interaction (e.g., one-to-one, large groups), how these interactions are

carried out (e.g., conferences, online forums, direct messaging), and what types of

information are discussed.

4.1.3 Data analysis

The interviews were analyzed using iterative open coding [379, pg. 101-122].

When all the interviews were completed, four members of the research team tran-

scribed 10 interviews. The remaining 15 interviews were transcribed by an external

transcription service. I and another researcher independently coded each inter-

view, building the codebook incrementally and re-coding previously coded inter-

views. This process was repeated until all interviews were coded. Our codes were

then compared to determine inter-coder reliability using the ReCal2 software pack-

age [138]. We use Krippendorff’s Alpha (α) to measure inter-coder reliability as it
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accounts for chance agreements [179].

The α after coding all the interviews was .68. Krippendorff recommends using

α values between .667 and .80 only in studies “where tentative conclusions are still

acceptable” [230]; and other work has suggested a higher minimum threshold of .70

for exploratory studies [253]. To achieve more conclusive results, we recoded the 16

of our 85 codes with an α less than .70. For each code, the coders discussed a subset

of the disagreements, adjusted code definitions as necessary to clarify inclusion/ex-

clusion conditions, and re-coded all the interviews with the updated codebook. After

re-coding, the α for the study was .85. Additionally, all individual codes’ αs were

above .70.

Next, we grouped the identified codes into related categories. In total, there

were six categories describing the participants’ discovery process (i.e., Informa-

tion Gathering, Program Understanding, Attack Surface, Exploration, Vulnerability

Recognition, and Reporting) and four categories regarding factors that influenced

participants’ implementation of this process (i.e., Vulnerability Discovery Experi-

ence, Underlying System Knowledge, Access to the Development Process, and Mo-

tivation). We then performed an axial coding to find connections between categories

and between codes within categories [379, pg. 123-142]. Based on the categories

and connections between them, we derive a theory describing the process practi-

tioners use to find vulnerabilities, the factors that influence their implementation of

this process, and how testers and hackers differ with respect to their process and

implementation.
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4.1.4 Limitations

Our study has several limitations common to exploratory qualitative research.

A lack of complete recall is especially prominent in studies like ours, where partici-

pants are asked to describe expert tasks [15]. We employ a hierarchical task analysis

in our interview protocol to improve the thoroughness of information elicited. Par-

ticipants may have also adjusted their answers to portray themselves as more or less

skilled, if they were concerned with the interviewer’s perception of them [190, 397].

Additionally, there could be selection bias among the testers and hackers studied.

Because we explicitly stated the purpose of the study when recruiting, it is possible

that those with experience or an interest in security were more likely to respond

to our request. Also, since some hackers tend to be more privacy sensitive, some

may have decided not to participate in order to protect their identity or intellectual

property. To partially mitigate these issues, we recruited through a wide variety

of sources and interviewed a diverse pool of participants to increase the likelihood

that relevant ideas would be stated by at least one participant. Finally, for each

finding, we give the number of testers and hackers that expressed a concept, to

indicate prevalence. However, if a participant did not mention a specific idea, that

does not necessarily indicate disagreement; they may have simply failed to state it.

For these reasons, we do not use statistical hypothesis tests for comparison among

participants. Our results do not necessarily generalize beyond our sample; however,

they suggest many directions for future work and provide novel insights into the

human factors of software vulnerability discovery.
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4.2 Participants

We received 49 responses to our screening survey. We selected 10 testers

and 15 hackers. (Themes related to their vulnerability discovery process con-

verged more quickly with testers than with hackers, so we required fewer inter-

views [78]). Table 5.1 shows our participants’ demographics, including their self-

reported vulnerability-discovery skill level (on a scale from 0-5, with 0 indicating

no skill and 5 indicating an expert), self-reported number of vulnerabilities they

have discovered, company size (only applicable for testers), and the method used to

recruit them.

Hacker demographics match prior surveys. Our study demographics are rela-

tively congruent with hacker demographics reported in studies from the popular bug

bounty services HackerOne [163] and BugCrowd [56]. 90% of HackerOne’s 70,000

users were younger than 34; 60% of BugCrowd’s 38,000 users are 18-29 and 34%

are 30-44 years old. Our hacker population was 60% under 30 and 90% under 40

years old. Regarding education, 84% of BugCrowd hackers have attended college

and 21% have a graduate degree; 93% of our hackers have attended college and 33%

have a graduate degree.

Testers are more diverse than hackers. In contrast to our hacker population,

none of our software testers were under 30 and only 60% were under 40 years old.

All of our testers have some college education, but only one has a graduate degree.
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With respect to ethnicity and gender, the software tester group was much more

diverse, at 60% male and 60% Caucasian.

Hackers reported higher vulnerability discovery skills. As expected, there

is a contrast in vulnerability finding skills between testers and hackers. The hacker

population self-reported an average skill level of 3.5, whereas software testers self-

reported an average skill of 2.5. This self-reported measure cannot be used to directly

compare participants’ abilities; instead, it indicates their self-efficacy, telling us that

testers tend to be less confident in their ability to find security bugs.

Interestingly, despite the hacker population possessing more vulnerability find-

ing experience, more software testers self-reported having discovered more than 500

vulnerabilities. However, we note that the number of vulnerabilities is not necessar-

ily representative of participant skill. It may instead depend on their specialization.

For example, participants who focused on web applications reported finding more

vulnerabilities, but these are generally considered less complex and therefore are less

profitable in bug bounties [53].

4.3 Vulnerability discovery process

Perhaps our most surprising result is that hackers and testers described a sim-

ilar exploratory process for vulnerability finding. They first focus on learning what

the program does, then use their intuition and experience to find ways to perform un-

intended, malicious actions. Across participants, this process was generally broken
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ID1,2 Educ.
Skill

Vulns.
Fnd

Org.
Sz

Src3

T1W B.S 1 0-3 > 20K O
T2W B.S. 2 0-3 100 O
T3W B.S 3 26-50 150 O
T4G SC 5 > 500 200-10K O
T5W B.S. 4 > 500 200 O
T6W B.S. 3 51-100 60K O
T7G B.S. 4 > 500 50 O
T8H Assoc. 0 101-500 2K O
T9W B.S. 0 0-3 2K C

T10W
M.S. 3 0-3 10-50K O

ID1,2

Educ. Skill
Vulns.
Fnd

Org.
Sz Src.3

H1H B.S. 4 11-25 - O
H2H B.S. 4 51-100 - O
H3G M.S. 5 > 500 - O
H4H M.S. 4 26-50 - O
H5M B.S. 4 101-500 - O
H6G M.S. 3 101-500 - O
H7W M.S. 3 26-50 - O
H8M SC 5 101-500 - C
H9G H.S. 4 26-50 - O

H10H
SC 2 11-25 - O

H11W
B.S. 4 51-100 - O

H12W
B.S. 1 11-25 - O

H13W
B.S. 4 > 500 - C

H14W
M.S. 4 101-500 - P

H15W
B.S. 2 26-50 - P

1 IDs are coded by population (T: Tester, H: Hacker) in date order
2 Software Specialization – W: Web, H: Host, M: Mobile, G: General
3 Recruitment method – O: Related Organization, P: Public Bug Bounty Data, C: Personal Contact

Table 4.1: Participant demographics.

into five phases: Information Gathering, Program Understanding, Attack Surface,

Exploration, Vulnerability Recognition, and Reporting. Participants described the

second (Program Understanding) through fourth (Exploration) phases as a loop

that they iterate until a vulnerability is found. Figure 4.1 shows the process our

participants described, as well as the factors that influence the process. In all the

category graphs in this paper, we represent process categories as hexagons, influ-

encing categories as rectangles, and items that determine the influencing categories

as ovals. Additionally, we represent relationships between categories with arrows

whose direction indicates the direction of influence. For readability, we color arrows

from influencers to process categories to indicate the influence category they are
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Figure 4.1: Vulnerability-finding process and influencing factors.

derived from.

In this section, we briefly outline the overall vulnerability discovery process. In

the following section, we discuss in detail the factors which influence the execution

of each phase, and which exhibit greater differences between our two populations.

Information gathering. In the initial phase of vulnerability discovery, practition-

ers quickly collect preliminary information about the program to develop context

prior to reading any code or executing the program (T=6, H=14). This includes

finding any previous bugs reported in the program (T=3, H=9), determining the

age of the code and update history (i.e., looking at change logs to identify old or

recently updated code segments) (T=5, H=9), and identifying the libraries used
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(T=1, H=2). This phase’s goal is to develop an understanding of prior efforts, as

well as the technologies the program is built on. Information Gathering is also used

specifically by some hackers to decide whether to expend additional effort or move

on to a different target (T=0, H=3).

Program understanding. Next, our participants try to determine how the pro-

gram operates, how it interacts with its environment (i.e., the user, network, etc.),

and how individual components interact with each other. Initially, this step is based

on communication with developers (T=7, H=0) or on reading documentation (T=5,

H=5), when available. Through iterations of the loop (i.e., Program Understand-

ing, Attack Surface, and Exploration), as they execute the program and read code,

practitioners learn about the program by its behavior (T=6, H=11). T4G described

iteratively building up an idea of the program structure by “touching a little bit ev-

erything, and then you are organizing that structure in your head. . . [and] you can

formalize it [with the code].” H9G tries to get into the developer’s mindset by

rewriting the code himself. He starts by thinking about the possible “inputs from

the management or business side that [go] into the specification,” then he writes a

version of the program himself and “look[s] for matches between the machine code

I’m seeing [the original program] and the machine code that my C++ program

produces.”

Attack surface. Our participants then identify how a user can interact with the

program (T=9, H=15). Their goal is to determine what an attacker can manipulate
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and how they can influence program execution. This allows our participants to focus

only on critical components of the program. H4H explains “I look at things that I

can touch, [for example] what can I get to from the network. . . . That’s necessary to

narrow down the target[s].” Our participants discussed looking for direct program

inputs (T=9, H=10), such as website form fields, as well as indirect inputs (T=4,

H=10), such as data pulled from their social media page or backend communication

to a server.

Exploration. Next, practitioners explore the effect of a range of inputs to see

whether it is possible to perform some malicious action by providing data the pro-

gram mishandles. H5M described this as “enumerating all the variable[s] and all

the parameters. . . I can quickly make a bunch of accounts and see how the user ID

changes and how it associates one user with multiple devices.” Our participants

described a range of approaches to exploring program behavior, typically a combi-

nation of executing the program with a set of test inputs (T=9, H=11) and code

inspection (T=6, H=12).

Of the tools mentioned during our interviews, almost all were used in this

phase. Our participants reported preferring tools that automate simple, repetitive

tasks so that they can focus on more complicated problems (T=4, H=13). Such

tasks include quickly searching through code or network captures (T=2, H=10),

providing suggestions for test cases (T=5, H=3), or making code easier to read

(e.g., callee-caller method cross-referencing, variable renaming) (T=1, H=6). We

found that hackers were much more likely to utilize tools to automate this phase
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of the process, preferring dynamic analyses (e.g., fuzzing) (T=5, H=12) over static

analyses (e.g., symbolic execution) (T=0, H=2), which matches Hafiz and Fang’s

findings [168].

On the other hand, seven hackers mentioned specifically focusing on doing

things manually, or using tools that aided them in doing so, because they feel this

gives them a competitive advantage (T=0, H=7). For example, H15W says he

avoids fully automated tools because “I assume that [large companies] already run

static and dynamic analysis tools. . . so there’s not much of a point of me doing it.”

Vulnerability recognition. Participants iterate through the prior three phases

until they eventually identify a vulnerability. This phase can be as simple as seeing

a crash that produces a known bad behavior or getting a tool output that indicates a

problem. However, in most cases our participants described relying on their intuition

and system knowledge to recognize where an assumption is violated or a simple crash

shows a bigger security problem (T=6, H=14).

Reporting. Finally, once the vulnerability is found, it must be reported. In their

reports, our participants focus on making sure the information is presented in a

way that is easily understandable by developers (T=8, H=11). Specifically, they

stressed communicating the importance of fixing the vulnerability (T=10, H=12).

T4G explained that even after you find a vulnerability, “you have to have the weight

of someone else to agree that [it] is a bug. . . you do have to [convince] someone that

there’s a risk. . . It’s quite timely [time consuming], running a ticket.” This emphasis
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on selling the importance of the vulnerability mirrors the findings of Haney and

Lutters [172].

Exception to the process. Four hackers in our study reported a notable exception

to the order of phases described above. These hackers stated that they, in some

cases, first recognize a vulnerability and reverse the normal process by looking for

an execution path to the insecure code (T=0, H=4). This occurs whenever they find

known insecure code (e.g., memcpy or printf in a C program) using a string search

or other simple static analysis. Then they trace the execution path back through

the code manually to find any input that triggers the vulnerable code. While this is

a different order of operations, the general phases of the process remain the same.

4.4 Influencing factors

While all our participants described a similar process, their implementation

of this process differed. These differences can be loosely grouped into four influ-

encing factors: Vulnerability Discovery Experience, Underlying System Knowledge,

Access to the Development Process, and Motivation. We found that both groups of

practitioners expect increases in Vulnerability Discovery Experience and Underlying

System Knowledge to improve vulnerability discovery success. Further, we found

that hackers and testers reported similar levels of underlying system knowledge, yet

the most important difference between our hackers and testers was in their vul-

nerability discovery experience. To our surprise, we did not find a straightforward
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relationship between increased access to the development process and successful vul-

nerability finding. Finally, the impact of different motivational influencing factors

was likewise more complex than expected.

4.4.1 Vulnerability discovery experience

Overall, hackers and testers agreed that prior experience finding vulnerabilities

significantly improves their vulnerability discovery process (T=10, H=13); the key

difference is that hackers reported notably more experience than testers.

In particular, we find that regardless of role, experience improves a practi-

tioner’s ability to efficiently identify the attack surface, select test cases, recognize

vulnerabilities, and sell the resulting report. Both groups reported that the best

approaches to gaining the relevant experience are real-world code analysis, hacking

exercises, learning from their community, and prior bug reports. However, hackers

were more likely than testers to rely on hacking exercises and bug reports. Further,

hackers are exposed to a wider variety of vulnerabilities across all these learning ap-

proaches. Figure 4.2 shows the effect of vulnerability discovery experience on phases

of the process and the ways practitioners develop experience.

4.4.1.1 How does experience affect the process?

Across both groups of practitioners, participants identified several key ways

that experience adds to vulnerability discovery success.
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Figure 4.2: Vulnerability Discovery Experience Category Graph.

Helps recognize a problem quickly. Our participants frequently mentioned

learning to recognize patterns that indicate a problem based on prior experience

(T=6, H=14). For example, as he explores a program for possible bugs, H10H

stated that he has a set of potential problems that he knows could occur based on

prior experience. He said “I know that if there’s a loop [that’s] going through my

input, it could be going out of bounds on the array, could be underflow, overflow.”

Relatedly, most participants discussed maintaining a mental or physical list of all

the vulnerabilities they have seen through past experience and checking for these

whenever they test a new piece of software (T=9, H=11).

Informs test case selection. In complex real-world systems, it is impractical to

perform a complete search of all possible program inputs, so our participants stated

that they rely on their intuition, learned from prior experience, to triage (T=9,

83



H=8). For example, T3W discussed creating a list of standard test cases “based on

things we’ve found from Rapid7 [web security scanning tool]” or after asking “one

of the developers. . . if there is other security testing we should be doing.” From her

experience, she “broadened the scope of security testing at the time [was just SQL

injection], and brought in cross-site scripting.” H2H explained how he built a set of

file formats that he tries to open “in some random image parser, and half the time

it would [cause a crash].” He said that he created his list based on his experience

working with other security professionals in an “apprentice”-like situation where

“You watch them, they watch you, and soon you’re doing it on your own.”

Helps identify the attack surface. We observed that only participants with more

experience mentioned indirect inputs as part of the attack surface (T=4, H=10).

Indirect inputs are more difficult to identify because they require a complex combina-

tion of events that may not occur frequently. Typically, our practitioners suggested

that they only know to look for these complex interactions because they have seen

something similar previously. T3W discussed learning about indirect inputs after

incidentally finding a vulnerability in the way a program accepted user input from

a LinkedIn third-party login service, “as soon as I found the LinkedIn problem, I

made sure to test [FB and Twitter] to make sure [they were processed correctly].

And if we did allow login with another 3rd party in the future, I would check that

too.”

Helps describe a vulnerability’s impact. Testers and hackers leverage prior
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experience to explain how a vulnerability could be used by a malicious actor when

arguing its impact to developers. T10W recalled a time where he used the story of

a denial of service attack, caused by the same type of vulnerability, to explain the

importance of fixing a new problem quickly.

Without experience, slower and more random. Without prior experience

guiding triage, our practitioners relied on stumbling across vulnerabilities inciden-

tally (T=5, H=4); or on their curiosity (T=8, H=5), personal creativity (T=3,

H=6), and persistence (T=2, H=9) with ample time (T=4, H=9) to dig through

the complexity of a program. Such incidental discovery is time consuming and

haphazard, with little consistency in results. H1H described looking for a vulner-

ability in a complex program and “spent the whole summer on it and failed”, but

after reviewing bug reports for similar programs, he returned to searching the same

program and found a vulnerability after “about a month”. Thus, prior experience

provides a useful and, in the opinion of some of our hackers, critical stimulus to the

bug finding process (T=0, H=4).

4.4.1.2 How is experience developed?

Our participants developed experience through hands-on practice, supple-

mented by support from their peers and by reading other practitioners’ vulnera-

bility reports. Most notably, hackers reported a greater variety of learning methods,

and more diverse experiences within each method, than testers; as a result, hackers
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developed more, and more valuable, experience.

Gained by searching real-world programs. All of our testers mentioned gain-

ing experience through their job, supporting findings from Lethbridge et al [244].

Six reported gaining vulnerability-discovery experience by incidentally finding se-

curity vulnerabilities while seeking out functionality bugs. Four reported learning

something from their company’s security-training best practices, but also reported

that these best practice guides provide, at best, limited information.

The hackers in our study also develop hands-on experience through employ-

ment, which tended to be in security-specific roles such as full-time bug bounty

participation and contracted penetration testing (H=13). As might be expected,

this security-focused experience provides a strong advantage. Additionally, the ad-

hoc and frequently changing nature of hackers’ employment exposes them to a wider

variety of programs, and therefore types of vulnerabilities, compared to testers who

focus only on a single program or a few programs developed by their company and

change focus less frequently.

In addition to their full-time jobs, we found that many of our hackers and some

testers performed vulnerability discovery on real-world programs as a hobby (T=3,

H=11). These participants explained that they searched for vulnerabilities, though

there was no expected economic benefit, for the purpose of hands-on learning and

personal enjoyment.

Gained through hacking exercises. Many of our hackers and some of our
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testers participate in hacking exercises like capture-the-flag competitions or online

war games [96, 295] (T=4, H=13). These exercises expose players to a variety of

vulnerabilities in a controlled, security-specific setting with little program function-

ality aside from vulnerable components. H3G explained that hacking exercises help

players focus on important details without becoming “overloaded”; these exercises

also offer a “way of measuring the progress of your skills.” Notably, the four testers

had participated in only a few narrowly-focused workplace competitions, while our

hackers mentioned many broad-ranging exercises.

Learned from their community. Both hackers and testers reported similar ex-

periences learning through colleagues, both within and external to their workplace.

Participants mention learning from co-workers (T=7, H=7); from hobbyist (T=7,

H=10) and professional (T=2, H=0) organizations in which they are a member;

and from informal personal contacts (T=6, H=12). Within these communities,

practitioners are taught by those with more experience (T=10, H=13) and learn

by working through and discussing difficult problems with their peers (T=6, H=9).

For example, T5W described “Just watching other people test, grabbing what one

person uses and then another and adding it to your own handbook.” H2H explained

that starting his career at a security company with “a lot of institutional knowledge”

was critical to his development because he had “a lot of folks that I was able to pick

their brain.” Whenever personal contacts are not sufficient, practitioners also seek

out information published online, typically in the form of expert blog articles and

web forum posts (T=6, H=10).
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Learned from prior vulnerability reports. Additionally, many participants—

but particularly hackers—regularly read other individuals’ vulnerability reports or

discussed vulnerabilities found by colleagues to learn about new vulnerability types

and discovery techniques, essentially gaining practical experience vicariously (T=6,

H=15). H1H described using bug reports to test his vulnerability finding skills.

Before reading a report, he asks himself, “Can I see the bug?” in the vulnerable

version of the program. If the answer is no, he looks at the report to see “what the

issue was and what the fix was and then where in the source the bug was.” However,

testers commonly only look at internal reports (T=5, H=0), whereas hackers view

reports from a variety of programs (T=1, H=15), exposing them to a wider range

of experiences.

Rarely learned through formal education. Finally, some participants men-

tioned more formal training such as books (T=1, H=7), academic courses (T=2,

H=6), and certifications (T=0, H=1). In all cases, however, these methods were

perceived to only support attaining the skills to participate in hands-on methods,

not to be sufficient on their own.

4.4.2 Underlying system knowledge

Almost all participants in both populations (T=8, H=15) emphasized the im-

portance of underlying system knowledge (e.g., operating systems, programming

languages, network protocols, and software libraries) for successful vulnerability
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Figure 4.3: Underlying System Knowledge Category Graph.

discovery. Unlike with vulnerability discovery experience, our hackers and testers

expressed similar levels of system knowledge. Instead, the biggest variation is in

which underlying systems participants understand, primarily due to software spe-

cialization. Many participants reported focusing on a particular type of software

(e.g., web, mobile, host) out of necessity, such as limited time to maintain profi-

ciency in all software types (T=5, H=11). We found that practitioners in both

populations limit their vulnerability searches based on their specialty (e.g., mobile

specialists only consider a mobile app and not its associated web server).

Both populations indicated that system knowledge plays a role in the Attack

Surface phase; hackers were more likely to report that it also plays a role in the

Vulnerability Recognition phase (See Figure 4.3.)
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4.4.2.1 How does system knowledge affect the process?

Understanding the underlying system components allows practitioners to rec-

ognize vulnerabilities caused by discrepancies between the developer’s assumptions

about how the system behaves and what actually occurs (T=2, H=6). H14W de-

scribed how his understanding of Mozilla web add-ons helps him recognize vulnera-

bilities in other developers’ code, saying that add-on developers “have no idea what

they are doing there, and I see they do horrible stuff.”

Strong system knowledge helps practitioners identify more input vectors into

a program, as well as the full range of potential inputs (T=5, H=12). H1H gave an

example of better system understanding improving his view of the attack surface:

“I took [Operating Systems] where I was writing a kernel, and that was incredibly

important. It wasn’t until I took this that I really understood what the attack

surfaces really were. . . The idea of being the [Virtual Machine] host where you’re

communicating with the GPU via some channel, I wouldn’t have thought about

that layer if I hadn’t written a kernel.”

4.4.2.2 How is system knowledge developed?

The development of system knowledge closely parallels the development of

vulnerability discovery experience, with participants relying on hands-on experience

and the community. Participants indicated learning through a mixture of on-the-job

learning as a tester or hacker (T=10, H=13) and experience as a developer (T=6,

90



H=11) or systems administrator (T=0, H=3). H5M discussed the impact of his

prior employment; “I worked at an antivirus company and you had to look at a lot

of samples really quick. . . and [now] it’s easy to say ‘Ok, here’s where they’re doing

this’. . . and just quickly looking at it.”

Participants also mentioned using community (T=7, H=7) and online re-

sources (i.e., expert blogs and web forums) (T=7, H=8) to supplement their experi-

ential learning. Participants also learn from standards documents such as network

protocol RFCs and assembly language instruction set documentation (T=2, H=4).

Again, very few mentioned formal education (T=2, H=2), and of those who did,

none considered it necessary. H6G explained that he has read some good books and

has a computer science degree, but finds hands-on learning the best because “For

me I need ten hours reading a book. It’s the same as 2 [or] 3 hours trying to solve

a challenge.”

4.4.3 Access to development process

Another factor that influences the vulnerability discovery process is whether

a practitioner has access to the development process. Figure 4.4 shows the effect of

this access on the phases of vulnerability discovery. Clearly, because testers serve in

an internal role, they have greater access to the source code, program requirements,

and the developers themselves; they are also commonly involved in program-design

decisions (T=7, H=0). All of our hackers, conversely, are (intentionally) outsiders

(H=15) approaching the program as a black box with access at most to the source
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Figure 4.4: Access to development process category graph.

code if it is an open-source project or unobfuscated client-side script. Our partic-

ipants report that both perspectives have key advantages and disadvantages: as

outsiders by design, hackers are not biased by the assumptions of the developers,

but testers have potentially valuable inside knowledge as well as an advantage in

communicating findings to developers.

Internal efforts rely on documentation and direct developer communi-

cation. When gathering information, most testers rely on internal code tracking

databases and communication with developers and other testers to determine the

results of prior vulnerability discovery efforts (T=9, H=0). When trying to under-

stand the program, because testers are involved in the program’s design, they get

into the mindset of developers by talking to them (T=8, H=0). T6W described

participating with developers and other stakeholders in “a design session. That’s
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where we are going to put down the requirements.” This session includes discussions

about how to build the system and “what kind of testing we are going to [do].”

Having internal access to the development process can reveal flawed assump-

tions that would never be found by an outsider. However, knowing too much about

the program going into the vulnerability search can blind the investigator to certain

issues. T4G explains this, saying, “I try to learn as much about it without knowing

too much about it. . . . It’s hard to ignore certain details once you know about cer-

tain areas already.” However, T4G still recognized the value of communicating with

his developers, saying, “You can give feedback to your teammates, your developers,

your product owners. . . . You’re coming back with information, and then they react

on it. Then you have to go back there [to explore] again.”

External efforts use black-box testing and reverse engineering techniques.

Because hackers do not have access to internal resources, they have to use more com-

plicated methods to directly interrogate the system. When initially gathering infor-

mation about a program, hackers use network-scanning tools and other black-box

enumeration techniques to determine how the program is built and what underlying

technologies it uses (T=0, H=5). During the program understanding phase, hackers

rely only on their ability to reverse engineer the developer’s intentions by reading

and executing the code in lieu of talking to developers (T=0, H=15). H9G builds

a clear picture of how the developer is thinking and what they are trying to do by

looking directly at their code, because “when you look at the binary. . . you get a

more intimate look into how the programmer was thinking.” He reads the code to
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“see certain implementations and certain patterns in the code. . . that can potentially

allow you to make an assumption about a part of the specification.”

Building rapport with developers. In contrast to the mixed effect on the vulner-

ability search, our participants indicated that having greater access to the develop-

ment process provides an advantage when reporting the vulnerability. Our testers

discussed using this connection to develop a shared language about the program

(T=8, H=0) and build a relationship where they can go to the developers directly

to discuss the issue and mitigate the problem (T=9, H=0). T1W stated that he

tries “to use the same verbiage, so if for example I’m testing an application and I’m

referencing certain parts, . . . [I’ll] see how they name those specific fields. . . and I’ll

try to use the terms they’re using versus regular colloquial terms.” He explained

that the shared language and relationship allows him to avoid misunderstandings

that could slow or even stop the remediation process.

Our hackers rarely have the same rapport because, as external participants,

they communicate with developers only when they find a vulnerability, which may

only occur once per program. In a few cases, our hackers were able to develop a

strong relationship with a particular company (H=2), but this only occurred after

they submitted multiple reports to that company. H8M focuses on a very specific

program type, mobile device firmware, and therefore has developed a relationship

with most of the major companies in this area. He described adjusting the infor-

mation he reports depending on previous interactions. For less security-proficient

companies he needs “to go into full details, as well as sending a fully compiled,
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weaponized exploit,” but for companies he has a better relationship with, he just

says “In this application in this class, you don’t handle this right,” and they can

identify and fix the issue quickly. This avoids wasting his time creating a lengthy

report or developers’ time reading it.

Hackers make up for lack of access with proofs-of-concept. Because most

hackers have minimal communication with developers, they stressed the necessity

of proving the existence and importance of the vulnerability with a proof-of-concept

exploit to avoid spending significant amounts of time explaining the problem. H3G

explained that “including the proof-of-concept takes more time to develop, but it

saves a lot of time and communication with the [developers], because you show that

you can do an arbitrary [code execution]. . . and that this theoretical vulnerability

cannot be mitigated.” While this approach is straightforward, developing an exploit

can be the most time-consuming part of the process (H=2), and developers may not

accept a report even in the face of evidence (T=7, H=9) or appropriately fix the code

because they do not understand the root of the problem (T=7, H=9). H15W gave

an example of a time when he was reviewing a bug report and found that “they

didn’t fix it properly. [It was] still exploitable in other ways.” Testers overcome

these challenges by spending time in discussion with the developers to clear up

misunderstandings, but hackers typically do not have these necessary relationships

and access to developers.
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4.4.4 Motivation

The final influencing factor on the discovery process is a practitioner’s moti-

vation for looking for vulnerabilities. Figure 4.5 illustrates how motivations affect

the discovery process. Most of our participants select which programs to search

and what parts of the code to look at based on a calculation of likelihood to find

vulnerabilities versus the value of the vulnerabilities found (T=10, H=11). The four

hackers who did not describe this likelihood versus value calculation still consider

likelihood as a factor (T=10, H=15), but either are paid a fixed rate as part of an

internal security team or contracted review or are motivated by some non-monetary

benefit (see Section 4.4.4). Overall, our hackers and testers estimate vulnerability

likelihood similarly, but differ significantly when determining value. Additionally,

we found that all participants were motivated to report clearly, no matter their

likelihood vs. value calculation.

Estimating likelihood. Because most modern code bases are very large, both pop-

ulations expressed the need to triage which program components to search based on

the likelihood of finding a vulnerability. Both populations described several similar

heuristics for this. First, practitioners focus on code segments that they expect were

not heavily tested previously (T=5, H=11). H7W, for example, considers where de-

velopers are “not paying attention to it [security] as much.”

Next, testers and hackers look at parts of the code where multiple bugs were

previously reported (T=3, H=9). As T2W said, “There were issues with those
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Figure 4.5: Motivation category graph.

areas anyway. . . so I figured that that was probably where there was most likely to

be security issues. . . bugs cluster.”

Both populations mentioned situations when code is new (e.g., rushed to re-

lease to fix a major feature issue) (T=5, H=5), or when they do not think the

developers understand the underlying systems they are using (e.g., they noticed an

odd implementation of a standard feature) (T=1, H=3). Additionally, some hackers

also looked at old code (e.g., developed prior to the company performing stringent

security checks) (T=0, H=7) and features that are rarely used (T=0, H=3).

Testers determine value by impact to company. As we would expect, testers

determine value by estimating the negative effect to the company if exploited (T=8,

H=3) or if the program fails a mandated audit (e.g., HIPAA, FERPA) (T=4, H=0).

