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This dissertation demonstrates the possibility of obtaining strong speedups for

a variety of parallel applications versus the best serial and parallel implementations

on commodity platforms. These results were obtained using the PRAM-inspired Ex-

plicit Multi-Threading (XMT) many-core computing platform, which is designed to

efficiently support execution of both serial and parallel code and switching between

the two.

Biconnectivity: For finding the biconnected components of a graph, we demon-

strate speedups of 9x to 33x on XMT relative to the best serial algorithm using a

relatively modest silicon budget. Further evidence suggests that speedups of 21x to

48x are possible. For graph connectivity, we demonstrate that XMT outperforms

two contemporary NVIDIA GPUs of similar or greater silicon area. Prior studies of

parallel biconnectivity algorithms achieved at most a 4x speedup, but we could not

find biconnectivity code for GPUs to compare biconnectivity against them.



Triconnectivity: We present a parallel solution to the problem of determining

the triconnected components of an undirected graph. We obtain significant speedups

on XMT over the only published optimal (linear-time) serial implementation of a

triconnected components algorithm running on a modern CPU. To our knowledge,

no other parallel implementation of a triconnected components algorithm has been

published for any platform.

Burrows-Wheeler compression: We present novel work-optimal parallel algo-

rithms for Burrows-Wheeler compression and decompression of strings over a con-

stant alphabet and their empirical evaluation. To validate these theoretical algo-

rithms, we implement them on XMT and show speedups of up to 25x for compres-

sion, and 13x for decompression, versus bzip2, the de facto standard implementation

of Burrows-Wheeler compression.

Fast Fourier transform (FFT): Using FFT as an example, we examine the

impact that adoption of some enabling technologies, including silicon photonics,

would have on the performance of a many-core architecture. The results show

that a single-chip many-core processor could potentially outperform a large high-

performance computing cluster.

Boosted decision trees: This chapter focuses on the hybrid memory architec-

ture of the XMT computer platform, a key part of which is a flexible all-to-all in-

terconnection network that connects processors to shared memory modules. First,

to understand some recent advances in GPU memory architecture and how they

relate to this hybrid memory architecture, we use microbenchmarks including list

ranking. Then, we contrast the scalability of applications with that of routines. In



particular, regardless of the scalability needs of full applications, some routines may

involve smaller problem sizes, and in particular smaller levels of parallelism, perhaps

even serial. To see how a hybrid memory architecture can benefit such applications,

we simulate a computer with such an architecture and demonstrate the potential

for a speedup of 3.3X over NVIDIA’s most powerful GPU to date for XGBoost, an

implementation of boosted decision trees, a timely machine learning approach.

Boolean satisfiability (SAT): SAT is an important performance-hungry prob-

lem with applications in many problem domains. However, most work on paral-

lelizing SAT solvers has focused on coarse-grained, mostly embarrassing parallelism.

Here, we study fine-grained parallelism that can speed up existing sequential SAT

solvers. We show the potential for speedups of up to 382X across a variety of problem

instances. We hope that these results will stimulate future research.
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Chapter 1: Introduction

Improvements in the performance of serial processors are reaching a limit due

to constraints on power consumption as a result of the end of Dennard scaling. In

response to this, computing vendors have produced parallel processors with increas-

ing numbers of cores, and programmers are now expected to employ parallelism in

their applications to obtain maximum performance. However, constraints imposed

by current computing architectures limit the improvement in performance that can

be achieved in many cases.

Despite these limits, current research focuses on off-the-shelf hardware, par-

ticularly multi-core CPUs and many-core GPUs. This has led to a chicken-and-egg

impasse where vendors look to existing benchmarks to guide architectural improve-

ments while those same benchmarks are built around the limitations of existing

hardware. As will be shown in this thesis, attempts to use such hardware to im-

prove the performance of applications beyond simple benchmark kernels have been

met with mixed success.

The purpose of this study is twofold: first, to show the speedups that can

potentially be obtained for a variety of applications given buildable hardware, and

second, to articulate the gap between what such applications require and what



existing architectures provide, with the goal of helping to guide the development of

future computing platforms. In order to break the above chicken-and-egg impasse,

we study the performance of these applications on an experimental architecture in

addition to commercial computers. This will help us to identify whether bottlenecks

we encounter are inherent to the algorithm or a result of architectural choices.

This study focuses on applications that are challenging for existing platforms.

They tend to exhibit fine-grained parallelism, which means that threads tend to be

short and access small units of data from memory. Furthermore, the parallelism

tends to be irregular, meaning that the number and length of threads, as well as the

memory access patterns, cannot be predicted in advance.

The experimental computer architecture used in this study is the Explicit

Multi-Threading (XMT1) general-purpose architecture [170], developed at the Uni-

versity of Maryland, which aims to improve single-task completion time and ease-of-

programming for parallel applications by supporting Parallel Random Access Model

(PRAM) programming [94, 104]. In particular, XMT was designed to efficiently sup-

port applications with fine-grained, irregular parallelism.

XMT currently has two embodiments: a 64-core FPGA prototype and a con-

figurable cycle-accurate simulator named XMTSim. XMTSim allows us to study

configurations of XMT that would require the same resources (such as silicon area,

power, and bandwidth to DRAM) as contemporary platforms for a fair compari-

son. To further support such comparison, we compare our code on XMT versus

results published by others on existing platforms where available to avoid biasing

1 Not to be confused with the code name Cray XMT used during 2007-2011

2



the results.

The applications in this study cover a variety of application domains and

use various data structures (trees, graphs, strings, vectors) and data types (integer

and floating-point). A common theme among all of the parallel algorithms studied

here is that each solves the same problem as the best serial algorithm for a given

application using asymptotically the same number of operations but with a lower

parallel depth.

The remainder of this thesis is organized as follows: Chapters 2 and 3 study

biconnectivity and triconnectivity, two advanced graph problems whose parallel al-

gorithms build upon simpler parallel primitives. Chapter 4 studies the Burrows-

Wheeler (BW) lossless data compression algorithm and evaluates its potential ap-

plication to improving effective network bandwidth. Chapter 5 studies the Fast

Fourier transform (FFT), a memory-intensive mathematical operation used in digi-

tal signal processing. Chapter 6 studies XGBoost, an implementation of the boosted

decision tree approach to machine learning; this chapter also examines the trend of

multi-core and GPU design towards the same hybrid memory architecture underly-

ing XMT. Chapter 7 studies Boolean satisfiability (SAT), which leads to articulating

the need to add efficient support of fine-grained nesting in XMT. Finally, Chapter

9 concludes.

3



Chapter 2: Graph biconnectivity

2.1 Introduction

Given an undirected graph G, two vertices u and v in G are in the same con-

nected component of G if there is a path connecting them, and the graph connectivity

problem is finding all connected components of an input graph G. The diameter of

a connected graph is the length of the longest path in the set of all shortest paths

between every pair of vertices in the graph.

Biconnectivity is a property of undirected graphs; an undirected graph G is

called biconnected if and only if it is connected and remains so after removing any

vertex and all edges incident on that vertex. A graph S is an induced subgraph of

G if it comprises a subset of the vertices of G and all the edges of G connecting

two vertices in S. A biconnected component of G is an induced subgraph of G that

is biconnected whose vertex set cannot be expanded while maintaining the bicon-

nectivity of its induced subgraph. A vertex whose removal increases the number

of connected components in the graph is called an articulation point, and an edge

whose removal increases the number of connected components is called a bridge. In

this chapter, the biconnectivity problem is understood as the problem of determin-

ing the biconnected components, articulation points, and bridges of an undirected



graph, and a biconnectivity algorithm is an algorithm that solves the biconnectivity

problem.

Connectivity is one of the most elementary graph problems. However, for

brevity we pay more attention to biconnectivity, the more advanced problem con-

sidered in this work. Biconnectivity is an interesting problem to study for two

reasons. First, the biconnected components of a graph can reveal useful informa-

tion about the graph. For instance, if the graph represents a computer network,

then a biconnected component of the graph is a subset of the network that will

remain connected even if one computer fails, and articulation points (or bridges)

are computers (or connections between computers) whose failure will disconnect the

network. Second, biconnectivity algorithms are relatively complex: they are among

the most advanced algorithms given in parallel algorithms textbooks and nearly the

most advanced in serial algorithms textbooks, and biconnectivity or simpler prob-

lems were the basis for papers on other parallel computing platforms. Complex

algorithms for natural problems may be better predictors of system behavior than

the often used small kernels.

In serial computing, depth-first search is regarded as the best biconnectivity

algorithm. However, power constraints impose a limit on the maximum performance

of serial processors, and parallel processors are becoming the only way to improve

performance. Therefore, it is desirable to find an efficient parallel biconnectivity

algorithm. When it comes to programming parallel algorithms it is often the case,

more so than with serial algorithms, that there is no single algorithm that performs

best in all cases (for example, see [43]). Instead, the best algorithm to use could
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be sensitive to the computing platform and the properties of the input data. In the

PRAM theory of parallel algorithms, the two main performance parameters of an

algorithm (assuming synchronous execution and availability of as many processors as

needed at each step of the algorithms) are: (i) work – the total number of operations

performed by an algorithm, and (ii) depth – its number of steps. In the case of graph

algorithms, the performance of a given algorithm may depend not only on the size

of the input graph, but other properties of the input as well, such as the ratio of

edges to vertices or the diameter of the graph.

Given a platform, this suggests viewing all non-dominated biconnectivity al-

gorithms as a “collage” composed of “patches”, where each patch represents a par-

ticular biconnectivity algorithm and the whole collage is a complete solution to the

biconnectivity problem.

To demonstrate this approach, we evaluate three biconnectivity algorithms on

the Explicit Multi-Threaded (XMT)1 architecture developed at the University of

Maryland. Because XMT is an experimental platform, we validate it by comparing

it to a better established platform that uses similar silicon area, the NVIDIA GPU.

We compare XMT to the GTX 280 (based on the older Tesla architecture) and

the GTX 480 (based on the newer Fermi architecture) on significant portions of the

biconnectivity algorithms for which optimized CUDA code has already been written

by other programmers.

A 1024-core version of XMT, which would use a silicon area between that

of one and two quad-core Intel Core i7 920 processors, demonstrated cycle count

1 Not to be confused with the Cray XMT
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speedups of 9x to 33x on biconnectivity relative to a serial biconnectivity algorithm

running on the Core i7 920, and further evidence suggests that speedups of 21x to

48x are possible when the investment in the design of the parallel processors matches

that of the serial processor. The quantitative contributions of this chapter include

• stronger speedups than in prior parallel biconnectivity studies (9x to 33x vs.

≤4x) across a varied family of graphs and

• stronger speedups on parallel connectivity than GPUs of similar or greater

area (between 2x and 4.9x faster than the GTX 480).

Since Cong and Bader [36] appears to provide the most relevant prior work,

we discuss the significance of the contributions by relating it to their discussion of

the challenges they faced with adopting the Tarjan-Vishkin parallel biconnectivity

algorithm to a 12-processor SMP. Cong and Bader noted that: (i) the TV algo-

rithm is representative of many parallel algorithms that take drastically different

approaches than the sequential algorithm to solve certain problems, and it employs

basic parallel primitives such as prefix sum, pointer jumping, list ranking, sorting,

connected components, spanning tree, Euler-tour construction and tree computa-

tions, as building blocks; (ii) while prior studies demonstrated reasonable parallel

speedups for these parallel primitives on SMPs, they left unclear whether an im-

plementation using these techniques achieves good speedup compared with the best

sequential implementation because of the cost of parallel overheads encountered (i.e.,

of resorting to using all these primitives in the first place instead of doing DFS with

a stack, per Hopcroft and Tarjan’s original serial algorithm); (iii) looking at the
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whole algorithm rather than at individual primitives allows focusing on algorithmic

overhead instead of communication and synchronization overhead; considering one

primitive at a time tends to focus on input representations that do not necessar-

ily fit together when used by a single algorithm; converting representations is not

trivial, and incurs a real cost in implementations; and (iv) direct implementation

of TV on SMPs fell behind the sequential implementation even at 12 processors.

Their conclusion was to follow the major steps of TV, but use different approaches

for several of the steps, guided by the challenge of reducing the overheads of TV in

order to get ahead of the sequential implementation on the 12-processor SMP.

Our goal is different. While reducing overheads remains important, we try to

stay much closer to the original PRAM description of TV taking advantage of the

scalable XMT platform that was engineered to accommodate that. It is remarkable

that XMT manages to get the strong speedups reported with such a relatively

modest silicon budget. Also, our implementation demonstrates for the first time

the potential advantage of enhancing XMT by supporting in hardware more thread

contexts, perhaps through context switching between them. Namely, the significance

of the contributions is

• new evidence supporting the practicality of algorithms derived from parallel

random-access machine (PRAM) algorithmic theory for speedups and ease-of-

programming,

• new evidence demonstrating the advantages of the XMT architecture for the

same, and
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• the demonstration of a synergistic approach to the design of algorithms and

architectures.

The results presented herein are specific to graph connectivity and biconnec-

tivity. Other papers [28, 29] show similar or better speedups for other graph and

non-graph problems on XMT. Admittedly, these results do not (and cannot) estab-

lish the advantage of XMT for all possible tasks for which one might want to use a

general-purpose computer. However, the importance of this work goes a bit beyond

just providing one more point of reference. In a similar way that performance, effi-

ciency and effectiveness of a car should not be tested only in first gear, productivity

horizons of programming parallel algorithms on a given platform cannot only be

studied using elementary algorithms. Graph connectivity problems provide a test

case for a proverbial low gear with the more basic graph connectivity algorithms,

and higher gear with more advanced graph algorithms for biconnectivity. This and

other papers will enable more informed judgment on the overall relative produc-

tivity of various approaches. Such documented comparisons will reduce the risk to

vendors, allowing them to make better decisions regarding platforms they may want

to build.

2.1.1 Related Work

Although no studies of biconnectivity algorithms have previously been pub-

lished for many-core processors, [36] examines such algorithms on a symmetric mul-

tiprocessor (SMP). Also, list ranking and connected components algorithms, two

major components of the Tarjan-Vishkin biconnectivity algorithm, are examined in
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[11] on an SMP and on the Cray MTA.

Another parallel framework that bears limited resemblance to the many-core

platforms evaluated here is MapReduce, which uses large clusters of computers

to take advantage of massive parallelism in very large problems. This approach

was used for estimating the diameter of large graphs in [97], and the potential to

adapt PRAM algorithms into computationally feasible MapReduce algorithms was

discussed in [99]. However, the applicability of MapReduce to high-end many-core

platforms is not clear and the algorithms examined in this chapter are not necessarily

optimal for use in distributed systems such as MapReduce.

2.2 Evaluated Algorithms

Given a graph with n vertices and m edges, the biconnectivity problem can

be efficiently solved on a serial computer in O(n + m) time with an algorithm by

Hopcroft and Tarjan [90] that performs a depth-first search (DFS) on the graph.

This algorithm does not appear to have an efficient, poly-logarithmic-time imple-

mentation [139]. It is possible to extract some parallelism from this algorithm using

the approach outlined in Exercise 36 in [163], and the resulting algorithm, which we

will refer to as parallel DFS (pDFS), runs in O(n) time using dm/ne+ 1 processors.

The main weakness of this algorithm is that the amount of parallelism available

depends on the m/n, the “density” of the graph: vertices are processed in serial,

and the parallelism available at a vertex is limited by its degree. This algorithm

provides little to no parallelism for sparse graphs, where m/n is small.
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A more scalable alternative is a biconnectivity algorithm given by Tarjan and

Vishkin in [156] that runs in O(log n) time using O(n + m) processors. The theo-

retical running time of this algorithm depends only on the size of the graph, not on

its structure. This scalability comes at a cost, however: the Tarjan-Vishkin (TV)

algorithm performs more operations per vertex and per edge than are required by

the serial algorithm or pDFS. Thus, TV may be outperformed by other algorithms

in certain situations despite being asymptotically more efficient, especially when

running on computer hardware supporting a modest amount of parallelism (e.g. a

4- or 8-core processor).

In these situations, it may be worth modifying TV to be more work efficient.

TV is a modular algorithm that calls upon parallel algorithms for simpler problems

to do its work. The most significant of these in terms of running time is an algo-

rithm to compute the connected components of an undirected graph (connectivity

algorithm). To obtain the complexity bounds in [156], Tarjan and Vishkin used a

variation of the Shiloach-Vishkin (SV) connectivity algorithm [145], which runs in

O(log n) time using O(n + m) processors. This algorithm is efficient in asymptotic

terms, but its running time has a large constant factor due to the need to revisit ver-

tices and edges multiple times throughout the algorithm. In some cases, it may be

beneficial to use another connectivity algorithm, such as breadth-first search (BFS),

in place of SV.

In this chapter, we evaluate three biconnectivity algorithms, which we describe

below: parallel depth-first search and two versions of the Tarjan-Vishkin algorithm,

one using the SV connectivity algorithm and another using BFS in addition to SV.
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2.2.1 Input and Output

The input to a biconnectivity algorithm is an undirected graph G = (V,E)

with n = |V | vertices and m = |E| edges. Without loss of generality, we assume that

G is connected; if not, the biconnectivity problem can be solved for G by applying a

biconnectivity algorithm to each connected component of G. To allow using directly

the three biconnectivity algorithms, the input graph is given in the following format:

• Each undirected edge (u, v) in E is represented as a pair of antiparallel directed

edges, u → v and v → u. These 2m directed edges are stored in an array

edges[2m] sorted by the first endpoint.

• For each directed edge edgesi = u → v in edges, an array antiparallel[2m]

stores the index j of its antiparallel copy edgesj = v → u such that antiparalleli =

j and antiparallelj = i.

• An array vertices[n] stores indices into the edges array such that, if vertices[u] =

i , then edgesi is the first edge in edges whose first endpoint is u.

• An array degrees[n], where degreesv is the degree of vertex v.

Given the data listed above, the algorithm is expected to produce the following

output:

• An array bcc[2m] that identifies the biconnected component to which each

edge belongs such that for any pair of edges edgesi and edgesj, bcci = bccj if

and only if edgesi and edgesj are in the same biconnected component.
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• An array artic points[a], 0 ≤ a ≤ n of all the articulation points in G.

• An array bridges[b], 0 ≤ b ≤ 2m of the indices in edges of all the bridges in G.

2.2.2 Parallel Depth-First Search (pDFS)

The intuition behind pDFS is that, although vertices cannot be visited in

parallel without potentially violating the order required by a depth-first traversal,

edges can be. Initially, all edges are considered active. Whenever a vertex is visited

in the DFS traversal, all edges leading to that vertex are canceled, or removed from

the set of active edges. Only active edges are considered when checking for adjacent

vertices. Given an input graph in the format described in section 2.2.1, a parallel

version of the standard DFS algorithm proceeds as follows:

1. For each vertex v, create a doubly-linked list of its incident edges.

• Using one thread per vertex, create an array head[n] such that headv is

the index of the first active edge in edges originating from v, or −1 if no

such edge exists. Initially, all edges are active, so headv ⇐ verticesv if

degreesv > 0 and headv ⇐ −1 otherwise.

• Using one thread per edge, create the arrays next[2m] and prev[2m] such

that nexti and previ are the indices in edges of the next and previous

active edges, respectively, that originate from the same vertex as edgesi,

or −1 if no such edge exists. Initially, nexti ⇐ i + 1 and previ ⇐ i − 1

with the following exceptions: previ ⇐ −1 if edgesi is the first edge in

edges that shares its origin and nexti ⇐ −1 if it is the last such edge.
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This list contains all of the active edges originating from v.

2. Define the procedure dfs(v) as follows:

(a) In parallel, for every edge edgesi originating from v, remove edgesj =

w → v, where j = antiparalleli, from the doubly-linked list in which it

is contained:

• if prevj 6= −1 then next[prevj]⇐ nextj else headw ⇐ nextj

• if nextj 6= −1 then prev[nextj]⇐ prevj

(b) While headv 6= −1, invoke dfs(w), where v → w = edges[headv].

3. Invoke dfs(r) for some arbitrary vertex r

In order to use DFS to solve the biconnectivity problem, we need two pieces of

information about each visited vertex v: its preorder number, prev; and the smallest

preorder number seen while performing DFS on v and its descendants, lowv. In serial

DFS, prev can be computed by keeping track of the number of vertices visited so

far in a global variable count. Every time a new vertex v is visited, prev is set to

count, and then count is incremented by 1. The value of lowv is determined by

initializing lowv to prev upon entering v and updating lowv after (re)visiting a child

w as follows: lowv ⇐ min(lowv, loww).

In pDFS, prev can be computed the same way because the vertices are still

visited serially. However, lowv cannot be because, unlike in serial DFS, visited

vertices are never revisited since all edges leading to a visited vertex are always

canceled. The key observation that allows us to compute lowv in parallel is the
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following: the final value of lowv is not needed until returning from the visit to v.

Therefore, lowv can be computed just before returning from v as follows: lowv ⇐

min(prev,minw∈children(v)(loww)). The remainder of the pDFS algorithm is identical

to its serial counterpart.

2.2.3 Tarjan-Vishkin (TV)

The Tarjan-Vishkin biconnectivity algorithm [156] is a PRAM algorithm that

was designed as a scalable alternative to DFS. It uses the same principle as the

DFS biconnectivity algorithm:3: two edges in a graph are in the same biconnected

component if and only if they are on a common simple cycle. However, TV can use

any spanning tree, and it performs an Euler tour of the spanning tree to compute

information equivalent to that computed in the DFS biconnectivity algorithm. (An

Euler tour of a graph is a cycle that visits every vertex in the graph and visits every

edge exactly once.) Given an input graph G, TV proceeds as follows:

1. Use a parallel connectivity algorithm to find a spanning tree T of G.

2. Compute an Euler tour of T ′, where T ′ is formed by replacing every undirected

edge in T with a pair of antiparallel directed edges. This results in a linked

list L of edges in T ′.

3. Perform list ranking [43] on L to determine the distance of each edge from the

end of the Euler tour. Use these distances to determine for each vertex v in

T (1) the preorder prev of v in T and (2) the size sizev of the subtree of T

rooted at v.
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4. For each vertex v, compute lowv and highv. These are the lowest and highest

preorder numbers, respectively, of the vertices in the set consisting of v, the de-

scendants of v, and all vertices that are adjacent to v or one of its descendants

by an edge in G− T .

5. Construct an auxiliary graph G′, where the vertex set of G′ equals the edge

set of T and the edge set of G′ is constructed as follows, where p(v) denotes

the parent of v in T and v → w denotes an edge in T such that v = p(w):

• for each edge {v, w} in G − T , add {{p(v), v}, {p(w), w}} to G′ if and

only if v and w are unrelated in T and

• for each edge v → w in T , add {{p(v), v}, {v, w}} if and only if loww < v

or highw ≥ v + sizev.

6. Compute the connected components of G′. This defines an equivalence relation

on the edges of T such that a pair of edges in T are in the same connected

component of G′ if and only if they are in the same biconnected component

of G.

7. Extend the equivalence relation on the edges of T to the edges of G − T by

defining {v, w} equivalent to {p(w), w} for each edge {v, w} of G − T such

that prev < prew.

8. Identify the bridges in G, which are the edges v → w of T such that loww and

highw are both descendants of w.
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9. Identify the articulation points in G, which are the vertices of G that exist in

more than one biconnected component of G.

In steps (1) and (6), any connectivity algorithm may be used without affecting

the correctness of the overall biconnectivity algorithm. The version of this algorithm

originally described by Tarjan and Vishkin uses the SV connectivity algorithm; we

refer to this version simply as the Tarjan-Vishkin (TV) biconnectivity algorithm.

Our implementation of TV on XMT merits some discussion since it is path-

breaking effort towards dual validation of the XMT platform and PRAM algorith-

mics. Originally inspired by PRAM algorithmics and its complexity analysis, the

long-term objective of the XMT platform was to revisit the more advanced PRAM

algorithms and show that their merit transcends theory. Each PRAM algorithm

whose implementation beats the competition for the respective problem it addresses

would constitute partial accomplishment of this objective. We are not aware of any

prior implementation of a biconnectivity algorithm on XMT or any similar plat-

form. Only the concomitant work [28] represents implementation of an algorithm of

similar complexity on XMT.

Implementation The high-level description given in the original paper [156] focuses

on achieving complexity results, requiring us to find an implementation that provides

good performance. In contrast to [36], we leave the core algorithm as is without

reducing its available parallelism, but we choose an implementation that minimizes

the amount of work done by the algorithm. In steps (1) and (6), we compact the

adjacency list every few iterations as more vertices are discovered to be in the same

17



connected component. In step (3), we accelerate the iterations by choosing faster but

more work demanding list ranking algorithms for different iterations (“accelerating

cascades”, [33]). Also, to save work we transition as many computations as possible

from the original input graph to the spanning tree.

The following insights were observed in programming the TV PRAM algo-

rithm. They attest that the practical challenge of effectively programming this

theoretical parallel algorithm has a similar flavor to the practice of programming

serial algorithms and are much simpler than parallel programming approaches such

as [39] with their requirements for decomposition, assignment, orchestration and

mapping.

1. Although the same connectivity algorithm is used in steps (1) and (6), it

is worthwhile to code two variants of it: one that saves the spanning tree

computed by the connectivity algorithm and one that does not. These two

versions take different approaches to handling the arbitrary concurrent writes

that result when multiple vertices try to hook on the same vertex. The version

that saves the spanning tree needs to know which of the writes succeeded in

order to know which edge should be added to the spanning tree. On XMT, this

is accomplished by performing a prefix sum to memory on a gatekeeper array.

