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ABSTRACT 

Title of Thesis: Studies on the Physiology of Hemolymph Coagulation 
in Periplaneta Americana (L.) 

' ( Ronald E. Wheeler, Doctor of Philosophy, 1964 
l - , ,, 

Thesis directed by: Dr. Jack Colvard Jones 
Professor 

In the cockroach, Periplaneta americana (L.), hemolymph coagu­

lation (a) is inhibited for as long as 30 minut es at o 0 to 4°c, (b) is 

initiated at 5°c, (c) is permanently inhibited at 60°c, and (d) takes 

place i n 6 distinct stages. Hemocyte agglutination and transformation 

is inhibited at o 0 to 4°C, is permanently prevented at 55°c, and is in-

dependent of plasma! factors. Live plasmatocytes, granular hemocytes, 

and cystocytes are structurally identical, but differ functionally in 

their capacity to phagocytize and in their fragility. The cystocyte's 

primary function is the initiation of coagulation and/or precipitation 

of the plasma by ejecting cytoplasmic material, including mitochondria, 

into the surrounding plasma. Hemocyte-free plasma will not spontaneous ­

ly precipitate, but requires either ionic calcium released from trans­

forming hemocytes, and/or material from exploded cystocyte mitochondria . 

Substances inside mitochondria may well be t he source of a coagulation­

inducing substance that initiates plasma precipitation and veil formation. 

Substances involved in~. americana coagulation are present i n the plasma 

of 9 other species of cockroach which react to~. americana cystocytes. 

Substances in the plasma of Tenebrio molitor, Galleria mellonella, or 

Rhodnius prolixus do not precipitate in the presence of P. americana 

cystocytes. The amount and/or effectiveness of a coagulation-inducing 

I 



substance released from cystocytes presumably determines the degree of 

plasma precipitation. Physiologically active substances contained in 

and/or released from the corpora allat a and c. cardiaca, but lacking in 

the brain, may regulate the percentage of circulating cystocytes, there­

by influencing the coagulability of the hemolymph. 
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INTRODUCTION 

While there is an extensive literature on the process of hemolymph 

coagulation in insects (Gregoire and Tagnon, 1962; Jones, 1962) most of 

this knowledge is based on its microscopical aspect (Gregoire, 1951, 

1955), and much of it is fragmentary and contradictory. 

Coagulation is a most diverse phenomenon and basically concerns 

the "denaturation" of proteins. The term has been used to refer to the 

agglutination of hemocytes alone, to gelation of the plasma without 

microscopically visible precipitation, and to gelation with fine or coarse 

precipitation of the plasma with or without agglutination of the hemo­

cytes. Each of these may be separate phenomena, but only the last two 

can involve permanent denaturation. The phenomenon is one of the great 

elemental reactions of all cells and is intimately associated with the re­

lease of calcium (Heilbrunn, 1961). It involves the reaction of the cell 

to surfaces. Cellular reaction to surfaces can be expressed in a variety 

of inter-related ways: locomotion, phagocytosis, pinocytosis, agglutina­

tion, and coagulation. 

In the cockroach, coagulation involves the agglutination and the 

dissolution of cells and the precipitation of the plasma. To be useful 

it must be rapid (that is, come to completion quickly). To be effective 

to the animal it should ideally occur only at alien surfaces (wounds) and 

at times of stress (that is, normally it would be suppressed). 

The purposes of this study on Periplaneta americana (L.) were (1) 

to develop techniques for controlling coagulation, (2) to analyze the 

sequence of changes involved in coagulation, (3) to isolate hemocyte-free 
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plasma and plasma-free hemocytes so that their reactions could be stud­

ied separately or after species specific and nonspecific recombination, 

and (4) to study whether calcium is involved in coagulation. In addition, 

it seemed desirable to critically reevaluate the function of the cysto­

cyte in coagulation by trying (1) to identify and characterize living, in­

tact cystocytes (="coagulocytes") in fresh hemolymph, and (2) to identify 

and determine the function of the dark, rounded granules contained in 

cystocytes and other hemocytes. 



LITERATURE REVIEW 

There are several comprehensive reviews on insect hemolymph co­

a g ulation (Gregoire, 1951 a, 1955; Hinton, 1954; Wigglesworth, 1959; 

Heilbrunn, 1961; Wyatt, 1961; Gregoire and Tagnon, 1962; Jones, 1962, 

1964 in press; and Gregoire, 1964 in press). Information and conclu­

sions from investigations on the hemolymph of other arthropods, especi­

ally of crustaceans, have influenced the interpretation of the mechanism 

of hemolymph coagulation in insects. 

In Crustacea and Xipi{'sura ( Limulus sp) , Loeb (1903, 1905) noted 

that blood cells first agglutinated and then disintegrated as they fused 

into a cell coagulum which was sometimes followed by plasma coagulation. 

However, Loe b did not recognize any specific cell types that played a 

major role in the initiation of the coagulation process. The first under­

standing of the mechanism of blood coagulation in arthropods came when 

Hardy (1892), Tait (1910, 1911), and Tait and Gunn (1918) discovered in 

several Crustacea very fragile "explosive corpuscles" which, on contact 

with foreign surfaces, transformed and disintegrated, and ejected material 

into the plasma thereby inducing plasma coagulation in surrounding areas. 

Hemo lymph coagulation in insect s, as in Crust acea, has been described as 

consisting of two separate physiological processes which may occur togeth­

er or independently; (1) hemocyte transformation and/or agglutination, (2) 

plasma coagulation or precipitation (Muttkowski, 1924; Yeager and Knight, 

1933; Ermin, 1939; Beard, 1950; Gregoire and Florlcin, 1950 b). In numerous 

insects, hemocytes analgous to Hardy's explosive corpuscle are termed 

"coagulocytes" (Gregoire, 1951 a) or "cystocytes" (Jones, 1954, 1962). 

3 
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Cystocytes are highly unstable hemocytes which during coagulation con­

tract, and then eject cytoplasmic material into the plasma, and cause 

clouds of plasma precipitate or glassy veils to form around the extruded 

nucleus. 

Gregoire (1951 a, 1953 a, 1955) has classified hemolymph coagula­

tion in more than 400 species of insects into 4 basic patterns: pattern 1 

is characterized by a plasmic coagulat ion or precipitation around cysto­

cytes; in pattern 2, there is formation of hemocyt e pseudopodial meshworks 

a nd the appearance of glassy veils i n the plasma; pattern 3 is a combination 

of pattern 1 and 2; and in pattern 4, there is an absence of coagulation. 

Pattern l is typically found in most cockroaches and other orthopterans. 

Although many recent investigations on the biochemistry of insect 

hemolymph give information on the various constituents in hemol ymph (Wyatt, 

1961), little is known about the chemical nature of substances involved i n 

the process of hemolymph coagulation. According to Wyatt (1961), most of 

these investigations were based on protein components of serum rather 

than plasma or hemolymph, with no attention given t o the nature of coag­

ulable substances. Siakotos (1960 a, b) and Stephen (1961) have bio­

chemically characterized five proteins in Periplaneta americana hemolymph. 

Siakotos (1960 b) suggested that the major contributing substance to plas­

ma precipitation during coagulation is a large unstable g lyco-lipoprotein. 

Since there is said to be a specific dependence of coag ulation on pH and 

on the ion ic ratio in plasma, Franke (1960 a) suggested that enzymes, pos­

sibly from hemocyte mitochondria, are critically involved i n coagulation 

of plasma. 

Rapp (1947) pointed out that the whole mechanism of clotting in 

insect hemolymph is very different from that in vertebrate blood. The 



5 

microscopically visible crystal-like needles of fibrin which develop 

during the clotting of mammalian blood have been reported in crustacean 

blood coagulation (Howell, 1916; Morrison and Morrison, 1952). In insects 

on the other hand, observations on peripheral parts of islands of coagula­

tion indicated that plasma granules (precipitate) transformed into 

needle-like structures shortly after hemolymph withdrawal and cystocyte 

transformation (Gr~goire and Jolivet, 1957; Gregoire, 1959 c). Gregoire, 

Duchateau, and Florkin (1949) noted that the plasma precipitation which 

develops around transformed cystocytes in Gryllus domesticus appears in 

the electron microscope either in the form of sponge-like masses (micro­

flocs), or scattered or agglutinated in meshworks against a background of 

small granules. Identical formations are found in coagulated hemolymph 

of P. americana (Gregoire, 1959 c). 

Differences in techniques of examining the hemolymph are respons­

ible for many of conflicting descriptive accounts of the coagulation pro­

cess in the same species of insect. When the hemolymph is fixed and 

stained with Wright or Giemsa, the cells may not be preserved intact or 

gross distortions in structure may occur (Jones, 1962). In most studies 

on insect hemolymph coagulation, unfixed, undiluted, or saline-diluted, 

wet, thin, whole mounts of living hemolymph are examined with bright field, 

dark field, or phase contrast (Yeager et al., 1932; Rooseboom, 1937; 

Ermin, 1939; Gregoire and Florkin, 1950 b). A drop of live hemolymph can 

also be collected in immersion oil (Yeager et al., 1932;Rizki, 1953) or 

tissue culture medium (Wyatt, 1956). According t o Franke (1960 a), the 

coagulation picture of Blatta orientalis appears different depending on 

whether it is examined as a thin film or a hanging drop. 

Insect hemolymph coagulation has been inhibited by several organic 

acids: nucleic (Paillot, 1923), citric acid and ascorbic acids (Beard, 
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1950), vapors of acetic and other fatty acids (Shull, Riley, and Rich­

ardson, 1932; Shull, 1936; Fisher, 1935); and by physical treatment, 

such as (a) heating the insect (Yeager et al., 1932; Babers, 1938; Beard , 

1950; Jones, 1962; Wheeler, 1963), freezing or (b) chilling (Beard 1950· , , 

Franke, 1960 a; Siakotos, 1960 a; Rosenberger and Jones, 1960; Jones, 

1962), or (c) exposing to ultrasonic waves (Beard, 1950). Franke (1960 a) 

noted that coagulation in a hemolymph drop of Blatta orient alis is pH 

dependent, occurs optimally at pH 7-8, is inhibited at pH 2-3 or 11-12, 

and is incomplete at pH 4-6 and 9-10. Furthermore, in the same insect, 

Franke (1960 a) reported that coagulation is inhibited by mildly hyper­

tonic saline but is greatly accelerated by hypotonic solutions. Of 33 

substances (mostly anticoagulants for vertebrate blood) tested by Gregoire 

(1953 a), 18 were efficient anticoagulants for inse ct hemolymph. Among 

them were four salts (calcium or metallic i on chelating agents), six 

organic esters of sulfuric acid, two basic dyes, and t hree reducing 

agents. Gregoire (1953 a) suggested that these anticoagulants inhibit 

alterations in coagulocytes or cystocytes, thereby preventing the r elease 

of coagulat ion-inducing substances from the cells. In addition, he re­

ported that coagulation occurs on a variety of s urfaces (cellophane, 

acetophane, plexiglass, glass coated with either s ilicon or paraffin) a nd 

that coagulation occurs independently of pH. 