Because of this motivation, they tend to focus on features that are most commonly
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used by their user base (T=2) and areas of the code that handle sensitive data (e.g.,

passwords, financial data) (T=8). T5W said he considers “usage of the site, [that is]

how many people are going to be on a certain page or certain area of the site, [and]

what’s on the page itself, [such as] forms” to determine where a successful attack

would have the most impact.

Hackers maximize expected payout using several strategies. Previous re-

search has shown that hackers are more likely to participate in a program whenever

the bounties are higher [438], and bounty prices increase with vulnerability sever-

ity [127]. We also observed that hackers cite the size of the bounty payout as their

key motivator; however, we found that hackers follow one of two strategies when

deciding how to best maximize their collective payouts.

The first strategy seeks out programs where the hacker has a competitive ad-

vantage based on specialized knowledge or experience that makes it unlikely that

others will find other similar vulnerabilities (H=9). Hackers following this strategy

participate in bug bounties even if they are unlikely to receive immediate payouts,

because they can gain experience that will help them later find higher-payout vul-

nerabilities. H1H said that he focuses on more complex problems even though “I

had no success for the first year, I knew that the barrier to entry was so high, that

once I got good enough, then it would work out consistently that I could find bugs

and get rewards. . . once you get good at it there’s less competition.”

The other payout maximizing strategy we observed is to primarily look for sim-

ple vulnerabilities in programs that have only recently started a bug bounty program
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(H=8). In this strategy, hackers race to find as many low-payout vulnerabilities as

possible as soon as a program is made public. Hackers dedicate little time to each

program to avoid the risk of report collisions and switch to new projects quickly.

H12W said that he switches projects frequently, just looking for “low-hanging fruit,”

because “somebody else could get there before you, while you are still hitting your

head on the wall on this old client.” This aligns with the phenomenon observed

by Maillart et al., where hackers switch quickly to new bug bounties because they

are more likely to have more vulnerabilities [258]. We found that hackers typically

consider this approach when searching for web vulnerabilities, which have a “lower

barrier to entry” than finding vulnerabilities in host software for which “the process

to become proficient is higher [harder]” (H1H).

Additionally, some hackers completely avoid any company they have previously

had poor relations with, either because they do not think it is likely they will

be compensated fairly for their efforts or because the payment is not worth the

administrative struggle (T=0, H=6). H9G described submitting a remote-code-

execution vulnerability, but never receiving a response, when it should have garnered

a large bounty based on the company’s published policy. He said that “When

we encounter that hostile behavior, that’s pretty much an instant turn-off” from

working with that company again.

Some participants also consider non-monetary value. Specifically, partici-

pants cited motivations including altruism (i.e., bounty paid to charity or improved

security for the greater good) (T=2, H=7), enjoyment (T=1, H=11), peer pressure
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(T=0, H=1), and personal protection (i.e., fix security bugs in products they use

to avoid personal exploitation) (T=0, H=2). However, these factors are commonly

secondary to monetary value.

All practitioners are motivated to report well. Practitioners’ motivations also

influence how they communicate with developers when reporting. Both populations

expressed the need to make developers aware of the importance of fixing these bugs

(T=10, H=12). Testers are only able to prevent harm to the company if developers

accept and adequately fix the vulnerabilities they report. Hackers, motivated by

a bug bounty payout, receive their payment only when the company accepts their

report and are only paid at the level they expect if the developers agree with their

assessment of severity. Participants defined importance as a function of the business

impact on the company (T=8, H=3), how much control the vulnerability gives the

attacker (e.g., limited data leakage vs. arbitrary code execution) (T=3, H=6), and

how easily an attacker can exploit the vulnerability (T=2, H=6). T10W said ,“You

need to be able to express not only what the problem is and where the problem

lies, but also how this could be used to do X amount of damage.” Additionally,

some hackers discussed spending time after finding a vulnerability to understand

the full implications of the issue (T=0, H=4). H9G said “When I find an issue, I

don’t necessarily rush to the developer. . . I could probably chain the vulnerability

to other vulnerabilities to be more impactful and more impressive. . . [and] I get paid

more, which is certainly a factor.”

Our practitioners also emphasized the need to make their reports easy for
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developers to understand by considering the technical and security background of

their audience (T=7, H=11). As T2W stated, when “there’s not enough experience

with security across the [development] team, I tend to give them more information

to make it easier.” Some practitioners also use phrasing and wording that are easy

to read (T=4, H=5). T1W said he checks to see if “I missed anything grammar-

wise. . . does it have proper flow?” If he thinks it might be hard to read, he “pull[s]

another tester and say[s], ‘Hey, does this make sense?’ ” In some cases, practitioners

use a fixed format (T=6, H=3) so that developers know where to look for specific

information based on previous reports or by looking at the headings. Finally, many

participants discussed maintaining an open-minded, respectful tone when discussing

the vulnerability to avoid triggering a defensive response (T=8, H=5). T2W stressed

the importance of respectful tone, saying, “Probably the biggest thing is keeping it

factual and neutral. Some developers take any [report] as an attack on their ability

to code.”

4.5 Discussion and Recommendations

Our results show that two factors are necessary for success in vulnerability dis-

covery: vulnerability discovery experience and underlying system knowledge. Fur-

ther, we found that testers typically develop sufficient system knowledge through

their employment and interactions with their community, but fall short in experi-

ence. Even though hackers and testers develop vulnerability discovery experience

through similar means, hackers are exposed to a wider variety of programs and
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vulnerabilities through the different types of employments, exercises, and commu-

nities they are involved in and the more diverse bug reports they read. Also, while

not necessary to their success, participants’ access to the development process and

motivations have effects on the way they way they perform vulnerability discovery.

Of note, we found that access to the development process facilitates reporting for

testers as it helps build a rapport with developers and a shared language.

With these findings in mind, we suggest recommendations for organizations

and individuals involved in software vulnerability discovery and directions for future

work.

4.5.1 Training in the workplace

Our results suggest that extending testers’ vulnerability discovery experience

will improve their efficacy at finding vulnerabilities before release.

Security champions. Many of our testers described learning from more experi-

enced testers (T=8). As a first change, we recommend hiring a small number (one

or two) hackers to work alongside testers, highlighting potential vulnerabilities and

sharing security-testing techniques. Deliberately introducing hackers to the team

should cultivate learning opportunities. T8H discussed the success of this approach

in her organization, saying, “I had two gentlemen. . . who were really into security

testing. . . . They eventually went on to create a whole new security team. . . . Most

of my security testing is all from what I’ve learned from them.” T8H emphasized

that this effort, which began with two testers experienced in security pointing out
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problems to their less experienced co-workers, led within three years to development

of a company-wide security consciousness. Further, she said that external security

reviews of their product now find many fewer vulnerabilities than they did prior to

introducing security champions.

Bug-report-based exercises. Many of our testers spend time discussing interest-

ing bugs found by their peers in regular training sessions (T=7). However, simply

discussing a vulnerability does not allow the hands-on practice our participants

considered necessary. Instead, we suggest hands-on training based on vulnerabili-

ties previously found in the company’s code, either via formal exercises or simply

by asking testers to search the pre-fix code and try to find the vulnerability (as

suggested by H1H in Section 4.4.1.2. Such exercises will allow testers not only to

learn about different vulnerabilities, but also to gain practical experience looking

for them.

Future work to increase variety of experiences. The aforementioned ap-

proaches, however, will still only expose testers to a limited range of vulnerabilities

within the program(s) on which they work. Further research is required to determine

the best way to provide broader exposure to testers. Many of our testers participate

in internal hacking exercises (T=6), but it was not clear why they do not participate

in external exercises. Prior research has found that these exercises typically require

a significant time commitment and prior knowledge, which we hypothesize are not a

good fit for testers [80,396]. In Chapter 6, we consider this problem further through
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a review currently available public hacking exercises.

Similarly, many testers cited internal bug reports as a learning source (T=6),

but they do not spend time reading external reports like hackers do (T=1, H=13).

One possible reason could be that it is difficult to find vulnerability reports without

knowing the correct online resources to consult. Currently bug reports are dis-

persed among corporate vulnerability disclosure sites [54,164,385], personal GitHub

repos [108], community mailing lists [141], and public vulnerability databases [298,

401]. Creating a single aggregated repository or searchable source for bug reports

and discovery tutorials, and pointing testers to it, could expose testers to a wider

range of information.

4.5.2 Improved hacker support

While improving testers’ vulnerability-finding skills could meaningfully im-

prove security, companies will likely still need security experts to find the most

complex problems. In Chapter 5, we focus specifically on improving tool support

for hackers to help them perform tasks more efficiently. Unfortunately, many of our

hackers described difficulties communicating with developers after find a vulnerabil-

ity, resulting in their findings either not being accepted or not being fixed properly

(T=9). To solve this challenge, we look to learn from the strengths of our testers.

Establish consistent relationships early. We found that testers have an advan-

tage in the reporting phase because they have built a relationship with developers

through their inherent access to the development process. Additionally, the two
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hackers who mentioned cultivating a close relationship with a particular company

described similar benefits. We therefore recommend companies make efforts to build

relationships with hackers as early as possible.

First, we recommend that organizations maintain a consistent point of contact

with hackers, so that any time a hacker reports a vulnerability, they communicate

with the same person and build a shared language, understanding, and trust. Ob-

viously, a single point of contact is not always useful because a hacker may only

report one vulnerability. In these cases, it is important for companies to be as open

as possible when providing requirements and expectations to the hacker. Some po-

tential improvements might be to provide more detailed templates and examples of

effective reporting, to give feedback or ratings on (specific sections of) reports and

how they did or didn’t help developers, and answer hacker questions throughout the

process to avoid confusion.

Further, our results support industry-wide standardization of vulnerability re-

porting procedures. This includes agreeing on report templates, “good” reporting

examples, and vulnerability definitions. Standardizing expectations and vocabu-

lary should provide consistency across programs and reduce the burden to build

individual relationships with each company.

Hackers as security advocates. Additionally, further work is needed to under-

stand how hackers can best convey the importance of a vulnerability, given limited

communication channels and time to influence developer decisions. Future research

should therefore focus on improving hacker reporting through improved resources
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and training. For example, a centralized repository of real-world cases where an at-

tacker has exploited a vulnerability that hackers can use as examples could help with

demonstrating a vulnerability’s importance. Relatedly, Haney and Lutter suggest

providing hackers with formal training in how to best advocate for cybersecurity

within complex organizational and structural environments [172].
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Chapter 5: Observing Reverse Engineers’ Processes

In the prior chapter, I showed that reverse engineering is the central task in

software vulnerability discovery. Before being able to divine where a vulnerability

might be, it is necessary to understand the functionality and behavior of the target

program. (For brevity, we will refer to this task as RE and its practitioners as REs.)

RE can be complex and time consuming, often requiring expert knowledge and

extensive experience to be successful [137,432]. In one study, participants analyzing

small decompiled code snippets with less than 150 lines required 39 minutes on

average to answer common malware-analysis questions [432].

Researchers, companies, and practitioners have developed an extensive array

of tools to support RE [16,25,26,61,73,106,117,133,186,187,264,349,368,378,382,

383,386,404,405,432]. However, there is limited theoretical understanding of the RE

process itself. While existing tools are quite useful, design decisions are currently

ad-hoc and based on each designer’s personal experience. With a more rigorous and

structured theory of REs’ processes, habits, and mental models, I believe existing

tools could be refined, and even better tools could be developed. This follows from

recommended design principles for tools supporting complex, exploratory tasks, in

which the designer should “pursue the goal of having the computer vanish” [363, pg.
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19-22].

In contrast to RE, there is significant theoretical understanding of more tra-

ditional program comprehension—how developers read and understand program

functionality—including tasks such as program maintenance and debugging [21,50,

102, 159, 228, 237, 246, 252, 316, 342, 409]. However, RE differs from these tasks, as

REs typically do not have access to the original source, the developers who wrote

the program, or internal documentation [116, pg. 141-196], [81]. Further, REs often

must overcome countermeasures, such as symbol stripping, packing, obfuscation,

and anti-debugging techniques [116, pg. 327-356], [301], [249, pg. 441-481], [175, pg.

660-661]. As a result, it is unclear which aspects of traditional program comprehen-

sion processes will translate to RE.

In this chapter 1, my colleagues and I develop a theoretical model of the RE

process, with an eye toward building more intuitive RE tools. In particular, we set

out to answer the following research questions:

RQ1. What high-level process do REs follow when examining a new program?

RQ2. What technical approaches (i.e., manual and automated analyses) do REs

use?

RQ3. How does the RE process align with traditional program comprehension?

How does it differ?

Specifically, when considering REs’ processes, we sought to determine the types

of questions they had to answer and hypotheses they generated; the specific steps

1published as [412]
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taken to learn more about the program; and the way they make decisions throughout

the process (e.g., which code segments to investigate or which analyses to use).

As there is limited prior work outlining REs’ processes and no theoretical basis

on which to build quantitative assessments, we chose an exploratory qualitative ap-

proach, building on prior work in expert decision-making [65,222,225] and program

comprehension [21, 50, 102, 159, 228, 237, 246, 252, 316, 342, 409]. While a qualitative

study cannot indicate prevalence or effectiveness of any particular process, it does

allow us to enumerate the range of RE behaviors and investigate in depth their

characteristics and interactions. Through this study, we can create a theoretical

model of the RE process as a reference for future tool design.

To this end, we conducted a 16-participant, semi-structured observational

study. During each session, we observed participants performing the RE task in a

natural setting while recording their behaviors and probing their mental processes.

5.1 Background

While little work has investigated expert RE, there has been significant ef-

fort studying similar problems of naturalistic decision-making (NDM) and program

comprehension. Because of their similarity, we draw on theory and methods that

have been found useful in these areas [21, 50, 159, 223, 226, 237, 246, 342, 409] as well

as in initial studies of RE [52].
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5.1.1 Naturalistic Decision-Making

Significant prior work has investigated how experts make decisions in real-

world (naturalistic) situations and the factors that influence them. Klein et al. pro-

posed the theory of Recognition-Primed Decision-Making (RPDM) [223, pg. 15-33].

The RPDM model suggests experts recognize components of the current situation—

in our case, the program under investigation—and quickly make judgments about

the current situation based on experiences from prior, similar situations. Therefore,

experts can quickly leverage prior experience to solve new but similar problems.

Klein et al. have shown this decision-making model is used by firefighters [222,225],

military officers [65,344], medical professionals [442, pg. 58-68], and software devel-

opers [224]. Votipka et al. found that vulnerability-discovery experts rely heavily on

prior experience [413], suggesting that RPDM may be the decision-making model

they use.

NDM research focuses on these decision-making processes and uses interview

techniques designed to highlight critical decisions, namely the Critical Decision

Method, which has participants walk through specific notable experiences while

the interviewer records and asks probing follow-up question about items of inter-

est to the research (see Section 5.2.1) [226]. Using this approach prior work has

driven improvements in automation design. Specifically, these methods have iden-

tified tasks within expert processes for automation [221, 226], and inferred mental

models used to support effective interaction design [333] in several domains, includ-

ing automobile safety controls [299,433], military decision support [10,18,226,274],
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and manufacturing [227, 300]. Building on its demonstrated success, we apply the

Critical Decision Method to guide our investigation.

5.1.2 Program Comprehension

Program comprehension research investigates how developers maintain, mod-

ify, and debug unfamiliar code—similar problems to RE. Researchers have found

that developers approach unfamiliar programs from a non-linear, fact-finding per-

spective [21,50,159,237,246,342,409]. They make hypotheses about program func-

tionality and focus on proving or disproving their hypotheses.

Programmers’ hypotheses are based on beacons recognized when scanning

through the program. Beacons are common schemas or patterns, which inform how

developers expect variables and program components to behave [21, 102, 228, 316].

To evaluate their hypotheses, developers either mentally simulate the program by

reading it line by line, execute it using targeted test cases, or search for other beacons

that contradict their hypotheses [21, 68, 102, 252, 342]. Von Mayrhauser and Lang

showed developers switch among these methods regularly, depending on the pro-

gram context or hypothesis [408]. Further, when reading code, developers focus on

data- and control-flow dependencies to and from their beacons of interest [228,238].

We anticipated that REs might exhibit similar behaviors, so we build on this

prior work by focusing on hypotheses, beacons, and simulation methods during

interviews (Section 5.2.1). However, we also hypothesized some process divergence,

as RE and “standard” program comprehension differ in several key respects. Reverse
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engineers generally operate on obfuscated code and raw binaries, which are harder

to read than source code. Further, REs often focus on identifying and exploiting

flaws in the program, instead of adding new functionality or fixing known errors.

5.2 Method

We are interested in developing a theoretical model of the RE process with

respect to both overall strategy and specific techniques used. In particular, we focus

on the three research questions given at the beginning of this chapter.

To answer these questions, we employ a semi-structured, observation-based

interview protocol, designed to yield detailed insights into RE experts’ processes.

The full protocol is given in Appendix A.3. Interviews lasted 70 minutes on average.

Audio and video were recorded during each interview. All interviews were led by

the first author, who has six years of professional RE experience, allowing him to

understand each RE’s terminology and process, ask appropriate probing questions,

and identify categories of similar actions for coding. Participants were provided a

$40 gift card in appreciation of their time. Our study was reviewed and approved by

the University of Maryland’s Institutional Review Board. In this section, we describe

our interview protocol and data analysis process, and we discuss limitations of our

method.
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5.2.1 Interview Protocol

We performed semi-structured, observational video-teleconference interviews.

We implemented a modified version of the Critical Decision Method, which is in-

tended to reveal expert knowledge by inquiring about specific cases of interest [226].

We asked participants to choose an interesting program they recently reverse en-

gineered, and had them recall and demonstrate the process they used. Each ob-

servation was divided into the two parts: program background and RE process.

Throughout, the interviewer noted and asked further questions about multiple items

of interest.

Program background. We began by asking participants to describe the program

they chose to reverse engineer. This included questions about the program’s func-

tionality and size, what tools (if any) they used, and whether they reverse engineered

the program with others.

Reverse engineering process. Next, we asked participants about their program-

specific RE goals, and then asked them to recreate their process while sharing their

screen (RQ1)2. We chose to have participants demonstrate their process, asking

them to open all tools they used and perform all original steps, so we could observe

automatic and subconscious behaviors—common in expert tasks [15]—that might

be missed if simply asked to recall their process. As the participant recreated their

2The only participant who did not share their screen did so because of technical difficulties that could
not be resolved in a timely manner.
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process, we asked several directed questions intended to probe their understanding

while allowing them to delve into areas they felt were important. We encouraged

participants to share their entire process, even if a particular speculative step did not

end up supporting their final goal. For example, they may have decided to reverse

a function that turned out to be a common library function already documented

elsewhere, resulting in no new information gain.

Instead of asking participants to demonstrate a recent experience, we could

have asked them to RE a program new to them. This could be more representative

of the real-world experience of approaching a new program and might highlight

additional subconscious or automatic behaviors. However, it would likely require a

much longer, probably unreasonable period of observation. When asked how much

time participants spent reverse engineering the programs demonstrated, answers

ranged from several hours to weeks. Alternatively, we could have asked participants

to RE a toy program. However, this approach restricts the results, both in depth

of process and in terms of the program type(s) selected. Demonstration provides

a reasonable compromise, and is a standard practice in NDM studies [226]. In

practice, we believe the effect of demonstration was small, especially because the

interviewer asked probing questions to reveal subconscious actions.

Items of interest. The second characteristic of the Critical Decision Method is

that the interviewer asks follow-on questions about items of interest to the research.

We selected our items of interest from those identified as important in prior NDM

(decision) and program comprehension (questions/hypotheses, beacons, simulation
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methods) literature—discussed in Sections 5.1.1 and 5.1.2, respectively. These items

were chosen to identify specific approaches used (RQ2) and differences between

RE and other program comprehension tasks (RQ3). Below, we provide a short

description of each and a summary of follow-on questions asked:

• Decisions. These are moments where the RE decides between one or more

actions. This can include deciding whether to delve deeper into a specific function

or which simulation method to apply to validate a new hypothesis. For decision

points, we asked participants to explain how they made the decision. For example,

when deciding to analyze a function, the RE might consider what data flows into

the function as arguments or what calls it.

• Questions/Hypotheses. These are questions that must be answered or

conjectures about what the program does. Reverse engineers might form a hy-

pothesis about the main purpose of a function, or whether a certain control flow is

possible. Prior work has shown that hypotheses are central part to program com-

prehension [21,68,237,342], so we expected hypothesis generation and testing to be

central to RE. For hypotheses, we asked participants to explain why they think the

hypothesis might be true and how they tested it. As an example, if a RE observes a

call to strcpy, they might hypothesize that a buffer overflow is possible. To validate

their hypothesis, they would check whether unbounded user input can reach this

call.

• Simulation methods. Any process where a participant reads or runs

the code to determine its function. We asked REs about any manual or automated

simulation methods used: for example, using a debugger to determine the program’s
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memory state at a specific point. We wanted to know whether they employed any

tools and if they were custom, open source, or purchased. Further, we asked them

to evaluate any tools used, and to discuss their effectiveness for this particular task.

Additionally, we asked participants why they used particular simulation methods,

whether they typically did so, the method’s inputs and outputs, and how they know

when to switch methods.

• Beacons. These include patterns or tells that a RE recognizes, allowing

them to quickly generate hypotheses about the program’s functionality without

reading line-by-line. For example, if a RE sees an API call to get a secure random

number with several bit-shift operations, they may assume the associated function

performs a cryptographic process. For beacons, we had REs explain why the beacon

stood out and how they recognized it as that sort of beacon rather than some other

pattern. The goal in inquiring into this phenomenon is to understand how REs

perform pattern matching, and identify potentially common beacons of importance.

Additionally, we noted whenever participants referenced documentation or in-

formation sources external to the code — e.g., StackOverflow, RE blogs, API doc-

umentation — to answer a program functionality question. We asked whether they

use that resource often, and why they selected that resource.

To make the interviews more fluid and less repetitive, we intentionally skipped

questions that had already been answered in response to prior questions. To ensure

consistency, all the interviews were conducted by the first author.

We conducted two pilot interviews prior to the main study. After the first

pilot, we made adjustments to ensure appropriate terminology was used and improve
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question flow. However, no changes were required after the second interview, so we

included the second pilot interview in our main study data.

5.2.2 Data Analysis

We applied iterative open coding to identify interview themes [379, pg. 101-

122]. After completing each interview, the audio was sent to an external transcrip-

tion service. Another researcher and I first collaboratively coded three interviews

— reviewing both the text and video — to create an initial codebook3. Then, we

independently coded 13 interviews, comparing codes after every three interviews to

determine inter-coder reliability. To measure inter-coder reliability, we used Krip-

pendorff’s Alpha (α), as it accounts for chance agreements [179].4 After each round,

we resolved any differences, updated the codebook as necessary, and re-coded previ-

ously coded interviews. We repeated this process four times until they achieved an

α of 0.8, which is above the recommended level for exploratory studies [179,253].

Next, we sought to develop our theoretical model by extracting themes from

the coded data. First, we grouped identified codes into related categories. Specifi-

cally, we discovered three categories associated with the phases of analyses performed

by REs (i.e., Overview, Sub-component Scanning, and Focused Experimentation).

Then, we performed an axial coding to determine relationships between and within

each phase and trends across the three phases [379, pg. 123-142]. From these

phases and their connections, we derive a theory of REs’ high-level processes and

3The final codebook can be found in Appendix B.4
4The ReCal2 software package was used to calculate Krippendorff’s Alpha [138]
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specific technical approaches. We also present a set of interaction-design guidelines

for building analysis tools to best fit REs.

5.2.3 Limitations

There are a number of limitations innate to our methodology. First, partici-

pants likely do not recall all task details they are asked to relay. This is especially

common for expert tasks [15]. We attempt to address this by using the CDM pro-

tocol, which has been used successfully in prior decision-making research on expert

tasks [226]. Furthermore, we asked participants to recreate the RE task while the

interviewer observed. This allowed the interviewer to probe subconscious actions

that would likely have been skipped without observation.

Participants also may have skipped portions of their process to protect trade

secrets; however, in practice we believe this did not impact our results. Multiple

participants stated they could not demonstrate certain confidential steps, but the

secret component was in the process’s operationalization (e.g., the keyword list used

or specific analysis heuristics). In all cases, participants still described their general

process, which we were able to include in our analysis.

Finally, we focus on experienced REs to understand and model expert pro-

cesses. Future work should consider newer REs to understand their struggles and

support their development.
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5.3 Recruitment and Participants

We recruited interview participants from online forums, vulnerability discovery

organizations, and relevant conferences.

Online forums. We posted recruitment notices on a number of RE forums, includ-

ing forums for popular RE tools such as IDAPro and BinaryNinja. We also posted

ads on online communities like Reddit. Dietrich et al. showed online chatrooms and

forums are useful for recruiting security professionals, since participants are reached

in a more natural setting where they are more likely to be receptive [103].

Related organizations. We contacted the leadership of ranked CTF teams5 and

bug bounty-as-a-service companies asking them to share study details with their

members. Our goal in partnering with these organizations was to gain credibility

with members and avoid our messages dismissed as spam. Prior work found relative

success with this strategy [413]. To lend further credibility, all emails were sent

from an address associated with our institution, and detailed study information was

hosted on a web domain owned by our institution.

Relevant conferences. Finally, we recruited at several conferences commonly at-

tended by REs. We explained study details and participant requirements in person

and distributed business cards with study information. Recruiting face-to-face al-

lowed us to clearly explain the goal of the research and its potential benefits to the

5Found via https://ctftime.org/
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RE community.

Participant screening. We asked respondents to our recruitment efforts to com-

plete a short screening questionnaire. Our questionnaire6 asked participants to

self-report their level of RE expertise on a five-point Likert-scale from novice to

expert; indicate their years of RE experience; and answer demographic questions.

As our goal is to produce interaction guidelines to fit REs’ processes, building on

less experienced REs’ approaches may not be beneficial. Therefore, we only selected

participants who rated themselves at least a three on the Likert scale and had at

least three years of RE experience.We contacted volunteers in groups of ten in ran-

dom order, waiting one week for their response before moving to the next group.

This process continued until we reached sufficient interview participation.

Participants. We conducted interviews between October 2018 and January 2019.

We received 68 screening survey responses; 42 met our expertise criteria. Of these

volunteers, 16 responded to randomly ordered scheduling requests and were in-

terviewed. We stopped further recruitment after 16 interviews, when we reached

saturation, meaning we no longer observed new themes emerging. This is the stan-

dard stopping criteria for a rigorous qualitative process [78, pg. 113-115]. Because

our participant count is within the range recommended by best practice literature

(12-20 participants), our results provide useful insights for later quantitative inquiry

and generalizable recommendations [158].

6The screening full questionnaire can be found in an extended form of this paper at https://ter.ps/

REStudy2020
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Table 5.1 shows the type of program each participant reverse engineered during

the interview and their demographics, including their self-reported skill level, years

of experience, and the method used to recruit them. Each participants’ ID indicates

their assigned ID number and the primary type of RE tasks they perform. For

example, P01M indicates the first interviewee is a malware analyst. Note that

three interviewees used a challenge binary7 during the interview. These participants

could not show us any examples from their normal work due to the proprietary or

confidential nature of their work. Instead, we asked them to discuss where their

normal process on a larger program differed from process they showed with the

challenge binary.

While we know of no good RE demographics surveys, our participant demo-

graphics are similar to bug-bounty hunters, who commonly perform RE tasks. Our

population is mostly male (94%), young (63% < 30) and well educated (75% with

a bachelor’s degree). HackerOne [163] and Bugcrowd report similar genders (91%

of Bugcrowd hunters), ages (84% < 35 and 77% < 30, respectively), and education

levels (68% and 63% with a bachelor’s, respectively) for bug-bounty hunters.

5.4 Results: An RE Process Model

Across all participants, we observed at a high-level (RQ1) their RE process

could be divided into three distinct phases: Overview, Sub-component scanning,

and Focused experimentation. Beginning with a general goal—e.g., identifying vul-

nerabilities or malicious behaviors—REs seek a broad overview of the program’s

7An exercise program designed to expose REs to interesting concepts in a simple setting
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ID1 Program Edu. Skill2 Exp. Recruitment

P01M Malware B.S. 4 7 Conference

P02V System HS 4 8 Conference

P03V Challenge M.S. 4 6 Conference

P04V Challenge B.S. 5 11 Conference

P05V Application M.S. 5 6 Forum

P06V Challenge HS 4 10 Forum

P07V System M.S. 5 10 Forum

P08V Firmware Assoc. 4 5 Forum

P09V Firmware B.S. 4 14 Forum

P10B Malware M.S. 5 15 Organization

P11M Malware Ph.D. 3 10 Forum

P12V System B.S. 3 8 Forum

P13V Application B.S. 5 21 Forum

P14M Malware M.S. 4 5 Forum

P15V Application HS 3 4 Forum

P16M Malware M.S. 3 3 Forum

1 M: Malware analysis, V: Vulnerability discovery, B:
Both
2 Scale from 0-5, with 0 indicating no skill and 5 indicat-
ing an expert

Table 5.1: Participant demographics.

functionality (overview). They use this to establish initial hypotheses and questions

which focus investigation on certain sub-components, in which they only review sub-

sets of information (sub-component scanning). Their focused review produces more

refined hypotheses and questions. Finally, they attempt to test these hypotheses

and answer specific questions through execution or in-depth static analysis (focused

experimentation). Their detailed analysis results are then fed back to the second

phase for further investigation, iteratively refining questions and hypotheses until

the overall goals are achieved. Each phase has its own set of questions, methods,

and beacons that make up the technical approaches taken by REs (RQ2). In this

section, we describe each phase in detail and highlight differences between RE and

traditional program comprehension tasks (RQ3). In the next section, we discuss

trends observed across these phases, including RE process components common to
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multiple phases, such as factors driving their decision-making. Figure 5.1 provides

an overview of each phase of analysis.

Note, in this section and the next, we give the number of REs who expressed

each idea. We include counts to indicate prevalence, but a participant not express-

ing an idea may only mean they failed to state it, not that they disagree with it.

Therefore, we do not perform comparisons between participants using statistical

hypothesis tests. It is uncertain whether our results generalize past our sample, but

they suggest future work and give novel insights into the human factors of RE.

Somewhat to our surprise, we generally observed the same process and meth-

ods used by REs performing both malware analysis and vulnerability discovery. In

a sense, malware analysts are also seeking an exploit: a unique execution or code

pattern that can be exploited as a signature or used to recover from an attack

(e.g., ransomware). We did observe differences between groups, but only in their

operationalization of the analysis process. For example, the two groups focused

on different APIs and functionality (e.g., vulnerability finders looked at memory

management functions and malware analysts focused on network calls). However,

because our focus is on the high-level process and methods used, we discuss both

groups together in the following sections.

