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Chaptlenrt rlooducti on

Sudden cardiac arrest is the leading cause of death in the United States. 350,000
people die from sudden cardiac arrest outside of the hospital eadh]ye@rhen

sudden cardiac arrest occurs, the heart ceases to beat in an organized, normally paced
rhythm, instead, beating in a rapid, chaotic manner, known as fibrillation. While in

this condition, the heart is not able to pump didarough the lungs to achieve

oxygenation and exhalation of carbon dioxide, and is not able to provide perfusion to
the brain and other vital organs. Loss of consciousness occurs immediately,
neurological damage can occur within a few minutes, and ttienviarely survives

longer tharilOto 15 minutes.

The treatment for sudden cardiac arrest is a defibrillatory shock and cardio pulmonary
resuscitation (CPR). CPR is the act of
by exerting repetitive force ahe sternum. This action can compress the heart,

causing the circulation of blood to occur. Mouth to mouth resuscitation or the use of

a bag valve mask provides oxygen to the lungs during CPR. Defibrillation is the
application of an electric shock assothe torso of the victim, which interrupts the
electrical activity of the heart muscles, and can restore a normal, organized heart
rhythm. Both CPR and defibrillation must be provided within the first few msnute

after the onset of cardiac arrest to\pde a successful resuscitation. For every

minute that elapses after the collapse of the victim the chances of survival are reduced

by 5% to 10942][3][4]. Sudden cardiac arrest stands unique from other diseases and

1



conditions in that much of the focus for improvement in survsvalbt on the clinical
treatment of the condition, but on methods to reduce the time to get treatment to the

patient.

1.1 Backgound

Sudden cardiac arrest can affect anyone, often occurring without prior indications.
Although primarily affecting the elderly, sudden cardiac arrest can occur at any age,
from neonatal, infants, children, teenagers, and through the adult years. The
prognosis for cardiac arrest is very poor. When it occurs outside of the hospital, the
survival rate in the United States is about J8Yil]. Even when it occurs within
hospitals, where a quick response and professianalis standard, the survival to
discharge is only 22%%]. The primary source of treatment for eaf-hospital

cardiac arrest (OHCA) is provided by Emergency Medical Services (EMS). This
consists of paramedics and emergency medical technicians (EMT) dispatched to the
cardiac arrest location in an ambulance. Téaonal standard for EMS response

times is to reach 90% of calls within 8 minuf&k for the highest priority calls,
although many municipiéies and rural areas have significantly longer average
response times. It is evident with these response times that survival from cardiac

arrest will be very low.

Survival rates from sudden cardiac arresterat shown significant improvement
over ime[7]. EMS systems have been optimized for quick respdng they are

expensive to maintain, let alone to grow, in order to keep up with growing



populations, congestion, and urban sprawl. Rural areas pose even greater challenges
to achieve a fast EMS response time. Alternative approaches to response and

treatment are needed to achieve quicker defibrillation in order to improve survival.

The invention of the Automated External Defibrillator (AED) has allowed bystanders

to quickly and effectively respond to sudden cardiac ar(Egjare 1) An AED,

when aplied to a patient, will analyze the heart rhythm, algorithmically determine if

the patient has a shockable arrhythmia, an
usero, i .e. a person without any medical t
When AEDsare available and used on a cardiac arrest patient, survival is increased to

25%, about 3 times the odds of survival as from EMS treatf@8enAppendix B

provides further description of the operation and function of an AED.

PHILIPS

Figurel. An Automated External Defibrillator (AED)
3



In locations where AEDs have been widely deployed, such as casinos, significant
improvement in survival has been achieved. However, AEDs have failed to reach the
level of dissemination needed $ignificantly improve overall survival rates for

sudden cardiac arrest. Studies have shown only 2% to 5% of all sudden cardiac
arrests are treated with an AED prior to EMS arrj8hl Most AEDs are located

inside buildings, many being private facilitiegyd unavailable for cardiac arrests in
outdooror public areas. Additionally, about two thirds of sudden cardiac arrests

occur within homes, where AED adoption is nearly-eaistent.

Recent advances in technology have led to the development of naeept®to
overcome these barriers to improved cardiac arrest survival. One such is the advent
of the GPS equipped smartphone. Technology has been developed to dispatch
volunteer responders who happen to be near a cardiac arrest location via a cell phone
app. This allows a type oirdemand ¢ r o wd s ofa rescuerreggpaonse.

Initially these programs have focused primarily on providing CPR until the arrival of
EMS. Pilot studies are being explored where volunteers either carry an AED with
them at altimes, or are directed to the nearest AED in a community registry and then
to the patient by an EMS dispatcher or by the app. While these programs have had
sporadic success stories, it is not yet known how effective these programs will be in
improving suvival, nor what conditions would be required (e.g. responder density,

AED access) to achieve a desired improvement.



The future of bringing early defibrillation to sudden cardiac arrest victims may lie in
another emerging technologythe autonomous aeridtone. Drones have the

capability to travel above traffic and buildings, use a straight line of navigation to the
scene, and travel at speeds much faster than an ambulance on city streets.
Development of drones for delivery purposes has been wideliciaglol, with some

trials being performed by companies like Amaf@h Other companies dn

university researchers have directed research toward the development of drones
specifically designed for AED delivery. Drones can quickly transport an AED from a
central location, such as a fire station, to a cardiac arrest scene, to be used by a
bystarder or dispatched responder. Significant challeindesth technological and
regulatory-- must be overcome before this type of response system becomes a reality.
While technology exists for autonomous drone flights and routing, the FAA currently
restrias drone flights tavisualline of sight of the operator. The public is not yet
accustomed to autonomous drones, and must have confidence in the reliability and
safety of their useThereis currently research in droddED delivery, and there have
been dew simulated rescue demonstrations, however there is not yet any

municipality using drones in actual medical responses.

Sudden cardiac arrest, by its very nature, is a difficult medical condition to study. Its
occurrence is nearly impossible to predagd many patients show no prior symptoms

of cardiac issues. Clinical trials are not able to enroll patients with a known
condition, in the traditional sense, as is typical with most disease studies. As the

cardiac arrest victim is unconscious and unoespre at the time of the arrest,



informed consent cannot be obtained. Most studies of sudden cardiac arrest
treatments have either employed a community based approach, where a community
health agency provides the consent, often accompanied with a paotification, and

a mechanism for citizens to opt out of the study. Other methods include identifying
large numbers of high risk patients and monitoring them for a significant period of
time. This too is difficult, because the standard of care is tagaawplantable
cardioverters to patients at the highest risk. Thus, such study approaches target
patients with elevated risks, but not high enough to receive an implantable

defibrillator.

