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There are many examples of high-dimensional systems in nature. Often these sys-

tems behave in synchrony even though they possess a large number of degrees of freedom.

Far fewer of these types of systems exist in the laboratory, and even fewer techniques

exist with which to analyze them. As experimental capability increases, and more high-

dimensional laboratory systems are fabricated, universal tools must be developed to ob-

serve and analyze the dynamics of these systems. This thesis will present experiments and

analysis of two high-dimensional systems, coupled fiber ring lasers and a liquid crystal

spatial light modulator with optoelectronic feedback.

Two identically constructed mutually coupled erbium doped fiber ring lasers were

studied and were found to synchronize at very low coupling strengths. Synchronization

error was characterized as a function of coupling strength. Optical frequency-locking and

hopping as a result of the mutual coupling was also observed. Methods for detecting

the leader and follower laser as well as role switching, a form of spontaneous symmetry-

breaking, were developed. These include a spatiotemporal representation of the intensities

within each ring laser and the use of Karhunen-Loeve decomposition. A delay-differential

equation model was developed and the numerical simulations were in agreement with the

experiment. Chaotic communication was achieved in this system with bit rates of 125



MHz, limited by the detection speed.

A liquid crystal spatial light modulator (SLM) was also studied. When used as a

dynamic holographic grating, this device allowed the fabrication of a variety of reshaped

laser beams, including multiple Gaussian beams, optical billiards, and propagating Bessel

beams. When configured in an optoelectronic feedback loop, the SLM displays spatiotem-

poral chaos and using the auxiliary system method, we have achieved generalized synchro-

nization of this system. The space-time patterns as well as the transients to synchroniza-

tion have been characterized as a function of the bias voltage across the liquid crystal. The

analysis techniques used in this thesis can be applied to other high-dimensional systems.
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Chapter 1

Introduction

1.1 High-Dimensional Chaotic Systems

Nature provides us with many complex systems that have a large number of degrees

of freedom, or, in other words, are high-dimensional. Examples of these systems are

biological, as in the dynamics of neural networks, or physical as in turbulent flows in

rivers and the atmosphere. Often these systems do not lend themselves to the type of

quantitative study that we are accustomed to in physics. It is difficult to observe all of the

degrees of freedom of these high-dimensional systems and therefore to develop adequate

analysis tools and models.

These difficulties exist in laboratory experiments with many degrees of freedom, as

well. While there are plenty of examples of high-dimensional laboratory systems, there

are not many universal analysis techniques. Turbulent flows is a popular area of study in

high-dimensional nonlinear systems, and many analysis techniques have been developed

specifically for these experiments[1]. Networks of oscillators is a popular technique used

to understand high-dimensional systems[2, 3], however connecting more than a few os-

cillators proves to be difficult both experimentally and numerically[3]. Multimode laser

systems in optoelectronic feedback loops and doped fiber optic ring lasers also exhibit

high-dimensional dynamics[4, 5].

As our observational tools and data recording devices become more capable, it is

now possible to obtain long data sets encompassing many different time scales in these

high-dimensional experiments. This adds another layer to the data analysis problem. This
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problem is inherent in doped fiber ring lasers, which fluctuate on multiple time scales. Due

to their long length, the intracavity intensity dynamics of ring lasers can be resolved by

a photodetector, and oscilloscopes can record data over a long period of time. Therefore,

the cavity periodicity, short time scale fluctuations, and an additional coupling periodicity

appear in a single data set making it difficult to analyze using traditional chaotic analysis

techniques.

High-dimensional dynamical systems can display various types of synchronization,

depending on the type of coupling, the coupling strength and the number of degrees of

freedom that can be coupled between the systems. For example, it is often easier to achieve

identical synchronization in systems with many degrees of freedom using mutual coupling

than it is through unidirectional coupling. This is the case in coupled erbium doped fiber

ring lasers. However, this leads to the question of which system is leading the dynamics

and which system is following them. While statistical measures are being developed for

this purpose[67], this thesis will explore several other methods for determining leader and

follower in mutually coupled laser dynamics.

Liquid crystals provide a means for studying spatially extended high-dimensional

dynamical systems. In this system it is impossible to record and feed back all of the degrees

of freedom. This system does not display identical synchronization, but displays gener-

alized synchronization. We will present a characterization of the spatiotemporal chaos

displayed by a liquid crystal spatial light modulator and the generalized synchronization

that it displays.

It is important to develop tools with which to study high-dimensional dynamical

systems because most systems that occur naturally have many degrees of freedom. Con-

trollable laboratory experiments with many degrees of freedom are vital to the develop-

2



Figure 1.1: Synchronization scheme, where the drive synchronizes to the response[11].

ment of these tools. These techniques have wide ranging applications from the modeling

of neurons and disease spread[2] to the eventual control of swarming sensors[6].

One way to control high-dimensional dynamical systems is through synchronization.

By studying how systems synchronize and the type of synchronization that can be achieved

with different systems, we can learn which degrees of freedom are important for control

of the system. Once these are determined, algorithms for computationally feasible models

may be developed based on what is learned from the synchronization experiments[7].

1.2 Synchronization

Pikovsky, Rosenblum and Kurths describe synchronization as “an adjustment of rhythms

of oscillating objects due to a weak interaction.”[8] Synchronized systems do not have to be

chaotic. In fact, one of the first documented cases of synchronization was in the pendula of

clocks[8], which are certainly not chaotic. The idea of synchronization of chaos is somewhat

counterintuitive. Chaotic dynamics depend very sensitively on the initial conditions[9, 10]

and they should not be able to be controlled by another chaotic system. Throughout
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Figure 1.2: Schematic for generalized synchronization where there is a functional relation-
ship between the drive and response signals[15].

the 1980’s to 1990, several groups predicted the ability of two identical chaotic systems

to synchronize their dynamics[12, 13, 14]. Pecora and Carroll showed numerically that

if the chaotic output from a sufficient number of degrees of freedom replace some of the

degrees of freedom in a second, identical, system, the two systems may display similar

chaotic dynamics[14]. This methodology is shown in Fig. 1.1. Since 1990, various other

schemes for synchronization have been developed and many are outlined in Ref. [11] and

experimental examples of synchronization of chaos have been plentiful.

Depending on the number of degrees of freedom in the two systems and the number

of degrees of freedom that can be coupled between the systems, it is possible to achieve dif-

ferent kinds of synchronization. The easiest type of synchronization to detect is identical

synchronization, as presented in Ref. [14]. Two time series are identically synchronized if

they display similar chaotic outputs at the same time. It is also possible to obtain phase

synchronization, where the phase of the chaotic signals are synchronized[9], or lag syn-

chronization, where the chaotic dynamics are synchronized with a time offset. The final

type of synchronization that will be considered is generalized synchronization, where

there exists a functional relationship between the drive and response signal, as outlined

in Fig. 1.2[8, 9].
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Figure 1.3: Schematic for generalized synchronization detected using the auxiliary method.
Note that the drive signal is not synchronized to the response but that the response signals
are synchronized to each other[15].

Generalized synchronization may be the most difficult type of synchronization to

detect because the drive and response signals do not look the same. There are however,

several ways to identify generalized synchronization. One way is to find the functional

relationship between the drive and response signal, which is often difficult for experimental

systems. Another way is through the auxiliary method for detection which offers a

more useful experimental alternative. In this method, outlined in Fig. 1.3, two identical

response systems are constructed and driven by the drive system. If the two response

systems display identical dynamics after transients, it is concluded that the drive and

response system are generally synchronized[16, 17, 18, 19].

1.3 Coupling Schemes

Often the type of synchronization that is achieved depends on the coupling scheme. Ex-

periments on synchronization most often involve unidirectional coupling because it may be

useful for chaotic communications[20]. In this configuration, there is a drive system that

forces the receiver system to follow its dynamics. Cuomo and Oppenheim proposed that
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synchronized chaotic waveforms could be used as a carrier for communications[20]. Since

the carrier is chaotic, the signals cannot be intercepted and decoded without a system

that is identical to the one that created the original carrier. This application has led to

many types of laser chaos synchronization schemes in which unidirectional coupling was

employed.

Though unidirectional coupling is the most popular way to achieve synchroniza-

tion of chaos, mutual coupling may provide an easier way to synchronize. With mutual

coupling, systems with many degrees of freedom influence each other, allowing them to

operate in a state different from the state of the two isolated systems. This allows the

threshold coupling strength for synchronization to be lower than it would be with uni-

directional coupling and the synchronization to be robust against perturbations. It also

allows high-dimensional systems that may not synchronize with unidirectional coupling to

achieve identical synchronization.

1.4 Analysis Techniques

Since synchronization has traditionally been demonstrated in low-dimensional systems,

the analysis techniques have been focused there as well[21]. However, these tools are not

adequate for determining some properties of coupled high-dimensional chaotic systems. As

an example, consider the coupled fiber laser system that will be described in this thesis.

In this system there are over 15,000 longitudinal modes propagating in each laser cavity.

Standard measurement techniques allow us to measure the overall intensity output of the

laser, but does not allow us to resolve the intensity outputs of each individual mode. When

two lasers are mutually coupled, the question of which modes are most influential in the

synchronization of the dynamics is not easily answerable using established methods. This
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is, however, an important fundamental question. Knowing which modes synchronize first

(or at lower coupling strengths) and how many have to be synchronized before we see

synchronization of the overall intensity patterns could help to develop methods for the

control of chaos in complex biological systems and large networks.

1.5 Organization of Thesis

This thesis addresses the phenomena of synchronization of high-dimensional chaotic sys-

tems through the exploration of coupled systems with many degrees of freedom. We also

develop tools with which to analyze these systems, ultimately providing new ways to un-

derstand and control high-dimensional dynamical systems. In the next three chapters, we

will explore the background on and applications of the experimental systems that create

high-dimensional dynamics. The following four chapters discuss a fiber ring laser experi-

ment, new methods for analyzing this type of high-dimensional experiment, and a possible

application of this system. Chapter 9 will describe a controllable spatiotemporal chaotic

system and the types of synchronization that it displays. Finally the last chapter will

present a conclusion and discussion of future work.
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Chapter 2

Solutions to Maxwell’s Equations; Laser Modes and Bessel Beams

This thesis will approach high dimensional dynamics through the study of lasers. There-

fore, it is instructive to understand some background on lasers and the form of the emitted

electromagnetic radiation. A typical laser cavity consists of an active medium between two

spherical mirrors. The active medium can be a semiconductor where the radiation comes

from excited electrons, a gas of ions where the light is emitted by excited ions, or a solid

state crystal where excited ions emit light but are trapped in the crystal. A few guides on

basic types of lasers and the theory behind their operation can be found in Ref. [22, 23]. In

all of these types of lasers, two spherical mirrors keep the emitted light within the cavity

so that it can be amplified by stimulated emission from the active medium. Generally one

of the mirrors has a considerably smaller reflectivity so that some of the light can leave the

cavity, and this is the light we observe as laser radiation. Typically the aperture and the

transverse cavity dimensions are small compared to cavity dimension along the direction

of propagation, which is very important in determining the shape of the electromagnetic

wave that propagates from the cavity.

2.1 Maxwell’s Equations and Fundamental Laser Modes

Classically, electromagnetic waves are described by the wave equation, derived from

Maxwell’s Equations, which is (in the absence of free charges and currents) [24]:

∇2E − µε
∂E
∂t

= 0, (2.1)
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where ε = ε0 ∗ εr and µ = µ0 ∗ µr, and µr and εr are the magnetic permeability and

dielectric constant in the medium. The wavenumber is defined as k = ω
√
εµ and in an

absorbing or amplifying medium, the gain obeys the equation, εr = 1+χ′(ω)−iχ′′(ω) [25].

We now look for solutions to the wave equation for the electric field. The most well

known solution to the wave equation is a plane wave, E(r, t) = exp[i(k · r − ωt)]ê. Plane

waves, however, only exist when the source of the electromagnetic wave has an infinite

aperture. The electromagnetic radiation reaching the earth from the sun is approximated

by a plane wave. Obviously, this approximation will not work for laser beams.

To describe laser radiation, we must look for an approximate solution to Eq.(7.2)

that obeys the spherical mirror boundary conditions, that is localized around the direction

of propagation and varies slowly with time in the direction of propagation. Therefore, we

look for solutions of the form

E0 = E(x, y, z) exp(i(ωt− k(r) · r))ê, (2.2)

where the wavenumber, k is a function of r. If we plug Eq.(2.2) into E1.(7.2) we find that

∇2E(x, y, z) + k2(r)E(x, y, z) = 0, (2.3)

which is called the Helmholtz equation. We must find the appropriate expression for

E(x, y, z) so that Eq.(2.2) satisfies all of the laser boundary conditions. We assume a

solution of the form E(x, y, z) = ψ(x, y, z)e−ikz where the intensity, ψ2(x, y, z), is localized

around the direction of propagation, the z direction in this case. If we substitute the

expression for E into Eq.(2.3), we find a new expression

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
− 2ik

∂ψ

∂z
= 0. (2.4)

The condition that the field varies slowly along the direction of propagation, otherwise

known as the paraxial approximation, allows us to set ∂2ψ
∂z2 equal to zero. So the equation
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Figure 2.1: Gaussian profile. (a) is a two dimensional Gaussian profile. (b) is a slice from
the center of (a). The arrows indicate the 1/e2 point.

becomes

∂2ψ

∂x2
+
∂2ψ

∂y2
− 2ik

∂ψ

∂z
= 0 (2.5)

We assume a solution of the form

ψ(x, y, z) = exp[−i(P (z) +
k

2q(z)
r2)] (2.6)

where r2 = x2+y2. This solution produces the Gaussian intensity profiles that most lasers

emit. In order for this to satisfy Eq.(2.5), we find that

dq
dz = 1 and (2.7)

dP
dz =

i

q(z)
. (2.8)

In this representation, P (z) is called the phase shift factor and q(z) is called the beam

parameter. Since these are not observable parameters, would like to relate them to the

physical observables R(z) and w(z). w(z) is the spot size, or the distance from the

propagation axis at the point z where the intensity has fallen to 1/e2 of its peak value on
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axis, as shown in Fig. 2.1. R(z) is the radius of curvature of the phase front at the point

z. The beam parameter is related to R(z) and w(z) through

1
q

=
1
R

− iλ

w2π
. (2.9)

If we call w0 the minimum spot size, we can show that

w2(z) = w2
0[1 + (

λz

πw2
0

)2], and R(z) = z[1 + (
πw2

0

λz
)2] (2.10)

With these relationships, we can derive the expression

E(r, z) =
w0

w
exp[−i(kz − Φ) − r2(

1
w2

− ik

2R
)]. (2.11)

This equation represents the full spatial dependence of the Gaussian beam, where Φ =

tan−1(λz/πw2
0). A complete derivation can be found in Ref. [25]. The solution derived

above is the zero order mode and is called the fundamental, or TEM00 Gaussian mode.

The surfaces of constant phase are Gaussian, and this is the mode normally seen emitted

by the laser.

2.2 Higher Order Modes

The higher order modes present in the resonator depend on the symmetry of the cavity.

Cylindrically symmetric cavities can support modes called a Laguerre-Gaussian modes.

In order to derive the higher order mode equation, we need to assume a more general

solution for the spatial field distribution amplitude, ψ(x, y, z). In this case we propose a

solution of the form

ψ = g(
r

w
) exp[−i(P (z) +

k

2q(z)
r2 + lφ)], (2.12)

where

g = (
√

2
r

w
)l · Llp(2

r2

w2
) (2.13)
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Figure 2.2: Bessel functions of order n.

and Llp is an associated Laguerre polynomial. These modes are designated as TEMpl. For

the l = p = 0 case L0
0 = 1 and we recover the Gaussian mode derived in the previous

section, hence the designation as the TEM00 mode. The l, p = 0, 1 mode, or the TEM01

mode, is frequently called a donut mode because it propagates with a dark spot in the

center, which diffracts as the beam propagates [25].

2.3 Another Solution to Maxwell’s Equations; Bessel Beams

A second solution to Maxwell’s Equations was discovered in the late 1980’s by J. Durnin [26].