5.4.1 Overview (RQ1)

Reverse engineers may have a short description of the program they are inves-

tigating (N=2), some familiarity with its user interface (N=2), or an intuition from
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Figure 5.1: Overview of REs’ three analysis phases. For each phase, the analyzed
program scope is shown at the top, simulation methods used are in rectangles, and
the analysis results are below the phase. Finally, the phase’s beacons are at the
bottom of the figure. Segments differing the most from the program comprehension
literature are colored orange.

prior experience about the functions the program likely performs (N=7). However,

they generally do not have prior knowledge about the program’s organization or im-

plementation (N=16). They might guess that the program performs cryptographic

functions because it is a secure messaging app, but they do not know the algorithm

or libraries used, or where in the code cryptographic protocols are implemented.

Therefore, they start by seeking a high-level program view (N=16). This guides

which parts of the program to prioritize for more complex investigation. P01M said

this allows him to “get more to the core of what is going on with this binary.” Re-

verse engineers approach this phase in several ways. The left section of Figure 5.1

summarizes the overview phase’s simulation methods, beacons, and outputs. We

discuss these items in more detail below.

Identify the strings and APIs used (RQ2). Most REs begin by listing the
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strings and API calls used by the program (N=15). These lists allow them to quickly

identify interesting components. P03V gave the example that “if this was a piece of

malware. . . and I knew that it was opening up a file or a registry entry, I would go to

imports and look for library calls that make sense. Like refile could be a good one.

Then I would find where that is called to find where malicious behavior starts.” In

some cases, REs begin with specific functionality they expect the program to perform

and search for related strings and APIs (N=7). As an example, P08V performed a

“grep over the entire program looking for httpd because a lot of times these programs

have a watchdog that includes a lot of additional configuration details.”

Run the program and observe its behavior (RQ2). Many REs execute the

program to see how it behaves under basic usage (N=7). When running the pro-

gram, some REs look at UI elements (e.g., error messages), then search for them in

the code, marking associated program components for further review (N=3). For

example, P13V began by “starting the software and looking for what is being done.”

He was shown a pop-up that said he had limited features with the free version. He

observed that there was “no place I can put a [access] code, so it must be making a

web services check” to determine license status. Next, he opened the program in a

disassembler and searched for the pop-up’s text “because you expect there to be a

check around where those strings are.”

Review program metadata (RQ2). Some REs looked at information beyond

the binary or execution trace, such as the file metadata (N=3), any additional
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resources loaded (N=3) (e.g., images or additional binaries), function size (N=2),

history of recent changes (N=1), where vulnerabilities were found previously (N=1),

and security mitigations used (N=1) (e.g., DEP or ASLR). This information gives

further insights into program functionality and can help REs know what not to look

for. P04V said “I’ve been burned in the past. You kind of end up down a long

rabbit hole that you have to step completely back from if you don’t realize these

things. . . For example, for PIE [Position Independent Executables] there has to be

some sort of program relative read or write or some sort of address disclosure that

allows me to defeat the randomization. So that’s one thing to look for early on.”

Malware analysts perform overview after unpacking (RQ2). Many malware

binaries are stored in obfuscated form and only deobfuscated at execution time to

complicate RE. This is commonly referred to as packing. Therefore, REs must first

unpack the binary before strings and imported APIs become intelligible (N=2).

However, once unpacking is performed and the binary is in a readable state, REs

perform the same overview analyses described above (N=2).

Overview is unique to RE (RQ3). In most other program comprehension tasks,

the area of code to focus on is known at the outset based on the error being de-

bugged [436] or the functionality being modified or updated [228, 339]. Addition-

ally, developers performing program comprehension tasks typically have access to

additional resources, such as documentation and the original developers, to provide

high-level understanding [343], making overview analyses unnecessary.
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5.4.2 Sub-component Scanning (RQ1)

Based on findings from their overview, REs next shift their attention to pro-

gram sub-components, searching for insights into the “how” of program functional-

ity. By focusing on sub-components, sub-component scanning allows REs to quickly

identify or rule out hypotheses and refine their view of the program. P08V explained

that he scanned the code instead of reading line-by-line, saying, “I’m going through

it at a high level, because it’s really easy to get caught in the weeds when there

could be something much better to look at.” The middle column of Figure 5.1 gives

an overview of this analysis phase.

Scan for many beacons (RQ2). Most commonly, REs scan through functions

or code segments prioritized in the overview (N=15), looking for a variety of bea-

cons indicating possible behaviors. These include APIs (N=15), strings (N=15),

constants (N=11), and variable names (N=11). For example, while investigating a

piece of malware, P02V saw GetProcAddress was called. This piqued his interest

because “it’s a very common function for obfuscation. . . it’s likely setting up an al-

ternate input table” to hide obviously malicious calls from an RE looking only at

the standard import table.

REs infer program behaviors both from individual instances (N=16) and spe-

cific sequences (N=12) of these items. For example, while reverse engineering the

code in Figure 5.2, P11M first scanned the strings on lines 44-46 and recognized

them as well-known websites, generally reachable by any device connected to the
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Figure 5.2: Screenshot of botnet code investigated by P11M, which performs a
network connectivity check. This provides an example of API calls and strings
recognized during sub-component scanning giving program functionality insights.

Internet. He then looked at the API calls and strings on lines 51-56 and said that

“it’s just trying to make a connection to each of those [websites].” By looking at the

constant checked on line 66, he inferred that “if it’s able to make a connection, it’s

going to return a non-zero value [at line 66].” Putting this all together and compar-

ing to past experience, P11M explained, “usually you see this activity if something

is trying to see if it has connectivity.”

REs also make inferences from less obvious information. Many review control-

flow structures (N=13) for common patterns. When studying a router’s firmware,
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P08V noticed an assembly code structure corresponding to a switch statement com-

paring a variable to several constants. From this, he assumed that it was a “com-

parison between the device’s product ID and a number of different product IDs.

And then it’s returning different numbers based off that. So it looks like it’s try-

ing to ascertain what product it is and then doing something with it,” because he

has “seen similar behavior before where firmware is written in generically.” Other

REs consider the assembly instructions chosen by the compiler (N=8) or function

prototypes (N=5) to determine the data types of variables. P02V explained, “It is

very important to understand. . . how compilers map code to the actual binary out-

put.” As an example, he pointed out instructions at the start of a function and said,

“that’s just part of saving the values. . . I can safely skip those.” Then he identified a

series of registers and observed “those are the function’s arguments. . . after checking

the codebase of FreeBSD, I know the second argument is actually a packed structure

of arguments passed from outside the kernel. This is [the data] we control in this

function context.” Finally, REs consider the code’s relation to the overall program

flow (N=6). For example, P08V identified a function as performing “tear down”

procedures—cleaning up the state of the program before terminating—because it

“happened after the main function.”

Focused on specific data-flow and control-flow paths (RQ2). Some REs also

scanned specific data- (N=8) and control-flow (N=7) paths, only considering instruc-

tions affecting these paths. These analyses were commonly used to understand how

a function’s input (N=7) or output (N=4) is used and whether a particular path
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Figure 5.3: Program investigated by P02V to determine whether he could trigger an
undefined memory read. The code has been converted to a pseudo-code representa-
tion including only relevant lines. It shows the control flow graph for two functions:
main and id alloc . Rectangles represent basic blocks, and arrows indicate possible
control flow paths.

is realizable (N=4). For example, while reviewing the program summarized in Fig-

ure 5.3, P02V asked whether a control-flow path exists through id alloc in which x

is not written. Memory for x is allocated before the id alloc call and read after, so

if such a path is possible, “we can have it read from undefined memory.” To answer

this question, P02V scanned each control flow path through the function from the

bottom of the graph up. If he saw a write to x, he moved on to the next path.

This check invalidated the first two control-flow paths (counting left-to-right) in

Figure 5.3. Additionally, in main, the program exits if the return value of id alloc
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is −1. Thus his next step was to check the data flow to id alloc ’ s return value

to see whether it was set to −1. He found the return value was set to −1 in both

remaining control-flow paths, indicating it was not possible to read from undefined

memory.

The diversity of beacons represents a second difference from program

comprehension (RQ3). While program comprehension research has identified

several similar beacons (API calls, strings, variable names, sequences of operations,

and constants [21, 102, 228, 316]), developers have been shown to struggle when

variable names and other semantic information are obfuscated [102]. However, REs

adapt to the resource-starved environment and draw on additional beacons (i.e.,

control flow structures, compiler artifacts, and program flow).

5.4.3 Focused Experimentation (RQ1)

Finally, when REs identify a specific question or hypothesis, they shift to

focused experimentation: setting up small experiments, varying program inputs and

environmental conditions, and considering the program’s behavior in these states to

find a concrete answer or prove whether specific hypotheses hold. This phase’s

results are fed back into sub-component scanning, to refine high-level hypotheses

and the RE’s interpretation of observed beacons. Again, REs rely on a wide range

of methods for this analysis.

Execute the program (RQ2). In most cases, REs validate their hypotheses by
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running the code under specific conditions to observe whether the expected behavior

occurs (N=13). They may try to determine what value a certain variable holds at

a particular point (e.g., input to a function of interest) under varying conditions

(N=13) or whether user input flows to an unsafe function (N=9). For example,

after reviewing the data-flow path of the program’s arguments, P03V hypothesized

that the program required two input files with a specific string in the first line to

allow execution to reach potentially vulnerable code. To test this hypothesis, she

ran the program in a debugger with the expected input and traced execution to see

the state of memory at the potentially vulnerable point.

While running the program, REs gather information in a variety of ways. Most

execute the code in a debugger (N=12) to probe memory and have full control over

execution. Some use other tools like packet capturers and file monitors to observe

specific behaviors (N=8). In some cases, REs manipulate the execution environment

by dynamically changing registry values (N=7) or patching the binary (N=5) to

guide the program down a specific path. As an example, while analyzing malware

that “checks for whether it is being run in a debugger,” P16M simply changes the

program “so that the check will always just return false [not run in debugger].”

Finally, some REs fuzz program inputs to identify mutation-specific behavior

changes. In most cases, fuzzing is performed manually (N=6), where the RE hand-

selects mutations. Automation is used in later stages, once a good understanding

of the program is established (N=1). P08V explained, “I wait until I have a good

feel for the inputs and know where to look, then I patch the program so that I can

quickly pump fuzzed inputs from angr [366] into the parts I care about.”
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Compare to another implementation (RQ2). Some REs chose to re-write code

segments in a high-level language based on the expected behavior (N=8) or searched

for public implementations (e.g., libraries) of algorithms they believed programs used

(N=5). They then compared the known implementation’s outputs with the subject

program’s outputs to see if they matched. For example, once P10B recognized

the encryption algorithm he was looking at was likely Blowfish, he downloaded an

open-source Blowfish implementation. He first compared the open-source code’s

structure to the encryption function he was reviewing. He then ran the reference

implementation and malware binary on a file of all zeros saying, “we can then verify

on this sample data whether it’s real Blowfish or if it’s been modified.”

Read line-by-line only for simple code or when execution is difficult

(RQ2). Finally, REs resorted to reading the code line-by-line and mentally tracking

the program state when other options became too costly (N=9). In some cases, this

occurred when they were trying to answer a question that only required reading a

few, simple lines of code. For example, P05V described a situation where he read

line-by-line because he wanted to fully understand a small number of specific checks,

saying, “After Google Project Zero identified some vulnerabilities in the system, the

developers tried to lock down that interface by adding these checks. Basically I

wanted to figure out a way to bypass these specific checks. At this point I ended up

reading line-by-line and really trying to understand the exact nature of the checks.”

While no participants quantified the number of lines or code complexity they were
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willing to read line-by-line, we did not observe any participants reading more than 50

lines of code. Further, this determination appeared goal- and participant-dependent,

with wide variation between participants and even within individual participants’

own processes, depending on the current experiment they were carrying out.

REs also chose to read line-by-line instead of running the program when run-

ning the program would require significant setup (e.g., when using an emulator to

investigate uncommon firmware like home routers). P09V explained, “The reason I

was so IDA [disassembler] heavy this time is because I can’t run this binary. It’s on

a cheap camera and it’s using a shared memory map. I mean, I could probably run

this binary, but it’s going to take a while to get [emulation] set up.”

During this line-by-line execution, a few REs said they used symbolic execution

to track inputs to a control flow conditional of interest (N=2). P03V explained, “I

write out the conditions to see what possible states there are. I have all these

variables with all these constraints through multiple functions, and I want to say for

function X, which is maybe 10 deep in the program, what are the possible ranges

for each of these variables?” In both cases, the REs said they generally performed

this process manually, but used a tool, such as Z3, when the conditions became too

complicated. As P03V put it, “It’s easier if you can just do it in your brain of course,

but sometimes you can’t. . . if there are 10 possibilities or 100 possibilities, I’ll stick

it in a SAT solver if I really care about trying to get past a barrier [conditional].”

Beacons are still noticed and can provide shortcuts (RQ2). While REs

focus on answering specific questions in this phase, some also notice beacons missed
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in prior analyses. If inferences based on these beacons invalidated prior beliefs, REs

quickly stop focused experimentation that becomes moot. For example, while P04V

was reverse engineering a card-game challenge binary, he decided to investigate a

reset function operating on an array he believed might be important. There were

no obvious beacons on initial inspection and there were only a few instructions, so

he decided to read line-by-line. However, he quickly recognized two constants that

allowed him to infer functionality. He saw that “it’s incrementing values from 0

to 51. So at this point, I’m thinking it’s a deck of cards. And then it has this

variable hold. Hold is a term for poker, and it sets 0 to 4.” Once he realized what

these variables were, he decided he had sufficient information to stop analyzing

the function, and he moved back to the calling function to resume sub-component

scanning.

Simulation methods mostly overlap with program comprehension (RQ3).

Most of the methods described above, including using a debugger and reading code

line-by-line, are found in the program comprehension literature. However, compar-

ing program execution to another implementation appears unique to REs. As in

sub-component scanning, this extra method is likely necessitated by the additional

complexity inherent in an adversarial environment.
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Figure 5.4: Overview of the analysis phases and trends observed across them. The
arrows shown between the phases indicates information flow. The brackets indicate
which phases the adjacent item is relevant to.

5.5 Results: Cross-phase Trends

In addition to the phases themselves, we observed several cross-phase trends

in our participants’ RE approaches, which we discuss in this section. This includes

both answers to our research questions which were not unique to a specific phase and

additional observations regarding tool usage which inform future tool development.

Figure 5.4 includes some of these trends as they interact with the phases.

Begin with static methods and finish with dynamic (RQ2). Most of the

simulation methods described in the first two analysis phases focused on static pro-

gram representations, i.e., the binary or decompiled code. In contrast, focused

experimentation was mainly performed dynamically, i.e., by running the program.

Reverse engineers typically make this switch, as P05V stated, “because this thing

is so complex, it’s hard to trace the program flow [statically], but you can certainly
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tell when you analyze an [execution] trace. You could say this was hit or this wasn’t

hit.” However, REs sometimes choose not to switch when they perceive the switch

to be difficult. P15V explained “[switching] was a little daunting to me. I just

wanted to work in this environment I’d already set up.”

Unfortunately, in most cases, switching contexts can be difficult because REs

have to manually transfer information back and forth between static and dynamic

tools (e.g., instructions or memory states) (N=14). To overcome this challenge, some

REs opened both tools side-by-side to make comparisons easier (N=4). For example,

P08V opened a debugger in a window next to a disassembler and proceeded to step

through the main function in the debugger while following along in the assembly

code. As he walked through the program, he regularly switched between the two.

For example, he would scan the possible control-flow paths in the disassembler to

decide which branch to force execution down and the necessary conditions would be

set through the debugger. Whenever he came across a specific question that could

not be answered just by scanning, he would switch to the debugger. Because he

stepped through the program as he scanned, he could quickly list register values

and relevant memory addresses to get concrete variable values.

Experience and strategy guide where to look in the first two phases

(RQ1). Initially, REs have to make decisions about which metadata to look at,

e.g., all strings and APIs or specific subsets, (N=4) and what inputs to provide

to exercise basic behaviors (N=2). Once they run their overview analyses, they

must determine which outputs (strings, APIs, or UI elements) are relevant to their
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investigation (N=16) and in what order to process them (N=11). Reverse engi-

neers first rely on prior experience to guide their actions (N=14). P04V explained

that when he looks for iPhone app vulnerabilities, he has “a prioritized list of areas

[APIs] I look at...it’s not a huge list of things that can go horribly wrong from a

security standpoint when you make an iPhone app...So, I just go through my list of

APIs and make sure they’re using them properly.” If REs are unable to relate their

current context to prior experience, then they fall back on basic strategies (N=16)

such as looking at the largest functions first. P03V said, “If I have no clue what

to start looking at...I literally go to the function list and say the larger function

is probably interesting...as long as I can distinguish the actual code versus library

code, this technique is actually pretty useful.” Similarly, REs employ heuristics to

decide which functions not to investigate. For example, P16M said, “If the function

is cross-referenced 100 times, then I will avoid it. It’s probably something like an

error check the compiler added in.”

In sub-component scanning, experience plays an even more important role. As

in the previous analysis phase, REs must decide which data- (N=8) and control-flow

paths (N=7) to consider. Again, this is done first by prior experience (N=6) and

then by simple strategies (N=4). As they perform their analyses, REs must also de-

termine potential hypotheses regarding program functionality (N=16) and possible

vulnerabilities (N=9) — exploitable flaws in the case of vulnerability discovery, or

signaturable behaviors for malware analysis. In most cases, these determinations are

made by recognizing similarities with previous experiences (N=15). For example,

when P08V saw a function named httpd ipc init , he recognized this might introduce
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a vulnerability, saying, “IPC generally stands for inter-process communication, and

many router firmwares like this set up multiple processes that communicate with

each other. If it’s doing IPC through message passing, then that opens up the at-

tack surface to anything that can send messages to this httpd binary.” If the RE is

unable to generate hypotheses based on prior experience, they instead make deter-

minations based on observed behaviors (N=16), obtained via more labor intensive

investigation of the program execution or in-depth code review.

Experience used to select analysis method throughout (RQ1). There were

typically multiple ways to answer a question. The most common example, as dis-

cussed in Section 5.4.3, was deciding between executing the program or reading

line-by-line during focused experimentation (N=9). Similar decisions occurred in

the other phases. For example, some REs choose to simply skip the overview phase

all together and start with the main function (N=5) whenever, as P03V said, “it’s

clear where the actual behavior starts that matters.”

REs also decide the granularity of analysis, weighing an approximation’s ben-

efits against the inaccuracy introduced (N=5). For example, several participants

discussed choosing to use a decompiler to make the code easier to read, knowing

that the decompilation process introduces inaccuracies in certain circumstances.

P04V said, “I actually spend most of my time in Hex-Rays [decompiler]. A few of

my friends generally argue that this is a mistake because Hex-Rays can be wrong,

and disassembly can’t be. And this is generally true, but Hex-Rays is only wrong

in specific ways.” Further, because these are explicit decisions, REs are also able
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to recognize situations where the inaccuracies are common and can switch analysis

granularities to verify results (N=5). For example, when using a decompiler, the

RE has some intuition regarding what code should look like. P04V explained, “I’ve

had many situations where I think this looks like an infinite loop, but it can’t be.

It’s because Hex-Rays is buggy. Basically, in programming, no one does anything

all that odd.”

Preferred tools presented output in relation to the code (RQ2). In almost

all cases, the tools REs choose to use provide a simple method to connect results

back to specific lines of code (N=16). They choose to list strings and API calls in

a disassembler (N=15), such as IDA, which shows references in the code with a few

clicks, as opposed to using the command-line strings command (N=0). Similarly,

those participants who discussed using advanced automated analyses, i.e., fuzzing

(N=1) and symbolic execution (N=1), reported using them through disassembler

plugins which overlaid analysis results on the code (e.g., code coverage highlight-

ing for fuzzing). P03V used Z3 for symbolic execution independently of the code,

supplying it with a list of possible states and manually interpreting its output with

respect to the program. However, she explained this decision was made because she

did not know a tool that presented results in the context of the code that could be

used with the binary she was reversing. She said, “The best tool for this is PA-

GAI. . . If you have source it can give you ranges of variables at certain parts in a

program, like on function loops and stuff.” Specifically, PAGAI lets REs annotate

source code to define variables of interest and then presents results in context of
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these annotations [182].

Focused on improving readability (RQ2). Throughout, REs pay special atten-

tion to improving code readability by modifying it to include semantic information

discovered during their investigation. In most cases, the main purpose of tools REs

used was to improve code readability (N=9). Many REs used decompilers to con-

vert the assembly code to a more readable high-level language (N=9), or tools like

IDA’s lumina server [184] to label well-known functions (N=2). Additionally, most

REs performed several manual steps specifically to improve readability, such as re-

naming variables (N=14), taking notes (N=14), and reconstructing data structures

(N=8). P01M explained the benefit of this approach when looking at a file reading

function by saying, “It just says call DWORD 40F880, and I have no idea what that

means. . . so, I’ll just rename this to read file. . . [now I know] it’s calling read file and

not some random function that I have no idea what it is.” Taking notes was also

useful when several manipulations were performed on a variable. For example, to

understand a series of complex variable manipulations, P05V said “I would type this

out. A lot of times I could just imagine this in my head. I think usually I can hold

in my head two operations...If it’s anything greater than that I’ll probably write it

down.”

Online resources queried to understand complex underlying systems (RQ2).

Regarding external resources, REs most often reference system and API documen-

tation (N=10). They reference this documentation to determine specific details
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about assembly opcodes or API arguments and functionality. They also reference

online articles (N=4) that provide in-depth breakdowns of complicated, but poorly

documented system functions (e.g., memory management, networking, etc.). When

those options fail, some REs also reference question-answering sites like StackOver-

flow (N=4) because “sometimes with esoteric opcodes or functions, you have to

hope that someone’s asked the question on StackOverflow because there’s not really

any good documentation” (P3). Many participants also google specific constants

or strings they assume are unique to an algorithm (N=7). P10 explained, “For ex-

ample, MD5 contains an initialization vector with a constant. You just google the

constant and that tells you the algorithm.”

5.6 Discussion

Our key finding is the identification and description of a three-phase RE pro-

cess model, along with cross-phase trends in REs’ behaviors. This both confirms

and expands on prior work, which described an RE model of increasingly refined

hypotheses [52]. We demonstrate a process of hypothesis generation and refinement

through each phase, but also show the types of questions asked, hypotheses gen-

erated, actions taken, and decisions made at each step as the RE expands their

program knowledge.

Our model highlights components of RE for tool designers to focus on and

provides a language for description and comparison of RE tools. Building on this

analysis model, we propose five guidelines for RE tool design. For each guideline,
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RE Tool Design Guidelines Example Application

G1

Match interaction with analysis phases
Reverse engineering tools should be designed to
facilitate each analysis phase: overview,
sub-component scanning, and focused
experimentation.

IDAPro [186], BinaryNinja [404],
Radare2 [328]
Provide platforms for REs to combine analyses,
but previously lacked thorough RE process
model to guide analysis development and
integration.

G2

Present input and output in the context of
code
Integrate analysis interaction into the
disassembler or decompiled code view to support
tool adoption

Lighthouse [143]
Highlights output in the context of code, but
does not support input in code context.

G3

Allow data transfer between static and
dynamic contexts
Static and dynamic analyses should be tightly
coupled so that users can switch between them
during exploration.

None we are aware of
We do not know of any complex analysis
examples. This is possibly due to challenges with
visualization and incremental analysis.

G4

Allow selection of analysis methods
When multiple options for analysis methods or
levels of approximation are available, ask the
user to decide which to use.

Hex-rays decompiler [185]
Minimally applies G4 by giving users a binary
option of a potentially imprecise decompiled
view or a raw disassembly view.

G5

Support readability improvements
Infer semantic information from the code where
possible and allow users to change variable
names, add notes, and correct decompilation to
improve readability.

DREAM++ decompiler [432]
Provides significantly improved decompiled code
readability through several heuristics, but is
limited to a preconfigured set of readability
transformations.

Table 5.2: Summary of guidelines for RE tool interaction design.

we discuss the tools closest to meeting the guideline (if any), how well it meets the

guideline, and challenges in adopting the guideline in future tool development. Ta-

ble 5.2 provides a summary, example application, and challenges for each guideline.

While these guidelines are drawn directly from our findings, further work is needed

to validate their effectiveness.

G1. Match interaction with analysis phases. The most obvious conclusion is

that RE tools should be designed to mesh with the three analysis phases identified

in Section 5.4. This means REs should first be provided with a program overview for

familiarization and to provide feedback on where to focus effort (overview). As they

explore sub-components, specific slices of the program (beacons and data/control-
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flow paths) should be highlighted (sub-component scanning). Finally, concrete,

detailed analysis information should be produced on demand, allowing REs to refine

their program understanding (focused experimentation).

While this guideline is straightforward, it is also significant, as it establishes

an overarching view of the RE process for tool developers. Because current RE tool

development is ad-hoc, tools generally perform a single part of the process and leave

the RE to stitch together the results of several tools. G1 provides valuable insights

to single-purpose tool developers by identifying how they should expect their tools to

be used and the input and output formats they should support. Additionally, with

the growing effort to produce human-assisted vulnerability discovery systems [137],

G1 shows when and how human experts should be queried to support automation.

The closest current tools to fulfilling G1 are popular reverse engineering plat-

forms such as IDAPro [186], BinaryNinja [404], and Radare [328], which provide

disassembly and debugger functionality and support user-developed analysis scripts.

These tools allow REs to combine different analyses (N=16). However, due to these

tools’ open-ended nature and the lack of a prior RE process model, there are no

clear guidelines for script developers, and users often have to perform significant

work to find the right tool for their needs and incorporate it into their process.

G2. Present input and output in the context of code. We found that

most REs only used tools whose interactions were tightly coupled with the code.

This suggests that tool developers should place a high priority on allowing users to

interact directly with (disassembled or decompiled) code. The best example of this
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we observed was given by P05V in the code-coverage visualization plugin Lighthouse,

which takes execution traces and highlights covered basic blocks in a disassembler

view [143]. It also provides a “Boolean query where you can say only show me

covered blocks that were covered by this trace and not that trace, or only show

blocks covered in a function whose name matches a regular expression.” However,

Lighthouse does not fully follow our recommendation, as there is no way to provide

input in the context of the code. For example, the user might want to determine all

the inputs reaching an instruction to compare their contents. However, this is not

currently possible in the tool.

G3. Allow data transfer between static and dynamic contexts. We found

that almost all participants switched between static and dynamic program repre-

sentations at least once (N=14). This demonstrates tools’ need to consider both

static and dynamic information, associate relevant components between static and

dynamic contexts, and allow REs to seamlessly switch between contexts. For ex-

ample, P04V suggested a dynamic taint analysis tool that allows the user to select

sinks in the disassembler view, run the program and track tainted instructions, then

highlight tainted instructions again in the disassembler view. This tool follows our

suggested guideline, as it provides results from a specific execution trace, but also

allows the user to contextualize the results in a static setting.

We did observe one participant using a tool which displayed the current in-

struction in the disassembly view when stepping through the code in a debugger, and

there have been several analyses developed which incorporate static and dynamic
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data [109, 170, 378, 417, 429, 440]. However, we are unaware of any more complex

analyses that support user interaction with both static and dynamic states. Follow-

ing G3 requires overcoming two difficult challenges. First, the analysis author must

determine how to best represent dynamic information in a static setting and vice

versa. This requires careful design of the visualization to ensure the user is provided

relevant information in an interpretable manner. Second, we speculate that incre-

mental program analyses (such as those of Szabo et al. [387]) may be necessary in

this setting to achieve acceptable performance compared to current batch-oriented

tools.

G4. Allow selection of analysis methods. Throughout the RE process, REs

choose which methods to use based on prior experiences and specific needs, weighing

the method’s benefit against any accuracy loss (N=5). These tradeoff decisions are

inherent in most analyses. Therefore, we recommend tool designers leverage REs’

ability to consider costs and also recognize instances where the analysis fails. This

can be done by allowing REs to select the specific methods used and tune analyses

to fit their needs. One example we observed was the HexRays decompiler [185],

which allows users to toggle between a potentially imprecise, but easier to read,

decompiled program view and the more complex disassembled view. This binary

choice, though, is the minimum implementation of G4, especially when considering

more complex analyses where the analysis developer must make several nuanced

choices involving analyses such as context, heap, and field sensitivity [371]. This

challenge becomes even more difficult if the user is allowed to mix analysis precision
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throughout the program, as static analysis tools generally use uniform analysis sen-

sitivity. However, recent progress indicates that such hybrid analyses are beginning

to receive attention [146,216].

G5. Support readability improvements. We found most REs valued program

readability improvements. Therefore, RE tool designers should allow the user to add

notes or change naming to encode semantic information into any outputs. Further,

because annotation is such a common behavior (N=14), tools should learn from

these annotations and propagate them to other similar outputs. The best example

of a tool seeking to follow this recommendation is the DREAM++ compiler by

Yakdan et al. [432]. DREAM++ uses a set of heuristics derived from feedback from

REs to provide semantically meaningful names to decompiled variables, resulting

in significant readability improvements. One improvement to this approach might

be to expand beyond DREAM++’s preconfigured set of readability transformations

by observing and learning from developer input through renaming and annotations.

This semantic learning problem poses a significant challenge for the implementation

of G5, as it likely requires the analysis to consider minor nuances of the program

context.

RE tool designers should consider the exploratory visual analysis (EVA)

literature. In addition to the guidelines drawn directly from our results, we be-

lieve RE tool designers can draw inspiration from EVA. EVA considers situations

where analysts search large datasets visually to summarize their main characteris-
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tics. Based on a review of the EVA literature, Battle and Heer define a process sim-

ilar to the one we observed REs to perform, beginning with a high-level overview,

generating hypotheses, and then iteratively refining these hypotheses through a

mix of scanning and detailed analysis [37]. Further, Shneiderman divided EVA

into three phases, similar to those we suggest, with his Visual Information Seeking

Mantra: “Overview first, zoom and filter, then details-on-demand” [362]. While

techniques from this field likely cannot be applied as-is due to differences in the

underlying data’s nature, these similarities suggest insights from EVA could be

leveraged to guide similar development in RE tools, including methods for data ex-

ploration [181, 213, 317, 369], interaction [180, 207, 323, 434], and predicting future

analysis questions [36,104,154,403].
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Chapter 6: The State of Online Hacking Exercise Pedagogy

Moving from supporting security experts to helping non-experts build the ex-

perience needed to find vulnerabilities, in this chapter, I investigate the current state

of online hacking exercises — the method of learning almost all security experts re-

ported using in Chapter 4. Historically, the security community has used online

hacking exercises to provide practical education, exposing participants to a variety

of vulnerabilities and security concepts. In these exercises, participants demonstrate

their understanding of security concepts by finding, exploiting, and fixing vulner-

abilities in programs. They offer — in contrast to more traditional project-based

learning — discrete practice sets that can be undertaken in a modular fashion, simi-

larly to the exercises commonly included at the end of each chapter in mathematics

textbooks. In fact, hacking exercises are commonly considered a very useful educa-

tional tool, with security experts often reporting that they rely on these exercises for

their education [413], bug bounty platforms directing those interested in security to

start with these exercises [162,195], and a significant amount of recent security edu-

cation work focused on creating new hacking exercises [27,44,107,110,275,306,416].

