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Sudden Cardiac Arrest (SCA) is the leading cause of death in the United States, 

resulting in 350,000 deaths annually.  SCA survival requires immediate medical 

treatment with a defibrillatory shock and cardiopulmonary resuscitation.  The fatality 

rate for out-of-hospital cardiac arrest is 90%, due in part to the reliance on Emergency 

Medical Services (EMS) to provide treatment.  A substantial improvement in survival 

could be realized by applying early defibrillation to cardiac arrest victims.  

Automated External Defibrillators (AEDs) allow lay rescuers to provide early 

defibrillation, before the arrival of EMS.  However, very few out-of-hospital cardiac 

arrests are currently treated with AEDs. 

 

Novel response concepts are being explored to reduce the time to defibrillation.  

These concepts include mobile citizen responders dispatched by a cell phone app to 



  

nearby cardiac arrest locations, and the use of drones to deliver AEDs to a cardiac 

arrest scene.  A small number of pilot studies of these systems are currently in 

progress, however, the effectiveness of these systems remains largely unknown.   

 

This research presents a modeling and simulation approach to predict the 

effectiveness of various response concepts, with comparison to the existing standard 

of EMS response.  The model uses a geospatial Monte Carlo sampling approach to 

simulate the random locations of a cardiac arrest within a geographical region, as well 

as both random and fixed origin locations of responding agents.  The model predicts 

response time of EMS, mobile dispatched responders, or drone AED delivery, based 

on the distance travelled and the mode of transit, while accounting for additional 

system factors such as dispatch time, availability of equipment, and the reliability of 

the responders.  Response times are translated to a likelihood of survival for each 

simulated case using a logistic regression model.  Sensitivity analysis and response 

surface designed experiments were performed to characterize the important factors 

for response time predictions.  Simulations of multiple types of systems in an 

example region are used to compare potential survival improvements.  Finally, a cost 

analysis of the different systems is presented along with a decision analysis approach, 

which demonstrates how the method can be applied based on the needs and budgets 

of a municipality. 
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Chapter 1: Introduction 

 

Sudden cardiac arrest is the leading cause of death in the United States.  350,000 

people die from sudden cardiac arrest outside of the hospital each year [1].  When 

sudden cardiac arrest occurs, the heart ceases to beat in an organized, normally paced 

rhythm, instead, beating in a rapid, chaotic manner, known as fibrillation.  While in 

this condition, the heart is not able to pump blood through the lungs to achieve 

oxygenation and exhalation of carbon dioxide, and is not able to provide perfusion to 

the brain and other vital organs.  Loss of consciousness occurs immediately, 

neurological damage can occur within a few minutes, and the victim rarely survives 

longer than 10 to 15 minutes. 

 

The treatment for sudden cardiac arrest is a defibrillatory shock and cardio pulmonary 

resuscitation (CPR).  CPR is the act of compressing the cardiac arrest victimôs chest 

by exerting repetitive force on the sternum.  This action can compress the heart, 

causing the circulation of blood to occur.  Mouth to mouth resuscitation or the use of 

a bag valve mask provides oxygen to the lungs during CPR.  Defibrillation is the 

application of an electric shock across the torso of the victim, which interrupts the 

electrical activity of the heart muscles, and can restore a normal, organized heart 

rhythm.  Both CPR and defibrillation must be provided within the first few minutes 

after the onset of cardiac arrest to provide a successful resuscitation.  For every 

minute that elapses after the collapse of the victim the chances of survival are reduced 

by 5% to 10% [2][3][4].  Sudden cardiac arrest stands unique from other diseases and 



 

2 

 

conditions in that much of the focus for improvement in survival is not on the clinical 

treatment of the condition, but on methods to reduce the time to get treatment to the 

patient.   

1.1 Background 

 

Sudden cardiac arrest can affect anyone, often occurring without prior indications.  

Although primarily affecting the elderly, sudden cardiac arrest can occur at any age, 

from neonatal, infants, children, teenagers, and through the adult years.  The 

prognosis for cardiac arrest is very poor.  When it occurs outside of the hospital, the 

survival rate in the United States is about 10% [3][1].  Even when it occurs within 

hospitals, where a quick response and professional care is standard, the survival to 

discharge is only 22% [5].  The primary source of treatment for out-of-hospital 

cardiac arrest (OHCA) is provided by Emergency Medical Services (EMS).  This 

consists of paramedics and emergency medical technicians (EMT) dispatched to the 

cardiac arrest location in an ambulance.  The national standard for EMS response 

times is to reach 90% of calls within 8 minutes [6], for the highest priority calls, 

although many municipalities and rural areas have significantly longer average 

response times.  It is evident with these response times that survival from cardiac 

arrest will be very low.   

 

Survival rates from sudden cardiac arrest have not shown significant improvement 

over time [7].  EMS systems have been optimized for quick response, but they are 

expensive to maintain, let alone to grow, in order to keep up with growing 
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populations, congestion, and urban sprawl.  Rural areas pose even greater challenges 

to achieve a fast EMS response time.  Alternative approaches to response and 

treatment are needed to achieve quicker defibrillation in order to improve survival.  

 

The invention of the Automated External Defibrillator (AED) has allowed bystanders 

to quickly and effectively respond to sudden cardiac arrests (Figure 1).  An AED, 

when applied to a patient, will analyze the heart rhythm, algorithmically determine if 

the patient has a shockable arrhythmia, and deliver a defibrillatory shock.  A ñlay 

userò, i.e. a person without any medical training, can apply and operate the AED.  

When AEDs are available and used on a cardiac arrest patient, survival is increased to 

25%, about 3 times the odds of survival as from EMS treatment [8].  Appendix B 

provides further description of the operation and function of an AED.  

 

Figure 1. An Automated External Defibrillator (AED) 
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In locations where AEDs have been widely deployed, such as casinos, significant 

improvement in survival has been achieved.  However, AEDs have failed to reach the 

level of dissemination needed to significantly improve overall survival rates for 

sudden cardiac arrest.  Studies have shown only 2% to 5% of all sudden cardiac 

arrests are treated with an AED prior to EMS arrival [3].  Most AEDs are located 

inside buildings, many being private facilities, and unavailable for cardiac arrests in 

outdoor or public areas.  Additionally, about two thirds of sudden cardiac arrests 

occur within homes, where AED adoption is nearly non-existent. 

 

Recent advances in technology have led to the development of novel concepts to 

overcome these barriers to improved cardiac arrest survival.  One such is the advent 

of the GPS equipped smartphone.  Technology has been developed to dispatch 

volunteer responders who happen to be near a cardiac arrest location via a cell phone 

app.  This allows a type of on-demand òcrowdsourcingò of a rescue response.  

Initially these programs have focused primarily on providing CPR until the arrival of 

EMS.  Pilot studies are being explored where volunteers either carry an AED with 

them at all times, or are directed to the nearest AED in a community registry and then 

to the patient by an EMS dispatcher or by the app.  While these programs have had 

sporadic success stories, it is not yet known how effective these programs will be in 

improving survival, nor what conditions would be required (e.g. responder density, 

AED access) to achieve a desired improvement. 
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The future of bringing early defibrillation to sudden cardiac arrest victims may lie in 

another emerging technology ï the autonomous aerial drone.  Drones have the 

capability to travel above traffic and buildings, use a straight line of navigation to the 

scene, and travel at speeds much faster than an ambulance on city streets.  