It is his derivation we will follow here. We again begin with the wave equation, Eq.( 7.2)

and we assume a propagating wave solution of the form

E(x, y, z ≥ 0) = exp[i(βz − wt)]
∫ 2π

0
A(φ) exp[iα(x cos φ+ y sinφ)]dφ, (2.14)

where α2 + β2 = (w/c)2 and A(φ) is an arbitrary complex function. If β is real, then we

can show that the solution is nondiffracting, meaning that the intensity does not depend
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on the distance of propagation, z. If A(φ) is independent of φ, then Eq.(2.14) becomes

E(r, t) = exp[i(βz−wt)]
∫ 2π

0
exp[iα(x cos φ+y sinφ)]

dφ

2π
= exp[i(βz−wt)]J0(αρ), (2.15)

where ρ2 = x2 + y2 and J0 is the zero order Bessel function of the first kind [26]. If α = 0

the solution is a plane wave, but for 0 < α ≤ w
c , the solution is a nondiffracting zero order

Bessel function. If we assume that A(φ) = exp(inφ), Eq.(2.15) becomes

E(r, t) = exp[i(βz − wt)]Jn(αρ), (2.16)

and now includes all orders of Bessel functions [27]. An illustration of Bessel functions

can be found in Fig. 2.2.

2.4 Bessel Beams and Holography

Like the plane wave solution described in section 2.1, Durnin’s Bessel beam solution to

Maxwell’s equations assumes an infinite aperture. In 1989, Vasara et al. derived the same

solution using similar approximations as were made in the derivation of the Gaussian beam

and describe the effects of finite apertures on the solution. This is very important because

any laboratory fabrication of Gaussian beams require the use of finite apertures. Vasara et

al. derives the finite aperture assuming Bessel beam generation through holography [27].

If we have a hologram of radius R, characterized by the complex amplitude function

t(ρ, φ) = A(φ) exp[i(
2πρ
ρ0

)] ρ ≤ R (2.17)

t(ρ, φ) = 0 ρ > R (2.18)

where A(φ) is the same complex function as in Eq.(2.14) and the parameter α from

Eq.(2.15) equals (2π)/(ρ0). Using the assumption that A(φ) = exp(inφ), the complex

amplitude function within the aperture as described in Eq.(2.18) becomes

t(ρ, φ) = exp[i(nφ+ αρ)]. (2.19)
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We can see the effect of a finite aperture by looking at the intensity of the field after

the aperture. The field distribution for the hologram can be calculated using the Fresnel

diffraction integral in spherical coordinates

U(ρ, φ, z) =
1
iλz

exp[ik(z +
ρ2

2z
)] ×

∫ D

0
dρ′ρ′ exp[ik(

ρ′2

2z
− 2πρ′

γ
)]

×
∫ 2π

0
dφ′A(φ′) exp[−ikρρ′cos(φ− φ′)/z] (2.20)

where the wavelength, λ = (2π)/(k) and γ = ρ0k. Following the procedure outlined in

Refs. [27, 28], we integrate over dφ′ by first expanding A(φ′) into its Fourier series,

A(φ′) =
∞∑

n=−∞
an exp(inφ) (2.21)

and inserting it into Eq.(2.20), which then becomes

U(ρ, φ, z) =
1
iλz

exp[ik(z +
ρ2

2z
)]

∞∑
n=−∞

an exp(inφ) ×
∫ D

0
dρ′fn(ρ′) exp[ikµ(ρ′)] (2.22)

where, an = 1
2π

∫ 2π
0 A(φ′) exp(−inφ′)dφ′ are the normal Fourier coefficients and

fn(ρ′) = 2π(−i)nρ′Jn(kρρ
′

z
), (2.23)

µ(ρ′) =
ρ′2

2z
− 2πρ′

γ
. (2.24)

We look for the critical points of Eq.(2.24), and find a single critical point at ρ′c =

(2πz)/(γ). From Refs. [27, 28], we know that

∫ D

0
dρ′fn(ρ′) exp[ikµ(ρ′)] ∝ fn(ρ′c) exp[ikµ(ρc)]

[kµ′′(ρ′c)]
1
2

. (2.25)

Using the critical point calculated above, we see that the right side of Eq.(2.25) is now

equal to

4π2 z
γ (−i)nJn(2πkρ

γ ) exp[−2π2ikz
γ2 ]

(kz )
1/2

(2.26)
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which is proportional to z3/2. If we combine the results from Eqs.(2.26 and 2.22), and take

the square of the magnitude, we obtain an expression for the intensity. Without position

independent constant, this expression is of the form

I(ρ, φ, z) ∝ z

∣∣∣∣∣
∞∑

n=−∞
2π(−i)nan exp(inφ)Jn(

2πkρ
γ

)

∣∣∣∣∣
2

. (2.27)

If we look at the result in Cartesian coordinates it is,

I(x, y, z) ∝ z | U(x, y) |2, (2.28)

which shows that the only effect of the finite aperture is a z dependence of the intensity.

We can then calculate the maximum diffraction-free propagation distance for the Bessel

beam by finding the z value when the critical point is the boundary of the aperture, of

radius, R. In this case [27],

zmax =
γR

2π
=
ρ0R

λ
. (2.29)

Therefore, how sharply the beam diffracts at the maximum propagation distance is de-

pendent on the linewidth of the light used. If the linewidth is very narrow, the diffraction

occurs very quickly, and once the maximum propagation distance is reach, the Bessel beam

dissapears.

We have derived the intensity profiles of the beams emitted by the lasers in the first

half of this dissertation, which generate single longitudinal and transverse mode Gaussian

profiles within the cavities. We then use holography to change the profile of the beams

into new field distributions, both diffracting and nondiffracting.

The second half of this thesis will focus on a laser system in which the laser cavity

is extremely long compared to the size of the transverse dimensions. In this situation

the laser still generates light with a Gaussian profile, however, due to the long cavity
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length, it generates tens of thousands of longitudinal modes, each propagating in a different

polarization state.
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Chapter 3

Liquid Crystal Spatial Light Modulators

Nematic liquid crystals have recently infiltrated many aspects of our every day lives.

Their presence in displays on clocks, cellular phones, computer monitors and now high-

definition televisions leaves one to wonder at how life existed without them. Liquid crystals

have been in use in the scientific community far longer than in the commercial world.

Liquid Crystal Light Valves (LCLV’s) were first created by Hughes Aircraft Company in

the late 1970’s[29]. These LCLV’s were used in the development of the Liquid Crystal

Displays (LCDs) listed above, as well as the development of a holographic tool for use

in the physical and biological sciences. Due to their nonlinear optical properties, liquid

crystals act as a controllable dynamic hologram and have thus become an invaluable tool

in the emerging field of biophysics and in experimental atomic physics[30, 31, 32]. This

chapter will present background information on the physical and optical properties of

liquid crystals and describe how they are used as dynamic phase gratings.

3.1 Types of Liquid Crystals

Liquid crystals (LC’s) come in three variates: thermotropic, lyotropic and polymeric.

Thermotropic liquid crystals have been most extensively studied because they are observed

in pure compounds and mixtures. They have phase transitions that depend on temper-

ature [33] which are cholesteric shown in Fig.3.1, smectic shown in Fig 3.2, and nematic

shown in Fig. 3.3. LCLV’s can be composed of an LC in either the nematic or smectic-C*

phase, also called a ferroelectric liquid crystal. Smectic LC molecules lie in planar layers
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Figure 3.1: Cholesteric phase of thermotropic liquid crystals[33]

Figure 3.2: Smectic phase of thermotropic liquid crystals.[33]

Figure 3.3: Nematic phase of thermotropic liquid crystals[33]
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whereas in the nematic phase the molecules are randomly located throughout the volume

of the container. In both phases the molecules are usually aligned by the manufacturer

along a single symmetry axis called the director. The director orientation is sensitive to

local or global external electric, magnetic or optical fields, and is responsible for the index

of refraction of the crystal. Therefore, the director reorientation can result in local phase

and/or polarization changes of an incident optical beam [33]. For a complete discussion

of the properties of the other types of liquid crystals see Ref. [29, 33]. The main difference

between ferroelectric and nematic liquid crystals is the molecular dipole response to volt-

age. The molecules in both types of LC’s have a larger dielectric constant in the direction

of the long axis than in the direction of the short axis. This leads to induced dipoles at

opposite ends of the long axis. Therefore, applied electric fields will cause the molecules to

change their orientation and align with the field. Since nematic LC’s have only an induced

dipole moment, an AC voltage will cause the dipole moment to change direction, and will

not result in an overall change in the molecular orientation. Ferroelectric LC molecules

posses a permanent dipole moment and therefore will realign depending on the parity of

the voltage. It is for this reason that DC voltages must be used to drive ferroelectric liq-

uid crystals. However, DC voltages can induce permanent dipole moments and chemical

changes in nematic LC’s. Therefore, since modulation in the parity of the source does

not effect director alignment, AC signals are used to modulate the orientation of nematic

LC’s[29].

The director axis in nematic crystals can be aligned in three major ways, parallel,

perpendicular and twist, in order to enhance their nonlinear optical properties. In

parallel alignment, the faces of the substrates are coated with a transparent metallic film

and then etched, creating microgrooves for alignment of the molecules [33]. When a
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Figure 3.4: Twist and parallel arrangements of liquid crystals[34]

linearly polarized optical field comes in contact with parallel aligned liquid crystals two

phenomena may occur depending on the difference between the orientation of the director

and the polarization of the light. If the light is polarized parallel to the director, pure

phase modulation will occur. However, if the polarization of the light is 45o to the director

axis then both phase and polarization modulation occurs [33].

Perpendicular or homeotropic aligned liquid crystals have a director axis that is

perpendicular to the face of the cell. Even though both parallel and perpendicular aligned

LC’s can be used for phase modulation and retardation, there are a few differences in

the properties of the crystals and the way they are prepared. Most importantly, whereas

simple surface etching is all that is required to align the LC molecules in parallel alignment,

for perpendicular alignment a surfactant is needed to keep the molecules aligned. For a

complete discussion of the differences between homeotropic and parallel aligned LC’s see

Ref.[33].

The last type of LC alignment we will discuss is the twist alignment. In the twist

alignment, the surfaces are etched as in the parallel alignment, however, the back surface

is twisted with respect to the front. This alignment has the unique property to rotate the

phase of the light that goes through it. If linearly polarized light is incident on 90o, the

polarization axis of the light will rotate by 90o and it will remain polarized [33]. Often,

when the LC is used as a reflective grating, since the light passes through twice, the angle
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offset between the front and back face is only 45o as show in Fig. 3.4. The liquid crystals

used in the experiments described in this thesis are parallel aligned.

Gratings or holograms are created on the liquid crystals by placing localized volt-

ages across the molecules causing director realignment and subsequently a change in the

local index of refraction. In all alignments, a threshold voltage across the LC’s must be

reached before director realignment can be achieved. Once the minimum bias voltage is

crossed, director realignment occurs almost linearly with voltage until a damage threshold

is reached. This damage threshold depends on the specific type of liquid crystal. When the

orientation of the liquid crystal molecules matches the linear polarization of the incident

light, this change in director orientation and resulting change in the index of refraction

imparts a phase change to be on the incident optical field, creating an interference pattern

with little loss in the overall intensity, similar to a glass phase hologram. If the linearly

polarized light is not polarized in the same direction as the director, we see an interference

pattern coupled with a change in the polarization of the light. When viewed through a

polarizer, we will now see both an interference pattern and an overall loss of intensity.

3.2 Liquid Crystal Spatial Light Modulators

The dependence of the birefringence on local external electric fields makes liquid crystals

a good choice for an easily controllable phase grating. This is the principle behind a

liquid crystal spatial light modulator (SLM). In practice, SLM’s are either optically or

electrically addressable, meaning that the director axis can be modulated with either an

electric voltage or an optical field. As with traditional diffraction gratings, SLM’s can be

either reflection or transmission holograms. In a reflection grating, the incident optical field

passes through the grating, reflects off of an internal mirror and passes through the grating
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Figure 3.5: Picture of the inside of the Hamamatsu PAL-SLM X7550[34]

a second time in the opposite direction. In a transmission hologram, the light makes only

one pass through the grating. Transmission hologram liquid crystals typically must have

cell volumes greater than reflection gratings because the light only passes through one

time. Also, depending on the orientation of the LC molecules relative to the polarization

of the incident light, the hologram can act as either a phase or amplitude grating. A full

discussion of the polarization and phase effects of liquid crystals can be found in Ref.[33].

All experiments presented here utilize the SLM as a reflection phase grating.

Since the LC used in the experiments described in this thesis was electrically address-

able, optically addressed liquid crystals will not be discussed in detail. For a description of

optically addressed LC’s, see Refs. [33, 41]. In our electrically addressed SLM, the liquid

crystal cell is between two transparent electrodes, as shown in Fig. 3.5. The transparent
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electrodes provide the voltage across the liquid crystal that tilts the director axis of the

molecules. An overall DC bias voltage is placed on the electrodes so that the voltage

across the liquid crystals will exceed the threshold. The SLM is computer controlled,

which allows for very precise control over the local voltages across the LC molecules. The

SLM uses the video graphics array (VGA) output of the computer to make a grayscale

pattern on an internal liquid crystal display which is separate from the LC that creates

the hologram. An internal laser (the write light) propagates through the LCD onto an

array of photoelectrodes. This is shown on the left side of Fig. 3.5. The photoelectrodes

place voltages across the LC (on the right side of Fig. 3.5). Since the director reorienta-

tion is proportional to the applied voltage, the voltages place a phase grating on the LC

similar to the image on the computer. Figure 3.5 illustrates the composition of our SLM.

The readout light represents the optical field whose phase is modulated by the SLM. The

dielectric mirror prevents interference between the read light and the write light.

3.3 The Hamamatsu PAL-SLM X7550

In the experiments described in the following chapters, a linearly polarized TEM00 laser,

called the read light, is incident on the SLM in the configuration shown in Fig. 3.6. The

desired phase mask is generated on a computer and the SLM takes the value of the red

part of the red-green-blue output of the VGA port of the computer. The VGA output

from the computer can send a voltage signal with 8-bit dynamic range (256 different

values) for each color; therefore, the SLM can apply 256 different phase shifts to the

incoming light. Our SLM has an effective area of 2.5 x 2.5 cm and each pixel is therefore

∼ 52µm2. The bias voltage control ranges from 0-5 V, corresponding to phase shifts

ranging from 0 to ∼ 4π. It has an oscillation frequency of 1 KHz, but can be adjusted
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Figure 3.6: Spatial light modulator experimental setup for holography. For Fourier holo-
grams, a lens is inserted between the SLM and the camera so that the focal point of the
lens is on the camera.

between 0.83 Hz and 1 MHz. The bias voltage can also be externally modulated using the

external control input terminal[34]. The VGA signal is displayed on a pixilated internal

LCD, with a resolution of 480 x 480 active pixels. A write light at 533 nm propagates

through the LCD and is incident on an array of photoelectrodes. These photoelectrodes

are responsible for the voltage modulation across the front end LC creating the phase

grating. After reflecting off of the SLM, the read light propagates to a camera through

a lens for certain types of holograms. The camera is connected to the computer via a

Spiricon camera board and the hologram is viewed on the computer. The camera is a

Pulnix TM-72EX charged coupled device camera with 114 × 180 pixels.

The maximum read light intensity that can be applied to the SLM is dependant on

the characteristics of the dielectric mirror that is present in the unit. For the SLM used

in the experiments presented in this thesis, the dielectric mirror was broadband. This

allows lasers with a wide range of wavelengths to be used with the device, however, the
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reflectivity for each wavelength is lower than for a mirror made for a narrower range of

wavelengths. If light leaks through the dielectric mirror, it can interfere with the write

light and alter the hologram placed on the LC. A 5 W source spread over the entire active

area of the SLM can safely be used without causing interference between the read and

write light. However, the read light should never be focused to a small spot on the SLM

because this could cause damage to the LC[35].