Further, prior work has provided some evidence that hacking exercises can provide

valuable immediate feedback to learners in academic settings [59,136,306,327,346].
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However, this evidence is limited for several reasons. First, these studies only

consider a few exercises [27,44,83,107,110,275,276,306,346,416], producing sparse

results and providing limited understanding of the broad set of popular exercises

students participate in. Next, this work only focuses on a few measures of learning

and engagement [107, 275, 306, 327, 395, 416], making the evidence narrow. They

do not consider significant learning factors which are difficult to control for and

measure. Therefore, exercise organizers have little guidance for building effective

exercises, educators can not know which exercises provide the most effective learning,

and researchers do not have a broad view of the landscape of current exercises.

In this chapter, my colleagues and I review online hacking exercises to provide

perspective on the current landscape of these educational interventions. Specifically,

we set out to answer two main research questions:

• RQ1: Do current exercises apply pedagogical principles suggested by the

learning sciences literature? If so, how are these principles implemented?

• RQ2: What challenges do exercise organizers face in applying these principles?

To answer these questions we reviewed 30 popular online hacking exercises

(68% of all online exercises we identified), completing a sample of 306 unique chal-

lenges across all reviewed exercises. For each exercise, we considered whether peda-

gogical principles recommended by the learning theory literature [13,47] were imple-

mented. Additionally, we interviewed 14 exercise organizes to verify our results and

understand their reasoning for implementing (or not implementing) each principle.
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6.1 Methods

To understand the current landscape of online hacking exercises, we performed

a two-phase study: a qualitative review of popular online exercises and interviews

with the organizers of these exercises. In this section, we discuss how we identified

and selected exercises for review, our review process, and interview protocol.

6.1.1 Exercise Selection

There are many kinds of resources available to security students, such as vul-

nerability write-ups, certifications, academic coursework, and books. To limit the

scope of our inquiry, we chose to focus on popular online educational exercises,

based on prior work suggesting this type of intervention as preferred among secu-

rity experts [413]. Specifically, we only consider exercises which meet the following

criteria:

• Educational - Because we are evaluating the educational benefit of each

exercise, we only include exercises which explicitly state education as a goal.

Therefore, we do not consider competitions, such as the DefCon Qualifiers,

whose goal is to identify the “best” hackers.

• Hands-on - The exercise included a hands-on component requiring students to

actively practice security concepts. This component could be the central focus

of the exercise—as was the case in many CTFs—or an auxiliary component,

e.g., presented after a series of associated lectures.

151



• Online and publicly accessible - From a practical standpoint, we chose to

focus on online exercises so that we could perform a full and fair analysis of all

exercises by actually participating in them. This prevents us from having to

make possibly incorrect assumptions based on an offline exercise’s description.

• Popular - Our goal is to understand the hacking exercises students are most

likely to participate in. Therefore, we chose to specifically focus on the most

popular sites. To estimate a site’s popularity, we used it’s Tranco rank—

a secure method for ranking sites based on user visits [241]. We chose to

use Tranco over Alexa or other site ranking services because it provides better

stability and security guarantees. We used the version of the list from October

15th, 2019. Because Tranco only tracks the top one million sites, we used

Alexa rankings whenever no Tranco ranking was available. Each site’s rank

is given in Table 7.5. Note, this is only an approximation of popularity as

the ranking indicates the domain’s popularity, not the specific sub-domain of

the exercise, causing exercises associated with popular websites to be ranked

higher (e.g., gCTF whose URL capturetheflag.withgoogle.com). However, this

was not a common problem in our data, so we believe this popularity ranking

is a reasonable approximation.

6.1.1.1 Exercise Identification

We began our search for currently available exercises meeting our criteria by

contacting eight security education experts recruited through one author’s personal
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and professional relationships. We asked each to recommend specific exercises, pub-

licly available lists of exercises, and possible search keywords. Based on their rec-

ommendations, we used the Google search engine with all possible combinations of

the terms “cybersecurity,” “computer security,” and “security” with “capture the

flag,” “CTF,” and “war games.” We also included the search term “hacking exer-

cises.” For each query term, we reviewed the first 10 result pages for candidates.

Our experts also suggested several lists of exercises curated to help newer hackers

find exercises to get started [97, 236, 348, 364, 426], which we reviewed for exercises

meeting our criteria.

Additionally, for each exercise and recommendation list identified, we also

included the top three similar sites identified by Alexa.com.1 We continued this

process until no new exercises were identified. Our candidate identification process

was completed in October 2019.

While almost all of the exercises we identified were set up to be joinable year

round, we observed that many were initially designed to be played as a live, short-

term competition (over the course of a day or week). Because this difference in design

is likely to impact the exercise’s structure, for comparison purposes, we divided

exercises into two categories based on the original participation context for which

they were originally designed:

• Synchronous (N=12) - These exercises were originally designed for students to

participate at the same time over a short time period (i.e., a few days or weeks).

This includes most capture-the-flag (CTF) competitions. Challenges in these

1https://www.alexa.com/siteinfo
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exercises are made available after the competition for additional students to

try at their own pace.

• Asynchronous (N=18) - These exercises are designed to be joined at any time

and worked through at the student’s pace. These are often referred to as

“wargames” in the computer security community.

6.1.1.2 Sample Selection

Our identification process revealed 45 exercises meeting our criteria. Due to

the significant time required to complete each review (2.5 hrs on average), we chose to

sample 60% of exercises for in-depth review—approximately 60 total person hours.

Because our goal was to focus on exercises reaching the most participants, we first

selected all of the top 30% of exercises (by popularity rank) in each group (i.e.,

6 Synchronous, 8 Asynchronous). We then randomly sampled from the remaining

exercises until we selected 60% of the total number of exercises for each group (i.e.,

an additional 6 Synchronous, 10 Asynchronous). We chose to include these less

visited exercises to account for newer exercises that are still growing in popularity.

The final list of selected exercises is given in Table 7.5. Note, my colleagues and

I organize one of the randomly selected exercises (Build It, Break It, Fix It [69]).

However, due to its unique organizational structure, we could not find a reasonably

analogous exercise and chose to retain it to ensure our review covered the breadth

of available exercises.
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6.1.2 Pedagogical Review (RQ1)

To determine the set of pedagogical principles for review, we drew on previous

efforts to synthesize major theoretical and empirical learning sciences and education

research findings into actionable principles [47]. This led us to five core pedagogical

principles: connecting to learners’ prior knowledge [320, 321], organizing declara-

tive knowledge [47], active practice and feedback [13,119], encouraging metacognitive

learning [131,178], and establishing a supportive and collaborative learning environ-

ment [13]. To identify actionable dimensions of each core principle, we started with

the 24 dimensions used by Kim and Ko [220] in their similar review of online cod-

ing exercises. Two of the authors then updated these dimensions to be specific to

hacking exercises through collaborative open coding of five exercises. This process

resulted in 36 total pedagogical dimensions, across the 5 core principles. We discuss

each dimension in further detail in Section 6.2.

For each selected exercise, we performed a qualitative coding where another

researcher and I evaluated each exercise independently according to the pedagogi-

cal dimensions. For reporting simplicity, we used three options, yes ( ), no (#),

and partial (G#), for each dimension — unless otherwise indicated — , as shown in

Table 7.5. Using an open coding approach, the definition for these levels of each

dimension was determined based on the analyzed exercises. That is, the details

differentiating a partial from a complete implementation emerged from our exer-

cise review. In most cases, a “yes” indicates the dimension was implemented in a

significant majority of challenges. Conversely, a “partial” indicates this dimension
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is only implemented in a small number of challenges and “no” means all reviewed

challenges covered independent concepts. We give specific examples of dimension

implementation levels throughout Section 6.2 when they differ from this general

definition.

The other researcher and I completed at least one logical unit of the exercise

(e.g., all questions in a category or a single specified path through the exercise), or

five challenges if no logical relationship was present, to gain a full understanding of

the exercise. We completed ten challenges on average per exercise (306 total).

After establishing our initial codebook, the other researcher and I indepen-

dently reviewed 20 exercises, comparing dimension codes after every five exercises

for inter-coder reliability. Note, in cases where the dimension could be assessed

without any judgment decisions, inter-coder reliability was not calculated, as it is

unnecessary [262]. For example, when evaluating whether solutions were available,

exercises were given a “yes” if they offered direct links to solutions or we could find

a walkthrough on the first page of a google search for the challenge and exercise

name. To measure inter-coder reliability, we used Krippendorff’s Alpha (α), which

accounts for chance agreements [179]. After each round, the other researcher and

I resolved coding differences, modified the codebook when necessary, and re-coded

previously reviewed exercises. This process was repeated until an α of at least 0.8

— the recommended threshold for result reliability [179] — was achieved. The re-

maining exercises were divided evenly between the two researchers and each coded

by a single researcher. The final α values for relevant dimensions are given in the

first row of Table 7.5.

156



6.1.3 Organizer Interviews (RQ2)

Because we reviewed a limited set of challenges in each exercise, we wanted

to confirm our analysis results by giving the organizers an opportunity to provide

clarifying information. Also, to answer our second research question, we needed

additional context from the organizers to understand their decision-making process.

As such, we reached out to the organizers of all 30 exercises. We provided each

organizer with a report describing our review and invited them to participate in a

45 minute structured interview or respond to our review via email. Each report gave

all pedagogical dimension definitions, our coding for their exercise, and the reasoning

behind our decisions. Note, in our report and throughout our interviews, we were

careful to ensure organizers understood our goal was to understand their decision-

making, not critique it. We made sure to adopt a constructive tone instead of

presenting findings in an accusatory manner. We let organizers know we invited and

expected disagreements with our evaluation, as there were likely exercise elements

or viewpoints we had not considered.

In our interviews, we walked organizers through the report and asked whether

they agreed with our assessment and if not, why. Based on organizer feedback, we

revisited our results and updated codings when necessary. Specifically, these updates

only occurred when the organizers pointed us to challenges or pages on the exercise

we may have missed. If on further review of these missed elements, we determined

a dimension was actually implemented we updated our results. For dimensions

not implemented, we asked organizers whether they considered the dimension when
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building their exercise and if so, why they did not implement it. Our full interview

protocol is given in Appendix A.4. Because this component of our study constituted

human-subjects research, it was reviewed and approved by our organization’s ethics

review board. All raw records including organizer personally identifiable information

were maintained securely, only accessible to authorized members of the research

team.

To identify themes in organizers’ decision-making we again performed open

coding, this time coding reasons dimensions were not implemented in the 14 or-

ganizer responses via email or interview. Responding organizers are indicated in

Table 7.5. To establish our codebook (detailed in Appendix B.5), two researchers

reviewed three interviews in collaboration. Then, those researchers independently

coded 12 interviews, comparing codes after every three interviews until a sufficient

level of inter-rater reliability (α) of 0.86 was reached [179]. The remaining interviews

were divided evenly between researchers and coded by a single researcher.

6.1.4 Limitations

This study has several limitations, some related to our sampling method and

some common to exploratory qualitative research. First, it is likely that we did not

identify all all exercises meeting our stated criteria through our review. Additionally,

because we only perform our review on a sample of exercises, we may have missed a

particularly good implementation of one of our educational interventions. However,

because of our thorough search process and by weighting our sample toward more
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popular exercises, our results are likely representative of most students’ experience.

In our pedagogical review, we adopt a conservative approach, checking whether

the dimension is implemented, but not whether it is implemented well. We did this

so we could broadly evaluate the types of pedagogy considered and establish an

initial understanding of the current landscape. However, this broad view does not

allow us to make statements about the efficacy of specific approaches taken. We

encourage future work to build on our established roadmap through more focused

review.

Further, there is likely self-selection bias related to which organizers agreed to

be interviewed. In general, organizers who are more engaged in supporting student

learning experiences may be more likely to respond to a request to discuss peda-

gogy. We also observed anecdotally that organizers whose exercises implemented

more of our pedagogical dimensions were more likely to agree be interviewed. While

this may reflect engagement in pedagogy, it may also indicate that — despite our

best attempts to ensure our feedback was positive and constructive — some or-

ganizers found our comments or interview request pejorative. In addition, social

desirability bias suggests that organizers may (consciously or unconsciously) tai-

lor their responses to appear in the best possible light. To partially mitigate this,

we only revised our dimension coding if organizers identified exercise elements we

missed in our initial review, but did not allow organizers to argue for pedagogical

dimension redefinition to better suit their exercise. Overall, our findings regarding

organizer decision-making should be interpreted within this context, and may reflect

a higher-than-average degree of interest in improving student learning. Nonetheless,
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we believe they provide novel insights into security education and directions for fu-

ture work.

Finally, throughout the next section, we give the number of exercises (N )

and organizers (O) that demonstrated or expressed, respectively, each concept, to

indicate prevalence. Note, if an organizer did not indicate a specific reason for not

implementing a given pedagogical dimension, this is not necessarily indicative of

disagreement; instead, they may have simply failed to mention it.

6.2 Results

Our review’s final results are given in Tables 6.1-6.4 and B.8. Each exercise was

assessed on all 30 pedagogical dimensions. Exercises are grouped into synchronous

and asynchronous, then sorted with the most popular exercises first. Overall, we

found that while some exercises implemented more pedagogical dimensions than oth-

ers, there were no exercises implementing all dimensions. Additionally, we observed

innovative approaches to education distributed among all exercises. In this section,

we organize our discussion around our five core principles, considering each evalu-

ated dimension in detail. For brevity, we only discuss the 23 dimensions included in

Tables ?? and ??, which included reasonable differentiation between exercises. The

remaining 7 dimensions can be found in Appendix B.6.
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6.2.1 Connecting to students’ prior knowledge

Previous research in learning science has shown that people develop new knowl-

edge based on their pre-existing knowledge and beliefs [84, 320, 321, 414, 415]. This

prior knowledge can be in the form of facts, perceptions, beliefs, values, and atti-

tudes [84,320]. Students interpret any new information they are presented through

the lens of their current view of the world and they bring a variety of prior experi-

ences into learning. Therefore, exercises should consider these to provide effective

education.

Students develop their understanding through the production of analogies and

connections to previously learned concepts—in the same domain or otherwise. The

prior knowledge a student brings to a new context can have a significant effect, fa-

cilitating learning if their knowledge is accurate and complete, or hindering learning

if they bring inaccurate or incomplete preconceptions. Therefore, careful considera-

tion of the students’ prior knowledge and deep connection to and activation of that

knowledge is important to successfully build new knowledge.

Additionally, supporting tailored education can have a positive effect on stu-

dent motivation. That is, if challenges are appropriately tailored to the student,

they will not feel out of their depth, instead growing their self-confidence in their

learning ability [359].

To evaluate how the reviewed exercises connected to students’ prior knowledge,

we considered two groups of dimensions: personalization and utilization.
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6.2.1.1 Personalization

Our first dimension considered the knowledge students bring into the exercise.

Each student has a unique background, so exercises should adjust the presentation

and difficulty of challenges to account for these differences, or target specific sub-

populations [325]. In our review, we considered three dimensions we believe are most

likely to affect student learning background: age, educational status, and security

experience.

Experience-based personalization was common. Most (N=22) exercises allow

some personalization based on experience. These exercises used a mix of difficulty

indicators, including difficulty labels (e.g., Easy, Medium, Hard) (N=10), the num-

ber of other students who have solved the challenge (N=14), and point values (i.e.,

more points indicate increased difficulty) (N=18). This lets participants attempt

problems appropriate to their experience level, avoiding burnout on a problem be-

yond their reach or boredom with too many challenges they can easily solve. This

student-guided personalization method has the added benefit of providing autonomy,

making the student feel more involved in their own learning process and therefore

more motivated to continue participation [359].

Difficulty levels and point assignments are not optimal. These assignments

are made based on the best judgment of the organizers and it can be hard for stu-

dents to determine what “Easy” or “10pts” means to the organizers. In our review,
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we observed multiple cases where more complicated challenges were rated easier or

assigned fewer points than less complex challenges in the same exercise. This sup-

ports prior findings, which have shown similar issues with difficulty labeling [83],

commonly due to inconsistencies between multiple challenge authors—a common

practice in security exercises (N=18). The Vulnhub organizer explained this prob-

lem, saying “What you find easy I will find difficult and vice versa. . . someone

new to the industry [might say], ‘This is the first time I’ve seen this, this is really

super hard.’ Then give it to a seasoned pen tester and he thinks ‘I saw that two

weeks ago.’ And he’s like, ‘Eh.”’ This is problematic because it not only hinders

students’ ability to personalize their learning, but also could lead students to lose

self-confidence. Several exercises appear to understand this problem and try to

mitigate it by allowing students to rate or comment on exercises (N=5). However,

in HackTheBox, challenges can only be rated after solving the challenge, missing

feedback from a likely important segment of students, i.e., those stuck on the chal-

lenge due to its difficulty. Additionally, two exercises, picoCTF and Root-me.org,

only allow students to indicate whether they liked the challenge, which might not

correlate with challenge difficulty.

Only two exercises activated prior knowledge. While most exercises implic-

itly leveraged prior knowledge, only two—Root-me.org and HackthisSite—activated

it by drawing the students attention to previously learned concepts they should re-

member when trying to solve the challenge. They both did this by including a list of

related pre-requisite knowledge (e.g., HackthisSite listed “some encryption knowl-
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edge” as a pre-requisite for a Caesar cipher decryption challenge). By pointing to

specific prior knowledge, the exercise helps the student not only build on their prior

knowledge, but select the appropriate knowledge to build on, therefore helping them

avoid potential misconceptions [292].

Some exercises required challenges to be solved in increasing complex-

ity order. When exercises did not personalize by experience (N=8), they always

had a single problem path for the student to follow (e.g., success in one challenge

required to unlock the next), or more complex problems were only unlocked when

the student solved enough low-level problems. This could get tedious when students

have to solve several of the same types of problems. For example, in picoCTF more

experienced students may be frustrated as they are required to solve several simple

problems—designed for new learners—before they can unlock more interesting chal-

lenges. When asked the reason for this design, the picoCTF organizers explained

it was “just for convenience, since the year-round version is not really any differ-

ent from the actual competition period.” This was a common sentiment among

organizers, with all but the XSS-Game organizers stating the lack of experience

personalization was related to the competitive element of the exercise. XSS-Game’s

organizers forced students to follow a specific path to prevent students from jumping

in too far and feeling overwhelmed.

Few exercises personalized based on age or education. Eight made explicit

mention of the age or education level targeted. The remaining exercises appeared
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to target university-level students or above. Pwnadventure’s organizer informed

us that the exercise was originally designed to be live in conjunction with the fi-

nals of a larger university-level CTF—CSAW CTF [234]. While targeting a more

educated audience is likely necessary for more complicated concepts, it should be

clearly stated—possibly with links to other resources—to help younger, less edu-

cated students who might otherwise be deterred from hacking exercises entirely.

Pwnadventure’s organizer agreed, saying “It wouldn’t be a bad idea to give people

that context and just say, ‘This is how it was designed. So if you find this too hard,

that’s expected. This was intended for this audience.”’

6.2.1.2 Utilization

For utilization, we checked whether the exercises required students to leverage

knowledge accumulated through prior challenges in solving later challenges, i.e.,

building on within-exercise prior knowledge.

Exercise designers build clear challenge concept progressions. Almost all

exercises (N=29) include some challenges whose concepts build one on top of the

others where appropriate. As an example, Microcorruption offers a progression

across several challenges to teach buffer overflow concepts in a binary exploitation

challenge. It begins with a program that requires the student to disassemble the

program and read a hardcoded password string. The next challenge, forces the

student to actually read the assembly code and understand the stack to reconstruct

the password from a set of characters. Then, the student must exploit a simple
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buffer overflow with no mitigations in place to force execution down a successful

path. The progression then continues by adding further mitigations to complicate

the exploitation process.

In the case where subsequent utilization of knowledge was not observed (In-

fosec Institute), all the challenges covered a disparate set of unrelated concepts.

This was likely becasue this exercise had among the least number of challenges, but

chose to cover a breadth of topics. We expect we would see additional challenges

building on this knowledge if the creators chose to include additional challenges.

6.2.2 Organizing Declarative Knowledge

Another key to effective learning comes in students’ ability to transform facts

into robust declarative knowledge [47]. To achieve mastery, students must go beyond

simply memorizing tricks to solve specific challenges, but also organize these discon-

nected facts based on their underlying abstract concepts into a structured knowledge

base [13, 321, 414, 415]. Prior work comparing experts and novices has found that

while experts do tend to know more facts, their biggest improvement comes from

rich structure of their information base [13]. This structure allows them to improve

recall, recognize patterns, make analogies with previously observed scenarios, and

identify key differences between contexts, supporting improved knowledge trans-

fer [13, 223]. For example, after solving a Caesar cipher challenge that requires

rotating the ciphertext to produce intelligible plaintext, and a cryptographic hash-

ing challenge requiring a dictionary attack, the student should identify the common
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cryptographic weakness related to limited key spaces. They can then apply this

abstract concept to solve a future challenge: decrypting text encrypted with RSA

where small prime numbers were used to generate the public/private key pair.

To support students’ construction of a deeper conceptual understanding, ex-

ercises should organize challenges according to the concepts taught to make these

knowledge structures clear [51, 79]. For this core principle, we considered how the

information itself was organized and the context in which it was presented. We also

considered the types of security concepts covered by each exercise, but found little

differentiation across exercises. For brevity, we leave reporting on these results to

Appendix B.6.

6.2.2.1 Organization

Students can organize knowledge into a variety of possible structures. When

asked to organize facts, experts often sort them into hierarchical structures, demon-

strating their deeper understanding of the complex interrelationship of informa-

tion [13]. Through the use of textual and visual cues, exercises can help students

make these organizational connections. In our review, we considered how concepts

were organized across challenges and whether exercises included any cues (e.g., tex-

tual, visual, or structural) to help students recognize and overarching structure.

Specifically, we looked at whether the exercises grouped challenges by concept, cre-

ating a hierarchy, or highlighted a related problem path, showing linear concept

progressions through challenges.
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Many exercises lacked clear structure. Providing explicit cues, such as us-

ing challenge names that indicate a hierarchical concept structure or suggesting a

progression through conceptually-related problems, can help students associate in-

dividual facts [13,79]. Unfortunately, a majority (N=17) of exercises did not clearly

organize problems so challenges with related concepts were grouped together. Sim-

ilarly, several exercises did not provide students with a path to follow through more

than two to three challenges as an organizing guide to the concepts (N=11).

Interestingly, almost every exercise that relied on crowd-submitted challenges

— useful for reducing organizer workload to produce a greater number of challenges

— (N=6) did not provide a clear structure. Vulnhub’s organizer explained “There

is metadata for about a quarter of the challenges on the backend that’s saying, this

one has file inclusion, this one has an apache vulnerability, whatever. I was going

to implement another feature that would take this metadata and help plot it out.

Then VMs went up and I have never implemented it. . . I’ve just not kept up to date

with it because I was going through everything manually and you can’t trust each

author’s opinion.” The authors of Root-me.org offer the counterexample to this

trend, deciding to present author-provided metadata, either without review or by

dedicating more organizer time to this task. This shifts some of the organizational

work to the challenge developers (e.g., identifying tasks), reducing the effort required

of organizers. Note, the author-provided categorizations are quite broad (e.g., buffer

overflow, format string, Javascript, etc.), indicating only general relationships across

large groups of challenges. Students still only get more fine-grained connections

between challenges on a per-author level (e.g., when authors use the same challenge
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name with incrementing indexes to show a progression).

6.2.2.2 Context

We also reviewed the context within which concepts were organized, which

can impact information retention and conceptualization [13, 47, 51]. We considered

four dimensions of context. First, we looked at whether authoritative content was

presented with the challenge (e.g., video or textual lecture). Next, we asked whether

the exercise used a goal-driven project approach, which can help students’ active

engagement in practice, as they see how individual challenges fit within a broader,

more realistic context [119]. We also considered whether any overarching story or

narrative was provided to connect learning, as people are more likely to remember

information when presented in narrative form [35]. Finally, we assessed whether

any challenge programs demonstrated realistic complexity, i.e., significant function-

ality representative of programs seen outside the educational setting. We note that

there is significant benefit in simplifying challenge complexity, as it removes the

need to perform repetitive tasks (e.g., port scanning), focuses student attention on

specific problems [384, 402], and provides less experienced students an entry point

into the exercise. However, having some realistic challenges helps students see con-

cept relevance, improving intrinsic motivation [359], and can support knowledge

transfer [223] and the development of practical skills [118].

Stories are the only commonly used method to provide context. Many

exercises included narrative elements throughout the exercise (N=11). The GirlsGo
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CyberStart organizer said they chose to embed each challenge within a narrative to

teach “Why is a hacker or bad guy using this action? As an educator, you’re trying

not to just state facts and have them absorb them or try a technique and just do

it. You want to give context.” While this was not used in a majority of exercises, it

was by far the most prevalent practice. Conversely, very few exercises used lectures

(N=6) and only one included challenges that built on each other to reach a broader

goal. Interviewed organizers who did not include these contextual elements (O=4)

said they “got in the way of creativity” (Angstrom) (O=2) or because “they’re

submitted by several different people” (O=2) (Crackmes.one).

Few exercises included realistic challenges. Few exercises included any chal-

lenges representative of real-world-scale programs (N=8). This practice potentially

prevents students from learning practical skills necessary for scaling analyses to

larger programs. Many organizers indicated they chose to avoid realistic challenges

because they believed focusing students on specific concepts was more important

(O=9) and developing challenges with this level of complexity is difficult (O=1).

Others chose not to include complexity—and therefore require the student to per-

form extraneous tasks—because they wanted to make sure their exercise was fun and

engaging (O=5). The gCTF organizers explained “you focus mostly on the problem

solving part that gives the players joy. . . The recon part is required in real world

pen testing. . . , but in some cases, it either will be mostly luck based if you are look-

ing in the right place at the right time, or developing the [necessary] infrastructure

will just take most of your weekend.” While realistic challenges were not common,
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HackEDU presented the most promising approach to incorporating real-world pro-

grams into their challenges: providing vulnerable programs reproduced from public

vulnerability reports on HackerOne, a popular bug bounty platform.

6.2.3 Practice and Feedback

Prior work shows students must perform a task to achieve domain mastery [118,

223, 345]. Through deliberate, active practice, students can translate abstract con-

cepts into practical knowledge. To support this practice, students must also re-

ceive tailored feedback to guide their learning to specific goals [13]. Without feed-

back, students may become stuck or misunderstand the challenge’s learning ob-

jective [13, 47, 79]. For this core principle, we considered two dimension groups:

actionability and feedback.

6.2.3.1 Actionability

For Actionability, we considered the types of tasks exercises ask students to

complete. Specifically, whether students had to exploit insecure programs (e.g., per-

form a buffer overflow or decrypt a weak ciphertext) or write secure programs—from

scratch or by patching vulnerable code. Note, for the latter, we did not consider

exercises that required students to write programs for exploitation purposes (e.g., to

brute-force a cryptographic challenge). We only considered an exercise as meeting

this dimension if the code students produced was evaluated for security vulnerabili-

ties. We found that all exercises required students to exploit programs, so we show
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these results in Appendix B.6 for brevity.

Secure development practice was uncommon. Very few exercises (N=4) in-

cluded any challenges asking students to write secure code and two of those (Hell-

bound Hackers and Pwnable) only included a few. Instead, students are left to

make the logical jump from identifying and exploiting to preventing a vulnerability

without educational support. For example, XSS-Game—explicitly targeted at train-

ing developers—has students identify XSS vulnerabilities, but does not include any

information regarding the impact of these types of vulnerabilities or how to avoid

them. In many cases, organizers simply felt that including secure development prac-

tice was difficult to evaluate (O=7). This included the XSS-Game organizers, who

said “the problem is that it’s really hard to test that [the vulnerability is] fixed

properly. . . You actually either have to have somebody manually test it, or a really

good checker that’s checking a ton of edge cases.” Other organizers chose not to

include secure development challenges because they wanted to limit the scope of

their exercise to focus students on exploitation (O=7).

The two notable exceptions were HackEDU [161] and BIBIFI [69], both using

different approaches. HackEDU used a similar structure to other exercises, asking

students to first identify and exploit the vulnerability in sample code. However, stu-

dents then patch the vulnerable program to make it secure. BIBIFI took a different

approach, asking participants to first write a medium-sized program, considering

tradeoffs between security and functionality. Other teams then search for vulnera-

bilities in the student’s code; when found, the original students are asked to patch
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the identified vulnerabilities.

6.2.3.2 Feedback

To analyze Feedback, we considered several forms feedback might take. The

first, and most helpful, was direct feedback, in which guidance is tailored to the

approach the student took to try and solve the challenge, directing them down

the “correct path.” We also considered whether the exercise included less tailored

feedback in the form of static hints or opportunities for students to seek out feedback

through forums or challenge walkthroughs.

Exercises rarely provided direct feedback throughout. Most exercises only

provided direct feedback in the form of a “flag check” (N=18): allowing a student

to verify they have identified the correct solution by submitting a random string

associated with challenge success. This string matching is problematic, as simple

typos or copy/pasting issues can lead students to misinterpret rejected submissions

as incorrect solutions. This problem is further exacerbated when some exercises

(N=4) do not use consistent flag formats, causing students to question whether the

string they found is actually a flag.

Some challenges provide “correct path” markers. In the exercises that

awarded partial credit (N=10), some challenge developers included checks in the

target program’s execution to update their output if the student’s exploit was fol-

lowing the correct path, even if the exploit was not yet fully successful. For example,
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in Root-me.org’s Format string bug basic 2 challenge, the program checks whether

the student modifies the target address at all, even if it is not changed to the correct

address. If the target address is modified, the program writes “You’re on the right

track”. However, this type of feedback was very sparse in each of these exercises,

with only one or two challenges providing it.