On the other hand, if the spanning tree is not needed, then it is not necessary

to know which processor succeeded, and this extra work can be avoided, as

the connectivity algorithm is in the common CRCW model.

2. The best data structure for storing the spanning tree is the same one as used
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for the input graph. This can be derived from the output of step (1) in

the following way. Step (1) produces an array T with one entry per edge

in the input graph where entry i is 1 if edge i is in the spanning tree and

0 if it is not. The edge list for the spanning tree should be produced by

the standard order-preserving PRAM compaction algorithm. The remaining

arrays (vertices, degrees, and antiparallel) can then be trivially derived from

the corresponding arrays in the input graph. If we use instead a platform-

specific optimization (such as prefix sum to registers on XMT) to create the

edge list, then we will not be able to derive the necessary tree data structure

from the input graph, and it will be difficult to implement the rest of the

biconnectivity algorithm (especially the Euler tour) efficiently.

3. Depending on the platform, it may be worthwhile to explicitly relabel the

vertices in the graph after rooting the spanning tree by creating a new edge

array where the entry corresponding to the edge (u, v) contains the entry

(preorder(u), preorder(v)). This is an expensive operation up front, but it

can save more time in later steps of the algorithm when compared to the

alternative of accessing the preorder array each time a relabeled vertex number

is needed.

4. When computing global low and high numbers for each vertex, it is neces-

sary to find the minima/maxima of some subarrays of preorder numbers. The

PRAM algorithms for doing this first find prefix minima/maxima and suffix

minima/maxima relative to subarrays that occur naturally as a result of using
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a balanced binary tree over an array representing an Euler tour. It has been

observed in [162] that a balanced k-ary tree will be more efficient in practice

than a balanced binary tree with the exact k depending on the specific machine

at hand. Replacing a binary tree by such a k-ary tree generates different subar-

rays. This implies finding prefix minima/maxima and suffix minima/maxima

relative to these subarrays, and to retrieving low and high numbers from them.

2.2.4 Tarjan-Vishkin with a BFS Spanning Tree (TV-BFS)

For some inputs, better performance can be obtained using a connectivity al-

gorithm with worse asymptotic time bounds but a lower constant factor on work,

such as breadth-first search (BFS). BFS naturally lends itself to a parallel imple-

mentation, and such an implementation runs in O(h log n) time and O(n+m) work,

where h is the number of layers in the BFS traversal of the graph [50]. The value of

h depends on the size and shape of the graph as well as the starting vertex for the

traversal, and it can be as large as the diameter of the graph. Notably, for graphs

with a diameter that is O(log n), BFS runs in poly-logarithmic time and thus is an

asymptotically efficient parallel algorithm. Even on graphs with somewhat larger

diameters, BFS can run more quickly than SV due to its lower constant factor,

but for graphs with a large diameter relative to the number of vertices (long, thin

graphs), there is too little parallelism available for BFS to be efficient.

In theory, BFS can be used in place of SV for computing both the spanning

tree of the original graph and the connected components of the auxiliary graph.

However, the most natural representation for the auxiliary graph generated by TV

20



is a list of edges in arbitrary order. This representation is not suitable as input to

BFS, which requires the graph to be represented as an adjacency list. Therefore,

BFS cannot be used to find the connected components of the auxiliary graph as

is. It is possible to convert the edge list produced by TV to an adjacency list, but

doing so requires sorting the edge list, which reduces or eliminates the benefit of

using BFS in place of SV, so we do not consider it further. If the input to the

biconnectivity algorithm is in the proper format, BFS can be used in place of SV to

find the spanning tree of the input graph, and we call this variation TV-BFS.

2.3 Evaluated Platforms

We briefly review relevant specifics of the computing platforms on which our

experiments are performed. A more detailed overview can be found in [29]. Speci-

fications of the specific configurations evaluated can be found in Table 2.1.

2.3.1 GPUs

Though not originally designed for general-purpose computing, modern graph-

ics processing units (GPUs) are capable of being used as highly parallel computing

platforms; this usage of GPUs is referred to as general-purpose GPU (GPGPU).

Examples of prevalent GPGPU architectures include Tesla and Fermi, both by

NVIDIA. GPUs based on the Tesla architecture are widely used, and there are

many parallel applications available to run on them. GPUs based on the Fermi

architecture are newer, and there are fewer applications optimized specifically for
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GTX 280 GTX 480 XMT-1024 XMT-2048
Principal Computational Resources
Cores 240 SP 480 SP 1024 TCU 2048 TCU

Integer Units 240 ALU 480 ALU 1024 ALU, 1024 ALU,
+MDU +MDU 64 MDU 64 MDU

(Floating Point 240 FPU, 480 FPU, 64 FPU 64 FPU
Units)a 60 SFU 60 SFU
On-chip Memory
Registers 1920KB 1920KB 128KB 256KB
Prefetch Buffers - - 32KB 64KB
Regular caches 480KB 1728KBb 4104KB 4104KB
Constant cache 240KB 120KB 128KB 128KB
Texture cache 496KB 120KB - -

a None of the algorithms in this chapter use the floating-point units.
b 64KB configurable shared memory/L1 cache per SM and 768KB unified L2 cache

Tab. 2.1: Specifications of the platforms evaluated in the experiments (1 KB = 1024
bytes, SP = Streaming Processor, TCU = Thread Control Unit, ALU = Arith-
metic/Logic Unit, MDU = Multiply/Divide Unit, SFU = Special Function Unit)

them, though they are backward compatible with applications written for the Tesla

architecture.

The Tesla architecture consists of a number of Streaming Multiprocessors

(SMs) connected to a number of DRAM controllers and off-chip memory through an

interconnection network. An SM consists of a shared register file, shared memory,

constant and instruction caches, special function units (SFUs), and a number of

streaming processors (SPs) with integer and floating point ALU pipelines. SFUs

are 4-wide vector units that can handle complex floating-point operations.

With respect to biconnectivity algorithms, which do not use floating-point

operations, the main advantage of the Fermi architecture over Tesla is the addition

of L1 and L2 caches. In Fermi, each SM has 64 KB of memory, which can be split

into shared memory and L1 cache in one of two ways: 48 KB shared memory and

16 KB L1 cache or 16 KB shared memory and 48 KB L1 cache [3]. There is also a
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768 KB L2 cache shared by all the SMs.

For more information about Tesla, see [112], and for Fermi, see [128].

2.3.2 XMT

The Explicit Multi-Threading (XMT) general-purpose computer architecture

is designed to improve single-task completion time. It does so by supporting pro-

grams based on Parallel Random-Access Machine (PRAM) algorithms but relaxing

the synchrony required by the PRAM model. The XMT programming model differs

from the strict PRAM model in two ways:

1. The PRAM model requires specifying the instruction that will be executed by

each processor at each point in time, but XMT uses the work-depth methodol-

ogy [146], which allows the programmer to specify all of the operations that can

be performed at each point in time while leaving to the runtime environment

the assignment of those operations to processors.

2. The PRAM model requires instructions to be executed in lockstep by all pro-

cessors at once, but XMT programs follow independence-of-order semantics:

parallel sections of code are delimited by spawn-join instruction pairs, and

threads only synchronize when they reach the join instruction at the end of

the parallel section.

The XMT architecture consists of the following: a number of lightweight cores

(TCUs) grouped into clusters, a single core (master TCU or MTCU) with its own

local cache, a number of mutually-exclusive cache modules shared by the TCUs and
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MTCU, an interconnection network connecting the TCUs to the cache modules, and

a number of DRAM controllers connecting the cache modules to off-chip memory.

Each TCU has a register file, a program counter, an execution pipeline, and a

lightweight ALU. Each TCU also contains prefetch buffers, which can be used by

the compiler to prefetch data from memory before it is needed, reducing the length

of the sequence of round trips to memory (LSRTM) and improving performance

[162]. Each cluster has one or more multiply/divide units (MDUs), floating-point

units (FPUs), and a compiler-managed read-only cache, all of which are shared by

the TCUs within the cluster. When a parallel section of code is reached, the MTCU

broadcasts the instructions in that section to all of the TCUs, and each TCU stores

the instructions in a buffer. Virtual threads are assigned to TCUs using a dedicated

prefix-sum network.

As noted, a more detailed overview of XMT and the GTX 280 can be found

in [29].

2.3.3 Evaluated configurations

The Tesla and Fermi architectures are used in commercially-available products.

Therefore, we do not need to establish the practicality of their implementation. We

choose the GTX 280 GPU, based on the Tesla architecture, and the GTX 480, based

on the Fermi architecture, to represent their respective architectures.

Because XMT is an experimental platform, we establish that XMT is compet-

itive with single-chip multi-cores and many-cores currently available on the market

by choosing a configuration of XMT that would use resources comparable to the
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GTX 280, the less resource-intensive of the two GPUs evaluated. The GTX 280

uses 576 mm2 of silicon in 65 nm technology, and according to [29], a 1024-TCU

configuration of XMT would use a comparable silicon area. The GTX 480 uses

529 mm2 of silicon in 40 nm technology and contains more SPs and memory than

the GTX 280. Therefore, it can be argued that a 1024-TCU configuration of XMT

(XMT-1024) would use at most 529 mm2 of silicon, and likely less, in 40 nm tech-

nology. The 45-nm Intel Core i7 920 quad-core processor, which uses 263 mm2 of

silicon, is half the area of the GTX 480. This places an upper bound on the area

of XMT-1024; a lower bound of 576mm2 ×
(
45nm
65nm

)2
= 276mm2 can be found by

assuming ideal scaling from 65 nm to 45 nm. In summary, XMT-1024 would use

• about the same area as the GTX 280, while remaining in the same power

envelope [102],

• less area than, or at worst the same area as, the GTX 480, and

• an area somewhere between that of one and two Core i7 920 quad-core pro-

cessors.

To determine the sensitivity of the biconnectivity algorithms to the number of

concurrent hardware threads, we also consider a configuration of XMT identical to

XMT-1024 with the exception of having twice as many TCUs per cluster; we call

this configuration XMT-2048. We do not attempt to argue here that the silicon area

of XMT-2048 matches the aforementioned GPUs but merely use it as a reference

point.
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To collect cycle counts for programs executed on the XMT-1024 and XMT-

2048 configurations, we used XMTSim, the cycle-accurate simulator of the XMT

architecture. XMTSim and the XMTC compiler are described in [100] and have

already been the basis for several publications including [29].

2.4 Experimental Evaluation

2.4.1 Tested Graphs

Data set Vertices Edges Average Diameter
Degree Min. Max.

1kv-500ke-complete 1,000 499,500 999.00 1 1
20kv-5me-random 20,000 5,000,000 500.00 2 4
1mv-3me-planar 1,000,002 3,000,000 6.00 333,333 333,333
USA-road-d.LKS 2,758,119 3,397,404 2.46 3,240 6,480
web-Google-con 855,802 4,291,352 10.00 15 30

Tab. 2.2: Properties of the graphs used in the experiments. For graphs whose diameter is
not known, lower and upper bounds are given based on the number of layers in
a BFS traversal of the graph.

In our experiments, we use three synthetic graphs and two graphs derived from

real-world data. Properties of these graphs are given in Table 2.2. The synthetic

graphs are as follows:

• 1kv-500ke-complete: The complete graph of 1,000 vertices (and ∼500,000

edges)

• 20kv-5me-random: A graph with 20,000 vertices generated by adding 5 million

unique edges between randomly selected pairs of vertices

• 1mv-3me-planar: A maximal planar graph with 1 million vertices generated
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layer by layer using the following rules:

– The first layer is the complete graph of three vertices (and three edges).

Call this graph G1 and its three vertices the external vertices of G1.

– Given a graph Gi generated according to these rules with external vertices

a, b, and c, generate a new graph Gi+1 by adding vertices a′, b′, and c′

and the following edges: (a′, a), (a′, b), (a′, b′), (b′, b), (b′, c), (b′, c′), (c′, c),

(c′, a), (c′, a′). Vertices a′, b′, and c′ are the external vertices of Gi+1.

The real-world graphs are as follows:

• USA-road-d.LKS: A graph of the road network in the Great Lakes region,

taken from [2].

• web-Google-con: The largest connected component of the Google web graph

of web pages and hyperlinks between them, taken from [4]. This is actually

a directed graph, but we convert it to an undirected graph by treating each

edge in the original graph as an undirected edge.

Of the five graphs, the first two (the complete graph and the random graph)

are of less interest in practical applications of biconnectivity because random graphs

are very unlikely to have “interesting” articulation points or bridges (those that

divide the graph into large blocks), and complete graphs have none at all. They are

included only to show the behavior of the algorithms on dense graphs.

It is possible that larger graphs than the ones listed here may provide more

parallelism. However, for the purposes of this chapter, the evaluated graphs are
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sufficiently large; they provide enough parallelism for the SV connectivity algorithm

and the TV biconnectivity algorithm, and the parallelism available to TV-BFS and

pDFS depends on the shape of the input graph.

2.4.2 Results for comparing GPUs and XMT
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Fig. 2.1: Speedups of the parallel SV connectivity algorithm on the evaluated platforms
with respect to serial DFS running on the Core i7 920.

Dataset GTX GTX XMT XMT
280 480 1024 2048

1kv-500ke-complete 6.60 13.13 64.54 67.56
20kv-5me-random 10.98 15.41 49.09 65.06
1mv-3me-planar 20.45 27.11 99.85 135.79
USA-road-d.LKS 13.45 19.04 38.99 57.35
Web-Google-con 16.58 23.82 89.75 109.53

Tab. 2.3: Speedups of the parallel SV connectivity algorithm on the evaluated platforms
with respect to serial DFS running on the Core i7 920.

To support a fair comparison of XMT with the GPUs, we compare against

code optimized by others for GPUs. However, at the time of this writing, no such
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code exists to solve the biconnectivity problem on GPUs. Therefore, we could only

test the most time-consuming algorithms used in the Tarjan-Vishkin biconnectivity

algorithm, which are logarithmic-time connectivity and BFS.

The 1024-TCU configuration of XMT was already shown to perform better

than the GTX 280 on BFS by a factor of 5 in [29], so we will not consider it

any further in this chapter. Instead, we focus on logarithmic-time connectivity

and compare our implementation of the Shiloach-Vishkin connectivity algorithm on

XMT against code written by Soman et al. in [149], the only implementation of

graph connectivity on GPUs we are aware of at the time of this writing. As shown

in Figure 2.1 and Table 2.3, XMT with 1,024 TCUs outperforms the stronger among

the GTX 280 and the GTX 480 by factors ranging between 2.2x and 4x on all input

data sets considered.

Soman et al. [148, 149] report that irregular memory access algorithms such

as the ones for finding connected components are not a good fit for the GPU compu-

tation model, which relies heavily on regularity of memory access; they review both

the practical improvements they introduced to the SV algorithm in order to reduce

its number of operations, as well as the non-trivial problems they had to overcome

in order to fit the GPU model. While our work shares similar features with the

former, the flexibility of the XMT architecture freed us from the latter concerns.

This is one of the main results of this chapter. We also expect XMT to

perform competitively in solving the biconnectivity problem. This result should not

be generalized much further beyond this; in particular, we do not claim that XMT

provides a similar performance advantage over GPUs on applications with regular
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memory access patterns, for which GPUs were designed.

2.4.3 Biconnectivity Algorithms: Overall Speedups and Comparison of

Algorithms

Speedup vs. Core i7 920 Speedup vs. XMT MTCU
Data set TCUs pDFS TV TV-BFS pDFS TV TV-BFS
1kv-500ke-complete 64 1.25 1.01 1.10 3.73 3.02 3.30

1024 3.45 (4.49) 9.77 6.02 10.31 (13.44) 29.23 18.02
2048 3.38 (4.39) 9.25 7.40 10.13 (13.13) 27.67 22.15

20kv-5me-random 64 0.81 1.08 1.41 2.31 3.09 4.06
1024 2.48 (3.53) 9.53 11.21 7.13 (10.13) 27.37 32.19
2048 2.42 (3.40) 11.30 15.31 6.94 (9.76) 32.44 43.96

1mv-3me-planar 64 0.29 0.97 0.72 0.40 1.35 1.00
1024 0.19 (0.32) 33.63 1.16 0.26 (0.45) 46.72 1.61
2048 0.18 (0.30) 34.50 0.79 0.25 (0.42) 47.92 1.10

USA-road-d.LKS 64 0.09 0.63 0.79 0.14 1.00 1.26
1024 0.05 (0.10) 13.66 12.14 0.09 (0.16) 21.74 19.32
2048 0.05 (0.10) 14.98 11.95 0.08 (0.15) 23.85 19.01

web-Google-con 64 0.32 0.92 1.19 0.52 1.49 1.93
1024 0.21 (0.38) 29.89 28.62 0.34 (0.61) 48.32 46.26
2048 0.20 (0.35) 34.19 30.97 0.32 (0.57) 55.26 50.06

Tab. 2.4: Speedups of the evaluated biconnectivity algorithms on XMT relative to the
serial DFS-based Hopcroft-Tarjan biconnectivity algorithm (values in parenthe-
ses for pDFS are based on compensated cycle counts). Key: pDFS = parallel
DFS, TV = Tarjan-Vishkin, TV-BFS = Tarjan-Vishkin using BFS to find the
spanning tree.

Figure 2.2a and the left half of Table 2.4 show the speedups of the three parallel

biconnectivity algorithms on XMT with respect to serial DFS on the Core i7 920.

We used our implementation of Tarjan’s serial DFS algorithm, similar to Cong

and Bader, who used theirs. The 64-TCU results were obtained from the Paraleap

FPGA [170], and the 1024-TCU and 2048-TCU results were obtained from the XMT

simulator. The simulator produces inaccurate cycle counts for serial code because

it does not simulate the local cache of the MTCU. The FPGA does have a local

cache for the MTCU, so it provides more accurate cycle counts for serial code. The
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Fig. 2.2: Speedups of the evaluated biconnectivity algorithms on XMT relative to the
serial DFS-based Hopcroft-Tarjan biconnectivity algorithm. For pDFS, the filled
black bar marks a lower bound and the top of the ”T” above the bar marks an
upper bound. Key: pDFS = parallel DFS, TV = Tarjan-Vishkin, TV-BFS =
Tarjan-Vishkin using BFS to find the spanning tree.
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following steps were taken to compensate for this discrepancy:

• Cycle counts for the serial versions of the algorithms, which are used as baseline

values for the speedups of the parallel algorithms versus the XMT MTCU, were

measured on the FPGA.

• For pDFS, which is the only parallel algorithm with a significant serial com-

ponent evaluated in this chapter, cycle counts for serial sections and parallel

sections of execution were measured separately. For the 1024-TCU and 2048-

TCU results, we added the serial cycle count from the FPGA to the parallel

cycle count from the simulator to obtain a compensated cycle count. This

compensated cycle count is lower than the true cycle count because it does

not account for the additional delay of the larger interconnection network in

the simulated configurations. Thus, it forms a lower bound on the true cycle

count. The non-compensated cycle count is larger than the true cycle count

and therefore forms an upper bound. We report speedups based on both sets

of cycle counts.

We make the following observations about the results and their significance:

• The lack of significant speedups for the 64-TCU configuration is due in part to

the parallel algorithms performing more work than the serial algorithm. What

make achieving speedups relative to the serial Hopcroft-Tarjan biconnectivity

algorithm particularly challenging is that it is very compact, requiring a single

visit to each vertex and each edge, as opposed to several visits in the TV-based

algorithms.
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• The TV algorithm provides speedups of at least 9x relative to the Core i7 and

21x relative to the XMT MTCU on all inputs with 1,024 TCUs. This implies

that TV is a good general-purpose parallel biconnectivity algorithm.

• For the 1mv-3me-planar graph, TV provides significantly higher speedups than

the other algorithms considered. This is because this graph has a very large

diameter and low degree per vertex, which means that there is too little par-

allelism for pDFS and TV-BFS to exploit. TV is the only algorithm that can

provide adequate performance in this case. It is worth noting that this graph

is a good representative of many real-world graphs for which one might want

solve the biconnectivity problem, so the results for this graph are likely to

show the performance of the algorithms in typical usage.

• On the 20kv-5me-random graph, TV-BFS provides the best performance be-

cause this graph has a very small diameter. This means that in situations

where the graphs being considered are known to be of low diameter, TV-BFS

is preferable to TV. Also, for large, dense graphs, with many more edges than

vertices, TV-BFS is likely to provide superior performance to TV.

• The presented results assume that given an input it is known which algorithm

of the collage to apply. If this is not the case, then a default option would be

to use TV, or pDFS if the ratio |E|/|V | is sufficiently large.

• For the data sets considered, all of the algorithms except for pDFS benefit from

increasing the number of hardware threads from 1,024 to 2,048 when enough
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parallelism is available. This is especially noticeable for TV-BFS on the 20kv-

5me-random data set and TV on the web-Google-con data set. Biconnectivity

algorithms are not very arithmetic-intensive, so additional hardware threads

serve primarily to hide memory latency. This technique works as long as there

is enough parallelism to keep all of the threads busy and enough bandwidth to

DRAM to fulfill the additional requests. This case, where additional hardware

threads are needed for latency hiding but not computation, suggests that it

would be worthwhile to augment the XMT architecture with support for thread

context switching, where each TCU stores two or more sets of thread state and

switches contexts whenever a memory request blocks. The silicon area required

to support context switching would be less than that required to increase the

number of TCUs as functional units would not need to be duplicated.

• The speedups relative to the XMT MTCU, as shown in Figure 2.2b and the

right half of Table 2.4, are between 1.3x and 3x larger than the corresponding

speedups relative to the Core i7 920. Although we base our primary speedup

claims on the Core i7, the speedups relative to the XMT MTCU are in a sense

more relevant, as the MTCU reflects the same technology and engineering

effort as the rest of the XMT architecture and we expect them to scale up at

the same rate as they are further developed. This suggests that speedups of

21x to 48x could be obtained if XMT were brought up to industry grade on

par with the Core i7.

The reported speedups are made possible by support in the XMT architecture
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for the efficient execution of programs with fine-grained, irregular parallelism. The

XMT implementation of TV consists of many short parallel sections of code due to

the synchronous nature of the algorithm. The instruction broadcast and prefix-sum

network provide a low overhead for entering parallel sections and starting threads

within a section, which allows even short threads to be profitable. Also, there are

many indirect accesses to memory that, depending on the structure of the graph,

may exhibit poor locality of reference. The TV algorithm provides a large amount of

parallelism (one thread per vertex or per edge), which allows many memory requests

to be issued in parallel, reducing the impact of the latency of any one request.

2.5 Discussion

The discussion below suggests that contrary to common practice (or belief)

there appears to be no principled need to compromise ease-of-programming in order

to get strong speedups.

• The new NSF/IEEE-TCPP curriculum [5] views the PRAM model as overly

simplistic. In contrast, using the XMT architecture we were able to obtain

stronger speed-ups than in prior parallel biconnectivity studies, 9x to 33x

through direct implementation of PRAM algorithms versus the previously

reported of up to 4x in [36]. Interestingly, [36] was also driven by PRAM

algorithms, though they had to work around an SMP architecture.

• Another example is the BFS algorithm. [5] also suggests teaching BFS. The

recent paper [133] reported that none of the 42 students who took a joint
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UIUC/UMD parallel algorithms/programming class in Fall 2010 was able to

get any speedups using OpenMP on an 8-processor SMP machine, while the

speedups on a 64-processor XMT hardware, which uses at most 1/4 of the

silicon area of the 8-processor machine, ranged between 7x and 25x. BFS is

an example where OpenMP programming was not substantially different than

XMT programming, but the XMT architecture allowed the speedup difference.

See also the comment on bandwidth later in this section.

• The TCPP curriculum does not include any of the poly-logarithmic PRAM

graph algorithms. However, this chapter shows that they provide robust

speedups on XMT that are unmatched by any of the graph algorithms the

curriculum lists.

• Speedup problems with OpenMP are not new (for example, see [67]). The

reason for comparing them with XMT above is that ease of programming is a

priority for both. A short comparison on ease of programming follows. Teach-

ing of XMT programming was done in parallel algorithms courses without any

introduction to architecture and only a 20-minute introduction to XMT pro-

gramming [133]. In contrast, the TCPP curriculum ranks parallel algorithms

as third in priority of teaching after architecture and programming. Introduc-

tion of OpenMP is typically tied to architecture concepts such as the memory

hierarchy.

• Interestingly, [29] and the current chapter show that XMT is also competitive

on performance with GPUs, which are performance-driven but are much more
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challenging to program effectively, as demonstrated in the comparison with

[148, 149] in Section 4.2. The starting point of this research was that the

SV parallel connectivity was given as a programming assignment in parallel

algorithm courses at the University of Maryland and was even solved by a

couple of 10th graders in a course offered at a nearby high school. While our

work reduced the total of operations (without the changing the basic work

complexity of SV), our biggest effort was the extension beyond connectivity

to biconnectivity. For this reason, the fact that no GPU biconnectivity im-

plementation has been reported in spite of the mushrooming of GPU research

is perhaps another demonstration of the practicality of XMT programming

relative to GPU programming. Personal communication with the authors of

[149] regarding the wording of their reference to possible use of their GPU

connectivity program in a biconnectivity one confirmed that it was not meant

to pass judgment on the relative difficulty of the two programs.