3.4 Applications

The use of the SLM as a dynamic hologram has led to the development of tools that have

become very useful in the fields of biological and atomic physics. In biological physics,

the SLM can be used to generate holographic optical tweezers[30]. Optical tweezers are a

focused beam of light that can be used to trap particles[42]. Because this property works

independent of wavelength, these optical tweezers can be used to trap and observe live

biological samples. When holography is not used in the production of optical tweezers,

a single laser can only be focused to create a single optical tweezer, and, if the trap is

to move, the laser must be mechanically moved. Holographic optical tweezers have the

advantage of creating multiple Gaussian beams, or optical tweezers, out of a single laser

beam through diffraction. While this can be done using a glass phase hologram, it is

more efficient to use an SLM because we have more control over the phase shift that is

imparted on the light (i.e., more than 2 or 4 phase shift levels may be used in the SLM,

while this is extremely difficult in an etched glass hologram). Using a computer controlled

SLM allows the optical tweezers to move and change with real time control[30, 43, 44].

In addition to trapping particles with Gaussian beams, particles can be trapped in higher

order Laguerre-Gauss modes. These modes have been holographically generated using
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glass phase masks[45] as well as using an SLM for biological applications[30].

The generation of multiple Gaussian beams from a single Gaussian beam has ap-

plications to atomic physics as well. Recently, holographic traps for single atoms have

been demonstrated[31]. These traps offer the same flexibility that holographic tweezers

offer, only in atomic physics they must trap much smaller particles. The fabrication of

nondiffracting Bessel beams also have applications to atomic physics. For example, these

beams can be used to make an all light atom guide, as described in Ref.[32]. The method

for generating these beams will be discussed in detail in Chapter 4.

3.5 Chaos and Liquid Crystals

SLM’s configured in feedback loops generate a variety of spatiotemporal patterns ranging

from hexagonal close packed (HCP) dot structures to so called optical turbulence and

chaos[36, 37, 38, 39, 40]. This behavior is caused by nonlinearities in the crystal-electric

field interaction or induced by rotations and other transformations as the signal is fed back

into the system. Which patterns form depend on the voltages placed across the liquid

crystal, the intensity of the write light, and the diffraction length[37]. Our liquid crystal

system has a fixed, high intensity write light and generates chaos at the lowest resolvable

bias voltage. In order to model this type of feedback system, the SLM is approximated as

a Kerr type nonlinearity, although the Kerr slice approach fails to account for the dynamic

chaos that can be induced in the liquid crystal[37]. Models that also include saturation

and internal threshold effects better agree with experimental observations[38]. A detailed

description of the model is presented in Ref.[37].

Once chaos was identified in liquid crystals, systems were constructed to test for

synchronization. Identical synchronization has been seen in liquid crystal SLM systems
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with optical feedback[41]. In these experiments, the write light intensity was relatively low,

causing the patterns generated to be closer to HCP with defects than optical turbulence.

This means that the liquid crystal molecules are not subjected to strong voltages and are

not forced to reorient themselves greatly[37]. However, in systems such as ours where

the write light intensity is strong enough to always produce optical turbulence, the liquid

crystals are being forced to reorient themselves at a rate that does not allow them to find

a steady state. Therefore, we do not expect to reproduce these results.

Chaotic liquid crystals in a SLM provide a controllable means to develop analysis

tools for high-dimensional dynamics because they are controllable. The pixel-by-pixel

control allowed by the SLM, gives one the ability to control the movement of the liquid

crystal molecules and the connections between them. It is, therefore, possible to create a

network using the pixels that control the liquid crystal molecules. These networks could

be made to vary over time and space. This would create a laboratory system in which

control would be had over the high-dimensional dynamics, large parameter regions could be

explored, and analysis tools could be developed. This thesis provides the first step in these

types of experiments by characterizing the chaos and then looking for synchronization of

chaos when chaotic intensity patterns are recorded and fed back into the SLM system.

27



Chapter 4

Bessel Beams and Holography

The SLM is a wonderful tool with which to develop holographic techniques for the control

of small particles. Holographic optical tweezers are now widely used in biophysical appli-

cations because one can trap living cells or microbeads surrounding living cells and study

how they move[46]. Another area of development in which the SLM has been particularly

useful is in beam reshaping for use in atom optics, both as holograms in a plane and as

reshaped propagating beams.

4.1 Holography

4.1.1 Algorithms for Generating Holograms

Many methods have been devised for computer generated holography. Using traditional

hologram fabrication techniques, creating phase gratings with more than four different

phase shift levels is very difficult. With computer aided holography and the SLM, one

can create phase gratings with up to 256 different phase shifts. The desired image can be

drawn on the computer and, using one of many different types of algorithms, a grating

with which to make the image can be calculated. Ref.[47] has a good description of many

of these algorithms. One such type of computer generated hologram is the kinoform[29].

A kinoform is a grating in which it is assumed that the majority of the information

about an intensity pattern is carried in the phase of the Fourier coefficients. However,

when generating a hologram from an image on a computer, all we know is the intensity.

Therefore, we need a way to reconstruct the phase knowing only the intensity. The
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Figure 4.1: Diagram of the Gerchberg-Saxton algorithm. The iteration begins in the upper
left corner with the original intensity and a random phase and continues until the resulting
image matches the desired image within the requisite error.

Gerchberg-Saxton algorithm for phase reconstruction was developed for the purpose of

reconstructing the phases of images when we only know the intensity. It is illustrated in

Fig. 4.1. We begin with a known two-dimensional intensity image, f(x), and calculate the

two-dimensional discrete Fourier transform (DFT) of the image, whose modulus is F (u).

We then construct a function

gk(x) =| f(x) | exp[iθk(x)] (4.1)

where in the first iteration (k = 1) the phase is random. We then take the DFT of gk(x)

to obtain

Gk(u) =| Gk(u) | exp[iφk(u)]. (4.2)
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Figure 4.2: The desired intensity pattern, an image of four small Gaussian spots, that is
fed into the G-S algorithm to produce a kinoform.

The next step is to replace the modulus of the Gk(u) with the modulus of the DFT of the

desired image to yield

G′
k =| F (u) | exp[iφk(u)]. (4.3)

We then take the inverse DFT and obtain a new expression for the field in real space,

g′k(x) =| g′k(x) | exp[iθ′k], (4.4)

and finally we replace the calculated intensity | g′k(x) |, with the desired intensity | f(x) |

to obtain an updated expression for gk+1,

gk+1 =| f(x) | exp[iθk+1]. (4.5)

This process is iterated until it achieves a minimum error between the desired image and

the calculated image.

In order to generate the phase grating, we begin by creating an image of the final

intensity pattern that we would like in the beam. Figure 4.2 shows an image of four
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Figure 4.3: A sample kinoform that produces the four small Gaussian spots in a square
as shown in Fig. 4.2.

Gaussian spots. From this picture, we calculate the phase using the Gerchberg-Saxton

algorithm to calculate the phase angles in real space. We then image the Fourier space

phase angles on the computer, as shown in Fig.4.3. This image can either be printed

onto a transparency, as an amplitude grating, or placed on the SLM. If it is placed on

the SLM it can be made into a purely phase hologram with up to 256 different phase

shifts[29, 47, 48].

Since we are creating a hologram using the Fourier phase, the resulting image will

only be visible in the Fourier, or far field, plane. This plane is accessible in the laboratory

at the focal point of a lens. Therefore, a lens must be inserted after the SLM in the

experimental setup in order to view the holographic image created by the kinoform.

31



Figure 4.4: Spatial light modulator experimental setup for holography. For Fourier holo-
grams, a lens is inserted between the SLM and the camera so that the focal point of the
lens is on the camera.

4.1.2 Multiple Beams

We have created several types of phase-modulated beams using the experimental setup in

Fig.4.4. This setup is described in detail in Chapter 2. In their most simple form, the

optical tweezers that we have created are multiple Gaussian spots generated from a single

Gaussian laser beam. Fig. 4.5 shows arrays of 4, 16, and 32 Gaussian spots generated

from a single Gaussian beam. The physical size of the final spots is controlled by the spot

size at the focal point of the lens.

The vertical and horizontal symmetry of a square lattice allows the hologram and

the inverse hologram to overlay, thus increasing the overall intensity of each spot. It is also

possible to obtain equi-intensity Gaussian spots in the shape of a triangle, even though

the symmetry does not allow the hologram and the inverse hologram to overlap.

The final holograms, shown in Fig. 4.6, are laser beams reshaped as holographic

billiards. These billiards are in the shape of a stadium and a circle and have a step
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(a)

(b)

(c)

Figure 4.5: Multiple Gaussian beams generated from a single Gaussian. (a) is 4 Gaussian
beams with a bright first order diffraction spot on the right side. These are generated
from the hologram imaged in Fig.4.3. (b) is 16 and (c) shows 32 equal intensity Gaussian
spots generated using the same method.
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(a)

(b)

Figure 4.6: (a) Circle and (b) Stadium billiard holograms with a step function intensity
profile.
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function intensity profile. If a neutral particle is placed in the dark region inside of the

billiard with momentum in any direction, the particle will trace all possible paths within

the billiard, thus behaving chaoticly.

The center spot in the middle of each hologram is the zero order diffraction beam. In

perfect phase holograms the zero order should not be present and all of the light should be

diffracted into the first order, reshaped beam. In practice, all of the light is not modulated

to form the holographic image and the light that is not diffracted is focused by the lens

into a center spot. One reason for this is that the phase shifts do not run equally between

0 and 2π in our experiment. If we knew the exact relationship between the red color level

and the phase shift imparted by the LC onto the light, then an algorithm can be written

to eliminate the center spot[49].

4.2 Propagating Bessel Beams

4.2.1 Bessel Beam Holograms

In addition to Fourier holograms, we are also able to fabricate holograms that turn

Gaussian beams into propagating Bessel beams. According to equation 2.19, the phase of

the transmission function is

Ψ(ρ, φ) = nφ+
2πρ
ρ0

, (4.6)

where the phase profile resembles that of an axicon (or is cone shaped). The dark center

of the Bessel beam is a result of a singularity in the phase at the tip of the axicon, the size

of which is controlled by the parameter ρ0. As the value of ρ0 increases, the size of the

dark core increases as well. In Eq.(4.6), n represents the charge of the Bessel beam and is

proportional to the amount of angular momentum around the singularity (it is sometimes

referred to as the winding number of the singularity). The intensity profiles of the Bessel
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Figure 4.7: Order n Bessel Functions

beams reflect the shape of the 3-dimensional Bessel functions of similar charge.

Figure 4.7 shows a few different orders of Bessel functions while Fig. 4.8 shows

typical gratings and the Bessel beams they create. In the hologram, the charge is defined

by a closed counterclockwise contour on the phase mask and is equal to the number of net

phase discontinuities it crosses[51]. We define the sign of the discontinuity to be positive

when the phase jumps from 2π to 0 and negative when the phase jumps from 0 to 2π.

By this definition, the charge of the phase masks in Fig. 4.8 and the rest of this thesis is

equal to +2 and we vary ρ0.

4.2.2 Parameters and Bessel Beams

The Bessel beams shown in this thesis were generated using the experimental setup de-

scribed in figure 4.4. The holograms were generated on the computer using Matlab and

the phase images were placed on the SLM as described in Section 5.1. One of the ad-

vantages of using the SLM to produce these beams is that we are able to generate many

36



Figure 4.8: The phase masks used to produce two different sizes of the dark core of a
Bessel beam using a Bessel function of the first kind of order n = 2. The first column
consists of the actual phase masks that are generated on the computer and placed on the
SLM. The parameter is ρ0 = 1.4 mm for the top, notice the larger amount of deviation
from horizontal of the fork at the center of the mask due to the smaller magnitude of ρ0.
This results in a smaller hole. The parameter for the bottom is ρ0 = 3.2 mm resulting
in a smaller deflection from horizontal for the singularity of the grating, causing a larger
hole. The middle column is a 2-dimensional picture of the Bessel beam generated from
the gratings to their left, where the intensity is represented by brightness. The column
on the far right is a 3-dimensional image of the hollow beam, where both brightness and
height represent intensity.[50]
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Figure 4.9: Deflection angle diagram. z is the propagation direction. γ is the angle
between the reference beam and the line normal to the surface of the SLM.

different holograms and test many different parameter values relatively quickly. We tested

approximately 50 different values of ρ0 ranging from ρ0 = 0.1 − 5.0 mm in steps of 0.1 mm

corresponding to core sizes ranging from 1 − 3 mm. Two different core sizes are shown

in Fig. 4.8. In the top row, ρ0 = 1.4 mm while in the bottom row, ρ0 = 3.2 mm. The

resolution of each mask was 500 × 500 pixels for all experiments presented here.

If we take the projection of the read laser beam at an angle to the surface of the

SLM onto the normal to the surface of the SLM as shown in Fig. 4.9, we can define a

parameter that controls the deflection angle of the read beam after going through the

hologram. This addition to the phase term looks like,

k · r =
2π
λ
ρ sin γ cosφ = 2πνρ cosφ (4.7)

where k is the wave number of the read beam, γ is the angle between the reference beam

and the line normal to the surface of the SLM, and ν = (sin γ)/λ is the carrier frequency.

The cosφ term comes from the inner product of k and r projected onto the plane of the
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grating. In the experiments presented here, λ = 633 nm. The deflection angle is found to

be a linear function of ν. In all experiments described to this point, ν = 4.5 mm−1.

As stated in Chapter 2, the SLM allows us the flexibility to test different phase shift

levels. We coded phase profiles between 0 − 2π with 2, 4, 64 and 256 grayscale levels.

Figure 4.10 shows the difference in the intensity profiles of Bessel beams generated with 2

levels (0 and π), and one with 64 different equally spaced levels. The advantage of the 64

level hologram is evident by the Bessel function fit in this figure. The intensity of the first

ring of the Bessel beam for the 64 level grating is almost an order of magnitude higher

than the first ring of the Bessel beam using a binary mask. The integrated power in the

first ring of the 64 level mask is 12.4 times that of the first ring in the binary mask. The

full phase profile is now

Ψ(ρ, φ) = (αρ+ nφ+ 2πνρ cosφ) mod 2π. (4.8)

The bias voltage control of the liquid crystals allows us to control the amount of

light in the different orders produced by the grating. The measurements presented herein

were made at a bias voltage of approximately 1.88 V, corresponding to approximately

a 1.70π phase shift. Figure 4.11 is a photograph of the Bessel beam produced by

two different levels of bias voltage. On the left, the bias is not optimized, and we get a

significant amount of light in the zero order diffraction beam. This picture was taken at a

bias voltage of 1.47 V. On the right, the bias voltage is optimized, at 1.88 V, and almost

all of the power is in the first order diffracted beam, while only a small amount remains in

the zero order. Therefore, we see that at 0 V, only the zero order beam is seen because no

phase shift is being imparted onto the read laser beam. Between 0 and 1.88 V, the power

is split between the zero and first order diffracted beams, and as the voltage is increased,

more power is transferred into the first order. At 1.88 V the power diffracted into the first
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Figure 4.10: A comparison between two nonlinear fits of the Bessel beam (J7) profiles.
The top profile was generated from a 64 level phase grating while the bottom profile was
generated using a binary phase grating. The ratio of the power in the first ring obtained
from the 64 level grating compared to the binary grating is 12.4. The experimental profiles
are denoted by the thick line while the Bessel function fit is denoted by the thin line and
the amplitudes of both profiles are in similar units. The scale of the y-axis from 0 to
500 is equal to the length of the CCD on the camera used to take the profile. The same
neutral density filter was used for both profiles to eliminate the saturation on the CCD
camera.[50]
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Figure 4.11: Controlling the amount of light by adjusting the bias voltage. On the left,
at a bias voltage of 1.47 V, the bias is not optimized, and we get a significant amount of
light in the zero order diffraction beam. On the right, the bias voltage is optimized at
1.88 V, and almost all of the power is in the first order diffracted beam, while only a small
amount remains in the zero order.[50]

order beam reaches a maximum, giving maximum efficiency. As the voltage is increased

further, more orders become apparent, and at 2.26 V, both the first and second order

diffraction patterns are clear. If we continue to increase the bias voltage, the second order

fades and the first order appears clearly again at approximately 4.65.