The difficulties of studying cardiac arrest extend to the stdidiyeefficacy of

response systems$.ormal studies of these new systems require several years to
generate enough cases to assess the performance of the system. These studies are
also expensive, particularly when provisioning large numbers of responitters w
AEDs. Other difficulties have arisen in these studies as well, such as liability for the
actions of the responder, patient privacy concerns, the ability and authorization of
responders to enter private residences, and responder safety. Thesenitae cli

studies rare, with only a small number having been commenced.

With the diversity of novel response systems proposed, EMS deaisikers will
needto estimate cost effectiveness, and reliabiligs they determine which type of
enhanced system tmplement withina community. Modeling and simulations an

approach that can synthesize information discovered from studies and trials, and



provide predictioron system performance under conditions not available or
achievable during a study or pilotggram. It can also be used to extrapolate
information obtained from existing systems, to make predictions about new, untested

system concepts.

Modelingand si mul ati on are widely used to anal
experimentation is diftiult, costly, unsafe, or infeasible. A model is an abstraction of

a real world item or system, which allows for simplified analysis or evaluation of the
system. A model may be a physical representation of an item, or a functional
representation, usuallgvolving a computational or mathematical evaluation ef th
functions of a system. Modeg and simulation provide an approach to studying

sudden cardiac arrest response concepts that can be both flexible and comprehensive
in the analysis of factors thempact system performance. The benefitmofleling

and simulation are the ability to predict the performance of a system under many
different conditions, in order to define an optimal or ideal set of condjtimmaost

cost effective conditions to apply the real system. Where direct studies of a

response system may take several years and cover a single set of operating conditions,
simulation experiments can be performed in a relatively short time and cover multiple
conditions to provide a spectrumdgstem performance potential. Models can be

applied prospectively asdision support tooJsvhichinform the decisiormakers of

the most efficient, effective, and cesffective type of system, and the optimal

conditions of such a system.



1.2 Goals othis Research

The objective of thisesearchs to generate new knowledge that can be used to
design and realize betteardiac arrest response systesugh that more lives can be
saved. The goad to create a comprehensigpproachand decision suppbtools

that can help decisiemakerspredict the effectiveness arglaluate the costs and
benefits of various novel response systems. This objastagproached through the
development of a set of mathematical models which can simulate the cardsic arr
response times of different proposed response sgssmd provide comparison to
simulated EMS response times. The modasedeveloped such that the effects of
different attributes, or conditions of the system can be evaluated, including the
reliability of the system, as pertaining to its ability to provide a response. Together,
theseareused to provide an estimated improvement in survivaltthe public health
benefit of the system. The benefits of the various systems can be balanced against th

cost of implementing such a system.

This research is intended to answer the following questions:
1. Can alternative cardiac arrest medical response systems provide a

substantiaimprovement in survival for owdf-hospital cardiac arrest?

o What systemtsicture and conditions are needed to achieve the

improvement in survival



o Can alternative response systems provide cost effective improvement

in the survival rate for cardiac arrest?

These alternative response systems, by design, can only improve sawival
they are an additional response system to augment the traditional EMS
response system. The effectiveness of the traditional EMS response is
assumed unaffected by the addition of an enhanced response system in these
models, thus the overall survivaduld be no worse than with an EMS

response only. If an adverse impact on EMS response efficacy did exist due
to the additional response system (for example, EMS response slows because
they believe help will already be on the scene), it is conceded tlysdron

actual human trial could identify the effedience, the more important

guestion ifhow mucthof an improvement in survival could be achieved by

these systems, and what conditions of the system would be necessary to

realize the improvement.

A series of simulation experimentgereused to explore each of the models,
to understand the effect of each factor. The research also anagsis
of theoverall cost of each proposed concept, as well as the costs associated

with varying different conditins in the system.

2. How couldmodelingand simulation methods be used to evaluate the
benefits of various alternative response systems for specific municipalities or

EMS organizations?



EMS organizations vary greatly in their capabilities, response tim
performance, budgets, priorities, etc. Some municipalities could benefit
more from one type of alternative response, while others may find greater
benefit from entirely different systems. The culture of a community may
provide a preferred choice. Aosle knit community may find volunteer
responders easy to recruit. Other communities may not be comfortable with
norrcommissioned volunteer responders entering private residences, or
having access to the location of cardiac arrest victikhsdelingand

simulation would be a significant asset in decisions around improving
response systems, and allocating budget. The predicted effectiveness of
different options could be balanced against community preferences, values,

and resources.

1.3 Qutline of Dissertain

This dissertation is organized as follows: Chapter 2 provides a literature review of
existing and proposed novel cardiac arrest response concepts, as well as the
application ofmodelingand simulation téhearea of emergency response systems.
Chapte 3 provides an overview dheresearclapproachincludingthemodelingand
simulationthat served as the basis fbis dissertation. Chapterdéscribes the

model, its inputs, outputs, and execution, as well as an approach for verification and
validaion. Chapters examines the sensitivity of the model to input factors, as well

as a response surface design of experiments (DOE) analysis of the response behavior

10



and interactions of significant factors. Chapter 6 applies the model and simulation to
compare the effectiveness of a diversity of systems, while Chapter 7 extends the
comparison to include a cost analysis and-bestefit decision approach. Chapter 8
summarizes the key points of the research, the limitations, and future directions of the

reseach.
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ChaptLete2ature Review

2.1 Cardiac Arrest Survival

The American Heart Association defines

hear't functiono where fAthe time and mode

results in immediat@ilure of the circulatory system. Visible symptoms of cardiac
arrest include a sudden collapse, loss of consciousness, lack of a pulse, and lack of
breathing. The cessation of perfusion to the lungs, brain, and other organs causes
tissue hypoxia, whiclf untreated, leads to death within minutes. The prognosis for
victims of sudden cardiac arrest is poor, as the fatality rate in the United States is

nearly 90%3].

Cardiac arrest is caused by an irregular electrical rhythm of the heart. While there are
many types of arrhythmias, the two that requinenediatetreatment to prevent death

are ventricular fibrillation (VF) and ventricular tachycardia (VT). The treatment for a
patient in VF or VT is CPR, defibrillation, and Advanced Cardiac Life Support (drug
delivery,airwayintubation,and other treatmemrovided by a medical professional).

A detailed discussion of the physiology of cardiac arrest and its treatment is provided

in Appendix A.
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The time from patient collapse to defibrillation has a strong correlation to survival.
An often quoted heuristic ithe chances of survival decrease by 10% for each minute
that passes before defibrillatiph0]. More precise studies by Abramsal [3]and

Wik et al [11] have produced survival curves such as the one shokigune?2.