GENERAL METHODS 

Rearing cockroaches. Nymphs and adults of the American cock­

roach Periplaneta americana (L.) were reared separa t ely in Pyrex battery 

jars (12 x 12 inches) at approximately 27°c and undetermined relative 

humidity. To increase surface area and provide hiding places for the 

cockroaches, fourteen, pint-sized, ice-cream cartons (with 0 v" shaped 

openings cut in the open end) were inverted and placed in two layers on 

the bottom of each jar. The cockroaches were fed on Purina Laboratory 

Chow and provided with water in cottonplugged 250 ml flasks. The rear­

ing jars were cleaned and new cartons supplied at approximately 3 week 

intervals. Last stage intermoult nymphs, and moulting nymphs were iden­

tified according to the criteria of Flint and Patton (1959). 

Hemolymph wet mounts and microscopy. The observations on hemolymph 

coagulation were made from wet, unstained mounts spread between a slide 

and a 10 or 12 mm, round coverslips at room temperature or on a special 

cold stage (see p. 8 ) • For routine work, a dark-medium American optical 

"Phasestar" microscope was employed. For special work involving the use 

of a cold stage, light and dark phase were used in conjunction with flu­

orescent microscopy, and sometimes used in conjunction with a 16 mm time 

lapse microcinematographic camera attached to a Reichert MeF universal 

microscope. 

Yeager's Cockroach "heart and blood" saline (Buck, 1953) was used 

unless otherwise stated (saline composed of 10.93g NaCl, 1 0 57g KCl, 0.85g 

Cacl2 , and 0.17g .MgC1 2 per liter of distilled water). 

7 
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Percentages of circulating c ystocytes. Small drops of hemolymph 

from freshly severed antennae were placed in a drop of saline on a glass 

slide for about 45 seconds, and then fixed with 2% aqueous versene 

/disodium ethylenediamine tetraacetate (Fisher Scientific Company, No. 

S-311)/. The percentage of c y stocytes was calculated by counting the 

number of circulating c ystocytes among 500 hemocytes in cockroaches us­

ing a "Leucodiff Recorder" (Fisher Scientific Company, No. 6-247-10V3). 

Photomicrographs. The photomicrog raphs were taken on Polaroid 

Land film (type 55 P/N) with a dark-medium American Optical "Phase . 11 

microscope or with a Reichert Universal microscope. Time lapse movies 

were taken on 16 mm Kodak 11Linagraph Shellburst" film with a Paillard 

Bolex movie camera used in conjunction with a Emdeco timer and the 

Reichert Universal microscope. 

Microscope cold stage. In order to inhibit rapid coagulation 

and still study the hemocytes in as nearly a "natural" state as possible, 

it was necessary to construct a microscope cold stage. With reference 

to Plate 1, Figure 1, t he following parts were used: 

1. Two (75 x 65 x 1 mrn) copper plates (A and B). 

2. One 1 inch rubber "o Ring" (C). 

3. One 2 inch rubber "o Ring " (D). 

4. Two number 2, 18 mm round coverslips (E and F). 

5. Two elbow, ¼ inch o.o. copper joints (G and H). 

6. Twenty 4/40 thread, 3/8 inch, flat or round head brass belts 

with nuts (I and J). 

The dimensions and sizes of the parts listed can be modified to 

suit optical limitations and stage size of the microscope. 

Construction. (1) The periphery of both plates A and B was drilled 

to accomodate 20 bolts (J). (2) A central 15 mm hole was bored in the 



plates (A and B). (3) Two¼ inch holes were bored into plate A in a 

posi t ion between both "o Rings" (C and D) and the elbow joints (G and 
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H) were soldered to these respective holes. (4) A 1/32 inch hole (K) 

was bored into plate A in a position just inside "o Ring" (C). (5) After 

placing the "o Rings" (C and D) between the pla t es A and B, the plates 

were bolted together. (6) Coverslips (E and F) were glued with "Zut" 

or another waterproof glue on the outside over t he large central holes 

of both plates and allowed to dry for twenty-four hours. (7) The cen­

tral chamber enclosed by "o Ring" C and the coverslips was filled by in­

jecting clean distilled water into il through hole K. (8) When filled, 

the chamber hole K was sealed wit h a small piece of tackiwax (Cenco­

Cll444). A completed cold stage is shown in Plate I, Figure 2,A. 

Theory of Operation. Cold water is pumped through either elbow 

joint G or H into the outer chamber (between "o Rings" C and D) and exits 

from the remaining elbow joint. Cold water circulating through this cham­

ber draws heat from the plates and the inner chamber. "o Ring" C which 

forms the inner chamber is included in the basic design to help protect 

the coverslips from the hydraulic pressure of the circulating water as 

well as to prevent the appearance of air bubbles in the field of view. 

Specimens are placed directly on t he coverslip surface of the cold stage. 

The cold stage is placed directly on the stage of a microscope in such a 

position that light from the condensor passes t hrough the central porthole 

of the central chamber to the objective, (Plate I, Figure 4). When working 

with phase microscopy, it is necessary to use a long working distance con­

densor (10 mm) that will allow for the thickness of the cold stage. When 

using low power objectives up to high dry (470 x), the cold stage can be 

cooled by pumping ice water directly through it. However, when using high 
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dry {470 x) or oil immersion (970 x), hydraulic vibration from the pump 

may interfere with good resolution. With reference to Plate I, Figure 3, 

this condition can easily be avoided by pumping water through tube D to 

a small reservoir (H) above the level of the cold stage. Water then 

flows by gravity from the reservoir through tube B to the cold stage {A), 

and returns to the pump reservoir (G) through tube c. Tube Eis connect­

ed to a standpipe in the upper reservoir which drains overflow water back 

to the pump reservoir. A Bronwill Thermoregulator (F), (A.s. Aloe No. 

V79900) was used as a combination pump, stirrer, heater, and thermoreg u­

lator. Thus, the cold stage could be operated at a wide range of temper­

atures. The Bronwill Thermoregulator does not provide refrigeration, 

thus, ice water or a separate refrigerat ion coil is needed to chill the 

water. If temperatures below freezing are desired, all water in the s ys­

tem and cold stage can easily be replaced with alcohol or another suitable 

low freezing point liquid. 



PROCEDURE AND RESULTS 

Hemolymph coagulation in Periplaneta americana (L.) 

Hemolymph coagulation in the genus Periplaneta and in other cock­

roach genera has been described and classified as patt e rn I by Gre goire 

(1955, 1957, 1959 b) and Gregoire and Jolivet (1957) ( i.e., a fine cloud 

of plasma granules appears specifically around cystocytes or coagulocyt e s). 

In ~latta orientalis Yeager et al. (1932) and Franke (1960 a) noted the 

sequence of hemolymph changes occurring during coagulation. According to 

Franke (1960 a), coagulation in hanging drops of hemolymph occurs in 4 

phases: (1) the hemocytes round up or contract, (2) the hemocytes agglu­

tinate and send out pseudopodia, (3) the hemolymph coagulates (i.e., a 

plasma precipitate forms), and (4) the hemocytes expand and disinteg rate 

to form a thick meshwork. 

Preliminary work revealed that in P. americana hemolymph coag ula­

tion in thin, coverslip, wet mounts was so rapid that it could not be 

analyzed without special techniques. 

Procedure. The microscope cold stage was used to control the in­

itiation and termination of coagulation as follows. A drop of hemolymph 

from a severed antenna was immediately placed on a cold stage held at 2°c 

and coverslipped so that it could be examined with light-phase microscopy 

at 720 and 1,500 x. When a large number of hemocytes were located in the 

microscope field, the cold stage was allowed to slowly warm up to room 

temperature (25-27°C). A 16 mm time lapse movie camera was started to 

record coagulation at 10 frames/minute until the termination of the process 

so that the exact sequence of hemolymph changes occurring could be analyzed. 

11 
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Results. When the hemolymph of Periplaneta americana is collected 

directly onto a microscope cold stage held at 2°c, the plasma and the 

hemocytes remain unchanged for as long as 30 minutes before the hemocytes 

very slowly begin to contract. If the temperature of the cold stage is 

allowed to go above 5°c, then the following sequence of changes can be 

readily observed: (1) with the single exception of the granular hemocytes, 

the hemocytes contract or round up; (2) the contracted cells clump into 

masses of 5 to 25 cells at random and fine threads of cytoplasm can be 

seen between the clumps; (3) the cytoplasm of the cystocytes becomes 

hyaline and the cells suddenly implode to release a single round, barred 

nucleus and bacilliform mitochondria. The released mitochondria burst 

and disappear. (4) When the mitochondria burst, a heavy granular cloud 

appears immediately around the extruded cystocyte nucleus. The granular 

cloud itself instantly becomes a violently seething mass of tiny vibrat­

ing particles (Brownian movement). (5) A finely granular material ap­

pears between the clump ed hemocytes. (6) Finally, the clumped cells 

within the granulated plasma flatten out and disintegrate into an amor-

phous meshwork arrangement of protoplasm and nuclei. 

Identification of untransformed cystocytes 

Jones (1957, 1962) and Wheeler (1963) reported that cystocytes 

cannot be specifically identified when they have been fixed by heat, cold, 

or versene. Plasmatocytes and granular hemocytes are said to be phago­

cytic in several insects (Yeager 1945; Jones 1956, 1962). Cockroach cys­

tocytes have not been proven to be phagocytic even though the cystocyte 

is thought to represent a highly specialized granular hemocyte (Jones, 

1962). 

wh«n.. Periplaneta americana (L.) injected with chinese ink (Yeager et al _ , 
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1942) or with vertebrate erythrocytes (Bettini et al., 1951) rhere 1s '1e­

mocyte agglutination, reduction of total hemocyte counts and "phagocyte" 

destruction, but no specific hemocyte types were recognized as being as­

sociated with these events. 