Development of drones for delivery purposes has been widely publicized, with some 

trials being performed by companies like Amazon [9].  Other companies and 

university researchers have directed research toward the development of drones 

specifically designed for AED delivery.  Drones can quickly transport an AED from a 

central location, such as a fire station, to a cardiac arrest scene, to be used by a 

bystander or dispatched responder.  Significant challenges ï both technological and 

regulatory -- must be overcome before this type of response system becomes a reality.  

While technology exists for autonomous drone flights and routing, the FAA currently 

restricts drone flights to visual line of sight of the operator.  The public is not yet 

accustomed to autonomous drones, and must have confidence in the reliability and 

safety of their use.  There is currently research in drone AED delivery, and there have 

been a few simulated rescue demonstrations, however there is not yet any 

municipality using drones in actual medical responses. 

 

Sudden cardiac arrest, by its very nature, is a difficult medical condition to study.  Its 

occurrence is nearly impossible to predict, as many patients show no prior symptoms 

of cardiac issues.  Clinical trials are not able to enroll patients with a known 

condition, in the traditional sense, as is typical with most disease studies.  As the 

cardiac arrest victim is unconscious and unresponsive at the time of the arrest, 
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informed consent cannot be obtained.  Most studies of sudden cardiac arrest 

treatments have either employed a community based approach, where a community 

health agency provides the consent, often accompanied with a public notification, and 

a mechanism for citizens to opt out of the study.  Other methods include identifying 

large numbers of high risk patients and monitoring them for a significant period of 

time.  This too is difficult, because the standard of care is to provide implantable 

cardioverters to patients at the highest risk.  Thus, such study approaches target 

patients with elevated risks, but not high enough to receive an implantable 

defibrillator. 

 

The difficulties of studying cardiac arrest extend to the study of the efficacy of 

response systems.  Formal studies of these new systems require several years to 

generate enough cases to assess the performance of the system.  These studies are 

also expensive, particularly when provisioning large numbers of responders with 

AEDs.  Other difficulties have arisen in these studies as well, such as liability for the 

actions of the responder, patient privacy concerns, the ability and authorization of 

responders to enter private residences, and responder safety.  These make clinical 

studies rare, with only a small number having been commenced.   

 

With the diversity of novel response systems proposed, EMS decision-makers will 

need to estimate costs, effectiveness, and reliability as they determine which type of 

enhanced system to implement within a community.  Modeling and simulation is an 

approach that can synthesize information discovered from studies and trials, and 
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provide predictions on system performance under conditions not available or 

achievable during a study or pilot program.  It can also be used to extrapolate 

information obtained from existing systems, to make predictions about new, untested 

system concepts.   

 

Modeling and simulation are widely used to analyze a systemôs capability when direct 

experimentation is difficult, costly, unsafe, or infeasible.  A model is an abstraction of 

a real world item or system, which allows for simplified analysis or evaluation of the 

system.  A model may be a physical representation of an item, or a functional 

representation, usually involving a computational or mathematical evaluation of the 

functions of a system.  Modeling and simulation provide an approach to studying 

sudden cardiac arrest response concepts that can be both flexible and comprehensive 

in the analysis of factors that impact system performance.  The benefits of modeling 

and simulation are the ability to predict the performance of a system under many 

different conditions, in order to define an optimal or ideal set of conditions, or most 

cost effective conditions to apply to the real system.  Where direct studies of a 

response system may take several years and cover a single set of operating conditions, 

simulation experiments can be performed in a relatively short time and cover multiple 

conditions to provide a spectrum to system performance potential.  Models can be 

applied prospectively as decision support tools, which inform the decision-makers of 

the most efficient, effective, and cost-effective type of system, and the optimal 

conditions of such a system. 
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1.2 Goals of this Research 

 

The objective of this research is to generate new knowledge that can be used to 

design and realize better cardiac arrest response systems, such that more lives can be 

saved.  The goal is to create a comprehensive approach and decision support tools 

that can help decision-makers predict the effectiveness and evaluate the costs and 

benefits of various novel response systems.  This objective is approached through the 

development of a set of mathematical models which can simulate the cardiac arrest 

response times of different proposed response systems, and provide comparison to 

simulated EMS response times.  The models were developed such that the effects of 

different attributes, or conditions of the system can be evaluated, including the 

reliability of the system, as pertaining to its ability to provide a response.  Together, 

these are used to provide an estimated improvement in survival, i.e. the public health 

benefit of the system.  The benefits of the various systems can be balanced against the 

cost of implementing such a system. 

 

This research is intended to answer the following questions: 

1.  Can alternative cardiac arrest medical response systems provide a 

substantial improvement in survival for out-of-hospital cardiac arrest? 

 

o What system structure and conditions are needed to achieve the 

improvement in survival? 
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o Can alternative response systems provide cost effective improvement 

in the survival rate for cardiac arrest? 

These alternative response systems, by design, can only improve survival, as 

they are an additional response system to augment the traditional EMS 

response system.  The effectiveness of the traditional EMS response is 

assumed unaffected by the addition of an enhanced response system in these 

models, thus the overall survival could be no worse than with an EMS 

response only.  If an adverse impact on EMS response efficacy did exist due 

to the additional response system (for example, EMS response slows because 

they believe help will already be on the scene), it is conceded that only an 

actual human trial could identify the effect.  Hence, the more important 

question is how much of an improvement in survival could be achieved by 

these systems, and what conditions of the system would be necessary to 

realize the improvement.   

 

A series of simulation experiments were used to explore each of the models, 

to understand the effect of each factor.  The research also provides analysis 

of the overall cost of each proposed concept, as well as the costs associated 

with varying different conditions in the system. 

 

2.  How could modeling and simulation methods be used to evaluate the 

benefits of various alternative response systems for specific municipalities or 

EMS organizations? 



 

10 

 

 

EMS organizations vary greatly in their capabilities, response time 

performance, budgets, priorities, etc.  Some municipalities could benefit 

more from one type of alternative response, while others may find greater 

benefit from entirely different systems.  The culture of a community may 

provide a preferred choice.  A close knit community may find volunteer 

responders easy to recruit.  Other communities may not be comfortable with 

non-commissioned volunteer responders entering private residences, or 

having access to the location of cardiac arrest victims.  Modeling and 

simulation would be a significant asset in decisions around improving 

response systems, and allocating budget.  The predicted effectiveness of 

different options could be balanced against community preferences, values, 

and resources. 

 

1.3 Outline of Dissertation 

This dissertation is organized as follows:  Chapter 2 provides a literature review of 

existing and proposed novel cardiac arrest response concepts, as well as the 

application of modeling and simulation to the area of emergency response systems.  

Chapter 3 provides an overview of the research approach, including the modeling and 

simulation that served as the basis for this dissertation.  Chapter 4 describes the 

model, its inputs, outputs, and execution, as well as an approach for verification and 

validation.  Chapter 5 examines the sensitivity of the model to input factors, as well 

as a response surface design of experiments (DOE) analysis of the response behavior 
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and interactions of significant factors.  Chapter 6 applies the model and simulation to 

compare the effectiveness of a diversity of systems, while Chapter 7 extends the 

comparison to include a cost analysis and cost-benefit decision approach.  Chapter 8 

summarizes the key points of the research, the limitations, and future directions of the 

research. 
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Chapter 2: Literature Review 

 

2.1 Cardiac Arrest Survival 

 

The American Heart Association defines sudden cardiac arrest as ñthe abrupt loss of 

heart functionò where ñthe time and mode of death are unexpectedò.  Cardiac arrest 

results in immediate failure of the circulatory system.  Visible symptoms of cardiac 

arrest include a sudden collapse, loss of consciousness, lack of a pulse, and lack of 

breathing.  The cessation of perfusion to the lungs, brain, and other organs causes 

tissue hypoxia, which if untreated, leads to death within minutes.  The prognosis for 

victims of sudden cardiac arrest is poor, as the fatality rate in the United States is 

nearly 90% [3]. 