Larsenet al. formed a linearegressionrmodelon timeto-CPRtcpr, timeto-

defibrillation tgefib, and timeto-Advanced Cardiac Life Suppdrcis to produce the

probability of survivalPs equation2]:

Ps= 0.67i 0.23cpr- 0.11tiesib T 023McLs (1)

This model is limited to the first 20 minutes after the arrest. Valenetiala

improved by using logistic regression to model survival. They raparteduced

model, consisting of only time to defibrillation and time to CPR, provided equivalent

predictive accuracy to more complex modé):

Ps — (2)

Where: | = 0.26 0.108cpr- 0.13%gefib

Others have reported significantly higher survival possibilities with very short time to

defibrillation.
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Figure2. Cardiac arrest survival based on respaimse, whether the collapse was

witnessed, and the presenting arrhythmia of the patient. Adaptedidfom

Treatment and survival of cardiac arrest are measured by both physiological states, as
well as time or recovery event based. The most immediate reeasut of treatment

of cardiac arrest is known as Return of Spontaneous Circulation (ROSC). This is the
conversion of a cardiac arrhythmia to a rhythm that is capable of providing perfusion
without the aid of CPR. A second measurement is survival tatabagmission.

This metric may be used to evaluate the effectiveness of an EMS response when
ultimate patient outcome is not known or easily tracked. One of the most common
used metrics in response and treatment studies is Survival to Hospital Discharge

This metric indicates that a medium term (several days) survival and some amount of

14



recovery has occurred. Other metrics may track longer survival, sueyeas 1

survival, or the neurological state of the surviving patient. Often, survival rates are
classified as pertaining to either witnessedinwitnessed otaf-hospital cardiac

arrest, or may be classified according to the presenting arrhythmia. Survival rates are
sometimes quoted for the Utstein subgroup, ases of bystander witnessed-oix

hospital cardiac arrest with an initial shockable rhythm, as this is considered the most

Asavabl ed subset @¢IB]. al | cardiac arrest cas

2.2 EMS Response to Cardiac Arrest

Most outof-hospital sudden cardiac arrest patients are treated by EMS. In response
to a 911 medical emergency call, ambulancegd&patched to the arrest location.
Some systems may dispatch ambulances or fire trucks to provide Basic Life Support
(BLS) first, which consists of CPR and defibrillation, followed by an ambulance with

paramedics to provide ACLS.

The National Fire Ptoe ct i on Association (NFPA) Standar
departments EMS for providing ALS shall be deployed to provide for the arrival of an

ALS company withinan#8ni nut e response ti me[6ltAdA 90 per c
study of 485 EMS agencies in the United States showed in urban and suburban areas

median response times of 6 minutes with the @&rcentile responses within 12 and

14 mnutes respectivelpl4]. However, in rural areat)e median response time

dropped to 13 minutes with the'™®percentile reaching 26 minutes.
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Cardiac arrest survival with EMS response is poor. Gatah report a survey of

studies ranged from 2% to 20% survival, with an average of[8DYA relative few,

high performing EMS communities, have reached survival rates in excess of 50%
with EMS treatmenfl5]. These communities, such as King County, WA, bénefi

from fast ambulance response times as well as a high likelihood of bystander CPR.
However, the reality is that 95% of all major cities worldwide have survival rates less

than 5%.

2.2.1 EMS Response Modlal and Simulation

EMS dispatch locations and Amance resourcing presents a problem driven by
medical objectives, economic considerations, as well as political influences. EMS
policy makers have turned to operations research for decision support tools to find
optimal solutions to these objectivesheTEMS models may be categorized by two
purposes: identification of optimal ambulance station locations to maximize coverage
of demand points and to minimize response time, and simulation to assess the

performance of an EMS system and evaluate potenqtebtional strategies.

Optimal EMS locatioomodelingwas first introduced by Toregasal in 197116].

He proposed the use of a Set Covering Problem to identify the minimum ambulance
locations nodes such thatchedemand node is within a certain response time or
distance radius of an ambulance location node. Church and ReVelle developed a

Maximal Covering Location Problem approach to optimize the service locations

16



under a constrained number of location ndd&$. The objective of their approach is

to identify location pointsdr a fixed number of facilities that provide the maximum

coverage of demand points within a desired distance of the facikiges ¢ 3).

These approaches are limited by the fact that each demand node is covered by

only

one ambulance, and if the ambulans on a call, a significant area of demand nodes

is uncovered for a period of time.

-2 R B 0 M0y
0 5 10 15 20 25 30

Figure3. Maximum Covering Location Problem (frdi8]). Red dots represent
facility locations. Blue dots represent demand locations. Circles showuwemge

area of each ambulance base facility.

To address this weakness, Gendretal proposed the Double Standard Model,
which applies two coverage radi,and g, where 1 <r2[19]. This approach applies

doubl e coverage constraints to the
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within the distanceirand all demand points covered within distancelihe model
was later extended to the Dynamic Double Standard Model, where aroésilean be

redeployed to new locations in real time when an ambulance is out orj20tall

Another utilization oimodelingand simulation for EMS systems is for the assessment
of system performance. This enables optimization of EMS system configuration (e.qg.
the number of ambulances at each dispaichtion) and operational strategy (e.qg.

when to perform maintenance on an ambulance). Ambulances are finite resources
which may either be available or in service at any given time, while emergency calls
are stochastic events which may be modelled a®s#ati or norstationary Poisson
arrival processes. As such, Discrete Event Simulation (DES) has been utilized for
research in EMS system simulation. Larson describes the problem as a queuing

system with spatially distributed serv§?4].

Early use of computer simulations by Savas analyzed ambulance service
improvements in New York citj22]. He evaluated the cesffectiveness of changes
to thenumber and location of ambulances, and identified low cost improvements in
service by redistributing existing ambulances. More recently, Ingolétsanused

DES to evaluate a single start system (all ambulances located at the same base)
against the asting multiple start system (10 existing ambulance base locations) for
the city of Edmonton, Canadia3]. The simulations concluded that a singbats

system could improve average ambulance availability due to improved efficiency in

ambulance cleaning and restocking between calls, and that an increase in the
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percentage of calreached within a-@ninute target response time could be achieved.
Wu uged DES to create a simulation model for Tainin City, Taij2#. The model

was used to develop operational strategies to minimize disruption to normal service
when ambulances are unavailable due to provisional events, such as fastivals
races Nogueriaet al. used both optimizatiomodelingto locate and allocate
ambulances for the EMS service in Belo Horizonte, Brazil, together with a DES

model to analyze the dynamic behavior of the syg&sh

2.3 Public Access Defibrillation

Up until the early 1990s, defibrillation was a treatment which was only performed by
doctors or other highly trained clinicians. The advent of the AED, and its ability to
enable layrespondes, or those without medical training, to provide the lifesaving
defibrillation therapy, brought new strategies to improve response times for cardiac
arrests. The concept of Public Access Defibrillation (PAD) first came from the
American Heart Associatians A Fut ur e of CHR|R7].tThestéem f or ce |
has since come to encompass the many steatefjuntrained responders using AEDs
to provide early defibrillation. The AHA®G
were[28]:

1. AEDs be widely available for appropriately trained people

2. All firefighting units that perform CPR and first aid be equipped with and

trained to operate AEDs

3. AEDs be placed in gathering places of more than 10,000 people
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4. Legislation be enacted to allow all EMS personnel to perform early

defibrillation.