• In contrast to the implementation of biconnectivity for SMPs by Cong and

Bader [36], which consists of over 5,800 lines of C code, our implementation for

XMT only requires about 1,600 lines of code. Also, the effort required to tune

and debug our implementation was comparable to that required for a serial

program of similar size. In fact, serial debugging tools (GDB and Valgrind)

were sufficient to catch and fix nearly all bugs in our parallel XMTC code.

• Much of the effort in writing the parallel biconnectivity code was in writing

and tuning functions to perform basic tasks in parallel such as prefix sum,
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range-minimum queries, finding a spanning tree of a graph, and computing

the preorder numbering of the nodes in a tree. These basic tasks are more

general than biconnectivity and can be separated into a standalone library for

reuse in other software projects.

• Using the above library, we have given biconnectivity as an optional program-

ming assignment to graduate classes since the Spring 2012 semester. Providing

the library to the students reduced the complexity of the task to that of under-

standing how the PRAM algorithm works and seeing how the building blocks

provided by the library can be assembled to construct a working implementa-

tion.

For placing this debate in historical context, recall that claims that the main

reason that parallel machines are difficult to program is that the bandwidth between

processors and memories is so limited are not new, as formally demonstrated in

[114, 166]. [21] suggested that: 1. Machine manufacturers see the cost benefit of

lowering performance of interconnects, but grossly underestimate the programming

difficulties and the high software development costs implied. 2. Their exclusive

focus on runtime benchmarks misses critical costs, including: (i) the time to write

the code, and (ii) the time to port the code to different distributions of data or to

different machines that require different distribution of data. The XMT platform [13,

14] was finally able to demonstrate an affordable prototype providing the bandwidth

that the 1994 paper [21] sought, but using today’s technology.

Competition among hardware vendors in the desktop computing space has
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greatly diminished in recent years. Yet, the adoption of the few industry many-core

solutions falls far behind serial platforms, which is a cause of extra concern. As

believers in the eventual power of ideas, we are doing our best with XMT to keep

some intellectual competition alive in spite of the huge funding gap with industry.

2.6 Conclusion

Of the biconnectivity algorithms evaluated, the logarithmic-time Tarjan-Vishkin

algorithm, derived using PRAM algorithmic theory, provided the best performance

overall. Of the parallel computing platforms evaluated, the XMT platform, designed

with PRAM algorithms in mind, provided the best performance. These two facts

demonstrate that with the proper many-core architecture, the relative simplicity of

the PRAM can, perhaps surprisingly, be combined with the best performance.

More generally, this work provides another example that should help void

PRAM criticism and address asymptotic analysis criticism. Criticism of the PRAM

model has sometime been confused with criticism of the constants hidden by asymp-

totic analysis. In our opinion the XMT platform, which was originally inspired by

PRAM algorithmics, and the performance it facilitated have voided much of the

criticism on the PRAM model. However, one has to be a bit more careful with un-

derstanding the issue of constant factors. In the same way that theoretical papers

on serial algorithms and their asymptotic analysis were often followed by separate

efforts minimizing constant factors, the current work complements the original the-

ory PRAM papers by reducing them to practice with respect to XMT, accounting
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for constant factors and concrete speedups. This often amounts to first modifying a

published PRAM algorithm to another PRAM algorithm or other supporting data

structures whose constant factors are better, which is, in fact, where the intellectual

merit of this work lies; only then the revised PRAM algorithm is programmed for

the XMT platform, which turns out to be a rather simple task. For biconnectivity,

even optimizing LSRTM for performance tuning of XMT (per [162] as noted earlier),

was adequately picked up by the compiler.
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Chapter 3: Graph triconnectivity

3.1 Introduction

A k-(vertex -)cut of an undirected graph is a set of k vertices whose removal

results in the graph being disconnected. An undirected graph is k-(vertex -)connected

if it has no cut of size k − 1 or less. A 1-connected graph is said to be connected, a

2-connected graph biconnected, and a 3-connected graph triconnected. A biconnected

component of a graph G is a maximal biconnected subgraph of G.

The triconnected components of a graph G are defined in [91]. A 2-cut is also

called a separation pair. Briefly, assuming that G is biconnected, it is repeatedly

split into two subgraphs with respect to one of its separation pairs. Each time G

is split using a pair {u, v}, an edge (u, v), called a virtual edge, is added to both

subgraphs. When no more splitting is possible, the resulting graphs (called split

components) are of one of three types: triconnected graphs, triangles (rings of 3

vertices), and triple bonds (multigraphs consisting of 3 parallel edges). Then, split

components of the same type that share a common virtual edge are merged (the

inverse of splitting); triangles are merged to (recursively) form polygons (rings), and

triple bonds are merged to (recursively) form n-bonds (with n parallel edges). The

(unique) graphs that result are called the triconnected components of G. If all the



triconnected components of a graph are merged together, the result is the original

graph. The triconnected components of a general graph G are the triconnected

components of its biconnected components.

The triconnected components of a graph provide useful information about the

graph, such as the resilience of an underlying network to defects. The SPQR-tree

of a graph G, with a vertex for every triconnected component of G and an edge

between any two components that share a virtual edge, can be used to represent

the planar embeddings of a graph; this can be used, for instance, to test whether a

graph would remain planar after adding a given edge [15].

In this chapter, we evaluate an implementation of an efficient PRAM tricon-

nectivity algorithm on the experimental Explicit Multi-Threading (XMT) architec-

ture, developed at the University of Maryland to efficiently support PRAM-like

programming and shown [27, 52] to support some advanced graph algorithms. Nev-

ertheless, the current work represents the most complex algorithm that has been

tested on XMT, and uses quite a few building blocks, which are simpler PRAM

algorithms. The speedups obtained (up to 129x) and their scalability provide points

of reference for comparing XMT to other approaches beyond that of a simple bench-

mark kernel. The importance of going beyond simple kernels and toy problems for

comparing architectures has long been recognized in the SPEC benchmarks and

in the standard text [84]. The source code for our implementation is available at

http://www.umiacs.umd.edu/users/vishkin/XMT/OPEN_SOURCE_GRAPH_ALGS/.
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3.2 Triconnectivity Algorithms

For a graph with n vertices and m edges, an efficient O(n + m)-time serial

algorithm to determine its triconnected components based on depth-first search

is given by Hopcroft and Tarjan [91]. This algorithm was implemented and tested

by Gutwenger and Mutzel [82] and was made available as part of [32]. Neither we

nor the authors of [82] are aware of any other publicly-available implementation of

a linear- (or near-linear-) work triconnected components algorithm, either serial or

parallel.

Several parallel triconnectivity algorithms have been described. Miller

and Ramachandran (MR) [119] proposed an efficient algorithm that runs inO(log2 n)

time while performing O(m log2 n) work on a CRCW PRAM and is based on find-

ing an open ear decomposition [115] of the input graph. Their algorithm has two

parts, one to find the nontrivial candidate sets of the input graph (sets of vertices

such that any two vertices in a set are a separation pair) and one to split the graph

into its triconnected components based on its nontrivial candidate sets. An earlier

algorithm for finding nontrivial candidate sets by Ramachandran and Vishkin (RV)

[138] required only O(log n) time while still performing O(m log2 n) work.

Our implementation on XMT uses the RV algorithm to find the nontriv-

ial candidate sets and the MR algorithm to split the graph into its triconnected

components. The most significant contributor to its runtime is the need to make

O(log n) calls to a connected components routine. We use the Shiloach-Vishkin (SV)

[145] connectivity algorithm, which runs in O(log n) time and O(m log n) work on
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a CRCW PRAM. Each call to SV actually computes the connected components of

multiple subgraphs derived from the input graph. This combining of inputs is done

to permit flattening of memory allocation and parallelism to improve performance.

Some care is required to keep the subgraphs from interacting; details are omitted

due to space limitations.

3.3 The XMT Many-Core Platform

The Explicit Multi-Threading (XMT) general-purpose computer architecture

[164] is designed to improve single-task completion time. It does so by supporting

programs based on Parallel Random-Access Machine (PRAM) algorithms but re-

laxing the synchrony required by the PRAM model. A key enhancement of XMT is

providing hardware support for things that are done in software in other architec-

tures.

The XMT architecture consists of the following: a number of lightweight cores

(thread control units or TCUs) grouped into clusters, a single core (master TCU

or MTCU) with its own local cache, a number of mutually-exclusive cache modules

shared by the TCUs and MTCU, an interconnection network connecting the TCUs

to the cache modules, and a number of DRAM controllers connecting the cache

modules to off-chip memory. Each TCU has a register file, a program counter, an

execution pipeline, a lightweight ALU, and prefetch buffers. Each cluster has one or

more multiply/divide units (MDUs) and a compiler-managed read-only cache, all of

which are shared by the TCUs within the cluster. When a parallel section of code is
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reached, the MTCU broadcasts the instructions in that section to all of the TCUs,

and each TCU stores the instructions in a buffer. Virtual threads are dynamically

assigned to TCUs using a dedicated prefix-sum network. A more detailed overview

of XMT can be found in [29].

3.4 Experimental Results

We measured the speedups of our parallel triconnectivity implementation by

comparing it to the best available serial implementation [32] running on an Intel

Core i7 920 CPU. We used three types of graphs in our comparison.

• Random graphs are generated by randomly selecting |E| edges with uniform

probability.

• Planar3 graphs are planar graphs generated level by level. The first level is a

triangle of three vertices. Each succeeding level consists of three vertices, an

edge between each pair of vertices in that level, and an edge from each vertex

in that level to a distinct vertex in the previous level.

• Ladder graphs are similar to planar3 graphs, but with only two vertices per

level (they are also planar).

The random graphs are used as representatives of dense graphs, in contrast to the

sparse planar3 and ladder graphs. The input graphs we used are listed in Table 3.1.

We ran our parallel code on two versions of the XMT architecture: (i) a 64-core

FPGA prototype whose cycle counts reflect those of an 800-MHz ASIC [170] and
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Data set Vertices (n) Edges (m) Sep. pairs (s)
Random-10K 10K 3000K 0
Random-20K 20K 5000K 0
Planar3-1000K 1000K 3000K 0
Ladder-20K 20K 30K 10K
Ladder-100K 100K 150K 50K
Ladder-1000K 1000K 1500K 500K

Tab. 3.1: Properties of the graphs used in the experiments.

(ii) a 1024-core configuration simulated on the cycle-accurate XMTSim simulator.

The results are shown in Figure 3.1.

It is shown in [29] that the latter configuration would use about the same

area as an NVIDIA GTX 280 GPU; [103] showed similar power using a similar

clock speed. Parameters such as the number and sizes of cache modules, number

of clusters, and latencies of pipelines were calibrated according to the number of

TCUs.

Next, we discuss the relationship between the FPGA results and a simulated

64-TCU configuration of XMT. As [100] notes, currently, only on-chip components

are simulated in a cycle-accurate manner, but DRAM is modeled as simple latency

with controlled rate of memory requests. However, we expect the simulator results

to be the correct representative of the capability of XMT as its assumed bandwidth

is realistic for state-of-the-art industry-grade processors. The DRAM controller used

in the FPGA is not representative of controllers that would be used in an industry-

grade implementation of XMT. Also, DRAM bandwidth has increased since the

FPGA prototype was built (e.g., transition from DDR2 to DDR3); this is in line

with [8] that reports a trend of drastic improvement in bandwidth over latency (by

a factor of 300 over three decades). Specifically, the simulator ran between 14%
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and 52% faster than the FPGA, with the larger gaps for larger input graphs. The

graph with the highest speedup, Random-20K, ran 16% faster. These gaps are due

to the behavior of the DRAM controller in the FPGA and in the simulator, as can

be shown by reducing the clock frequency of the simulated DRAM controller, and

thus its peak bandwidth, by 33%. In this case, the situation is reversed, and the

simulator becomes between 10% slower and 5% faster than the FPGA, with a 20%

to 31% drop in performance relative to the original configuration. Intuitively, this

makes sense because larger graphs are less likely to have a working set that fits in

cache, and bandwidth to DRAM becomes a dominant factor. The transition from

DDR2 to DDR3 itself would double this bandwidth [84], eliminating the gaps.
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Fig. 3.1: Performance of the parallel triconnectivity algorithm; numbers above bars rep-
resent speedup relative to serial (Core i7).

The parallel algorithm scales well, with a 9x to 13x improvement in speedup

in all but one case when moving from 64 TCUs to 1024 TCUs. The weaker improve-

ment (5x) for the Ladder-20K graph is because it is too small, providing insufficient
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Fig. 3.2: Predicted vs. observed runtime for the 1024-TCU configuration using Equation
3.1; numbers above bars represent percent error of prediction relative to simula-
tion.

parallelism to take full advantage of the additional TCUs.

The lower speedups on sparse graphs (Planar3- and Ladder-) are due to the

parallel algorithm performing more work than the serial algorithm. Unlike the

serial algorithm, which revisits the input graph a constant number of times, the

parallel algorithm revisits the input O(log2 n) times, with the coefficient in the final

(splitting) stage of the algorithm depending on the number of separation pairs in the

input graph. The runtime of the parallel triconnectivity algorithm running under

the 1024-TCU configuration of XMT, in cycles, for a graph with n vertices, m edges,

and s separation pairs can be approximated by

T (n,m, s) = (2.38n+ 0.238m+ 4.75s) log2 n (3.1)

where the base of the logarithm is 2 and lower-order terms have been neglected;
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see Figure 3.2. Note that there are only 3 degrees of freedom (# data points -

# constants in equation), so more data points will be required to verify that the

equation holds in general; this is work in progress.

3.5 Future Work

An alternate algorithm to the one tested here is the algorithm of [68]. It runs

in O(log n) time using O(m log log n) work (or O(m log n) work if implemented using

the SV connected components algorithm) and is based on finding the biconnected

components of a “local replacement graph” derived from the st-numbering of the

input graph. It would be worthwhile to see if this algorithm provides better per-

formance on large graphs. However, we have not yet implemented it because the

implementation is more involved and builds upon the work presented here.

3.6 Conclusion

The XMT architecture provides good performance and scalability on tricon-

nectivity, which relies on subroutines such as connected components. The fact that

XMT performs well on this complex problem demonstrates that (i) the previously

demonstrated advantages of XMT are not limited to small kernels and (ii) the ad-

vantage of XMT on small kernels extends to larger problems that rely on those

kernels. [27] demonstrated strong XMT speedups of up to 108x for max-flow (ver-

sus the best serial implementation). The recent paper [52] reported XMT speedups

of up to 33x, and the question this raised was whether connectivity problems are
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less amenable to parallel speedups than other graph problems, such as max-flow.

The strong speedups of up to 129x for triconnectivity reported here suggests it was

perhaps the compactness of the serial biconnectivity algorithm of [90] that needs

only a single visit of the vertices and edges that limited speedups, rather than a

more general problem.
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Chapter 4: Burrows-Wheeler (BW) compression

4.1 Introduction

A lossless compression function is an invertible function C(·) that accepts as

input a string S of length n over some alphabet Σ and returns a string of length

Θ(n) over some alphabet Σ′ where, on average, fewer bits are required to represent

C(S) than S. A lossless compression algorithm for a given lossless compression

function is an algorithm that accepts S as input and produces C(S) as output; the

corresponding lossless decompression algorithm accepts C(S) for some S as input

and produces S as output.

In [25], Burrows and Wheeler describe their eponymous lossless compression

algorithm and corresponding decompression algorithm; it has been shown [6, 7] to

be among the best such algorithms, and its operation is reviewed in this chapter.

The Burrows-Wheeler (BW) Compression problem is to compute the lossless com-

pression function defined by the algorithm of [25], and the Burrows-Wheeler (BW)

Decompression problem is to compute its inverse. The algorithm of [25] solves the

BW Compression problem in O(n log2 n) serial time and solves BW Decompression

problem in O(n) serial time. Later work reduced a critical step of the compression

algorithm to the problem of computing the suffix array of S, for which linear-time



algorithms are now known, so both problems can now be solved in O(n) optimal

serial time.

We propose an O(log2 n)-time, O(n)-work PRAM algorithm for solving the

BW Compression problem and a O(log n)-time, O(n)-work PRAM algorithm for

solving the BW Decompression problem. These algorithms appear to be the first

polylogarithmic-time work-optimal parallel algorithms for any standard lossless com-

pression scheme.

We implement our parallel algorithm and experimentally validate it. A parallel-

algorithmic approach to BW compression may not have been seriously considered in

the past because the fine-grained parallelism provided by such an approach is difficult

for existing computing hardware to exploit. However, the Explicit Multi-Threading

(XMT)1 architecture developed at the University of Maryland was designed specifi-

cally to provide good performance on such algorithms. Using our parallel algorithm

in conjunction with XMT, we obtain speedups of up to 25x for compression and 13x

for decompression for small inputs (say, up to 1MB) where no speedup was possible

before. This is especially important for real-time applications, where single-task

completion time is more important than throughput.

In passing, we note that commonly-used compression programs divide the

input into uniformly-sized blocks and apply a serial implementation of BW com-

pression to each block independently. The blocks can be compressed in parallel;

however, this does not solve the BW Compression problem for the original input

and thus is not a parallel algorithm for solving it. It is worth noting that our

1 Not to be confused with the Cray XMT
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parallel-algorithmic approach is orthogonal to the foregoing block-based approach,

and the two approaches could conceivably be combined to obtain better speedups

than either alone.

One application where our implementation shows a distinct advantage over

existing compression libraries is in compressing data that is sent over a network. In

warehouse-scale computers such as those found in data warehouses, the bandwidth

available between various pairs of nodes can be extremely different, and for pairs

where the bandwidth is low can be debilitating [84]. A way to mitigate this is to com-

press data before it is transmitted over the network and decompress it on the other

side. This approach is taken, for example, by Google via their Snappy [78] library.

The goal of Snappy is to compress data very quickly, even at the expense of less

compression, providing a larger increase in effective network bandwidth than other

libraries for all but very low-bandwidth networks. As shown in Section 4.5.2, our

implementation outperforms Snappy and similar libraries for point-to-point band-

widths of up to 1 Gbps.

This technical report augments the theory results of [51] with experimental

speedups. For an extended description of the algorithms, please see the companion

report [51].

4.1.1 Related Work

There are applications where BW compression would be useful but is not

currently used because of performance. One such application is JPEG image com-

pression. JPEG compression consists of a lossy compression stage followed by a
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lossless stage. The work [173] considered replacing the currently-used lossless stage

with the BW compression algorithm. For high-quality compression of “real-world”

images such as photographs, this yielded up to a 10% improvement, and for the

compression of “synthetic” images such as company logos, the improvement was up

to 30%. The author cites execution time as the main deficiency of this approach.

A commonly-used, serial implementation of the block-based approach noted

above is bzip2 [144]; the algorithm it applies to each block is based on the original

BW compression algorithm of [25]. There are also variants of bzip2, such as pipeline

bzip [73], that compress multiple blocks simultaneously. However, these variants do

not achieve speedup on single blocks while our approach does. There exists at

least one implementation of a linear time serial algorithm for BW compression,

bwtzip [108]. However, bwtzip is a research-grade implementation that emphasizes

modularity over performance, unlike the focus of this chapter.

The survey paper [61] articulates some of the issues involved in parallelizing

BW for a GPU; decompression is not discussed. The author gives an outline of

an approach for making some parts of the algorithm parallel and claims that the

remaining parts would not work well on GPUs due to exhibiting poor locality. [135]

reports such parallelization, and indeed was unable to demonstrate a speedup for

compression using the GPU, instead obtaining a slowdown of 2.78x. Note that our

results reflect a speedup of 70x over [135]. Parallelization of decompression was

left as future work, and no speedups or slowdowns are reported. Furthermore, no

asymptotic complexity analysis is given, and our own analysis shows their algorithm

to be non-work-optimal. To their credit, they appear to be the first to formulate
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MTF encoding (Section 4.2.1) in terms of a binary associative operator. However,

two challenges, (i) work-optimal parallelization of BW and (ii) feasibility of speedups

on buildable hardware, remained unmet.

A parallel algorithm for Huffman decoding is given in [105]. However, the

algorithm is not analyzed therein as a PRAM algorithm, and its worst case run

time is O(n). Our PRAM algorithm for Huffman decoding runs in O(log n) time.

The rest of the chapter is organized as follows: Section 4.2 gives an overview of

the serial BW compression and decompression algorithms and Section 4.3 describes

our parallel algorithms for the same along with their complexity analysis, ending

the theoretical part of the chapter. The remainder of the chapter is devoted to

experimental validation of the algorithms. Section 4.4 describes the experimental

comparison to bzip2, Section 4.5 contains a discussion of the results we obtained,

and Section 4.6 concludes.

4.2 Serial Algorithm

In their original paper, Burrows and Wheeler [25] describe a lossless data

compression algorithm consisting of three stages in the following order: a reversible

block-sorting transform (BST)2, move-to-front (MTF) encoding, and Huffman cod-

ing. The corresponding decompression algorithm performs the inverses of these

stages in reverse order: Huffman decoding, MTF decoding and inverse BST (IBST).

See Figure 4.1.

2 This transform is also known as the Burrows-Wheeler Transform (BWT). We refrain from using
this name to avoid confusion with the similarly-named Burrows-Wheeler compression algorithm
which employs it as a stage.
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Given an input string of length n, their original decompression algorithm runs

in O(n) serial time, as do all stages of their compression algorithm except the (for-

ward) BST, which requires O(n log2 n) serial time [143]. More recently, linear-time

serial algorithms [98, 130] have been developed to compute suffix arrays, and the

problem of finding the BST of a string can be reduced to that of computing its suffix

array, so Burrows-Wheeler (BW) compression and decompression can be performed

in O(n) serial time. The linear-time BST algorithms are relatively involved, so we

refrain from describing them here and instead refer interested readers to the cited

papers.

S
SBST SMTF

SBW
Huffman
encoding

Block-Sorting
Transform
(BST)

Move-to-Front
(MTF)
encoding

S
SBST SMTF

SBW
Huffman
decoding

Inverse
Block-Sorting
Transform
(IBST)

Move-to-Front
(MTF)
decoding

Compression

Decompression

Fig. 4.1: Stages of BW compression and decompression.

4.2.1 Compression

Given a string S of length n from an alphabet Σ, where |Σ| is constant with

respect to n, the compression algorithm proceeds in three stages as follows.
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Block-Sorting Transform (BST)

The BST stage takes S as input and produces as its output SBST , a permu-

tation of S. SBST is formed by making a list of all the rotations of S (each of

which is also a string of length n), sorting the list of rotations lexicographically, and

outputting the last character of each rotation in the sorted list starting with the

first. See Figure 4.2. The BST has two properties that make it useful for lossless

compression: (1) it has an inverse and (2) SBST tends to have many occurrences of

any given character in close proximity, even when S does not. Property (1) ensures

that the decompressor can reconstruct S given only SBST and Property (2) allows

the following stages to work effectively.

banana$
rotate−−−→

banana$
anana$b
nana$ba
ana$ban
na$bana
a$banan
$banana

sort−−→

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba︸ ︷︷ ︸

M

output−−−→ annb$aa

Fig. 4.2: BST of the string “banana$”. The sorted list labeled M can be viewed as a
matrix of characters.

The critical step in the BST algorithm is the sorting of the list of rotations

of S. The BST algorithm given in [25] is actually a combination of two algorithms:

direct comparison and doubling [143]. The direct comparison algorithm sorts the

list of rotations of S using a comparison-based sorting algorithm that compares

rotations in the list character-by-character. Therefore, it requires O(n log n) string

comparisons, and since comparing two strings of length n requires O(n) comparisons
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in the worst case, the direct comparison algorithm has a worst-case running time of

O(n2 log n).

The doubling algorithm works in O(log n) iterations. Each iteration applies

comparison-based sorting to the current list of rotations of S as in the direct compar-

ison algorithm. However, each comparison is limited to the first d characters of the

rotations being compared, with d ≥ 2 a constant, so the list will not be completely

sorted if two rotations begin with the same sequence of d characters. Afterwards, a

new string S ′ is constructed over the alphabet [0, n− 1] such that Si, 0 ≤ i < n, is

the rank of the ith rotation in the partially-sorted list. To complete the iteration,

S is replaced by S ′. During the next iteration, up to d character comparisons are

made again as in the first iteration, but now each character in S ′ gives the rank of

d consecutive characters in S, so the character comparisons are spaced d characters

apart to give a new partially-sorted list based on the ranks of the first d2 characters.

The spacing increases by a factor of d each iteration, so after dlogd ne iterations, all

comparisons are guaranteed to reach the end of the string. Since d is constant, each

comparison takes constant time, so each partial sort takes O(n log n) time. Because

the partially-sorted list is in non-decreasing order, ranking its elements can be done

in O(n) time. Therefore, each iteration takes (n log n) time, and the overall doubling

algorithm takes O(n log2 n) time.

The two algorithms can be combined as follows: begin by using direct com-

parison, keeping track of cumulative number of character comparisons that exceed

a depth of d. If the cumulative number exceeds some constant value, switch to the

doubling algorithm. This heuristic ensures that the direct-comparison algorithm

58



never performs more than O(n log n) character comparisons before it either com-

pletes or is abandoned in favor of the doubling algorithm. Therefore, the overall

BST algorithm takes at most O(n log2 n) time.

Move-to-Front (MTF) Coding

The input to the MTF coding stage is the string SBST . Given an initial list

L0 of the characters in Σ in arbitrarily-defined order, the output, denoted by SMTF ,

is a string of length n over the alphabet of integers Σ′ = [0, |Σ| − 1]. See Figure

4.3. MTF coding exploits property (2) of the BST to produce a string that can be

readily compressed by an entropy coding technique such as Huffman coding. MTF

coding is performed by scanning the characters of SBST in order of increasing index.