4.2.3 Multiple Beams

We also created multiple Bessel beams out of a single Gaussian beam. There are two

ways in which to achieve this. The first is to divide the mask into separate masks for

each Bessel beam we want to create and tile the masks. This method is flexible because

we can use different parameters for each vortex that we create. Fig. 4.12 shows four

tiled Bessel beams. We can also create multiple beams by nesting multiple singularities

within a single hologram as shown in Fig. 4.13. These are less flexible because all of the
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Figure 4.12: Four tiled Bessel beams and the hologram that is used to create them, color
and height represents intensity, the center of each beam is hollow (zero intensity), which
is not visible due to the tilt of the picture. Note the destructive interference in the center
of the 3-dimensional picture.

Figure 4.13: Four nested Bessel beams and the hologram that is used to create them, color
and height represent intensity, the center of each beam is hollow (zero intensity), which
is not visible due to the tilt of the picture. Note the constructive interference in between
the Bessel beams.
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parameters for each singularity have to be similar.

4.2.4 Propagation Length

As the propagation distance increases, the amount of laser power in the first ring of the

Bessel beam increases. Thus, as the beam travels further from the SLM, the singularity

in the center becomes better defined. Also, as the beam propagates, the anomalous dif-

fraction patterns diverge away from the center of the first order beam, making the Bessel

beam clearer. As shown in Section 2.4, the length that the beam will propagate without

diffracting is limited due to the aperture size and goes as

zmax =
ρ0R

λ
. (4.9)

In these experiments, this is approximately equal to 30 m using ρ0 = 1.4 mm, R = 1.25 cm,

(the radius of our hologram), and λ = 633 nm.

4.2.5 Conclusions and Applications

The SLM provides us with a means to test a variety of different diffraction gratings. We

are able to create Fourier holograms that can produce multiple Gaussian spots in a wide

variety of configurations. It also allows us to create Bessel beams out of Gaussian beams

with real time control over the size of the singularity and the deflection angle. The spots

are stable in time so that particles do not escape. This technology has applications in

controlling cold atoms such as the guiding of atoms into traps[32] and atom lithography.

Also, using the billiard traps, it may be possible to observe an atom undergoing Brownian

motion or moving in a chaotic fashion.
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Chapter 5

Erbium Doped Fiber Ring Lasers

With the rise of the telecommunications industry came a rapid development in fiber and

fiber amplifier technology. Due to the need to amplify signals as they travel through fiber,

Erbium Doped fiber amplifiers (EDFA’s) have become readily available for use in indus-

try as well as in the scientific community. Because they can easily be configured as the

active medium in a laser cavity, they have been used in optical chaotic communications

experiments over the last decade. Erbium doped fiber ring lasers (EDFRL’s) are a good

choice in chaotic communications because they generally have a large number of parame-

ters that can be varied and a large number of longitudinal modes propagating within the

cavity[52, 53, 55]. This makes their dynamics complex and difficult to replicate.

These complex dynamics also make EDFRL’s a good tool for studying high-

dimensional dynamical behavior that occurs on multiple time scales and developing new

analysis techniques for such systems. Since the EDFRL’s used in the experiments described

in this thesis are composed of EDFA’s and passive single mode fiber, this chapter will

provide a brief overview of these components as well as a description of the applications

of such systems.

5.1 Fiber Characteristics

Optical fiber has been a primary waveguide in optics and communication over the last

decade. It has become commonplace in businesses and residential communities as the

carrier of information over the Internet and telephone. An optical fiber is called single
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Figure 5.1: Diagram of a single mode nonpolarization maintaining optical fiber.

mode if the size of the core is only big enough to allow a single transverse optical mode

to propagate. As shown in Fig.5.1, single mode optical fiber (SMF) consists of a 9 µm

fused silica core surrounded by a 125 µm cladding. The light propagates through the

core, reflecting off of the cladding with total internal reflection since has a lower index

of refraction than the core. A core index of refraction of 1.45 and cladding index of

refraction of 1.443 is typical for SMF. For a complete description of how to determine core

and cladding size and indices of refraction see Refs.[56, 57].

The optical fiber used in the experiment was nonpolarization maintaining, meaning

that the polarization state of the light is affected by the waveguide itself[58, 59]. The

polarization rotations that occur in an optical fiber can be explained by treating an optical

fiber as a concatenation of randomly oriented optical waveplates. The effects of these

waveplates can be expressed as a product of unknown phase shift and rotation matrices,

resulting in an arbitrary unitary matrix. The most general form of this matrix, called the
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unitary Jones Matrix, takes the form

J =




a b

−b∗ a∗


 (5.1)

where |a|2+|b|2 = 1, and is used to describe the transformation of two orthogonal polariza-

tion states of the electric field upon traversing the fiber[58]. The birefringence of the fiber,

or the orientation of the pretend wave plates, is sensitive to environmental factors such as

stresses and temperature. These variations are observed on very slow time scales. Other

nonlinear effects of fiber will not be discussed in detail because they are not relevant to

the experiments presented in this thesis. However, a full description of the nonlinearities

in fiber is presented in Ref.[58].

5.2 Erbium Doped Fiber Amplifiers

Erbium doped fiber amplifiers (EDFA’s) have gained tremendous popularity over the last

decade in the field of telecommunications. The active lasing ion in these amplifiers is Er3+,

a rare earth ion that has transitions at 1.3 and 1.55 µm, the latter of which has minimum

losses for propagation within SMF[56].

The energy level diagram of Er is presented in Fig.5.2 which shows both the absorp-

tive and radiative transitions that can take place in the Er3+. Since we would like our

amplifier to operate at λ = 1.5 5µm, we would like to utilize the 4I13/2 →4 I15/2 transi-

tion. Of the two possibilities for pumping, 1.48µm and 980 nm transition, only the 980 nm

allows for the ion to quickly decay into the 4I13/2 state by a nonradiative decay process

from the 4I11/2 excited state, allowing it to efficiently achieve population inversion over

the ground state. When pumped with 980 nm light, EDFA’s utilize a three level lasing

transition whose terminal level is the Er3+ ground state. Lasing in this system is catalyzed
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Figure 5.2: Energy level diagram of erbium doped optical fiber[62].

by the long fluorescence lifetime of Er3+ (τf = 10 ms), which allows the system to achieve

a population inversion between the metastable intermediate state and the terminal ground

state[60].

EDFA’s display a large amount of spectral broadening, even though the radiative

transitions occur at quantized energy levels. This broadening is due to effects such as

the spin-orbit coupling, electron-electron interactions and most significantly the Stark

effect[60, 61], due to interactions with the fused silica host. The Stark effect is seen when

the crystalline host material generates local electric fields due to its structure. These fields

may break degeneracies in the energy levels of erbium, causing transitions to occur over

multiple energy levels. Since these fields can be generated on length scales that are very

small, the amplitude of the fields can vary throughout the crystal, causing erbium to lase

over a wide range of frequencies. This mechanism allows for substantial broadening of the

spontaneous emission spectrum[62]. Figure 5.3 shows a typical erbium spontaneous emis-

sion spectrum when pumped with 980 nm light. Though the spectrum is centered around

1540 nm, significant gain is observed in the amplifier between 1525 and 1560 nm[62].
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Figure 5.3: Amplified spontaneous emission (ASE) spectrum of erbium doped fiber
pumped with 980 nm light[62]
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Polarization
Controller

Ring Laser

Coupler

Figure 5.4: Simple erbium doped fiber ring laser setup. The fiber amplifier acts as the
active medium of the laser. Light propagates unidirectionally in the ring, and may be
coupled out using an evanescent field coupler. The net birefringence of the ring may be
adjusted using a polarization controller which changes the number of modes that propagate
within the laser[62].

5.3 Erbium Doped Fiber Ring Lasers

Depending on the configuration, erbium doped fiber can act either as an amplifier for

coherent light emitted by a separate laser or as a laser itself when placed in a cavity.

Doped fiber amplifiers are used as in-line amplifiers in fiber communications channels

and Er3+ is a popular choice of dopant ion due to its high small-signal gain and noise

characteristics[57]. However, the spontaneous emission noise in an EDFA often limits how

many amplifiers can be put into a channel. With each addition of an EDFA, there is both

an increase in both the signal and the noise level.

Amplified spontaneous emission noise, though a problem for communications, is

what allows the erbium doped fiber amplifier to be turned into a laser. In an erbium

doped fiber ring laser (EDFRL), the EDFA is connected to passive single mode fiber in a

loop as shown in Fig.5.4. The EDFA acts as the active element in the laser and the loop

is the cavity. It is often optically pumped at 980 nm using a wave division multiplexing
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Figure 5.5: Basic component structure of an erbium doped amplifier. A 980 nm pump
laser excites the erbium doped fiber. The pump field is injected into the doped fiber using
a wave division multiplexing (WDM) coupler. Two Faraday optical isolators enforce the
direction of propagation of the lasers in Fig. 5.4.[62]

coupler as shown in Fig.5.5, as it would be in an amplifier configuration, and a fiber isolator

is inserted into the ring to ensure unidirectional operation in the experiments presented

in this thesis.

Lasing is initiated by the spontaneous emission noise once the amplifier attains

population inversion. This noise then travels around the cavity and gets amplified as it

passes again through the amplifier. Evanescent field couplers are inserted within the loop

to extract a fraction of the laser light.

Since the cavity is composed of single mode fiber, the cavity lengths of EDFRL’s

can vary from tens of centimeters to tens of meters long. For longer cavities this leads

to round trip times on the order of several hundreds of nanoseconds. Therefore we can

resolve the dynamics of these lasers on both sub-round trip timescales and over several

thousand round trips[61, 58, 63, 64, 5].

Even though we are using single mode fiber which allows only one transverse mode

to propagate in the laser, many longitudinal modes can propagate simultaneously through
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Figure 5.6: Optical spectrum of EDFRL pumped well above threshold. Polarization
controllers are tuned to produce a single well defined peak. The full width at half max is
∆λ = 600 pm while the longitudinal mode spacing is just 40 fm.

the cavity in different polarization states[55]. The total number of longitudinal modes that

can propagate in the cavity depends on the cavity length. Using the polarization controller

we are able to tune the net birefringence of the ring cavity, thus restricting the modes that

can propagate and thereby controlling the optical frequency and linewidth of the laser.

Polarization controllers for fiber ring lasers come in two forms. The first is composed of

fiber and uses mechanical stresses on the fiber to induce a local shift in birefringence.

A second type is used in the experiments presented in this thesis and consists of three

waveplates, λ/4, λ/2, λ/4, in that order. The overall birefringence of the cavity is changed

by rotating the waveplates and adjusting their relative orientations.

In the configuration described above, the EDFRL operating well above threshold

has a much narrower linewidth than the amplified spontaneous emission (ASE) spectrum.

51



Figure 5.6 is a sample optical spectrum of an EDFRL with a cavity length of ∼ 41.5 m

pumped well above threshold. Using the polarization controller, the laser can be tuned

to have a single well defined peak with an optical linewidth of ∆λ = 600 pm FWHM. At

this cavity length, we calculate that the mode spacing is only 40 fm.

Because the modes that propagate in the laser are governed by the net birefringence

of the cavity, the orientation of the polarization controller can also govern the intensity

dynamics of the EDFRL. Depending on the interference between the propagating modes,

many different types of dynamics have been seen in EDFRL’s, ranging from a relatively

steady, nonchaotic output, to self pulsing, to chaos[64]. Injection of light into the cavity

from other sources has also been seen to change the intensity dynamics within the ring[65].

In the experiments presented in this thesis, the individual ring lasers are tuned so that

they have a steady output, with a very small ratio of noise to DC level and relatively

narrow linewidth, ∼600 pm.

5.4 Coupled EDFRLs

For communications experiments, unidirectional coupling has been studied in EDFRL

systems[52, 53, 54]. In this scheme, the optical field from one ring laser has been injected

into the other laser. However, in this scheme, there is no synchronization between the drive

and response laser. There are two reasons for this. The first, because synchronization is

seen numerically in this type of configuration[66], it is thought that laboratory experiments

cannot achieve the coupling strength needed for synchronization. The other explanation

involves the destruction of the polarization and phase information by the fiber in the

injection lines. It may be that the response laser does not receive enough information

about the phase and polarization of the drive laser to synchronize to it. In order to create
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a system for communication with unidirectional coupling, the receive laser must be in an

open loop configuration, rather than a closed ring. For a complete description of these

experiments see Refs.[52, 53, 54].

In the experiments presented in this thesis, the EDFRL’s will be mutually coupled.

These mutually coupled lasers provide the opportunity to study a high-dimensional dy-

namical system with very weak coupling that has dynamics on multiple time scales. This

could lend insight into natural systems that function this way such as neurons and dis-

ease spread[8]. It also allows us to develop tools with which to analyze complex and high

dimensional dynamics.
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Chapter 6

EDFRL Synchronization

High-dimensional systems with dynamics on multiple time scales are prevalent in na-

ture. As data collection techniques become increasingly able to capture long data sets

encompassing many time scales, analysis techniques must be developed for these systems.

Though many analysis tools have been developed for low-dimensional systems[21], there

are far fewer available for complex high-dimensional systems. In mutually coupled sys-

tems it is difficult to determine which system is driving the dynamics or whether the two

systems switch in their roles as leader and follower. One example of a recent attempt to

develop high-dimensional analysis tools have been through statistical measures [67].

Mutually coupled EDFRL’s are an ideal system with which to explore techniques

with which to analyze high-dimensional data on multiple time scales[68, 69]. Due to the

long cavity length many time scales can be resolved in this system, and the system is tun-

able over a wide variety of parameters. This chapter will explore several analysis techniques

using coupled EDFRL’s. These techniques can be extended to other high-dimensional dy-

namical systems including the spatiotemporal chaos in liquid crystals presented earlier in

this thesis[70, 71].

6.1 Experimental Setup

Our EDFRL’s consist of approximately 17 m of erbium doped fiber, the active medium,

and approximately 29 m of passive single mode fiber, making the total length of both

cavities approximately 46 m, within 1 cm of each other. The EDFRL’s are pumped with
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Figure 6.1: Coupled EDFRL’s experimental setup. VA is the variable attenuator.[72].
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identical 980 nm semiconductor lasers at a pump power of 120 mW, corresponding to

approximately 1 mW propagating within each ring. The lasing threshold for our lasers is

approximately 20 mW. An optical isolator is inserted within each ring cavity to ensure

unidirectional propagation.

As shown in Fig. 6.1, each laser has a Gould 70/30 fiber optic evanescent field coupler

that inputs the light from the other laser, and another identical coupler that outputs light

to the other laser. The lasers also contain a Gould 90/10 coupler for monitoring and a

Gould 95/5 coupler as an extra port for message injection. The ports are placed at the

same location in each ring, as shown in Fig. 6.1. The ports of the couplers not in use are

angle cleaved to ensure that there are no back reflections and were monitored to make

sure that the light was only propagating in the correct direction inside the cavities.

The lasers are connected via two injection lines, which consist of passive single mode

optical fiber, one coupler, and a variable attenuator. In this configuration, we have the

ability to monitor and control the amplitude of the light injected into the lasers through

the coupler and variable attenuator, respectively, and observe it on an oscilloscope. The

injection lines are approximately 9 m long, corresponding to a travel time of approximately

45 ns, and again they are matched within 1 cm. Injection line lengths of 200 m and 25 km

were also tested.

The electric field intensity of each laser propagates along identical lengths of fiber

to a 125 MHz bandwidth NuFocus detector which is connected to a 1 GSample/s LeCroy

digital sampling oscilloscope. The output fiber is also connected, through another evanes-

cent coupler, to an optical spectrum analyzer so that we can monitor the optical spectra

of the lasers in addition to the intensities.

The coupling strength, κ is defined as the percentage of power in the injection line
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relative to the amount of power circulating within the ring. The lowest coupling strength

that can be resolved in our system is κ = 0.01%. Since each coupling line has its own

variable attenuator, we can vary the coupling strength in each line independently. Unless

otherwise specified, for the experiments presented here, the coupling strengths were equal

in the coupling lines leading to symmetric mutual coupling. The maximum coupling we

can achieve in our system is approximately 2.28%, so in all cases the two lasers are weakly

coupled. To characterize the changes in intensity, coupling lines of 200 m and 25 km were

tested and the propagation error of the intensity was calculated. It was found that the

fiber does not change the intensity of the light, but the polarization and phase information

cannot be determined by such a measurement.

