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Stellarators are a class of device for the magnetic confinement of plasmas without

toroidal symmetry. As the confining magnetic field is produced by clever shaping

of external electro-magnetic coils rather than through internal plasma currents, stel-

larators enjoy enhanced stability properties over their two-dimensional counterpart,

the tokamak. However, the design of a stellarator with acceptable confinement prop-

erties requires numerical optimization of the magnetic field in the non-convex, high-

dimensional spaces describing their geometry. Another major challenge facing the

stellarator program is the sensitive dependence of confinement properties on electro-

magnetic coil shapes, necessitating the construction of the coils under tight tolerances.

In this Thesis, we address these challenges with the application of adjoint methods

and shape sensitivity analysis.

Adjoint methods enable the efficient computation of the gradient of a function

that depends on the solution to a system of equations, such as linear or nonlinear

PDEs. Rather than perform a finite-difference step with respect to each parameter,



one additional adjoint PDE is solved to compute the derivative with respect to any

parameter. This enables gradient-based optimization in high-dimensional spaces and

efficient sensitivity analysis. We present the first applications of adjoint methods for

stellarator shape optimization.

The first example we discuss is the optimization of coil shapes based on the gen-

eralization of a continuous current potential model. We optimize the geometry of

the coil-winding surface using an adjoint-based method, producing coil shapes that

can be more easily constructed. Understanding the sensitivity of coil metrics to

perturbations of the winding surface allows us to gain intuition about features of con-

figurations that enable simpler coils. We next consider solutions of the drift-kinetic

equation, a kinetic model for collisional transport in curved magnetic fields. An ad-

joint drift-kinetic equation is derived based on the self-adjointness property of the

Fokker-Planck collision operator. This adjoint method allows us to understand the

sensitivity of neoclassical quantities, such as the radial collisional transport and self-

driven plasma current, to perturbations of the magnetic field strength. Finally, we

consider functions that depend on solutions of the magneto-hydrodynamic (MHD)

equilibrium equations. We generalize the well-known self-adjointness property of the

MHD force operator to include perturbations of the rotational transform and the

currents outside the confinement region. This self-adjointness property is applied to

develop an adjoint method for computing the derivatives of such functions with re-

spect to perturbations of coil shapes or the plasma boundary. We present a method

of solution for the adjoint equations based on a variational principle used in MHD

stability analysis.
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Chapter 1: Introduction

This Chapter aims to motivate and place in context the work of this Thesis.

We begin with an introduction to the stellarator concept of toroidal con�nement in

Section 1.1, including the necessity of optimization of the magnetic �eld. We then

discuss important properties of a stellarator device in Section 1.2. To put stellarator

optimization in perspective, we brie
y discuss the relevant history in Section 1.3.

We then, in Section 1.4, provide a detailed introduction to stellarator optimization,

including typical assumptions, numerical methods, and associated challenges. We

conclude with an overview of this Thesis in Section 1.5.

Throughout this Chapter, we use terminology related to magnetic �eld geometry

and toroidal coordinate systems, which are introduced in Appendix A.

1.1 The stellarator concept

The fusion community must face several signi�cant scienti�c challenges to demon-

strate a viable magnetic fusion reactor. A large fraction of the present research in

magnetic fusion is dedicated to the tokamak, a concept that relies on a large plasma

current for con�nement. Driving such a current requires a signi�cant amount of recir-

culated power and necessitates either pulsed operation or non-inductive current drive,

both of which are disadvantageous for a fusion reactor. This large current makes them

susceptible to current-driven instabilities that can limit plasma performance. These

instabilities, such as tearing and kink instabilities, can result in catastrophic termi-

nations of the discharge (Chapter 7.9 in [235]). Runaway electrons formed due to

1



disruptions can be accelerated by the inductive electric �eld, possibly causing dam-

age to plasma-facing components and applying large electro-magnetic forces to the

vacuum vessel. The e�ect of runaway electrons will be much more harmful in large

reactor-scale tokamaks due to the exponential dependence of the density of relativis-

tic electrons on the plasma current [104]. Thus in a reactor, disruptions must be

mitigated by active feedback and operation within a safe margin of stability lim-

its. However, such control will be di�cult when alpha particles provide a signi�cant

fraction of the heating power [93].

Remarkably, Lyman Spitzer predicted these possible di�culties of tokamak con-

�nement in 1952 [210], before the �rst toroidal con�nement experiment,

\... a large induced current is open to the two practical objectives that it

cannot be sustained in a steady equilibrium and that the rapid generation

of such a current is likely to lead to plasma oscillations."