For each character c = SBST
i , the output character SMTF

i is set to the index of c in

Li, and then c is moved to the front of Li to produce Li+1. That is, Li+1 is set to

Li, then c is removed from Li+1 and reinserted as the first element of Li+1. Because

|Σ| is constant, the size of L is constant as well, and each update to L takes O(1)

time. The list is updated n times, so MTF coding takes O(n) time. See Figure 4.4.

Σ = {$, a, b, n}
SBST = (a, n, n, b, $, a, a)

assumed prefix
︷ ︸︸ ︷

i 0 1 2 3 4 5 6 7 8 9 10

SBST [i] n b a $ a n n b $ a a
prev[i] - - - - 2 0 5 1 3 4 9
C[i] - - - - {$} {$,a,b} {} {$,a,n} {a,b,n} {$,b,n} {}
|C[i]| - - - - 1 3 0 3 3 3 0

SMTF = (1, 3, 0, 3, 3, 3, 0)

Fig. 4.3: MTF of the string “annb$aa”. C[i] is the set of characters between SBST [i] and
its previous occurrence.
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SMTF [i] 1 3 0

j L0[j]
0 $
1 a
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j L1[j]
0 a
1 $
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3 n

j L2[j]
0 n
1 a
2 $
3 b

j L3[j]
0 n
1 a
2 $
3 b

j L4[j]
0 b
1 n
2 a
3 $

j L5[j]
0 $
1 b
2 n
3 a

j L6[j]
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1 $
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3 n

3 3 3 0

i 0 1 2 43 5 6

SBST [i] a n n $b a a

en
co
d
e

d
ec
o
d
e

Fig. 4.4: MTF encoding and decoding. Observe that SBST [i] = Li[S
MTF [i]]. In both

the encoder and the decoder, the shaded elements are moved to the front of the
list according to the arrows. In the encoder, the shaded element is identified
by searching the list Li for the character SBST [i]. In the decoder, the shaded
element is chosen to be the one whose index is j = SMTF [i]; no searching is
necessary.

The purpose of MTF coding is to maintain L as a list of the characters seen

so far in most-recently used (MRU) order. As a consequence, c will now have an

index in L of zero, and if c is immediately followed by more repetitions of c, then the

MTF coder will output zero for each of those subsequent repetitions. Each run of m

repetitions of any character in SBST will be converted to a nonzero integer followed

by m−1 zeros in SMTF . Even if c is not immediately followed by another occurrence

of c, there will likely be one nearby. In that case, since only a few characters are

moved ahead of c between the two occurrences of c in S ′, c will be assigned an index

close to zero.

Huffman Coding

The input to the Huffman coding stage is the string SMTF , and it produces as

output (1) the string SBW , a binary string (i.e., a string over the alphabet {0, 1})

whose length is Θ(n) and (2) a coding table T , whose size is constant given that |Σ|

is constant. In SMTF , smaller integers tend to occur more frequently than larger
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integers, even if the characters in Σ occur an equal number of times in S. Therefore,

SMTF is amenable to entropy coding, even when S is not. This means that SBW is

typically shorter than any fixed-length encoding of S (e.g., the way it was originally

stored on disk).

Huffman coding proceeds in three steps. In step 1, SMTF is scanned once to

build a frequency table F indicating how many times each character in Σ occurs in

SMTF ; this takes O(n) time. In step 2, the coding table T is constructed using a

heap-based algorithm that takes only F as input. Since |Σ| is constant, the size of

F is also constant, so this takes O(1) time. In step 3, SMTF is scanned once more,

and for each character SMTF
i , the corresponding codeword T (SMTF

i ) is written to

SBW ; this takes O(n) time. See Figure 4.5. Overall, Huffman coding takes O(n)

time.

T =
0 → 10
1 → 11
3 → 0

SMTF = (1, 3, 0, 3, 3, 3, 0)

SBW = 11 0 10 0 0 0 10

Fig. 4.5: Huffman table and encoding of SMTF (spaces added for clarity). Recall that this
is, in fact, the compression of the original string “banana$”.

The output of the entire BW compression algorithm has size Θ(n) and consists

of SBW and T . The overall run time is dominated by the BST stage. If a linear-time

suffix array algorithm is used to compute the BST, the overall runtime is O(n). If the

BST algorithm described herein is used instead, the overall runtime is O(n log2 n).
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4.2.2 Decompression

With the exception of the IBST, the decompression algorithm is simply the

reverse of the compression algorithm:4: given SBW and T , SBST can be constructed

in O(n) time by applying the respective algorithms with the lookup tables inverted.

The major difference is the IBST, which is simpler than the BST and consists of two

steps. In step 1, the individual characters of SBST are sorted using stable integer

sorting, which takes O(n) time. The resulting list of ranks is equivalent to a linked

ring (a linked list whose tail points back to its head) of the characters in SBST in

the order they appear in S; see [25] or [51] for an explanation of why this is true. In

step 2, the linked ring is traversed once, beginning from the character $, to produce

the characters of S in reverse order; this traversal takes O(n) time. Therefore, the

IBST, and thus the overall BW decompression algorithm, has a runtime of O(n).

4.3 Parallel Algorithm

The parallel BW compression and decompression algorithms follow the same

sequence of stages as the foregoing serial algorithms, but the sequential algorithm of

each stage is replaced by an equivalent PRAM algorithm. As is the case in the serial

algorithm, the dominant stage of the compression algorithm is the BST stage. Our

PRAM algorithm for the BST stage, described below, requires the same work as

the serial BST algorithm described above. If an O(n)-work compression algorithm

is desired, the work-optimal algorithm of [140] can be used to compute the BST in

O(log2 n) time.
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4.3.1 Compression

As in the serial algorithm, the input is a string S of length n over an alphabet Σ,

where |Σ| is constant with respect to n. The overall PRAM compression algorithm

consists of the following three steps.

Block-Sorting Transform (BST)

The BST of a string S of length n can be computed as follows. Add a character

$ to the end of S that does not appear elsewhere in S. Sorting all rotations of S

is equivalent to sorting all suffixes of S, as $ never compares equal to any other

character in S. Such sorting is equivalent to computing the suffix array of S, which

can be derived from a depth-first search (DFS) traversal of the suffix tree of S (see

Figure 4.6). The suffix tree of S can be computed in O(log2 n) time and O(n) work

using the algorithm of [140]. The order that leaves are visited in a DFS traversal

of the suffix tree can be computed using the Euler tour technique [155] within the

same complexity bounds, yielding the suffix array of S. Given the suffix array SA

of S, we derive SBST from S in O(1) time and O(n) work as follows:

SBST [i] = S[(SA[i]− 1) mod n], 0 ≤ i < n

Overall, computing the BST takes O(log2 n) time using O(n) work.
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Fig. 4.6: Suffix tree and suffix array (SA) for the string S = “banana$”.

Move-to-Front (MTF) Coding

Let SBST
i,j , 0 ≤ i ≤ j ≤ n be the substring [SBST

i , ..., SBST
j−1 ]; SBST

i,j is defined

to be the null string when i = j. Let σi,j be the set of characters contained within

SBST
i,j and Mi,j be the listing of the characters in σi,j in order of last occurrence in

SBST
i,j (i.e., in MRU order); this is the empty list when i = j. Denote by x ⊕ y the

list formed by concatenating to the end of y the list formed by removing from x all

elements that are contained in y. The key idea behind the PRAM algorithm for MTF

coding is the observation, noted in the discussion of the serial MTF algorithm, that

Li is the MRU listing of the characters of SBST
0,i followed by the remaining characters

of Σ in their originally defined order. That is, Li = L0 ⊕M0,i.

Observe that Mi,j = Mi,k ⊕Mk+1,j for all k, i ≤ k < j. This implies that

Mi,j = ⊕j−1
k=iMk,k+1. By definition, Mk,k+1 is simply the list [SBST

k ]. Furthermore,

⊕ is associative, and by the assumption that |Σ| is constant, takes O(1) time and
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work to compute. Therefore, M0,i, and thus Li, for 0 ≤ i < n can be computed in

O(log n) time using O(n) work by the standard PRAM algorithm for computing all

prefix-sums with respect to the operation ⊕. The prefix sums algorithm works in

two phases:

1. Adjacent pairs of MTF lists are combined using ⊕ in a balanced binary tree

approach until only one list remains (see Figure 4.7).

2. Working back down the tree, the prefix sums corresponding to the rightmost

leaves of each subtree are computed using the lists computed in phase 1 (see

Figure 4.8).

a,$,b,n

n b a $

b,n $,a n,a b,n a,$ a

$,a,b,n b,n,a a,$

b,n,a,$ a,$

︸ ︷︷ ︸
assumed prefix

︸ ︷︷ ︸
SBST

a n n b $ a a

Fig. 4.7: Phase 1 of prefix sums: Computing local MTF lists for “annb$aa” using the
operator ⊕. Each node in the tree is the ⊕-sum of its children. For example, the
circled node is (n, a) ⊕ (b, n).

Given Li, S
MTF
i is simply the index in Li of SBST

i , which can be found for all

characters independently in O(1) time and O(n) work. Therefore, MTF coding can

be performed in O(log n) time using O(n) work.
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Fig. 4.8: Computing the prefix sums of the output of the BST stage, “annb$aa”, with
respect to the associative binary operator ⊕. The top line of each node is copied
from the tree in Figure 4.7. The bottom line of a node V is the cumulative ⊕-sum
of the leaf nodes starting at the leftmost leaf in the entire tree and ending at the
rightmost child of V (i.e., the prefix sum up to the rightmost leaf under V ). For
example, the circled node contains the sum of leaves corresponding to the prefix
“nba$annb”. Observe the correspondence of the labeled lists with Figure 4.4.

Huffman Coding

The PRAM algorithm for Huffman coding follows readily from the serial al-

gorithm. In step 1, F is constructed using the integer sorting algorithm outlined in

[33], which sorts a list of n integers in the range [0, r− 1] in O(r+ log n) time using

O(n) work. Because r = |Σ| is constant, step 1 runs in O(log n) time and O(n)

work. Step 2 of the serial algorithm runs in O(1) serial time, so the same algorithm

can be used to construct T from F in O(1) time and work. Step 3 is performed in

as follows. First, the prefix-sums of the code lengths |T (SMTF
i )| are computed into

the array U in O(log n) time and O(n) work. Then, in parallel for all i, 0 ≤ i < n,

T (SMTF
i ) is written to SBW starting at position Ui in O(1) time using O(n) work.

Therefore, the overall Huffman coding stage runs in O(log n) time using O(n) work.
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The above discussion proves the following theorem:

Theorem 1: The above algorithm solves the Burrows-

Wheeler Compression problem in O(log2 n) time using O(n) work.

4.3.2 Decompression

Huffman Decoding

The main obstacle to decoding SBW in parallel is that, because Huffman codes

are variable-length codes, we do not know where the boundaries between codewords

in SBW lie. We cannot simply begin decoding from any position, as the result will

be incorrect if we begin decoding in the middle of a codeword. Thus, we must first

identify a set of valid starting positions for decoding. Then, we can trivially decode

the substrings of SBW corresponding to those starting positions in parallel.

Our algorithm for locating valid starting positions for Huffman decoding is as

follows. Let l be the length of the longest codeword in T , the Huffman table used

to produce SBW ; l is constant because |Σ| is. Without loss of generality, we assume

that |SBW | is divisible by l. Divide SBW into partitions of size l. Our goal is to

identify one bit in each partition as a valid starting position. The computation will

proceed in two steps: (1) initialization and (2) prefix sums computation.

For the initialization stage, we consider every bit i, 0 ≤ i < |SBW |, in SBW as

if it were the first bit in a string to be decoded, henceforth SBW
i . In parallel for all

i, we decode SBW
i (using the standard serial algorithm) until we cross a partition

boundary, at which point we record a pointer from bit i to the stopping point. Now,

every bit i has a pointer i→ j to a bit j in the immediately following partition, and
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if i happens to be a valid starting position, then so is j. See Figure 4.9(a).

01 1 1 0 0 0 010

01 1 1 0 0 0 010

(a) Step 1: initialization.

01 1 1 0 0 0 010

(b) Step 2: prefix sums.

01 1 1 0 0 0 010

SBW 11 0 10 0 0 0 10

SMTF 1 3, 0 3 3, 3 0

(c) Pointers from bit 0, corre-
sponding to valid starting posi-
tions in SBW (underlined).

Fig. 4.9: Huffman decoding of SBW (from Figure 4.5).

For the prefix sums stage, we define the associative binary operator ⊕ to be

the merging of adjacent pointers (that is, ⊕ merges A→ B and B → C to produce

A → C). See Figure 4.9(b). The result is that there are now pointers from each

bit in the first partition to a bit in every other partition. Finally, we identify all

bits with pointers from bit 0 as valid starting positions for Huffman decoding (see

Figure 4.9(c)); we refer to this set of positions as V . All this takes O(log n) time

and O(n) work.

The actual decoding is straightforward and proceeds as follows.

1. Employ |SBW |/l (which is O(n)) processors, assign each one a different start-

ing position from the set V , and have each processor run the serial Huffman

decoding algorithm until it reaches another position in V in order to find the

number of decoded characters. Do not actually write the decoded output to

memory yet. This takes O(1) time because the partitions are of size O(1).

2. Use prefix sums to allocate space in SMTF for the output of each processor.

(O(log n) time, O(n) work)
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3. Repeat step (1) to actually write the output to SMTF . (O(1) time, O(n) work)

These three steps, and thus the entire Huffman decoding algorithm, take

O(log n) time and O(n) work.

Move-to-Front (MTF) Decoding

The parallel MTF decoding algorithm is similar to the parallel MTF encoding

algorithm but uses a different operator for the prefix sums step. In contrast to

MTF encoding, MTF decoding uses the characters of SMTF directly as indices into

the MTF list. Therefore, SMTF
i defines a fixed permutation function that maps

Li to Li+1. Denote by Pi,j the permutation mapping Li to Lj. Then, P0,j can

be computed for all j, 0 ≤ j < n, using prefix sums with function composition

as the associative operator. See Figure 4.10. A permutation function for a list of

constant size can be represented by another list of constant size, so composing two

permutation functions takes O(1) time and work. Therefore, the prefix sums, and

the overall MTF decoding algorithm, take O(log n) time and O(n) work.

Inverse Block-Sorting Transform (IBST)

The parallel IBST algorithm proceeds in two steps, analogous to the serial al-

gorithm. In step 1, the integer sorting algorithm of [33] is used to sort the characters

of SBST . Because |Σ| is constant, the characters have a constant range, and so this

step takes O(log n) time and O(n) work. In step 2, and the list ranking algorithm

of [34] is used to rank the linked list in O(log n) time and O(n) work. Finally, the

characters of SBWT are written to S according to their rank in the linked list; this
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(a) SMTF (from Figure 4.9).
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(b) Initialization: the permutation function defined by SMTF [i] moves element i to the front of
its input list.
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(Right) Computing the ⊕-sum of the leftmost two leaves of the tree. The result is the parent of
the two leaves.
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Fig. 4.10: MTF decoding of SMTF from Figure 4.9: construction of Li in parallel using
composed permutation functions. The last character of SMTF is not used in
this construction because the corresponding list L7 is not needed. Observe the
correspondence of the labeled lists in (e) with Figure 4.4.
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takes O(1) time and O(n) work. Overall, the IBST takes O(log n) time and O(n)

work.

The above discussion proves the following theorem:

Theorem 2: The above algorithm solves the Burrows-

Wheeler Decompression problem in O(log n) time using O(n) work.

4.4 Experimental Validation

4.4.1 The XMT Platform

The Explicit Multi-Threading (XMT) general-purpose computer architecture

is designed to improve single-task completion time. It does so by supporting pro-

grams based on Parallel Random-Access Machine (PRAM) algorithms but relaxing

the synchrony required by the PRAM model. The XMT programming model differs

from the strict PRAM model in two ways:

1. The PRAM model requires specifying the instruction that will be executed by

each processor at each point in time, but XMT uses the work-depth methodol-

ogy ([146, 164]), which allows the programmer to specify all of the operations

that can be performed at each point in time while leaving to the runtime

environment the assignment of those operations to processors.

2. The PRAM model requires instructions to be executed in lockstep by all pro-

cessors at once, but XMT programs follow independence-of-order semantics:

parallel sections of code are delimited by spawn-join instruction pairs, and
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threads only synchronize when they reach the join instruction at the end of

the parallel section.

The XMT architecture consists of the following: a number of lightweight cores

(TCUs) grouped into clusters, a single core (master TCU or MTCU) with its own

local cache, a number of mutually-exclusive cache modules shared by the TCUs and

MTCU, an interconnection network connecting the TCUs to the cache modules, and

a number of DRAM controllers connecting the cache modules to off-chip memory.

Each TCU has a register file, a program counter, an execution pipeline, and a

lightweight ALU. Each TCU also contains prefetch buffers, which can be used by

the compiler to prefetch data from memory before it is needed, reducing the length

of the sequence of round trips to memory (LSRTM) and improving performance

[162]. Each cluster has one or more multiply/divide units (MDUs), floating-point

units (FPUs), and a compiler-managed read-only cache, all of which are shared by

the TCUs within the cluster. When a parallel section of code is reached, the MTCU

broadcasts the instructions in that section to all of the TCUs, and each TCU stores

the instructions in a buffer. Virtual threads are assigned to TCUs using a dedicated

prefix-sum network.

An overview of XMT with details relevant to work on application can be found

in [29].

4.4.2 Evaluated Configurations

Because XMT is an experimental platform, we establish that XMT is compet-

itive with single-chip multi-cores and many-cores currently available on the market
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by choosing a configuration of XMT that would use resources comparable to one

such commercially-available chip. The most recent comparison of XMT with exist-

ing chips is [29], in which a 1024-TCU configuration of XMT with 4 MB3 shared

cache (herein called XMT-1024) is shown to use a comparable silicon area to the

NVIDIA GTX 280 GPGPU, which uses 576 mm2 of silicon in 65 nm technology. In

[103], XMT-1024 was shown to remain in the same power envelope as the GTX 280

as well. Since then, silicon technology has improved, and the current successor to

the GTX 280, the GTX 680, is manufactured in 28 nm technology, with a die size

of 294 mm2, just over half that of the GTX 280; however, recall that nominally 294

mm2 in 28 nm technology offers more than twice the device capacity of 576 mm2 in

65 nm technology.

We compare our parallel implementation of Burrows-Wheeler4 compression

running on a 64-TCU FPGA prototype of XMT [170], and also on XMT-1024,

against bzip2 running on one core of the Intel Core i5-2500K CPU with 6 MB of

L3 cache. To obtain results for the XMT-1024 configuration, we used XMTSim, the

cycle-accurate simulator of the XMT architecture. XMTSim and the XMTC com-

piler are described in [100] and have already been the basis for several publications

including [29]. The most recent validation of the cycle-accuracy of the simulator is

[101, Chapter 4], which shows that the simulator cycle counts match those of the

FPGA except in a minority of cases, where the discrepancy may be up to 33%, due

in part to interconnect and DRAM technology limitations in the FPGA prototype

3 1 MB = 220 bytes
4 Available at http://www.umiacs.umd.edu/users/vishkin/XMT/OPEN_SOURCE_ALGS/
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File Description Size (bytes)
bible.txt The King James version of the bible 4,047,392
E.coli Complete genome of the E. Coli bacterium 4,638,690
world192.txt The CIA world fact book 2,473,400

Tab. 4.1: Files in the Large Corpus

that would not exist in an ASIC product. For BW compression, the difference due

to these limitations is 15%.

4.4.3 Data Sets

We perform our comparison using the Large Corpus from the Canterbury Cor-

pus [136], a standard set of files used to evaluate compression algorithms. We use a

block size of 900,000 bytes for both bzip2 and our parallel implementation, and we

obtain speedup results for each block separately since both implementations com-

press one block at a time. We use the notation file.i to denote block i of a file named

file. Because the file sizes are not evenly divisible by the block size, the last block of

each file is smaller than 900,000 bytes, and such blocks are denoted using parenthe-

ses. For comparison purposes with bzip2 implementations, our experimental results

are reported with respect to blocks. It should also be noted that our fine-grained

approach is orthogonal to existing coarse-grained ones allowing one to benefit from

both in a single implementation.
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4.4.4 Implementation Details

Prefix Sums

We use a k-ary tree to implement prefix sums operations. To improve the

performance of these operations, we cluster threads in the spawn block immediately

preceding each prefix sums operation into groups of size c and merge them with the

first iteration of the prefix sums operation. Similarly, we merge the last iteration

with the following spawn block. In our code, we fixed c at 256, corresponding to the

8-bit character set used by bzip2.

Run-Length Encoding (RLE)

To reduce the size of its output, bzip2 adds two run-length encoding (RLE)

stages to the basic BW compression algorithm. We added these stages to our im-

plementation as well. Since this enhancement is not part of the core compression

algorithm and thus not covered in the theoretical portion of this chapter, we state

without proof that the RLE algorithm we implemented runs in O(log n) time and

O(n) work.

Multiple Huffman Tables

Bzip2 also implements a heuristic that switches among multiple Huffman tables

to possibly reduce the size of its output. We are not aware of a parallel algorithm that

can decode data encoded using this heuristic within the bounds given by Theorem

2. To enable a fair comparison with our implementation, we modified bzip2 to only
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use a single Huffman table. For the inputs we used in our comparison, this caused

the average size of the compressed output to increase by 2.75% relative to that of

the unmodified bzip2. On average, the modified bzip2 compression ran 1.5% faster

than the unmodified version, and the decompression ran 7.5% faster.

Block-Sorting Transform (BST)

To provide better practical performance for small inputs, we use a randomized,

recursive variant of shared-memory sample sort to compute the BST. Although a

serial recursive sample sort algorithm is described and analyzed in [8], there appears

to be no prior polylogarithmic-time PRAM analog of such an algorithm. We describe

the sorting algorithm below; after the rotations of S are sorted, SBST can be derived

in O(1) time using n processors by having each processor i, 0 ≤ i < n, output the

last character of string i in the list of sorted strings.

The initial list of the n rotations of S is passed to a procedure called SAMPLESORT .

Let Tc be the time, and Wc be the work, required to compare two strings. Given

a list L as input, SAMPLESORT (L) proceeds in five steps. (1) A subset of n/k

splitters, with k > 1 a constant, is randomly selected from L and placed in the

list L′. (2) If L′ contains more than one element, SAMPLESORT (L′) is called

recursively. (3) Each element of L is ranked within L′ using binary search. (4) The

elements of L are partitioned according to their rank in L′. Because the ranks are

integers in the range [0, n− 1], this partitioning can be done using, e.g., the integer

sorting algorithm of [83], which runs in O(log n) time and O(n
√

log n) work. (5)

The partitions are sorted in parallel, with a serial comparison-based sort applied to
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each partition.

4.5 Results

4.5.1 Comparison with bzip2
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Fig. 4.11: Speedups obtained using the 64-TCU FPGA prototype. Partial blocks at the
ends of files are indicated with parentheses.

Speedups for the 64-TCU FPGA prototype are shown in Figure 4.11 and are

in the range 1.8-2.8x for compression and 0.8-1.1x for decompression. Speedups

for the simulated XMT-1024 configuration are shown in Figure 4.12 and are in the

range 12x-25x for compression and 11x-13x for decompression. The main reason

that speedups for 64 TCUs are low, but then scale up nicely for 1024 TCUs, is the

extra work that our parallel algorithms do beyond the original serial algorithm.

On the FPGA, speedups for partial blocks are higher than for the preceding full

blocks in the same file. This is because the partial blocks fit better than full blocks
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Fig. 4.12: Speedups obtained using the XMT-1024 configuration. Partial blocks at the
ends of files are indicated with parentheses.

into the limited cache size (256 KB5) of the FPGA. The situation is reversed for

XMT-1024, where the partial blocks bible.txt.4 and E.coli.5 exhibit lower speedups

than full blocks in the same file. This is because we tuned our code to provide

optimal performance on 900 KB blocks. For smaller inputs, performance can be

improved by tuning the code to spread the work among a larger number of threads,

decreasing granularity (at the cost of higher overhead). For example, decreasing the

factor k in SAMPLESORT and the clustering factor c provides up to 1.3x higher

speedup for partial blocks.

Of all the stages in the parallel implementation, the BST in the compression

routine is the most time consuming, and the corresponding inverse BST (IBST) in

the decompression routine is the second most time-consuming step. This is equally

true for bzip2 compression; it may be true for bzip2 decompression as well, but

the stages in the bzip2 decompressor are interleaved, so we could not separate out

5 1 KB = 210 bytes
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IBST. Therefore, improving the performance of these stages has the greatest effect

on overall runtime.

The aforementioned BST and IBST stages have irregular parallelism and mem-

ory access patterns. In addition, all of the stages in the compression and decompres-

sion routines employ fine-grained parallelism. In contrast to many parallel comput-

ing platforms, which have difficulty running such algorithms efficiently, the XMT

platform is designed with such algorithms in mind. This is perhaps one reason that

others have overlooked a parallel-algorithmic approach.

In addition to allowing parallelism to be exploited within a block, our approach

has the advantage that it only requires working space for a single block, as blocks

are processed one at a time. Therefore, all working data fits in cache, and DRAM is

only accessed to read input blocks and write output blocks. In contrast, if we were

to compress multiple blocks simultaneously using a single XMT chip, we would only

be able to process a few blocks in parallel without spilling working data to DRAM.