The present experiments were made to attempt to identify chilled 

cystocytes before they transformed. It was initially hoped that the 

cystocytes would not engage in phagocytosis and could therefore be separ­

ated from plasmatocytes. 

Procedure. Ten last stage nymphs and 5 adults were injected with 

10, 20, and 30 µl of a 3% suspension of chinese ink in saline using an 

Agla syringe and a 30 gauge needle. After 3 and 76 hours, two hemolymph 

samples were taken from a severed antenna; one sample was fixed in 4% 

versene on a slide (Wheeler, 1963), and a count made on the number of 

hemocytes with engulfed ink per 100 hemocytes. The other sample was 

placed on a cold stage at 2°c. Hemocytes with engulfed ink particles 

were located and the cold stage then allowed to warm up to room temper-

ature. 

Result. There was no significant change in the phagocytic count 

in adults 3 and 76 hours after 20 µl of 3% chinese ink was injected (i.e.; 

at 3 hours the phagocytic count was 16.4% ± 3.1; at 76 hours, the count 

was 21.5% ± 3.4). 

When last stage nymphs were injected with 10 µl of 3% chinese ink 

the phagocytic count was 16.0% ~ 2.9 after 3 hours and 14.7% ~ 2.7 after 

76 hours. Hemocytes with engulfed ink particles were observed at 2°c on 

a cold stage and then the cells allowed to transform. While nearly all of 

the hemocytes containing ink were either plasmatocytes or granular hemo­

cytes, nevertheless, in a few cases (about lout of 10) hemocytes with ink 
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inside them transformed into typical cystocytes (Plate 2, Figure 1). 

Procedure. Ten milliliters of rabbit blood was collected and 

preserved in 20 ml of sterile Alsevers solution (Evans, 195 7) and stored 

at 5°c until ready for use. Before use, erythrocytes were washed three 

times in 0.85% NaCl. An erythrocyte count was made on the erythrocyte 

suspension before injecting into cockroaches. Percentages of cystocytes 

f r om 4 groups of adult female cockroaches (5 per group), were obtained 

before they were injected with 20 µl suspensions of erythrocytes contain­

ing approximately 4,500,000, 3,000,000, 250,000, and 60,000 cells/20 µ1. 

Hemolymph samples were then taken 1 and 20 hours after injection, and the 

number of hemocytes with engulfed erythrocytes per 500 cells counted on 

a 2°c cold stage. After this, the stage was allowed to warm to 21°c and 

the percentage of cystocytes was determined. 

Result. When suspended rabbit erythrocytes in 3 concentrations 

(250,000, 3,000,000, and 4,500,000/20 µl) was injected into 4 g roups of 

adult females (5 per group, injected with 20 µ1/cockroach ) and these 

g roups were examined 1 and 20 hours thereafter, no erythrocyte s were ob­

served in the hemolymph and no phagocytosis of them by hemocytes was seen. 

When these cockroaches were carefully examined, large a gglutinated masses 

of erythrocytes were seen at the site of injection. These agglutinated 

masses were partially surrounded by plasmatocytes, transformed cystocytes, 

and coagulated plasma (Plate 2, Figure 3). Differential counts on these 

cockroaches showed a normal percentage of cystocytes of about 20,. (Table 

1). In those cockroaches injected with 60,000 erythrocytes, all of the 

cold-fixed phagocytes subsequently transformed into plasmatocytes whe n sam­

ples were allowed to warm up (Plate 2, Figure 2). One hour after inject ing 

60,000 erythrocytes, 5 to 10 free eryt hrocytes per 500 hemocytes were ob-
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served in the plasma and the phagocytic count was 0.5%. No free or pha­

gocytized erythrocytes were observed 19 hours later. These cockroaches 

showed a marked increase in the percentage of cystocytes 1 hour after 

injection (of about 18%), but this value returned to normal 19 hours 

later (Table 1). 

Procedure. Various dilutions of rabbit erythrocytes (4,500,000-

60,000 cells/ 20 µl) or diluted or whole human blood was added to drops 

of either fresh unfixed or heat-fixed (55° - 60°C) cockroach hemolymph or 

cell-free plasma on a slide and coverslipped and examined after 3 minutes. 

Result. Strong erythrocyte agglutination occurred when diluted 

and whole human blood and rabbit erythrocyte suspensions ( containing 

250,000 to 4,500,000 cells/ 20 µl) were mixed with unfixed or with 55°c -

heat-fixed hemolymph or plasma. No agglutination occurred when the 60,000 

cell suspension was added to unfixed and 55°c heat-fixed hemolymph and 

plasma. 

~eparation of cells and plasma 

To study coagulation in the cockroach it is absolutely essential 

to be able to separate hemocytes and plasma before coagulation begins. 

Procedure. Last stage nymph and adult cockroaches confined in pet­

ri dishes, were chilled in a refrigerator held at 1 to 4°c for periods of 

30, 60, and 90 minutes or heat-fixed by immersion in a water bath at 55° 

to 60°c for 3 minutes. After this the cockroaches were quickly removed, 

a hind coxal-sternal joint severed, and hemolymph bled directly into l x 

75 mm. capillary tubes. These tubes were quickly sealed with plasticine 

at one end and centrifuged at 15,000 x g for 3 minutes to separate hemo­

cytes from plasma. After centrifugation, a drop of plasma was placed on 

a slide, coverslipped, and examined (at 970 x) for coagulation-free separ­

ation of hemocytes and plasma. 



Table 1, The effect of injecting rabbit erythrocytes on the phagocytic index and 
the number of cystocytes in Periplaneta americana (L.). 

1 hr, 20 hrs. 
Group No. 

No, 
Insects 

No, Injected 
Erythrocyt es 

Before 
% Cysto, % Phag.--%-C_y_s_t_o_, % Phag, % Cysto, 

1. 5 4,500,000 20 0 18 0 17 

2. 5 3,000,000 19 0 20 0 22 

3. 5 250,000 21 0 24 0 23 

4. 5 60,000 27 o.s 38 0 28 

5. 5 Saline injected 21 - 20 - 19 
control 

'""' en 
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To collect serum, live hemolymph drawn into 1 x 75 mm capillary 

tubes was allowed to coagulate for 2 minutes, and the tubes were then 

centrifuged at 12,000 x g for 10 minutes, after which the supernate (ser­

um) was collected. 

Results. Microscopic (970 x) examination of plasma samples from 

30 and 60 minute chilled cockroaches revealed that all hemocytes had 

lysed and that precipitation had occurred before the sample could be 

centrifuged. Although 30 and 60 minute chilling did not inhibit coag­

ulation, there was a marked qualitative reduction in the number of hemo­

cytes within the hemolymph after 60 minutes of chilling. When hemolymph 

from 90 minute chilled cockroaches was collected in capillary tubes, it 

was discovered by microscopic examination that the sample was essentially 

pure plasma (i.e., free of hemocytes). 

When hemolymph from 55°and 60°c heat-fixed cockroaches was centri­

fuged, the hemocytes did not lyse and the plasma did not coagulate on 

standing. 

Procedure. Doses of 10, 50, 100, and 200 Jll of 2% procaine hypo­

chloride plus 4% versene were each injected into separate adult female 

cockroaches and allowed to circulate for 5 minutes. A drop of hemolymph 

was placed on a slide, coverslipped and checked for fixation. The remain­

ing hemolymph was bled directly into capillary tubes, sealed at one end 

with plasticine, and held in a vertical position until about½ mm of he­

mocytes settled to the bottom of the tube. The hemocyte sediment in the 

tubes was recovered by etching the tube with a jewelers file and breaking 

the tube at the hemolymph/ packed hemocyte interface. The packed hemo­

cytes was then expelled from the tube by partially pushing out the plasti­

cine seal from the other end of the tube. These hemocytes were placed 
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directly in a drop of 4% versene on slide and examined at 970 x to deter­

mine if they had maintained their structural identity during sedimenta­

tion. 

Result. Microscopic (970 x) examination of hemolymph from 2% 

Procaine plus 4% versene injected cockroaches revealed progressively 

better hemocyte fixation at higher dosage levels. The most lasting hemo­

cyte fixation on the slide and in capillary tubes occurred in cockroaches 

injected with 200 µl doses of fixative. Therefore, this dosage level 

was routinely employed for collecting plasma free hemocytes by sedimen­

tation of hemocytes contained in capillary tubes. 

Procedure. As previously described, pure plasma samples were ob­

tained by 3 different types of fixation: (a) 90 minutes at 4°c, {b) 1 

minute at 55°c or (c) 1 minute at 60°c. Wet mounts of these plasma sam­

ples were examined at 970 x during a 30 minute period for any indication 

of Plasma precipitation or other alteration. 

J . 
Result. Regardless of the methodAfixat1on, pure plasma wet mounts 

never showed evidence of spontaneous precipitation or other alterations, 

even after 30 minutes. 

Procedure. Plasma-free hemocytes from either 2% procaine or 4% 

Versene-injected cockroaches were combined with a drop of either (1) sa­

line, (2) pure plasma (from 3 different fixations), or (3) serum, using 

coverslipped preparations. 

Result. (l) Both 2% procaine- and 4% versene-fixed, plasma-free 

hemocytes agglutinated and transformed into plasmatocytes and cystocytes 

When collected into saline, but at no time did a granular cloud form around 

the cystocytes or in the saline. (2) When 2% procaine-fixed hemocytes 

Were combined with 90 minute chilled and 550c heat-fixed plasma, the hemo-
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cytes agglutinated and transformed into plasmatocytes and cystocytes and 

a strong plasma precipitate consistently formed within 2 minutes around 

cystocytes (Plate 3, Figure 2). Although hemocytes agglutinated and 

transformed, a plasma precipitate never formed when either 60°C heat­

fixed plasma or 4% versene-fixed hemocytes were used. (3) When 2% pro­

caine- and 4% versene-fixed hemocytes were added to serum, they agglut in­

a t ed and transformed into plasmatocytes and cystocytes. No plasma 

precipitate formed around cystocytes from 4% versene-fixed hemocyte 

samples. However, with procaine-fixed cells, in 4 out of 5 cases, a 

small amount of fine plasma precipitate formed around cystocytes. 