6.2 Laser Output Characteristics

Once above threshold, the uncoupled ring lasers have a stable output wavelength with

small amplitude fluctuations. An intensity time series of both uncoupled lasers can be

found in Fig. 6.2, where blue represents the intensity of Laser 1 and red represents the

intensity of Laser 2 with an artificial DC intensity offset. Each panel is a zoomed in view of

the panel above it. The fluctuations that are present are a result of spontaneous emission

in the erbium doped fiber that is amplified and slightly modified each time it passes

through the active medium. This process occurs once each round trip, giving it a 220 ns

periodicity. However, the amplitude of the fluctuations are not large when compared to

the mean value of the emitted light, i.e. these uncoupled lasers are stable. However, if

we look at the lasers on a long time scale, we see that there are fluctuations occuring on

microsecond time scales due to the slow variation of the fluctuations as they are amplified.

The round trip time periodicity is visible in the power spectrum in Fig 6.3, where we see
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Figure 6.2: Solitary laser intensities as a function of time; blue is Laser 1 and red is Laser
2; the DC offset is artificial. The uppermost panel is 1 ms of the intensity dynamics of
the uncoupled ring lasers. The middle panel represents 10 µs of intensity data taken from
the center of the upper panel. The bottom panel now represents 1 µs, or ∼5 round trips,
of intensity data.
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Figure 6.3: Power spectra of the solitary lasers, (a) Laser 2 and (b) Laser 1. Note that
the peaks are 4.539 MHz apart, corresponding to the round trip time of the lasers.

a peak every 4.539 MHz.

The same stability can be found in the optical wavelengths of the lasers. The solid

line in Fig. 6.4 shows the optical spectrum of Lasers 1 and 2, where polarization controllers

have been used to tune the center wavelength of each laser. The linewidth of the lasers

are tuned with the polarization controllers to have a FWHM of ∼1 nm. Once tuned, the

optical spectrum of the laser remains stable within the precision of the spectrum analyzer.

6.3 Coupled Lasers

Once the lasers are coupled together at the lowest resolvable coupling strength, κ =∼

0.0114%, we see a dramatic change in the characteristics of the intensity fluctuations.

Although the mean intensity of the lasers changes very little, the amplitude of the fluctua-
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Figure 6.4: The optical spectra. The solid line is the optical spectrum with an FWHM
of ∼ 1 nm. The dashed line is the optical spectrum of the coupled lasers with a coupling
strength of ∼2.5% where the linewidth has narrowed to ∼0.5 nm.
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Figure 6.5: The standard deviation divided by the mean intensity as a function of the
coupling strength.

tions increases and continue to increase with coupling strength until it reaches a maximum

at κ = 0.114%, after which it is constant. This can be seen in Fig. 6.5.

Once synchronization is achieved, there is a qualitative change in the intensity fluc-

tuations. In Fig. 6.6, we see the same intensity time series of both lasers with a cou-

pling strength of 2.28% on three different time scales. Although the mean stays constant

throughout the time series, the intensity experiences large amplitude fluctuations on short

time scales and the same smaller amplitude fluctuations on longer time scales that were

visible in the uncoupled lasers. The amplitude of the short time scale fluctuations is a

function of the coupling strength.

The optical spectra of the lasers also changes with the introduction of coupling.

However, this change does not depend on the coupling strength, as with the intensity fluc-

tuations, but on detuning. When the lasers are coupled, the optical linewidth immediately

narrows to below 0.5 nm and, if the detuning is less than approximately 10 nm, they lock

at a common wavelength, as shown by the dashed line in Fig. 6.4. In most types of lasers,

the cavities are small enough to support only a few longitudinal modes. Since our lasers
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Figure 6.6: Symmetrically mutually coupled laser intensities as a function of time, blue is
Laser 1 and red is Laser 2, the offset is artificial and the coupling strength is 2.28%. The
uppermost panel is 1 ms of the intensity dynamics of the coupled ring lasers. The middle
panel represents 10 µs of intensity data taken from the center of the upper panel. The
bottom panel now represents 1 µs, or ∼5 round trips, of intensity data.
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Figure 6.7: The optical spectra. Time is measured in units such that 0-90 is 30 s. The
arrows indicate when the two lasers were mutually coupled. Following the arrows, the
plot represents the optical spectrum of both lasers. (a) shows the movement of the peak
wavelength of the two lasers as they move together and demonstrates the effect of opening
and closing the injection lines on the wavelength fluctuations, the initial detuning between
the lasers is ∼5 nm. (b) shows the lasers moving together even though they do not lock
at a single wavelength because the uncoupled lasers were detuned too far away from each
other, the initial detuning is ∼13 nm. All figures have coupling strengths of approximately
2.5%.
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have such a large cavity and can support many modes, we see interesting optical wave-

length behavior at large detunings. With detunings greater than approximately 10 nm,

the optical linewidth still narrows but the lasers now each lase at both wavelengths, as long

as they are both supported by each cavity. Figures 6.4 and 6.7 are the optical wavelength

spectrum of the coupled lasers with a coupling strength of approximately 2.5%.

Once the wavelengths lock and the linewidths narrow, we see the common wave-

length move very slowly over a range of approximately 2 nm. This drift occurs every time

the lasers are coupled and can be seen in Fig. 6.7 where the arrows indicate the times

at which they are coupled. When the detuning is less than 10 nm, they find a common

wavelength, as shown in Fig. 6.7(a). If the detuning is too large for the lasers to lock at

a single wavelength, both wavelengths drift together over their respective 2 nm range, as

shown in Fig. 6.7(b). The center wavelength of each laser can be tuned independently.

Asymmetrically coupled lasers have wavelength and intensity fluctuations that be-

have similarly to symmetrically coupled lasers. However, in unidirectionally coupled ED-

FRL’s, the drive laser linewidth no longer narrows and the amplitude of the intensity

fluctuations does not increase. This is because there is no injection into the drive laser in

a unidirectional coupling scheme.

6.4 Synchronization

6.4.1 Average Synchronization Error for Mutual Coupling

The two uncoupled lasers exhibit chaotic intensity fluctuations that are not synchronized

when the lasers are uncoupled. This can be seen in Fig. 6.2 where the intensity time series

are not the same. However, with sufficient mutual coupling, the lasers synchronize. The

two mutually coupled time series shown in Fig. 6.6 are synchronized with a 47 ns offset,
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Figure 6.8: Synchronization error as a function of offset for two time series with a coupling
strength of κ = 2.28%, for Laser 1 leading (blue) and Laser 2 leading (red). The lowest
synchronization error is at an offset of 47 ns.
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Figure 6.9: Synchronization error versus coupling strength, as averaged over each 1 ms
intensity time series. The thin line represents the synchronization error if Laser 1 is leading
Laser 2, and the thick curve represents the synchronization error if Laser 2 is leading Laser
1. The error bars represent the standard deviation of the synchronization error calculated
for ten intensity time series at each coupling strength[72].

the travel time of light between the lasers, as shown by the arrows. The synchronization

error is defined as the difference in intensity between the two chaotic waveforms as

〈e(t)〉 = 10 × log
〈∣∣∣INA (t) − INB (t− τ)

∣∣∣〉 , (6.1)

where the angle brackets denote time averaging.

INA,B(t) = [IA,B(t) −min(IA,B(t))] /max(IA,B) (6.2)

are the normalized intensities of the two lasers and τ is the offset, or travel time, between

the lasers. If we average over the entire time series, we can identify a threshold for

synchronization as a function of coupling strength. The correct offset is determined by

calculating the synchronization error between two time series over a range of offsets. This

can be seen in Fig. 6.8, where the global minimum for both Laser 1 leading (blue) and

Laser 2 leading (red) occurs at 47 ns. Figure 6.9 shows the average synchronization

error as a function of coupling strength, the thin curve represents the synchronization

error if Laser 1 is leading Laser 2 and the thick curve represents the synchronization error

if Laser 2 is leading Laser 1, and the averaging occurs over each 1 ms intensity time series.
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Each point is an average of ten different intensity time series at each coupling strength

and the bars represent the standard deviation of the error at each coupling strength. We

define two time series to be synchronized if they have a synchronization error of less than

-20 dB. Therefore, we see that a coupling strength of κ = 1.14% is the threshold for

synchronization in these ring lasers. Though this type of synchronization error analysis

is prevalent in one way coupled systems where information about which system leads and

lags is obvious, it is insufficient to determine a leader and follower in this type of mutually

coupled systems.

6.4.2 Synchronization in Asymmetrically and Unidirectionally coupled EDFRL’s

Figure 6.10 shows the average synchronization error for asymmetric coupling with Laser 2

coupling strength held at 0.285% and Laser 2 coupling strength varying between 0.285%

and 2.28%. It is now clear that he coupling strength can be used to break the symmetry

between leader and follower laser because a clear leader emerges.

Unidirectional coupling does not lead to synchronization for the coupling strengths

achieved in this experiment. According to numerical simulations done prior to this thesis,

a coupling strength of κ = 2.28% is sufficient to see synchronization between the drive and

response EDFRL[66]. However, the models do not take into account the randomization

of the polarization and phase of the coupling signal that occurs in the fiber.

Even though the lengths of the optical fiber are matched within 1 cm, all optical

fibers contain defects that cause random changes in the birefringence. These defects

inherently make each piece of fiber different from all other pieces of fiber so, even though

the fiber is matched in length, they are not matched in the small perturbations they inflict

on the light propagating through them. These birefringence shifts and environmental
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Figure 6.10: Synchronization error versus coupling strength for asymmetric coupling, as
averaged over each 1 ms intensity time series. The thin dashed line represents the syn-
chronization error if Laser 1 is leading Laser 2, and the thick curve represents the syn-
chronization error if Laser 2 is leading Laser 1. The error bars represent the standard
deviation of the synchronization error calculated for five intensity time series at each
coupling strength[72].
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factors cause the coherence length in fiber to be very short so as the light propagates

through the coupling lines, the polarization and phase of the light changes. This implies

that as the light travels through the injection lines between the lasers, the polarization

and phase information that it began with has been transformed once the light reaches

the other laser. If a device that destroys all of the phase and polarization information,

such as an electro-optic modulator, is inserted into the coupling lines, synchronization

never occurs in the EDFRL’s with mutual coupling. This indicates that synchronization

of chaos in EDFRL’s depends on maintaining some phase and polarization information.

When the lasers are mutually coupled, the lasers are more easily able to adjust to the

dynamics of each other, and are therefore, able to achieve synchronization. However, with

unidirectional coupling, the response laser is unable to adjust to the dynamics of drive

laser and synchronize.

6.4.3 Identifying Leaders and Followers in Mutually coupled EDFRL’s; Symmetry Break-

ing Part I

The dynamics of leader/follower symmetry breaking depend on the mutually coupled

system that is being studied. In Ref.[73], the system of mutually coupled semiconductor

lasers displays symmetry breaking that depends on the detuning between the two lasers.

The symmetry in our system is not broken by detuning since the lasers can support such a

large number of modes. We also know that there is no overall leader or follower when the

synchronization error is calculated over a long period of time with offsets corresponding

to each laser leading.

Therefore, we must look to other methods to identify leader/follower switching

events. If instead of averaging the synchronization error over the entire 1 ms time se-
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Figure 6.11: Synchronization error for κ = 2.28% as a function of round trip, solid (dashed)
line represents the synchronization error if Laser 1 (Laser 2) is leading. No clear leader or
follower is determinable.

ries, we average over half of the number of points in each round trip (110 points), which

laser is leading may become evident. This synchronization error calculation is shown in

Fig. 6.11 for a run where κ = 2.28%. Again, the solid line represents the synchronization

error if Laser 1 is leading and the dashed line represents the synchronization error if Laser

2 is leading. We see that both synchronization error curves lie almost on top of one an-

other, with a synchronization error range that is ∼2 dB. Therefore, this type of analysis

does not give us insight into leader/follower switching either.

Thus, we must look for a completely different way to identify the leader and follower

laser in our experiment. One of the reasons that the traditional synchronization error

analysis fails to identify leader/follower role switching is the distinct separation of time

scales inherent in the system. They are separable into, from longest to shortest, the round
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trip time of the lasers of ∼221 ns, the travel time between the lasers of ∼45 ns and the

subnanosecond fluctuations within each laser. We also collect data at 1 sample/ns for

1 ms. Therefore, we collect a very long time series with fluctuations that occur on many

different time scales. One way to detect shifts is to look for sudden changes in the shape

of the fast fluctuations, as this is an indicator of a switch in the leader laser. However,

since the shape of the fluctuations changes very slowly and the switches may occur over

many round trips, they are very difficult to identify from a one dimensional time series.

If the separation of time scales can be exploited to rearrange the time series into a two

dimensional representation, the switches may become more obvious.

6.5 Two Dimensional Representation

The ability to experimentally resolve the intracavity dynamics of this system allows us to

use a spatiotemporal representation of the intensity to study the synchronization, where

the temporal position inside a cavity-roundtrip is mapped to its projected spatial position

within the cavity[71, 70]. This representation is shown in Fig. 6.12, where the x axis is

the normalized spatial position within the ring cavity, each horizontal row corresponds to

221 ns or one round trip. The y axis represents time measured in increments of the round

trip number and the color represents intensity. We use the fact that the fluctuations are

only slightly modified with each round trip to aid in this mapping. We cannot simply

rearrange the one dimensional time series because the round trip is not exactly an integer

number of nanoseconds, and therefore the number of points in the round trip will vary each

round trip that is collected. Therefore, we must use a correlation function to determine

where each round trip begins and how to line it up in the two dimensional plot. To make the

alignment easier, we interpolate ten points per collected point using linear interpolation.
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Figure 6.12: Spatiotemporal representation of the experimental time series; the color
represents intensity in arbitrary units, the spatial position is normalized to one round trip
in the fiber ring. (a) Uncoupled Laser 1 (b) Uncoupled Laser 2 (c) Mutually coupled Laser
1, κ = 2.28% (d) Mutually coupled Laser 2, κ = 2.28%[72].
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The plots shown in Fig. 6.12 have ten interpolated points per collected points and cover

approximately 2000 round trips of each laser[72].

Figures 6.12(a,b) show the two solitary lasers in the absence of coupling. The lasers

show qualitatively similar dynamics but they are not synchronized. The only periodicity

that we see in the uncoupled lasers corresponds to the round trip time. Figures 6.12(c,d)

correspond to the coupled case with κ = 2.28%. There is now much more structure in

the lasers’ dynamics and they are synchronized with an offset. It is evident that there is

another periodicity that has emerged as a result of the coupling, an approximately 90 ns

periodicity corresponding to twice the travel time between the lasers. We also see that

the patterns change at approximately round trip number 500. When the entire time series

is plotted in this fashion, we detect another switch at approximately round trip number

2000. Therefore, this representation allows us to readily identify the pattern shifts.

6.6 Identifying Leaders and Followers; Symmetry Breaking Part II

We can use these two dimensional plots to more clearly identify these leader/follower

switches. By subtracting the two space-time plots with an offset, we can determine when

each laser is leading the dynamics. This is shown in Fig. 6.13, which portrays the sub-

tracted experimental space-time plots, offset so that Laser 1 and Laser 2 are leading,

respectively. In this representation, a lack of structure around 0 (green) indicates a good

correlation, and the shifts in leader and follower are indicated with arrows. The switches

between leader and follower are now clear and in Fig. 6.13, they occur at approximately

round trip number 250 and round trip number 1700. The switches are also visible if we

look at a plot of the standard deviation of the rows in the subtraction plots as a function

of the round trip number, Fig. 6.14. We see a lower standard deviation when the Laser 1
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(a)

(b)

Figure 6.13: (a) and (b) Subtraction of the experimental space-time plots as if Laser 1 and
Laser 2 is leading, respectively. The arrows indicate a switch in the leader and follower
laser[72].
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Figure 6.14: (a) and (b) Standard deviation of the rows of the subtraction of the experi-
mental space-time plots in Fig. 6.13, as if Laser 1 and Laser 2 is leading versus the round
trip number, respectively. The arrows indicate approximately where a switch in the leader
and follower laser occurs[72].
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Figure 6.15: The derivative of the synchronization error as a function of round trip. The
arrows indicate a switch in the leader and follower laser[72].

is leading in Fig. 6.14(a) than when it is not, and the same is true in Fig. 6.14(b), where

we see a lower standard deviation when Laser 2 is leading than when it is not. The arrows

indicate approximately where the switch occurs since the switch occurs over many round

trips.