Therefore, our approach may have more efficient cache utilization than block-parallel

approaches.

The current embodiments of the XMT platform have the limitation that mem-

ory can only be addressed in terms of 32-bit words; threads cannot write to individual

bytes without overwriting all bytes within a word. Therefore, if multiple threads

need to be able to write to arbitrary elements of an array, the elements of that array

must be stored as 32-bit words even if they could otherwise be stored as single bytes.

Commercial-grade platforms, such as the Intel processor we compare against, do not

have this limitation. This means that our results are conservative relative to a more
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complete version of XMT with this restriction removed.

For XMT-1024, our parallel decompression implementation performs better

on E.coli.5 than on any other input. This is because it is smaller than every other

input (by at least a factor of 3), and thus the working set fits into cache for this

input alone. To verify this, we tested a variant of XMT-1024 with 16 MB of cache

and found that the minimum speedup increased from 10x to 12x. This suggests that

it may be worthwhile to take advantage of improvements in silicon technology noted

earlier to increase the size of the shared cache of XMT.

4.5.2 Using Compression to Increase Bandwidth

We compare our implementation (henceforth xmt-bw) to a number of other

compression libraries by providing as input the entire (11 MB) Large corpus6 and

measuring the compression ratio and speed; except for xmt-bw and pbzip2, all li-

braries are serial. Figure 4.13 shows our results. Each library has two regions.

(1) As long as the effective bandwidth does not exceed the maximum compression

speed, the effective bandwidth is limited only by the compression ratio (sloped por-

tion, bandwidth-limited). (2) Once the maximum compression speed is reached, no

further increase is possible (horizontal portion, compute-limited).

We compare xmt-bw against two classes of compression libraries:

• High compression, low speed: zlib [69], bzip2 [144], pbzip27 [73], and xz [35].

• Low compression, high speed: Snappy [78], LZO [131], QuickLZ [1], liblzf

6 All of the implementations tested here (including our own) subsequently divide the input into
blocks.

7 4 cores
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BW compression on XMT (xmt-bw) and existing compression libraries. The
dotted diagonal line represents the baseline of no compression.

[109], and FastLZ [88].

Of these, QuickLZ, liblzf and FastLZ are dominated by Snappy, and zlib is domi-

nated by pbzip2. Snappy outperforms LZO up to 1.46 Gbits/s, beyond which LZO

provides 6% more effective bandwidth. Results for the remaining libraries are shown

in Figure 4.13.

For network bandwidths up to 3 Mbits/s, xz outperforms xmt-bw by 4% due to

its slightly higher compression ratio. Beyond that, for network bandwidths up to 1

Gbit/s, xmt-bw is dominant; it is only outperformed by Snappy, LZO, and QuickLZ

at higher bandwidths. Remarkably, this breakpoint coincides with the peak band-

width of Gigabit Ethernet, which is commonly used on commodity systems. Even

on networks with a higher peak bandwidth, the point-to-point bandwidth depends

on network load and may fall into the range where xmt-bw provides an advantage.

Finally, beyond 3.1 Gbits/s, it is more efficient to transmit data uncompressed.
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4.6 Conclusion

This chapter is the first to demonstrate work-optimal algorithmic and empiri-

cal feasibility of parallel compression which compromises neither speed nor compres-

sion quality. For small inputs, it provides speedups where no other approach does.

For transmission of data over a network, it provides a larger increase in effective

bandwidth than other approaches over a wide range of network bandwidths.

Today’s parallel architectures allow good speedups on regular dense-matrix

type programs, but are basically unable to match this success outside this, including

for: 1. irregular problems/programs; and, 2. strong scaling. Extending parallel

hardware to address these domains could potentially lead to phenomenal growth in

supercomputing: 1. Nearly all serial algorithms in the CS curriculum are irregular;

how many more programmers and applications will migrate to parallel computing

if such parallel algorithms will deliver good speedups? 2. Publication of slow-down

results, as in [135], are extremely rare and reflect an unusual level of interest in a

problem. How many more will become interested if commercial hardware allows

speedups?
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Chapter 5: Fast Fourier Transform (FFT)

5.1 Introduction

The parallel computing community has increasingly shifted its attention to

communication avoidance as a way to address the end of Dennard scaling and the

attendant difficulty in scaling down power consumption: see for example the Na-

tional Academies report [120], work by Jim Demmel’s group [47] on communication

avoidance upper and lower bounds and many of the recent books in the computer

architecture series by publisher Morgan and Claypool such as [147]. However, there

are limits to the performance improvements that can be attained by focusing on

reducing data movement. The strength of current parallel architectures lies in solv-

ing problems, such as dense-matrix multiplication, that can be solved by algorithms

that are regular and require limited communication. For other algorithms, which

are irregular or require high bandwidth, these platforms have been able to demon-

strate limited speedups. Furthermore, the challenges of communication avoidance

have arguably harmed programmers’ productivity [165].

Still, the default mode for parallel programming research is reliance on off-the-

shelf hardware. But what if alternative machines, or hardware features, are feasible,

and can offer significant advantages? Clearly, such out-of-the-box hardware and



the enabling technologies it may require are unlikely to ever be developed before

their advantages are sufficiently understood. In contrast to work that seeks to avoid

data movement, the current work examines the problem from an alternate angle:

assuming that is it possible to reduce the energy cost of data movement, is it possible

to obtain strong speedups on problems for which such speedups have proven elusive?

This question has been partially answered in the affirmative by prior work

on the Explicit Multi-Threading (XMT1) general-purpose architecture [170], which

aims to improve single-task completion time and ease-of-programming for parallel

applications by supporting Parallel Random Access Model (PRAM) programming

[94, 104]. Such work, discussed in Section 5.3 (in part, by way of reference to [52]),

has focused largely on speedups for highly irregular parallel algorithms. Here, we

begin to examine another class of algorithms that also appear too challenging for

current platforms, namely, those that are regular but communication intensive.

Specifically, we examine one such algorithm, the fast Fourier transform (FFT).

The FFT is an important numerical algorithm used in fields such as signal process-

ing and scientific computing. What sets the FFT apart from other regular numerical

algorithms is its high communication needs; given O(S) local memory, it requires

O(n log n/ logS) I/O operations [89], which suggests that caches are of limited use in

reducing the bandwidth required by the FFT. Indeed, prior work using existing plat-

forms obtained modest speedups relative to the hardware invested; see Section 5.1.1

for some speedup examples, and for a comparison of prior speedups and hardware

1 XMT at the University of Maryland, not to be confused with the code name Cray XMT used
during 2007-2011
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invested in them with the results (speedups and assumed hardware) of the current

chapter, see Section 5.5.1 and Table 5.6.

Companion work on XMT [132] investigates the use of enabling technologies

including 3D VLSI and microfluidic cooling to increase communication bandwidth

on chip to shared cache, concluding that these technologies indeed enable XMT to

scale up to 8x larger than would be possible without them. It also briefly considers

the potential of photonics to extend this improvement off chip to greatly increase

bandwidth to DRAM. The companion work uses XMT as a vehicle for performing a

quantitative feasibility analysis of the enabling technologies in terms of temperature

and power.

The intellectual merit of the work presented here is to complement the forego-

ing feasibility analysis with a quantitative analysis of the corresponding performance

benefit, again using XMT as a vehicle. The two combined lay the groundwork for

future analysis of the enabling technologies. In particular, the purpose of this work

is to resolve the chicken-and-egg problem posed by enabling technologies: develop-

ment of enabling technologies will not advance without evidence of their benefit,

while such evidence apparently cannot be obtained until these technologies have

already been developed. In order to resolve this impasse, we obtain preliminary

results using a simulator (Section 5.3.1), which does not require actual hardware to

already exist. We recognize that the validity of these results is limited and will only

reach the level of those for existing systems once we are able to obtain results on

actual hardware.

While it is expected that increased bandwidth enabled by such technologies
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would lead to improved performance the (high) rate of improvement shows great

promise. Of particular interest is the potential benefit of silicon photonics. De-

velopment of photonic technologies advanced enough to enable the largest systems

considered herein would require non-trivial engineering effort. Although photonics

is a topic of current interest, even the most recent progress has been modest in scale

(e.g., [152]). In order to motivate more ambitious effort, we demonstrate that pho-

tonics could enable a single-chip many-core processor to outperform a much larger

high-performance computing (HPC) cluster of nodes interconnected via traditional

optics. This is especially true when the application, such as FFT, greatly underuti-

lizes the peak computational capacity of the HPC system due to limited inter-node

bandwidth. Here, XMT is a natural fit as the high off-chip bandwidth is coupled with

matching on-chip bandwidth, permitting significantly higher utilization of available

computational resources.

Our analysis consists of two parts. First, we measure the speedup of FFT

on XMT relative to existing platforms. Specifically, we compare against FFTW

[64], a highly-optimized implementation of the FFT, running on a single core of a

modern Intel processor and also on multiple cores. In addition, we compare against

a tuned FFT implementation running on Edison, a large HPC cluster. Second, we

use the Roofline [172] model to evaluate how close our FFT implementation comes

to achieving the peak performance possible on selected configurations of XMT and

how performance may be further improved.
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5.1.1 Comparison to prior work on the FFT

GPGPU Researchers at Microsoft [79] demonstrated performance of up to

300 GFLOPS on the NVIDIA GTX 280, with speedups of 2-4X over NVIDIA’s

cuFFT and 8-40X over Intel’s MKL. The best result for a 2D FFT was around 120

GFLOPS, achieved with an input size of 1024 × 1024. No results are reported for

3D FFT.

Using a hybrid GPU-CPU algorithm, Chen and Li [30] achieved up to 43

GFLOPS for a 2D FFT and up to 27 GFLOPS for a 3D FFT on an NVIDIA Tesla

C2075.

MPI Recent work [150] considers large 3D FFT on two high-end Cray systems

using up to 32,768 cores. For an input of size 10243, the best result was 13,603

GFLOPS using 32,768 cores. Weak scaling results ranged from 159 GFLOPS for an

input of size 5123 to 17,611 GFLOPS for an input of size 4096× 4096× 2048.

Similar work on large MPI clusters [129] shows that a 3D FFT on an input

of size 10243 can be computed in as little as 49 milliseconds (i.e., 3287 GFLOPS)

using 16384 cores of an IBM-BlueGene/Q cluster.

Prior work on XMT Prior work on the FFT on XMT [141] did not consider

3D FFT and was limited to fixed-point arithmetic. Also, the prior work focused

exclusively on FFT as an application rather than as a benchmark for evaluating the

benefit of augmenting a computer architecture with enabling technologies.
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5.2 Background

5.2.1 XMT Architecture

The Explicit Multi-Threading (XMT) general-purpose architecture [170] is

a many-core architecture which aims to improve single-task completion time and

ease-of-programming for parallel applications by supporting Parallel Random Ac-

cess Model (PRAM) programming [94, 104]. For some advantages of XMT, see

Section 5.3.

The XMT processor includes a master thread control unit (MTCU); process-

ing clusters, each comprising several light-weight thread-control units (TCUs); a

high-bandwidth low-latency interconnection network; memory modules (MM), each

comprising on-chip cache and off-chip memory; prefix-sum (PS) unit(s); and global

registers. The shared-memory-modules block (bottom left of Fig. 5.1) suppresses the

sharing of a memory controller by several MMs. The processor alternates between

serial mode (in which only the MTCU is active) and parallel mode. The MTCU

has a standard private data cache (used in serial mode) and a standard instruction

cache. The TCUs, which lack a write data cache, share the MMs with the MTCU.

The overall XMT design is guided by a general design ideal we call no-busy-

wait finite-state-machines, or NBW FSM, meaning the FSMs, including processors,

memories, functional units, and interconnection networks comprising the parallel

machine, never cause one another to busy-wait. It is ideal because no parallel

machine can operate that way. Nontrivial parallel processing demands the exchange
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of results among FSMs. The NBW FSM ideal represents our aspiration to minimize

busy-waits among the various FSMs comprising a machine.

We cite the example of how the MTCU orchestrates the TCUs to demonstrate

the NBW FSM ideal. The MTCU is an advanced serial microprocessor that also ex-

ecutes XMT instructions (such as spawn and join). Typical program execution flow

can also be extended through nesting of sspawn commands. The MTCU uses the

following XMT extension to the standard von Neumann apparatus of the program

counters and stored program. Upon encountering a spawn command the MTCU

broadcasts the instructions in the parallel section starting with that spawn com-

mand and ending with a join command on a bus connecting to all TCU clusters.

The largest ID number of a thread the current spawn command must execute (Y)
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is also broadcast to all TCUs. The largest ID (index) of the executing threads is

stored in a global register X. In parallel mode, a TCU executes one thread at a

time. Executing a thread to completion (upon reaching a join command), the TCU

does a prefix-sum using the PS unit to increment global register X. In response, the

TCU gets the ID of the thread it could execute next; if the ID is ≤Y, the TCU

executes a thread with this ID. Otherwise, the TCU reports to the MTCU that it

finished executing. When all TCUs report they have finished, the MTCU continues

in serial mode. The broadcast operation is essential to the XMT ability to start all

TCUs at once in the same time it takes to start one TCU. The PS unit allows allo-

cation of new threads to the TCUs that just became available within the same time

as allocating one thread to one TCU. This dynamic allocation provides run-time

load-balancing of threads coming from an XMTC program.

We are now ready to connect with the NBW FSM ideal. From the moment the

MTCU starts executing a spawn command until each TCU terminates the threads

allocated to it, no TCU can cause any other TCU to busy-wait for it. An unavoidable

busy-wait ultimately occurs when a TCU terminates and begins waiting for the next

spawn command.

TCUs, with their own local registers, are simple in-order pipelines, including

fetch, decode, execute/memory-access, and write-back stages. A cluster includes

functional units shared by several TCUs and one load/store port to the intercon-

nection network shared by all its TCUs.

The global memory address space is evenly partitioned into the MMs through

a form of hashing. The XMT design eliminates the cache-coherence problem, a
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challenge in terms of bandwidth and scalability. In principle, there are no local

caches at the TCUs. Within each MM, the order of operations to the same memory

location is preserved.

Quite a few performance enhancements have been incorporated into the XMT

hardware, including compiler and run-time scheduling methods for nested paral-

lelism and prefetching methods.

5.2.2 NoC (Network on Chip)

The high-throughput interconnection network required for the XMT architec-

ture presents an implementation challenge. A unique data path can be provided

for each pair of clusters and cache modules, such that there is no blocking in the

network, using a mesh of trees (MoT) network. However, the number of switches

required is proportional the product of the number of clusters and the number of

cache modules, which translates to a large silicon area. For example, an XMT ar-

chitecture in 22 nm technology with 8k TCUs requires silicon area of 190 mm2 just

for an MoT NoC. The area required for an MoT NoC of an XMT architecture with

16k TCUs is 760 mm2, and would not fit on a single silicon layer. In order to reduce

network area, a hybrid MoT and butterfly network can be used, where the inner

levels of the “pure” MoT network are replaced with butterfly levels [14].
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5.3 Motivation for using the XMT framework in this chapter

Our choice to use XMT in this chapter is motivated by several factors, de-

scribed below.

5.3.1 Ease of experimentation

A practical reason for using XMT is the availability of XMTSim, a cycle-

accurate simulator of the XMT architecture. XMTSim allows setting various archi-

tectural parameters such number of clusters, number of cache modules, and number

of DRAM ports, which determines bandwidth to DRAM. This allows us to model

the various configurations given in Section 5.4. XMTSim and the XMTC compiler

are described in [100] and have already been the basis for several publications in-

cluding [29]. The most recent validation of the cycle-accuracy of the simulator is

[101, Chapter 4], which shows that the simulator cycle counts match those of the

FPGA except in a minority of cases, where the discrepancy may be up to 33%, due

in part to interconnect and DRAM technology limitations in the FPGA prototype

that would not exist in an ASIC product. For the FFT, the difference due to these

limitations is 5%.

5.3.2 Past XMT Speedups

For placing this debate in historical context, recall that claims that the main

reason that parallel machines provide limited speedups is that the bandwidth be-

tween processors and memories is so limited are not new, as formally demonstrated
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Algorithm XMT GPU/CPU Factor

Graph Biconnectivity [52] 33X 4X, but only on random graphs �8

Graph Triconnectivity [53] 129X Only serial result 129

Max Flow [28] 108X 2.5X 43

Burrows Wheeler Transform - bzip2

{
Compression [55] 25X X/2.5 on GPU 70

Decompression [55] 13X Only serial result 11

Tab. 5.1: XMT Speedups

in [114, 166].

PRAM is the main theory of parallel algorithms. A “proof-of-performance”

with respect to PRAM algorithms demonstrated speedups between 1 and 2 orders of

magnitude (up to 129X) on the most advanced parallel algorithms in the literature

relative to the best known results on any machine (e.g., on GPUs) for any algorithms

for the same problem. See Table 5.1. Other published speedups include 20.4X on a

64-TCU XMT versus 4X on a 16-core AMD (using the same silicon area) for FFT

[141] and 100X on a gate-level simulation benchmark suite [80].

5.3.3 Ease of programming

For brevity, we refer interested readers to Section 5 of [52] for an extensive

discussion of results demonstrating ease of programming on the XMT platform.

5.4 Experimental configurations

A goal of this chapter is to examine the level of enabling technology needed

to build various sizes of parallel systems and determine the opportunities that such

systems provide to applications. To that end, we choose some configurations of

XMT that represent what can be achieved with a given level of technology and

explain what the barrier is to reaching the following level. For most configurations
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below, we consider a 2 cm by 2 cm chip (4 cm2) using 22 nm technology, though

the largest ones assume 14 nm technology. These configurations are summarized in

Table 5.2, and the required silicon area is given in in Table 5.3.

4k 8k 64k 128k x2 128k x4

TCUs 4096 8192 65536 131072 131072

Clusters 128 256 2048 4096 4096

Memory Modules 128 256 2048 4096 4096

NoC MoT Levels 14 16 8 6 6

NoC Butterfly Levels 0 0 7 9 9

MMs per DRAM Ctrl. 8 8 8 4 1

FPUs per Cluster 1 1 1 2 4

TCUs per Cluster 32

ALUs per Cluster 32

MDUs per Cluster 1

LSUs per Cluster 1

Tab. 5.2: XMT Architecture Configurations

4k 8k 64k 128k x2 128k x4
Technology Node (nm) 22 22 22 14 14

Silicon (Si) Layers 1 2 8 9 9
Si Area per Layer (mm2) 227 276 380 365 393

Total Si Area (mm2) 227 551 3046 3284 3540

Tab. 5.3: XMT Physical Configurations

5.4.1 Baseline: 4096 TCUs (“4k”)

The smallest configuration we consider consists of 4096 TCUs. This is the

largest system we can fit in a single silicon layer using 22 nm technology. This

configuration is strictly smaller than the one in the next section and therefore does

not require any enabling technologies.

94



5.4.2 3D VLSI: 8192 TCUs (“8k”)

To overcome the area limitation of the baseline configuration, we can split the

XMT chip across multiple layers using 3D VLSI. Companion work [132] shows that

an 8192-TCU configuration of XMT is feasible using air cooling alone, but not a

larger one.

Another issue that arises at this point is off-chip bandwidth. The 32 DRAM

channels of this configuration require a total of 6.76 Tb/s of off-chip bandwidth.

Using a standard parallel memory interface such as DDR3, this would require about

4000 pins on the XMT processor package. This may already be infeasible, as even

the NVIDIA Tesla K40 GPU (with 561 mm2 of silicon area) only has 2397 pins, and

this problem becomes more acute for larger XMT configurations that require more

off-chip bandwidth. A high-speed serial interface would allow consolidating a DRAM

channel into a few pins. For example, using the 32.75 Gb/s GTY transceivers on

the Xilinx UltraScale+ line of FPGAs, a DRAM channel can be reduced to 7 pins.

A configuration with 32 DRAM channels would then require just 224 pins.

5.4.3 Microfluidic cooling: 65536 TCUs (“64k”)

A significant issue with 3D VLSI is that the middle layers of the stack are

thermally insulated from the outside of the chip, and therefore cooling those layers

is difficult. One possible solution for cooling the middle layers is microfluidic cooling

(MFC), which uses a liquid (such as water) pumped through tiny channels between

layers to remove heat. Companion work [132] shows that MFC is sufficient to cool
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even a 65536-TCU configuration of XMT. At this point, the number of layers in

the 3D stack becomes a limiting factor. Off-chip bandwidth also becomes a limiting

factor, as even with high-speed serial transceivers, the 256 DRAM channels of this

configuration would require a total of 1792 pins.

5.4.4 Photonics and 14 nm node: 131072 TCUs (“128k x2”)

For larger configurations of XMT, we need to look ahead to smaller technology

nodes. For scaling from 22 nm to 14 nm, Intel claims a scaling factor of 0.54 for

logic area and similar scaling for power consumption [23]. If we keep the area of the

network-on-chip fixed, this allows us to double the number of clusters and memory

modules with some area to spare. With the remaining area, we can add more

FPUs. Because we double the off-chip bandwidth per memory module (see below),

we choose to also double the number of FPUs per cluster to balance computation

capability with communication.

In order to provide sufficient off-chip bandwidth for this configuration, we need

to replace the copper interconnect with a more advanced one, such as an optical

interconnect driven by silicon photonics. A significant issue with this solution is

heat. Faster photonic transceivers tend to be less energy efficient than slower ones.

For example, by combining eight 10-Gb/s channels in a single transceiver using wave

division multiplexing, it is possible to achieve an efficiency of 600 fJ/bit and an I/O

density of 700 Gbps/mm2 [176]. For a 4 cm2 chip, this solution provides 280 Tb/s

of off-chip bandwidth using 168 W, which is enough to double the ratio of DRAM

controllers to memory modules. More recent work achieves higher rates per channel
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but at the cost of an order of magnitude more power; two approaches using 30 Gb/s

transceivers without multiplexing require approximately 3 pJ/bit [49] and 8 pJ/bit

[96].

If the photonic transceivers are air cooled, then this limits their power dissipa-

tion and thus the bandwidth that can be achieved. In 2004, forced air cooling was

predicted to achieve little more than 100 W/cm2 [175, p. 4] to 150 W/cm2 [160],

and this projection has since remained steady [151]. This means that for a 4 cm2

chip, air cooling can remove no more than 600 W of heat. In this case, the 10-Gb/s

channels provide more bandwidth within the power budget than the 30-Gb/s ones.

Another limit at this point is the number of through silicon vias (TSVs) that

connect to the network-on-chip (NoC). A practical limit to the number of TSVs on a

single layer may be one hundred thousand [161], as beyond this point manufacturing

cost quickly increases and total TSV footprint becomes a significant percentage of

silicon area. The width of a NoC port is 50 bits; at 3.3 GHz, the required bandwidth

is 165 Gb/s per port. Each TSV can operate at 40 Gb/s [154, 169], so five TSVs

are required per port. A 131072-TCU configuration with 4096 clusters and 4096

cache modules will require 20480 TSVs for each of the following: from the NoC

to processors, from processors to the NoC, from NoC to memory modules, and

memory modules to NoC. This is a total of 81920 TSVs, which allows eighteen

thousand TSVs for other purposes, namely power delivery. Assuming a TSV pitch

of 12 µm [137], one hundred thousand TSVs will require 14.4 mm2 of silicon area.
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5.4.5 MFC-cooled photonics: more off-chip bandwidth (“128k x4”)

Although silicon area limits the size of the XMT chip, there is still room for

growth. Namely, the amount of off-chip bandwidth could be increased by applying

microfluidic cooling to the photonic transceivers as well as the rest of the chip.

This would allow using smaller, faster photonic transceivers, which would provide

sufficient bandwidth to allow each memory module to have its own DRAM controller

rather than sharing bandwidth with other memory modules. We also increase the

number of FPUs to four per cluster; beyond this number, we observe diminishing

returns.

Another possible application of MFC-cooled photonics is to split the XMT

floorplan across multiple chips at the interface between clusters (and/or memory

modules) and the network-on-chip. This would allow for reducing the height of

the 3D VLSI stack on each chip without reducing the system size. With sufficient

off-chip bandwidth, it would even be possible to split the network-on-chip across

multiple chips. It is up to future technology development to indicate which approach

works better.

5.5 Results

We use XMTSim to obtain cycle counts for computing a single-precision, com-

plex 3D FFT with an input of size 512×512×512. We assume that the clock speed of

XMT is the same as that of the Intel processor used as the reference for our speedup

figures, namely 3.3 GHz. To allow comparison with other work on the FFT (e.g.,
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[150]), we report FLOPS based on the standard rule of 5N log2N floating-point

operations for an FFT of N elements. An exception to this is Section 5.5.2, as the

Roofline model defines FLOPS to be the actual number of floating-point operations

(as reported by XMTSim) per second.

5.5.1 Comparison to FFTW

Serial FFTW We evaluate the performance of our implementation of FFT on

XMT for the configurations given in Table 5.2 by comparing it to an existing highly-

optimized implementation of FFT, namely FFTW version 3.3.4. The baseline for

our speedups is serial FFTW running on one core of an 8-core Intel Xeon E5-2690

with 20 MB of cache. Performance in GFLOPS is in Table 5.4, and speedup results

are in Table 5.5.