For future studies, physiologically active, plasma-free hemocytes 

were collected from cockroaches injected with 200 µl of 2% procaine in 

saline, and pure plasma was collected from either (1) cockroaches which 

were chilled at l to 4°c for 90 minutes, or (2) by centrifugation of he­

molymph samples taken from cockroaches heat-fixed at 55°c for l minute. 

The role of mitochondria in hemolymph coagulation 

Many investigators have suggested that hemocytes eject some mate r ­

ial of unknown composition into the plasma which leads t o a g ranular 

plasma precipitate or to t he formation of glassy veils, or otherwise 

causes gelation of the plasma. LYeager .=! al., 1932; Yeager and Knight, 

, 
1933; Gregoire, 1951, a, b, 1953, a, b, c: 1955, 1957, 1959, a, b, c; 

., 
Gregoire and Florkin, 1950, a, b; Gregoire and Jolivet, 1957; Franke, 

1960, a, b; Jones, 1962/. Franke (1956), in his study on the fine struc­

t ure of hemocyte mitochondria of Blatta orientalis with the electron mi­

croscope, noted a very close relationship between mitochondria and 

coagulation, and stated that mitochondria played an essential role in 

hemolymph coagulation. Franke (1960 a) noted that during coagulation, 
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vacuoles appear in the vicinity of the mitochondria and that the mito-

chondria subsequently undergo Brownian movement, enlarge, and become 

granular as they disinteg rate. In addition, Franke suggested that im­

mediately after hemolymph withdrawal, transforming hemocytes release 

coagulation-promoting-factors. 

Procedure. DuBuy and Showacre (1961) have shown that certain 

tetracycline drugs, such as aureomycin, specifically combine with mito­

chondria of living cells and then fluoresce in ultraviolet light. Their 

technique was used to identify the mitochondria in the hemocytes of~. 

americana. Cockroaches were injected with 10, 20, and 30 µl doses of 

0.02% aureomycin plus 0.88 M sucrose in saline. After the aureomycin 

had circulated for 3 hours, some cockroaches were bled from a severed 

antenna into a drop of saline containing 2% versene and 0.02% aureomycin 

on a slide. Other cockroaches were bled into either (1) a drop of 0.02% 

aureomycin plus 0.88 M sucrose in saline or (2) a drop of 0.02% aureo­

mycin in saline on a slide. Hemocytes were first observed by phase mi-

o 
croscopy and then with ultraviolet light at 3650 A. 

Result. When cockroaches were injected with 10 and 20 µl of 0.02% 

aureomycin plus 0.88 M sucrose in saline, the numerous, sharply defined, 

bacilliform inclusions seen in the hemocytes with phase microscopy (Plate 

9, Figure 1) fluoresced a pale yellow for 3 to 4 minutes in ultraviolet 

light, when the hemocytes had been placed in a drop of 0.02% aureomycin 

and 0.88 M sucrose in saline (Plate 9, Figure 2). When cockroaches were 

injected with 30 µl of the 0.02% aureomycin solution, an undesirable back­

ground fluorescence interferred with observations. 

When 10 and 20 µl injected cockroaches were bled into a drop of 

0.02% aureomycin plus 0.88 M sucrose in saline, the hemocytes transformed 
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and cystocytes discharged fluorescing mitochondria into the plasma, but 

the mitochondria did not explode and no plasma precipitation occurred 

(Plate 9, Figure 3). But when hemocytes from similarly treated cock­

roaches were placed in 0.02% aureomycin in saline, without the sucrose, 

hemocytes transformed, ejected fluorescing cystocyte-mitochondria ex­

ploded and a plasma precipitate formed (Plate 9, Figure 4). In this 

preparation the cystocyte nuclei were outlined by fluorescing mitochon­

dria and the plasma precipitate surrounding cystocytes was faintly fluor­

escent from disintegrated mitochondria (Plate 9, Figure 4). Presumably, 

the sucrose inhibits the explosion of mitochondria. 

Procedure. Mitochondria were prepared first by grinding thoracic 

muscles in 0.25 M sucrose, then filtering the brei through surgical gauze, 

and drawing the filtrate into l x 75 mm capillary tubes. The filtrate 

was then centrifuged at 400 x g for 30 seconds. The mitochondria were 

decanted, resuspended in sucrose, and centrifuged at 2,000 x g for 10 

minutes. 

Mitochondria from hemocytes were prepared as follows: (1) hemo­

lymph from a cut antenna was collected in l ml.0.25 M sucrose and stirred 

briefly before drawing the hemolymph-sucrose mixture into capillary tubes 

and centrifuging at 400 x g for 30 seconds. (2) The mitochondria were 

then decanted, resuspended in 0.25 M sucrose, and centrifuged at 2,000 x 

g for 15 minutes. 

Mitochondria collected from muscle and h e mocytes were each com­

bined with a drop of plasma on a slide, and the preparation coverslipped. 

These wet mounts were examined for mitochondrial explosion and plasma 

precipitation. 

Result. Muscle and hemocyte mitochondria mixed with hemocyte-free 



plasma did not explode but maintained a round shape and no plasma pre­

c ipitate formed after 20 minutes. 

The role of calcium in insect hemolymph coagulation 
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The calcium content in insect hemolymph is somewhat higher t han 

in vertebrates and lower than in some other invertebrates (Munson, 1953). 

According to tabulations made by Prosser and Brown (1962) the calcium 

concentration in Periplaneta spp. is 4.0 mM/L of hemolymph. There are 

conflicting views concerning calcium and its influence on the coagula­

tion process in insects (Muttkowski, 1924; Yeager et al., 1932; Beard, 

1950; Gregoire, 1953 a; and Franke, 1960 a). 

According to Franke {1960 a), hemolymph will coagulate normally 

when placed in 0.4% cac12 in Ringer's solution, but will not coagulate 

when placed in 0.8% cac1
2

• Gnfgoire (1953 a) stated that when CaC1 2 was 

placed i n oxalate-treated hemolymph of Gryllotalpus sp., the hemocytes 

contracted or sent out pseudopodia; but no reaction occurred in the 

plasma. 

Procedures. Kashiwa and Atkinson (1963) used glyoxal bis 3-

hydroxy-anil (GBHA) for the specific cytochemical localization of ionic 

calcium in sectioned mammalian tissue. Their procedures were adapted f or 

identification and localization of calcium in hemolymph and its fractions 

before and after coagulation. 

Hemolymph, plasma, and hemocytes were smeared and dried on a slide 

and stained according to the technique of Kashiwa and Atkinson (1963). 

The smears were examined at 430 and 970 x for the presence of calcium as 

i ndicated by a red GBHA-Ca precipitate. One part of either fixed or un ­

fixed serum, plasma, or whole h e molymph was mixed with 1/10 part of GBHA 
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in 1 x 75 mm capillary tubes. All of the reaction tubes, except those 

containing fresh unfixed hemolymph plus GBHA, were centrifuged at 12,000 

x g for 3 minutes. Tubes were then read for the presence of calcium in 

the hemolymph or its fractions. 

Results. Microscopically, no specific localization of calcium 

ions was observed in dried films of either cell free plasma, plasma of 

free hemocytes, or whole hemolymph. However, when observed by eye, all 

of these films appeared very faintly red, indicating the presence of 

ionic calcium. Heat-fixed (Plate 10, Figure 1) and versene-fixed whole 

hemolymph, cell-free plasma, and serum in tubes appeared negative for 

ionic calcium, both microscopically and macroscopically. Unfixed 

cell-free plasma (Plate 10, Figure 3) and serum (Plate 10, Figure 2) 

were positive for calcium as indicated by a slight red color. When the 

GBHA solution was added to unfixed coagulating hemolymph, the resulting 

coagulum was a deep red color indicating a much higher concentration of 

free calcium than in serum (Plate 10, Figure 2). 

Procedure. Since versene is known to be an effective hemolymph 

anticoag ulant and chelating agent (Hodgman, 1959), it was hypothesized 

that if just enough versene were added to live cell-free plasma, and 

then hemocytes added to the preparation, no coagulation would occur. 

If, indeed, no coagulation occurred, coagulation could then be induced 

by adding Ca ions back into the system. A mixture of 6 parts plasma and 

1 part 4% ve rsene in saline was divided into 2 capillary tubes. Live 

plasma-free hemocytes were combined on a slide with a drop of ve rsene 

t r eated plasma from one tube, coverslipped, and examined for coag ulation. 

One part 0.4% Cac1 2 in saline was added to 3 parts of ve rs ene-treated 

plasma from the second tube; and live hemocytes were combined on a slide 
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with a drop of cac1 2 plus versene-plasma from this second tube, cover­

slipped, and examined for coagulation. 

Result 0 When the versene-plasma mixture from the first tube was 

combined with live hemocytes, the hemocytes transformed and agglutinated 

but no plasma precipitate formed around cystocytes (Plate 11, Figure 1). 

However, when calcium (Cac1 2 ) was added back into the system (second tube, 

CaC12 -versene-plasma) and hemocytes added, the hemocytes transformed and 

agglutinated as they did when mixed with tube 1, but this time a heavy 

plasma precipitate formed around cystocytes and later throughout the 

intercellular gaps (Plate 11, Figure 2). 

Effects of hormones on coagulation 

The relative number of circulating cystocytes or coagulocytes is 

greatly increased at ecdysis in!:• americana, and it seems reasonable to 

assume that this increase is associated with the marked increase in the 

coagulability of the hemolymph at this time (Wheeler, 1963). The neuro­

secretory cells of the brain, corpora allata, corpora cardiaca, and pro­

thoracic glands are all essential for the moulting process in insects 

(Wigglesworth, 1953). According to Bodenstein (1953), after allatectomiz­

ing newly ecdysed P. americana adults, moulting is induced as long as the 

corpora cardiaca and prothoracic glands are intact. Even in old adults 

with degenerated prothoracic glands, moulting can be induced by implanta­

tion of the corpora cardiaca and prothoracic gland (Bodenstein, 1953). 

Since it is conceivable that the percentage of cystocytes is regu­

lated by hormones, it was of interest to briefly examine the hormonal 

effect of nymphal corpora allata and cardiaca extracts on the percentage 

of circulating cystocytes in adult cockroaches. 