 

Cardiac arrest is caused by an irregular electrical rhythm of the heart.  While there are 

many types of arrhythmias, the two that require immediate treatment to prevent death 

are ventricular fibrillation (VF) and ventricular tachycardia (VT).  The treatment for a 

patient in VF or VT is CPR, defibrillation, and Advanced Cardiac Life Support (drug 

delivery, airway intubation, and other treatment provided by a medical professional).  

A detailed discussion of the physiology of cardiac arrest and its treatment is provided 

in Appendix A. 
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The time from patient collapse to defibrillation has a strong correlation to survival.  

An often quoted heuristic is the chances of survival decrease by 10% for each minute 

that passes before defibrillation [10].  More precise studies by Abrams et al. [3]and 

Wik  et al. [11] have produced survival curves such as the one shown in Figure 2.  

Larsen et al. formed a linear regression model on time-to-CPR tCPR, time-to-

defibrillation tdefib, and time-to-Advanced Cardiac Life Support tACLS to produce the 

probability of survival Ps equation [2]: 

 

Ps = 0.67 ï 0.23tCPR - 0.11tdefib ï 023tACLS    (1) 

 

This model is limited to the first 20 minutes after the arrest.  Valenzuala et al. 

improved by using logistic regression to model survival.  They reported a reduced 

model, consisting of only time to defibrillation and time to CPR, provided equivalent 

predictive accuracy to more complex models [12]: 

 

Ps          (2) 

Where: l = 0.26 ï 0.106tCPR - 0.139tdefib 

 

Others have reported significantly higher survival possibilities with very short time to 

defibrillation. 
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Figure 2.  Cardiac arrest survival based on response time, whether the collapse was 

witnessed, and the presenting arrhythmia of the patient.  Adapted from [3]. 

 

Treatment and survival of cardiac arrest are measured by both physiological states, as 

well as time or recovery event based.  The most immediate measurement of treatment 

of cardiac arrest is known as Return of Spontaneous Circulation (ROSC).  This is the 

conversion of a cardiac arrhythmia to a rhythm that is capable of providing perfusion 

without the aid of CPR.  A second measurement is survival to hospital admission.  

This metric may be used to evaluate the effectiveness of an EMS response when 

ultimate patient outcome is not known or easily tracked.  One of the most common 

used metrics in response and treatment studies is Survival to Hospital Discharge.  

This metric indicates that a medium term (several days) survival and some amount of 
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recovery has occurred.  Other metrics may track longer survival, such as 1-year 

survival, or the neurological state of the surviving patient.  Often, survival rates are 

classified as pertaining to either witnessed or unwitnessed out-of-hospital cardiac 

arrest, or may be classified according to the presenting arrhythmia.  Survival rates are 

sometimes quoted for the Utstein subgroup, i.e. cases of bystander witnessed out-of-

hospital cardiac arrest with an initial shockable rhythm, as this is considered the most 

ñsavableò subset of all cardiac arrest cases [13]. 

 

 

2.2 EMS Response to Cardiac Arrest 

 

Most out-of-hospital sudden cardiac arrest patients are treated by EMS.  In response 

to a 911 medical emergency call, ambulances are dispatched to the arrest location.  

Some systems may dispatch ambulances or fire trucks to provide Basic Life Support 

(BLS) first, which consists of CPR and defibrillation, followed by an ambulance with 

paramedics to provide ACLS. 

 

The National Fire Protection Association (NFPA) Standard 1710 requires ñthe fire 

departments EMS for providing ALS shall be deployed to provide for the arrival of an 

ALS company within an 8-minute response time to 90 percent of incidentsò [6].  A 

study of 485 EMS agencies in the United States showed in urban and suburban areas 

median response times of 6 minutes with the 90th percentile responses within 12 and 

14 minutes respectively [14].  However, in rural areas, the median response time 

dropped to 13 minutes with the 90th percentile reaching 26 minutes. 
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Cardiac arrest survival with EMS response is poor.  Cram et al. report a survey of 

studies ranged from 2% to 20% survival, with an average of 10% [8].  A relative few, 

high performing EMS communities, have reached survival rates in excess of 50% 

with EMS treatment [15].  These communities, such as King County, WA, benefit 

from fast ambulance response times as well as a high likelihood of bystander CPR.  

However, the reality is that 95% of all major cities worldwide have survival rates less 

than 5%. 

 

2.2.1 EMS Response Modeling and Simulation 

 

EMS dispatch locations and ambulance resourcing presents a problem driven by 

medical objectives, economic considerations, as well as political influences.  EMS 

policy makers have turned to operations research for decision support tools to find 

optimal solutions to these objectives.  The EMS models may be categorized by two 

purposes:  identification of optimal ambulance station locations to maximize coverage 

of demand points and to minimize response time, and simulation to assess the 

performance of an EMS system and evaluate potential operational strategies. 

 

Optimal EMS location modeling was first introduced by Toregas et al. in 1971[16].  

He proposed the use of a Set Covering Problem to identify the minimum ambulance 

locations nodes such that each demand node is within a certain response time or 

distance radius of an ambulance location node.  Church and ReVelle developed a 

Maximal Covering Location Problem approach to optimize the service locations 
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under a constrained number of location nodes [17]. The objective of their approach is 

to identify location points for a fixed number of facilities that provide the maximum 

coverage of demand points within a desired distance of the facilities (Figure 3).  

These approaches are limited by the fact that each demand node is covered by only 

one ambulance, and if the ambulance is on a call, a significant area of demand nodes 

is uncovered for a period of time. 

 

 

Figure 3.  Maximum Covering Location Problem (from [18]).  Red dots represent 

facility locations.  Blue dots represent demand locations.  Circles show the coverage 

area of each ambulance base facility. 

 

To address this weakness, Gendreau et al. proposed the Double Standard Model, 

which applies two coverage radii, r1 and r2, where r1 < r2 [19].  This approach applies 

double coverage constraints to the optimization, with Ŭ proportion of demand points 
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within the distance r1 and all demand points covered within distance r2.  The model 

was later extended to the Dynamic Double Standard Model, where ambulances can be 

redeployed to new locations in real time when an ambulance is out on a call [20].   

 

Another utilization of modeling and simulation for EMS systems is for the assessment 

of system performance.  This enables optimization of EMS system configuration (e.g. 

the number of ambulances at each dispatch location) and operational strategy (e.g. 

when to perform maintenance on an ambulance).  Ambulances are finite resources 

which may either be available or in service at any given time, while emergency calls 

are stochastic events which may be modelled as stationary or non-stationary Poisson 

arrival processes.  As such, Discrete Event Simulation (DES) has been utilized for 

research in EMS system simulation.  Larson describes the problem as a queuing 

system with spatially distributed servers [21].  