Configuration 4k 8k 64k 128k x2 128k x4
GFLOPS 239 500 3667 12570 18972

Tab. 5.4: FFT Performance on XMT

Configuration 4k 8k 64k 128k x2 128k x4
Speedup vs. serial 31X 66X 482X 1652X 2494X

Speedup vs. 32 threads 2.8X 5.8X 43X 147X 222X

Tab. 5.5: Speedups relative to FFTW

Parallel FFTW The E5-2690 uses 416 mm2 of silicon area in 32 nm technol-

ogy. If we assume an ideal scaling to 22 nm, then the E5-2690 would use about 197

mm2 in 22 nm technology. This implies that the 4k configuration of XMT would

use about 1.15 times as much silicon as an E5-2690. We ran parallel FFTW on a

system consisting of two E5-2690 processors, which supports up to 32 threads (16
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cores with hyper-threading). Notably, the 4k configuration achieves a 2.8X speedup

relative to this system while using only 58% of its silicon area.

5.5.2 Evaluation using Roofline model

Speedup results provide useful information, but limited insight. In particular,

they do not establish that the problem cannot be solved more quickly, even on the

same platform. Because the FFT is regular, its performance can be analyzed by

comparison with the peak performance that the platform is capable of.

The Roofline model [172] describes a platform in terms of two parameters:

peak computation rate and peak off-chip bandwidth. Peak computation rate is

often (but not necessarily) measured in terms of floating-point operations per second

(FLOPS), while bandwidth is measured in bytes per second. These two parameters

are plotted on a graph whose y-axis is FLOPS and whose x-axis is computational

intensity, the ratio of computation to data movement (measured in FLOPs/byte).

Algorithms with low computational intensity are data bound; such algorithms fall

under the sloped portion of the graph. Algorithms with high computation intensity

are compute bound; these fall under the horizontal portion of the graph. Based on

a constant-factor analysis of the number of operations performed by the FFT and

its I/O complexity, an upper bound for the computational intensity of the FFT is

logS FLOPS/word [62], where S is the size of the last-level cache in words; for

single-precision floating-point numbers, this is 0.25 logS FLOPS/byte.

Our multidimensional FFT implementation consists of two phases that are

executed once per dimension. First, the FFT of each row is computed. Second, the
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axes of the array are rotated2 so that the next time the FFT is applied to the rows

of the array, it will actually compute the FFT of what was originally the columns of

the array. In our implementation, the rotation is combined with the last iteration

of the computation to reduce the number of synchronization points and round trips

to memory.

In Fig. 5.2, we show how the observed performance of the overall FFT compu-

tation and its two phases compares to the theoretical Roofline model of the tested

configurations of XMT. The rotation phases are communication intensive and thus

fall to the left of the non-rotation phases, which are more computation intensive.

The overall performance of the algorithm is equal to the weighted average of the

two phases with respect to the time each cycle takes, so the overall performance

falls on the line connecting the two phases. The overall performance is closer to the

non-rotation phase since the non-rotation phase takes the majority of the time.

We make the following observations about the results:

(a) In the 4k and 8k configurations, both phases are essentially on the sloped

line, indicating that they operate very close to the peak off-chip bandwidth.

(b) In the 64k configuration, the rotation step is beginning to fall below the

sloped line. Since virtual parallelism is not lacking, this must be due to the decreased

number of mesh-of-trees levels in the interconnection network (ICN), a result of the

constraint on interconnection network area. This effect is more pronounced in the

128k x2 configuration, which has even fewer mesh-of-trees levels.

(c) The 128k x4 configuration provides only a 51% improvement over the 128k

2 In the special case of a 2D array, rotation is equivalent to a matrix transpose.
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Fig. 5.2: Roofline model of each XMT configuration (solid line with markers) with em-
pirical results for 3D FFT (markers on dashed line). On each dashed line, the
marker on the left (inside rectangle) corresponds to iterations where rotation
is performed, the marker on the right (inside ellipse) corresponds to iterations
where no rotation is performed, and the marker in the middle (inside rounded
rectangle) is for the overall FFT algorithm.

x2 configuration. As in (b), this is because the ICN is the bottleneck, and increasing

the bandwidth to DRAM beyond that of the 128k x2 configuration does little to

reduce congestion in the ICN.

Future technology scaling should allow for a more dense network-on-chip,

which would alleviate the bottleneck and allow for an even larger configuration

of XMT.
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5.5.3 Comparison to Edison

Edison is a Cray XC30 machine consisting of numerous 12-core Intel Xeon

E5-2695v2 processors interconnected using a Cray Aries network with a Dragonfly

topology. Edison is an enormous machine while even the largest configuration of

XMT we consider here is of a much more modest size, as shown in Table 5.6. For

example, in order to facilitate comparison of the silicon area required by the two

systems, following the row that compares total actual silicon areas and the VLSI

process used, we present areas normalized to 22 nm technology.

Edison XMT (128k x4)

# processing elements 124,608 cores 131,072 TCUs

# processor groups 5,192 nodes 4,096 clusters

Total cache memory 311,520 MB 128 MB

# chips
10,384 CPU + 1,298

router
1

Total silicon area (process)
56,177 cm2 (22 nm)

+ 4,072 cm2 (40 nm)
35.4 cm2 (14 nm)

Normalized silicon area (22 nm) 57,409 cm2 66 cm2

Peak power consumption 2,500 KW 7.0 KW

Peak teraFLOPS 2,390 54

TeraFLOPS for FFT (size) 13.6 (10243) 19.0 (5123)

% of peak FLOPS 0.57% 35%

Tab. 5.6: Comparison of Edison machine (Cray XC30) to XMT

The 128k x4 XMT system achieves a 1.4X higher speedup than Edison even

though the latter requires 870 times the silicon area and 375 times the power of the

XMT system. To put the power consumption of the XMT chip into perspective,

microfluidic cooling can remove nearly 1 KW/cm2 of heat per layer; see [157] and
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[24] for examples of single layer microfluidic cooling prototypes that have removed

790 W/cm2 and 681 W/cm2 respectively.

5.6 Conclusion

We have shown the potential for significant speedups relative to off-the-shelf

platforms on the FFT, an important mathematical algorithm. In contrast, without

co-design of algorithms and architectures, strong speedups have been elusive. This

suggests that it is indeed worth investing further effort into development of a cohort

of enabling technologies including silicon photonics for affording higher bandwidth.
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Chapter 6: Boosted decision trees (XGBoost)

6.1 Introduction

Since the circa 2004 transition of mainstream computing to parallelism, ef-

forts of the research community have been centered around commercial multi-core

or GPU hardware, unwittingly ceding strategic intellectual leadership of the field

to vendors. Extensive work on mapping and tuning algorithms and performance

programs for a generation of products has dominated contemporary conferences,

journals and research dissertations. Vendors have been changing their designs at a

rather brisk pace rendering this work Sisyphean: Even for cases where a vendor and

a product line remained in business, this work had to often be redone for successive

generations, sometimes ab initio. System architecture research has not fared much

better. The focus of the “quantitative approach” is on exploring limited updates

to commercial systems. As committee peer review is required to rank technically

incomparable submissions, it unwittingly conforms with dominant modes of oper-

ation. Thus, publication and funding incentives risk upholding futile efforts. The

state of educating CS undergraduates to properly benefit from parallelism widely

available in the very machines they use suggest further alarming evidence. Reflecting

a rather broad computer systems community, the sixth edition [85] justifies a recent



shift to heterogeneous platforms by stating: “it seems unlikely that some form of

simple multicore scaling will provide a cost-effective path to growing performance”.

However, we are concerned that such a shift may augment Sisyphean efforts with

Babel-Tower-type problems, making a bad situation even worse.

We believe that promoting fundamental understandings and robust knowledge,

independent of commercial players, is key to basic academic research. Thus, it would

make sense for us as a community to ask whether we can do better.

A completely different approach, dubbed “Explicit Multi-Threaded (XMT)”,

is discussed in [164]. The lead immediate concurrent execution (ICE) abstraction

underlying PRAM, the main theory of parallel algorithms, is the concept that each

step of a program needs to state all the operations that can done concurrently

and assume their lock-step execution in unit time, but nothing else. The hori-

zon envisioned by XMT is that of having the parallel programmer express paral-

lelism using ICE without ever needing to be concerned with threading, race condi-

tions or locality, while achieving competitive performance. A vertically integrated

hardware/software on-chip system has been introduced and extensively prototyped,

demonstrating speedups by order of magnitude over same-generation commercial

platforms for irregular and fine-grained applications. Removing the last obstacles

to efficiently implementing textbook PRAM algorithms as-is, this effort culminated

in demonstrating [70] that ICE programs can fully match the performance of man-

ually optimized multi-threaded code on XMT, thereby establishing feasibility of the

XMT-envisioned horizon. But, would an XMT/PRAM/ICE approach lead to more

robust insights? For algorithms the answer is yes. The PRAM algorithms theory has
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been stable since the 1980s. Using PRAM algorithms as-is per [70] is very appealing

and holds promise, especially if supported by architecture as for XMT. But, what

are the prospects that architecture insights and, in particular, memory architecture

ones meet the test of time?

The hybrid memory architecture underlying the XMT many-core computer

features: (i) A master CPU with a traditional cache (“serial mode”) and a plurality

of CPUs using shared memory cache; none of the parallel CPUs has local write

caches. And (ii) low-overhead transition between these serial and parallel memories.

In conjunction with a high-bandwidth, on-chip, all-to-all interconnection network,

these allow competitive performance regardless of how much parallelism a given

code presents.

This chapter presents: (i) new evidence that both multi-core and GPU design

have been getting much closer to this hybrid memory architecture given their original

starting principles that guided them in the opposite direction, reasoning that their

current quest for more effective support of fine-grained irregular parallelism drew

them closer to such memory architecture; and (ii) new speedup results of 3.3X over

NVIDIA’s most powerful GPU to date for XGBoost, a timely machine learning

algorithm.

There are several reasons why we believe that this chapter can be stimulating:

• It provides a unique perspective. In particular, raising the provocative ques-

tion about the aforementioned concerns about the recent shift to heterogeneous

platforms is likely to get some commotion from at least some of the audience.
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We hope that memory and system researchers will realize the need for operat-

ing outside the spell of incremental improvements to commercial systems, and

the opportunity for doing that, especially once such incremental approaches

are contrasted with the PRAM-based option to do better on both robustness

and homogeneity.

• The evidence on multi-core and GPU design getting much closer to the XMT

hybrid memory architecture raises the question whether the fundamental na-

ture of parallel algorithms and programs may have a similar effect to gravita-

tion power, drawing us in a certain direction regardless if we are aware of it

or not.

• The above mentioned demonstration of ICE programming on XMT, along

with success stories such as having XMT programming taught to about 700

students in a single high school (Thomas Jefferson High School for Science

and Technology, Alexandria, VA) since 2009, suggest that providing simple

multicore scaling and a cost-effective path to growing performance may not

be as insurmountable as [85] and many other computer architects opine.

Section 6.2 of this chapter discusses the hybrid memory architecture underlying

XMT. Section 6.3 briefly describes boosted decision trees, a timely application which

we use to show the benefit of our hybrid memory architecture, as well as the results

we obtained for this application. Finally, Section 6.4 evaluates some choices we

made in the design of XMT.
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6.2 Memory architecture of XMT

6.2.1 Our goal

One old insight of XMT is the need to support effectively in one architecture

two memory paradigms: serial and parallel. Many programs consist of both serial

sections of code and parallel sections, potentially with varying degrees of parallelism.

Amdahl’s Law implies that speeding up one section alone will be of limited benefit;

to improve performance beyond a certain point, all sections must be sped up. In

addition to the need for strong serial support for programs for which no parallel

implementation is currently available, serial execution also shows up in more sub-

tle ways in parallel programs. First, portions of some parallel programs may have

limited parallelism, and in such cases it may be faster to execute those portions on

a strong serial processor rather than underutilizing the parallel processors. Second,

programs with fine-grained parallelism, even those with much available parallelism,

need to switch between serial and parallel modes of execution frequently to orches-

trate the spawning and synchronization of threads; for example, when parallelism

is not represented by long running threads communicate infrequently, rarely or not

at all, and lower overheads for switching to serial mode and back to parallel mode

justify this.

From the memory architecture point of view, there is a tension between the

goals of supporting serial and parallel computation. Serial code is more sensitive

to memory latency than to bandwidth, as there is limited opportunity for a single
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thread to hide latency, while parallel code can issue many requests in parallel to

hide latency. Reducing latency often requires bringing data closer to the processor,

such as in a private cache. On the other hand, parallel computation often requires

sharing data among processors, and protocols to maintain coherence among private

caches scale poorly.

In light of this, we have developed a hybrid architecture with two components:

(1) a “heavy” serial processor with a private writable cache and (2) a number of

“light” parallel processors, each without a private writable cache. The two compo-

nents are tightly coupled such that switching from serial to parallel and back can

accomplished in time on the order of 10-100 cycles.

To develop this hybrid architecture, we first considered what limits perfor-

mance from the algorithm side. Under the PRAM algorithmic model, the relevant

factors are (1) work, the total number of operations to be performed and (2) depth,

the length of the critical path of execution. From the memory architecture point

of view, work comprises the amount of data read from and written to memory,

and depth is dominated by the length of the sequence of round trips to memory

(LSRTM). We then asked, for a given choice of workload, what is the best LSRTM

that can be achieved from the parallel algorithm side. After performing this op-

timization by hand, we set out to automate this task. Through iteration of the

hardware as well as the software development toolchain, we refined the automation

of the process of achieving a given LSRTM.
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6.2.2 Our design choices

Here, we describe our lead design choices for the two components of our mem-

ory architecture and how they work together. See Fig. 6.1. This is just one possible

set of choices we could have made; for a discussion and evaluation of design choices,

see Section 6.4.
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Fig. 6.1: Block diagram of hybrid memory architecture of XMT. The serial portion com-
prises the MTCU, which includes a local cache. The spawn-join unit (yellow)
is used for transitioning between serial and parallel mode from the control side,
which is a bit suppressed in this current memory-centered chapter. The parallel
portion comprises the clusters (orange). The shared memory system comprises
the interconnection network, shared caches, and memory controllers (green); it is
used by both the serial and parallel portions. The global register file (GRF) and
prefix-sum unit (blue) are used to coordinate concurrent execution of threads.

Serial mode

In serial mode, a single master thread control unit (MTCU) executes code. The

MTCU is a standard serial processor core with its own private, writable cache. We
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choose a write-through no-write-allocate policy for the cache to reduce the potential

for data to be brought into cache unnecessarily, which helps reduce the time needed

to flush the cache. The MTCU private cache is connected to shared memory via a

port on the interconnection network just like the TCUs.

Parallel mode

In parallel mode, a number of thread control units (TCUs) execute the program

contained within the current parallel section of code (delimited by “spawn” and

“join” instructions in XMT). TCUs are grouped into clusters (typically 16 TCUs

per cluster) that share some resources including a single port to the shared cache.

TCUs lack private writable caches, instead writing directly to main memory

via the shared cache. Several read-only memories are used to reduce the latency,

and in some cases bandwidth, of accesses to shared memory:

• Each TCU stores a copy of the program in a local instruction buffer. This

allows TCUs to run at their own pace rather than in lockstep.

• TCUs contain software-managed prefetch buffers, which reduce latency by

allowing TCUs to send read requests to memory before they will be needed by

the program and reduce LSRTM by allowing TCUs to issue reads back-to-back

without waiting for them to complete one-by-one.

• Clusters contain read-only buffers, which are software-managed caches that

allow TCUs to reuse data read by other TCUs in the cluster.

The shared cache is partitioned into cache modules, where each module is
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backed by a partition of the global memory space. Clusters communicate with the

cache modules via an all-to-all interconnection network (ICN). For smaller configu-

rations of XMT, the ICN is a mesh-of-trees network (MoT); for configurations where

a pure MoT would be too large, a hybrid network is used instead where some of the

middle layers of the MoT are replaced with layers of a butterfly network. All access

by the TCUs to shared memory goes through the ICN.

Finally, the cache modules are connected to main memory (DRAM) via one or

more memory controllers, which are evenly partitioned among the cache modules.

Requests by multiple TCUs in a cluster are queued, as are requests to the

same cache module. Requests by the cache modules to the memory controllers are

also queued. We hash memory addresses to spread memory accesses more evenly

across the cache modules to reduce hot spots.

Transition from serial to parallel

When spawning threads, the MTCU first flushes its private cache to shared

cache. This ensures that all data is available to the TCUs without the need for

cache coherence protocols. Assuming that not too much data is brought into the

local MTCU cache, the flush will be efficient. A possible optimization here would be

to flush only those cache lines containing data that will be needed in parallel mode.

Then, starting immediately after the spawn instruction, the MTCU broadcasts

the spawn block to the TCUs one instruction after another. Because each TCU has

its own copy of the program and its own program counter, each thread can progress

at its own pace.
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Transition from parallel to serial

After all threads finish executing, TCUs wait for all outstanding requests to

shared memory to complete, and then control returns to the MTCU. All local parallel

memories (e.g., read-only buffer) are invalidated; no data needs to be written from

local memory to shared memory since the local memories are read only.

6.3 Application: boosted decision trees

An increasingly-popular approach to machine learning is gradient boosted de-

cision trees, as implemented by XGBoost [31]. XGBoost is designed to perform

well on serial and parallel CPUs and has recently been extended to be supported

by GPUs [122] as well. According to the authors of XGBoost, it has been used by

many winners of machine learning competitions, including all of the top-10 winners

of KDDCup 2015 as well as many top-3 winners on the popular machine learning

competition website Kaggle (acquired by Google in 2017): 17 of the 29 challenge

winning solutions published on Kaggle’s blog during 2015 used XGBoost, compared

with 11 that used deep neural networks. In some senses, Kaggle represents the mar-

ketplace for data scientists: companies often sponsor competitions on Kaggle to find

solutions to problems of interest to them, and they also use Kaggle for recruiting

data scientists, either by evaluating the Kaggle ranks of applicants to data scientist

positions or by sponsoring competitions on Kaggle whose purpose is recruiting.

Reducing the training time would be beneficial to users of XGBoost. Indeed,

speedups have been demonstrated using GPUs [122], and work continues on reduc-
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ing times even on CPUs (e.g., the current beta version of the Intel Data Analytics

Acceleration Library (DAAL) [92]). However, we conjecture that there is room for

further speedups, and we have produced initial evidence to validate this conjecture.

GPUs are tuned for approaches such as deep learning that consist mostly of regu-

lar operations with high computational intensity such as matrix multiplication and

convolution. In contrast, XGBoost relies heavily on irregular operations with low

computational intensity, such as sorting, compaction, and prefix sums with indi-

rect addressing. Although support for irregular algorithms on GPUs appears to be

improving, it still lags far behind support for regular algorithms.

6.3.1 High-level review of algorithm

A decision tree is a binary tree where internal nodes represent yes-or-no ques-

tions about an instance and leaf nodes represent the label to be reported for all

instances that lead to that leaf. A simple type of decision tree is one in which each

internal node asks whether a certain feature of the input is below or above some

threshold, where the choice of feature and threshold are parameters of the model.

On their own, decision trees may be prone to overfitting. One approach to

mitigate this is by limiting the depth, and thus the complexity, of the tree. The

downside to this is that a single shallow decision tree is a fairly weak model. To

compensate for this, multiple decision trees can be trained and their results averaged

to produce a stronger model. XGBoost uses a boosted decision tree approach, in

which trees are added one by one to refine the output produced by the trees in the

model so far.
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XGBoost uses a greedy approach to build each decision tree. To begin, XG-

Boost starts by creating a single leaf node and assigning all of the training examples

to that leaf. XGBoost builds the tree by recursively splitting the examples at each

leaf so as to produce the highest information gain, stopping when the gain falls

below a specified threshold.

The majority of the time taken by XGBoost is spent searching for the best split

point (a feature and its threshold) for each leaf. For each possible split, XGBoost

looks at the left and right sides of the split and for each side computes a score

representing how large of a refinement will be made by this split; the information

gain is the sum of these two scores minus the score of the original, un-split node. A

simple scoring function provided by XGBoost is to compute the square of the sum

of the errors (signed differences) between the true output for each training example

and the current prediction.

XGBoost makes use of the following insight: if the training examples are sorted

in order of increasing value of a given feature, then all possible splits for that feature

can be trivially found by walking through the list. Furthermore, the sums of errors

can be updated while walking through the list simply by subtracting the error of the

current element from the sum for the right side and adding it to the sum for the left

side. This implies that the sums that are needed are the prefix-sums of the errors

in this sorted order. Because a different sorted order is needed for each feature, the

order in which the training examples are accessed is constantly changing, leading to

an irregular memory access pattern.
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Overview of parallel algorithm on XMT

Our parallel algorithm for XGBoost on XMT takes the serial algorithm and

replaces each step with a corresponding parallel alternative:

• We sort the training examples using a shared-memory sample sort. In contrast

to work on GPUs [122] that uses radix sort, this is less regular but provides

more parallelism for some inputs. We do not rearrange the examples them-

selves in memory but instead maintain arrays of pointers to the examples in

sorted order, one per feature. This results in more irregular memory access in

later steps but saves work when splitting nodes.

• To compute the sums of errors, we use a parallel prefix-sums algorithm. This

is similar to [122]; however, XMT can exploit more parallelism in this step

than GPUs: on XMT, all TCUs can participate in computing the prefix-sums

for a single feature whereas the GPU algorithm only uses a single thread block

per feature.

• To find the split with the maximum score, we use a parallel reduction algorithm

with maximum as the associative binary operator. Again, this is similar to

[122] but without the limitation of one thread block per feature.

• To split each node and rearrange its associated examples accordingly, we apply

parallel prefix-sums to perform compaction. In contrast, [122] employs two

strategies to handle splitting: (a) for the first few levels of the tree, do not

rearrange the examples. Instead, mark each example with the node it now
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belongs to after each split. (b) For deeper levels of the tree, rearrange the

examples after each split using radix sort.

The XMT algorithm above and the GPU algorithm of [122] represent different

trade-offs resulting from the memory architectures of the respective platforms. The

XMT algorithm favors reducing algorithmic complexity (work and depth) at the

expense of increased irregularity, maintaining pointers to examples and rearranging

them as necessary to avoid idle threads in later steps. In contrast, the GPU al-

gorithm maintains regularity as much as possible at the expense of increased work

and depth by deferring irregular data movement until the overhead of skipping over

examples that do not belong to the current node becomes prohibitive.

We also note that both the XMT and GPU algorithms involve numerous tran-

sitions between serial and parallel execution, as most of the above steps are executed

many times and each execution of a step incurs multiple serial-to-parallel transitions.

The impact of this is discussed in Sections 6.4.4 and 6.4.5.

6.3.2 Method

We compare XMT to commercial CPU and GPU platforms for the machine

learning approach of gradient boosted decision trees and obtain significant speedups.

Software To facilitate a fair comparison, we compared our code against the

following:

1. XGBoost, both serial and parallel CPU implementations [31]

2. the GPU-accelerated version of XGBoost [122].
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Here, we focus on the training step, as it is more time consuming than inference

and the parallelism is more difficult to exploit. This is not to exclude inference:

although inference on decision forests is embarrassingly parallel across the trees, we

still would expect some benefit on XMT since the problem is irregular.

XGBoost is written in C++ (with GPU kernels in CUDA), but there is cur-

rently no C++ compiler available for XMT. Therefore, we needed to rewrite the

XGBoost algorithm in XMTC, with a focus on computing the same result as the

original XGBoost code while exposing some parallelism. This starting point may

prove to be a disadvantage here, as XGBoost was designed with the strengths and

weaknesses of multi-core CPUs and GPUs in mind, and after more extensive work,

we may be able to get better speedups.

Computing platforms To obtain serial and parallel CPU performance re-

sults, we ran XGBoost on a modern Linux machine with two 8-core Intel Xeon

E5-2690 processors (16 cores in total). To obtain GPU results, we ran XGBoost on

an Amazon EC2 p3.2xlarge instance, which includes eight cores of an Intel Xeon

E5-2686 v4 CPU and a Tesla V100 GPU (Volta microarchitecture), NVIDIA’s most

advanced GPU to date.

Results for XMT were obtained using XMTSim, a cycle-accurate simulator of

the XMT architecture derived from a commitment to silicon of XMT using FPGA.

XMTSim was configured to simulate an XMT processor that would use silicon area

comparable to the Tesla V100 (16,384 TCUs, 32 MB shared cache) and also provide

nearly the same bandwidth to DRAM (768 GB/s).

XGBoost configuration and dataset XGBoost on all platforms was con-
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figured to generate 120 trees with a maximum depth of 6.

The dataset used in this experiment was the Higgs boson dataset taken from

the Kaggle machine learning challenge website [93]. It consists of 250,000 training

examples with 30 features each. This dataset was also used by the authors of

XGBoost in their work.

6.3.3 Speedups

The results show that among the platforms above, XMT would outperform

both the CPU and the GPU; see Fig. 6.2.

As far as we found out, other work on parallel implementations of decision

forests does not report direct comparisons to the best serial implementation. Work

on training tree ensembles using MapReduce [134] did not report any speedup versus

best serial due to lack of memory on the serial machine.

Work on boosted trees [158] achieved a self-speedup of up to 42× on a 48-core

shared memory machine and up to 25× on a 32-core distributed memory machine,

but no results are reported relative to best serial.