25 

Procedure. As shown in Plate 12, Figures land 2, the corpora 

allata and c. cardiaca lie on the oesophagus just ventral and slightly 

posterior to the brain. An extract of the corpora allata and c. cardiaca 

was made after removing them from last stage moulting nymphs (Plate 12, 

Fig ure 3). The fresh glands were homogenized in saline with a Virtis Hi 

Speed 45 microhomogenizer. Three sets of corpora allata and c. cardiaca 

were contained in every 20 µl of homogenate. Brains were removed from 

the same nymphs and similarly homogenized so that 3 brains were contained 

per 20 µl of homogenate. 

The heads of 20 males and 20 femalesof24 hour old P. americana 

adults were ligated at the neck. Control cockroaches were not ligated. 

The cockroaches were kept at 21°c in petri dishes supplied only with 

water-dampened filter-paper floors. After 7 days the percentage of cir­

culating cystocytes was determined by a differential count on ligated 

and control cockroaches. Shortly after making these counts, one group 

of ligated cockroaches was injected with 20 µl of corpora allata and 

cardiaca homogenate and another group of ligated cockroaches was injected 

with 20 µl of brain homogenate. Twenty ligated cockroaches injected with 

saline were controls. Three days after injection a differential count 

was made. 

Result. As shown in Table 2, 7 days after head ligation, the per­

centage of circulating cystocytes in adult cockroaches decreased to al-

most one-half the value in controls. When each of these same head-ligated 

cockroaches were injected with corpora allata and c. cardiaca from last 

stage moulting nymphs, the percentage of circulating cystocytes significant­

ly increased (Table 3). There was no change in the percentage of circula­

ting cystocytes when head-ligated cockroaches were injected with brains 

from last stage moulting nymphs (Table 3). 



Table 2 

The perce ntage o f circulating cystocyt es in 
7-day old adult Periplaneta americana whose 
heads were ligated 24 hours after emergence. 

Males Females 
20 ligated 10 20 ligated 10 
cockroaches controls cockroaches controls 
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Percent 

cystocytes 13.s :!: 1.s 23.2 + 2.2 15.4 ~ 1.6 29 .o + 2.0 

No. 

5 

5 

5 

5 

Table 3 

The percentage of circulating cystocytes in 
head-ligated adult Periplaneta americana 
(from Table 2), 3 days after being injected 
with a homogenate of either 3 sets of corpora 
allata and c. cardiaca or 3 brains from last 
stag e moulting nymphs. 

Male Female 

Treatment 

Ca and Cc* 
injected 

Saline 
injected 

Brain 
injected 

Saline 
injected 

percent cystocytes 

17.7 t. 1.3 

13.4 :!: 1.7 

8.6 ± 3.3 

13.2 ! 1.9 

*Corpora allata and Corpor a cardiaca 

percent cystocytes 

20.7 + 1.1 

14.9 :!: 1.7 

12.2 ± 1.2 

12.9 + 1.3 
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The coagulation process in other cockroaches 

It seemed desirable to briefly examine the question of whether the 

coagulation process was essentially the same in a variety of other cock­

roaches. Hemolymph removed from unfixed Periplaneta australasiae (Fabri­

cius) (Plate 3, Figure 3), Periplaneta brunnea Burmeister (Plate 4, Figure 

1 ), Blatta orientalis L. (Plate 4, Figure 3), Blaberus craniifer Burmeister 

(Plate 5, Figure 1), Blaberus giganteus (L.) (Plate 5, Figure 3), and 

~iEloptera ~ytiscoides (Serville) (Plate 6, Figure 3) coagulated in a man­

ner similar to that of Periplaneta americana (Plate 3, Figure 1), i.e., 

cystocytes rapidly formed, mitochondria exploded, and a dense granular 

precipitate formed. When the hemocytes of P. americana were added to the 

cell-free plasma of the above mentioned cockroaches, coagulation occurred 

in exactly the same way as with their own hemocytes (Plate 3,4,5, and 

Plate 6, Figure 3,4). 

When hemolymph removed from unfixed Nauphoeta cinerea (Oliver) and 

Blattella germanica (L.) coagulated, cystocytes rapidly appeared, mito­

chondria exploded, but only a very fine precipitation appeared in the 

plasma (Plate 6 and 7, Figure 1). The character of the granular precip­

itation was thus strikingly different from that in the six previously men­

tioned cockroaches. Even so, when fresh Periplaneta americana hemocytes 

were added to the cell-free plasma of either~. cinerea or~· ~ermanica, 

Periplaneta hemocytes transformed into cystocytes, mitochondria burst, and 

a very dense precipitate appeared in the plasma (Plate 6 and 7, Figure 2). 

This suggests that P. americana hemocytes possess more coagulation-inducing 

factor, or a more potent factor than is found in the hemocytes of~.~­

rea or B. germanica. 
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When unfixed Gromphadorhina portentosa (Schaum) hemolymph is ob­

served in vitro none of the hemocytes transform into cystocytes and the 

plasma does not precipitate (Plate 7, Figure 3). The hemocytes, all of 

which looked more or less alike, formed interconnecting pseudopodia which 

lead to a dense cellular meshwork (Plate 7, Figure 3). When~. portentosa 

hemocytes were added to~· americana (cell-free) plasma, many of them 

transformed into cystocytes exactly like the cystocytes of~. americana 

and furthermore, the plasma of Periplaneta formed a dense granular pre­

cipitate (Plate 8, Figure 1). This clearly shows that Gromphadorhina 

hemocytes possess a factor capable of inducing coagulation. When Peri­

planeta hemocytes were added to cell-free Gromphadorhina plasma, cysto­

cytes formed, mitochondria exploded, and a dense granular precipitate 

formed in the Gromphadorhina plasma (Plate 7, Figure 4). Presumably, 

Gromphadorhina hemolymph does not coagulate like that of other cockroaches 

because their hemocytes do not lyse and hence the powerful coagulation 

inducing factors inside the cells is not released and therefore, cannot 

react with coagulable material in their plasma. Further experiments on 

Gromphadorhina are clearly desirable in the future. 

Coagulation of the hemolymph of the mealworm, Tenebrio molitor 

(Coleoptera), is of the pattern I type (Gregoire, 1955) (Plate 8, Fig ure 

3), like that of P. americana. The hemolymph of Rhodnius prolixus (Hemip­

tera) does not coagulate (Wigglesworth, 1959). In the greater wax moth, 

Galleria mellonella (Lepidoptera), hemocytes agglutinate but the plasma 

does not precipitate (Beard, 1950). It seemed of particular interest to 

find if P. americana cystocytes would lead to coagulation or precipitation 

of cell-free plasma of the mealworm, which possesses coagulable substances, 

and to determine whether P. americana cystocytes would be capable of induc-
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ing coagulation or precipitation of cell-free plasma of Rhodnius ~­

lixus and Galleria mellonella which, theoretically, do not possess 

coagulable substances. When~. americana hemocytes were combined with 

a drop of plasma from either Tenebrio molitor (Plate 8, Figure 4), 

Galleria mellonella (Plate 8, Figure 2), or Rhodnius prolixus, the he-

mocytes of~. americana transformed into 

precipitate formed. 

~ vstocytes, but no plasma 



DISCUSSION 

The hemolymph of Periplaneta americana (L.) and its coagulation 

has already been the subject of numerous studies, mostly with regard 

to general structure and function of insect blood (Yeager et al., 1932; 

Ermin, 1939; Gregoire, 1951 a; and Wheeler, 1963). The development of 

several new techniques for manipulating£• americana hemolymph has 

g reatly facilitated certain lines of investigation that were heretofore 

not possible. 

In vivo chilling of insects to inhibit hemolymph coagulation 

(Beard, 1950; Siakotos, 1960 a; Franke, 1960 a) is effective for only a 

very short period, if the hemolymph sample is not kept cold after with­

drawal. With the use of a cold stage, the hemolymph can be "cold-fixed" 

in vitro without treating the whole insect. Since the operator has com­

plete control over the temperature of the cold stage, the rate of~ 

vitro coagulation can be controlled for periods as long as 30 minutes 

(at 2°C), and this allows careful examination and anal ysis of the micro­

scopically visible processes which would otherwise be exceedingly diffi ­

cult or impossible to observe in unfixed preparations. 

The process of coagulation in£• americana hemolymph is essentially 

,; 
similar to coagulation in Blatta orientalis (Yeager et al., 1932; Gregoire, 

1955; Franke, 1960 a), Periplaneta australasiae and P. brunnea (Gre goire, 

1957). Critical analysis of time lapse motion pictures (which were run 

backward and forward) of the coagulation process clearly shows that both 

c ystocytes and plasmatocytes round up or contract before cystocyte forma­

tion occurs, and only after c ystocytes appear does the plasma precipitate 

30 



31 

form, leading to complete hemolymph coagulation. It was interesting to 

note that the granular hemocyte maintained its integrity until the very 

end of the coagulation process, after all of the other hemocytes had dis­

integrated. 

The highly unstable cystocyte is thought to represent a highly 

specialized granular hemocyte (Jones, 1962). As pointed out by Jones 

(1962), most workers have agreed that insects have at least 3 fairly 

well-defined, morphologically distinct types of hemocytes: prohemocytes, 

plasmatocytes, and granular hemocytes. Numerous physiological and morpho­

logical deviations from these types have greatly complicated their nomen­

clature and classification. A nomenclature and classification based on 

either morphological or physiological characteristics alone can be mis­

leading. For example, when hemolymph of P. americana is either in 4% 

versene or on the cold stage, all of the hemocytes appear morphologi­

cally identical, and only when coagulation has begun, can plasmatocytes, 

granular hemocytes, and cystocytes be recognized (Wheeler, 1963). Such 

a phenomenon shows that the behavior of cells must also be taken into 

account in their classification. Using a single physiological criterion 

such as a hemocyte•s phagocytic capacity can be misleading; thus, while 

the cystocyte•s primary function is coagulation (Jones, 1962), these 

cells are also capable of phagocytosis (Gregoire, 1951 a) even though 

they are less phagocytic than the plasmatocyte and granular hemocyte. 