In their second public access defibrillation conference in 1997, the AHA defined four
levels of public access defibrillatiga7].
Level lis traditional dispatched first responders (e.g. firefighters, police)
which would carry AEDs in their vehicles.
Level 2is nontraditional first responders (e.qg. life guards, security personnel,
flight attendants) who have a duty to respond.
Level 3is civilian laypersons with first aid training (e.g. sport coaches) who
have a desire to provide emergency care.
Level 4is untrained civilian laypersons who may be a bystander to a sudden
cardiac arrest.
Level 1 programs rely on transporting an AED togbene, while Level 2, 3, and 4

PAD programs all rely on AEDs strategically located where a need may be likely.

Many countries have adopted national PAD systems (e.g. [B@jaingland30],
Austria[31]). In the United States, AED legislation has progressed on the national
and state level. In 1998, Congsd3assed the Aviation Medical Assistance Act,

which directed the FAA to determine requirements for AEDs on passenger aircraft,
and declared that carriers and individuals are not liable for damages when attempting
to provide medical assistance during flifB2]. In 2000, congess passed the

Cardiac Arrest Survival Act, providing Good Samaritan protection against civil
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lawsuits for good faith efforts to purchase or use AEDs in federal buildings, as well as
providing $25 million in local grants for AED purchd88]. In 20, congress

passed the Community Access to Emergency Devices Act, providing $30 million in
grants to states and localities to purchase AEDs for public access plag@fhetl

states have laws requiring AEDs placed in schools, while 18 states require or
recommend AEDs in health clubs, sports clubs, and ¢$&js Other requirements

vary by state, such as dental offices, day care centers, swimming pools, places of

public assembly, or buildings that exceed a minimum occupancy.

Public Access Defibrillation has shown improved sudden cardiastaurvival in

many implementations. Craet al. performed a survey of several published studies,
citing a probability of survival to hospital discharge range of 0.20 to 0.50 with use of

a PAD AED, versus a survival range of 0.02 to 0.20 for treatmeBMS only[8].

Casinos have been one of the most successful applications of a PAD program.
Valenzueleet al. performed a prospective study using trained security guards in Las
Vegas casinos resulting in 53% survival to hospital discH&&Je Through tle use

of video surveillance systegnstrategic AED placement, and thorough training, the
study found the average time from collapse to CPR was 2.9 minutes, and 4.4 minutes
to defibrillation. Another successful PAD implementation has been equipping police
with AEDs and dispatching to cardiac arrest scenes along with EMS. One of the
pioneering communities in this approach is Rochestemésota Whiteet al.

carried out a retrospective observational study of atraumatic cardiac arrest treatments

over a 5year period, finding police responded faster than EMS (5.8 versus 6.3
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minutes) and survival to discharge was higher for the police response (58% versus

43% for EMS)[37].

Despite the promising results in many applications of Public Access Defibrillation,
the overall survival for cardiac arrest remains low and very few victims eeceiv
treatment prior to EMS arrival. Agerskeval report that in Copenhagen, Denmark,
only 3.8% of allout-of-hospitalcardiac arrests have an AED applied despite 15.1% of
arrests occurring within 200m of a PAD AHEB88]. Similarly, in Denmark, a
longitudinal study of AED usage found an improvement in public locations from
1.2% in 2001 to 15.3% in 2012 afteationwide initiatives to increase bystander
resuscitatiof39]. However, the use of AEDs in residential locations remained at
only 1.3% even after the awareness and training initiatives. Det&irstudied

PAD efficacy in Hampshire, England, concludingyo4.2% of cardiac arrest calls

had an AED available in the vicinity of the arrest, and only 1.74% were successfully
retrieved and us€d0]. In the United States, an analysis of the Cardiac Arres
Registry to Enhance Survival (CARES), established by the Center for Disease
Control (CDC), found only 4.4% afut-of-hospitalcardiac arrest cases had an AED

used by a bystand§3].

2.3.1 Modeling and Simulation of PAD Systems

The locating of AEDs to mamize likelihood of use and geographical coverage has
received significant research. Widespread dissemination of AEDs has been limited

by the cost of the devices and as such AEDs may be considered a finite resource.
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European Resuscitation Council (ER€fommends placing an AED where cardiac
arrest occur every two yedrkl] while the AmericarHeart Association (AHA)
recommends placement where a cardiac arrest occurs every fivédagarSuch
guidelines may be cost prohibitive or mayyaobver a fraction of cardiac arrests. A
study of the geographic locations of cardiac arrests in Copenhagen, Denmark,
between 1994 and 2005 estimated that 19.5% of arrests would be covered under the
ERC guidelines and 66.8% would be covered under the Altidetines[43]. The

need for strategic placement of AEDs has led to the development of different

optimization approaches.

Several attempts to identify high risk locations to place AEDs have identified certain
building types as target locations. These are priynfagilities with high density of
people-- transportation hubs, airports, sports venues, malls. Early work to identify
such buildings was done by Beclatral in SeattleWashingtori44]. The study
classified buildings into 23 categories, with 2 additiaraegoriegor automobile

and outdoors. The authors identified 10 location categories as high cardiac arrest
incidence and thieen as low incidence. Similar approaches to classifying high risk
locations followed in Kansas City, Misso(4b], Toronto, Canadg6], and
Copenhagen, Denmaf43]. These approaches yielded limited results due to the fact
that only a few facility types had multiple cardiac arresty the study period, with
most types having only one arrest. The predictive power of this approach is limited,
and beyond the identifications of a few su

does not address where to place AEDs in lower incidemes a

23



The locating of AEDs to maximize the spatial coverage of an area has employed
similar approaches as used in locating ambulance bases. Two common demand
measures for coverage problems are population based (i.e. covering the maximum
proportion of a ppulation within a defined distance of an AED) or historical arrest
location based (i.e. covering the maximum number of locations of past cardiac
arrests). Chaat al used a model based on the Maximal Covering Location Problem
to assess optimal locatiofea additional AED placement in Toronto, Canddd).

They first assessed the coverage of the existing AED network through a location
registry, determining the number of historical aisegithin 100 meters of a

registered AED (assumed to correspond to arirfute walk). They compared a
population based placement approach, using building floors as a proxy population
density, to an optimized approach with the MCLP model. The optiminpeiim
approach outperformed the population based approach under scenarios of various

numbers of additional AEDs.