Many organizers said providing this type of tailored feedback was difficult be-

cause this feedback had to be specifically tailored for each challenge (O=5). The

GirlsGo CyberStart organizer pointed out that for some challenges where exploita-

tion occurs locally, they do not have a way to track student behavior, saying “How

would I know what [the student] is staring at?” Instead of providing automated

feedback, many organizers opted to provide tailored information in the exercise’s

forum based on student demand (O=5). Smash the Stack’s organizer explained

“They’ll either email us and say, ‘Hey, we’re stuck here’ and we’ll respond or they’ll

join IRC and ask their questions there. Usually, someone, an admin or just other

players will exchange hints.” We discuss this forum-based support in more detail in

our review of the Question support and Group discussion dimensions in this section

and Section 6.2.5.1, respectively. Finally, three organizers expressed that they had

not considered providing automated feedback, but agreed that it would be useful to

include in future challenges.

BIBIFI provides exploit examples. In BIBIFI’s break phase, other students

identify and exploit vulnerabilities in a team’s code, demonstrating mistakes made

when writing secure code. Because this likely produces multiple variations on the
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same exploit, students receive rich feedback on the mistakes made. Unfortunately for

students producing exploits, the interface does not provide any significant feedback

beyond success or failure. Also, because students only work on a single project,

there is no opportunity to practice and receive feedback in varied contexts.

Students can get help when stuck. All but three exercises either allow students

to ask the organizers questions when they are stuck or provide static hints to help

point students in the right direction (21 do some of both). For example, XSS-

Game allows students to reveal hints, which get progressively more informative.

In the early challenges in XSS-Game, the final hint provides the solution to help

inexperienced students get started. Several organizers prided themselves on the

support provided by the community and relied on these informal communications

to support struggling students (O=5). Unfortunately, if hints are not well crafted,

they can be misleading and cause the student to consider an incorrect path. For

example, in CTFlearn’s Prehashbrown challenge, the student is given the hint that

they need to “login as admin” and are shown a login screen. This might make the

student think you need to exploit the provided login form. However, the student

actually needs to register an account and exploit an SQL injection vulnerability in

a search screen that is provided once logged in. We did not observe any relation to

the admin account when solving this exercise.

Also, in every exercise except BIBIFI and Mr. Code, students can find tex-

tual or video instructions for how to solve some challenges. In several cases, the

exercise provided a few directly on their website (N=10). For example, in GirlsGo
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CyberStart and picoCTF, the organizers provide videos demonstrating how to solve

the first few challenges to get students started. We also found that walkthroughs

were produced organically by participants for most exercises (N=26), even if some

organizers already provided some walkthroughs themselves (N=7) or tried to dis-

courage their creation to prevent students from copying solutions (O=3). Note,

at the outset of our coding process, we planned to consider directly provided and

externally produced walkthroughs separately. However, we found that no exercise

directly provided solutions for all challenges. Therefore, we chose to mark exercises

with any directly provided walkthroughs as implementing the dimension and those

with only externally produced solutions as partially implementing.

6.2.4 Encouraging Metacognitive Learning

Metacognitive learning consists of two main components: students’ ability

to predict learning task outcomes, and their ability to gauge their own grasp of

concepts [51, 79]. Guiding students to reflect on which solutions worked and why

helps students develop a deeper conceptual understanding, supporting knowledge

transfer to new settings and challenges [131, 309, 354, 355]. It also helps students

identify gaps in their understanding and target further learning [131].

6.2.4.1 Transfer Learning

To determine whether exercises supported metacognitive learning, we asked

whether they taught how, when, and why students should use a particular exploit
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or mitigation technique. Answers to these questions are important to help students

apply knowledge learned from the challenge to real-world use.

Few exercises guided transfer beyond the challenge context. While the

exercises almost all taught how to use each concept through hands-on exercises

(N=29), very few explicitly explained when (N=6) or why (N=5) to use the security

concept in other settings. In these few cases, the organizers provided authoritative

materials (e.g., video lectures or additional reading) around each challenge instruct-

ing students on the specific setting details and how approaches should change with

new settings. For example, HackEDU and Pwn College provide lecture materials

describing progressively more challenging exploit techniques in the face of ever in-

creasing defensive mitigations. While this is a useful tool for learners — and the best

method observed across exercises — it falls short of best practice recommendations

for metacognition, which suggest active student engagement.

The partial cases were used if it was possible to implicitly determine when or

why a particular concept was needed by comparing similar challenges. However,

this is not an optimal solution, as students would likely need a sufficiently strong a

priori conceptual understanding to identify the nuanced differences.

Interestingly, this was this was the dimension group organizers most often

reported not considering (O=9). As an example, when we explained metacognition

to the picoCTF organizer, they said “I don’t know if I ever heard of metacognition

before. . . that could really guide us in developing problems that can guide our

learners even better.”
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6.2.4.2 Support

Once students understand their relative grasp on concepts and identify points

requiring more clarity, they will seek additional information to fill those gaps. Ex-

ercises can therefore support students by providing links to additional materials

beyond the exercise’s scope.

Most exercises provided resources for further investigation. A majority of

exercises did provide additional resources to some extent (N=17). These materials

often took the form of a “Useful links” page (N=15), though some only provided

resources for a subset of covered concepts (N=4). Also, while these lists of resources

are useful, it can be difficult for students to identify which resource to follow for

a specific question. Some exercises improve on this by providing resource links

with each challenge to indicate which are relevant to that problem (N=10). For

example, HackEDU included links to blog posts discussing related concepts in the

challenge description. Organizers who did not provide these resources generally

believed students were provided enough information in the problem descriptions

to find resources on their own (O=6). The XSS-Game organizers expressed this

sentiment, saying “Either from the description of the challenge or the source code,

the user should be able to figure out what to learn about.”
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6.2.5 Establishing an Environment Conducive to Learning

Finally, we considered the social environment in which the students partic-

ipated. Social climate (e.g., interactions with other students and educators) has

been shown to impact learning, i.e., a negative environment can hamper student

progress, while a positive environment can excite and engage students [13,313]. By

participating in a group setting, students are able to receive mentoring from more

senior students, brainstorm possible solutions with peers, and get support and en-

couragement when they get stuck [294]. Additionally, the exercise framing can have

a significant impact on whether students feel “good enough” to participate [313].

If the perceived barrier to entry is high, students may choose not to try. This is

especially true for commonly underrepresented populations [200,418,425].

We characterize the environment along two dimension groups: interactions be-

tween students (Peer Learning) and between the organizers and students (Inclusive

Setup).

6.2.5.1 Peer Learning

Peer learning intuitively lightens the student support burden on organizers, as

other students can act as a first-line support. More importantly, allowing students

to work together gives them the opportunity to collaboratively develop knowledge

(as opposed to being given it directly by the organizer), producing more robust un-

derstanding [294]. It also has been shown to improve intrinsic motivation—namely

social motivation—as students who feel they are part of the learning process and
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others depend on their participation are more likely to continue in the face of dif-

ficulties [13, 359]. To evaluate whether an exercise provided peer-based learning,

we considered whether it explicitly encouraged team formation through a provided

team-creation feature (i.e., not just allowing team creation out-of-band) and whether

there is an online forum created by the exercise organizers for students to discuss

possible challenge solutions.

Exercises help students find community through online forums. Most ex-

ercises provided IRC, Slack, or Discord channels or online forums, where students

could post questions and share their experiences with other competitors (N=17).

For example, picoCTF created a dedicated Q&A forum in Piazza [?] with sections

for each problem category. Students could post questions when stuck on a problem,

or view (and respond to) questions posed by other students. As we stated in our

discussion of the Feedback and Question Support dimensions, several exercise orga-

nizers said community participation is important for student success (N=7). The

HackTheBox organizers explained that they have “a vocal community that everyone

chats. . . in order to help each other to understand challenges and learn.” Similarly,

the Crackmes.one organizer said “for a newcomer to the platform, if they don’t

join the discord, they will not have all the information.” Even when organizers did

not provide a discussion forum, the students themselves organized one (these were

marked as “Partial” implementations, N=3). Because they are not directly linked

by the exercise, these partial cases were only identified through organizer interviews,

so our review is a lower bound on the number of exercises with a discussion forum.
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Almost all the exercises that did not have a forum were in the Syn-

chronous category. Their organizers explained they lacked a forum because of

their initial competitive design (O=5). For example, the Angstrom organizer ex-

plained that during the competition “Everybody’s competing against each other.”

Now that the competition is over, “people are now allowed to collaborate. We should

probably add a channel to support that, but we have not.” The only other organizer

we spoke to who does not provide a discussion forum (Mr. Code) explained, “peo-

ple join at different times and learn at different rates,” so it does not make sense to

include a forum.

Team participation was allowed in most exercises, but teams were rarely

explicitly supported. While broad forum discussion provides a helpful tool, the

typical competition setting disincentivizes the type of close collaboration between

students that provides in-depth learning. Therefore, allowing students to partici-

pate in teams can act as a middle ground. Unfortunately, few exercises provided

support to help students form teams beyond those fortunate enough to be members

of clubs or organizations prior to participation (N=9). picoCTF provided the best

example of team support, providing a “team recruitment” channel in their online fo-

rum to help students create virtual teams. picoCTF also included a built-in feature

for “classrooms” where students could register together in groups with a dedicated

scoreboard and resources to help teachers provide personalized feedback and support

to their class. Similarly to discussion forums, teams were not supported when stu-
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dents were expected to move at their own pace (O=2) or because organizers wanted

to target individual-level competition (O=4). As an example of the latter case, the

Smash the Stack organizer explained, “We bring people on board to help organize

that we see progress through the game rapidly,” making individual participation

necessary to determine potential new organizers.

6.2.5.2 Inclusive Setup

Finally, we consider each exercise’s framing with respect to the extraneous

load of each challenge and terminology used throughout the exercise. Extraneous

load refers to cognitive challenges required to complete tasks that are not directly

related to the concepts being taught [402]. Significant extraneous load could cause

students to become stuck and quit because of complicated problems unnecessary to

the learning goals of the challenge [359]. The terminology used by organizers can

affect less experienced students struggling with new concepts. Reassuring termi-

nology lets students know their struggles are expected and that the solution is not

beyond them [359]. Conversely, terminology which demeans newcomers reinforces

imposter-like feelings. A “Partial” mark for the Supportive Terminology dimension

indicates that we found the terminology used to be neutral, i.e., no supportive or

demeaning phrasing used.

Students’ extraneous load varied widely across exercises. In most exercises,

extraneous load was introduced, as students had to determine how to run and reverse

engineer a binary compiled for an operating system other than their host OS (e.g., by
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installing a virtual machine) (N=11). As another example of extraneous load, Cyber

Talents used varying flag formats, adding an unnecessary challenge to determine

how to correctly submit flags. Many exercises took steps to reduce this extraneous

load, such as providing browser-based tool support (e.g., wireshark, command line,

disassembler) (N=6) or an ssh server with required tools installed (N=4). Perhaps

the best examples were Microcorruption, which allowed students to perform all

required tasks in their browser with a browser-based disassembler and debugger,

and Pwn College, which included links to binaries pre-loaded in the BinaryNinja

cloud service [3] for advanced reverse engineering support.

Extraneous load is not always bad. While reducing extraneous load is helpful

to support learning—especially for less experienced students—we do not suggest

these extraneous tasks be avoided in every case. Typically, these additional tasks

reflect processes students need to understand and perform in a real-world setting.

In fact, most of the organizers who did include extraneous load stated that it was

to provide a realistic experience (O=6). Perhaps the most extraneous load is intro-

duced by BIBIFI. BIBIFI introduces a significant extraneous load on students as

it requires the development of a medium-sized program with several non-security

relevant features. This requires students to spend more time working on extraneous

tasks, but is intended to be more representative of a real-world programming sce-

nario. The BIBIFI organizer explained “this is just part of the process of building

a real system. So that’s a trade off. We decided to do it because it gives peo-

ple real experience.” Therefore, introducing extraneous load should be considered
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carefully and in the context of the student’s academic progression, in conjunction

with decisions discussed previously about connecting to student prior knowledge

and organizing knowledge to provide context (Sections 6.2.1.1 and 6.2.2.2).

Most exercises used supportive terminology, but a few marginalized be-

ginners. A plurality of exercises included language in their rules or FAQs offering

encouragement (N=17). For example, Vulnhub offered several strategies for deal-

ing with “stuck-ness” and Root-me.org suggested a learning path of concepts to

help new students work up to more complicated problems. This supportive termi-

nology, along with tailoring exercise difficulty to student experience (as discussed

in Section 6.2.1.1), can improve student confidence and exercise engagement [359].

Unfortunately, some exercises chose to use terminology that marginalizes newer stu-

dents who might struggle with basic concepts (N=5). This included HackthisSite

calling their first challenge the “idiot” challenge and saying “if you can’t solve it,

don’t go crying to anyone because they’ll just make fun of you” and Pwn College

referring to their easiest challenge level as the “baby” level. The Pwn College or-

ganizers explained they chose to use the baby notation as it is common in the CTF

culture. Their goal was to help give students a point of reference as they worked on

other CTFs. However, they agreed “someone might interpret it negatively and we

will consider this point.”
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6.3 Discussion and Recommendations

Through our review of online hacking exercises and interviews with their or-

ganizers, we found that no exercise implemented every pedagogical principle, but

there were several exemplary approaches taken by organizers across the exercise

landscape. Overall, our analysis found there were a few dimensions where exercises

showed room for improvement and others where there are clear tradeoffs between

principles.

Our findings regarding current exercise weaknesses can be summarized as fol-

lows:

• Organizers did not consider metacognition, and there were are limited number

of realistic challenges. This may cause problems for students when trying to

apply lessons learned to real situations.

• Exercises lacked clear structure to help students establish a robust, structured

knowledge base.

• Inherent technical challenges mean that few exercises provided secure devel-

opment practice or tailored feedback.

• Exercises frequently gave students the autonomy to choose a personalized path

based on experience, but rarely activated prior knowledge to explicitly leverage

student experience in the learning process.

We also noticed interesting tradeoffs between principles that should be con-

sidered carefully in the design of an exercise.
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There is a clear tension between providing realistic challenges and min-

imizing extraneous load. The more realistic a challenge becomes, the more

auxiliary tasks are required (e.g., setup, configuration). However, this is not a bi-

nary decision: There are a range of good options, which should be intentionally

and explicitly selected to fit learning objectives and students’ current experience

level. Ideally, exercises should move students from one end of the spectrum (i.e., toy

challenge with low extraneous load) to the other (i.e., realistic challenge with more

extraneous load) as the student develops expertise so they are prepared to leave the

exercise ready to perform similar tasks in the real world.

Community participation can have significant benefits, but can be diffi-

cult to manage. Many exercises rely on an active community to provide challenges,

help assess challenge difficulty, support less experienced students, and participate in

engaging discussion. However, this can create a moderation challenge for organizers

as they try to provide overarching structure and context for challenges, make sure

new students receive necessary feedback, and ensure a supportive culture in discus-

sions. Therefore, organizers should carefully structure community involvement to

gain the benefits of broad participation while maintaining educational benefits. Ad-

ditionally, from a research perspective, this dynamic indicates that it is not simply

enough to understand how exercises themselves run, but also how the community

operates. Future work should investigate the forums and online conversations that

have grown around exercises.
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Competition can get in the way of education. Competition offers a useful

motivational tool; however, it also limits avenues of support for less experienced

students through collaboration and discussion. We observed that in many cases,

the balance was weighted toward competition, simply as an artifact of the initial

exercise offering (e.g., in a synchronous setting). Organizers should be conscious

of this dynamic, especially after an exercise is no longer part of a live competi-

tion. Prior work has shown competitive environments in STEM education appear

to negatively effect student experience, especially those of underrepresented popu-

lations [33, 144, 247, 260, 359]. Instead, exercises should provide more support for

team-based learning and helping new students join the community.

6.3.1 Recommendations

With these findings in mind, we suggest recommendations for exercise orga-

nizers and directions for future work.

Support active student engagement in metacognition. Because many exer-

cises simply did not consider metacognition, the first step should be to apply best

practices from the learning sciences and education literature within the exercise to

prompt students to consider their learning state. For example, students could be

prompted to predict the outcome of an exploitation attempt prior to its execution

and subsequent success or failure. This foregrounds the student’s current mental

model of system they are attempting to exploit and the exploit itself’s function.
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This technique has proved effective in other domains at helping students recognize

their own incorrect mental models, allowing them to identify gaps in their own un-

derstanding and develop deeper conceptual knowledge [93]. Additionally, once the

challenge has been solved, the student could be asked to reflect on why their solu-

tion worked. Again, this actively engages the student to probe the depth of their

knowledge. This process is similar to after-action discussion commonly used in other

expert domains to help students consider how any lessons learned might apply to

variation in the situation going forward [122].

Use a graphical syllabus to provide concept structure. A graphical syllabus

is a visual representation (e.g., flow chart or diagram) of concepts covered in a

course and their relationships [289,290]. These visualizations in have been shown to

help students in other domains process and organize information presented in both

traditional and online courses. Exercises could adopt this visual presentation to give

students a high-level view of relationships between challenges as well as to provide

a guide through progressions of related challenges. Using a graphical syllabus is

also appealing because it fits the gaming motif common in CTFs: it aligns with

roadmaps commonly used to demonstrate player progression between levels.

Incentivize production of educational elements in community submis-

sions. Community-submitted challenges provide a valuable force multiplier, but

because of the number of distinct authors, their organization, and the hints and

other information provided to the student, can vary widely. This is expected, since
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adding these additional elements can be tedious relative to the more interesting

problem of developing the challenge. This is similar to the well-documented lack

of documentation in APIs and open-source software development [245, 312, 338].

One possible approach is to apply methods from the crowd-documentation litera-

ture (popularized by sites like StackOverflow [376]), including curation activities like

voting as well as incentives such as reputation scores [259]. Additionally, because

there is already a significant amount of community-generated content available in

the form of challenge walkthroughs and blog posts about computer security, future

work could also consider developing tools to support improved knowledge discovery

from these sources.
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α 1 1 .8 1 1 1 – – – 1 – 1 – .9 – .8 .8

Exercise Rank1

Synchronous

gCTF† [149] 1.4 # # G# G# G# G# # #  # # #   G# # #

Infosec
Institute [205]

14.1 # #  # # # # # # # # # #   # #

picoCTF†
[296]

149.8   #    # #  # # #    G# G#

CSAW365
[235]

*1228.1 # #    # # # # # # # #  G# # #

HackEDU
[161]

*2014.2 # #      # #  G# # G#     

Pwnadventure†
[4]

*2364.7 # # #  G#  # #  # # # # # G# # #

PACTF [308] *9156.0     # # # # # # # G#   G# # #

Angstrom†
[14]

*11708.9 #      # # # # # #   G# G# G#

HXP
CTF [201]

− # #   # # # # # # # #  G# G# # #

BIBIFI† [69] − #  #  # # #  # G#    # #   

Pwn
College† [365]

−        # # # # G# G# G#    

GirlsGo
CyberStart†
[206]

−     #   #  # # #      

1 Visit rank for the website, in thousands - Alexa if *, otherwise, using Tranco ranking which is less prone
to tampering [241].
† An organizer from this exercise was interviewed or responded via email to our review.

Table 6.1: Results of our pedagogical review of 12 synchronous exercises. Each
column indicates whether an exercise implemented the pedagogical dimension fully
( ), partially (G#), or not at all (#).
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Exercise Rank1

Synchronous

gCTF† [149] 1.4 # # # # #  

Infosec
Institute [205]

14.1   # # # #

picoCTF† [296] 149.8       

CSAW365 [235] *1228.1  #  # #  

HackEDU [161] *2014.2   # #   

Pwnadventure† [4] *2364.7 # # # #  G#

PACTF [308] *9156.0 # #     

Angstrom† [14] *11708.9 # #  #   

HXP CTF [201] − G# G#    G#

BIBIFI† [69] − # #  # # G#

Pwn College† [365] −  # # #  G#

GirlsGo
CyberStart† [206]

−   # G#   

1 Visit rank for the website, in thousands - Alexa if *, oth-
erwise, using Tranco ranking which is less prone to tamper-
ing [241].
† An organizer from this exercise was interviewed or responded
via email to our review.

Table 6.2: Results of our pedagogical review of 12 synchronous exercises. Each
column indicates whether an exercise implemented the pedagogical dimension fully
( ), partially (G#), or not at all (#).
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Asynchronous

HackTheBox†
[46]

97.3 # #   # # # # #  # G#  G# G# # #

HackthisSite
[167]

105.1 # #   #  # #  # # G#   G# # #

OverTheWire
[304]

151.3 # # G#  #  # # # # # #   G# # #

Root-
me.org† [266]

172.7 #     G# # # G# G# # G#  G#  G# G#

Vulnhub† [142] 175.8 # # G#  # G# # #  G# # G#  G#  G# #

Hacker101 [162] 330.4 # #  G# # # # # # # # #   G# # #

Hellbound
Hackers [165]

432.8 # #   #  # # #   G#   G# G# #

Smash the
Stack† [392]

966.1 # # #    # # # G# # #   G# G# G#

Microcorruption
[156]

*378.8 # # #    # #  # # # # G# G# G# #

Pwnable [375] *515.4 # # G#  # # G# # # # G# #    G# G#

Cyber
Talents [98]

*528.0 # #   # # # # # # # G# # # G# # #

XSS-
Game† [150]

*626.1 # G# #     #  # # G#   G# G# G#

Backdoor [357] *949.1 # #   # # # # # # # #   G# G# G#

Crackmes.one†
[350]

*1011.4 # #   # G# # # # G# # #  #    

CTFlearn [95] *1267.0 # #   # # # # # # # #  G#  # #

HackerTest
[166]

*1254.5 # # #    # #  # # #  # G# G# G#

Mr. Code† [217] *4570.2  #      #  # #  # # # # #

IO
Wargame [286]

*7168.8 # # #  #  # # # # # G#   G#  G#

1 Visit rank for the website, in thousands - Alexa if *, otherwise, using Tranco ranking which is less prone
to tampering [241].
† An organizer from this exercise was interviewed or responded via email to our review.

Table 6.3: Results of our pedagogical review of 18 asynchronous exercises. Each
column indicates whether an exercise implemented the pedagogical dimension fully
( ), partially (G#), or not at all (#).
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Asynchronous

HackTheBox† [46] 97.3 G# #   # G#

HackthisSite [167] 105.1 G# # #  # G#

OverTheWire [304] 151.3 G# G# #    

Root-me.org† [266] 172.7     #  

Vulnhub† [142] 175.8  # # G# #  

Hacker101 [162] 330.4  #   #  

Hellbound
Hackers [165]

432.8  G# #  # G#

Smash the
Stack† [392]

966.1   #   #

Microcorruption
[156]

*378.8 # # # #  G#

Pwnable [375] *515.4 # # #   #

Cyber Talents [98] *528.0 # # # # # G#

XSS-Game† [150] *626.1 # # # G#   

Backdoor [357] *949.1  G# # # #  

Crackmes.one†
[350]

*1011.4 # # #  #  

CTFlearn [95] *1267.0 # # #    

HackerTest [166] *1254.5 # # # #  G#

Mr. Code† [217] *4570.2  # # #   

IO Wargame [286] *7168.8 # # #    
1 Visit rank for the website, in thousands - Alexa if *, oth-
erwise, using Tranco ranking which is less prone to tamper-
ing [241].
† An organizer from this exercise was interviewed or responded
via email to our review.

Table 6.4: Results of our pedagogical review of 18 asynchronous exercises. Each
column indicates whether an exercise implemented the pedagogical dimension fully
( ), partially (G#), or not at all (#).
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Chapter 7: Building and Validating a Scale for Secure Software De-

velopment Self-Efficacy

In addition to many attempts to improve secure development education to

expose non-experts to a variety of vulnerabilities [70, 183, 211, 244, 347], it is also

necessary to develop a method to measure skills before and after the intervention to

test their effectiveness. Additionally, a metric for secure development skill is needed

for use as a covariate when evaluating new security tools [209,231,351,368,372,393,

419, 428], documentation [8], and APIs [7, 202, 427]. Without such a metric, the

experimenter cannot control for participant skill, which may confound results.

Previous studies have sought to measure secure development skills through

various methods [7,44,76,77,83,110,112,135,208,242,282–284,302,327,346,347,423].

In most cases, researchers have participants identify and exploit vulnerabilities in

sample programs or write small programs with security-critical functionality. For

example, while studying security API misuses, Oliveira et al. asked participants

to identify common mistakes in security “puzzles” (i.e., code snippets) [302]. In a

more intensive evaluation, Ruef et al. asked Build It, Break It, Fix It competitors to

write medium size programs with several security requirements during a week-long

“build” round [347]. Participants then evaluate each others’ submissions through
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vulnerability-demonstrating exploits in another week-long “break” round. These

assessments provide valuable insights into actual secure-development skill, but are

very cumbersome. Other work asked participants to rate their security skill on a

single Likert scale or counted the vulnerabilities reported in public code artifacts.

While these are both require less participant time, they are also noisy, as participants

can have difficulty assessing their abilities and there can be several confounding

factors impacting vulnerability counts.

To remedy this shortfall, I propose an alternative approach to measuring

secure-development skill: a validated scale. Human behavior researchers regularly

develop scales to “measure elusive phenomena that cannot be observed directly”

due to cost or complexity [32]. Specifically, I propose measuring developers’ secure-

development self-efficacy — belief in one’s ability to successfully perform a task —

which correlates with actual skill in other contexts [32]. This scale would measure

developers’ belief in their ability to complete secure-development tasks, such as iden-

tifying security problems during software design or employing secure programming

languages.

In this chapter 1, I present the work of my colleagues and I to develop and

evaluate such a scale: the Secure Software Development Self-Efficacy Scale (SSD-

SES). We followed Netemeyer et al.’s 4-step scale creation process [285]:

1. Construct Definition and Content Domain: Clearly identifying the tar-

geted construct’s scope (i.e., the underlying idea). We focus on tasks related

to secure code production.

1Published as [410]
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2. Generating and Judging Measurement Items: Defining an initial pool

of candidate scale questions (items) and ensuring they are relevant to the con-

struct and understandable by respondents. We generated items by reviewing

five popular secure-development frameworks. We judge questions based on

reviews from security experts and developers.

3. Developing and Refining the Scale: Using Exploratory Factor Analysis

(EFA) to identify an underlying factor structure (i.e., any sub-components

of the targeted construct and their associated questions). We also refine the

item set to its most efficient form (i.e., only including items with sufficient

variance among respondents), while maintaining reliability (i.e., whether the

scale consistently measures the construct).

4. Finalizing the Scale: We use Confirmatory Factor Analysis (CFA) to con-

firm the previously identified underlying factor structure holds, maintaining

reliability, with a new sample.

All our procedures were approved by the University of Maryland’s institu-

tional review board. We evaluated SSD-SES with 311 software developers and 22

security experts. SSD-SES consists of 15 items measuring two underlying factors:

vulnerability discovery and mitigation, and security communication.

7.1 Item Generation and Judgment

The first step in scale development is construct definition: scoping what the

scale will and won’t cover. As SSD-SES’s goal is to measure software developers’
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belief in their ability to perform secure development tasks, we focus only on tasks

related to the production of secure code. That is, we do not include tasks from

parts of the software development lifecycle such as deployment, maintenance, or

monitoring. We also restrict our tasks to those prescribed by widely accepted secure-

development frameworks or experienced security experts.

7.1.1 Initial Item Generation

The second step is generating a set of candidate items (questions). The goal

is to thoroughly survey the construct domain and build an extensive possible item

pool [285], to be narrowed in later steps. We chose initial items by analyzing four

popular secure-development frameworks: NIST’s National Initiative for Cybersecu-

rity Education (NICE) framework [287], the Building Security In Maturity Model

(BSIMM) [263], the Open Web Application Security Project (OWASP) Software

Assurance Maturity Model (OSAMM) [74], and Microsoft’s Security Development

Lifecycle (SDL) [273].

A colleague and I independently reviewed each framework, identified a set of

prescribed tasks, and selected tasks focused on secure code production. We then

met to combine lists. Because best practice recommends a conservative approach

to initial item generation (i.e., including any possibly related items) [285], if a task

was identified by either myself or the other researcher it was included in the initial

set. Finally, we merged tasks from different frameworks considered identical (e.g.,

phrased differently or using different terminology, but expressing the same idea),
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again conservatively.

This process produced 57 unique software-development-specific tasks men-

tioned in at least one framework. The full task set (with sources) can be found

in Appendix B.7, Tables B.10-B.12. These tasks can be divided into six cate-

gories: determining security requirements (A1-11), identifying attack vectors (A12-

14), identifying vulnerabilities (A15-22), implementing mitigations to prevent or

remedy vulnerabilities (A23-37), testing of security requirements (A38-42), and ef-

fectively communicating about security with peers, leadership, and security experts

(A43-57).

7.1.2 Content Review

To ensure the identified tasks cover the full range of the domain (content

validity) and that the task wording was understandable to software developers (face

validity), we surveyed 22 secure-software-development experts and 8 developers.

Expert review. We asked security experts to review our initial 57 tasks (Ta-

bles B.10-B.12) and rate them on a 4-point Likert-scale ranging from Definitely not

a secure development task to Definitely a secure development task. Respondents

also had an Unsure option if the wording was confusing or they could not clearly

delineate the task’s appropriateness. We also asked respondents whether the task

phrasing was unclear or confusing, and to explain any confusion in free text. We

concluded by asking experts to list any missing tasks. Our expert review survey

text is given in our supplementary material.
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We recruited security experts from a convenience sample of the authors’ profes-

sional contacts (N=7) and members of NIST’s Software and Supply Chain Assurance

Forum [297] (N=16). To ensure we received expert opinions, we only considered re-

spondents who self-reported 10 or more years of experience. After each response, we

added any suggested tasks for review by subsequent experts. We stopped recruit-

ing additional experts when no new tasks were suggested and task appropriateness

responses remained stable (e.g., no significant difference in results when adding the

last 10 responses), the suggested stopping criteria for free-listing exercises [422].

The 22 secure-development experts had 20 years of experience on average, and 81%

also held a graduate degree. Our expert population matched prior security expert

studies whose experts had at least 10 years experience [173, 174]. Li et al. used

participant titles as an alternate expertise indicator [248]. Our participants also

met this condition, reporting senior job titles such as Chief of Development, Cyber-

security Technical Fellow, and Product Security Lead.

We made several changes to our task list based on expert feedback. First,

ten tasks were considered inappropriate—Probably not or Definitely not a secure

development task—by 80% of experts. For several tasks, our experts believed it is

not the developers’ role to determine the balance security and performance costs, but

instead the job of customers or leadership (reworded A3 and A7; removed A10, A50,

A51, A52, A53). Similarly, our experts stated developers should not be expected to

research attacker techniques, but instead get this information from security experts

(reworded A5; removed A55). Finally, our experts indicated code signing is not part

of secure code production, but instead its deployment, which is out of scope for our
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construct definition (removed A11).