The strong agglutination of human erythrocytes and high concen­

trations of rabbit erythrocytes by unfixed plasma and whole hemolymph 

indicates that!:• americana hemolymph contains a natural agglutinating 

factor. This factor is heat-stable up to 55-56°c. Feir and Walz (1964) 

reported that there is a naturally occurring agglutinating factor in the 
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hemolymph of the larger milkweed bug, Oncopeltus fasciatus; the smaller 

milkweed bug, Lygaeus kalmii; and a species of short-horned grasshopper. 

They stated that this factor was inactivated after 45 minutes at room 

temperature, after freezing, and after heating to 56°c for 10 minutes. 

When high concentrations of rabbit erythrocytes were injected 

into cockroaches, these erythrocytes agglutinated in vivo and subse­

quently were encapsulated by both plasmatocytes and cystocytes (Plate 2, 

Figure 3). While the percentage of circulating cystocytes did not 

change with these dosage levels (Table 1), when a lower concentration 

was injected, the percentage of circulating cystocytes increased (Table 

1). This increase could have resulted from plasmatocytes selectively 

falling out of circulation as they encapsulated some of the small agglu­

tinated clumps of erythrocytes, or could have resulted from a destruction 

of erythrocyte-overloaded plasmatocytes. 

In the present investigation, the development of techniques for 

separating and collecting hemolymph fractions has opened up an entirely 

new approach to the investigation of the mechanisms of coagulation. In 

addition, techniques for separating pure plasma and hemocytes from P. 

americana and other insects, will be of great value in biochemical and 

seriological studies of hemolymph fractions. These techniques will be 

essential to an ultimate analysis of the mechanisms involved in coagula­

tion of insect hemolymph. 

The collection of pure plasma from chilled cockroaches is related 

not only to inhibition of hemolymph coagulation, but to the cessation of 

heart-beat and of hemolymph circulation, as a result of which the intact 

hemocytes presumably settle by gravity. This hemocyte sedimentation is 

apparent since progressively fewer hemocytes are contained in hemolymph 

samples withdrawn from 30 and 60 minute-chilled cockroaches. 
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Franke (1960 a) has shown that in Blatt a oriental is, heating hemo­

lymph from 45° to 55°c decreases the coagulability of the hemolymph and 

above 55°c, inhibits it. In the present work it has been clearly shown 

that 55°c heat-fixation of hemolymph is the critical temperature at which 

only hemocytes are fixed. Pure plasma collected from 55°c heat-fixed 

hemolymph will precipitate when live hemocytes are added to it, but will 

not form a precipitate if 6o0 c heat-fixed plasma is used. Thus, it ap­

pears that the hemocyte factor or factors for agglutination and trans­

formation is heat stable up to 55°c and the plasma factor or factors for 

precipitate formation is heat stable up to 59°c. 

Collection of live hemocytes by injecting versene or procaine in­

to cockroaches is effective only when large volumes are injected. This 

may be related to greater dilution of the hemocytes and to a better dis­

tribution of the "fixative" throughout the body. The hemocyte collec­

tion technique operates on the same principle as in~ cold fixation, 

except that hemocytes remain fixed in capillary tubes as they settle to 

the bottom of the tube
1

where they can then be retrieved. The fact that 

pure plasma from cold- and 55o_59°c heat-fixed cockroaches will not pre­

cipitate in vitro supports the findings of Franke (1960 a) and also the 

generally accepted idea that a coagulation-promoting-subst ance (Gregoire, 

1953 a; Franke, 1960 a) from transforming cystocytes must first be re­

leased into the plasma before it will precipitate. On the other hand, 

the fact that versene- and procaine-fixed hemocytes agglutinate and trans­

form when placed in saline, decisively indicates that plasma factors are 

not necessarily required for these hemocyte changes. It is interesting 

t o note that versene-fixed hemocytes will agglutinate and transform when 

placed either in saline or plasma, but will not induce plasma precipitat:i:m. 
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Apparently, versenc irreversibly prevents the release of coagulation­

promo ting -substance from cystocytes, but does not permanently prevent 

he mocyte agglutination and cell transformation. Procaine-fixation, 

t hough effective, is t emporary and can quickly be eliminated upon wash­

ing the hemocyt es in saline or plasma. To be effective, hemocytes must 

be obt.ained within 45 minutes after collecting hemolymph from procaine­

i n jected cockroaches. The above findings concerning fixation and separ­

ation of hemolymph fractions support the theory of Gregoire (1953 a) that 

anti-coag ulants or fixatives act on the hemocytes or on the plasma. 

Variations in the coagulation process of insects can be related 

to (1) relative numbers of cystocytes or other hemocytes at different 

stages of an insect's development (Gregoire, 1953 a; Taylor and Millmann, 

1938; Wheeler, 1963), (2) to differences in the degree of cystocyte 

sensitiveness to foreign surfaces (Gregoire, 1953 a), (3) to different 

amounts of some coagulation-inducing-substance in cystocytes or to the 

efficiency of this substance, and (4) to different amounts of coagulable 

material in the plasma. 

When live hemocytes are added to serum, only a weak plasma preci­

pitate forms or no precipitation at all occurs. Thus, most or all of 

the coagulable material in plasma is precipitated during coagulation, and 

very li t tle, if any, remains in serum. Since£• americana hemocytes com­

bined with plasma of 9 other cockroach species yielded a plasma precipi­

tate like that occurring in£• americana (Plate 3, 4, 5, 6, 7; Figure 2, 

4), i t is quite clear that their plasma possesses coagulable material. 

Although the plasma of Blat tella germanica, Nauphoeta cineria, and 

Gromphadorhina portentosa heavily precipitates when combined wi th~. 

americana hemocytes, a very finely granular precipitate normally forms 
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in hemol ymp h of the f irs t two spe cie s (Plate 6, 7; Fig ure 1) and no pre­

cipi t a te f orms in h e mol ymph of t h e lat ter species (Plate 7, Figure 3). 

It may be tha t t h e hemocytes of t hese lat ter three species of cockroaches 

c ontain lowe r a moun ts a nd/or less e fficie nt coagulation-inducing -subs t ance , 

as sugges ted by Gregoire (1953 a). This may well be t he case in Blat t ella 

g e r ma n ica a nd Nauphoet a cineria, since cystocyte fo rmation during coagu­

l a t ion i n t h e se species would r elease some coagulat ion -inducing-substanc e , 

r e g a r dl e ss of the d e gree of ac t ivity of this subs t ance. 

A cross of Gromphodorhina port entosa hemocytes and P. a mericana 

plasma resul t s in hemocyte t ransforma t ion into cyst ocytes and this cause s 

a heavy plasma pre cipitate to form (Plate 8, Fig ure 1). In t heir own 

plasma, Gromphodorhina portentosa he mocytes do not break down or r ele ase 

thei r powe r ful coag ulation-induci ng factor (Plate 7, Figure 3). Presum­

ably, t heir plasma prevents lysis of the cells. 

Beard (1950) sug gest e d the occurrence of a coag ulation-inhibiting 

factor in the hemolyph after freezing and thawing Japanese beetle grubs. 

As i ndicat ed by reactions resulting from combinations of~. a mericana 

hemocyt es a nd plasma from insects other than cockroaches, t his factor is 

absent in h e molymph of Galleria rue llonella (Plate 8, Figure 2) and Rho­

dnius prolixus. Because Tenebrio molitor coag ulation i nvolves bot h cys­

t ocyte formation and heavy plasma precipi t ation (Plate 8, Figur e 3), it 

was expected that P. americana hemocytes combined with Te nebrio plasma 

would result in marked plasma precipita t ion. However, surprising ly enough , 

n o precipitate formed, even thoug h some of the~. a mericana hemocytes 

transfo rmed into cystocytes and were in the presence of coagulable sub­

s t ances i n t he hemolymph (Plat e 8, Figure 4). Since!_. moli t o r , and pos­

s ibly other insects, possess all the hemocyt e and plasma fac t ors for 
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hemocyte transformation and plasma precipitation, it would seem reason­

able to assume that one or more of these factors (1) is chemically dif­

ferent, (2) functions at different concentrations, or (3) requires some 

other factor or pH, than is present or needed in P. americana hemolymph 

coagulation. 

As suggested by Tait and Gunn (1918), it is possible that hemo­

cytes other than explosive cells could undergo gradual cystolysis and, 

in later stages of the coagulation process, share to a small extent in 

completing coagulation. According to Gregoire (1953 a), the process of 

cellular agglutination does not play any part in the phenomenon of hemo­

lymph coagulation. He also stated that the categories of blood cells 

other than coagulocytes (cystocytes) are inert, and are scattered or 

agglutinated at random and become passively embedded in the plasma coag­

ulum. Neither Tait and Gunn (1918) nor Gregoire (1953 a) have decisive 

evidence to support these views. In the present study, although hemocyte 

and plasma fractions have been separated, the isolation and collection of 

specific hemocyte types was not accomplished. Until hemocyte types can 

be isolated and collected or selectively inhibited, the resolution of 

their role in coagulation will remain unanswered. 

Many investigators have expressed the idea that arthropod blood 

coagulation is enzymatically controlled as is vertebrate coagulation 

(Loeb, 1903; Tait, 1910, 1911; Tait and Gunn, 1918; Gregoire and Florkin, 

1950 b; Gregoire, 1953 a; Franke, 1960 a). However, biochemical studies 

of insect hemolymph as yet have only dealt with enzymes of intermediary 

metabolism (Faulkner, 1956; Dearse and Scarpelli, 1958; Wyatt, 1961). 