2.4 Emerqging Concepts for Novel Response Systems

With the lifesaving potential of early defibrillation with an AED established, but the
low likelihood of an AED being used out-of-hospitalcardiac arrests, researchers
are proposing new methods to bring early defibrillation and CPR to cardiac arrest
victims. Ringhet al propose changing the definition of PAD frammo defibrillates

the patiehto howthe AED is brought to the patief#7]. The authors have proposed

new definitions consisting of three levels of PAD:
24



Level lis dispatched professional first responders. This includes paramedics,
fire fighters, angolice, who transport an AED to the cardiac arrest location.
Level 2is dispatched lay first responders. These are civilian responders who
may or may not transport the AED to the scene (they may be guided by the
dispatch center to retrieve an-site AED), and may or may not be trained.

Level 3is nondispatched lay responders. These are random bystanders who

retrieve a nearby AED.

This section summarizes some of the newer response concepts, pilot programs, and
studies, as well amodelingand simulatn research relevant to these systeiiise
systems are separated into two broad catego8estions 2.4.1 through 2.4.4 discuss
mobile responder systemshich are characterized as systems which rely on
volunteers or off duty first responders, who aspdtched to the cardiac arrest

location by phone app, and whose location at the time of dispatch is not
predetermined nor specifically predictab®ections 2.4.5 through 2.4.6 discuss

Aerial Dronesystemswhichare characterized by the aerial transpbdn AED from

a fixed base location to the cardiac arrest location.

24.1 PulsePoint

PulsePoint is a neprofit organization that provides smartphone apps as well as EMS
dispatch integration to alert CPR trained volunteers of nearby cardiac 483sts
Enroliment is on a voluntary basis, with werification ofresponder training or

background check, such that members of the system réneain o n y. Me such0
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the systenis onlyused for cardiac emeggcies that occur in public locationA.

snapshot of the distribution of enrolled responders in Portlaredjo@rand the

surrounding suburbs is shown in FigureRulse Point creates a network of mobile
responders, whi ch us e oachigvequiokWCBRtoceandiaci ngo ap

arrest victims. PulsePoint is active3,815 communities around the globe, with most

being in the United States.

» ; \‘ 3 : . "i
Figure4. Snapshot of distribution of responders in PulsePoint syegpg@moximatey
3260 sq. km region d?ortland, Oregon artthe surrounding area (fron#8]). The
orange figures show the locations of all PulsePoint responders within the area at a

single point in time.
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The system is divated when a 911 call is determined to be for a possible cardiac
arrest (such as symptoms of collapse,-responsive, not breathing, etc.). All

members within a quarter mile radius of the arrest scene are dispatched to the scene
with an audible alertrothe cell phone as well as a satellite image map showing the
location of the user and the cardiac arrest location. An address or description of the

location is provided as well.

PulsePoint also creates a registry of AED locations within an arearegiséy is
populated by a crowdsourcing approach, with members of the public uploading the
geclocation of AEDs through the cell phone app, along with a picture of the AED
and description of the location. When an activation occurs, users receiving the
natification are provided with the location of the nearest AED as well as the cardiac

arrest locationKigure5).
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Figure5. PulsePoint smartphone app showing a) cardiac arrest activation; and b)

AED registry on cell phonapp (from[48]).

PulsePoint has realized only limited success since its implementation in 2012.
Although the organization reports o\vie® million citizen responders, and over

98,000 activation$48], only a small percentage of these have resulted in actual
responder treatment to the patient. A survey provided to responders shortly after an

activation notice was sent indicated only 23% of activated respoattienspted to
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travel to the cardiac arrest location, with only 11% arriving at the §d6he
Reasons cited for not responding included

1 the cell phone being muted,

1 the responder did not hear the alert due to a noisy environment

1 the responder was away from their phone,

1 they were unavailable at the time of the call,

1 the arrest location was considered too far away,

1 a belief that EMS would arrive first,

1 unable to get out of a vehicle at the time of a notification (e.g. os8)a bu

1 they did not understand how to get to the location.

2.42 ALERT Study

The ALERT study is a currently ongoing pilot pragh sponsored by Philips
HealthcareKing County Public Health Department, the University of Washington,
and PulsePoint. The pn@m uses the PulsePoint system, adding to it the concept of
averified respondewho carries an AED with or near them at all times (e.g. in a grab
bag, or in their car). Verified responders represent a different class of responder
within the PulsePoint sfem. These responders are targeted to be off duty
professional health care workers or other public safety workers. This includes off
duty firefighters, policemen, nurses, doctors, security officers, life guards, search and

rescue volunteers, etc. Thessponders are trained in first aid and typically in AED
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use as part of their jobs, and are experienced in responding to critical and potentially

chaotic events.

For the ALERT study, off duty firefighters were recruited from five EMS districts:
TualatinValley Fire and Rescue (suburbs around Portl@megon), Sioux Falls Fire

and Rescue (Sioux Fallsp@&hDakotg, Spokand-ire Department (Spokane,
Washington, Spokane Valley Fire Department (Spokane VaNggshington, and
Madison Fire Department (Mabn, Wisconsin [50]. The study recruited 621

verified responders across the five districts, with 550 AEDs provided to the
responders. A survey taken during the recruitment process indicated that 54% would
keep the AED in their car, while 38% would carry the AED on their pd&stn The
verified responders would be dispatched by the danfeePointell phone app as the

lay responders, but would be dispatched into private residences as well as public

locations. Thalispatch radius could also be increased for the verified responders.

Interim results from the study indicate that verified responders have been activated to
ascene 137 times, however 39% were on duty at the time of the activation. Of those
that were offduty, 31% attempted to respond to the activation, with 14% making it to
the scene prior to EMS. An AED was applied in 3 camed there halseenone

resuscitation attributable to the program.
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2.4.3 Other Mobile Responder Systems

A number of othesystems employing the concept of the mobile responder are in

various stages ofid or implementation throughout the worldhe GoodSAM app

operates similar to PulsePoint, and has the largest citizen network in the United

Kingdom[52]. The phone app has the added functionality to stream video back to the

EMS agency, a feature called Alnstant On S
Through the sponsorship of the Singapore H
program has equipped 150 taxi cabs in Singapore with AEDs, fire extinguishers, and

first aid kits[53]. Dispatched through a phone app, theayshas responded to 149

cardiac arrests since its implementation in 20d&rtslagnu (Heartbeat Now) in the

Netherlands is a phone app dispatch system that will send the clitigest

responder to the cardiac arrest location to start CPR, while dgexthiernearby

responders to public access AED locations to retrieve an AED before going to the

cardiac arredgb4]. They have recently partnered with Volvoaagilot study to have

AEDs installed in cars and the app integra

2.44 Modeling and Simulation dflobile Responder Systems

Mobile respondesystems incorporate the dispatch of a BLS responders
simultaneously with thdispatch of an EMS ambulance. Marslealal used a Monte
Carlo simulation model to predict both volunteer response times and EMS response

times to sudden cardiac arrest locations in North and West Belfast, [Eandhe
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simulation accompanied a two year trial in which mobile volunteers and police
carried AEDs and were disgaied to cardiac arrests scenes by an alphanumeric pager

[56].