 

Early use of computer simulations by Savas analyzed ambulance service 

improvements in New York city [22].  He evaluated the cost-effectiveness of changes 

to the number and location of ambulances, and identified low cost improvements in 

service by redistributing existing ambulances.  More recently, Ingolfssen et al. used 

DES to evaluate a single start system (all ambulances located at the same base) 

against the existing multiple start system (10 existing ambulance base locations) for 

the city of Edmonton, Canada [23].  The simulations concluded that a single start 

system could improve average ambulance availability due to improved efficiency in 

ambulance cleaning and restocking between calls, and that an increase in the 
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percentage of calls reached within a 9-minute target response time could be achieved.  

Wu used DES to create a simulation model for Tainin City, Taiwan [24].  The model 

was used to develop operational strategies to minimize disruption to normal service 

when ambulances are unavailable due to provisional events, such as festivals and 

races. Nogueria et al. used both optimization modeling to locate and allocate 

ambulances for the EMS service in Belo Horizonte, Brazil, together with a DES 

model to analyze the dynamic behavior of the system [25]. 

 

2.3 Public Access Defibrillation 

 

Up until the early 1990s, defibrillation was a treatment which was only performed by 

doctors or other highly trained clinicians.  The advent of the AED, and its ability to 

enable lay-responders, or those without medical training, to provide the lifesaving 

defibrillation therapy, brought new strategies to improve response times for cardiac 

arrests.  The concept of Public Access Defibrillation (PAD) first came from the 

American Heart Associationôs ñFuture of CPRò task force in 1990 [26][27].  The term 

has since come to encompass the many strategies of untrained responders using AEDs 

to provide early defibrillation.  The AHAôs initial recommendations around PAD 

were [28]: 

 1.  AEDs be widely available for appropriately trained people. 

2.  All firefighting units that perform CPR and first aid be equipped with and 

trained to operate AEDs. 

3.  AEDs be placed in gathering places of more than 10,000 people. 
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4.  Legislation be enacted to allow all EMS personnel to perform early 

defibrillation. 

 

In their second public access defibrillation conference in 1997, the AHA defined four 

levels of public access defibrillation [27].   

Level 1 is traditional dispatched first responders (e.g. firefighters, police) 

which would carry AEDs in their vehicles.   

Level 2 is non-traditional first responders (e.g. life guards, security personnel, 

flight attendants) who have a duty to respond.   

Level 3 is civilian laypersons with first aid training (e.g. sport coaches) who 

have a desire to provide emergency care. 

Level 4 is untrained civilian laypersons who may be a bystander to a sudden 

cardiac arrest.   

Level 1 programs rely on transporting an AED to the scene, while Level 2, 3, and 4 

PAD programs all rely on AEDs strategically located where a need may be likely. 

 

Many countries have adopted national PAD systems (e.g. Japan [29], England [30], 

Austria [31]).  In the United States, AED legislation has progressed on the national 

and state level.  In 1998, Congress Passed the Aviation Medical Assistance Act, 

which directed the FAA to determine requirements for AEDs on passenger aircraft, 

and declared that carriers and individuals are not liable for damages when attempting 

to provide medical assistance during flight [32].  In 2000, congress passed the 

Cardiac Arrest Survival Act, providing Good Samaritan protection against civil 
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lawsuits for good faith efforts to purchase or use AEDs in federal buildings, as well as 

providing $25 million in local grants for AED purchase [33].  In 2002, congress 

passed the Community Access to Emergency Devices Act, providing $30 million in 

grants to states and localities to purchase AEDs for public access placement [34].  21 

states have laws requiring AEDs placed in schools, while 18 states require or 

recommend AEDs in health clubs, sports clubs, and gyms [35].  Other requirements 

vary by state, such as dental offices, day care centers, swimming pools, places of 

public assembly, or buildings that exceed a minimum occupancy. 

 

Public Access Defibrillation has shown improved sudden cardiac arrest survival in 

many implementations. Cram et al. performed a survey of several published studies, 

citing a probability of survival to hospital discharge range of 0.20 to 0.50 with use of 

a PAD AED, versus a survival range of 0.02 to 0.20 for treatment by EMS only [8].  

Casinos have been one of the most successful applications of a PAD program.  

Valenzuela et al. performed a prospective study using trained security guards in Las 

Vegas casinos resulting in 53% survival to hospital discharge [36]. Through the use 

of video surveillance systems, strategic AED placement, and thorough training, the 

study found the average time from collapse to CPR was 2.9 minutes, and 4.4 minutes 

to defibrillation.  Another successful PAD implementation has been equipping police 

with AEDs and dispatching to cardiac arrest scenes along with EMS.  One of the 

pioneering communities in this approach is Rochester, Minnesota.  White et al. 

carried out a retrospective observational study of atraumatic cardiac arrest treatments 

over a 5-year period, finding police responded faster than EMS (5.8 versus 6.3 
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minutes) and survival to discharge was higher for the police response (58% versus 

43% for EMS) [37]. 

 

Despite the promising results in many applications of Public Access Defibrillation, 

the overall survival for cardiac arrest remains low and very few victims receive 

treatment prior to EMS arrival.  Agerskov et al. report that in Copenhagen, Denmark, 

only 3.8% of all out-of-hospital cardiac arrests have an AED applied despite 15.1% of 

arrests occurring within 100m of a PAD AED [38].  Similarly, in Denmark, a 

longitudinal study of AED usage found an improvement in public locations from 

1.2% in 2001 to 15.3% in 2012 after nationwide initiatives to increase bystander 

resuscitation [39].  However, the use of AEDs in residential locations remained at 

only 1.3% even after the awareness and training initiatives.  Deakin et al. studied 

PAD efficacy in Hampshire, England, concluding only 4.2% of cardiac arrest calls 

had an AED available in the vicinity of the arrest, and only 1.74% were successfully 

retrieved and used [40].  In the United States, an analysis of the Cardiac Arrest 

Registry to Enhance Survival (CARES), established by the Center for Disease 

Control (CDC), found only 4.4% of out-of-hospital cardiac arrest cases had an AED 

used by a bystander [3].  

 

2.3.1 Modeling and Simulation of PAD Systems 

 

The locating of AEDs to maximize likelihood of use and geographical coverage has 

received significant research.  Widespread dissemination of AEDs has been limited 

by the cost of the devices and as such AEDs may be considered a finite resource.  



 

23 

 

European Resuscitation Council (ERC) recommends placing an AED where cardiac 

arrest occur every two years [41] while the American Heart Association (AHA) 

recommends placement where a cardiac arrest occurs every five years [42].  Such 

guidelines may be cost prohibitive or may only cover a fraction of cardiac arrests. A 

study of the geographic locations of cardiac arrests in Copenhagen, Denmark, 

between 1994 and 2005 estimated that 19.5% of arrests would be covered under the 

ERC guidelines and 66.8% would be covered under the AHA guidelines [43].  The 

need for strategic placement of AEDs has led to the development of different 

optimization approaches. 