If we look back at the synchronization error averaged over every 100 points shown

in Fig. 6.11, the role switching is still not visible. However, during such role switching

events the two synchronization errors change quickly in opposite directions. In order to

detect these changes, we plot in Fig. 6.15 the time derivative of the synchronization error

for the two synchronization errors. One can see distinct changes in the behavior of the

derivative where we have identified the shifts. The extrema of the derivatives of the two

cases are in phase with each other at some times and out of phase with each other at
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other times. According to the discussion above, when the extrema of the derivatives of

the synchronization error become out of phase, a switch in the leader/follower roles is

detected. These points are denoted by arrows in Fig. 6.15.

6.7 Karhunen-Loeve Decomposition

Another method for determining the leader and follower laser is an analysis of the spa-

tiotemporal time series through Karhunen-Loeve (K-L) analysis. An extension of principal

mode decomposition, K-L decomposition allows the extraction of the intrinsic modes of

a system in space and the study of how these modes vary in time. The modes are found

by extracting the eigenenergies of the system and the corresponding eigenfunctions. Time

variation of the modes are studied by extracting the temporal coefficients. The K-L

method has an advantage over other eigenfunction expansion methods because it takes

the least number of modes to represent the dynamics for a given precision[7].

6.7.1 K-L Procedure

The K-L analysis procedure is as follows. Let u(x, t) be the spatiotemporal data matrix

to be analyzed.

1. Demean u(x, t), that is, u(x, t) = u(xn, t) − mean(u(xn, t)).

2. Compute the covariance matrix, k(x, x′) = 〈u(x, t)u(x′, t)〉t, where the brackets in-

dicate time averaging.

3. Compute the eigenvalues (λn) and eigenmodes (ψn) of k(x, x′) where λn is the mean

energy of each eigenmode. There will be as many eigenvalues as there are columns

in the covariance matrix,N , but all will not be needed for reconstruction of the

spatiotemporal time series to a given accuracy.
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Figure 6.16: Accuracy of the reconstruction of the original spatiotemporal plot versus
number of K-L modes used for Laser 1. 13 modes are needed to reconstruct the spa-
tiotemporal time series of Laser 1 with 90% accuracy.

4. Order the eigenmodes in decreasing eigenvalue order so that the eigenmode corre-

sponding to the largest eigenvalue is first, n = 1 and the eigenmode corresponding

to the smallest eigenvalue is last, n = N .

5. Expand u(x, t) =
∑N
n αn(t)ψn(x) where the temporal coefficients are normalized

such that < αn(t)αm(t) >t= λnδnm[7].

Figure 6.16 shows the accuracy for reconstruction of the original Laser 1 spatiotem-

poral time series as the number of eigenmodes that are used increases. This allows the

truncation of the expansion for computational simplicity while retaining numerical accu-

racy. Figures 6.17(a) and 6.18(a) show the first four K-L spatial modes for Figs. 6.12(c)
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Figure 6.17: (a) First four spatial modes, ψ(x), of the K-L decomposition of Laser 1, (read
left to right), (b) first four time coefficients, α(t) of the K-L decomposition of Laser 1,
(read left to right).
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Figure 6.18: (a) First four spatial modes, ψ(x), of the K-L decomposition of Laser 2, (read
left to right), (b) first 4 time coefficients, α(t) of the K-L decomposition of Laser 2, (read
left to right).
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and (d). These are the spatiotemporal representations of Lasers 1 and 2, respectively with

a coupling strength of κ = 2.28%. Though they are qualitatively similar, the lasers are not

synchronized, which is not surprising. The points that are eliminated in the space-time

subtraction plot due to the offset make the two spatiotemporal time series linearly inde-

pendent. Therefore, the eigenvalues and eigenmodes calculated from the corresponding

covariance matrices should be different, and therefore, not synchronized. Figures 6.17(b)

and 6.18(b) are the temporal coefficients for Laser 1 and 2, respectively. These are slowly

varying and are similar for both lasers due to the similar environmental factors affecting

them.

6.7.2 Preliminary Results for K-L Analysis of the Mutually Coupled EDFRL’s

Even though the K-L modes of the individual laser are not synchronized when calculated

independently, K-L analysis can be used to better understand and identify the switches

between the leader and follower laser. Through a K-L decomposition of the space-time

subtraction plots, the variation of the energies in each eigenmode as a function of time can

be analyzed. Figure 6.19(a) shows the temporal coefficients for the space-time subtraction

if Laser 1 is leading and Fig. 6.19(b) shows the temporal coefficients for the spacetime

subtraction if Laser 2 is leading. In this analysis, a large value for the temporal coefficient

intensity corresponds to a large amount of spatial structure. Therefore, when the two

lasers are synchronized, the coefficient intensity will be low for all of the modes. A shift

is detected when there is a sudden shift in the intensity of the temporal coefficients.

Therefore, Fig. 6.19 shows that shifts occur at approximately round trip number 250 and

round trip number 1700.
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Figure 6.19: Temporal coefficients 1-8 of the K-L decomposition of the difference plots in
Fig.6.13. (a) are the temporal coefficients of Fig. 6.13(b) where Laser 1 is leading, and (b)
are the temporal coefficients for Fig. 6.13(a) where Laser 2 is leading.
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6.8 A Physical Explanation

We hypothesize that the appearance of a leader and follower laser stems from the vast

number of optical polarization modes within each cavity. When the two lasers are coupled,

there are still over 10,000 optical modes propagating within each cavity. These modes

wander in both frequency, over a range of approximately 5 MHz and in their polarization.

We assume that each mode couples only to its nearest-neighbor mode in the other laser,

but all of the modes are wandering, so that the nearest neighbor mode at one time may

be different from the nearest neighbor mode at a later time. This causes modes to couple

and uncouple from each other over time. It is also not assumed that all modes have

equal intensities and, in fact, they most likely do not, and the distribution of intensities is

likely to be different between the two lasers. Since we have seen that the leader/follower

symmetry can be broken with unequal coupling strength, we can infer that optical modes

with higher intensity will lead those with lower intensities. Therefore, since we observe

the interference between all of the modes, as they wander we will see different patterns

emerge as they synchronize and unsynchronize. If more high intensity modes in Laser 1

couple to lower intensity modes in Laser 2 than vice versa, we will see that, overall, Laser

1 is leading. If the opposite is true and more high intensity modes of Laser 2 couple to

lower intensity modes of Laser 1 than vice versa, we will see that Laser 2 leads overall. As

the modes couple and uncouple from each other, we will see switches between the leader

and follower laser.

6.9 Conclusions

The methods for determining leader and follower laser presented in this chapter are useful

for analyzing data from any high dimensional systems that exhibit dynamics on multiple
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time scales. These types of systems are otherwise very difficult to analyze because often

they have intrinsic periodicities that impede the use of traditional chaotic analysis. There-

fore, new methods, like those presented above, must be developed to analyze these types

of systems as data collection techniques evolve to allow us to collect data on multiple time

scales.

The method of K-L decomposition as applied to the mutually coupled EDFRL’s

has application in other cases of high dimensional dynamical systems, the most relevant

being the turbulent state of the liquid crystals with optoelectronic feedback presented

in Chapter 5. In such systems, K-L decomposition can be used to better identify the

degrees of freedom on which synchronization of the dynamics depends. This knowledge

can then be used to better control synchronization of the dynamics and to develop lower

dimensional models that accurately represent the dynamics.
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Chapter 7

Coupled EDFRL Model

Since synchronization of coupled EDFRL’s occurs in the fast fluctuations, we cannot use a

model that uses mean field approximations like those usually used for laser models[74, 75].

In these models the dependence of the laser variables along the direction of propagation

is ignored, an assumption we cannot make in our system. Therefore, we use a delay

differential equation model derived from the Maxwell-Bloch equations. In this chapter we

will derive the model equations starting with the Maxwell-Bloch equations and present

results for synchronization and role switching in simulated mutually coupled fiber ring

lasers. In this experiment we are only concerned with a single polarization mode since

each polarization mode couples only with a single polarization mode in the other laser.

7.1 Derivation of the Model Equations

The model is based on an Ikeda-style set of delay differential equations[74, 75, 64]. They

are derived in the spirit of Loh and Tang in Ref. [76] and have been used to model the

dynamics of solitary EDFRL’s in various dynamical regimes[66, 64]. This model will

differ from that derived in Ref. [61] in that it will only contain a single polarization, and

therefore, a single polarization mode. Since the model will simulate an erbium doped fiber

laser system, it will be necessary to account for the three level transition of the Er3+ ion

when pumped at 980 nm, and therefore, the population inversion will be defined as the

difference between the number of ions in the intermediate state and the number of ions in

the ground state, or N = Nint −N0. This model is presented in Ref. [72].
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We begin with the wave equation with a time-varying polarization and the Optical

Bloch equations for the polarization and population inversion [61, 77](in all equations

presented, c/n→ c),

∂2E
∂z2

− 1
c2
∂2E
∂t2

= µ0
∂2P
∂t2

, (7.1)

dN
dt +γ‖(N +N0 +Nt) − P =

2i
h̄

(E∗P − EP∗), (7.2)

dP
dt = −(γ⊥ + iω)P +

i|p|2
h̄

EN, (7.3)

where µ0 is the magnetic permeability of the fiber, γ‖ is the relaxation time or decay rate,

∼ 0.01 s for Er3+ ions, γ⊥ is the dephasing rate, ω is the center cavity frequency, Nt is

the total number of ions per unit length in the medium, and p is the dipole moment of

the ions. We can write the electric field and polarization as:

E = E(z, t)ei(wt−βz) (7.4)

P = P (z, t)ei(wt−βz), (7.5)

where E(z, t) and P (z, t) are the complex slowly varying electric field and polarization,

respectively.

We can now obtain a new equation for the electric field,

∂2E

∂z2
− 2iβ

∂E

∂z
− β2E − 1

c2
∂2E

∂t2
− 2iω

c2
∂E

∂t
+
ω2

c2
E = µ0

∂2P

∂t2
− 2iωµ0

∂P

∂t
− ω2µ0P. (7.6)

Since E(z, t) and P (z, t) are slowly varying, we can apply the slowly varying wave

approximation and obtain a new version of Eq.(7.6),

−2iβ
∂E

∂z
− 2iω

c2
∂E

∂t
= −ω2µ0P, (7.7)

or

∂E

∂z
+

ω

βc2
∂E

∂t
= − iω

2µ0

2β
P = − iµ0ωc

2
P. (7.8)
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Since c = ω/β, this reduces to,

∂E

∂z
+

1
c

∂E

∂t
=

−iµ0c

2
P, (7.9)

which becomes our new equation for the amplitude of the electric field.

We now focus our attention on Eq.(7.3), and substitute our equation for P, or

Eq.(7.5), and obtain,

dP

dt
= −(γ⊥ + i∆ω)P +

i|p|2
h̄

EN, (7.10)

where ∆ω = ω − ω0 is the detuning away from the center cavity frequency, and look for

the steady state value, or where dP/dt = 0. This occurs for

Peq =
i|p|2
h̄

1
(γ⊥ + i∆ω)

EN. (7.11)

If we substitute Eq.(7.11) into Eq.(7.9), we find,

∂E

∂z
+

1
c

∂E

∂t
=

µ0ωc|p|2γ⊥
2h̄(γ2

⊥ + ∆ω2)
(1 − iα)EN, (7.12)

where α = ∆ω/γ⊥.

We can also substitute Eq.(7.11) into Eq.(7.3) and obtain a new expression for the

population inversion,

dN

dt
+ γ‖(N +N0 +Nt) − P =

2i
h̄
|E|2

[
2i|p|2γ⊥

h̄(γ2
⊥ + ∆ω2)

]
N. (7.13)

Therefore, the equations now read,

c
∂E

∂z
+
∂E

∂t
=

1
2ε

ω|p|2γ⊥
h̄(γ2

⊥ + ∆ω2)
(1 − iα)EN, (7.14)

dN

dt
+ γ‖(N +N0 +Nt) =

−4
h̄ω

|E|2
[

ω|p|2γ⊥
h̄(γ2

⊥ + ∆ω2)

]
N, (7.15)

where ε is the permittivity of the fused silica medium.

In order to simplify the equations, we define the parameter,

a =
ω|p|2γ⊥

εh̄c(γ2
⊥ + ∆ω2)

, (7.16)
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so that the equations become,

∂E

∂t
= −c∂E

∂z
+
c

2
a(1 − iα)EN, (7.17)

dN

dt
= P − γ‖(N +N0 +Nt) − 4εc

h̄ω
|E|2 aN. (7.18)

We now change our frame of reference into one that rotates with the light circulating

in the cavity. Mathematically, this looks like,

τ ≡ t− z

c
, (7.19)

so that the field equation becomes

∂E(z, τ + z/c)
∂z

=
ac

2
(1 − iα)E(z, τ + z/c)N(z, τ + z/c). (7.20)

Now, we integrate over the length of active fiber, LA and obtain,

E(LA, τ + LA/c) = E(0, τ) exp
[
ac

2
W (τ + LA/c)(1 − iα)

]
, (7.21)

where W (τ + LA/c) =
∫ LA
0 N(τ + LA/c)dz. Also, we can write the equation for the

integrated population inversion as,

dW (τ + LA/c)
d(τ + LA/c)

= PLA−γ‖(W+W0+Wt)− 4εc
h̄ω

|E(0, τ + LA/c)|2 (exp[aW (τ+LA/c)]−1).

(7.22)

Since we have a ring cavity, we can relate E(0, τ +LA/c) to E(LA, τ − (L−LA)/c),

where L = LA + LP is the total cavity length, by

E(0, τ + LA/c) = Rei∆φE(LA, τ − (L− LA)/c). (7.23)

Rei∆φ is the return coefficient in the cavity, accounting for cavity losses, multiplied by a

phase factor to account for the net birefringence of the fiber. Therefore, the electric field

equation becomes,

E(LA, τ+LA/c) = RE(LA, τ+LA/c−L/c) exp
[
ac

2
W (τ + LA/c)(1 − iα) + i∆φ

]
. (7.24)
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We can now redefine t = τ + LA/c and define a new delay time, τR = L/c, so that

the equations become,

E(t) = RE(t− τ) exp[
ac

2
(1 − iα)W (t) + i∆φ], (7.25)

dW

dt
= P − γ‖(W +W0 +Wt) − 4εc

h̄ω
|E(0, τ + LA/c)|2 (exp[aW (t)] − 1). (7.26)

We now define,

ψ(t) = E(t)

√
4εc
h̄ωW0

and (7.27)

Φ(t) =
W (t)
γ‖W0

,

where W0 = N0LA.

Therefore, our final equations are,

ψ(t) = Rψ(t− τ) exp[
ac

2
(1 − iα)W0Φ(t) + i∆φ] and (7.28)

dΦ
dt

= q − 1 − Φ(t) − |ψ(t)|2
{
exp(γ‖aW0Φ(t)) − 1

}
, (7.29)

where q = PLA
γ‖W0

− Wt
W0

.