6.4 Discussion of design choices

The above is one possible design choice for a hybrid memory architecture,

which we made based on looking at various parallel workloads. Up to a point,

the community has agreed on the transition from serial computing to parallel com-

puting. Although no description is publicly available, NVIDIA GPUs appear to

120



0.05

0.39

1.00

3.30

0

0.5

1

1.5

2

2.5

3

3.5

CPU (serial) CPU (16 cores) GPU XMT

Sp
ee

d
u
p
 (
h
ig
h
er
 is
 b
et
te
r)

Platform

Fig. 6.2: Speedups of XGBoost on various platforms relative to the most powerful NVIDIA
GPU. XMT has a speedup of 3.3X while the CPU platforms have slowdowns
(speedup <1X).

have a high-performance all-to-all network connecting parallel processors to shared

cache. However, the CPU and GPU each have some separate memories, where data

shared between them must be copied from one to the other. In addition to discrete

GPUs, AMD also produces Accelerated Processing Units (APUs), which combine a

traditional CPU and GPU on a single die, and Intel also produces CPUs with an

integrated GPU. However, the balance of silicon area between CPU cores and GPU

cores on these chips has so far not favored GPU performance as in discrete GPUs.

6.4.1 Evidence for advances in GPU memory architecture

Our discovery of recent changes in modern NVIDIA GPU memory architecture

is a bit anecdotal. It began with our earlier attempts to run cycle-accurate simu-

lations of programs running on modern GPUs. We used FusionSim [174], based on

GPGPU-Sim [12], as a starting point and adapted the included configuration, which
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was designed to match the NVIDIA GTX 480 GPU (Fermi architecture), to attempt

to match the NVIDIA Tesla M40. We used FusionSim rather than GPGPU-Sim

alone since we sought to model the transitions between serial and parallel execution

in addition to the parallel kernels themselves.
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Fig. 6.3: Cycle accuracy of FusionSim (GPGPU-Sim) relative to three NVIDIA GPUs
running a list ranking benchmark.

We ran a list ranking benchmark based on parallel pointer jumping as a (highly

irregular) benchmark of three NVIDIA GPUs as well as FusionSim. Our goal was to

develop a cycle-accurate simulation of the Tesla M40 GPU that we would then use

for further work plans. However, we had to abandon our plans since we could not

get FusionSim to match the actual performance of modern GPUs. The differences
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we observed can be seen in Fig. 6.3. For large inputs sizes of 1 million elements or

more, FusionSim matches the Tesla M40. However, we point out two discrepancies

for lists smaller than this.

First, for small input sizes (less than 8000 elements), FusionSim underestimates

the run time of the benchmark relative to all three of the actual GPUs. This implies

that there are additional overheads for launching kernels on the actual GPUs that

are not reflected in FusionSim.

Second, the more recent Tesla K20 and M40 GPUs exhibit a steeper increase in

runtime at around 250 thousand elements than at any other point, but FusionSim

does not reflect this; FusionSim more closely follows the older GTX 260 in this

respect.

In particular, the second observation above led us to suspect that NVIDIA

made some improvements between the release of the GTX 260 in 2008 and the Tesla

K20 in 2012. We could not make sense of the nature of this improvement based

on published papers. In fact, we found it surprising given the well-cited keynote

talk [42] with its claim: “locality equals efficiency”; how can parallel architectures

that equate locality with efficiency (and minimizing reliance on non-local memories)

provide such strong support for high rates of data movement? So, we felt that we

need to dig deeper. To our surprise we found a patent [41] filed five years earlier,

which went barely unnoticed in the literature suggesting that NVIDIA is indeed

heading in a direction that seems a near opposite of [42]. That is, providing much

better support for shared memory at the expense of local memories on its GPUs.

Interestingly, [41] still suggests similar motivation to [42]; namely, that it would be
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better from an energy consumption point of view. However, we have not been able

to find support in the literature for improved energy consumption as a result of

trading local memories for shared ones. In fact, much of the architecture literature

seems to continue being influenced by [42] and its call for limiting data movement.

Indeed, when we then looked up information about the streaming multiprocessor in

their P100 Volta, we didn’t expect to find that even the register file is shared. It

will be interesting to find out at the conference how representative is our anecdotal

experience. Finally, the extent to which support for low-overhead transition between

serial and parallel execution is being followed remains to be seen as GPUs continue

to evolve.

6.4.2 Integrated vs. discrete GPUs

Some recent Intel processors have integrated GPUs that share their memory

system with that of the CPU cores. Two examples are the Intel Core i5-4690K

(with an Intel HD Graphics 4600 GPU) and the more recent Intel Xeon E3-1578L

v5 (with an Intel Iris Pro Graphics P580 GPU). A notable difference between these

two is that the P580 has 128 MB of eDRAM on the same package, which is used

as a level 4 cache. The results we were able to get for the Intel Xeon E3-1578L v5

were a bit inconsistent, which we speculate may be due to the first generations of

Intel GPUs with eDRAM not being fully optimized. Therefore, we discuss only the

Intel Core i5-4690K in the following comparisons.
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6.4.3 Performance on irregular algorithms: list ranking

We use the same list ranking benchmark as before to determine whether the

integration of the GPU provides an advantage here and to see whether we can de-

tect any improvement due to more recent Intel GPUs being more tightly integrated.

See Fig. 6.4. For the largest list (16 million elements), the i5-4690K achieves a

speedup versus serial of 2.6X. The integrated GPU is outperformed by the more

powerful discrete M40 GPU for all list sizes, which is expected since this benchmark

involves little communication between the GPU and the CPU. Notably, XMT per-

forms nearly as well as the serial CPU for small inputs while beating the M40 GPU

even for large inputs.

6.4.4 Serial-parallel transition overhead

The GPU version of the boosted decision tree program as tested in Section 6.3

has over ten thousand kernel launches, and the XMT version has nearly as many

parallel sections. Here, we examine the overhead of this more closely under two

runtimes: OpenCL and OpenGL

OpenCL

Figure 6.5 shows the overhead of switching from serial execution to parallel and

back in terms of the time taken to launch an empty OpenCL kernel. Surprisingly,

the discrete K20 and M40 GPUs outperform the integrated GPU even for small

numbers of threads. XMT spawns threads faster than any GPU by over an order
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of magnitude when the amount of parallelism is low and remains faster than the

GPUs even when much parallelism is available.
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Fig. 6.5: Time taken to launch a single empty OpenCL kernel (spawn block on XMT)
with respect to the number of threads launched. This is a measure of the time
required to transition from serial to parallel and back. For each platform, the
run time starts increasing once the number of threads reaches the maximum the
platform can run at a time. For the K20 and M40, we use a minimum of 256
threads (indicated by the dotted line) since these GPUs are not designed for
fewer threads; in our tests, running this benchmark with fewer than 256 threads
was slower than with 256 threads.

OpenGL

We suspected that the poor performance of the integrated GPU relative to

the discrete GPUs may be due in part to the NVIDIA OpenCL runtime being

more optimized than its Intel counterpart. In an attempt to avoid the overhead

127



of OpenCL, we tested a short OpenGL graphics benchmark consisting of a single

OpenGL shader program that combines two textures (essentially arrays of pixels)

using a simple arithmetic operation. Because this is a graphics benchmark, we were

limited to running on computers that were configured to allow using the GPU for

rendering graphics rather than only for GPGPU computation. Hence, we do not

have results for the NVIDIA K20, M40, or V100 GPUs.

Figure 6.6 shows that for inputs up to 2048 pixels, the Intel i5 processor with

HD Graphics 4600 is faster than the discrete NVIDIA GTX 1060 GPU. Possible

explanation for this advantage can be found in the Memory section of [37].
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Fig. 6.6: Time to execute a short OpenGL shader that applies a SAXPY operation (~y :=
~y+a~x) to two textures ~x and ~y versus texture size in pixels (length times width).
For inputs up to 2048 pixels, the integrated GPU of the Intel i5-4690K processor
is faster, indicating lower overhead.
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6.4.5 Sensitivity to serial-parallel transition overhead

To gain some understanding of the importance of low-overhead transition from

serial to parallel in a complete application, we examine what would happen if this

overhead were increased relative to baseline provided by the XGBoost results above.

In Fig. 6.7, we show the effect of increasing the spawn latency, which is the hardware

portion of the transition overhead, from its original value of 23 cycles to various

values up to and including 50,000 cycles. Latencies up to about 1000 cycles have

little effect on speedup, but performance falls off beyond that point. For comparison,

the typical GPU kernel launch latency is around 10,000 cycles. If the overhead for

serial-to-parallel transition on XMT were as high as it is for the GPU, then XMT

would perform no better than the GPU.
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The leftmost point is the speedup for the latency
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6.5 Conclusion

As their name suggests, streaming multiprocessor memory organizations have

long provided strong support for moving data in and out of execution units. How-

ever, as long advocated by our XMT/PRAM approach, the need to better support

irregular parallel algorithms led some successful GPU designs to increasingly move

towards reliance on shared memories, breaking away with their past emphasis on

local memories and locality at all cost. While this has led to marked improve-

ments, their limited ability to support down-scaling of parallelism, especially for

discrete GPUs, is hurting them significantly for supporting some full applications.

The emphasis of some sections of the machine learning market on methods such as

stochastic gradient descent (SGD), and their reliance on full matrix multiplication,

for deep learning, appears to take a toll for other prominent market success stories

in machine learning, such as the boosted decision trees application discussed in this

chapter.

However, our experience with XMT suggests that something bigger is at stake

here. We demonstrated strong speedup on general-purpose applications, full sup-

port of the main theory of parallel algorithms and easy parallel programming; and,

therefore, directions for finally providing simple multicore scaling and a cost-effective

path to growing performance, finally overcoming what [85] and many other computer

architects suggest is insurmountable.
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Chapter 7: Boolean satisfiability (SAT)

7.1 Preview and introduction

Boolean Satisfiability (SAT) is a well-known NP-complete decision problem,

and a widely used modeling framework for solving combinatorial problems. In spite

of its widely assumed worst-case exponential time, modern SAT algorithms have

been extremely effective at coping with large search spaces leading to their use in

a broad range of practical applications. The overview sources [76, 77, 117] note

such applications, including hardware verification, software verification, and, more

generally, those that exploit the problem’s structure when a structure exists; such

approaches were explored over the years in many submissions to SAT competitions.

Additionally, SAT solvers leverage much broader forms of automated reason-

ing (e.g. [26, 65, 81, 106, 111, 124, 126, 127, 142, 168]), and other fields (e.g.,

bioinformatics [113], or computer security [121]).

The objective of this chapter is to explore the untapped parallelism in SAT

solvers, with the goal of stimulating future research on (i) its scaling and (ii) real-

ization of that potential through novel computing stacks comprising algorithms and

architecture.

State-of-the-art approaches to parallel SAT solving focus on splitting the



workload among CPU nodes as follows. The nodes handle mutually exclusive truth

assignments. Each node runs a sequential SAT solver. The only coordination needed

among nodes is the split of work and the load balancing needed in case a node runs

out of work. The overall objective is to use parallelism for covering more search

space at once, with little interaction between the solvers.

Such approaches map well to current high-end computer systems, with one

or more sequential solvers per node. However, these approaches have so far only

demonstrated a limited scalability horizon as simple strategies can result in redun-

dant work and more complex ones can encounter high overheads due to frequent

communications or significant sequential computation up front or both.

Using parallelism to speed up a state-of-the-art sequential SAT solver

As sequential SAT solvers have greatly improved over the years, doing basically the

same operations that such a solver does, but enhancing its speed by doing many

more of these operations in parallel is an opportunity that we believe has received

relatively little attention. If successful, this would have several benefits: 1. Prob-

lems that are not too large would fit on a single node and can be sped up without

needing to spread the computation across multiple nodes. 2. Because current par-

allel approaches largely use sequential solvers as black boxes, speeding up those

solvers would speed up the overall computation. 3. Parallelism can speed up the

partitioning of same-input-different-truth-assignment among nodes, as in the cube-

and-conquer method [87] discussed in Sec. 7.4.2, which we hope will spur further

research into efficient partitioning algorithms.

The heuristics challenge presented by such work is that, when viewed from
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the traditional worst-case analysis point of view, SAT solving is as much of an art

as it is a science. We must remember that the SAT problem is NP-complete. So,

unless P turns to be equal to NP, we are not going to have an efficient SAT solver

across all inputs. It was rather the trial-and-error heuristics development approach,

guided by common sense and quantitatively evaluated by empirical benchmarking,

that led to past successes. The best modern SAT solvers have built on decades

of experience addressing the challenges posed by practical SAT problem domains.

Resorting to quantitative empirical approaches is of course not alien to computer

science; in fact, such approaches have come to dominate fields such as computer

architecture, high performance programming and AI including machine learning,

among others. For SAT solvers going forward, this suggests preserving as much

as possible the “wisdom” that made a (serial) heuristic successful, and to expect

similar development pains where the novel parallel SAT solver deviates from the

successful serial ones.

Our work exposes an architecture challenge facing such work, articulating

a gap between current computer architectures and parallel algorithms. Specifically,

our initial investigation suggests that efficient handling by the hardware of very fine-

grained nesting of parallelism would be critical for effective support of the parallel

algorithms we need; in particular, how to minimize the overhead for the initiation of

child threads. Traditional software nesting techniques have incurred relatively high

overheads. While Vishkin and Wen [171] proposed low overhead hardware support

for fine-grained nesting, it appears that most others were content with software

techniques, that incur higher overheads. Alternative new hardware techniques for
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handling of fine-grained nesting may be required, but such techniques, and of course

their performance, are still unknown at this time. Thus, the modeling challenge

to be addressed is: given a parallel SAT solving algorithm, how to reason about its

performance potential hypothesizing such future hardware support?

In this chapter, we explore how these challenges can stimulate future work in

three inter-related ways:

The first is to study sequential SAT solver algorithms to discover oppor-

tunities for parallelism. In this chapter, we study fine-grained parallelizations of

Glucose [9], a state-of-the-art general-purpose sequential SAT solver, that preserve

its carefully developed heuristics. As Glucose uses the same algorithmic framework

as most other modern SAT solvers, we expect that insights gained from working

with Glucose can be applied to SAT solvers more broadly.

A second is to develop mathematical models to determine the potential

speedups that can be obtained from new parallel algorithms. Because such work

will consider the effect of both algorithms and architectures on performance, a way

is needed to evaluate the behavior of the algorithm on real-world inputs apart from

specific architectures in order to isolate the sources of bottlenecks. The model we

consider here is extending work-depth, a widely-used abstraction in parallel algo-

rithms (see e.g., [94, 104]), to allow nested parallelism. In the work-depth model,

work is the total number of operations, and depth is the number of operations on

the critical path assuming an unlimited number of processors and excluding the cost

of nesting. However, we actually also consider an empirical variant of this model

where operation counts are replaced with timings extracted from the execution of a
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serialized parallel algorithm on a commodity processor. These models, elaborated

in Sec. 7.6, can provide a basis to compare new parallel SAT solvers in terms of

bounds on performance potential.

For our parallel versions of Glucose, our preliminary findings suggest speedup

potential of over 380X in some cases, as shown in Table 7.1 below. We explain

Table 7.1 by an example: in the first row, author Biere provided inputs for SMT.

The best performing input yielded potential speedups of 23.2X and 125.4X for the

“Inner” and “Outer” (parallel) algorithms, respectively, and the worst yielded 7.8X

and 62.3X (resp.).

The third is that we hope future work will study the challenges involved in

bridging the gap between what our algorithms require and what architectures

provide. For example, as parallelism in our algorithms is fine grained and irregular,

including fine-grained nested parallelism, a computing platform designed for such

features would be the best fit.

The remainder is organized as follows: Sec. 7.2 defines some terminology. Sec.

7.3 describes state-of-the-art sequential SAT solvers. Sec. 7.4 describes existing

approaches to parallelizing solvers, followed by the new approaches we study here

and some of the implementation challenges involved. Sec. 7.5 discusses architectural

challenges. Sec. 7.6 discusses the model we use in this study. Sec. 7.7 reviews our

results as shown in Table 7.1, explaining in detail their underlying assumptions. Sec.

7.8 reviews relevant literature. Finally, Sec. 7.9 concludes.
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7.2 Preliminaries

A Boolean variable (e.g., x) can take one of two values: TRUE or FALSE.

A literal is a variable x or its negation (written ¬x). If x is TRUE its negation ¬x

is FALSE and vice versa. A clause is a disjunction of literals (e.g., x ∨ ¬y ∨ z); a

clause is TRUE (also called satisfied) if at least one literal in the clause is TRUE

and FALSE (also called unsatisfiable) if all literals are FALSE. A unit clause

is a clause with exactly one literal. A formula in conjunctive normal form (CNF)

(henceforth, formula) is a conjunction of clauses (e.g., (x ∨ ¬y) ∧ (y ∨ z)); a clause

is TRUE (also called satisfied); a formula is TRUE (satisfied) if all clauses in the

formula are TRUE and FALSE (unsatisfiable) if at least one clause is FALSE.

The Boolean satisfiability problem (SAT) is to decide whether a given formula is

satisfiable.

7.3 Sequential SAT solver algorithms

The Boolean satisfiability problem (SAT) is NP-complete: there is no known

way to solve SAT in polynomial-time, and unless P=NP there will not be one.

Therefore, efficient SAT solvers rely on heuristics to provide good performance on

practical inputs. The most common approach for SAT solving is the backtracking

search algorithm. It traverses the search tree of all partial variable assignments

in a depth-first manner until it finds a satisfying assignment or until it concludes

that no such assignment exists and the formula is unsatisfiable. Most modern SAT
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solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [44]

(see Algorithm 1). It traverses the search trees, depth-first, one variable at a time,

assigning it the values either TRUE or FALSE. The worst-case time complexity of

all backtracking algorithms is exponential in the number of variables.

Algorithm 1: Davis-Putnam-Logemann-Loveland (DPLL) solver

Input: A CNF formula φ
Output: A decision of whether φ is satisfiable.

1: function DPLL(φ)
2: Unit propagate(φ)
3: if the empty clause is generated then return FALSE
4: else if all variables are assigned then return TRUE
5: else
6: Q← some unassigned variable . Variable is selected based on a heuristic
7: return DPLL(φ ∧Q) ∨ DPLL(φ ∧ ¬Q) . Value of Q is selected based

on a heuristic
8: end if
9: end function

To improve performance, all SAT solvers are engaged in 3 main performance

enhancing steps, aiming at pruning the search space explored.

• Unit propagation. After each assignment, the CNF formula is simplified by

unit propagation (see Algorithm 2), which is a form of constraint propagation

that prunes the search space while moving forward extending a partial solution

by one more variables. If unit propagation generates an empty clause a dead

end occurs and the current assignment is declared a conflict. DPLL backtracks

to the last variable it assigned, flips its value (from TRUE to FALSE or vice

versa), and tries again.

• Variable and value ordering heuristics. Unit propagation is also instru-
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mental in facilitating look-ahead heuristics for selecting the next variable and

its next value. These ordering decisions are known to have an immense im-

pact on the size of the search tree explored, and thus on the efficiency of the

algorithm.

• Conflict-Directed Clause Learning (CDCL). When a dead end occurs,

rather than naively backtracking to a previous assignment, the algorithm anal-

yses the reason for the conflict, and learns a new clause (or a nogood) that

is added to the CNF formula, ensuring that the same conflict will not occur

during the remainder of the search. Such newly-learned clauses are logical

implications of the original CNF formula and can therefore augment it with-

out changing its satisfiable models. In addition, instead of backtracking just

one level, the algorithm can backjump a few layers back, allowing shortcutting

parts of the search space that cannot lead to a solution.

Recent success of SAT solvers is attributed to this last step of clause-learning,

hence the term CDCL algorithm [16, 45]. Many CDCL solvers, including Glucose,

use a further refinement: Variable State Independent Decaying Sum (VSIDS) [110,

125], a heuristic for choosing decision literals that favors variables involved in recent

conflicts.
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Algorithm 2: Unit propagation

Input: A CNF formula φ
Output: An equivalent formula such that no unit clause appears in any non-unit

clause.
1: procedure Unit propagate(φ)
2: Queue← all unit clauses in φ
3: while Queue is not empty do . “Outer” loop (Sec. 7.4.3)
4: T ← next unit clause from Queue
5: for every clause β containing T or ¬T do . “Inner” loop (Sec. 7.4.3)
6: if β contains T then
7: Delete β from φ . Known as subsumption elimination [46]
8: else
9: Delete ¬T from β . Known as resolution [46]

10: if β is now a unit clause then add β to Queue
11: end if
12: end for
13: end while
14: end procedure

7.4 Parallel SAT solver algorithms

7.4.1 Existing opportunities for parallelism exploited by Glucose

Perhaps the simplest approach is to run multiple copies of the same solver on

the same input problem with different initial conditions, sometimes call the Portfolio

approach. The advantage of this approach is that it is embarrassingly parallel. The

disadvantage is that, because there is no coordination among solver instances, work

may be duplicated or wasted.

These disadvantages can be mitigated by sharing information between solvers.

For solvers that learn new clauses at run time, such as CDCL solvers, a commonly-

used approach is to share learned clauses between solver instances. Analogously to

how clause learning in serial avoids redundant work by learning from its own failures,
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clause sharing in parallel avoids redundant work by learning from others’ failures.

This approach comes with its own disadvantages, however. First, sharing clauses

requires communication between solvers, which may incur overhead depending on

the computational platform. Second, there will still be redundant work if clauses

are not useful or are shared too late to be useful.

The compromise taken by Glucose-Syrup [10], the parallel version of Glucose

by the authors of Glucose, is to share clauses lazily using a shared-memory message-

passing approach. Each solver places “useful” learned clauses (those that have been

involved in conflicts several times) in a queue shared by all threads. Other solvers

read new clauses from this queue when it is convenient for them. This is a form

of asynchronous communication: each solver sends and receives clauses at its own

pace.

7.4.2 Other existing opportunities not exploited by Glucose

Another approach is to partition the search space into disjoint sections and

run one copy of the solver on each section. Some ways of partitioning the search

space will be more effective than others, with more pre-partition computational

work typically leading to a better partition. The cube-and-conquer method [87]

uses a look-ahead solver to partition the original problem into many subproblems

(called “cubes”) and then solves each of the subproblems using a CDCL solver. A

look-ahead solver is a DPLL solver where the variable selection heuristic (step 6

in Alg. 1) measures (based on some heuristic) the degree to which each possible

variable selection simplifies the formula φ after unit propagation, balancing TRUE
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and FALSE assignments. One simple implementation is to choose the variable x

with the greatest value of the product R(x) ·R(¬x), where R(l) equals the number

of clauses that are reduced (but not deleted) after performing unit propagation on

the formula φ ∧ l; typical implementations favor shorter clauses rather than giving

each reduced clause equal weight. Note that this is a much more expensive heuristic

than VSIDS.

7.4.3 Fine-grained parallelism extracted from Glucose

Glucose spends most of its time in the unit propagation step (Alg. 2), which

is a doubly-nested loop akin to a breadth-first search (BFS) of a bipartite graph

whose nodes are variables and clauses, with an edge connecting each clause to the

variables it contains, as shown in Figure 7.1. Because the BFS frontier consists of

unit clauses, which have a fanout of 1, we can compress the traversal from unit

clauses to variables and back to clauses into a single step; this “compressed BFS”

will henceforth be simply called “BFS”.
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Fig. 7.1: Unit propagation viewed as a BFS graph traversal in parallel.

Each of the loops in Alg. 2 can be parallelized, the outer loop by processing

all variables in the queue simultaneously and the inner loop by processing all clauses

containing the unit clauses being processed simultaneously. This implies a nested
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parallel algorithm for unit propagation. However, we need to qualify this BFS

analogy. Unlike the synchronous progress of BFS from one group of nodes in the

parallel outer loop to the next, unit propagation does not mandate such synchrony;

we will be on the lookout for exploiting such synchrony relaxation for improving

performance.

7.4.4 Further opportunities for parallelism

Beyond this, multiple branches of the DPLL search tree can be explored in

parallel, adding a third level of parallelism to the above. This can be applied in the

selection of next variable (step 6 in Alg. 1) and/or in value selection (step 7) and be

executed in parallel. This is likely to be more challenging to implement efficiently,

as some solver state may need to be replicated for each branch, and there will be

another level of nesting.

Finally, it may be possible to enhance the existing coarse-grained parallelism

within Glucose-Syrup. One way may be to share with other solvers not only learned

clauses but also variable assignments.

7.4.5 Implementation issues

One question is how to manage the parallelism of the outer loop. This can be

done multiple ways. On one hand, it can be done synchronously: at each iteration,

process in parallel all the variables in the queue that were added during the last

iteration, in similar fashion to BFS. The advantage of this approach is that it is

conceptually simpler to coordinate thread execution, while the disadvantage is that
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the longest thread must finish before beginning any new threads. On the other

hand, an asynchronous approach can be used: spawn a new thread for each variable

added to the queue as soon as it is discovered. This allows threads to start as soon

as possible. However, the computing platform may not support efficient dynamic

spawning of new threads within parallel code.

A related issue is that, as explained later, nesting is difficult to implement

with good performance in practice. A possible alternative is to flatten parallelism

to a single level. This presents the question of how to build the list of jobs to be

executed by nested threads. One option is to statically reserve space for a fixed

number of jobs per parent. In this case, a parent can add a job simply by writing to

one of its reserved slots. Alternately, space for jobs can be allocated dynamically,

which requires a parent to first request space for a job from a global pool, have its

request granted and then write to it. The static approach has limited scalability

(finite number of children per parent), but it is faster, since its saves the request for

space allocation and its granting. Depending on the architecture there may also be a

difference in cost even once space is allocated, but our modeling currently suppresses

it.