 

Several attempts to identify high risk locations to place AEDs have identified certain 

building types as target locations.  These are primarily facilities with high density of 

people -- transportation hubs, airports, sports venues, malls.  Early work to identify 

such buildings was done by Becker et al. in Seattle, Washington [44].  The study 

classified buildings into 23 categories, with 2 additional categories for automobile 

and outdoors.   The authors identified 10 location categories as high cardiac arrest 

incidence and thirteen as low incidence.  Similar approaches to classifying high risk 

locations followed in Kansas City, Missouri [45], Toronto, Canada [46], and 

Copenhagen, Denmark [43].  These approaches yielded limited results due to the fact 

that only a few facility types had multiple cardiac arrests over the study period, with 

most types having only one arrest.  The predictive power of this approach is limited, 

and beyond the identifications of a few sudden cardiac arrest ñhot spotsò, the method 

does not address where to place AEDs in lower incidence areas. 
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The locating of AEDs to maximize the spatial coverage of an area has employed 

similar approaches as used in locating ambulance bases.  Two common demand 

measures for coverage problems are population based (i.e. covering the maximum 

proportion of a population within a defined distance of an AED) or historical arrest 

location based (i.e. covering the maximum number of locations of past cardiac 

arrests).  Chan et al. used a model based on the Maximal Covering Location Problem 

to assess optimal locations for additional AED placement in Toronto, Canada [47]. 

They first assessed the coverage of the existing AED network through a location 

registry, determining the number of historical arrests within 100 meters of a 

registered AED (assumed to correspond to a 1.5-minute walk).  They compared a 

population based placement approach, using building floors as a proxy population 

density, to an optimized approach with the MCLP model.  The optimized model 

approach outperformed the population based approach under scenarios of various 

numbers of additional AEDs. 

 

 

2.4 Emerging Concepts for Novel Response Systems 

 

With the lifesaving potential of early defibrillation with an AED established, but the 

low likelihood of an AED being used in out-of-hospital cardiac arrests, researchers 

are proposing new methods to bring early defibrillation and CPR to cardiac arrest 

victims.  Ringh et al. propose changing the definition of PAD from who defibrillates 

the patient to how the AED is brought to the patient [27].  The authors have proposed 

new definitions consisting of three levels of PAD: 
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 Level 1 is dispatched professional first responders.  This includes paramedics, 

fire fighters, and police, who transport an AED to the cardiac arrest location. 

 Level 2 is dispatched lay first responders.  These are civilian responders who 

may or may not transport the AED to the scene (they may be guided by the 

dispatch center to retrieve an on-site AED), and may or may not be trained. 

 Level 3 is non-dispatched lay responders.  These are random bystanders who 

retrieve a nearby AED. 

 

This section summarizes some of the newer response concepts, pilot programs, and 

studies, as well as modeling and simulation research relevant to these systems.  The 

systems are separated into two broad categories:  Sections 2.4.1 through 2.4.4 discuss 

mobile responder systems, which are characterized as systems which rely on 

volunteers or off duty first responders, who are dispatched to the cardiac arrest 

location by phone app, and whose location at the time of dispatch is not 

predetermined nor specifically predictable.  Sections 2.4.5 through 2.4.6 discuss 

Aerial Drone systems, which are characterized by the aerial transport of an AED from 

a fixed base location to the cardiac arrest location. 

 

2.4.1  PulsePoint 

 

PulsePoint is a non-profit organization that provides smartphone apps as well as EMS 

dispatch integration to alert CPR trained volunteers of nearby cardiac arrests [48].  

Enrollment is on a voluntary basis, with no verification of responder training or 

background check, such that members of the system remain òanonymousò.  As such, 
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the system is only used for cardiac emergencies that occur in public locations.  A 

snapshot of the distribution of enrolled responders in Portland, Oregon, and the 

surrounding suburbs is shown in Figure 4.  Pulse Point creates a network of mobile 

responders, which use a ñcrowdsourcingò approach to achieve quick CPR to cardiac 

arrest victims.  PulsePoint is active in 3,815 communities around the globe, with most 

being in the United States. 

 

 
Figure 4.  Snapshot of distribution of responders in PulsePoint system approximately 

3260 sq. km region of Portland, Oregon and the surrounding area (from [48]).  The 

orange figures show the locations of all PulsePoint responders within the area at a 

single point in time. 
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The system is activated when a 911 call is determined to be for a possible cardiac 

arrest (such as symptoms of collapse, non-responsive, not breathing, etc.).  All 

members within a quarter mile radius of the arrest scene are dispatched to the scene 

with an audible alert on the cell phone as well as a satellite image map showing the 

location of the user and the cardiac arrest location.  An address or description of the 

location is provided as well.   

 

PulsePoint also creates a registry of AED locations within an area.  The registry is 

populated by a crowdsourcing approach, with members of the public uploading the 

geo-location of AEDs through the cell phone app, along with a picture of the AED 

and description of the location.  When an activation occurs, users receiving the 

notification are provided with the location of the nearest AED as well as the cardiac 

arrest location (Figure 5). 
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a) b) 

Figure 5. PulsePoint smartphone app showing a) cardiac arrest activation; and b) 

AED registry on cell phone app (from [48]). 

 

PulsePoint has realized only limited success since its implementation in 2012.  

Although the organization reports over 1.9 million citizen responders, and over 

98,000 activations [48], only a small percentage of these have resulted in actual 

responder treatment to the patient.  A survey provided to responders shortly after an 

activation notice was sent indicated only 23% of activated responders attempted to 
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travel to the cardiac arrest location, with only 11% arriving at the scene [49].  

Reasons cited for not responding included: 

¶ the cell phone being muted, 

¶ the responder did not hear the alert due to a noisy environment,  

¶ the responder was away from their phone,  

¶ they were unavailable at the time of the call,  

¶ the arrest location was considered too far away,  

¶ a belief that EMS would arrive first,  

¶ unable to get out of a vehicle at the time of a notification (e.g. on a bus),  

¶ they did not understand how to get to the location. 

 

2.4.2 ALERT Study 

 

The ALERT study is a currently ongoing pilot program sponsored by Philips 

Healthcare, King County Public Health Department, the University of Washington, 

and PulsePoint.  The program uses the PulsePoint system, adding to it the concept of 

a verified responder who carries an AED with or near them at all times (e.g. in a grab 

bag, or in their car).  Verified responders represent a different class of responder 

within the PulsePoint system.  These responders are targeted to be off duty 

professional health care workers or other public safety workers.  This includes off 

duty firefighters, policemen, nurses, doctors, security officers, life guards, search and 

rescue volunteers, etc.  These responders are trained in first aid and typically in AED 
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use as part of their jobs, and are experienced in responding to critical and potentially 

chaotic events. 

 

For the ALERT study, off duty firefighters were recruited from five EMS districts:  

Tualatin Valley Fire and Rescue (suburbs around Portland, Oregon), Sioux Falls Fire 

and Rescue (Sioux Falls, South Dakota), Spokane Fire Department (Spokane, 

Washington), Spokane Valley Fire Department (Spokane Valley, Washington), and 

Madison Fire Department (Madison, Wisconsin) [50].  The study recruited 621 

verified responders across the five districts, with 550 AEDs provided to the 

responders.  A survey taken during the recruitment process indicated that 54% would 

keep the AED in their car, while 38% would carry the AED on their person [51].  The 

verified responders would be dispatched by the same PulsePoint cell phone app as the 

lay responders, but would be dispatched into private residences as well as public 

locations.  The dispatch radius could also be increased for the verified responders. 

 

Interim results from the study indicate that verified responders have been activated to 

a scene 137 times, however 39% were on duty at the time of the activation.  Of those 

that were off duty, 31% attempted to respond to the activation, with 14% making it to 

the scene prior to EMS.  An AED was applied in 3 cases, and there has been one 

resuscitation attributable to the program.   
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2.4.3  Other Mobile Responder Systems 

 

A number of other systems employing the concept of the mobile responder are in 

various stages of trial or implementation throughout the world.  The GoodSAM app 

operates similar to PulsePoint, and has the largest citizen network in the United 

Kingdom [52].  The phone app has the added functionality to stream video back to the 

EMS agency, a feature called ñInstant On Sceneò, to further aid the response.  