The Belfast study region was divided into seven zones, with each zone having a

single volunteer respondéron dut yo at any given ti me.

modeled using a letpgistic distribution fit to historic response time data for each of
the seven zones. Responder times wereglailated using road network
information (Microsoft MapPoint Europe 2004) for response times between the
centroid of each of the 7 zones to the aadtof each of 434 Census Output Areas
within the region. For the simulations, variation around the expected volunteer
response times was added using altmgstic distribution. Their model also
accounted for the likelihood of availability of each af geven responders for each

cardiac arrest simulations.

The simulation resulted in volunteers arriving ahead of EMS 18.8% of events, with an
average improvement of 56 seconds over the EMS response. This compared against
the actual study results of 15%he survival regression model presented by Laesen

al. [2] was incorporated into the model to predict survival for withessed cases with an
initial rhythm of VF or VT. The authors used the model to predict an improvement of
the volunteer arrival first by an additional 18% if the availability doubled 3264 if

it is tripled

32

E |



Khalemskyet al.created an Emergency Response CommitfigctivenesdModel
(ERCEM) to simulate response times for cell phone app alert systems for
anaphylaxis, hypoglycemia, and opioid overd@8. They estimated the number of
responders in the systems based on population density apertemtage of the
population prescribed twarry the medicine for each condition. Vhesed additional
factors to account for the fraction of this subpopulation who would participate in the
community responder program. THhen applied a Monte Carlo simulation for the
number of responders withanlkm or 2km radius of the patient in need, and
estimated response times base on the travel distance and some system delay values.
They compared these response times to actual EMS response times recorded in the
NEMSIS database for specific events, obémchmark EMS response times. Their
model was limited to walking mode responses only, and considered only the
Euclidean distance for the transit. Their simulation found that phone dispatched
respondera EMS in 13% of cases. They proposed the ERCEMdecsion support

tool for communities considering augmentation of their EMS response with these

citizen network systems.

2.45 Aerial Drone Response Systems

A significant drawback of PAD systems is that coverage of low demand areas within
a quick retrigal distance, i.e. 150 meters, is not cost affective. Static AED placement
is most effective in buildings or areas with a high concentration of people. Even
when an AED is near the cardiac arrest scene, it is often difficult for bystanders to

locate andetrieve the nearest AED. A method to deliver the AED quickly to the
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scenewhichis currently being researchad the use of Unmanned Aerial Vehicles

(UAV), also known as drones.

UAV drones have the capability to transport an AED quickly to a caedrast

scene, flying above traffic, buildings, and other obstacles. Drones can travel from 50
km/h to 50km/h. AED weight is currently well within the payload capability of
existing drones, however once the feasibility of a drone response system is
denonstrated, AEDs could be designed specifically for integration with drones.
Cameras on the drone could provide situational awareness to en route EMS
responders, as well as the potential for CPR coaching and AED application feedback
from the 911 operatorAED deployment concepts being explored include dropping
with a small parachute near the arrest scene, landing the drone with the AED
attached, or lowering the AED by a cable and winch. The AED can be received and
applied by a bystander, or potentiallgt®11 caller. Such a systemuld suffer from

the same apprehension of bystanders or laypersons to apply thi8JBowever

recent small scale human simulations have producedigiragy result§59]. A drone
system paired with a dispatchembbileresponder system has been proposed to
address this issyé0]. GoodSAM will begin offering an AED Drone Delivery

service to communities supportled its responder network by the end of 2020].

Drone medical supply transport systems have currently only been implemented in
remote, isolated areas. Zipline uses fixed wing drones to fly blood supplie

vaccines to remote areas in Rwanda and Tanfé2ja In Stockholm, Sweden,
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researchers obtained temporary permission to perform aerial drone resgiadi@ns

over unpopulated aref3] (Figure §. The simulated rescues included three AED
deployment methods: parachute; dropping the AED from a 3rietédr height, and
landing the drone. The authorsnctuded dropping the AED was the safest and most
practical method A similar mock rescue study by researchers from the University of
Toronta, using response beyond line of visual sight navigation, found that drones
responded 2.1 to 4.4 minutes faster t&M®S for distances from 6.6 to 8.8 kf{64].
Outside of Ottawa, Canada, in Renfrew County, drones are used to deliver medicine,
and recently the first drone was dispatched to a cardiac arrest scene with an AED
[65]. In the United States, the city of Reno Nevada was recently selected as one of 10
designated drone test areas by the Federal Aviation Administration as part of the
Unmanned Aircraft Systems Integration Pilot Progfé6]. Thedrone startup

company Flirtey has partnered with the Reno EMS department to pilot an AED

transport system to cardiac arrest locati@g.
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Figure6. Drone dropping AED in simulated cardiac arrest rescdaptad fron{63]).

Drone deliveryof AEDs hasgarnered much recent attention due to the potential to
significantly improve access to an AED and time to defibrillation, particularly in rural
areas or diffialt geographic areas where EMS response times are very long. There
are, however, significant barriers that need to be overcome to implement a drone
response system. Most countries have regulations around the flight of drones,
including limiting flights b visualline of sightdistancesrequiring an active pilot,
airspace restrictions, and nighttime flight restrictigg&. Commercial drones have

a maximum flight elevation of 400 ft, and a maximum speed of 100 fipére are

additional concerns fgublic safety, both with potentially landing drones in crowded
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public spaces, and in the event of a drone malfunction or loss of padteer public
resistance to drones has come frmoncerns with noise and privaf§9]. Advances

in drone technology are addressing some of these concerns, with redundant flight
systems, autonomous piloting, andlistbn avoidance sensors. The early pilot
programs, as well as the use of simulation to predict the potential benefits of the
systems, will likely drive regulatory decisions. It is expected that the public will

likely view the benefits of such a systemautweighing the risks.