These are the basic equations that simulate a single polarization mode in a single

ring laser. In order to simulate two coupled ring lasers, we must utilize two sets of these

equations and an electric field coupling term. For ease of presentation, we will redefine

ψ(t) as E(t) and Φ(t) as W (t). Therefore, our model equations, including coupling, are,

E1,2(t) = R exp [Γ(1 − iα)W1,2 + i∆φ]Efdb
1,2 (t) + ξ1,2(t), (7.30)

dW1,2

dt
= q − 1 −W1,2(t) − |Efdb

1,2 (t)|2 {exp[2ΓW1,2(t)] − 1} . (7.31)

The feedback term Efdb
1,2 (t) is given by

Efdb
1,2 (t) = E1,2(t− τR) + κ1,2E2,1(t− τc), (7.32)
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symbol parameter value

α normalized detuning 0.0352

a material gain 2.03 × 10−23 m2

N0 Transparency inversion 1023 m−3

n index of refraction 1.44

λ center lasing wavelength 1.55 × 10−6 µm

LA length of active fiber 15 m

Lp length of passive fiber 27 m

D intensity of white Gaussian

noise

10−5

R return coefficient 0.4

q normalized pump parameter 100

Table 7.1: Parameter values common to both transmitter and receiver.

where the subindices 1 and 2 denote Laser 1 and Laser 2, respectively, τR is the round

trip time of the cavity, and τc is the travel time between the two lasers, Γ = 1
2aW0, and

∆φ = 2πnLP /λ. Time is measured in units of the decay time of the atomic transition,

γ‖ ∼ 0.01s. ξ(t) is white Gaussian noise with zero mean and intensity D. The feedback

term [Eq.(7.32)] contains two contributions, one coming from the same laser and delayed

by the cavity round-trip time τR, and another coming from the other laser, delayed by

the travel time between the two lasers τc and quantified by the coupling strength κt,r, as

defined in Chapter 7. However, phase modulation and birefringence defects in the fiber

are not accounted for in the simulated coupling term. The delay times correspond to their

experimental values τR = 220 ns and τc = 45 ns and the coupling strength, κ, was varied

from 0.114% to 2.28%. The values of the parameters common to both lasers can be found
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in Table 7.1. A detailed description and derivation of the model can be found in Refs.

[64, 72].

7.2 Model Results

With the parameters set as shown in the previous section, we see very good correspondence

between the model and the experiment. The pump rate used in all simulations presented

is approximately five times threshold as it is in the experiment. The noise parameter

was adjusted so that the threshold for synchronization in the model matched that in the

experiments. Time series were recorded at different coupling strengths and were compared

to experimental time series at the same coupling strength. Figure 7.1 is a comparison

of the model and experimental time series at two different coupling strengths. The ratio

of the standard deviation of the fluctuations to the mean is similar for both cases. This

can be better seen in Fig. 7.2, where the standard deviation normalized to the mean is

shown for both the experiment and the simulations. The simulations match very closely

to the experiment, except at the extreme lowest coupling strengths.

As in the experiment, the simulation shows a threshold for synchronization around

κ = 1.14%. Figure 7.3 shows the synchronization error as a function of the coupling

strength for both the model and the experiment. They are in agreement except for at the

lowest coupling strengths. The model was also tested with delays that were much longer

than the round trip time and the results were again in agreement with the experiment.

Figures 7.4 and 7.5 are the spatiotemporal representations of the numerical simula-

tion time series uncoupled and with 2.28% coupling. The number of round trips plotted

spatiotemporally is 200, which is one tenth of the number plotted on the experimental

plots. The number of round trips is limited in the simulation by the computational time.
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Figure 7.1: Intensity time series for approximately two round trips of two mutually coupled
fiber ring lasers. Laser 1 is the thick line and Laser 2 is the thin line. (a) The experimental
and numerical time series for coupling strength, κ = 0.114%. The time series are not
synchronized. (c) The experimental and numerical time series for κ = 1.17%. The time
series are synchronized with a 45 ns offset. The arrows represent where the time series
line up with a 45 ns offset in either direction
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Figure 7.4: Spatiotemporal representation of the numerical time series; the color represents
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ring. (a) Uncoupled Laser 1 (b) Uncoupled Laser 2

94



Normalized Spatial Position

R
o

u
n

d
 T

ri
p

 N
u

m
b

er

(a)

0.2 0.4 0.6 0.8

20

40

60

80

100

120

140

Normalized Spatial Position

(b)

0.2 0.4 0.6 0.8

20

40

60

80

100

120

140

0.2

0.4

0.6

0.8

Figure 7.5: Spatiotemporal representation of the experimental time series; the color rep-
resents intensity in arbitrary units, the spatial position is normalized to one round trip in
the fiber ring. (a) Mutually coupled Laser 1, κ = 2.28% (b) Mutually coupled Laser 2,
κ = 2.28%[72].

Figs. 7.4(a) and (b) are solitary Lasers 1 and 2, respectively. Figs. 7.5(a) and (b) are

coupled Lasers 1 and 2, respectively, with a coupling strength of κ = 2.28%.

It is difficult to determine which laser is leading and which laser is following, as

shown in Fig. 7.3, like it is in the experiment. The arrows in Fig. 7.1 show where the two

time series line up with two offsets corresponding to the travel time, in both the experi-

mental and numerical results. However, if we view the model in the same spatiotemporal

configuration as the experiment, we again observe switching.

7.3 Conclusions

A delay-differential equation model has successfully been developed to simulate the behav-

ior of coupled EDFRL’s. There is qualitative agreement in the intensity output between

the experiment and the numerical simulations. The simulations display synchronization

at the same coupling strength as in the experiment. This model can now be used to

investigate dynamics unique to coupled ring laser systems.
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Chapter 8

Communicating with the EDFRLs

Communicating with chaos has been a popular area of study since the early 1990’s. Gener-

ally, two identical dynamical systems are coupled together and their synchronized chaotic

output is used as a carrier wave for communications. This scheme was tested on a variety

of systems with coupled electronic chaotic circuits[20] and with coupled lasers, including

optically unidirectionally coupled fiber ring lasers[52, 53, 54]. However, it was found in

those experiments, as in the present one, that two closed loop EDFRLs are very difficult to

synchronize. In fact, in order to make a system for communications, a closed loop EDFRL

was coupled unidirectionally to an open loop amplifier with a proper time delay[52, 53, 54].

In this experiment, we make use of the synchronization achieved through mutual coupling

to use two closed loop EDFRLs for chaotic communication. Though the signals are now

sent in both directions, no longer allowing the system to be secure, this type of system

lends great insight into how high dimensional systems communicate.

8.1 Message Injected into the Ring

8.1.1 Experimental Setup

The experimental setup for the communications experiments was the same as for the syn-

chronization experiments with a few additions. Unless otherwise indicated, the coupling

strength is 2.28% for each laser. In all experiments, a JDS Uniphase Mach-Zender type

electro-optic modulator was driven by an Agilent B1130A Pulse-Pattern generator and

used to control the output of an optical source. The optical source used in this experi-
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ment was a Photonetics Tunics-BT narrow linewidth tunable laser. After passing through

the EOM, the bits were amplified by a JDS Uniphase optical amplifier which consists of an

EDFA pumped at 980 nm, similar to the active medium in the ring lasers. The mutually

coupled EDFRLs were adjusted to fluctuate around the a center peak near 1550 nm using

the polarization controllers. The bit amplitude, width, wavelength and frequency were

varied. The experimental setup is shown in Fig. 8.1.

In the first experiment presented herein, the bits were injected directly into the

laser cavity of Laser 2 through the 95/5 evanescent coupler as shown in Fig. 8.1. In this

configuration, when a single bit is injected into the ring, it propagates through the cavity

multiple times as it rings down. The message then propagates through the coupling lines

into the second ring laser where it is immediately filtered out, and we can decode the

messages through simple subtraction. It should be noted that in all of the experiments

presented in this chapter, we use simple time series subtraction with a correct offset to

decode the messages rather than filtering techniques that have been used previously in

ring lasers[52, 53, 54, 55]. Therefore, we can in principle use a very fast bit rate. However,

the detectors that we are using filter out bit rates greater than 125 MHz and sets the

upper limit in these experiments.

8.1.2 Experimental Results

ASCII bit streams of four and five characters were tested, and in this configuration single

bits will also be presented to illustrate the issue of the slow cavity ring down. Fig-

ure 8.2(a) shows the time series with the bit injected into Laser 2, where the blue curve

is the transmitter and the red curve is the receiver. It is not obvious where the bits are in

this figure, however. Figure 8.2(b) shows the subtraction of the transmitter and receiver
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Figure 8.1: Experimental setup for the injection of bits into the cavity, the order of the
components has been rearranged from the synchronization experiments for convenience,
and the EOM is the electro-optic modulator.[79]
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Figure 8.2: Experimental data showing full message masking and recovery when the bits
are injected into the cavity. (a) are the intensity time series of the transmitter (blue) and
receiver (red) lasers. The bit stream is not visible in this time series. (b) is the subtraction
with the correct offset of the receiver intensity from the transmitter intensity, both bits
and ring down are visible, they are not with any other offset. (c) At intensities higher
than the cutoff, the bits alone are visible and the message can be recovered.[79]
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the message wavelength to the center lasing wavelength.[79]

laser. The bits are now evident in the subtracted time series. We now assign a threshold

for message recovery, above which we assume the fluctuations are bits, and below which

we assume the fluctuations are due to the chaotic carrier or the ring down of previous bits.

In Fig. 8.2(b) this threshold is at an intensity value of 11[80]. Figure 8.2(c) shows the bits

after the cutoff. The ASCII word represented here is Chaos. Even though we can recover

the message, the threshold is relatively high due to the ring down.

The ring down was characterized as a function of time, measured in units of one

round trip, and shown in Fig. 8.3. It was found that the decay follows a power law rate

that depends on the proximity of injected wavelength to the center lasing wavelength of

the coupled EDFRLs. This is intuitive because the further away from the center lasing

wavelength it is, the less the amount of power the cavity gives to it, and the more quickly
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Figure 8.4: Simulated injection into the cavity. (a) are the intensity time series of the
transmitter (blue) and receiver (red) lasers. The bit is not visible in the time series. (b)
Subtraction of the receiver time series from the transmitter, the bit and the ring down are
both visible. The ring down occurs with a period of the round trip time.[79]

it is damped out. In Fig. 8.3 we see the difference in the power law decays for three

injection wavelengths with different detunings from the EDFRL lasing peaks, which are

at ∼1550 nm.

8.1.3 Numerical Results

The message injection into the ring was also simulated using the numerical model described

in Chapter 8. In these simulations, bits were injected into the ring as in the experiments.

Figure 8.4(a) shows the simulated time series with a single bit injected into the transmitter

laser cavity. Again, the bit is completely masked by the chaos and does not appear in the

receiver time series. Figure 8.4(b) shows the subtraction of the time series. The bit and

the ring down are now visible, like they were in the experiment. The period of the ring
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down bits is equal to the cavity round trip time of the laser in both the experiment and

the simulations.

8.2 Message Injection into the Coupling Lines

8.2.1 Experimental Setup

In the second communications experiment, the bit was injected into the coupling line

rather than into the ring, and was masked by the chaos. This allowed us to use a smaller

bit amplitude and greater bit frequency because there was no ring down. Figure 8.5 shows

the experimental setup for injection into the coupling line. The same setup was used to

generate the bits, however, now they are injected into the input ports of the couplers that

are used for monitoring the power in the coupling lines. Bits were created in the manner

explained above, and injected into the fiber that sends light from Laser 2 into Laser 1.

The setup was then modified to include only a single injection line with counter-

propagating light. This does not affect the synchronization of the lasers or communication

between them. The experimental setup for this is shown in Fig. 8.6. Since an additional

evanescent coupler was necessary, the travel time between the two lasers increased to

∼70 ns. The experiments presented in this section were performed with a single coupling

line.

8.2.2 Experimental Results

Figure 8.7(a) shows both the coupling line with the message masked and the receive laser

time series. The difference in the standard deviations is due to the coupling line only

carrying 30% of the light circulating within Laser 2. The bits are not visible in the time

series. The second panel, Fig. 8.7(b) shows the two time series with normalized standard

102



Figure 8.5: Experimental setup of injection of bits into the coupling lines, EOM is the
electro-optic modulator.[79]

103



EDFA

EDFRL 2
Transmitter 90 / 10

Coupler

70 / 30
Coupler

70 / 30
Coupler

PC

VA

EDFA

EDFRL 1
Receiver 90 / 10

Coupler

70 / 30
Coupler

70 / 30
Coupler

PC

50 / 50
Coupler

50 / 50
Coupler

95 / 5
Coupler

pulse
generator

laser
EDFA

DSO

Figure 8.6: Experimental setup with a single coupling line, light travels in both directions
through the same fiber, EOM is the electro-optic modulator. Bits are injected into the
coupling line. Again, without the correct offset, the bits are not visible.[79]
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Figure 8.7: Experimental injection of bits into the coupling line. (a) Time series of the
injection line from the transmitter (blue) and the receive laser (red). (b) Injection line
intensity (blue) and receiver laser intensity (red) normalized, the bits are not visible in the
transmitter. (c) Subtraction of the receiver laser intensity from the normalized injection
line intensity, the bits are now visible. (d) The subtracted bits above the cutoff intensity.
The word IREAP is now visible.[79]
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Figure 8.8: Numerical simulation of bits injected into the coupling line. (a) blue is the
coupling line and red is the receiver, No bits are visible in the coupling line. (b) is the
subtraction of the receiver signal from the normalized coupling line signal. The bit is now
visible at ∼ 0.799 × 10−2s.[79]

deviations. Again, the bits are not visible. Figure 8.7(c) shows the difference taken now

with an appropriate time delay, and the bits are clearly visible. Figure 8.7(c) shows the

bits when viewed above the threshold, which is 1.3 au, and since we are all familiar with

ASCII, it is obvious that it says IREAP. The drawback to this method is that the injected

bits must have a very small amplitude because the amount of light propagating within the

coupling line is much less than the amplitude of the light within the cavity. Therefore,

when we recover the message, we are very near the noise level of the signal.

8.2.3 Numerical Simulations

This scheme was also tested in the numerical simulations. Once again, a single bit was

injected into the coupling line as was done in the experiment. Figure 8.8 shows the

normalized intensity time series of the injection line and the receive laser. The bit is not

visible in the injection line time series. Fig. 8.8 is the subtraction of the two time series,
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Figure 8.9: Signal to noise ratio versus injection amplitude for various coupling strengths.
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the signal to noise ratio improves for smaller injection amplitudes.[79]

again with an offset, and the bit is now visible. There is no ring down in this situation.

8.3 Discussion and Conclusions

We have demonstrated several chaotic communications schemes with mutually coupled

EDFRLs. Uneven mutual coupling was also tested. Figure 8.9 shows the signal to noise

ratio as a function of injection strength for different ratios of coupling strengths using the

last injection method described. We see that even for uneven mutual coupling, we can

easily recover messages sent from one laser to the other.

We have shown that message masking is possible in three coupling schemes and that

the messages can be extracted via a simple subtraction of the two intensity-time series.

This is a dramatic improvement over previous techniques that involved various methods

of filtering to recover the message and does not limit the bit rate.

We have also shown the robustness of the mutually coupled ring lasers. The subtrac-

tion technique is only possible because the bit is not incorporated into the dynamics of the
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receive laser. This property may lend insight into the dynamics of biological systems that

rely on subtraction of signals to obtain information (i.e., neuronal signals) and mutually

coupled EDFRLs may be a useful tool in studying the behavior of such systems.
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Chapter 9

Spatiotemporal Chaos and Synchronization

Systems displaying high-dimensional dynamics are often difficult to control, perturb and

analyze. These types of systems range from multimode laser systems to fluid systems to

liquid crystals with optoelectronic feedback. All of these systems have a large number of

degrees of freedom which lead to their complex dynamics. When these systems are coupled,

often not enough information can be passed between them for identical synchronization

to occur. This is especially true for systems with unidirectional coupling. The degrees of

freedom that are not coupled from one system to the other are called hidden variables.

Often these hidden variables are responsible for obtaining generalized synchronization,

where there is a functional relationship between the drive and response system[81, 82, 83,

84, 85]. An example of this phenomenon occuring in a multimode laser system can be

found in Ref.[4]. In this experiment the intensity from a laser was used to modulate the

cavity loss of the laser system. Because the laser had two modes and the intensity of the

laser was being used in the feedback loop, the actual modal information was lost, and they

achieved generalized rather than identical synchronization.