Through the sponsorship of the Singapore Heart Foundation, the ñAED on Wheelsò 

program has equipped 150 taxi cabs in Singapore with AEDs, fire extinguishers, and 

first aid kits [53].  Dispatched through a phone app, the system has responded to 149 

cardiac arrests since its implementation in 2015.  Hartslagnu (Heartbeat Now) in the 

Netherlands is a phone app dispatch system that will send the closest citizen 

responder to the cardiac arrest location to start CPR, while directing other nearby 

responders to public access AED locations to retrieve an AED before going to the 

cardiac arrest [54].  They have recently partnered with Volvo as a pilot study to have 

AEDs installed in cars and the app integrated with the carôs navigation system. 

 

2.4.4 Modeling and Simulation of Mobile Responder Systems 

 

 

Mobile responder systems incorporate the dispatch of a BLS responders 

simultaneously with the dispatch of an EMS ambulance.  Marshall et al. used a Monte 

Carlo simulation model to predict both volunteer response times and EMS response 

times to sudden cardiac arrest locations in North and West Belfast, Ireland[55].  The 
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simulation accompanied a two year trial in which mobile volunteers and police 

carried AEDs and were dispatched to cardiac arrests scenes by an alphanumeric pager 

[56].   

 

The Belfast study region was divided into seven zones, with each zone having a 

single volunteer responder òon dutyò at any given time.  EMS response times were 

modeled using a log-logistic distribution fit to historic response time data for each of 

the seven zones.  Responder times were pre-calculated using road network 

information (Microsoft MapPoint Europe 2004) for response times between the 

centroid of each of the 7 zones to the centroid of each of 434 Census Output Areas 

within the region.  For the simulations, variation around the expected volunteer 

response times was added using a log-logistic distribution.  Their model also 

accounted for the likelihood of availability of each of the seven responders for each 

cardiac arrest simulations.   

 

The simulation resulted in volunteers arriving ahead of EMS 18.8% of events, with an 

average improvement of 56 seconds over the EMS response.  This compared against 

the actual study results of 15%.  The survival regression model presented by Larsen et 

al. [2] was incorporated into the model to predict survival for witnessed cases with an 

initial rhythm of VF or VT.  The authors used the model to predict an improvement of 

the volunteer arrival first by an additional 18% if the availability doubled, and 32% if 

it is tripled.   

 



 

33 

 

Khalemsky et al. created an Emergency Response Community Effectiveness Model 

(ERCEM) to simulate response times for cell phone app alert systems for 

anaphylaxis, hypoglycemia, and opioid overdose [57].  They estimated the number of 

responders in the systems based on population density and the percentage of the 

population prescribed to carry the medicine for each condition.  They used additional 

factors to account for the fraction of this subpopulation who would participate in the 

community responder program.  They then applied a Monte Carlo simulation for the 

number of responders within a 1km or 2km radius of the patient in need, and 

estimated response times base on the travel distance and some system delay values.  

They compared these response times to actual EMS response times recorded in the 

NEMSIS database for specific events, or to benchmark EMS response times.  Their 

model was limited to walking mode responses only, and considered only the 

Euclidean distance for the transit.  Their simulation found that phone dispatched 

responders a EMS in 13% of cases.  They proposed the ERCEM as a decision support 

tool for communities considering augmentation of their EMS response with these 

citizen network systems. 

 

2.4.5 Aerial Drone Response Systems 

 

A significant drawback of PAD systems is that coverage of low demand areas within 

a quick retrieval distance, i.e. 150 meters, is not cost affective.  Static AED placement 

is most effective in buildings or areas with a high concentration of people.  Even 

when an AED is near the cardiac arrest scene, it is often difficult for bystanders to 

locate and retrieve the nearest AED.  A method to deliver the AED quickly to the 
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scene, which is currently being researched, is the use of Unmanned Aerial Vehicles 

(UAV), also known as drones.   

 

UAV drones have the capability to transport an AED quickly to a cardiac arrest 

scene, flying above traffic, buildings, and other obstacles.  Drones can travel from 50 

km/h to 150 km/h.  AED weight is currently well within the payload capability of 

existing drones, however once the feasibility of a drone response system is 

demonstrated, AEDs could be designed specifically for integration with drones.  

Cameras on the drone could provide situational awareness to en route EMS 

responders, as well as the potential for CPR coaching and AED application feedback 

from the 911 operator.  AED deployment concepts being explored include dropping 

with a small parachute near the arrest scene, landing the drone with the AED 

attached, or lowering the AED by a cable and winch.  The AED can be received and 

applied by a bystander, or potentially the 911 caller.  Such a system could suffer from 

the same apprehension of bystanders or laypersons to apply the AED [58], however 

recent small scale human simulations have produced promising results [59] .  A drone 

system paired with a dispatched mobile responder system has been proposed to 

address this issue [60].  GoodSAM will begin offering an AED Drone Delivery 

service to communities supported by its responder network by the end of 2020 [61]. 

 

Drone medical supply transport systems have currently only been implemented in 

remote, isolated areas.  Zipline uses fixed wing drones to fly blood supplies and 

vaccines to remote areas in Rwanda and Tanzania [62].  In Stockholm, Sweden, 
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researchers obtained temporary permission to perform aerial drone rescue simulations 

over unpopulated areas [63] (Figure 6).  The simulated rescues included three AED 

deployment methods:  parachute; dropping the AED from a 3 to 4-meter height, and 

landing the drone.  The authors concluded dropping the AED was the safest and most 

practical method.  A similar mock rescue study by researchers from the University of 

Toronta, using response beyond line of visual sight navigation, found that drones 

responded 2.1 to 4.4 minutes faster than EMS for distances from 6.6 to 8.8 km  [64].  

Outside of Ottawa, Canada, in Renfrew County, drones are used to deliver medicine, 

and recently the first drone was dispatched to a cardiac arrest scene with an AED  

[65].  In the United States, the city of Reno Nevada was recently selected as one of 10 

designated drone test areas by the Federal Aviation Administration as part of the 

Unmanned Aircraft Systems Integration Pilot Program [66].  The drone startup 

company Flirtey has partnered with the Reno EMS department to pilot an AED 

transport system to cardiac arrest locations [67]. 
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Figure 6. Drone dropping AED in simulated cardiac arrest rescue (adapted from [63]). 

 

Drone delivery of AEDs has garnered much recent attention due to the potential to 

significantly improve access to an AED and time to defibrillation, particularly in rural 

areas or difficult geographic areas where EMS response times are very long.  There 

are, however, significant barriers that need to be overcome to implement a drone 

response system.  Most countries have regulations around the flight of drones, 

including limiting flights to visual line of sight distances, requiring an active pilot, 

airspace restrictions, and nighttime flight restrictions [68].   Commercial drones have 

a maximum flight elevation of 400 ft, and a maximum speed of 100 mph.  There are 

additional concerns for public safety, both with potentially landing drones in crowded 
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public spaces, and in the event of a drone malfunction or loss of power.   Other public 

resistance to drones has come from concerns with noise and privacy [69].  Advances 

in drone technology are addressing some of these concerns, with redundant flight 

systems, autonomous piloting, and collision avoidance sensors.  The early pilot 

programs, as well as the use of simulation to predict the potential benefits of the 

systems, will likely drive regulatory decisions.  It is expected that the public will 

likely view the benefits of such a system as outweighing the risks. 