These observations led to the development of the stellarator concept. In contrast to

the tokamak, a stellarator generates a poloidal magnetic �eld through clever shaping

by external currents rather than internal plasma currents. A small amount of current

in the plasma is self-driven due to pressure gradients, though this is typically not large

enough to result in signi�cant MHD modes. There is some experimental evidence

that stellarator con�gurations may be able to operate above the linear MHD stability

pressure threshold [234] rather than being terminated by a disruption. The Large

Helical Device (LHD) has operated up to a volume-averaged� of 5% without any

disruptive MHD phenomena, though the heat transport increases due to low-n mode

activity [201]. Here � = p=(B 2=(2� 0)) is the ratio of the plasma pressure,p, to the

magnetic pressure, andn is the toroidal mode number. Similarly, high-beta discharges

in the Wendelstein 7-Advanced Stellarator (W7-AS) have shown saturation of low-n

and interchange modes at a low level that merely slowly degrades con�nement [234].

Stellarators can also operate at higher density than tokamaks due to the absence of

2



(a) (b)

Figure 1.1: A schematic image of a tokamak (a) and stellarator (b). The electro-
magnetic coils are shown in blue, and the plasma domain is shown in green. Magnetic
�eld lines lying on the outermost magnetic surface are shown in black.

the Greenwald limit [72]. While in tokamaks, the limits on the density and pressure

due to the Greenwald and MHD stability limits set hard boundaries on the operating

points, in a stellarator much softer limits exist. Performance at high beta is often

instead limited by equilibrium properties, such as magnetic �eld stochasticity near

the edge. For example, if the Shafranov shift becomes comparable to the minor radius

of the plasma, this can lead to loss of magnetic surfaces [212]. The ability to operate

at high beta is critical for an economical fusion reactor: in the temperature range

of 10-20 keV, the fusion power density scales asP � � 2B 4 [208]. See Figure 1.1 for

schematics of a tokamak and stellarator con�guration.

Despite these clear advantages, much care must be taken to design a stellarator

with acceptable con�nement properties. Due to its continuous toroidal symmetry, the

tokamak enjoys con�nement of collisionless single-particle trajectories and the exis-

tence of closed, nested magnetic surfaces. However, in the general three-dimensional

�eld of a stellarator, these properties are not always present. The trajectories of ener-

3



getic ions, such as the alpha particles produced in a fusion reaction, may therefore be

lost, resulting in damage to material surfaces. Stellarators can experience enhanced

neoclassical transport, the collisional transport of thermal particles due to the mag-

netic �eld geometry, leading to increased transport of heat and particles, especially

at low collisionality (Figure 1.2). The presence of large magnetic islands or chaotic

regions in a three-dimensional �eld can also severely limit performance by locally


attening the temperature pro�le.

However, none of these challenges appear to be showstoppers for stellarator con-

�nement. The success of modern stellarators can be attributed to the ability to design

the magnetic �eld with numerical optimization. While tokamak optimization is also

possible [107], it is much more di�cult as con�nement properties become very sen-

sitive to the current density and pressure pro�les. These pro�les can be determined

with multi-scale modeling on turbulent and transport time scales, which is very com-

putationally intensive. On the other hand, the physical properties of stellarators are

relatively insensitive to these pro�les, as they primarily rely on the externally pro-

duced magnetic �eld for con�nement [27]. Given the ability to numerically optimize

the magnetic �eld of a stellarator, in Section 1.2, we discuss the properties one should

consider in a design.

1.2 What makes a good stellarator?

We now outline the desired physical properties of a stellarator and standard proxy

functions applied during their design. We will reserve any discussion of coils, the

external currents that produce the magnetic �eld, until Section 1.4.3.

Equilibrium properties

The operating space of stellarators is often restricted due to MHD equilibrium

properties rather than stability limits. For example, when� � �� 2=2 where� is the

inverse aspect ratio and� is the rotational transform, the Shafranov shift becomes

4



Figure 1.2: The neoclassical di�usion coe�cient,D �
11, as a function of the normalized

collisionality, � � = �R= (�v), where � is the collision frequency,� is the rotational
transform, v is the speed, andR is the major radius. An axisymmetric �eld exhibits
a low-collisionality regime in whichD �

11 � � , while a stellarator exhibits D �
11 � 1=� .

Thus the neoclassical transport in a general three-dimensional �eld can be especially
deleterious at low collisionality. Figure reproduced from [101] with permission.

comparable to the minor radius, which may result in 
ux-surface break-up [97, 212].

There is a tendency of the edge magnetic �eld to become stochastic at large beta [201],

so a design should try to maximize the volume of continuously nested 
ux surfaces

[119]. One should also minimize the island width at low-order rational surfaces, which

can be estimated using analytic expressions [38, 147], assuming the magnetic �eld is

close to having perfect magnetic surfaces. Such islands can also be minimized by

controlling the rotational transform, either by maintaining low magnetic shear and

eliminating low-order rational surfaces altogether or by taking advantage of large

magnetic shear, as the magnetic island width scales as 1=
p

�0( ) [26]. See Figure 1.3

for a visualization of magnetic surfaces, magnetic islands, and chaotic �eld lines in

the NCSX stellarator.

Pressure-driven currents

There are several sources of self-driven plasma current [97]: the parallel bootstrap

current arises due to collisions between trapped and passing particles in the presence of
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