Incidental observations by Gregoire (1953 a) and Franke (1960 a) suggest 

that enzymatic activity is involved in insect hemolymph coagulation. 
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Gregoire (1953 a) noted that, of the organic es t ers of sulfuric acid which 

were found to be anti-coagulant, the tryanocidal drug "suramin" is an in­

hibitor of enzymatic activity. Franke (1956, 1960 a) suggested that 

since hemolymph coagulation specifically depends on pH and ionic ratio, 

enzymes are involved in coagulation. If enzymes prove to be involved in 

insect hemolymph coagulation, investigations would be needed to deter­

mine whether these enzymes are located in hemocytes, in plasma, or in 

both. Franke (1960 a) noted that cystocyte mitochondria are critically 

involved in coagulation. Among the great variety of enzymes contained 

in mitochondria, some may be involved in coagulation. The present inves­

tigation supports, in part, Franke's view on the critical role of mito­

chondria in coagulation. Since Periplaneta hemocytes can bring about 

heavy precipitation of the hemolymph of 9 different species, it is ob­

vious that coagulation cannot be due to a highly specific enzyme or en­

zymes. It is clear, too, that the mere presence of free mitochondria in 

the plasma does not induce coagulation. Aureomycin labeling of hemocyte 

mitochondria (Plate 9; Figure 2, 3 1 4) facilitated identification and 

observations on the fate of mitochondria ejected from cystocytes into 

the plasma. In normal P. americana hemolymph coagulation, the cystocyte 

mitochondria explode after they are ejected into the plasma. When the 

mitochondria are aureomycin-labeled and prevented from exploding, no 

plasma precipitate forms and the ejected mitochondria remain oriented in 

circular patterns around the cystocyte nucleus (Plate 9, Figure 3). In 

unfixed preparations, aureomycin-labeled cystocyte mitochondria explode, 

and fluorescing mitochondrial material can be seen in the clouds of plas­

ma precipitate around cystocytes and in precipitate generally distributed 

throughout the plasma (Plate 9, Figure 4). This shows that substances 
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within mitochondr ia could well be critically involved not only with the 

precipitate formation around cystocytes, but also i n precipitate forma­

tion throughout the plasma. It is also possible that other cytoplasmic 

substances (~·[ • protein and ions such as calcium) are involved. Pre­

liminary experiments involving the addition of intact isolated muscle 

or hemocyte mitochondria to plasma in an attempt to induce plasma pre­

cipitat e were inconclusive and require further investigation. 

In earlier investigations (Muttkowski, 1924; Yeager, et al., 1932; 

Beard, 1950; Gregoire, 1953 a; Franke, 1960 a), the det ermination of the 

role of calcium in insect hemolymph coagulation has been hampered by 

technical difficulties. As pointed out by Clark and Craig (1953), most 

of the calcium present in!'..• americana hemolymph probably is combined 

with the proteins, derived proteins, or other organic molecules present 

in the he molymph, but only the ionic form is considered physiologically 

active . As mentioned by Carvalho, Sanui, and Pace (1963), various agents 

(~•[•, electric shock, electromagnetic radiation, acetylcholine, and caf­

feine ) cause a release of bound calcium and the freed calcium then ini­

tiates some physiological process. Obviously, contact of hemocytes with 

certain foreign environments would provide a stimulation for the release 

of calcium bound to hemocyte cell membranes. However the sensitiveness 

of certain hemocytes to foreign surfaces could depend on changes in fre e 

and bound calcium in the plasma. The poor localization of calcium in 

hemolymph, hemocytes, and plasma dried films may have resulted from its 

physical masking by proteins or other hemolymph substances. Since ve r sene 

is a chelating agent (Hodgman, 1959), no calcium was detected in versene­

fixed hemolymph or its fractions. It is not understood why calcium was 

not detected in heat-fixed hemolymph (Plate 10, Fig u r e 1). It is possible 
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that heat fixation binds calcium ions to substances in hemolymph so that 

t ~ · t1oT · 1 bl t t · th th GBHA . d . t ,1e ions areAavai a e o reac wi e in ica or. The pronounced 

reaction of calcium in coagulated hemolymph (Plate 10, Figure 2) seems 

to indicate that ionic calcium is released by and/or is closely associ­

ated with agglutinating and transforming hemocytes. Serum and plasma 

bot h seem to contain qualitatively similar concentrations of calcium 

(Plate 10, Fig ure 2, 3), but qualitatively less than is present within 

a hemocyte coag ulum (Plate 10, Figure 2). The experiments involving the 

removal of ionic calcium from the hemolymph by versene and the subsequent 

introduction of ionic calcium in the presence of hemocytes indicate that 

calcium is necessary for plasma precipitation (Plate 11, Figure 2), but 

is not necessary for hemocyte agglutination or transformation (Plate 11, 

F igure 2). However, this does not rule out the possible role of bound 

calcium that may be released by agglutinating and/or transforming hemo­

cytes. Further, it would appear desirable to test the effects of other 

divalent cations such as lithium or strontium on coagulation. Gregoire 

(1953 a) using oxalate instead of versene, noted that when ionic cal­

cium was introduced back into the hemolymph system, the hemocytes trans­

formed but no plasma precipitate formed. In his experiment, the failure 

of the plasma to precipitate could have been due to over-dilution or 

to only partial elimination of active oxalate from the system. In such 

indirect tests it is most important to initially remove all the calcium 

present with the minimum of chelating agent. If the chelating agent is 

in excess, it will combine with calcium added back into the system. In 

experiments on manunalian blood, Howell (1916) noted that oxalated plasma 

r eadily clotted when a suitable amount (specific quantity not mentioned) 

of Cac1 2 was added to it. 
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In an earlier study, Wheeler (1962, 1963) reported that the total 

hemocyte count (= THC) in~- americana significantly increases prior to 

ecdysis, abruptly falls at ecdysis, and remains about the same for the 

next 24 hours; and that these changes in THC are related to changes in 

hemolymph volume. In addition, the percentage of circulating cystocytes 

is strikingly higher in newly ecdysed adults than immediately before or 

after ecdysis, and that this increase in percentages of cystocytes at 

ecdysis is closely associated with the increased coagulability of the 

hemolymph at that time. Hormones may indirectly or directly regulate the 

total or differential hemocyte count by influencing blood volume or by 

acting on the hemocytes or by affecting both. As pointed out by Jones 

(1962), hormones may promote differentiation of the various types of he­

mocytes as they do with other tissues or perhaps affect their adhesion 

to tissue surfaces. The sharp decrease in the percentage of circulating 

cystocytes 7 days after head ligation of 24 hour old P. americana adults 

(Table 2) may be due to the exclusion of the corpora allata and c. cardiaca. 

Hormones and other physiologically active materials associated with moult­

ing and cell differentiation that are released by the corpora allata and 

cardiaca may also be critically involved in the regulation of the differ­

ential hemocyte count. This seems to be supported by the fact that the 

percentage of circulating cystocytes significantly increases when head li­

gated cockroaches are injected with corpora allata and cardiaca extracts 

(Table 3). Extracts of brain injected into head ligated cockroaches had 

no significant effect on the cystocyte count (Table 3). Further studies 

are needed to clarify the possible influences of hormones on coagulation. 

While the present study offers some useful techniques for an even­

tual possible solution to the question of plasma coagulation in insects, 

... 
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we are still far from having even the simplest understanding of the pro­

cesses i nvolved. The process of coagulation in the cockroach involves 

first a breakdown of the cell's surface and this is probably related in 

some unknown way with free calcium ions or possibly other ions in the 

cells or in the hemolymph, Second, the process i nvolves Lhe release of 

cy oplasrnic components (most conspicuously of mitochondria) and these com­

po nen t s react with dissolved substances in the plasma fraction to produce 

coag ulation. While the basic process seems to involve the rupture of the 

mitochondria, there is no information on whether or not mitochondrial en­

zymes are involved and if they were, we know nothing about which one or 

o nes are really concerned with coagulation. Since all of the mitochon­

drial enzymes are concerned with the Krebs cycle (Gilmour, 1961) it would 

be fascina t ing Lo know how various specific inhibitors of the cycle would 

affect coagulation in t he cockroach, 

Obviously, the plasma must be capable of coagulation<!•!•, Rhodnius 

plasma cannot coagulate). Apparently the mitochondria must explode<!•(•, 

n o plas ma precipitate occurs when they are intact, so the surface enzymes 

on these organelles surely cannot be involved). The enzymes released mus t 

react with a plasma component (or components), but the mere dissolution 

of a cell in an alien environment clearly does not necessarily produce 

coagulation even when t he system is capable of coag ulation. It is known 

that hormones can g reatly affect the number of mitochondria in cells and 

cell permeability (Wi gglesworth, 1956), but even so it is very obvious t hat 

coagulation does not qualitatively depe nd upon hormones. 

Since the cockroach is a very primitive insect most of their hemo­

c ytes are fundamentally structurally very similar, but it is clear that 

they are functionall y very dissimilar, some of the m being primarily 
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p h a g ocytic c e lls and some of them being pri marily coagulocytic. 

I t is f ascinating t o conje c t ure that structural dissi milarities 

may have evolved long af t er physiolog ical needs became very obvious. All 

cells mus t eng a g e in pinocytosis t o live, and phagocytosis is only o ne 

g r oss aspect of a very general phenomenon, but all cells do not have to 

disi n teg rat e when faced with injury or dissolution. 

It is a fasci nating phenomenon that cert ain cells facing disso­

lution should t h emselves react to stre ss by disintegrating and, by so do­

ing, protect the well-being of the whole organism. 



CONCLUSIONS 

The following statements apply to the physiology of hemolymph 

coagulat ion in the cockroach, Periplaneta americana (L.). 

1. With the use of a microscope cold stage, hemolymph coagula­

tion (a) is inhibited for as long as 30 minutes at o0 to 4°c, (b) is 

initiated at 5°c, (c) is permanently inhibited at 60°c, a nd (d) takes 

place in 6 distinct stages. 

2. Live plasmatocyt es, granular he,nocy t es, and cystocytes are 

structurally identical, but differ functionally in their capacity to 

phag ocytize chinese ink and erythrocytes, and in their fragilit y . 

3. Althoug h physiologically active subs t ances contained in 

and/or released from Lhe corpora allata and c. cardiaca (but lacking in 

the brain) may regulate the percentage of circulating c ystocytes and 

influence t he coagulability of the hemolymph, the problem requires 

additional study. 

4. Hemocyte agglutination and transformation is inhibit e d at 

o0 to 4°c, is permanently prevented at 55°c, and is independent of plas­

ma! factors. 

5. The cystocyte's prirnary function is the initiation of plasma 

coag ulation. By transforming and ejecting cytoplasmic material, in­

cluding mitochondria, into the surrounding plasma, it releases a coagu­

lation-promoting substance a nd leads to plasma precipitation and veil 

fo r mation. 

6. Material from exploded cystocyte mitochondria (a) is mostly 

concen ~rated in the plasma precipitate cloud surrounding the cyst ocyte 

43 
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nucleus, (b) is present in a small amount in the general plasma precipi­

tate between gaps of agglutinated hemocytes, and (c) is possibly the 

source of the coagulation-promoting-substance initiating plasma precipi-

tation. 