  

2.4.6 Modeling and Simulation of Drone Response Systems 

 

Modeling of drone response systems has been limited primarily to a few specific 

regions and based on optimizing coverage around historical cardiac arrest locations.  

Similar approaches to those used for optimizing ambulance base locations and AED 

placement locations have been used to model drone responses.  Pulver et al. used an 

MCLP approach to configure a network of drone locations in Salt Lake City, Utah, 

with the objective of providing one minute travel time to all demand locations [70].  

The approach modeled the effect of using existing EMS locations as drone launch 

sites, as well as adding new launch sites to the system.  The analysis found that while 

EMS can reach only 4.3% of demand within one minute, drone responses from 

existing EMS locations increased to 80.1% the locations reached within one minute, 

and 90.3% if new launch sites were added.  
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Boutilier et al. used a two stage approach to modeling drone response systems for 

Toronto, CA and outlying areas [71].  The first stage used a coverage based 

optimization algorithm to determine the minimum candidate drone locations 

(ambulance, fire, and police stations) to provide a 1-minute, 2-minute, and 3-minute 

improvement over EMS response times.  After determining the optimal drone 

locations, the second model used a continuous-state Markov Chain queuing algorithm 

to determine the number of drones required at each location.    The Markov model 

included states of busy and available for drones, based on demand following a 

Poisson process, and busy time based on flight time, treatment time, return time, and 

a drone reset time.  The modeling indicated that 81 drone bases with 100 drones 

would be required for a median improvement of 3 minutes over EMS response time. 

 

Claesson et al. used a modeling approach to identify drone locations in Stockholm, 

Sweden [72].  With use of a GIS tool (ArcGIS), the city was broken into a discrete 

grid, with a raster layer of EMS response time for each area, as well as a raster layer 

of incidence of cardiac arrests for each area.  A 50/50 weighting was used for the two 

layers to find optimal locations in the urban area of Stockholm, while an 80/20 

weighting (80% to EMS response time, 20% to OHCA incidence) was used for 

outlying rural regions.  Using this method, 20 locations were identified which could 

cover 72% of all historic cardiac arrest locations.  The model predicted drone arrival 

before EMS in 32% of urban cases, and 93% of rural cases.  
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2.5 Discussion 

 

Although new concepts for responding to sudden cardiac arrest are being developed, 

previous research on these systems and the related topics of EMS response and AED 

positioning have not yielded useful techniques that estimate the costs and benefits of 

new response systems.  Much of the prior modeling has focused on optimal locations 

for EMS bases and AED placement.  While valuable for maximizing the efficiency of 

limited resources, this optimization is only expected to have a marginal impact on 

survival. There is little research using modeling and simulation to provide 

comparisons of the emerging, novel response systems under similar assumptions.  

Additionally, most modeling approaches neglect the reliability aspects of elements 

within the response system, and their impact on system effectiveness.  This 

dissertation will help to fill that gap by developing and demonstrating models that can 

simulate different types of response systems under various operating conditions. 
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Chapter 3: Research Approach 

 

 

To address the fundamental questions posed by this dissertation, a set of models was 

developed to incorporate both the predictable factors in out-of-hospital cardiac arrest 

response as well as the aleatory uncertainty associated with the location of the arrest 

and responding agents.  The models simulate the response time to a cardiac arrest 

event for different types of responding agents, based on distance travelled, additional 

delay times associated with the logistics of dispatching the responding agent, and the 

reliability and availability of the responding agent or required equipment.  The 

response times for CPR and defibrillation provide the inputs to a logistic regression 

survival model, allowing for a survival likelihood prediction for each simulation.  The 

Monte Carlo method using a large number of simulations was employed to assess the 

variation in response times due to stochastic factors, and develop summary statistics 

to represent the performance of a response system.  Chapter 4 presents the model 

structure, underlying assumptions in the model, input factors to the model, output 

responses, execution, and validation.  The chapter also discusses sources of 

information and analytical methods used to provide the model inputs. 

 

In order to understand the system structure and factors that have the largest impact on 

response time and survival, sensitivity analysis experiments were performed on the 

inputs to the model.  Simulation experiments were performed on each type of 

responding agent, EMS, mobile responders, and drone response, independently, to 

understand the most significant factors in each response time.  Overall system 
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sensitivity experiments were then performed, to characterize the interaction of 

multiple responding agents in the cardiac arrest treatment, as well as the impact of 

reliability and available of responding agents.  Additionally, simulation experiments 

were run to assess the sensitivity of response time predictions to the type of geo-

spatial distribution used to generate both the cardiac arrest location and the mobile 

responder locations.  Chapter 5 presents the results of these experiments, with in-

depth analysis of the most significant factors using a response surface design of 

experiments. 

 

A primary objective of this research is to use the modeling and simulation to predict 

and compare the performance of different types of emerging response systems within 

a specific region, and evaluate the potential improvement over the traditional EMS 

response paradigm.  Chapter 6 discusses results of simulation experiments used to 

compare several systems with a range of system conditions.  The results demonstrate 

that augmentation of EMS with emerging systems, under the right conditions, can 

provide meaningful improvement in the time to defibrillation and survival rate of 

cardiac arrest.  Chapter 7 expands on the analysis from chapter 6, providing a cost 

model for each of the systems, and presents the results in a cost-benefit decision 

analysis format.  Chapter 8 provides a summary of the learnings, and their relevance 

to the primary research questions, as well as a discussion of limitations of the 

research and future work.  Figure 7 shows a flowchart of the steps in this research 

approach, the chapters which provide their description, and the relationship to the 

research questions. 
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Model Development Model Validation Sensitivity Analysis

Response Surface 
Experiments

(interactions and 
non-linearity 

analysis)

Comparison of 
Simulated Response 

Systems

Cost-Benefit 
Analysis of Response 

Systems

How could modeling and simulation methods be used 

to evaluate the benefits of various alternative response 

systems for specific municipalities or EMS 

organizations?

What system structure and conditions are needed to 

achieve the improvement in survival?

Can alternative cardiac 

arrest medical response 

systems provide a 

substantial improvement 

in survival for out-of-

hospital cardiac arrest?

Can alternative response 

systems provide cost 

effective improvement in 

the survival rate for 

cardiac arrest?

Chapter 4:  System Simulation Model Chapter 5:  Sensitivity Analysis Chapter 6:  Comparison
of Systems

Chapter 7:  Application
of Model  

Figure 7.  Steps in research approach. 

 

The modelling approach was to create a geographically flexible model, which could 

be applied to urban, sub-urban, and rural areas, and integrate region specific 

geospatial attributes, such as the location of existing fire stations, ambulance bases, 

and potential drone bases.  Throughout this research, the city of Bellevue, located in 

King County, Washington, was used as the example region for model 

experimentation.  Bellevue is the fifth largest city in the state of Washington, 

consisting of 82.8 sq. km of land, with a population of 147,000 [73].  It is primarily a 

suburban city, with a moderate downtown area with a few high rise buildings.  It is in 

King County, the most populated county in Washington, and lies just east of the city 

of Seattle.  Bellevue was chosen as the example city due to proximity and familiarity, 

as well to leverage my relationships with EMS leaders, cardiac arrest response 

researchers, and access to data from King County EMS.  The modelling approach, 

however, is extendable and customizable to any region. 
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Chapter 4: System Simulation Model 

 

 

The approach to predicting the performance of the emerging cardiac arrest response 

systems utilized the creation of a set of models to simulate the types of response 

systems described in Chapter 2.  Geo-spatial Monte Carlo Simulation models were 

developed to simulate response times and predicted survival likelihood for each 

cardiac arrest response system.  Modeling and simulation approaches can quickly 

generate insights into a system that could take years to learn from studying and 

experimentation with a real world system.  However, models and simulations are only 

a representation, or approximation of a real world system.  As such, the full 

complexity of the system was not intended to be replicated in a model.  The goal was 

to identify the minimal necessary complexity of a system to provide useful, 

actionable insights into the system.  With too little complexity, the model loses the 

capability to provide accurate predictions, while too much complexity results in an 

intractable model. 