2.46 Modeling and Simulation of Drone Response Systems

Modeling of drone response systems has been limited primarily to a few specific
regions and based on optimizing coverage around historical cardiac arrest locations.
Similar approaches to those used for optimizing ambulance base locations and AED
placement locations have been used to model drone responses.ePalugsed an
MCLP approach to configure a network of drone locations in Salt Lake City, Utah,
with the objectve of providing one minute travel time to all demand locatj@os

The approach modeled the effect of using existing EMS locations as drone launch
sites, as well as adding new launch sites to the system. The analysisiatuntite

EMS can reach only 4.3% of demand within one minute, drone responses from
existing EMS locations increased to 80.1% the locations reached within one minute,

and 90.3% if new launch sites were added.
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Boutilier et al used a two stage approachodelingdrone response systems for
Toronto, CA and outlying are§8l]. The frst stage used a coverage based
optimization algorithm to determine the minimum candidate drone locations
(ambulance, fire, and police stations) to provideraidute, 2minute, and dninute
improvement over EMS response times. After determining the alptirane

locations, the second modeded acontinuousstate Markov Chain queuing algorithm

to determine the number of drones required at each location. The Markov model
included states of busy and available for drones, based on demand following a
Pois®n process, and busy time based on flight time, treatment time, return time, and
a drone reset time. The modeling indicated that 81 drone bases with 100 drones

would be required for a median improvement of 3 minutes over EMS response time.

Claessoret al. used a modeling approach to identify drone locations in Stockholm,
Sweder{72]. With use of a GIS tool (ArcGIS), the cityasbroken into a discrete

grid, with a raster layer of EMS response time for each area, as well as a raster layer
of incidence of cardiac arrests for each area. A 50/50 weighting was usedtfoo the
layers to find optimal locations in the urban area of Stockholm, while an 80/20
weighting (80% to EMS response time, 20% to OHCA incidence) was used for
outlying rural regions. Using this method, 20 locations were identified which could
cover 72% of k historic cardiac arrest locations. The model predicted drone arrival

before EMS in 32% of urban cases, and 93% of rural cases.
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2.5 Discussion

Although new concepts for responding to sudden cardiac arrest are being developed,
previous research dhese systems and theateld topics of EMS response akBED
positioning have not yielded useful techniques that estimate the costs and benefits of
new response systembluch of the prior modeling has focused on optimal locations
for EMS bases and AED mlament. While valuable for maximizing the efficiency of
limited resources, this optimizatia® only expected to have a marginal impact on
survival. There is little research using modeling and simulation to provide
comparisons of the emerging, novel raggmsystems under similar assumptions.
Additionally, most modeling approaches neglect the reliability aspects of elements
within the response system, and their impact on system effectivertass.

dissertation will help to fill that gap by developing atemonstrating models that can

simulate different types of response systeimder various operating conditions
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ChaptRerse3ar ch Approach

To address the fundamental questipased bythis dissertationaset ofmodek was
developed to incorporateoth the predictable factors aut-of-hospitalcardiac arrest
response as well as the aleatory uncertainty associated with the location of the arrest
and responding agent$he moded simulate the response time to a cardiac arrest
event for different typs of responding agents, based on distance travelled, additional
delay times associated with the logistics of dispatching the responding ageht and
reliability and availability of the responding agent or required equipnigm.

response times for CP&hd defibrillation provide the inputs to a logistic regression
survival modelallowing for a survival likelihood prediction for each simulatidrhe
Monte Carlo method using a large number of simulations was employed to assess the
variation in responsénmes due to stochastic factors, and develop summary statistics
to represent the performance of a response systdrapter 4 presents the model
structure, underlying assumptions in the model, input faabaitset model, output
responsegxecution and valdation The chapter also discusses sources of

informationand analytical methodssed to provide the model inputs.

In order to understand the system structurefacbrsthat have the largest impact on
response time and survivaknsitivity analysisxperiments were performed on the
inputs to the modelSimulation &periments were performed on each type of
responding agent, EMS, mobile responders, and drone response, independently, to

understand the most significant factorgachresponse time. Ovall system
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sensitivity experiments were then performed, to characterize the interaction of
multiple responding agents in the cardiac arrest treatment, as well as the impact of
reliability and available of responding agenggdditionally, simulationexperments

were run to assess the sensitivity of response time predictions to the type of geo
spatial distribution used to generate both the cardiac arrest location and the mobile
responder locationsChapter 5 presents the results of these experimentsinwith
depth analysis of the most significant factors usingsponse surface design of

experiments.

A primary objective of tts research is to use the madgland simulation to predict

and compare the performance of differgtes of emergingesponse syams within

a specific regionand evaluate the potential improvement over the traditional EMS
response paradigm. Chapter 6 discusses results of simulation experiments used to
compare several systemith a range of system condition$he results demonsite

that augmentation &MS with emerging systems, under the right conditions, can
provide meaningful improvement in the time to defibrillation and survival rate of
cardiac arrestChapter 7 expands on the analysis from chapter 6, prowadoogt
modelfor each of the systems, and presents the results in-aensfit decision

analysis format. Chapter 8 provides a summary of the learnings, and their relevance
to the primary research questions, as well as a discussion of limitations of the
research antuture work. Figure7 shows a flowchart of the steps in this research
approach, the chapters which provide their description, and the relationship to the

research questions.
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How could modeling and simulation methods be u
to evaluate the benefits of various alternative resp¢
systems for specific municipalities or EMS
organization®

Model Validation

Model Developmen

Chapter4: System Simulation Model

®¢hat system structure and conditions are needed
ashieve the improvement in survi9al

Response Surfacq

Experiments
Sensitivity Analysisge g (interactions and
non-linearity

analysi$

Chapter5: Sensitivity Analysis

Gan alternative cardiac
arrest medical response
systems provide a
substantial improvement;
in survival for outof-
hospital cardiac arresx

Comparison of

Systems

Chapter6: Comparison
of Systems

Can alternative response
systems provide cost
effective improvement in
the survival rate for
cardiac arres?

CostBenefit
Analysis of Respon:
Systems

Chapter7: Application
of Model

Figure7. Steps in reseeln approach.

The modelling approach was to create a geographically flexible model, which could

be applied to urban, sulrban, and rural areas, and integrate region specific

geospatial attributes, such as the location of existing fir@statambulancbases,

and potential drone bases. Throughout this research, the city of Bellevue, located in

King County, Washington, was used as the example region for model

experimentation. Bellevue is the fifth largest city in the state of Washington

consisting of 8.8 sg. km of land, with a population of 147,Q@8]. It is primarily a
suburban city, with a moderate downtown area with a few hsghbwildings. Itisin
King County, the most populated county in Washington, and lies just east of the city
of Seattle.Bellevue was choseas the example city due to proximity and familiarity,
as wellto leverage myelationships with EMS leaders, caadiarrest response
researchers, and access to data from King @demitS. The modelling approach,

however, is extendable and customizable to any region.
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ChaptSeyrstdem Si mul ati on Model

Theapproach tgredictingthe performance of the emerging damarrest response
systems utilized thereation of a deof models to simulate the types of response
systems described @hapter2. Geo-spatial Monte Carlo Simulation modeigre
developedo simulate response times and predicted survival likeliiooeach

cardiac arrest response system. Modeling and simulation approaches can quickly
generate insights into a system that could take years toftearstudying and
experimentation with a real world system. However, models and simulations are only
a representation, or approximation of a real world system. As such, the full
complexity of the systemwas not intended to be replicated in a model. The geal

to identify the minimahecessargomplexity of a system to provide useful,
actionable insightsito the system. With too little complexity, the model loses the
capability to provide accurate predictions, while too much complexity results in an

intractable model.