Additionally, we revised several tasks’ wording. Most significantly, we replaced

“program” with “system” to match the modular approach to design common in

industry (A1, A2, A4, A12, A13, A20, A29, A35, A45, A46). Other changes included

using more common developer terminology (A2), focusing on threats from malicious

actors (as opposed to natural disasters) (A6), making security explicit (A4), adding

clarifying examples (A15, A29), and rephrasing statements to improve readability

(A20, A21, A41, A42).

Finally, we added six tasks. Several experts recommended tasks for identifying

and using secure programming languages and libraries (B15, B16, B26, B27, B28;

shown in Tables 7.1-7.3). One expert also suggested adding a task for correctly

implementing authorization protocols (B34), as it represents a distinct access-control

component (compared to authentication).

Multiple experts suggested the Software Assurance Forum for Excellence in

Code (SAFECode) Fundamental Practices for Secure Software Development frame-

work [337] as an additional task source, so we repeated the framework review process

for SAFECode. While no task list or task categories changes were made, it provided

further support for tasks already included.

Developer pilot. Next, to ensure our target population could easily understand

each item, we piloted the post-expert-review tasks with eight developers. First, we

reframed each task as an “I can” statement regarding the developer’s confidence in

performing the task. We then asked them to indicate their confidence using a 5-point
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Likert-scale from “I am not confident at all” to “I am absolutely confident.” We

also provided a “Do not understand” option if the respondent did not understand

the task’s meaning. Our full survey text is given in our supplementary material’s

main survey section.

We recruited a convenience sample of the researchers’ professional contacts,

chosen to represent varying experience levels. Participants were asked to “think

aloud” as they responded to each question. We updated the questions after each

pilot, eventually reaching the final set given in Tables 7.1-7.3. Specifically, we made

the following changes: we reworded A48 to make it clear we were asking about writ-

ing understandable security-error messages, updated A8 to indicate we were asking

about code the developer has themself written as opposed to a library function,

and replaced the term “boundary cases” with “edge cases” in A38 to use the more

common terminology.

7.2 Refining the Scale

To trim our item set and determine the underlying factor structure, we re-

cruited 157 developers and performed EFA. This section describes the methods

used and our analysis results.

7.2.1 Recruitment

From September 2018 to July 2019, we recruited participants using several

methods to broadly sample the developer population. First, we contacted software-
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development-related groups’ leadership. This included popular Meetup.com [268]

and LinkedIn [251] groups, regional ACM chapters [132], and the researchers’ per-

sonal contacts at large development companies. We asked each contact to share

study details with their organization’s members and their colleagues. Prior work

has found relative success partnering with organizational leadership in this man-

ner, adding credibility to recruitment messages [413]. We also posted messages on

relevant online forums such as Reddit and Slack channels. Dietrich et al. showed

this method’s usefulness with technology professionals, as participants are reached

in a more natural setting and are more likely to be receptive [103]. Finally, we

recruited developers directly through the freelancing platform Upwork [400] and the

research-participant recruitment site Prolific [315]. Because of our broad recruit-

ment process, we do not include respondents who reported less than one year of

development experience.

We also varied the study’s compensation method. Prior work suggests using a

mix of incentives increases participant diversity [198]. Participants recruited through

organizational contacts and online forums were recruited in two waves. In the first

wave, we did not advertise or provide any compensation for participation. In the

second, participants were entered into a lottery for one of 10 $20 Amazon gift cards.

Participants recruited through Upwork and Prolific were paid $8 each.
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7.2.2 Survey design

Participants were shown the 58 “I can” statements in Tables 7.1 and ?? and

asked to rate each on a 5-point Likert-scale from “I am not confident at all” to “I am

absolutely confident” or indicate they “Do not understand”. Tasks were presented in

random order to prevent ordering effects. At the survey’s conclusion, participants

were asked to indicate their software development skill level on a 5-point Likert

scale ranging from “Novice (limited experience)” to “Expert (recognized authority),”

their years of software development experience, and their average time spent daily

performing software development tasks, along with other demographic questions.

Our full survey text is given in our supplementary materials’ main survey section.

We were concerned some participants might overrate their secure development

skill to portray appear more socially acceptable [94]. To avoid social desirability bias,

our study utilized deception [285]. That is, during recruitment and throughout the

survey, participants were told our goal was to measure general software development

self-efficacy. At the survey’s conclusion, participants were told the study’s true

nature and were allowed withdraw and have their response deleted.

7.2.3 Demographics

We received 181 responses, but 7 (4%) did not have one year of development

experience and 9 withdrew (5%) after learning the study’s true purpose. We re-

moved eight responses (4%) considered careless based on abnormally short response

times [267]. We set the cutoff at less than five minutes based on an obvious threshold
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in the data.

The final 157 participants’ development experience ranged from 1 to 45 years

(µ = 8.68, σ = 9.46). Our participants were predominantly male (88%), young (50%

below 30 and 83% below 40), educated (77% held a bachelor’s degree, 26% held a

graduate degree), and white (51%) or Asian (29%). Our participants’ demographics

are similar to those found by prior large-scale secure development studies [7–9,24,30,

100,202,282,302,347,361,428] and other general software development surveys [31,

57, 87, 188, 229, 238, 377, 407]. These prior studies’ developers’ mean development

experience was between 5 and 16.4 years (mean of means = 9.49 years), and they

were mostly male (between 73% and 98%; mean = 89%) and young (mean age

between 19.4 and 32.9; mean of means = 28.52), matching our sample. Half of

our participants reported incomes between $15K-$100K, which matches developer

income levels in [302], the only other prior work we found reporting participant

income. Note that due to the variance in demographics reported in each paper,

these are the only items we could clearly compare to.

Choosing an appropriate sample size can be complicated. Prior work suggests

basing sample size on the number of items [28,49,67,152,169,233,250,261,293] with

a minimum of 100 to 200 participants required [88, 89, 152, 160, 169, 250, 255]. For

example, Hair et al. recommend 5 participants per item [169]. However, empirical

evaluations of scales’ component analysis stability (i.e., whether the factor structure

identified varied) with various sample sizes has not found evidence to support the

sample size-to-item ratio [19,34,406]. Instead, prior work shows factor loading (i.e.,

the magnitude of correlation between items and their associated factor), the absolute
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sample size, and the number of variables associated with each factor have the most

significant effect on component analysis stability [157]. Therefore, Guadagnoli and

Velicer recommend 150 participants as sufficient if factors are made up of high

numbers of items (10 or 12), even with low loadings (l < 0.40) [157]. We believed,

because of the large number of items tested, we would be likely to meet this standard,

so we targeted about 150 qualifying participants. In fact (as will be discussed

below), our data met Guadagnoli’s and Velicer’s more conservative standard: four or

more variables per component having loadings over 0.60, which they found sufficient

to assess underlying component structures “whatever the sample size used.” We

therefore conclude our sample size was sufficient.

7.2.4 Issues with initial items

To refine our scale, we first checked for several potential issues in our initial

items. First, we observed our scale’s internal consistency was very high (Cronbach’s

α = 0.98), indicating our items were closely related. Next, we checked each item’s

item-total correlation, which indicates how discriminant the item is (i.e., partici-

pants who score high on the item are more likely to score high on the full scale).

Items with low item-total correlation (< 0.2) should be excluded because they do

not adequately reflect the scale [120]. We did not observe any questions with low

item-total correlation.

We next looked for ceiling or floor effects: tight response groupings at either

extremes of the Likert scale (e.g., 4.0 < µ < 5.0 and σ < 1). Since scales are
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designed to measure differences between participants, individual questions need to

exhibit adequate variance; if everyone responds similarly, the item has limited utility.

We found no items with this effect.

Finally, it is important to ensure our target population understands each item.

If a respondent if confused by the terminology used or question phrasing, their re-

sponse is framed by a misconception and not reflective of the underlying construct.

We removed 13 items to which > 5% of participants responded “Do not understand”

or simply skipped. In many cases (B12, B19, B28, B30, and B33), the confusion

seemed to stem from using less common security terminology such as fuzzing or

non-repudiation. Because the scale should usable by developers of all levels of secu-

rity knowledge, we removed these items. Similarly, 12.1% of participants found B34

confusing, likely because it asks whether participants can use security services pro-

vided by their enterprise. As not all developers work in an enterprise setting which

offers these services—including many of the freelancers we recruited—this item also

does not meet our goal of producing a measure for all developers.

7.2.5 Factor analysis

With the remaining 45 items, we set out to identify the scale’s underlying

factor structure. Here, we define factors as our construct’s sub-components. A

construct can have one component, indicating the scale’s items measure it directly,

or multiple components, where the scale can be broken into component sub-scales

and together their scores reflect the construct. Because these factors are latent, they
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can not, by definition, be measured directly. Instead, we must first determine our

construct’s number of factors and which items best describe each factor, i.e., the

underlying factor structure.

Prior to attempting to identify our factor structure, we checked whether our

data actually measured common factors and were correlated (prerequisites to estab-

lishing the number of factors and their structure). According to Bartlett’s test of

sphericity (χ2 = 4833.35, p < 0.001) [373] and the Measure of Sampling Adequacy

(0.936) [72], we confirmed our data met these goals.

Next, to identify the factor structure, we performed an exploratory Principal

Component Analysis (PCA). PCA is a data summarization method that transforms

item responses such that the first dimension (or component) explains as much vari-

ance in the original data as possible, with each subsequent and orthogonal compo-

nent explaining as much of the remaining variance as possible. These components

represent the scale’s underlying factors. To produce an efficient factor structure

(i.e., one identifying the most variation with the least set of items), we only retain

the top components.

Since there is no standard method for deciding the number of retained com-

ponents, we relied on several and followed the most common recommendation. This

consensus protocol accounts for each method’s strengths and weaknesses. First, we

calculated each components’ eigenvalues and selected those with eigenvalues > 1.0

according to the Kaiser criterion [152]. Next, we determined optimal coordinates by

fitting a line to the smallest eigenvalues with a linear regression and identifying where

our eigenvalues diverge [330]. We also performed a parallel analysis by generating
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random data, calculating the associated eigenvalues, and retaining any eigenvalues

whose value was greater than the random data’s eigenvalues [194]. Finally, we deter-

mined the acceleration factor by looking for the point where our eigenvalues changed

dramatically [330]. In these analyses, the Kaiser criterion recommended six com-

ponents, the optimal coordinates and parallel analysis both recommended two, and

the acceleration factor recommended one. Therefore, we retained two components.

To determine which factors each item associated most with (i.e., which it loads

on), we rotated responses [153]. There are multiple possible rotation types, which

can be divided into orthogonal (e.g., varimax) or oblique (e.g., direct oblimin). Or-

thogonal rotations are appropriate when the factors are not expected to be correlated

and an oblique rotation is appropriate otherwise [153]. Because we did not know

whether our factors were correlated, we followed the recommendation of Tabachnick

and Fiddell who suggest first using an oblique rotation (in our case a direct oblimin),

calculating the correlation of the identified sub-scales associated with each factor,

and switching to an orthogonal rotation if correlations do not exceed 0.32, indicating

10% (or more) overlap in variance among factors [388]. We found our factors were

correlated (0.64) and maintained the direct oblimin rotation.

After rotating items, we selected which ones to retain, using three inclusion

criteria. First, we only considered an item as loading on a factor if its loading

exceeded 0.5, indicating significant association with the underlying factor [285].

Next, we applied Saucier’s criterion, only considering an item to load on a factor if

its loading exceeded twice the loading on any other factor. This ensures variance

in item responses maps to changes in the associated factor. Finally, we chose to
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remove items where the item variance accounted for by all the retained factors (its

communality) was less than 0.4, as recommended by Fabrigar et al. [121], as this

tends to indicate low item reliability. This led us to remove 27 more items. We reran

PCA on the remaining items and found that the two retained components predicted

more than 56.9% of variance. Notably, the first factor accounts for a majority of the

scale’s variance (47.6%), with the second factor accounting for 9.3% of variance. The

rotated factor loadings are given in Table 7.4. Note, because all our factor loadings

are above 0.60, this confirms the sufficiency of our 157 developer sample [157].

7.2.6 Reliability

To confirm our remaining items maintained their internal reliability, we first

computed Cronbach’s α for the full scale (α = 0.936) and each sub-scale (α = 0.907,

0.876). We found that our data met McKinley et al.’s suggested threshold that a

multi-component scale is reliable if α exceeds 0.6 and a majority of sub-scale αs

exceed 0.7 [265].

Next, we tested item-total correlation using Pearson correlation between each

item and the average of all other items in the same sub-scale. All items exceeded

Everritt’s 0.2 threshold [120]. Finally, we observed each sub-scales’ mean item-

total correlation (0.520 and 0.440, respectively) exceeded 0.30, which is considered

“exemplary” [341]. Based on these measures, we confirmed our reduced scale had

high reliability.

209



7.3 Finalizing the Scale

We next conducted an additional round of surveys from July to September

2019 with the 18 items remaining after EFA (shown in Table 7.1). In this step,

we tested whether the identified two-factor structure was maintained, remaining

reliable, with a different participant pool.

7.3.1 Survey Design

Respondents were again asked to respond to the 18 items on a 5-point Likert

scale from “I am not at all confident” to “I am absolutely confident.” We removed

the “Do not understand” option, as we had sufficiently established item face validity.

It is important to confirm our scale measures the targeted construct by test-

ing whether responses match other theoretically relevant measures. To test whether

SSD-SES converges with measures we expect it to relate with (convergent validity),

while being distinct from other, similar scales (discriminant validity), we performed

Pearson’s correlation tests with four related scales. We similarly use Pearson’s cor-

relation to compare to two additional, well-established psychometric scales to un-

derstand how participant psychological characteristics relate to secure-development

self-efficacy. All p-values reported in this section are corrected using a Bonferroni-

Holm correction to account for multiple testing [191]. To avoid overburdening par-

ticipants, we randomly present two of the six additional scales (described in detail

below) to each participant.
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7.3.2 Recruitment

We used the same recruitment process as the prior step, targeting 120 re-

sponses. Prior work suggests 100 participants are sufficient for confirmatory factor

analysis [45]. We targeted 20 more participants to have 40 participants complete

each additional psychometric scale, giving sufficient power (> 0.80) to identify >

42.5% correlation with SSD-SES [86].

Due to the relative difficulty of recruiting through organizations and online

forums, we predominantly relied on Upwork’s freelancing service and Prolific in this

step. As developers on these platforms tend to be less experienced, respondents from

these sites first completed a pre-screening survey, asking them to report years of soft-

ware development experience and average time spent daily on development tasks.

We then invited screened respondents to the full survey using a quota-sampling

method. Our quotas were chosen to match developer experience ranges from Stack-

Overflow’s most recent developer demographics survey [377]. Specifically, we sought

to survey 14 (11.4%) inexperienced developers (1-2 years), 70 (58.4%) moderately

experienced developers (3-11 years), and 36 (30.2%) experienced developers (> 11

years). We concluded recruitment after reaching each quota, though we were not

able to maintain the desired percentages due to the unpredictable nature of responses

from organizational contacts.
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7.3.3 Demographics

A total of 162 developers responded in this round, but 2 participants (1%) had

less than a year of software-development experience, 6 chose to withdraw (4%), and 8

(5%) responses were considered careless (i.e., completed in less than 5 minutes [267]).

The remaining 146 participants’ development experience was split between our three

quota ranges as follows: 10.3% inexperienced, 65.1% moderately experienced, and

24.6% experienced (µ = 9.79, σ = 10.80). Our participants were predominantly male

(91%), young (48% below 30 and 77% below 40), educated (57% held a bachelor’s

degree, 26% held a graduate degree), and white (77%) or Asian (9%). Participant

median income was between $1K-$75K. Again, this matches broader developer de-

mographics [7–9,24,30,31,57,87,100,188,202,229,238,282,302,347,361,377,407,428].

7.3.4 Factor Analysis

To determine whether the latent factor structure identified previously held

with our new population, we repeated the PCA procedure using a direct oblimin ro-

tation. We observed three items either no longer sufficiently loaded on their original

factor (i.e., B8’s loading on F2 reduced to 0.39) or switched factors (i.e., B31 and B32

switched to load on F1). Because these items did not behave reliably across multiple

samples, they were removed [285]. The remaining items demonstrated internal con-

sistency with a Cronbach’s α of 0.92 (sub-scale αs were 0.90 and 0.88, respectively).

The 15 items and their associated latent factors are given in Table 7.5 with their

mean responses, factor loadings, and item-total correlations within their sub-scales.
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All the remaining items and their sub-scales behaved appropriately according to the

variability and reliability metrics given in the prior section.

The remaining sub-scale items represented two distinct themes: vulnerability

identification and mitigation tasks and security communication tasks. Again, the

first factor accounts for a majority of the scale’s variance (48.1%), and the security

communication sub-scale accounts for 11.1% of variance.

While EFA is useful for determining a possible underlying factor structure, it

is not able to assess that structure’s goodness-of-fit onto the data with respect to

other possible structures [254]. Therefore, we also performed a Confirmatory Factor

Analysis (CFA), which confirms our prior analyses have been conducted thoroughly

and appropriately [189]. CFA is a type of structural-equations analysis assessing

rival models’ goodness-of-fit. Specifically, we compare a null model with all items

loading on separate factors, a single common factor model, and our multi-factor

model [212].

Our model demonstrated sufficient goodness-of-fit with its χ2 (176.38) below

the conservative limit of twice the its degrees of freedom (DoF = 89) [66]. Using

ANOVA comparisons, we found our model fit better than the null (χ2 = 1257.34,

p < 0.001) and the single-factor model (χ2 = 317.78, p < 0.001).

We also calculated several other goodness-of-fit metrics. First, we determined

the Comparative Fit Index (CFI), which measures the model’s fit relative to a more

restrictive baseline model [41], and the Tucker-Lewis Index (TLI), a more conserva-

tive version of CFI, penalizing overly complex models [42]. Our model performed

well in both (CFI = 0.92, TLI = 0.91), with scores over the recommended 0.90
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threshold [285]. Next, we calculated the Standardized Root Mean Square Residual

(SRMR), an absolute measure of fit calculating the difference between observed and

predicted correlation [399]. Our model demonstrated a sufficient SRMR of 0.054—a

value below 0.08 is considered good fit [399]. Finally, we calculated the Root Mean

Square Error of Approximation (RMSEA), which measures how well the model re-

produces item covariances, instead of a baseline model comparison. Our model

demonstrated a “moderate” fit with a RMSEA of 0.082 [256].

7.3.5 Reliability

To measure the sub-scales’ internal consistency, we calculate their compos-

ite reliability [134]. Composite reliability offers a more accurate view of reliability

over Cronbach’s α, which makes several potentially inaccurate assumptions, such as

considering factor loadings and error variances equal [334]. Instead, composite reli-

ability considers factor loadings from CFA, measuring the latent factors’ reliability

instead of their individual items. We found both sub-scales’ composite reliability

(0.90 and 0.87, respectively) exceeded the recommended threshold of 0.60, indicating

they are internally consistent [29].

7.3.6 Convergent Validity

Prior work suggests the ability to identify vulnerabilities is influenced by par-

ticipants’ understanding of the development environment (e.g., the programming

language and libraries used) and level of security experience [413]. We next consider
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how well our scale correlates with each of these concepts.

Secure-development self-efficacy is related to general development self-

efficacy. To measure respondents’ software development skill, we utilized the Com-

puter Programing Self-Efficacy Scale (CPSES), a measure of respondents’ belief in

their ability to produce working programs meeting functionality requirements [398].

CPSES scores were statistically significantly correlated with both SSD-SES sub-

scales (ρ = 0.528, p = .001 and ρ = 0.627, p < 0.001, respectively).

To measure security experience, we asked if participants had received security

training, if they had found a vulnerability or had one found in their code, and how

often they communicate with security experts. We estimated the relationship of

security experience and secure-development self-efficacy with a poisson regression

(appropriate for count data [63]). For each sub-scale, our initial regression model

included each security experience response and the participants’ software develop-

ment experience as independent variables. To avoid overfitting, we tested all com-

binations of the independent variables, selecting the model with minimum Bayesian

Information Criteria [329], as is standard.

Table 7.7a shows the vulnerability identification and mitigation regression

model and Table 7.7b gives the security communication regression model. Base

cases were selected to represent the medium experience level to allow clearer com-

parisons. Variable levels are presented in decreasing experience order. The log

estimate (LE) column gives the variable’s observed effect. For categorical variables,

the LE is the expected relative change in SSD-SES sub-scale score when moving to
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the given variable level from the base case. The LE for each base case is definition-

ally 1.0. We also give the 95% confidence interval for the log estimate (CI) and the

associated p-value.

Secure-development self-efficacy increases with security experience. As

expected, both SSD-SES sub-scale scores increase with security experience. Specif-

ically, participants who had never found a vulnerability (LE = 0.82, p < 0.001) or

never worked with a security expert (OR = 0.81, p < 0.001) had less belief in their

ability to find and mitigate security vulnerabilities. Further, those who have found

multiple vulnerabilities (LE = 1.08, p = 0.49) or worked with multiple security

experts (LE = 1.09, p = 0.024) had even higher self-efficacy.

We observed nearly the same significant trends in the security communication

sub-scale. However, more than one experience finding a vulnerability did not show a

significant increase over a single vulnerability identification experience (LE = 1.08,

p = 0.112). Additionally, we found experienced developers (> 11 years experience)

were more likely to believe they could effectively discuss security (LE = 1.11, p =

0.017).

7.3.7 Discriminant Validity

To confirm that SSD-SES in fact measures a new construct, we compared it

to two end-user security behavior scales and a general self-efficacy scale. First, we

tested whether either sub-scale correlated with the Security Intention Behavior Scale

(SeBIS) [115], which measures end-user intention to perform a variety of security
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behaviors, and the End-User Security Attitudes (SA-6) scale [124], which measures

end-user attitudes toward common security behaviors. Correlations between each

of these scales and SSD-SES’s two sub-scales are given in Table 7.6. We did not

observe any significant correlation between either scale and SSD-SES.

Next, we tested the correlation between SSD-SES and the General Self-Efficacy

Scale (GSE), which assesses the “belief that one can perform a novel or difficult

tasks, or cope with adversity—in various domains of human functioning [356].”

This comparison tested whether SSD-SES simply measured respondents’ belief in

themselves as opposed to a domain-specific belief. Again, we did not observe any

significant correlation between GSE and SSD-SES.

The lack of significant correlations with SeBIS, SA-6, or GSE indicates SSD-

SES measures a distinct underlying construct.

7.3.8 Relationship with Psychological Constructs

Finally, we included two well-established psychometric measures to under-

stand how participants psychological characteristic relate to SSD-SES scores: the

Need for Cognition (NFC) scale and the General Decision-Making Scale (GDMS).

Correlations between NFC and GDMS and SSD-SES’s two sub-scales are given in

Table 7.6.

Curious developers believed more in their ability to identify and mitigate

vulnerabilities. NFC measures intellectual curiosity (i.e., the tendency to engage

in and enjoy thinking) [60]. We found that NFC significantly correlated with the
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vulnerability identification and mitigation sub-scale (ρ = 0.464, p = 0.007), but

not the security communication sub-scale (ρ = 0.183, p = 0.337). This suggests

developers who are more curious are more likely to feel confident in their ability

to search for, identify, and mitigate vulnerabilities. This finding corroborates prior

work, which observed developers who were more open or curious were more likely

to find vulnerabilities in secure-development puzzles [302].

We also compared SSD-SES to GDMS, which assesses how individuals ap-

proach decisions with respect to five decision styles. As secure development requires

complex planning and decision-making, our goal was to test whether any style cor-

related with better secure-development self-efficacy. However, we did not observe

any statistically significant correlation.

7.4 Discussion and Limitations

Our final 15-item scale measures two distinct underlying factors: vulnerability

identification and mitigation as well as security communication. Through our scale

development process we observed SSD-SES demonstrate construct validity, internal

consistency and reliability, goodness-of-fit, and convergent and discriminant valid-

ity. We found SSD-SES correlated with general programming self-efficacy, security

experience, and intellectual curiosity, as expected. In this section, we discuss our

study’s limitations and the need for future work as well as how SSD-SES can be

employed by researchers and practitioners.
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7.4.1 Limitations

Software developer recruitment is challenging [282], requiring significant effort

to reach the sample used in this study. While we sought to recruit a diverse sample

with respect to development experience and we observed similar demographics to

the global developer population, it is possible our recruiting methods do not fully

represent the broader population. Future work should consider methods to recruit

participants not active in development organizations, online forums, or freelancing

and research recruitment platforms.

In the final round of recruitment, we performed quota sampling based on

participants’ years of experience. We also randomly assigned two of six external

scales to each participant, without consideration for quota sampling. As a result,

the experience distributions for these external scales were not entirely consistent:

fewer than expected participants in the inexperienced group were assigned CPSES

(2% as opposed to 10% of the total sample) and fewer of the experienced group

were assigned GES (14% as opposed to 25%). The supplementary materials give

further details. We do not expect this fairly small inconsistency to have a large

effect on the results, particularly as we observed almost no significant effects related

to experience.

While we believe our approach to item generation and question trimming thor-

oughly reviews secure development concepts, we do not argue our scale covers all

possible factors. Rather, our items and factors produce meaningful and reliable re-

sults and pass relevant validity checks. It is possible some factors are not included.
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We leave future work to investigate additional factors, expanding on our current

findings.

Though we found SSD-SES reliable and valid according to several measures,

additional testing is necessary. First, as we have only shown correlation between

factors and other psychometric measures, we cannot make assessments of causal

relationships; as such, we cannot yet create a predictive model to target interventions

at specific self-efficacy components.

Most importantly, further work is necessary to determine if SSD-SES measures

actual secure development skill improvement. In future work, we plan to administer

SSD-SES as a pre- and post-test for a hands-on security training course, allowing

us to assess improvements and correlate with course grades.

Finally, technology (and accordingly, secure development practice) changes

over time. We designed SSD-SES to describe general principles we believe should

remain relatively static, but as with any scale SSD-SES should be occasionally

revisited and refreshed as needed.

7.4.2 Using SSD-SES

Our creation and validation of a lightweight secure software development self-

efficacy scale presents a valuable resource for a variety of purposes. Below, we

suggest possible uses.

SSD-SES for testing educational interventions. The initial impetus for cre-

ating SSD-SES was to measure the value of an educational intervention, such as a
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capture-the-flag exercise [77]. By applying SSD-SES before and after administer-

ing training, a researcher can observe changes in secure-development self-efficacy,

providing feedback for the improvement and comparison of interventions.

To emphasize this benefit, we note that we did not observe a significant rela-

tionship between SSD-SES and participants’ self-reported security training in our

regression. While we would expect training to improve self-efficacy, our results sug-

gest in practice, it does not consistently do so. Therefore, future work in security

education is necessary to identify the right training to produce improved outcomes.

SSD-SES as a covariate. SSD-SES also provides a useful option for software-

developer studies where the researcher may want to control for participants’ secure-

development skill. For example, in a usability study of security APIs, it would

be beneficial to include SSD-SES as a covariate to ensure differences in outcomes

between participants occur because of changes to the API and not differences in

security skill.

SSD-SES for measuring security culture. Finally, because SSD-SES is a

lightweight measure, it can be administered broadly to capture an organization’s

“security culture”. This would be useful both for researchers comparing different

organizations or measuring change over time, but also for practitioners looking to

diagnose whether and what actions are necessary for organizational improvement.
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# Secure Development Statement Do
Not
Und.

µ σ

F1

B3 I can perform a threat risk analysis (e.g., likelihood of vulnerability,
impact of exploitation, etc.)

0% 3.15 1.29

B4 I can identify potential security threats to the system 0% 3.61 1.10

B6 I can identify the common attack techniques used by attackers 0% 3.45 1.15

B11 I can identify potential attack vectors in the environment the system
interacts with (e.g., hardware, libraries, etc.)

1.72% 2.97 1.25

B15 I can identify common vulnerabilities of a programming language 0% 3.44 1.15

B39 I can design software to quarantine an attacker if a vulnerability is
exploited

1.72% 2.65 1.34

B44 I can mimic potential threats to the system 1.72% 3.19 1.19

B47 I can evaluate security controls on the system’s interfaces/interactions
with other software systems

1.72% 3.28 1.23

B48 I can evaluate security controls on the system’s interfaces/interactions
with hardware systems

3.45% 2.91 1.30

F2

B8 I can identify code that handles sensitive data (e.g., Personally
Identifiable Information)

0% 4.09 1.10

B31 I can correctly implement authentication protocols 0% 3.76 1.16

B32 I can correctly implement authorization protocols 3.45% 3.78 1.11

B50 I can communicate security assumptions and requirements to other
developers on the team to ensure vulnerabilities are not introduced due
to misunderstandings

0% 3.71 1.10

B51 I can communicate system details with other developers to ensure a
thorough security review of the code

0% 3.85 1.16

B53 I can discuss lessons learned from internal and external security
incidents to ensure all development team members are aware of
potential threats

0% 3.88 1.11

B55 I can effectively communicate to company leadership identified security
issues and the cost/risk trade-off associated with deciding whether or
not to fix the problem

0% 3.78 1.13

B57 I can communicate functionality needs to security experts to get
recommendations for secure solutions (e.g., secure libraries, languages,
design patterns, and platforms)

3.45% 3.81 1.11

B58 I know the appropriate point of contact/response team in my
organization to contact if a vulnerability in production code is
identified

1.72% 4.04 1.25

Table 7.1: Set of secure development tasks identified after both the expert review and
developer pilot transformed into “I can” statements. Each task was evaluated on a
5-point Likert-scale (from “I am not at all confident” to “I am absolutely confident”)
by 157 developers. For each statement, we give the rate of “Do not understand”
responses, the average response, and standard deviations. These are the final items
retained based on EFA grouped according to their associated sub-scale.
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# Secure Development Statement Do
Not
Und.