7.4.6 Scaling across nodes

Because the fine-grained parallelism we study here is orthogonal to the coarse-

grained parallelism of the portfolio approach in Glucose-Syrup (Alg. 3), it is possible

to combine the two as follows (Alg. 4):

• Run one solver per node instead of one per core, with learned clauses shared
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via message passing instead of shared memory.

• Use a heuristic (to be determined) instead of random selection to choose each

node’s initial literal.

• Use a fine-grained parallel solver on each node instead of a serial one.

Algorithm 3: Original Glucose-Syrup

1: for each core in system, in parallel do
2: l← random literal
3: SerialCDCL(φ ∧ l)
4: end for

Algorithm 4: Combined fine-grained & distributed solver

1: for each node in cluster, in parallel do
2: l← literal chosen by heuristic (TBD)
3: ParallelCDCL(φ ∧ l)
4: end for

Furthermore, it is possible to extend the above by replacing the single-literal

selection heuristic (line 2) with a split of the search space based on multiple literals,

which we expect to result in a better balance of work across nodes at the expense

of more work up front. One approach of this sort is cube-and-conquer, in which

fine-grained parallelism can be exploited both in the cube phase (look-ahead solver)

and in the conquer phase (CDCL solver on each node).

7.5 Architectural challenges

Here are some challenges posed by SAT algorithms to current platforms:
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Granularity: For the new parallel algorithms studied, threads are short (10s-

1000s of cycles), but multicores are optimized for longer threads.

Irregularity of threads: Thread length depends on clause length and satis-

fiability, but GPUs execute threads in lockstep and impose a performance penalty

when threads diverge.

Irregularity of memory access: Different clauses are active at different

times depending on current variable assignments and the variable being propagated.

This means that accesses are scattered throughout memory, and memory access

patterns can only be determined at run time.

Communication overhead: The fine-grained parallel algorithms probably

share too much data to run efficiently across multiple nodes but may be practical

within a node. Meanwhile, the coarse-grained algorithms require less communica-

tion, but scalability is limited due to overlap of work between nodes. Here, there is

a tradeoff: the more nodes communicate, the less redundant work they do, but the

more expensive the communication is, and the sweet spot depends on the specifics

of the platform.

These challenges can be addressed from multiple angles. One is to examine

what is possible with commodity computing platforms. For example, OpenMP can

be used to parallelize one or both loops: (i) parallelize the inner loop only, thereby

avoid nesting; (ii) parallelize the outer loop only and serialize the inner loop; and,

(iii) parallelize both loops at once. Possible topics to study include: (a) the extent

to which each approach may provide enough parallelism to enable some speedups;

and (b) when the overhead of nesting may be too high to make this beneficial (see
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Sec. 7.6). Our results (Table 7.1) suggest that parallelizing the inner loop only may

provide enough parallelism to enable speedups on multi-core processors. However,

we suspect that the overhead of nesting may be too high on multi-cores for taking

advantages of parallelizing both loops (see Sec. 7.6), in spite of the fact that this

exposes more parallelism.

Another angle is to explore possible architectural enhancements. One vehicle

for doing so is the Explicit Multi-Threading (XMT) architecture [164], developed

by at the University of Maryland as a general-purpose parallel computing platform.

The XMT toolchain, consisting of the XMTC compiler and XMTSim cycle-accurate

simulator as well as an FPGA prototype, allows exploring the effect of different ar-

chitectural decisions on program performance. Experimental architectures such as

XMT can be used to study what would be possible with hardware designed specif-

ically to address the above challenges, showing the gap between current platforms

and what is possible, which may provide insight into how current architectures may

be improved.

7.6 Computational model

We need to develop a model for understanding the performance of SAT solvers

in practice, but typical approaches are limited here. Asymptotic analysis of the

SAT solver algorithms is not very informative, as all SAT solvers have an expo-

nential worst-case run time while practical inputs will take much less time than

this. Performance testing on existing platforms does not allow testing hypothetical
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architecture changes. Simulators run too slowly to allow complete runs of realis-

tically large inputs in a reasonable time. The latter two approaches do not allow

understanding the algorithm apart from an architecture.

Here, we extend the abstract work-depth (WD) model. In this model, pop-

ularized by the PRAM theory of algorithms (see e.g., [94, 104]), work is the total

number of basic operations executed by the algorithm, and depth is the number of

basic operations on the critical path of execution. The idea is that work translates

to the total time taken to execute an algorithm serially, and depth translates to the

shortest time to execute the algorithm assuming an unlimited number of processors,

no resource (e.g., memory) contention, and no overhead for scheduling threads to

processors. For example, the work for a parallel for loop is the time it takes to

execute the loop serially, and the depth is the length of the longest iteration of the

loop. Work divided by depth yields an upper bound on speedup.

We further extend this to consider an empirical work-depth model. In this

model, we replace the asymptotic counts of basic operations as used in abstract WD

with empirical timings on a state-of-the-art serial processor. Specifically, we execute

the parallel algorithm sequentially on a single processor and record the time taken

by (i) each serial section and (ii) each (serialized) iteration of each parallel section.

For a serial section, work and depth both equal the measured time; for a parallel

section, work is the sum of the times of the iterations, and depth is the time of the

longest iteration. This allows us to account for the relative costs of different types

of operations and the dependence of potential speedup on the input problem. The

results we obtained in Sec. 7.7 using this model suggest promise, but it needs to be
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refined to account for implementation challenges.

A particularly interesting challenge is how to handle nested parallelism.

Prior nesting-driven work (e.g., [159]) did not seek to optimize overhead for short

and repeated spawning. A fundamental question in this case is how to efficiently

synchronize a parent thread with its children to assign them work. Due to the

limited success of software-only approaches to nesting, we believe it may be worth

examining the potential benefits of adding low-overhead hardware primitives to

support nesting, such as those in the Vishkin and Wen patent [171]. Factors that

need to be modeled in order to test this assumption include 1. the overheads of

various hardware approaches to nesting and 2. the effect of synchronization overhead

on algorithmic performance.

7.7 Empirical results

Here, we examine the potential for speedups on an assortment of non-random

SAT inputs, from a variety of problem domains, used in the SAT Competition 2018

[86]. There are 300 inputs in total, with 18 groups of authors each submitting 9 to 20

inputs. Each row of Table 7.1 corresponds to a different group of authors. Authors

of input sets were supposed to submit descriptions of their sets to be included

in the competition proceedings. For those who did, the problem domain of their

inputs is also listed in Table 7.1; otherwise, the domain is listed as “(no description

provided)”.

We explored potential speedups for two new parallel versions of Glucose. In
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the “Inner” approach, we parallelize the inner loop of the unit propagation while

leaving the outer loop serial. In the “Outer” approach, we parallelize both the inner

and outer loop of the unit propagation. Our current study focuses on the unit

propagation step of Glucose, which accounts for approximately 95% of the total run

time of the solver; the majority of the remaining 5% is spent in the conflict analysis

step, which would be a natural topic for future work.

For each input, we executed serial Glucose on an Intel Core i5-2500K CPU

for up to 900 seconds. During each run, we measured the time tijk taken for every

iteration of the inner loop executed during that run, where tijk is the time taken

by the kth iteration of the inner loop within the jth iteration of the ith batch of

the outer loop. A “batch” is a set of iterations of the outer loop corresponding to

the set of variables enqueued during the previous batch, analogous to a BFS level.

From these measurements, we computed the following according to the empirical

work-depth model described in Sec. 7.6:

• “Empirical work”: W =
∑

i

∑
j

∑
k tijk, the sum of the times for all iterations

of the inner loop across all iterations of the outer loop

• “Empirical depth” (“Inner”): DI =
∑

i

∑
j (maxk tijk), the sum of the times

for the longest iteration of the inner loop per iteration of the outer loop

• “Empirical depth” (“Outer”): DO =
∑

i (maxj maxk tijk), the sum of the times

for the longest iteration of the inner loop per batch of iterations of the outer

loop

Using these measurements as inputs according to the empirical work-depth model
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described in Sec. 7.6, we computed the potential speedups on each input. The

“Inner” speedup equals W/DI , and the “Outer” speedup equals W/DO. Table 7.1

shows the speedups for best and worst input for each group of inputs (“best” and

“worst” are chosen based on “Outer” speedup).

Based on these results, we make the following observations:

• In many cases, it is necessary to parallelize the outer loop to gain strong

speedups, especially for the worst inputs in each group.

• Potential parallelism varies greatly across problem groups, meaning that prob-

lem domain must be considered when evaluating algorithms.

• Potential parallelism can vary substantially within problem groups as well,

making it difficult to characterize the difficulty of problem domains.

7.8 Literature review

7.8.1 Sequential SAT solvers

• MiniSat [60] is an open-source CDCL SAT solver that is often built upon by

developers to test new heuristics.

• Glucose [9] (Sec. 7.3) builds on MiniSat by adding heuristics for periodically

removing learned clauses that are unlikely to be useful in the future while

keeping important learned clauses.

• An alternative to MiniSat and its derived solvers is Lingeling, which first

appeared in SAT Race 2010 [17] and as recently as SAT Competition 2017
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[19]. Lingeling augments the standard CDCL algorithm with inprocessing [95],

which is the periodic application of satisfiability-preserving Boolean transfor-

mations.

7.8.2 Multi-core parallel SAT solvers

• Glucose-Syrup [10] (parallel Glucose) (Sec. 7.4)

• Plingeling [17] (parallel Lingeling), like Glucose-Syrup, implements a portfolio

approach, but Plingeling uses a simpler clause sharing approach that only

shares unit clauses.

• Treengeling [18] employs cube-and-conquer [87] (Sec. 7.4.2), which uses search-

space splitting to generate sub-problems that can be solved in parallel.

None of the above papers discuss speedup versus the best serial algorithm.

7.8.3 GPU SAT solvers

Limited progress has been made on using GPUs to accelerate SAT solving.

• Some work [66, 118] considered solving 3-SAT (a restriction of SAT to clauses

of three or fewer literals) on GPUs, with [66] achieving a speedup on random

inputs of up to 6.7X versus the same algorithm on the CPU alone.

• The master’s thesis [38] adapted MiniSat to use GPUs but was unable to

achieve any speedup versus serial MiniSat or Glucose.
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• CUD@SAT [40], exploits two sources of parallelism. The first is to perform

unit propagation in parallel on the GPU; unlike the algorithm we studied,

CUD@SAT deviates from the optimized serial unit propagation algorithm by

examining all clauses each iteration rather than only those that were touched

by the last iteration. The second is to parallelize the tail of the search by

switching from CDCL to a GPU-only DPLL algorithm when only a few vari-

ables remain unassigned. CUD@SAT achieved up to a 9.4X speedup using a

GPU versus the same algorithm on the CPU alone. Dal Palù et al. considered

comparison to state-of-the-art serial SAT solvers to be beyond the scope of

[40].

7.8.4 Nested parallelism in OpenMP

OpenMP allows programmers to express nested parallelism in their code, but

efficient support for such is still a work in progress. Furthermore, the scheduling of

nested parallel tasks to processors is challenging, as recent work has attempted to

address.

• Dimakopoulos et al. [48] found that several OpenMP implementations have

overheads of over an order of magnitude higher for nested parallelism than for

single-level parallelism.

• Maroñas et al. [116] developed “worksharing tasks”, which relax the fork-join

execution model of the standard worksharing construct (parallel for loop) of

OpenMP to allow overlapping the execution of loops whose dependencies do
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not overlap. They achieved a speedup of 1.5X-9X versus standard OpenMP,

with the High Performance Computing Conjugate Gradient (HPCCG) bench-

mark yielding the best results.

• Sun et al. [153] proposed a hierarchical scheduling (HS) algorithm that defers

the execution of nested parallel tasks until there are a reasonable number of

idle processors available in order to improve the worst-case response time of

OpenMP code on real-time systems. Although they did not implement their

scheduling algorithm, they theoretically analyzed it under a directed acyclic

graph (DAG) task model and derived formulas for upper bounds on response

time (finishing time of the sink vertex of the DAG minus the starting time of

the source vertex).

7.8.5 Other software approaches for nested parallelism

Some other software approaches proposed for explicit handling of nesting in-

clude: [20] and later work on the NESL language, and [22] and later work on the

Cilk project, and quite a few “lazy” schedulers of coarse-grained nested parallelism

including [74, 75, 123] and the fine-grained XMT work in [159]; for brevity, we refer

the reader to a full page section entitled “Schedulers without Parallel Loop Support”

in the latter paper. Our comment that all implementations known to us incur high

overheads applies here as well.
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7.8.6 Odds and ends

Handling limited nesting on GPUs is considered in [63]. The survey [77] re-

views several projects seeking special-purpose FPGAs for instances of SAT solving.

On the parallel algorithmic theory side, the randomized O(log∗ n) dictionary data

structure in [72] applies to nesting; however, constant factors hidden by the big oh

notation may be an issue.

In our opinion, the main missing element in prior work has been a satisfactory

solution for the extremely fine level of nesting granularity that parallelization of

SAT solvers mandates. A secondary though significant issue is that, unlike some

other works, we aspire to advancing SAT solving as a potential killer application for

a more general form of scalable parallelism, ideally for a general-purpose platform.

A notable precedent for a computer architecture model abstracting not-yet

implemented hardware capabilities in order to study their potential has been the

extensive study of instruction level parallelism in works such as [107, 167].

7.9 Conclusion

We have begun to study the potential fine-grained parallelism in sequential

SAT solvers in hopes that it will stimulate further research into parallel SAT solver

algorithms, computing stacks that can execute them efficiently, and models for un-

derstanding how the former may perform on the latter. Topics for future study

include understanding which among the various approaches noted here are the most

promising as well as developing new approaches beyond these.
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Potential speedups
Input set Best input Worst input

Problem domain (Author) Inner Outer Inner Outer
SMT (Biere) 23.2 125.4 7.8 62.3

N.D.P. (Chen) 36.0 126.8 35.2 123.7
Puzzle (Chowdhury) 152.0 329.4 25.0 68.6

Graph k-colorability (Devriendt) 153.3 382.4 39.0 95.8
Tree decomposition/treewidth (Ehlers) 11.1 60.3 12.2 40.0

Cellular automata (Harder) 16.0 58.9 8.2 24.2
Graph coloring (Heule) 11.2 158.6 7.6 93.3

Blockchain (Bitcoin mining) (Heusser) 6.0 144.8 6.4 115.3
Combinatorics (Jingchao) 60.0 135.3 26.4 41.4

Scheduling (Konan) 29.4 103.9 3.1 10.9
Floating-point verification (Liang) 11.5 119.2 5.0 49.1
Software verification (Manthey) 10.4 112.9 1.7 14.3

N.D.P. (Mayer-Eichberger) 18.3 205.2 7.6 96.7
N.D.P. (Ofer) 2.1 54.0 2.6 29.5

N.D.P. (Porkhunov) 144.9 319.4 7.4 59.6
Cryptanalysis (Scheel) 22.1 66.1 8.8 27.3

Polynomial multiplication (Xiao) 8.6 35.2 2.6 9.3
Factorization (Zha) 57.6 290.6 16.7 183.2

(N.D.P. = no description provided by author)

Tab. 7.1: Potential speedups for the main nested loop of Glucose on a selection of inputs
from the SAT Competition 2018 [86]. “Inner” and “outer” refer to parallelization
of the two labeled loops in Alg. 2. By analogy to breadth-first search (BFS),
“inner” is akin to exploring the edges from a node in parallel, and “outer”
additionally explores multiple nodes in parallel. This BFS analogy is made
precise in Sec. 7.4.3. We compute potential speedups by running serial Glucose,
measuring its total run time. For the Inner result we also figure out the portion
thereof corresponding to the critical path for each parallel algorithm and divide
total runtime by the critical path (for elaboration and explanation of how the
Outer result is derived, see Sec. 7.6).
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Chapter 8: Characterization of Applications on XMT and GPUs

The general principles that led to the success of the work in the preceding

chapters are (1) the existence of an efficient parallel algorithm (whose work is a

close to the best serial algorithm as possible and whose depth is much less than

its work) and (2) the possibility to hide the latency of memory operations, either

through concurrent memory accesses or via prefetching. On XMT, the latter is

made possible due to advantage both on the control path (independent progress of

concurrent threads and immediate reuse of just-freed hardware) and in the memory

system.

The contribution of this work can best be explained by considering three types

of algorithms. The first type, with a significant amount of regular parallelism (see

Sec. 8.1), already allows good speedups on both XMT and GPUs. Second, on

the opposite end of the spectrum are irregular algorithms where depending on the

specific input for a given run of a program parallelism can either be limited or there

is no parallelism at all. These cases may provide little to no speedup on XMT and

a slowdown on GPUs. Here, XMT still tends to outperform GPUs because XMT

is engineered to allow seamless fallback on serial, efficient transitions between serial

and parallel, and run-time adaptation to exploit as much parallelism as the input



allows, as explained below. (A fundamental difference is that GPUs are engineered

as accelerators, while XMT is engineered as a blueprint for a manycore CPU. The

Intel integrated GPU is the closest so far to the XMT integrated vision. We already

noted above the control path and memory system advantages of XMT.) The third

type consists of algorithms with significant parallelism that is nevertheless difficult to

exploit on traditional parallel architectures such as GPUs. The primary contribution

of this dissertation is to establish that a number of important problems are of the

third type rather than the second and that XMT broadens the set of problems for

which parallelism can be exploited. A secondary, but important contribution is to

make inroads into the second type, as demonstrated in the work on SAT solvers.

While a first generation of the parallel programming of such algorithms and

programs require the type of skill demonstrated in the current dissertation, follow-up

efforts can automate them, as demonstrated in [71]. Examples include automation

of the parallel list ranking implementation developed and used in several places in

this dissertation as well as the incorporation of the biconnectivity work of Chapter

2 into a class programming project.

8.1 Effects of data dependence

One major difference between XMT and GPUs is how well they handle data

dependence in control flow (conditional execution) and in memory access (indirect

memory addressing). These often arise when programs use pointer- or index-based

data structures such as trees, graphs, linked lists, and sparse matrices. Due to the
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general-purpose design of XMT, XMT typically outperforms GPUs for programs

with a non-trivial amount of data dependence (“irregular” parallelism), whereas

GPUs tend to outperform XMT on programs without data dependence (“regular”

parallelism) due to GPUs being optimized for such scenarios. This shows up in a

number of ways:

Locality of reference versus predictability of reference GPUs rely heav-

ily on locality of reference for efficient memory access. That is, memory elements

that are accessed by concurrent threads should be adjacent in memory. For appli-

cations with a high degree of locality, GPUs can outperform XMT due to GPUs

having a memory architecture tailored to such applications.

XMT also benefits from locality, but it is able to cope with a lack of locality

as long as memory references are predictable and thus can be prefetched. Examples

of predictable references include sequences of consecutive non-dependent loads and

loads of array elements indexed by a loop counter. On XMT, prefetching is done in

software to keep the processor cores simple and to allow the compiler or programmer

to identify opportunities for prefetching that may be difficult for hardware to spot.

Number of threads GPUs are able to hide the latency of memory access as

long as there are many more threads than cores. This is also true on XMT, but

XMT tends to outperform GPUs when available parallelism is more modest.

Length of parallel sections GPUs are able to hide the latency of thread

spawning as long as there is a large amount of work to do within a parallel section of

code, but performance is greatly reduced when frequent serial-to-parallel transitions

are required, say in response to the reorganization of a sparse data structure or
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the compaction of an array after removing elements. In contrast, the low serial-to-

parallel transition overhead of XMT allows good performance to be obtained even

for parallel sections consisting of only a few lines of C code.

Consistency of control flow Since GPUs execute code in lockstep within

groups of threads (warps), control flow must be consistent across all threads in a

warp for maximum performance. Conditional statements and loops whose behavior

differs across threads incur a divergence penalty and also interfere with the ability of

the GPU to merge memory accesses for locality. In contrast, on XMT, each thread

executes at its own pace independent of other threads, and its control flow does not

interfere with the execution of other threads.

Load balancing of threads The previous point implies in particular that, on

GPUs, all threads in a parallel section should be the same length for optimum per-

formance. This is possible but not as mandatory (for performance) on XMT, which

only requires that no single thread should dominate the critical path of execution.

8.2 Tension between work efficiency and data dependence

The above considerations are reflected in the different approaches to algorithm

design taken on XMT versus GPUs. On XMT, the choice of algorithm is primarily

driven by its efficiency in the work-depth model, while regularity of parallelism is

only a secondary concern. In contrast, algorithms for GPUs tend to favor regularity,

both on the control side and for memory access, even at the cost of work efficiency.

A simple example is matrix-vector multiplication. If the matrix is stored in
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dense form, with all elements explicitly represented in memory, then any element

of the matrix and its matching element in the vector can be readily located in

memory without indirect addressing, and all threads follow the same control flow

path. This is an ideal situation for GPUs, so the product can be computed very

efficiently on a GPU. This will also work well on XMT, but since the peak floating-

point performance of XMT is less than that of a comparable GPU, the GPU will

outperform XMT in this case.

In cases where a matrix contains many elements that are zero, explicitly storing

the zeros wastes memory, bandwidth, and work. While beyond the scope of this

dissertation, this type of work done by the GPU led prior XMT work [101] to

demonstrate that the energy requirement of XMT is generally on par with GPUs.

In such cases, it is common to store the matrix in sparse form, with the non-zero

elements and their column indices stored for each row. The downsides are that

matching each matrix element to its corresponding vector element now requires

indirect addressing into the vector, and the work done by each thread depends on

the number of non-zero elements in its row. These factors adversely affect the GPU

more than they do XMT, and in this case, XMT has been shown [29] to perform

over 2X as fast as a comparable GPU.

8.3 Examples

Table 8.1 lists some applications in a number of domains and provides an

educated guess, based on the foregoing criteria, about whether each is amenable
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to speedup on XMT and/or GPUs. This is not an exhaustive list, and it is not

intended to prejudice the development of new parallel algorithms or architectural

advancements that may enable efficient execution of existing parallel algorithms,

but it provides some insight into how the results of the case studies in this disser-

tation may translate to other applications. As a rule, we expect applications with

regular algorithms to perform well on both XMT and GPUs and those with irregular

algorithms to perform better on XMT. The exceptions are “inherently sequential”

algorithms and algorithms for P-complete problems, which may provide little to no

parallelism in the worst case. We expect such algorithms to fall behind a serial CPU

on GPUs, and they may or may not provide any speedup on XMT, though XMT

will not fall behind serial due to incorporating a strong serial processor. Interest-

ingly, Chapter 7 shows that SAT solvers are a potential exception to this rule as

they show promise despite being NP- (and thus P-) complete.

161



XMT & GPU Better on XMT

AES encryption Boolean satisfiability (SAT)

Chirp Z-transform Boosted decision trees

Convolution Burrows-Wheeler compression

Dynamic Programming De novo transcriptome assembly

Fast Fourier transform (FFT) Enhanced dynamic programming

Gaussian elimination Graph (1,2,3)-connectivity

Integer factorization Lempel-Ziv (LZ77) compression

LU factorization List ranking

Matrix inverse
Long short-term memory (LSTM)
neural network

Matrix multiplication (dense) Matrix multiplication (sparse)

Multilayer perceptrons Maximum flow

Ordinary differential equations Maximum SAT (MaxSAT)

Partial differential equations (rectan-
gular mesh)

Molecular dynamics simulation

QR factorization
Partial differential equations (general
mesh)

RSA encryption Phylogeny inference

Planarity testing

Some potential on XMT (W ≈ D) Random forests

Circuit value problem Regular expressions

Context-free grammars Sorting

Linear programming Spanning tree

Newton’s method String matching

Neither

Lempel-Ziv (LZ78) compression

SHA-256 hash

Tab. 8.1: List of applications that we speculate can potentially provide speedups on the
listed platforms.
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Chapter 9: Conclusion

The speedup results in this thesis show that it is possible to obtain strong

speedups for PRAM algorithms for a variety of applications on XMT, a buildable

computer architecture. In addition to potentially benefiting users in those applica-

tion domains, the results provide some evidence to address criticism that the PRAM

model is impractical and provide further validation of the approach taken by the

XMT architecture.

This work also provides some support for the ease of programming of XMT. For

applications where there was an existing PRAM algorithm, that algorithm provided

good speedups without major modifications. For applications where a new algorithm

needed to be developed, it sufficed to derive a PRAM algorithm from the best serial

algorithm.

The results demonstrate the need for co-design of algorithms and architectures.

To achieve strong speedup on these applications, it was necessary to consider both

algorithm and architecture as variables, in contrast to prior research that considered

the architecture as fixed.

This work also shows that XMT has room for further improvement. In partic-

ular, SAT solvers could benefit from efficient hardware support for very fine-grained



nesting.

In some cases, the fine-grained parallelism studied here is orthogonal to exist-

ing coarse-grained parallelism. This means that even better performance could be

obtained using a platform that supports efficiently exploiting both levels of paral-

lelism simultaneously. XMT augmented with nesting support in hardware might be

one such platform.
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Published work incorporated into this thesis

The material in the following chapters has appeared in peer-reviewed publi-

cations: Chapter 2 [52], Chapter 3 [53], Chapter 4 [54, 56] (theory results only),

Chapter 5 [57] and Chapter 6 [58]. The work in Chapter 7 is currently under review

for publication as [59].
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