This chapter begins with an overview of the model in Section 4.1, followed by the
introduction of the input factors in Section 4.2. Section 4.3 provides the detailed
formulas and mathematical calculations used in the model. Section 4.4 describes the
implementation and execution of the mod8kction 4.5 providea discussion of the
modelinputs, the sources of data, and analyticahoes$ used to derive the inputs.

Finally, Section 4.6 presents approaches to validation of the models.
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4.1 Model Overview

This modelingand simulation approach relies on the following axioms:
1. Outof-HospitalCardiac arrest occurs at random locations on a geographical
spacehatcan berepresented by admensional Cartesian terrestrial surface.
2. A net womobker es pdnderso can be represented
a similar geographical spacethétime of a cardiac arrest occurrence.
3. The time to respond to a cardiac arrest location can be predicted based on a
distance metric from the origin to destination, the travel speed, and additional

time componentsdependent of the distance from origin to deston.

The model s6 p resporsgane thaimenforlvaious responding
agentgo provideeach of théwo primarymethods of treatmembdr sudden cardiac
arrest, i.e. CPRanddefibrillation (either with an AED or by an ALS provider with a
defibrillator/monitor device) These response times ateongpredictors of survival
to hospital discharge faut-of-hospitalcardiac arrest. The response roaiginate
from a fixed location, such as an EMS ambulance base loaatinone basdrom a
random location, such asvbileresponder at the time of the cardiac arrest, or a
combination of fixed and random locations, such as a bysté&dea random

location retrieving an AE@ransported by drone froma fixed location.

The response times f@PR and defibrillatiotreatment methodasreused to predict a

survival probability for each simulated cardiac arrest event.|dgigtic regression
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equation provided byalenzueleet al is used to predict survival. The survival
equation provides a pability of survival estimate only for tH#&Jtstein subgroug
of all cardiac arrest cases, i.e. adult patients with witnessed collapse of cardiac

etiology, with an initial shockable rhythm (VF or VT).

As these response systems include actions by bothrhantamachine components

(e.g. ambulances, AEDs, volunteer responders), the reliability and availability of
these components are integral to the efficacy of a system. Ambulances may be out on
anothercall or beingcleaned andestocked at the time of ardéac arrest, AEDs may

have a dead battery or other functional failure, and volunteer responders may not
notice an alert on a cellphone, or may be unable to respond for various reasons. The
nature of these systems provides redundancy for each ofciiepenentshowever,

the response time may suffer when a backup is needed. An unavailable ambulance
may require an EMS response from a more distant base locationfanctional

AED would delay defibrillation until EMS arrives at the scene, or an unreliabl
responder would result in a delay utitié next closesesponder arrives. These

reliability and availability aspects of the modeling of various response systems are

incorporated as additional stochastic events.

The influence diagram in FiguBeshows the conceptual relationships of these
components of the model. The model simulates several intermediate events in order
to ultimately predict survival for each simulated cardiac arrest event. First, the model

simulates the distance from the origintloé responding agent to the cardiac arrest
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location. The distances are influenced by the locatidthe responding agesboth

fixed and random, the number of agents in a system, and the availability of each agent
within a system at the time of the darc arrest. The distance, along with the velocity

of the responding agent and sonwgttransit,system specifitime constantge.g.

dispatch times)determine the time for the first responder of each type.middelled
therapy capabilities of each resyse system, i.e. CPR and/or defibrillation, together

with response time, determine the tiboedefibrillation and the timeo-CPR. These
arethenusedasinputs into the logistic regression model to predict the survival

likelihood for the simulated caralt arrest.

There are system design factors such as the number of ambulances and number of
drones, and the locations of these within the region. The number of responders within
the system, which determines responder density, is a design factor astveell. T

values of these decision factors influebogh the response time and survival

predictions, as well as the cost of operating the system. The costs of these systems is

discussed in Chapter 7.
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Each simulation results in a different response time#oh of the responding agents

in the simulation (e.gEMS, mobileresponders, drones, gtaue to the random

location of the cardiac arrest event as well as ranidoations ofmobileresponders.

Any single simulation does not represent the performance of the system, as chance
may favor one type of response over another. The Monte Carlo method is used to
find the distribution of responses over a large number aflatons. The

distribution of responses defines the performance and efficacy of a system, and the
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impact of changes to corapents or factors in the system are measured by the effect

on the response time distributions.

The structural approach to the modek to parameterize all mathematical
componentsvhich may vary among specific systeragch that thesparameterare
independent input factors to the model. This approach enables flexibility in the

model to simulate many different systems, as well asrte the model to known

attributes of a specific system (e.g. tune the model to match EMS response times for a
specific region or municipality). This also facilitates sensitivity analysis on the

various factors in the model.

4.2. Model Factors

The malel factors, or model inputs, are the variables withimtbeels thaare set to
define the specific attributes and conditions of a response system. These factors
define the geographic region of the simulation, the response characteristics of the
different agents being modeled, the distance travelled between origin and destination
points, and the reliability and availability of elements within the systdrhs.
nomenclature for all model input factors is summarized in ThA@darebriefly

describedn the following sections.
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Tablel. Nomenclature for model factors.

Factor Description

XNW, XSE Longitude points to define region
YNw, YSE Latitude points to define region

p Minkowski distance order

A Cardiac arrest locain

R Location of thdath mobileresponder
Ei Location of thath EMS base
teo EMS dispatch delay time

tec EMS chute time

VE Ambulance velocity

Ea Ambulance availability

trD Responder dispatch delay time
trw Responder walk delay time
tRDr Respondedrive delay time
VRW Responder walking velocity
VRD Responder driving velocity
Rr Responder reliability

Raep AED mission reliability

Di Location of thdth drone base
top Drone dispatch delay time
tov Drone vertical flight time

Vb Drone velocity

tbpe Drone descent time

Dao Drone operational availability
Daw Drone weather availability

4.21 Simulation Region Inputs

Geographicregion: Let (xnw, Ynw) be the longitude and latitude of the northwest

corner of the simulation region. Le&s, Yse) be the longitude and latitude of the
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