µ σ

B1 I can determine security controls which are necessary to
implement in the system

6.90% 3.50 1.13

B2 I can determine security requirements for the system 1.72% 3.64 1.06

B5 I can identify access points into the system (i.e., attack
surface) which could be used by an attacker

1.72% 3.34 1.24

B7 I can identify critical operational requirements which must
continue to function or recover quickly after an attack

6.90% 3.44 1.15

B9 I can identify usage patterns that should be disallowed by the
system’s design

0% 3.66 1.12

B10 I can identify potential attack vectors associated with the
system under development

6.90% 3.24 1.26

B12 I can identify potential vulnerabilities in the operationalization
of software (e.g., human errors)

5.17% 3.77 1.10

B13 I can identify security vulnerabilities in others? code (e.g., peer
review or third party components)

0% 3.38 1.20

B14 I can identify common coding mistakes that create security
vulnerabilities

0% 3.80 1.07

B16 I can understand security limitations of a programming
language

0% 3.68 1.04

B17 I can identify potential vulnerabilities as I write code 0% 3.73 1.01

B18 I can use automated code analysis tools to identify
vulnerabilities

1.72% 3.31 1.27

B19 I can use software fuzzing tools to identify vulnerabilities 13.79% 2.92 1.33

B20 I can review system design to identify areas where potential
security risks exist

0% 3.44 1.19

B21 I can identify sections of code that are most likely to include
security vulnerabilities

0% 3.54 1.14

B22 I can understand security issues and concerns associated with
reused code (e.g., code samples, shared code)

1.72% 3.79 1.07

B23 I can apply applicable secure coding and testing standards 3.45% 3.63 1.19

B24 I can use provably secure programming languages 22.41% 3.72 1.26

B25 I can identify secure implementations of common libraries 3.45% 3.34 1.19

B26 I can use a secure implementation of a common library that is
recommended by a security expert

6.90% 4.01 1.14

B27 I can apply security principles (e.g., least privilege) into the
design of the system

3.45% 3.49 1.25

B28 I can utilize protocols that provide confidentiality of user data 5.17% 3.83 1.18

B29 I can utilize protocols that provide integrity of user data 3.45% 3.81 1.13

B30 I can utilize protocols that provide availability in the face of an
attack

10.34% 3.07 1.27

B33 I can utilize protocols that provide non-repudiation 39.66% 3.21 1.31

B34 I can leverage enterprise security services to mitigate
vulnerabilities (e.g., enterprise PKI)

12.06% 3.16 1.32

B35 I can leverage enterprise security teams for help to fix
vulnerable code

3.45% 3.93 1.23

Table 7.2: Set of secure development tasks removed based on EFA.
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# Secure Development Statement Do
Not
Und.

µ σ

B36 I can leverage external security review (e.g., penetration
testing, bug bounties) to find vulnerable code

3.45% 3.41 1.26

B37 I can design software to prevent potential vulnerabilities 1.72% 3.41 1.24

B38 I can rewrite software to remove vulnerabilities 0% 3.66 1.18

B40 I can write code to monitor and log system execution for later
review

1.72% 3.95 1.23

B41 I can write error handling code to alert for possible malicious
behavior

0% 3.77 1.13

B42 I can design software so that it fails gracefully in the face of
attack

3.45% 3.19 1.30

B43 I can enumerate edge cases of the system’s use 13.79% 3.43 1.15

B45 I can assess that security requirements are met (e.g., through
security design and code reviews)

0% 3.65 1.13

B46 I can demonstrate the effectiveness of implemented security
mitigations

12.07% 3.35 1.20

B49 I can document a system’s security implications and
assumptions so they are readable and actionable by others

1.72% 3.68 1.18

B52 I can communicate with other internal teams to understand
how to securely interact with their systems

0% 3.95 1.10

B54 I can write understandable security and privacy error messages
to draw the required user/operator attention

0% 3.92 1.13

B56 I can maintain awareness of hardware and software
technologies’ security issues and their potential implications

0% 3.40 1.30

Table 7.3: Set of secure development tasks removed based on EFA.

F1 ITC

α 0.907 –

IIC 0.520 –

B3 0.81 0.78

B4 0.69 0.80

B6 0.83 0.78

B11 0.79 0.81

B15 0.65 0.66

B39 0.74 0.73

B44 0.64 0.72

B47 0.64 0.77

B48 0.82 0.78

F2 ITC

α 0.876 –

IIC 0.440 –

B8 0.64 0.66

B31 0.61 0.70

B32 0.67 0.67

B50 0.73 0.79

B51 0.68 0.74

B53 0.76 0.73

B55 0.64 0.72

B57 0.61 0.70

B58 0.80 0.67

Table 7.4: Remaining items and factor structure after initial EFA. The first two
rows show reliability measures (Cronbach’s α and average inter-item correlation)
for each sub-scale. The remaining rows show the retained items, their loadings, and
item-total correlations within the sub-scale.
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# Secure Development Statement µ σ l ITC

Vulnerability Identification and Mitigation (48.2% of variance explained, CR = 0.90)

C3 I can perform a threat risk analysis (e.g., likelihood of
vulnerability, impact of exploitation, etc.)

2.99 1.15 0.74 0.79

C4 I can identify potential security threats to the system 3.34 0.99 0.76 0.79

C6 I can identify the common attack techniques used by
attackers

3.30 1.15 0.66 0.77

C11 I can identify potential attack vectors in the environment
the system interacts with (e.g., hardware, libraries, etc.)

2.91 1.10 0.67 0.75

C15 I can identify common vulnerabilities of a programming
language

3.34 1.16 0.56 0.72

C39 I can design software to quarantine an attacker if a
vulnerability is exploited

2.41 1.19 0.77 0.72

C44 I can mimic potential threats to the system 2.97 1.06 0.78 0.71

C47 I can evaluate security controls on the system’s
interfaces/interactions with other software systems

3.08 1.02 0.72 0.72

C48 I can evaluate security controls on the system’s
interfaces/interactions with hardware systems

2.88 1.17 0.78 0.73

Security Communication (11.1% of variance explained, CR = 0.87)

C50 I can communicate security assumptions and requirements
to other developers on the team to ensure vulnerabilities are
not introduced due to misunderstandings

3.46 1.03 0.73 0.86

C51 I can communicate system details with other developers to
ensure a thorough security review of the code

3.50 1.15 0.78 0.83

C53 I can discuss lessons learned from internal and external
security incidents to ensure all development team members
are aware of potential threats

3.64 1.11 0.65 0.72

C55 I can effectively communicate to company leadership
identified security issues and the cost/risk trade-off
associated with deciding whether or not to fix the problem

3.51 1.18 0.60 0.75

C57 I can communicate functionality needs to security experts
to get recommendations for secure solutions (e.g., secure
libraries, languages, design patterns, and platforms)

3.60 1.12 0.73 0.83

C58 I know the appropriate point of contact/response team in
my organization to contact if a vulnerability in production
code is identified

3.90 1.14 0.91 0.73

Table 7.5: SSD-SES’s final questions and associated sub-scales. Responses were
reported on the following scale: I am not confident at all (1), I am slightly confident
(2), I am somewhat confident (3), I am moderately confident (4), and I am absolutely
confident (5).
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Vulnerability
Identification

and Mitigation
Security

Communication

Convergent Validity

CPSES ρ = 0.528, p = 0.001 ρ = 0.627, p < 0.001

Discriminant Validity

SA-6 ρ = 0.249, p = 0.191 ρ = 0.300, p = 0.111

SeBIS1 ρ = 0.077, p = 0.622 ρ = 0.202, p = 0.298

SeBIS2 ρ = 0.370, p = 0.053 ρ = 0.176, p = 0.337

SeBIS3 ρ = 0.308, p = 0.096 ρ = 0.227, p = 0.224

SeBIS4 ρ = 0.145, p = 0.412 ρ = 0.122, p = 0.470

GES ρ = 0.363, p = 0.067 ρ = 0.375, p = 0.063

Other Psychometric Scales

NFC ρ = 0.464, p = 0.007 ρ = 0.183, p = 0.337

GDMS1 ρ = 0.013, p = 0.928 ρ = 0.129, p = 0.450

GDMS2 ρ = 0.276, p = 0.121 ρ = 0.178, p = 0.337

GDMS3 ρ = 0.148, p = 0.403 ρ =-0.075, p = 0.622

GDMS4 ρ = -0.075, p = 0.622 ρ = 0.139, p = 0.403

GDMS5 ρ = 0.271, p = 0.121 ρ = 0.307, p = 0.096

Table 7.6: Correlations between sub-scales, related scales, and other psychometrics.
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Log

Variable Value Estimate CI p-value

Found Vuln Multiple 1.08 [1, 1.17] 0.049

Once – – –

Never 0.82 [0.73, 0.92] < 0.001∗

Expert Multiple 1.09 [1.01, 1.17] 0.024*

Coworker One – – –

Never 0.81 [0.74, 0.88] < 0.001∗
*Significant effect – Base case (Log Estimate = 1, by definition)

(a) Vulnerability Identification and Mitigation

Log

Variable Value Estimate CI p-value

Found Vuln Multiple 1.08 [0.98, 1.18] 0.112

Once – – –

Never 0.86 [0.76, 0.98] 0.026*

Expert Multiple 1.06 [0.97, 1.15] 0.191*

Coworker One – – –

Never 0.87 [0.79, 0.95] 0.002*

Dev > 11 years 1.11 [1.02, 1.2] 0.017*

Experience 3-11 years – – –

0-2 years 0.91 [0.79, 1.03] 0.143

*Significant effect – Base case (Log Estimate = 1, by definition)

(b) Security Communication
Table 7.7: Summary of regressions estimating relationship between each sub-scale
and security experiences.
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Chapter 8: Discussion

The work in this thesis provides insight into the types of vulnerabilities de-

velopers introduce, differences in experts’ and non-experts’ vulnerability discovery

processes, the current state of security exercises, and measurement of security edu-

cation outcomes.

The results from Chapter 3 showed that misunderstanding of security concepts

were most common. Chapter 4 demonstrated that the biggest difference between

experts and non-experts when trying to find these issues came from the variety of

their different vulnerabilities to which they were exposed. These results motivated

the need for building better tools to effectively leverage the experiences of security

experts and improve education for non-experts to help them develop the variety of

experiences necessary to find vulnerabilities.

Chapter 5 took a first step toward improving tool support, producing a revers

engineering process three-phase model along with five guidelines for usable reverse

engineering tool development. This chapter provides theoretical grounding for creat-

ing tools to seamlessly fit the users’ process, allowing them to focus on their central

task, i.e., vulnerability discovery, instead of trying to understand the interface.

In Chapters 6 and 7, I considered the education of non-experts. The results of
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Chapter 6 presented a generally positive picture regarding pedagogy currently used

by online security exercises, with several exercises considering many pedagogical

recommendations of the learning science and education literature. However, this

work did identify some avenues for educational improvement to reduce barriers for

new students and engage a broader audience in vulnerability discovery. Finally,

Chapter 7 produced a light-weight metric for secure development self-efficacy, useful

for future comparisons of educational interventions and expertise development.

8.1 Vulnerability Discovery Experience is Essential

One consistent theme throughout this thesis was the central role of experience

in vulnerability discovery. The main finding of Chapter 4 was that vulnerability

discovery experience was the key differentiator between experts and non-experts. In

Chapter 3, we observed that education itself did not have a significant impact on the

number of vulnerabilities developers introduced, even when they were specifically

taught via lecture the specific vulnerabilities to avoid. This indicates experience ob-

serving — at a minimum — vulnerabilities in a program is necessary. In Chapter 7

we found higher belief in secure development skill was correlated with vulnerability

discovery experience. Finally, Chapter 5 showed that experience played an impor-

tant role in every phase of reverse engineering, guiding decisions and helping reverse

engineers recognize common program patterns.

Together, these results point to the need for improved and more accessible

security education. In Section 6.3, we highlight several improvements to that could
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be implemented in online security exercises based on the recommendations of learn-

ing science. However, while security exercises are commonly reported as the most

common method for vulnerability discovery expertise development, this is only one

educational method. Future work must consider other educational methods, such as

certifications, on-the-job training, and direct interactions between community mem-

bers. Also, particular emphasis should be placed on understanding the development

of practitioners from underrepresented populations to increase the currently limited

diversity of the community [55, 56, 127, 163]. This includes barriers into and within

the community that limit participation and retention.

Additionally, experience is not binary. Instead, it is multi-dimensional cover-

ing several vulnerability types developed incrementally as practitioners are exposed

to new issues. A practitioner may have significant experience with a particular vul-

nerability type, but still miss related issues because the program they are reviewing

includes a problem sufficiently unique from anything they have seen before. They

may also have significant experience in one area and no experience in others, e.g.,

knowledgable in cryptography, but not web vulnerabilities. It is unlikely that the

security education community, even with the best of interventions, will be able to

develop a sufficient number of experts with experience in all vulnerability types.

Therefore, it is necessary that we consider this variation in our processes for finding

vulnerabilities. One way this is currently done is through the growing use of bug

bounties. By allowing anyone to search for bugs in a program, the program does

not rely on the experience of a single practitioner, but in theory leverages the ex-

perience of the entire community. Unfortunately, this simple approach is limited as
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it does not allow for coordination between practitioners, does not optimize effort

to match the most relevant experience to a particular program, and is limited by

the community’s diversity [55, 56, 127, 163]. Future work should further investigate

the effect of experience on practitioner abilities and consider developing processes

and tools for vulnerabilities discovery aimed at leveraging practitioners at every

level of development. For example, Nosco et al.’s assembly line approach presents a

promising approach for coordination among practitioners where each performs tasks

appropriate to their experience level [291].

8.2 Moving Forward with Human-Centric Vulnerability Discovery

While this thesis presents useful insights for human-centric vulnerability dis-

covery improvements, its most significant contribution is the theoretical foundation

provided for future work. For example, Chapter 5 establishes a model for reverse en-

gineering and guidelines for usable tool design. This provides a framework for future

work more precisely investigating the reverse engineering process and evaluating cur-

rent and future tool designs. Similarly, Chapter 6 presents a set of pedagogy which

should be considered in security exercise development and tradeoffs organizers must

consider. Future work should build on these results to test how different pedagogy

impact actual student behaviors.

Additionally, this thesis maintained a narrow scope on the individual’s pro-

cesses around vulnerability discovery. In practice, many practitioners reported work-

ing with others [413] and in most cases, they must also report their findings to
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someone else to fix the vulnerability. This means that the process of vulnerability

discovery has many social factors to consider. In Chapter 4, I highlight some of the

issues practitioners face in reporting, but further work should consider other social

dynamics such as team organization and coordination, organizational pressures on

decisions and processes, and the broader community relationships (e.g., collective

documentation, script development, Q&A support).

8.3 User Studies are Important for Security Professionals

Finally, my research offers a case study in the value of human factors research

for professional security work. Like in vulnerability discovery, many other areas of

professional security work — incident response, network defense, privacy work, etc.

— rely on ad-hoc tool and process development by individuals or small groups of

practitioners. This approach tends to lead to poor interface designs and incorrect

assumptions about general users. Conversely, studying the actual user base allows

the identification of blindspots in current approaches. As an example, in Chapter 3,

we observe mismatches between vulnerabilities introduced and the types of prob-

lems many vulnerability analysis tools are designed to identify. Similarly, Chapter 6

demonstrates common challenges in current security exercises. These user studies

also provide the theoretical grounding to support more usable interface design. This

can be seen in the general reverse engineering process model and guidelines estab-

lished in Chapter 5. Taken together, these results offer a strong argument for further

work considering the human factors of security professional work.
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Chapter 9: Conclusion

Software vulnerability discovery is a complex task which will require significant

human intelligence for the foreseeable future. In this thesis, I identify the processes

humans use to find vulnerabilities, the challenges they face, and take the first steps

toward providing human-centric support.

The results of Chapter 3 show that even when incentivized to produced se-

cure code, developers struggle with security concepts. In Chapter 4, I found that

experience is the key differentiator between experts and non-experts in vulnera-

bility discovery. Chapters 5, 6, and 7 build off these results, providing insights for

both tool and educational improvements. Specifically, Chapter 5 provides a detailed

model of the reverse engineering process and guidelines for usable tool development.

Chapter 6 outlines the state of current online hacking exercises and provides recom-

mendations to improve learning in this setting. Finally, Chapter 7 develops a metric

for secure development self-efficacy, a needed tool for security education evaluation

as well as studies of practitioner behaviors. Together, this work provides a solid

foundation for dramatic improvements in human-centric vulnerability discovery.
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Appendix A: Study Instruments

A.1 Chapter 4: Screening Survey

Vulnerability-discovery experience.

1. On a scale from 1-5, how would you assess your vulnerability discovery skill

(1 being a beginner and 5 being an expert)?

2. Please select the range which most closely matches the number of software

vulnerabilities you have discovered. (Choices: 0-3, 4-6, 7-10, 11-25, 26-50,

51-100, 101-50, > 500)

3. How many total years of experience do you have with vulnerability discovery?

4. Please select the range that most closely matches the number of hours you

typically spend performing software vulnerability discover tasks per week.

(Choices: < 5, 5-10, 10-20, 20-30, 30-40, > 40)

5. Please specify the range that most closely matches the number of hours you

typically spend on non-vulnerability discovery, technical tasks per week (e.g.

software or hardware programming, systems administration, network analysis,
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etc.). (Choices: < 5, 5-10, 10-20, 20-30, 30-40, > 40)

6. What percentage of the bugs you have discovered were found in the following

contexts?

(a) Bug Bounty programs (i.e., sold specific bug to vendor)

(b) General Software Testing

(c) Penetration Testing

(d) Vulnerability finding exercise (e.g., Capture-the-Flag competition, secu-

rity course)

(e) Unrelated to a specific program (i.e., for fun or curiosity)

(f) Other

7. What percentage of the bugs you have discovered were in software of the

following types?

(a) Host (e.g., Server or PC)

(b) Web Application

(c) Network Infrastructure

(d) Mobile Application

(e) API

(f) iOT or Firmware

(g) Other
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8. What percentage of the bugs you have discovered were of the following types?

(a) Memory Corruption (e.g., buffer overflow)

(b) Input Validation (e.g., XSS, SQL injection, format string misuse)

(c) Cryptographic Error (e.g., weak key use, bad random number generator)

(d) Configuration Error (e.g., unpatched network device)

(e) Incorrect Calculation (e.g., integer overflow, off-by-one error)

(f) Protection Mechanism Error (e.g., incorrect access control, improper cer-

tificate check)

(g) Poor Security Practices (e.g., insecure data storage or transmission)

Note: In the previous three questions, we did not provide our own defini-

tions for software type or program type and only provided examples for vulner-

ability types. We selected terms used by multiple popular bug bounty platforms

(i.e., SynAck, HackerOne, and BugCrowd) and allowed participants to select op-

tions based on their own definitions. During the interview, we included follow-up

questions to understand their definitions for the top ranked item in each category.

Technical skills.

1. On a scale from 1 to 5, how would you assess your proficiency in each of the

following technical skills (1 being a beginner or having no experience and 5

being an expert)?

(a) Networking
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(b) Database Management

(c) Object-Oriented Programming (e.g., Java, C++)

(d) Functional Programming (e.g., OCaml, Haskell)

(e) Procedural Programming (e.g., C, Go)

(f) Web Development

(g) Mobile Development

(h) Distributed/Parallel Computing

(i) System Administration

(j) Reverse Engineering

(k) Cryptanalysis

(l) Software Testing

(m) Test Automation

(n) Hardware/Firmware Development

(o) Other

Demographics.

1. Please specify the gender with which you most closely identify. (Choices:

Male, Female, Other, Prefer not to answer)

2. Please specify your age. (Choices: 18-29, 30-39, 40-49, 50-59, 60-69, > 70,

Prefer not to answer)
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3. Please specify your ethnicity (Choices: White, Hispanic or Latino, Black or

African American, American Indian or Alaska Native, Asian, Native Hawaiian,

or Pacific Islander, Other)

4. Please specify which country/state/province you live in.

5. Please specify the highest degree or level of school you have completed (Choices:

Some high school credit, no diploma or equivalent; High school graduate,

diploma or the equivalent; Some college credit, no degree; Trade/technical/vo-

cational training; Associate degree; Bachelor’s degree; Master’s degree; Pro-

fessional degree; Doctorate degree)

6. If you are currently a student or have completed a college degree, please specify

your field(s) of study (e.g., Biology, Computer Science, etc).

7. Please select the response option that best describes you current employment

status. (Choices: Working for payment or profit, Unemployed, Looking after

home/family, Student, Retired, Unable to work due to permanent sickness or

disability, Other)

8. If you are working for payment, please specify your current job title.

9. If you are currently working for payment, please specify the business sector

which best describes you job (Choices: Technology, Government or govern-

ment contracting, Healthcare and social assistance, Retail, Construction, Ed-

ucational services, Finance, Arts/Entertainment/Recreation, Other)
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10. Please specify the range which most closely matches your total, pre-tax, house-

hold income in 2016. (Choices: <$29,999, $30,000-$49,999, $50,000-$74,999,

$75,000-$99,999, $100,000-$124,999, $125,000-$149,999, $150,000-$199,999, >$200,000)

11. Please specify the range which most closely matches your total, pre-tax, house-

hold income specifically from vulnerability discovery and software testing in

2016. (Choices: <$999, $1,000-$4,999, $5,000-$14,999, $15,000-$29,999, $30,000-

$49,999, $50,000-$74,999, $75,000-$99,999, $100,000-$124,999, $125,000-$145,999,

$150,000-$199,999, >$200,000)

A.2 Chapter 4: Interview Protocol

A.2.1 General experience

1. What was the motivation/thought process behind performing vulnerability

discovery in the different contexts you listed in the survey?

2. If most of the bugs are in a particular software or bug type:

(a) Why do you focus on a specific area? Why this area?

(b) Have you ever developed software in this area?

(c) Have you worked outside of this area of expertise in the past? What was

the reason for the change?

3. If the types of bugs are generally split across software or bug type:

(a) What do you see as the importance of staying general?
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(b) Are there any unique trends you’ve noticed that encourage you to stay

general with your skills?

A.2.2 Task analysis

Program selection.

1. In general, how do you decide which software [for testers: part of the program]

to investigate for vulnerabilities and which not? What factors do you consider

when making this decision?

2. Which of these factors do you consider to be the most important? Why?

3. Are there any factors that you consider non-starters (i.e. reason not to try

looking for bugs)?

4. Is there a specific process you use when determining where to look for vulner-

abilities and which of these characteristics different software exhibit?

(a) Why did you choose this particular process?

(b) How did you develop/learn this process?

(c) Are there any tools that you use that assist you in this process?

i. What were the benefits of these tools? Weaknesses?

ii. Have you ever used anything else for this purpose? What led you to

switch?
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Vulnerability-discovery process.

1. Once you’ve selected a software target, what steps do you take when looking

for vulnerabilities?

(a) For each step:

i. What are your goals for this step? What information are you trying

to collect?

ii. What actions do you take to complete this step? Have you every

tried anything else? What are the advantages/disadvantages of this

set of actions?

iii. Are there any tools that you use to complete this step? What were

the benefits of these tools? Weaknesses?

iv. What skills do you use to complete this task? Why do you think

these skills are important? How did you develop/learn these skills?

v. How do you know when you have successfully completed this step?

vi. How do you decide when to take this step? Is it something you repeat

multiple times? Do you always do this step?

vii. How did you learn to take this step? Why did you find this source

of information helpful?

2. Is there anything else you haven’t mentioned that you’ve done to try to find

vulnerabilities and stopped? What are the main differences between your
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current process and what you did in the past? What led you to switch?

Reporting.

1. What kinds of information do you include in the report? Do you always

report the same information? What factors do you consider when deciding

which information to include in the report?

2. What information do you think is the most important in vulnerability reports?

3. Have you ever included/excluded anything that you didn’t feel was important,

but just included/excluded because you felt it was traditional/expected?

4. What bug report information is the most difficult/time consuming to get?

5. Do you ever look at anyone else’s bug reports to learn from them? Why do

you think these are helpful?

6. Do you use any special tool for reporting? What were the benefits of these

tools? Weaknesses?

7. Do the organizations you submit to reach out to you with questions about the

bugs? If so, what do they ask about?

8. Can you give me an example of a bad/good experience you’ve had with re-

porting? In your opinion, what factors are the most important for a good

reporting experience?
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A.2.3 Skill development

Learning.

1. Imagine you were asked for advice by an enthusiastic young person interested

in learning about vulnerability discovery. How would you recommend they get

started? What steps would you suggest they take?

Community participation.

1. Do you have regular communication with other hackers or software testers?

2. How do you typically communicate with others?

3. How important is each community you participate in to your/others develop-

ment?

4. What community that you belong to do you find most useful? Why?

5. What information do you typically share?

6. How often do you communicate (specifically regarding technical information)?

7. How close are the relationships you have with others? How many other hack-

ers/testers do you communicate with?
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A.3 Chapter 5: Interview protocol

A.3.1 App Background

To begin our discussion, I want you to think of a program that you recently

reverse engineered.

1. What was the name of the program? [If they’re not comfortable telling the

name, there are a few additional cues below]

(a) What type of functionality did the app provide? [Exs: Banking, Messag-

ing, Social Media, Productivity]

(b) Approximately, how many lines of code or number of classes did the app

have?

2. Why were you investigating this program?

3. Approximately, how long did you spend reverse engineering this app?

4. What tools did you use for your reverse engineering process? [Exs: IDAPro,

debugger, fuzzer]

5. Did you reverse engineer this app with other people?

(a) (If yes) how did you divide up the work?

244



A.3.2 Reverse Engineering Process

Next, we’ll talk about this app in more detail. If possible, I would like you

to open the program you searched the same way you did when you first started

investigating it. If you would like to share your screen with me, that would be

helpful for providing context, however, this is not necessary. Primarily, I want you

to open everything on your computer to help you remember the exact steps you

took when you searched the program.

[If they do share their screen] Also, if you are comfortable, I would like to

record this screen sharing session, so that we have a later reference.

Please walk me through how you searched the program. As you go through

your process, please explain every step you took, even if it was not helpful toward

your eventual goal. For example, if you decided to reverse engineer a specific class,

but realized it was not relevant to your search after reading the code, we would still

like to know that you performed this step. [a few cueing questions are provided

below to guide the conversation]

1. Where did you start?

2. What questions did you ask? How did you answer these questions?

A.3.3 Items of Interest

Decision Points. [Every time the participant had to decide between one or more
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actions during their process. Ex: Where to start? What test cases to try? Which

path to go down first? When to inspect a function?]

1. Record the decision that was made

2. How did you make this decisions? Explain your thought process

Hypotheses. [Every time the participant states a question they have to answer or

makes a conjecture about what they think the program (or component) does. Ex: X

class performs Y function. X data is transmitted off device, it’s using Y encryption]

1. Record the hypothesis or question asked

2. Why did you think this could be the case?

3. How did they (in)validate this hypothesis?

Beacons. [Every time the participant states recognizing the functionality of some

code without actually stepping through it. That is, they are able to notice some

pattern in the code and make some deductions about functionality based on this]

1. Record the beacon that was noticed

2. Why did this stand out to you? How were you able to recognize it?

3. How did you know that it was X instead of something else?

Simulation. [Every time the participant discusses looking at the code to determine

how it works]
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1. Record how they investigate the code.

(a) (If Automation) Do you use a custom tool or something open source/pur-

chased?

i. (If not custom) What tool do you use?

A. Does this tool provide the results you would want or does it fall

short in some way? [Ex: I actually want output X, but I get Y,

so I need to do these steps to get to X]

(b) Is this generally the approach you use?

i. (If no) Why here and not in other cases?

ii. (If yes) What advantage do you think this approach has over other

manual/automated investigation?

2. Please describe what’s going on in your head or the automation?

(a) What are the inputs and outputs?

(b) When do you know when to stop?

Resources. [Every time the participant discusses referencing some documentation

or information source external to the code]

1. Record what resource they used

2. Do you regularly consult this resource for information?
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3. What do you think the benefit of this resource is over other sources of infor-

mation? [Exs: Language documentation, Stack Overflow, internal documen-

tation]

A.4 Chapter 6: Interview Protocol

Over the past few months, we have been looking at several online capture-

the-flag competitions, wargames, and other security exercises with an educational

focus. For each exercise, we completed several challenges reviewing the content and

the way in which this information was presented to students.

Our goal was to see how each exercise is organized, focusing on features com-

monly recommended in the learning science and education literature. This includes

features related to connecting to the learner’s prior knowledge, the organization

of knowledge, providing active practice and feedback, encouraging metacognitive

learning, and establishing a supportive environment.

In this interview, I want to talk about each of these categories, the specific

dimensions of each, and how we viewed these as being applied in your exercise. We

have a few goals with this interview. The first is to make sure we have a clear

picture of your exercise. You know it much better than we ever will, so we want

to tap into your knowledge to make sure we’re not missing something. Second, we

want to understand more about why your exercise is organized the way it is. The

dimensions we’re looking at are recommendations, not requirements. As you’ll see,

they are many good things and exercise might have. We would expect an exercise
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to have some, but not all. So, in this interview, we want to get at why you decided

to include some, but not others.

A.4.1 General Organizational Questions

Before we begin going through our review, I have a few general questions about

your organization to help us better understand the context in which the exercise was

developed.

1. What lead you to create your exercise? That is, what was your main motiva-

tion in providing this educational platform?

2. Who is your target audience(s)?

A.4.2 Analysis Review

Moving on to our review of your exercise, now I’ll go through each core peda-

gogical principle and its dimensions. For each, I will give you our definition and our

decision and then get your response.

For each core principle and related dimension, we provided the interviewee with

the textual definitions given throughout Section 6.2

For each dimension coded No or Partial, we explained the reasoning behind

our decision and asked the following question progression:

1. Do you agree?

(a) If no: Why not?
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(b) If yes: Do you agree that this pedagogical dimension would be helpful to

students if implemented?

i. If no: Why not?

ii. If yes: Why did you choose not to implement it?

A. If they said it was too difficult: What are the challenges?

A.5 Chapter 7: Expert Review Survey

A.5.1 Instructions

Thank you for participating as an expert reviewer. Throughout this survey,

you will be shown a list of secure software development tasks we have collected

from several secure development guidelines and frameworks including NIST’s NICE

framework, Microsoft’s SDL, BSIMMs, and OpenSAMM.

For each secure development task, you will be asked to indicate whether you believe

the task is or is not actually a component of the secure development process. Specif-

ically, we care about tasks that have an effect on the end product software. These

tasks could be carried out by any member of the organization (e.g., programmer,

product manager, etc) at any phase of the development process (e.g., requirements,

design, implementation, etc), but must have an effect on the final code that is pro-

duced.

Through your review, we hope to remove any items from our list that may have

been incorrectly included. Additionally, we will ask if the task wording is clear. If

you find the text to be unclear or confusing, please briefly explain your confusion
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so that we can improve the statement’s clarity.

If there are any secure development tasks that you do not believe were covered,

please provide these at the conclusion of the survey so that they can be added to

our list.

Note, for this survey we ask that you consider each task listed independently. For

example, multiple tasks may reflect similar concepts. Please consider the adequate-

ness of each of these tasks separately. Additionally, the given order the tasks is

arbitrary. They are not meant to represent any sequential order of operations, but

instead are tasks that should be completed at some point in the secure development

process (in some cases multiple times).