7. Hemocyte-free plasma will not spontaneously precipitate. The 

release of ionic calcium and of a coagulation-inducing substance from 

transforming hemocytes, are required for plasma participation. The roles 

of other ions need further study. 

8. The specific plasma component involved in coagulation is pre­

sent in the plasma of 9 other species of cockroach, but not in the plasma 

of Tenebrio molitor, Galleria mellonella, or Rhodnius prolixus. The 

amount and/or effectiveness of a coagulation-promoting-substance released 

from cystocytes may determine the degree of plasma precipitation. 



PLATE 1 

The desig n and construction of a cold stage for a microscope. 

Fig ure 1. Shows the various parts in an exploded diagram of a cold 

stage: A and B, copper plates; C and D, "o rings"; E and 

F, coverslips; G and H, copper elbow joints; I and J, nuts 

and bolts; and K, 1/32 inch hole. 
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Fig ure 2. A fully constructed cold stage. (A) A cold stage construct­

ed from the schematic design shown in Figure 1. (B) A modi­

fied cold stage design; note that the nuts are eliminated 

by tapping the bolt holes in copper plate A (Figure 1), and 

the copper elbows are brought together (a rubber divider is 

fitted between the elbow joint internal openings and be­

tween the 110 rings" C and D to prevent a short wa t er circuit. 

Fig ure 3. Water pump and reservoirs for t he cold stage: (A) cold stag e; 

(B) water inlet from reservoir (H); (C) water outlet leading 

to pump reservoir (G); (F) pump and thermoregulator; (E) 

overflow from reservoir (H) leading to pump reservoir (G). 

Figure 4. The position of the cold stage in operation on the stage of 

a Reichert MeF, universal, inverted microscope. 

J 
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PLATE 2 

Phot o1,licrographs showing phagocytosis of chinese ink and rabbit 

erythrocyt es by Periplanet a americana hemocyt es. (Scale= 10 microns) 

Figure 1. Shows a phagocytized particle of chinese ink in the remain­

ing cy~toplasm of a transformed cys tocyte. 

Fig ure 2. Illustrates rabbit erythrocytes phagocytized by plasmato-

cyt es. 

Fig ure 3. Shows agglutinated rabbit erythrocytes encapsulated by co­

agulated hemocytes. 

-
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PLATE 3 

Periplaneta americana and Periplaneta australasiae hemolyrnph 

coagulation patterns compared with patterns after their plasma is 

combined with P. americana hemocytes. (Scale= 10 microns) 

Fig ure 1. Normal coagulation pattern of!'..• americana hemolymph. 

Fig ure 2. The resulting coagulation pattern when P. americana 

hemocytes are recombined with its own plasma. 

F igure 3. The normal coagulation pattern of P. australasiae hemo-

lymph. 

Figure 4. The resulting coagulation pattern when!'..• americana 

hemocytes are combined with P. australasiae plasma. 
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PLATE 4 

Periplaneta brunnea and Blatta orientalis hemolymph coagulation 

patterns compared with patterns after their plasma is combined with 

~. americana hemocytes. Note the similarity of all the coagulation 

patterns. (Scale= 10 microns). 

Figure 1. The normal coagulation pattern of~- brunnea hemolymph. 

Figure 2. The resulting coagulation pattern when P. americana 

hemocytes are combined with P. brunnea plasma. 

Fig ure 3. The normal coagulation pattern of Blatta orientalis hemolymph. 

Figure 4. The resulting coagulation pattern when P. americana hemocytes 

are combined with Blatta orientalis plasma. 
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PLATE 5 

Blaber us craniifer and Blaberus giganteus hemolymph coag ulation 

pat te r n s compared with patterns after their plasma is combined with 

~· ame r icana hemocytes. Note the similari t y of these coagulation pat­

terns with those in Plate 3 and i . (Scale= 10 microns) 

Fig ure 1. The normal coag ulation pattern of Blaberus craniifer hemo-

lymph. 

Fig ure 2. The resul t ing coag ulation pattern when ~. americana hemo­

cytes are combined with Blaberus craniifer plasma. 

Fig ure 3. The normal coag ulation pattern of Blaberu s giganteus 

hemolymph. 

Fig ure 4. The resul t ing coagulation pattern when~. americana hemo­

cytes are combined with Blaberus g iganteus plasma. 
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PLATE 6 

Blattella germanica and Diploptera dytiscoides h 
emolymph co-

agulation patterns compared with patterns after their plasma is com-

bined with P. americana hemocytes. (Scale= 10 microns) 

Fig ure 1. The normal coagulation pattern of Blattella ge . rman1.ca 

hemolymph. Note that only a slight amount o:f a very 

:fine plasma precipitate appears. 

Fig ure 2. The resulting coagulation pattern when~. americana hemo­

cytes are combined with Blattella germanica plasma. Note 

the formation of a heavy plasma precipitate which does 

not normally occur in B. germanica coagulation. 

Figure 3. The normal coagulation pattern o:f Diploptera dytiscoides 

hemolymph. 

Figure 4. The resulting coagulation pattern when~. americana hemo­

cytes are combined with~· dytiscoides plasma. 
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Pl.A.TE 7 

Nauphoet a cinerea and Gromphadorhina portentosa h 1 h emo ymp coagu-

lation patterns compared with patterns after their plasma is combined 

with P. americana hemocytes. (Scale= 10 microns) 

Figure 1. The normal coagulation pattern of Nauphoet a cinerea hemolymph. 

Note that only a slight amount of plasma precipitate appears. 

Figure 2. The resulting coagulation pattern when~. a mericana hemocytes 

are combined with Nauphoeta cinerea plasma. Note the forma­

tion of a heavy plasma precipitate which does not normally 

occur in~- cinerea coagulation. 

Figure 3. The normal coagulation pattern in Gromphadorhina portentosa 

hemolymph. Note that no hemocytes transform into cysto­

cytes and that no plasma precipitate forms. 

Figure 4 • The resulting coagulation pattern when~- americana hemocytes 

b ·ned w1.·th G portentosa plasma. Note that the hemo-are com 1. _. 

t t form and that a heavy plasma precipitate forms. 
cy es rans 
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PLATE 8 

coagulation patterns f ro m inter- ad . n intraspecific crosses 

of hemocytes and plasma. 

F 1
·gure l. The resulting coagulation pattern when Gromphadorhina 

P
ortentosa hemocytes are combined with p _. americana 

plasma. Note that cys t ocytes transform and a plasma 

precipitate forms even though these event s do not norm-

ally occur (Plate 7, Figure 3). 

Figure 2. The resulting coagulation pattern when~- americana 

hemocytes are combined with Galleria mellonella plasma. 

Note that even though cystocytes transformed, no plasma 

precipitate occurs. 
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Fig ure 
3

• The normal coagulation pattern in Tenebrio molitor hemolymph. 

Note that cystocyte transformation and heavy plasma pre-

cipitate occurs. 

Figure 
4

• The resulting coagulation pattern when~- americana hemo­

cytes are combined with Tenebrio molitor plasma. Note that 

P. americana cystocytes transform and no plasma precipitate 

forms even though this plasma normally does precipitate 

(Figure 3). 
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PLATE 9 

The appearance of 1 . 
ive hemocytes 

and coagulated h 
emolymph :from Periplaneta americana · 

injected With 
aureomycin. 

Fig ure 1. The appearance of a live h 

emocyte when observed by dark-
medium phase contras t . 

Note the dark granular 

in the cytoplasm (Scale -- 10 
mitochonct . ri.a 

microns). 
Fig ure 2. 

The appearance of the same hemocyte 1.· n F · 
1.gure 1 when ob-

served by fluorescent microscopy. Note the specific :fluor-

escence of the mitochondria (Scale= 10 microns). 

Fig ure 3. Incomplete hemolymph coagulation showing t.he circular Pat­

terns of ejected c ystocyte mitochondria around c y stocyte 

nuclei (Scale= 10 microns). 

Figure 4. Complete hemolymph coagulat ion showing transformed cyst
0

_ 

cytes and plasma precipitate. Note the fluorescence o:r the 

plasma precipitate cloud around cys t ocyte nuclei anq in 

].· nd1.·cating the presence of material from e~­the plasma, 

· (Sale - 10 microns). ploded cystocyte mitochondria c -
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PLATE 10 

Glyoxal bis 3- hydroxy-anal {GBHA) tes t s for ionic calcium 

in hemolymph, plasma , and serum of P. americana {L.). A red color 

is positive for ionic calcium. 
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Figure 1. A negative GBHA test for ionic calcium in 6o0 c heat-fixed 

hemolymph. Note the absence of a red color. 

Figure 2. A positive GBfIA test for ionic calcium in coagulated hemo­

lymph0 Note the sharp red reaction in the cell coagulum 

and the slight red reaction in the serum at the top of the 

tube. 

Figure 3. A positive GBHA test for ionic calcium in he mocyte-free 

plasma. Note the slight red color of the reaction. 
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PLATE 11 

coagulation reaction when~- americana hemocytes are recombined 

wi t h plasma free of ionic calcium and when ionic calcium is introduced 

back into the plasma. (Scale: 10 microns) 

Figure 1. The resul t ing coagulation reaction when P. americana hemo­

cytes are combined with plasma freed of ionic calcium. Note 

that only hemocyte transformation occurs and no plasma pre-

cipitation occurs. 

Figure 2 • The resulting coagulation reaction when P. americana hemo­

cytes are combined with calcium free plasma (used in the 

Fig ure 1 preparation) resupplied with ionic calcium. Note 

that hemocyte transformation occurred as it did in Figure 1, 

but also a plasma precipitate formed. 
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PLATE 12 

The anatomy of the corpora allata and c. cardiaca in Periplaneta 

americana (L.). 

Legend: (ca) corpora allata; (cc) corpora cardiaca· , (o) oeso-

phagus; (p) pharynx; (sp) supraesophageal ganglion; (sb) subesopha-

geal ganglion; (r) recurrent nerve; (f) frontal ganglion; and (oa) 

occipit al arch. 

Fig ure 1. A schematic drawing of the retrocerebral gland complex show­

ing the position of the corpora allata and c. cardiaca. 

Figure 2 • A photomicrograph of a dissection of the corpora allata and 

c. cardiaca just before extirpation. (Scale = 1 mm) 

Figure 
3

• A photomicrograph of an extirpated corpora allata and c. 

cardiaca. (Scale= 1 mm) 
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