 

This chapter begins with an overview of the model in Section 4.1, followed by the 

introduction of the input factors in Section 4.2.  Section 4.3 provides the detailed 

formulas and mathematical calculations used in the model.  Section 4.4 describes the 

implementation and execution of the model.  Section 4.5 provides a discussion of the 

model inputs, the sources of data, and analytical methods used to derive the inputs.  

Finally, Section 4.6 presents approaches to validation of the models. 
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4.1 Model Overview 

 

This modeling and simulation approach relies on the following axioms: 

1. Out-of-Hospital Cardiac arrest occurs at random locations on a geographical 

space that can be represented by a 2-dimensional Cartesian terrestrial surface. 

2. A network of ñmobile respondersò can be represented by random locations in 

a similar geographical space at the time of a cardiac arrest occurrence. 

3. The time to respond to a cardiac arrest location can be predicted based on a 

distance metric from the origin to destination, the travel speed, and additional 

time components independent of the distance from origin to destination. 

 

The modelsô primary simulation responses are the times for various responding 

agents to provide each of the two primary methods of treatment for sudden cardiac 

arrest, i.e. CPR, and defibrillation (either with an AED or by an ALS provider with a 

defibrillator/monitor device).  These response times are strong predictors of survival 

to hospital discharge for out-of-hospital cardiac arrest.  The response may originate 

from a fixed location, such as an EMS ambulance base location or drone base, from a 

random location, such as a mobile responder at the time of the cardiac arrest, or a 

combination of fixed and random locations, such as a bystander from a random 

location retrieving an AED transported by a drone from a fixed location. 

 

The response times for CPR and defibrillation treatment methods are used to predict a 

survival probability for each simulated cardiac arrest event.  The logistic regression 
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equation provided by Valenzuela et al. is used to predict survival.  The survival 

equation provides a probability of survival estimate only for the ñUtstein subgroupò 

of all cardiac arrest cases, i.e. adult patients with witnessed collapse of cardiac 

etiology, with an initial shockable rhythm (VF or VT). 

 

As these response systems include actions by both human and machine components 

(e.g. ambulances, AEDs, volunteer responders), the reliability and availability of 

these components are integral to the efficacy of a system.  Ambulances may be out on 

another call or being cleaned and restocked at the time of a cardiac arrest, AEDs may 

have a dead battery or other functional failure, and volunteer responders may not 

notice an alert on a cellphone, or may be unable to respond for various reasons.  The 

nature of these systems provides redundancy for each of these components; however, 

the response time may suffer when a backup is needed.  An unavailable ambulance 

may require an EMS response from a more distant base location, a non-functional 

AED would delay defibrillation until EMS arrives at the scene, or an unreliable 

responder would result in a delay until the next closest responder arrives.  These 

reliability and availability aspects of the modeling of various response systems are 

incorporated as additional stochastic events.   

 

The influence diagram in Figure 8 shows the conceptual relationships of these 

components of the model.  The model simulates several intermediate events in order 

to ultimately predict survival for each simulated cardiac arrest event.  First, the model 

simulates the distance from the origin of the responding agent to the cardiac arrest 
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location.  The distances are influenced by the locations of the responding agents, both 

fixed and random, the number of agents in a system, and the availability of each agent 

within a system at the time of the cardiac arrest.  The distance, along with the velocity 

of the responding agent and some non-transit, system specific time constants (e.g. 

dispatch times), determine the time for the first responder of each type.  The modelled 

therapy capabilities of each response system, i.e. CPR and/or defibrillation, together 

with response time, determine the time-to-defibrillation and the time-to-CPR.  These 

are then used as inputs into the logistic regression model to predict the survival 

likelihood for the simulated cardiac arrest. 

 

There are system design factors such as the number of ambulances and number of 

drones, and the locations of these within the region.  The number of responders within 

the system, which determines responder density, is a design factor as well.  The 

values of these decision factors influence both the response time and survival 

predictions, as well as the cost of operating the system.  The costs of these systems is 

discussed in Chapter 7. 
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Figure 8.  Influence diagram showing the relationship between chance inputs (ovals), 

decision inputs (rectangles), intermediate event calculations (rounded rectangles), and 

the output of survival prediction (diamond).  Additional inputs describing time 

constants (discussed in Section 4.2) are omitted from the diagram. 

 

 

Each simulation results in a different response time for each of the responding agents 

in the simulation (e.g. EMS, mobile responders, drones, etc.), due to the random 

location of the cardiac arrest event as well as random locations of mobile responders.  

Any single simulation does not represent the performance of the system, as chance 

may favor one type of response over another.  The Monte Carlo method is used to 

find the distribution of responses over a large number of simulations.  The 

distribution of responses defines the performance and efficacy of a system, and the 
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impact of changes to components or factors in the system are measured by the effect 

on the response time distributions. 

 

The structural approach to the model was to parameterize all mathematical 

components which may vary among specific systems, such that these parameters are 

independent input factors to the model.  This approach enables flexibility in the 

model to simulate many different systems, as well as to tune the model to known 

attributes of a specific system (e.g. tune the model to match EMS response times for a 

specific region or municipality).   This also facilitates sensitivity analysis on the 

various factors in the model. 

 

 

4.2. Model Factors 

 

The model factors, or model inputs, are the variables within the models that are set to 

define the specific attributes and conditions of a response system.  These factors 

define the geographic region of the simulation, the response characteristics of the 

different agents being modeled, the distance travelled between origin and destination 

points, and the reliability and availability of elements within the systems.  The 

nomenclature for all model input factors is summarized in Table 1, and are briefly 

described in the following sections.   
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Table 1. Nomenclature for model factors. 

 

Factor  Description 

xNW, xSE Longitude points to define region 

 yNW, ySE Latitude points to define region 

p Minkowski distance order 

A Cardiac arrest location 

Ri Location of the ith mobile responder 

Ei Location of the ith EMS base 

tED EMS dispatch delay time 

tEC EMS chute time 

vE Ambulance velocity 

EA Ambulance availability 

tRD Responder dispatch delay time 

tRW Responder walk delay time 

tRDr Responder drive delay time 

vRW Responder walking velocity 

vRD Responder driving velocity 

RR Responder reliability 

RAED AED mission reliability 

Di Location of the ith drone base 

tDD Drone dispatch delay time 

tDV Drone vertical flight time 

vD Drone velocity 

tDDe Drone descent time 

DAO Drone operational availability 

DAW Drone weather availability 
 

 

  

 

4.2.1  Simulation Region Inputs 

 

Geographic region: Let (xNW, yNW) be the longitude and latitude of the northwest 

corner of the simulation region.  Let (xSE, ySE) be the longitude and latitude of the 




























































































































































































































































































