A.5.2 Tasks

[Task description from Tables B.10-B.12]

1. Select the option below that best reflects the above task.

(a) Definitely a secure development task

(b) Probably a secure development task

(c) Probably not a secure development task

(d) Definitely not a secure development task

(e) Unsure

2. Did you find the text for the above task unclear or confusing?

(a) Yes. Please briefly explain what is confusing or unclear.

251



(b) No

A.5.3 Final Thoughts

1. Are there any secure software development tasks that we did not include?

Please list all such tasks below, each on its own line.

2. Do you have any other questions, comments, concerns, or suggestions for our

research team that were not addressed throughout the survey?

A.5.4 Demographics

1. Please specify your current (or most recent) job title.

2. How many total years of experience do you have with secure software devel-

opment?

3. Please specify the highest degree or level of school you have completed

(a) Some high school credit, no diploma

(b) High school graduate, diploma or equivalent (e.g., GED)

(c) Some college credit, no degree

(d) Associate’s degree

(e) Bachelor’s degree

(f) Master’s degree

(g) Doctoral degree
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4. If you are currently a student or have completed a college degree, please specify

your field(s) of study (e.g. Biology, Computer Science, etc).

A.6 Chapter 7: Main Survey

A.6.1 Instructions

Throughout this survey, you will be shown a list of software development tasks.

For each software development task, you will be asked to indicate your confidence

in your ability to complete the task.

Note that throughout we refer to your ability to perform each task with re-

spect to the system under development. Here, when we refer to the “system”, we

specifically mean the features you are involved in the design and implementation of.

This could be a single program or collection of programs. For example, If you work

on a specific set of features or an application that integrates with a large environ-

ment of programs, the “system” would only be those features or applications you

work on.

After indicating your confidence in completing each task, you will be asked to

answer a few additional questions regarding your decision-making.

Finally, you will be asked to answer a few demographic questions.

(Note: Only participants in the fourth step of the scale development process

were asked to answer additional scale questions)
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A.6.2 Tasks

Please rate your level of confidence in completing the software development

tasks given below.

[“I can” statements from Tables 7.1 and ??]

1. I am not confident at all

2. I am slightly confident

3. I am somewhat confident

4. I am moderately confident

5. I am absolutely confident

6. I do not understand the question

A.6.3 Demographics

1. How many total years of experience do you have with software development?

2. Have you ever identified a security error in yours or someone else’s code?

(a) Never

(b) Once

(c) Multiple times

3. Has anyone ever identified a security error in code you have written?
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(a) Never

(b) Once

(c) Multiple times

4. Have you ever worked with someone you would consider a secure development

expert?

(a) Never

(b) I have worked with one security expert

(c) I have worked with multiple security experts

5. How often do you communicate with security experts?

(a) Yearly

(b) Quarterly

(c) Monthly

(d) Weekly

(e) Daily

6. Have you ever discussed potential security problems with a secure development

expert?

(a) Never

(b) Once

(c) A few times
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(d) On a regular basis

7. Please select the range that most closely matches the amount of time you

typically spend performing software development tasks per week.

(a) ¡ 5 hours

(b) 5-10 hours

(c) 10-20 hours

(d) 20-30 hours

(e) 30-40 hours

(f) ¿ 40 hours

8. Please indicate the response below that most closely matches your software

development skill level:

(a) Expert (recognized authority)

(b) Advanced (applied theory)

(c) Intermediate (practical application)

(d) Novice (limited experience)

(e) Fundamental awareness (basic knowledge)

(f) Not applicable

9. Have you ever participated in any training related to software security (e.g.,

coursework, employer training, online exercises, etc)?
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(a) Yes

(b) No

(c) Not sure

10. Please select from the list of training types below, all the types of prior software

security training you have participated in:

(a) Academic coursework

(b) Certification

(c) Security conference

(d) Online exercises

(e) Employer training

11. Please specify the gender with which you most closely identify.

(a) Male

(b) Female

(c) Other

(d) Prefer not to answer

12. Please specify your age

(a) 18-29

(b) 30-39

(c) 40-49
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(d) 50-59

(e) 60-69

(f) Over 70

13. Please specify your ethnicity. Select all that apply.

(a) White

(b) Hispanic or Latino

(c) Black or African American

(d) American Indian or Alaska Native

(e) Asian, Native Hawaiian, or Pacific Islander

(f) Native Hawaiian or Pacific Islander

(g) Other

(h) Prefer not to answer

14. Please specify the highest degree or level of school you have completed

(a) Some high school credit, no diploma

(b) High school graduate, diploma or equivalent (e.g., GED)

(c) Some college credit, no degree

(d) Associate’s degree

(e) Bachelor’s degree

(f) Master’s degree

258



(g) Doctoral degree

15. If you are currently a student or have completed a college degree, please specify

your field(s) of study (e.g. Biology, Computer Science, etc).

16. Please select the response option that best describes your current employment

status.

(a) Working for payment or profit

(b) Unemployed

(c) Looking after home/family

(d) Student

(e) Retired

(f) Unable to work due to permanent sickness or disability

(g) Other

(h) Prefer not to answer

17. Please specify the range which most closely matches your total, pre-tax, per-

sonal income specifically from software development last year.

(a) < $999

(b) $1,000-$4,999

(c) $5,000-$14,999

(d) $15,000-$29,999
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(e) $30,000-$49,999

(f) $50,000-$74,999

(g) $75,000-$99,999

(h) $100,000-$124,999

(i) $125,000-$149,999

(j) $150,000-$199,999

(k) > $200,000

(l) Prefer not to asnwer
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Appendix B: Additional Data

B.1 Chapter 3: Additional Contest Details

To provide additional context for our results, this appendix includes a more

thorough breakdown of the sampled population along with the number of breaks

and vulnerabilities for each competition. Table B.1 presents statistics for sampled

teams, participant demographics, and counts of break submissions and unique vul-

nerabilities introduced divided by competition. Figure B.1 shows the variation in

team sizes across competitions.

B.2 Chapter 3: Additional Coding

We coded several variables in addition to those found to have significant effect

on vulnerability types introduced. This appendix describes the full set of variables

coded. Table B.2 provides a summary of all variables.

Hard to read code is a potential reason for vulnerability introduction. If team

members cannot comprehend the code, then resulting misunderstandings could

cause more vulnerabilities. To determine whether this occurred, we coded each

project according to several readability measures. These included whether the
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Contest Fall 14 (SL) Spring 15 (SL) Fall 15 (SC) Fall 16 (MD) Total

# Teams 10 42 27 15 94

# Contestants 26 100 86 35 247

% Male 46 % 92 % 87 % 80 % 84 %

% Female 12 % 4 % 8 % 3 % 6 %

Age 22.9/18/30 35.3/20/58 32.9/17/56 24.5/18/40 30.1/17/58

% with CS de-
grees

85 % 39 % 35 % 57 % 45 %

Yrs. program-
ming

2.9/1/4 9.7/0/30 9.6/2/37 9.6/3/21 8.9/0/37

Team size 2.6/1/6 2.4/1/5 3.2/1/5 2.3/1/8 2.7/1/8

# PLs known
per team

6.4/3/14 6.9/1/22 8.0/2/17 7.9/1/17 7.4/1/22

% MOOC 0% 100 % 91 % 53 % 76 %

# Breaks 30 334 242 260 866

# Vulns. 12 41 64 65 182

Table B.1: Participants demographics from sampled teams with the number of
breaks submitted and vulnerabilities introduced per competition. Some participants
declined to specify gender. Slashed values represent mean/min/max

project was broken into several single-function sub-components (Modularity), whether

the team used variable and function names representative of their semantic roles

(Variable Naming), whether whitespace was used support visualization of control-

flow and variable scope (Whitespace), and whether comments were included to sum-

marize relevant details (Comments).

Additionally, we identified whether projects followed secure development best

practices [58, pg. 32-36], specifically Economy of Mechanism and Minimal Trusted

Code.

When coding Economy of Mechanism, if the reviewer judged the project

only included necessary steps to provide the intended security properties, then the

project’s security was economical. For example, one project submitted to the se-

cure log problem added a constant string to the end of each access log event before
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Figure B.1: Histogram of team size by competition.

encrypting. In addition to using a message authentication code to ensure integrity,

they checked that this hardcoded string was unchanged as part of their integrity

check. Because removing this unnecessary step would not sacrifice security, we

coded this project as not economical.

Minimal Trusted Code was measured by checking whether the security-relevant

functionality was implemented in multiple locations. Projects passed if they cre-

ated a single function for each security requirement (e.g., encryption, access control

checks, etc.) and called it throughout. The alternative—copying and pasting code

wherever security functionality was needed—is likely to lead to mistakes if each code

segment is not updated whenever changes are necessary.
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Variable Levels Description Alpha

Modular T / F Whether the project is segmented
into a set of functions and classes
each performing

1

small subcomponents of the project

Variable
Naming

T / F Whether the author used variable
names indicating the purpose of
the variable

1

Whitespace T / F Whether the author used
whitespace (i.e., indentation and
new lines) to allow the reader

1

to easily infer control-flow and
variable scope

Comments T / F Whether the author included
comments to explain blocks of the
project

0.89

Economy of
Mechanism

T / F How complicated are the
implementations of security
relevant functions

0.84

Minimal
Trusted Code

T / F Whether security relevant functions
are implemented once or multiple
times

0.84

Table B.2: Summary of the project codebook.

B.3 Chapter 3: Regression Analysis

For each vulnerability type subclass, we performed a poisson regression [63, 67-

106] to understand whether the team’s characteristics or their programming deci-

sions influenced the vulnerabilities introduced. In this appendix, we provide an

extended analysis discussion, focusing on the full set of covariates in each initial

model, our model selection process, and the results omitted from the main paper

due to their lack of significant results or poor model fit.
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B.3.1 Initial Covariates

As a baseline, all initial regression models included factors for the language

used (Type Safety and Popularity), team characteristics (development experience

and security education), and the associated problem. These base covariates were

used to understand the effect of a team’s intrinsic characteristics, their development

environment, and the problem specification. The Type Safety variable identified

whether each project was statically typed (e.g., Java or Go, but not C or C++),

dynamically typed (e.g., Python, Ruby), or C/C++ (Type Safety).

For Misunderstanding regressions, the Bad Choice regression only included

the baseline covariates and the Conceptual Error regression added the library type

(Library Type). The project’s Library Type was one of three categories based on the

libraries used (Library Type): no library used (None), a standard language library

(e.g., PyCrypto for Python) (Language), or a non-standard library (3rd Party).

The No Implementation regressions only included the baseline covariates. Ad-

ditionally, since the Some Intuitive vulnerabilities only occurred in the MD problem,

we did not include problem as a covariate in the Some Intuitive regression.

In addition to the baseline covariates, the Mistake regression added the Min-

imal Trusted Code and Economy of Mechanism variables, whether the team used

test cases during the build phase, and the project’s number of lines of code. These

additional covariates were chosen as we expect smaller, simpler, and more rigorously

tested code to include less mistakes.
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B.3.2 Model Selection

We calculated the Bayseian Information Criterion (BIC)—a standard metric

for model fit [329]—for all possible combinations of the initial factors. To determine

the optimal model and avoid overfitting, we selected the minimum BIC model.

As our study is semi-controlled, there are a large number of covariates which

must be accounted for in each regression. Therefore, our regressions were only able

to identify large effects [85]. Note, for this reason, we also did not include any

interaction variables. Including interaction variables would have reduced the power

of each model significantly and precluded finding even very large effects. Further,

due to the sparse nature of our data (e.g., many languages and libraries were used,

in many cases only by one team), some covariates could only be included in an

aggregated form, limiting the analysis specificity. Future work should consider these

interactions and more detailed questions.

B.3.3 Results

Tables B.3–B.7 provide the results of each regression not included in the main

text.

Log

Variable Value Estimate CI p-value

Popularity C (91.5) 1.03 [0.98, 1.09] 0.23

*Significant effect – Base case (Estimate=1, by
definition)

Table B.3: Summary of regression over Bad Choice vulnerabilities. Pseudo R2

measures for this model were 0.02 (McFadden) and 0.03 (Nagelkerke).
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Log

Variable Value Estimate CI p-value

MOOC False – – –

True 1.76 [0.70, 4.34] 0.23

*Significant effect – Base case (Estimate=1,
by definition)

Table B.4: Summary of regression over Conceptual Error vulnerabilities. Pseudo
R2 measures for this model were 0.01 (McFadden) and 0.02 (Nagelkerke).

Log

Variable Value Estimate CI p-value

Yrs. Experience 8.9 1.12 [0.82, 1.55] 0.47

*Significant effect – Base case (Estimate=1, by def-
inition)

Table B.5: Summary of regression over All Intuitive vulnerabilities. Pseudo R2

measures for this model were 0.06 (McFadden) and 0.06 (Nagelkerke).

B.4 Chapter 5: Codebook

In this appendix, we list the final codebook used to analyze the content of

each interview. Our codebook was divided into six parts, reflecting our items of

interest discussed in Section 5.2.1. For each code, we give a short description where

necessary. Some codes were further divided into sub-codes to provide additional

specificity to our analysis. We indicate this hierarchical relationship by presenting

sub-codes in an indented bulleted list under their parent’s code.

B.4.1 Hypotheses

For each hypothesis, we coded both the justification or observation that led

to the formulation of a particular hypothesis (reason) and type of hypothesis the

formed (type).
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Log

Variable Value Estimate CI p-value

Problem SC – – –

SL 1.02 [0.98, 1.07] 0.373

*Significant effect – Base case (Estimate=1,
by definition)

Table B.6: Summary of regression over Some Intuitive vulnerabilities. Pseudo R2

measures for this model were 0.02 (McFadden) and 0.07 (Nagelkerke).

Log

Variable Value Estimate CI p-value

Problem SC – – –

MD 0.58 [0.25, 1.35] 0.21

SL 0.31 [0.15, 0.60] ¡ 0.001*

*Significant effect – Base case (Estimate=1, by
definition)

Table B.7: Summary of regression over Unintuitive vulnerabilities. Pseudo R2 mea-
sures for this model were 0.07 (McFadden) and 0.16 (Nagelkerke).

B.4.1.1 Reason

• Structure - The RE made their inference based on the structure of the data

reviewed. For example, ten digits separated by three dashes is probably a

phone number.

• Observed Behavior - The RE made a determination about program function-

ality after a full evaluation of the code or execution. That is, they did not rely

on outside information to determine the code functionality.

• Prior Experience - The RE made an inference about program behavior without

fully evaluating the code by drawing on similar past experiences.
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B.4.1.2 Type

• Vulnerability - The RE hypothesized that a particular code segment was vul-

nerability to exploitation.

• Function - The RE hypothesized what the behavior of a particular code seg-

ment was.

• Data Type or Purpose - The RE hypothesized what the type or purpose of a

variable or register was.

B.4.2 Question

• What is the observable behavior of the program? - The RE asked what in-

formation could be observed when running the program without using any

introspection tools (e.g., debugger, packet capture, etc.).

• What does the program do for input X? - The RE checks how the program

responds when provided with a specific input of interest.

• How is variable/register/constant X used? - The RE seeks to determine how

a specific value of interest is used by the program.

• What security controls are being used? - The RE asks what mitigations are

in place around the program to prevent exploitation (e.g., ASLR, DEP, etc.)

• What is the output of function/code X? - The RE seeks to determine the

possible output of a function or block of code of interest.
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• What is the possible value of variable/register X at point Y? - The RE seeks

to determine all possible values of a specific variable or register at a point of

interest in the program.

• What is the concrete value of variable/register X at point Y? - The RE seeks

to determine the value of a variable or register of interest at a specific point

in the program given a concrete trace of the program’s execution.

• Where are the strings/names related to X? - The RE seeks to find semantically

similar strings and variable or function names in the program related to a

concept of interest (e.g., encryption).

• What input leads to point X being reached? - The RE seeks to determine the

specific input that will cause a segment of code of interested to be executed.

• Can code at point X be reached? - The RE seeks to determine whether it is

possible for a segment of code of interest to be executed.

• How has the program changed over time? - The RE asks what changes to

the program’s code have been made between the current program version and

previous versions.

• What is the control flow path for input X? - The RE seeks to determine what

control flow path through the program is followed when an input of interest is

provided.

• What is the type of variable/register X? - The RE seeks to determine the type
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of data (e.g., string, integer, pointer, etc.) stored in a variable or register of

interest.

• What is the possible input to function X? - The RE seeks to determine all

possible inputs to a function of interest.

• What is the output of function X used for? - The RE seeks to determine how

a functions output is used. For example, is the data transmitted to another

device over the Internet and what is the reason for this transmission?

• What call/uses X (function, string, offset, register)? - The RE asks what other

functions call or use a particular item of interest.

• What does function/code X do? - The RE seeks to determine what the overall

behavior of a segment of code or function is.

• What does function X call? - The RE asks what other functions a function of

interest calls.

B.4.3 Beacon

• String - In the usual sense, meaning the primitive datatype indicating a series

of null terminated characters.

• API calls - In the usual sense, meaning function calls from external libraries.

• Low Level Operations - Individual assembly code operations and their param-

eters (e.g., mov or add).
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• Constants - In the usual sense, meaning primitives in the code that hold a

value that does not change.

• Variable Name - The name of a variable, which can provide hints about the

behavior of the program or the purpose of the variable.

• Operation Sequence -A specific order or sequence of some operations (e.g.,

API calls, assembly instructions, constants, etc.) that the RE that indicate a

particular behavior to the RE on first glance.

• Comments - Any comments left in the code by the developers. These may be

available if the RE has access to source code.

• Program Metadata - Meta information about the program itself such as the

number of lines of code.

• Function Prototype - In the usual sense, meaning the type that the function

returns, its name, and its parameters.

• UI element - Any element of in the UI of the program.

• Control Flow - A specific path through the program that is dictated by some

decided sequence of conditional branches.

• Program Flow - The position of a particular function or code segment in

relation to the broader order of behaviors. That is, the RE can make inferences

about a function or code segment’s behavior knowing that it comes before,

after, or in concert with other behaviors.
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B.4.4 Simulation Method

The simulation methods we observed were divided into three groups: dynamic

analysis, static analysis, and metadata review. In addition to coding these methods,

we also coded interactions of their use.

B.4.4.1 Dynamic Analysis

• Execute with specific input - Executing the program with input chosen with

some specific purpose or idea behind it.

• Execute in debugger to a certain point - Setting a breakpoint in the debugger

and executing.

• Manipulate environment - Running the program itself and altering outside

parameters (e.g., network state, files on disc, etc.) while observing how these

affect the program.

• Monitor dynamic behavior - Run the program with additional tooling (e.g.,

packet capture, file monitoring) to see how it interacts with its environment.

• Edit, recompile, and run - When an RE changes the source code, then runs it

to see what happens.

• Fuzzing - Providing a series of varied inputs to the program and observing

their effect on program behavior. These inputs can be selected manually or

using automation.
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• Compare to known implementation - Running a known implementation of

an algorithm used by the program (such as an encryption algorithm) and

comparing the known implementation’s results to the program’s results.

B.4.4.2 Static Analysis

• Read code line-by-line - The RE simply processes the state of the program in

their head by running through the code line-by-line.

• Scan beacons - Scanning through the code quickly and without much detail in

the interest of identifying important beacons.

• List function imports/strings - Listing out the functions imported or the

strings used in the program.

• Search for specific string - The RE checks to see if a specific string is used.

This is performed either manually (i.e., scrolling through and scanning the

code) or with the help of a search tool.

• List file metadata - Listing out the metadata of a specific file such as its size

or type.

• Review differences from prior releases - The RE looks at how the program has

changed from version to version.

• Reconstruct a data structure - The RE writes out a variable’s data structure

in psuedo-code by making inferences from the binary.
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• Control flow analysis - Analyzing some path through the code on specific

control flow inputs.

• Data flow analysis - Analyzing some path through the code by data as it is

passed between variables and through memory.

• Symbolic execution - The RE determines the set of symbols and expressions

representing possible values of data at a specific point in the program.

• Function call cross-referencing - The RE determines where a particular func-

tion is called in the code.

• Compare to known implementation - The RE compares the code they believe

is performing a particular algorithm or function to code from an outside source

that is known to perform that algorithm or function.

• Reimplementation - The RE writes a program to perform the behaviors they

believe the program under investigation is performing. They then compare

their implementation to the program under inspection to determine whether

they are the same or identify differences.

B.4.4.3 Metadata Review

• check security mitigations - Checking the security restrictions or mitigations.
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B.4.4.4 Method Interactions

• View static and dynamic representation together - When the RE views both

static and dynamic code representations on their screen at the same time. For

example, if they have a disassembler open reading code line-by-line side-by-side

with a debugger.

• Static to Dynamic - When the RE first uses a static method, then uses infor-

mation from this to inform the use of a dynamic method.

• Dynamic to Static - When the RE first uses a dynamic method, then uses

information from this to inform the use of a static method.

• Combined - When the RE uses dynamic and static methods in concert, con-

stantly passing information back and forth between static and dynamic meth-

ods.

B.4.5 Decision

For each decision point, we coded both the reasoning behind the RE’s decision

(reason) and type of decision the RE made (type).

B.4.5.1 Reason

• State of investigation - The RE makes a decision based on where they are

within the investigation process. For example, the RE may choose to list
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APIs called because that is always their first step when reverse engineering a

new program.

• Strategy - The decision is dictated by an overarching RE strategy. For exam-

ple, the RE may choose to look at functions in descending order according to

their size.

• Function prototype - The RE made a decision based on a function’s prototype

(input and output types, number of arguments, etc). For example, if a function

is passed a large number of function pointers as arguments, then it might be

starting many threads and would be interesting to investigate.

• Specific sub-goal - The decision was made because it was necessary to complete

some other task.

• Control flow path - The decision was dictated by the control flow path that

was currently being followed.

• Data flow path - The decision was dictated by the data flow path that was

currently being followed.

• Proximity to interesting information - The decision about some element was

made because it is physically nearby some interesting information in the code.

• Prior experience - The RE made their decision based on prior reverse engi-

neering experience.
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• Program metadata - The RE made their decision based only on program meta-

data.

• Observed behavior - The decision was made based on an understanding of

what the program was actually doing.

B.4.5.2 Type

• Function/code to analyze - Which code segments or functions to attempt to

analyze.

• Analysis inputs - Which inputs to use when performing a simulation method.

• Order of functions/code to analyze - The order in which the reverse engineer

analyzes portions of code or functions.

• Simulation method to use - Which simulation method to employ at that par-

ticular moment.

B.5 Chapter 6: Codebook

In this appendix, we provide the codebook used to categorize organizer deci-

sions for not fully implementing reviewed pedagogical principles.

• Does not fit our goals: The organizer considered implementing the dimen-

sion, but chose not to because it did not fit within the structure and intended

goals of the exercise.
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• Challenging: The organizers considered implementing the dimension, but

decided that implementation would be too difficult.

• Not considered: The organizers did not consider the dimension when de-

signing the exercise.

B.6 Chapter 6: Additional Dimensions

B.7 Chapter 7: Additional Data

In this appendix, we provide additional data that was not presented in the

main paper for space considerations. Specifically, this includes the distribution of

software development experience across participants assigned each additional scale

(Table B.9) and the set of initial items (with sources) generated through our review

of relevant frameworks (Tables B.10-B.12).
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HackthisSite [167]    #    

OverTheWire [304]        

Root-me.org† [266]        

Vulnhub† [142]        

Hacker101 [162]        

Hellbound
Hackers [165]

       

Smash the
Stack† [392]

    #   

Microcorruption
[156]

 # #  #   

Pwnable [375]   #  #   

Cyber Talents [98]        

XSS-Game† [150]  #  # #   

Backdoor [357]        

Crackmes.one† [350]   #  #   

CTFlearn [95]        

HackerTest [166] # #  # #   

Mr. Code† [217]    #    

IO Wargame [286]  # #  #   

† An organizer from this exercise was interviewed or responded via email to our review.

Table B.8: Dimensions of our pedagogical analysis not covered in Table 7.5. Each
column indicates whether an exercise implemented the pedagogical dimension fully
( ), partially (G#), or not at all (#).
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Scale 1-2 years 3-11 years > 11 years

CPSES 1 34 14

SA-6 6 30 12

SeBIS 4 34 12

GES 5 33 6

NFC 6 30 13

GDMS 8 29 15

Total 15 95 36

Table B.9: The distribution of participants’ software development experience who
were shown each additional scale.
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# Secure Development Task N1 B2 O3 S4 F5

A1 Determine security controls required for the program X X X
A2 Determine security objectives required for the program X X X
A3 Perform risk analysis (e.g., probability of successful attack

occurrence)
X X X X

A4 Identify potential threats to the program X X X X X
A5 Identify access points into the system (i.e., attack surface)

which could be used by an attacker
X X X X X

A6 Identify the common attack techniques used by potential threats
to the application

X X X X X

A7 Identify critical operational requirements which must continue
to function in the face of an attack or recover quickly
afterwards

X X X X

A8 Identify functions that handle sensitive data (e.g., Personally
Identifiable Information)

X X X X X

A9 Identify usage patterns (e.g., misuse, abuse of functionality)
that should be disallowed by the software’s design

X

A10 Analyze tradeoffs between cost and protection provided by
security controls

X

A11 Perform code signing (e.g., integrity checks on software) for
use in cryptographically verifying the authenticity of a module
or release

X

A12 Identify potential attack vectors associated with the program
under development

X X X X

A13 Identify potential attack vectors in environment the program
interacts with (e.g., hardware, libraries, etc)

X X X X

A14 Identify potential vulnerabilities in the operationalization of
software (e.g., human errors, cultural or political issues)

X X X

A15 Identify security vulnerabilities in others’ code X X X
A16 Identify common coding mistakes that create security

vulnerabilities
X X X

A17 Identify potential vulnerabilities as you write code X X
A18 Use automated code analysis tools to identify vulnerabilities X X
A19 Use software fuzzing tools to identify vulnerabilities X X
A20 Identify areas in program design where security risks might be

possible
X X

A21 Identify sections of code that might include security
vulnerabilities

X X

A22 Understand security issues and concerns associated with reused
code (e.g., third-party libraries, shared code)

X X

1 NICE, 2 BSIMM, 3 OSAMM, 4 SDL, 5 SAFECode

Table B.10: Initial secure development tasks identified through framework review.
The SAFECode framework was not included in the initial review, but added after
multiple expert recommendations.
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# Secure Development Task N1 B2 O3 S4 F5

A23 Apply applicable secure coding and testing standards X X X X
A24 Apply security principles (e.g., least privilege, layered defense)

into design of the program
X X X

A25 Utilize protocols that provide confidentiality X X X
A26 Utilize protocols that provide integrity X X X
A27 Utilize protocols that provide availability X X X
A28 Correctly implement authentication protocols X X X
A29 Utilize protocols that provide non-repudiation X X
A30 Leverage enterprise security services to mitigate vulnerabilities

(e.g., enterprise PKI)
X X

A31 Leverage enterprise security experts for help to fix vulnerable
code

X

A32 Design software to prevent potential vulnerabilities X X X X
A33 Rewrite software to remove software vulnerabilities X X X
A34 Design software to quarantine attacker if a vulnerability is

exploited
X X

A35 Write code to monitor and log program execution for later
review

X X X

A36 Write error handling code to alert for possible malicious
behavior

X X X

A37 Design software so that it fails gracefully in the face of attack X X
A38 Enumerate boundary conditions and mimic potential threats X X X X
A39 Assess that security requirements are met (e.g., through

security design and code reviews)
X X X

A40 Demonstrate the effectiveness of implemented security
mitigations

X X X X

A41 Evaluate security controls on interfaces to other software
systems the program interfaces with

X X

A42 Evaluate security controls on interfaces to other hardware
systems the program interfaces with

X X

1 NICE, 2 BSIMM, 3 OSAMM, 4 SDL, 5 SAFECode

Table B.11: Additional initial secure development tasks identified through frame-
work review. The SAFECode framework was not included in the initial review, but
added after multiple expert recommendations.
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# Secure Development Task N1 B2 O3 S4 F5

A43 Document security implications and assumptions of software so
that they are readable and actionable by future developers

X X

A44 Communicate security assumptions and requirements to other
developers to avoid vulnerabilities caused by misunderstandings

X X X

A45 Communicate program details with other developers to ensure a
thorough security review of the code

X

A46 Communicate with other internal teams the program integrates
with to understand how to securely interact with their systems

X X

A47 Discuss lessons learned from internal and external security
incidents so all team members are aware of potential threats

X

A48 Document the most important security and privacy error and
alert messages requiring user/operator attention

X

A49 Effectively communicate to company leadership the security
risks and/or security relevant information assumed when using
the program

X X X X

A50 Effectively educate customers on the security risks and/or
security relevant information assumed when using the program

X X X X

A51 Effectively communicate to company leadership the cost/risk
trade-off associated with deciding whether to fix identified
problems

X X X

A52 Effectively communicate to customers the cost/risk trade-off
associated with deciding whether patch their software

X X X

A53 Balance user functionality needs with security requirements X X
A54 Maintain awareness of security issues with new hardware and

software technologies and their potential implications
X X

A55 Maintain awareness of attack techniques used by a variety of
malicious actors (e.g., insiders, nation states, cyber criminals)

X

A56 Communicate functionality needs to security experts to get
recommendations for secure solutions (e.g., secure libraries and
languages)

X

A57 Know the appropriate point of contact/response team in my
organization to contact if a vulnerability in production code is
identified

X X

1 NICE, 2 BSIMM, 3 OSAMM, 4 SDL, 5 SAFECode

Table B.12: Additional initial secure development tasks identified through frame-
work review. The SAFECode framework was not included in the initial review, but
added after multiple expert recommendations.
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(Eds.). Academic Press, London, 205 – 222. DOI:http://dx.doi.org/https://doi.org/10.1016/

B978-0-12-350772-3.50018-5

[103] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig. 2018. Investigating
System Operators’ Perspective on Security Misconfigurations. In Proc. of the 25th ACM Conference
on Computer and Communications Security (CCS ’18). ACM.

[104] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2014. Explore-by-example: An Au-
tomatic Query Steering Framework for Interactive Data Exploration. In SIGMOD ’14. ACM, New
York, NY, USA, 517–528. DOI:http://dx.doi.org/10.1145/2588555.2610523

[105] Felix Dörre and Vladimir Klebanov. 2016. Practical Detection of Entropy Loss in Pseudo-Random
Number Generators. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’16). 678–689.
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Joosen. 2019. Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipulation. In
Proceedings of the 26th Annual Network and Distributed System Security Symposium (NDSS 2019).
DOI:http://dx.doi.org/10.14722/ndss.2019.23386
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