The SLM allows us to investigate this property further. Because we are able to

control the voltages placed across the SLM, we are able to construct a feedback loop that

can perturb the system. However, because we are only able to observe the holograms

using a laser, precise information about the position and momentum of the molecules in

the LC is unknown. This leads to hidden degrees of freedom, or “hidden variables”, in

this experiment.
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Figure 9.1: Experimental setup for generalized synchronization of spatiotemporal chaos.
SLM, Spatial Light Modulator; M, mirror; LCD, Liquid Crystal Display; DM, Dielectric
Mirror[86]

9.1 Generating Chaos with Liquid Crystals

We generate chaos in the liquid crystal with an experimental setup similar to that for the

holography experiments with an optoelectronic feedback loop. The linearly polarized light

at 633 nm from a helium-neon laser is incident on the SLM as shown in Fig. 9.1. After

reflecting off of the phase grating, the beam propagates for approximately 2.5 m before it

is incident on a Pulnix TM-72EX CCD camera. As described in Chapter 3, the SLM uses

the VGA output to make a gray-scale pattern on the internal LCD. Though the liquid

crystal is not pixilated, the LCD consists of an array of 480×480 active pixels of which the

central 244×360 are used in this experiment. The image from the camera is then displayed

on a computer monitor and also transferred to the SLM. The camera detects 114 × 180

pixels from the center of the diffracted beam and the inverted image is displayed on the

array of 244×360 pixels in the center of the LCD. Therefore, we use an inverted stretched

image of the central portion of our beam as the feedback signal over the utilized area of the

SLM. This image is illuminated and creates a new phase grating on the liquid crystal in

the same manner as was described in the previous chapters. This process is illustrated in

110



Fig. 9.1. The intensity pattern, created by the initial phase grating and displayed on the

monitor, transforms the liquid crystal into a new phase grating which, in turn, modulates

the laser beam and the process repeats, again as shown in Fig. 9.1 including the dashed

arrow. This process will be referred to as the closed-loop configuration.

The closed-loop intensity patterns are recorded for approximately 17 s on a Silicon

Graphics Inc. O2 Media Recorder in Apple Quicktime formate at a rate of 30 frames/s.

The resulting sequence of patterns (a movie) that is generated from the closed loop is

spatiotemporally chaotic and serves as the drive signals in the unidirectionally coupled

synchronization experiments.

9.2 Characterization of the Chaos and Parameters

The characteristics of the chaos that we generate depend on the bias voltage. Drive movies

were recorded at bias voltages between 1.50 and 5.0 V at 0.25 V increments. If we refer

to the routes to chaos presented in Chapter 3, we recall that the bias voltage plays an

important role in determining the properties of the optical turbulence in liquid crystals

with feedback. Figure 9.2(a) shows a typical picture of the images that appear when

the SLM is run in a closed loop. The average grain size, or the average size of the light

spots on the dark background, depends on the applied bias voltage, the smallest grain

size appearing at the middle bias voltage levels and the largest appearing at bias voltages

closer to the minimum and maximum values. The grain sizes were determined using a

two-dimensional autocorrelation function after subtracting the mean value of each image.

The full width at half maximum (FWHM) was then calculated and an average grain size

was extracted. The autocorrelation function and average grain size as a function of bias

voltage for a variety of drive signals can be seen in Fig. 9.2(b,c), respectively.
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Figure 9.2: (a) is a typical far field chaotic pattern generated by the SLM in the closed
loop feedback system. (b) is a 3-D plot of the autocorrelation from which we take 2-D
slices at the peak in the x and y direction. We calculate the FWHM of the slices and,
from this, the grain size. (c) is a plot of the average grain size in the x and y direction
versus the bias voltage[86].
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The time scales for the liquid crystal are approximately 30 ms for turn on (depending

on the bias voltage) and approximately 40 ms for relaxation into the off state. The LCD

refresh rate is 30 Hz. The pattern evolution time scale depends on the bias voltage and

the refresh rate of the LCD. These time scales are all roughly comparable in the regime

of operation of the experiments.

9.3 Synchronization of Chaos

In order to test for generalized synchronization using the auxiliary method, multiple copies

of a system are connected through one or more degrees of freedom[16, 17, 18, 19]. Since

we cannot make multiple identical copies of the experiment, we have to use a different

way to test for synchronization. In our method, we record the images that are generated

in the closed loop on the computer. We then break the closed loop feedback by breaking

the connection in the computer, represented by the dashed line in Fig. 9.1, and a second

computer is connected to the SLM. The drive movies stored on the original computer is

“played” into the SLM by the second computer and the SLM response to the drive movie

is recorded on the original computer.

When we compare the response movies to the drive movies we see that they are

not the same, therefore, we do not see identical synchronization. In order to test for

generalized synchronization we must determine if there exists a functional relationship

between the drive and response. We see this experimentally buy looking at the responses

of two identical systems to a drive system. In our case, several responses to the drive were

recorded, each with different initial conditions. The initial conditions of each response

movie were made to differ by placing a different initial frame on the drive movie each time

is was played. The intensity patterns or the response movies were then compared with
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(a) Drive

(b) Response 1 (c) Response 2

Figure 9.3: Typical far field chaotic patterns generated by the SLM in the closed loop drive
system (a) and the open loop response system (b),(c), at 1.5 V bias voltage. The chaotic
patterns for the two responses are well synchronized both spatially and temporally[86].

each other, frame-by-frame and pixel-by-pixel, in order to see if they were similar. The

experiment was repeated for different values of the SLM bias voltage. Since all of the

movies are recorded on the same setup, all images undergo the same transformations.

9.4 Results

Figure 9.3 shows typical snapshots of the drive and two response movies at the same

frame number. It is evident that the drive and response images look very dissimilar but

that response 1 and response 2 are nearly identical. This is consistent with generalized

synchronization. The quality of the synchronization is quantified by the synchronization

error. In this case, we define the synchronization error as the difference of the gray-scale

values at each two-dimensional spatial location (pixel) between the images of the two

response movies,

〈e(x, t)〉 = 10 × log10 〈|[IA(x, t) − IB(x, t)]|〉 (9.1)
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where the angle brackets denote space and time averaging. IA(x, y, t) and IB(x, y, t) are

the normalized intensities of the two response images at the position (x,y) and the time t

of the two response movies. To normalize the intensities, each frame was demeaned, and

each pair that was being compared was normalized to the minimum and maximum of one

of the frames in the pair. For calibration, the synchronization error was computed for the

response of the SLM to the same static image at two different times and was found to be

approximately -30 dB. Therefore a synchronization error of less than -25 dB is defined as

the threshold for generalized synchronization.

Figure 9.4 shows the synchronization error analysis and the effect of the bias voltage

on the transient time. The transient period before synchronization is a result of the

mismatched initial conditions, and time is represented by the frame number of the movie.

The movies analyzed were responses to a drive movie taken at a bias voltage of 1.5 V.

Initially, the responses are unsynchronized, but the synchronization level increases (error

decreases) with time and converges to an error of -30 dB.

The time scales of the transient behavior depend on the bias voltage. The first frame

of the drive movie was changed each time the drive movies were played to the response

system, but the changes in initial conditions were identical for each bias voltage. However,

the system response to these changes varied depending on the bias voltage of the response

system. Figures 9.4(b) and (c) show how the synchronization error depends on the bias

voltage of the response system. Transient time monotonically decreases as the bias voltage

increases, indicating that responses taken at high bias voltages synchronize to the drive

signal more quickly than those at low bias voltages.

Generalized synchronization error after the transients was also investigated as a

function of bias voltage. Figure 9.4(c) demonstrates that the synchronization error is
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Figure 9.4: Characteristics of generalized synchronization. (a)Transients of generalized
synchronization error at different bias voltages of the SLM. (b)Transient time (frame
number) of generalized synchronization as a function of bias voltage. The threshold for
synchronization is set at -25 dB. (c)The synchronization error at different bias voltages
after the transient period[86].
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approximately constant for all values of the response bias voltage once synchronization

occurs. The system, therefore, reacted to the change in initial conditions differently for

each bias voltage.

9.5 Discussion

Since the dynamics of the response system are repeatable, reproducible and independent

of the initial conditions, generalized synchronization is stably achieved in this system.

Recalling the results of the holography experiments, we know that the effect of the bias

voltage on static images is one of only clarity. It does not change the overall hologram,

only the clarity of it, or how much phase shift is associated with a certain gray scale level.

However, when placed in the optoelectronic feedback loop, the bias voltage plays a much

more active role. Tuning the bias voltage results in changes in both the quantitative and

qualitative characteristics of the images formed in response to the drive movies. In the

feedback experiment, changing the bias voltage also changes the speed at which the mole-

cules respond to voltages. Therefore, the patterns obtained at each bias are dramatically

different at each voltage.

This different bias voltage response also manifests itself in the varying responses of

the transients at different bias voltages. These responses are evidence that the SLM is not

acting as a passive filtering device, but that the generalized synchronization is a product

of dynamics internal to the device. Though the liquid crystal molecules are responsive to

the bias voltage, in parallel aligned liquid crystals, the molecules are only aligned along

a single axis. Also, the bias voltage does not have full control over their orientation and

momentum. They also feel forces from other molecules and the container. Therefore,

the internal conditions that produced the drive movies are not reproducible using only
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the intensity patterns formed by the phase shifts. This is one of the reasons that we

see generalized synchronization and not identical synchronization. There is also a loss

of information in the recorded movies at each iteration of the feedback loop due to the

transformations inherent in the experimental setup. Feeding back only the center portion

of the diffracted beam leads to significant loss of resolution in the spatial pattern. The

final result is a recorded movie that has lost information about various spatiotemporal

degrees of freedom, corresponding to “hidden” variables in the system. This is analogous

to loss of modal information corresponding to hidden degrees of freedom in the experiment

presented in Ref.[4].

9.6 Conclusions

In summary, we observed generalized synchronization of spatiotemporal chaos in an op-

toelectronic feedback system with a liquid crystal SLM. The transient characteristics of

generalized synchronization depend on the bias voltage of the SLM, whereas the gener-

alized synchronization error is almost constant at various bias voltages after a transient

period.
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Chapter 10

Summary and Future Work

Two high-dimensional dynamical systems have been presented in this thesis, coupled er-

bium doped fiber ring lasers and a spatial light modulator with optoelectronic feedback.

Depending on the complexity of the system and the type of coupling, each system dis-

played a different type of synchronization. The methods that were developed to analyze

the synchronization in these systems can be applied to other coupled high-dimensional

dynamical systems.

10.1 Fiber Ring Lasers

Weakly mutually coupled erbium doped fiber ring lasers provide a means to study a dy-

namical system with a very large number of degrees of freedom. Once the coupling between

the lasers was initiated, the changes in the optical spectra were characterized as a function

of the detuning. The synchronization error was studied as a function of coupling strength,

and a threshold for synchronization was determined. However, through traditional chaotic

time series analysis, i.e., the calculation of the average synchronization error, a leader and

follower laser could not be determined. Several methods for the determination of leader

and follower laser were tested. The first method was the calculation of a running synchro-

nization error, where the synchronization error was averaged over each round trip, rather

than over the entire time series. This did not provide conclusive evidence for a leader

and follower laser or a way to detect switches in which laser was leading. Though the

synchronization error averaged over each round trip did not produce conclusive evidence
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of a leader and follower laser, the switches could be extracted from its derivatives.

Since the intracavity dynamics of the ring laser can be resolved and recorded, we are

able to reshape the one dimensional intensity-time series into a two-dimensional plot. With

this spatiotemporal time series, we are able to use subtraction with offsets corresponding

to each laser leading the dynamics and we are able to determine the leader and follower

laser, as well as determine where the lasers switch roles as leader and follower.

We are able to perform a decomposition of these spatiotemporal time series into

an orthogonal basis of intrinsic modes using Karhunen-Loeve decomposition. With this

method, we are able to extract the most energetic modes of each laser. From the K-L

analysis of the spatiotemporal subtraction data, and the leader and follower laser as well

as the role switches were able to be determined.

A delay-differential equation model was develop based on the Maxwell-Bloch equa-

tions for the weakly coupled fiber ring laser system. The model showed similar dynamics

as the experiment as well as a similar threshold for synchronization. A leader and follower

laser were not able to be determined using the synchronization error averaged over the

entire time series. The numerical simulation data was represented in the same spatiotem-

poral fashion as the experiment and leader and follower lasers were evident as were role

switches.

The mutually coupled EDFRL’s were configured in several chaotic communications

schemes. In the first, bits were injected directly into one of the ring cavities, both nu-

merically and experimentally. Bits were able to be recovered through simple subtraction

of the synchronized receiver signal from the transmitted signal. However, it took several

round trips before the bits that were injected into the cavity were no long visible in the

transmitter’s intensity time series. This ring down was characterized as a function of the
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difference between the injection wavelength and the center lasing wavelength.

In order to eliminate the ring down, the bits were then injected into the coupling line

and masked by the chaos of the transmitter laser. The experimental setup was modified so

that there was only a single coupling line. Therefore, the electric fields of both lasers were

traveling in opposite directions down a single piece of optical fiber. This did not affect

synchronization between the two lasers. The injection of the bits into the coupling line

eliminated the ring down, but the bit amplitude had to be significantly smaller in order

to be masked by the chaos because the amplitude of the light in the injection line is 70%

less than it is in the ring cavity. However, bits were recovered in both the experiment and

simulations in this injection scheme.

10.2 Spatial Light Modulator

A spatial light modulator was investigated as a dynamic holographic grating. Several

different laser intensity patterns were created from a single Gaussian beam, including

multiple Gaussian beams in patterns, optical holographic billiards, and Bessel beams.

The Gaussian profile beams can be used as optical tweezers to trap charged particles

and atoms in a point on a plane. Possible applications of the holographic billiards is the

confinement of Bose-Einstein condensates. The Bessel beams are used as all light atom

guides[32].

When configured in an optoelectronic feedback loop, the SLM displays spatiotem-

poral chaos. This chaos was characterized and it was found that the average grain size and

speed with which the pattern changes depends on the bias voltage. The auxiliary method

was used to detect generalized synchronization in this system when the closed loop drive

movie was fed multiple times into the system in an open loop configuration with different
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initial conditions. The transients to synchronization were calculated as a function of the

bias voltage, and it was found that the synchronization error of the responses after the

transients was independent of bias voltage.

10.3 Applications and Future Work

The holographic images created with the SLM have applications to atomic physics and the

origins of chaos and Brownian motion. Using the holographic billiards and a Bose-Einstein

condensate (BEC) with an initial momentum, one should be able to track the BEC as it

collides with the walls. Since the billiards can be made in the shape of a stadium, it should

be possible to view a BEC in a chaotic trajectory. By tracking the BEC, one should be

able to observe Brownian motion and possibly see the microscopic origins of chaos[87].

The Bessel beams are already being used to guide atoms. Work is ongoing in the

laboratory of Dr. Wendell T. Hill, III, to guide atoms into magneto-optic atom traps

using these beams, and to guide the Bessel beams down hollow core optical fiber in order

to create a fiber optic atom guide. The evidence for the first atoms guided through these

holographic Bessel beams in the Hill laboratory can be found in Ref. [32].

The K-L decomposition used to determine leader/follower laser and role switching

in the coupled fiber ring lasers may have more fundamental applications in the analysis

of high-dimensional dynamics. Future work on the mutually coupled EDFRL’s includes

a study of the synchronization of the modes as a function of the coupling strength. This

could lend tremendous insight into whether synchronization occurs in the low frequency

modes first and modes synchronize from low frequency to high frequency with increasing

coupling strength, or whether the high frequency modes synchronize first and the opposite

occurs. Through K-L decomposition, we may be able to determine whether this also
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applies to high-dimensional systems such as fiber ring lasers.

The SLM configured in an optoelectronic loop can be thought of as a system of

oscillators connected through the feedback. Through the use of an field programmable

gate array, it should be possible to control the connections between the oscillators, or

nodes, and create a very large network. The connections between the nodes can be made

in a static, dynamic, or stochastic fashion. A network of this kind would allow for the

exploration of a very wide parameter space. Once data is collected on this network, it

may be analyzed using K-L decomposition. If the systems possess enough coherence, K-L

analysis may be used to find a series of coupled ordinary differential equations to model

the most important dynamics in the network. In principle, this model should be more

computationally tractable than a model of the entire network.
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