ABSTRACT

Title of thesis

SUCCESS FACTORS FOR 3D PRINTING TECHNOLOGY ADOPTION IN CONSTRUCTION

Pankhuri Pimpley, Master of Science

Thesis directed by

Professor Miroslaw J. Skibniewski Department of Civil and Environmental Engineering

3D printing or Additive Manufacturing (AM) technology is taking small, slow steps in the construction industry. It is dominantly used for prototyping purposes, and even with the several benefits it can bring to building technology, it is not being adopted on the desired scale. Several inter-organizational and intra-organizational factors play a critical role in determining the extent of 3D printing technology adoption in construction. This dissertation uses various technology innovation theories and studies to identify factors which might affect the 3D printing technology adoption in constructions. The approach includes elaborate literature review, correspondence with professionals, and case studies. The success factors are assessed based on questionnaire responses from organizations and personnel who are interested in or are working with construction 3D printing. This research will help in understanding the implementation of the 3D printing technology in construction and provide a framework to guide efforts in the direction of technology adoption into the construction practice.

SUCCESS FACTORS FOR 3D PRINTING TECHNOLOGY ADOPTION IN CONSTRUCTION

by

Pankhuri Pimpley

Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2019

Advisory Committee: Professor Miroslaw J. Skibniewski, Chair Professor Qingbin Cui Professor Gregory B. Baecher © Copyright by Pankhuri Pimpley 2019

Acknowledgement

I express my heartfelt gratitude to my advisor Professor Miroslaw J. Skibniewski, for introducing me to the world of innovative construction technology research and the e-Construction Group. His guidance in my academics and invaluable advice on my research have aided me throughout my graduate degree and made me a better student, researcher and individual. I would also like to thank Svetlana Besklubova for being my unofficial guide, for her experience and counsel on research methodologies and support for my thesis work.

I would also thank the e-Construction Group for the discussions, thoughts and suggestions over the numerous research meetings over the past year. They have been a source of constant learning and enthusiasm for me.

I extend my deepest gratitude to Professor Qingbin Cui and Professor Gregory Baecher for taking the time to serve on my thesis defense committee and for their valuable feedback and comments on my work.

To my family, thank you for constantly encouraging me from across the globe and inspiring me to pursue all my goals, big and small. To my friends for the numerous coffees and long group study sessions. This journey would not have been possible without the support I was blessed with for the last two years.

Table of contents

Acknowledgement	ii
Table of contentsi	ii
List of tables	v
List of figures	vi
List of abbreviations	ii
Chapter 1 Introduction	1
1.1 History of construction 3D printing	1
1.2 Printing technology	2
1.3 Printing process	2
1.4 Need for 3D printing technology in construction	4
1.5 State of practice review	5
1.6 Purpose of the research1	1
1.7 Framework of the thesis1	1
Chapter 2 Literature Review1	3
2.1 Relative Advantage1	3
2.2 Complexity1	4
2.3 Trialability1	5
2.4 Compatibility1	5
2.5 Absorptive Capacity1	5
2.6 External Pressure1	6
2.7 Uncertainty1	6
2.8 Supply-side Benefits1	6
2.9 Demand-side Benefits1	7
Chapter 3 Proposed success factors and measurement items for 3D printing technology	•
adoption1	
3.1 Technology-related factors for 3DP technology adoption1	
3.2 Organization-related factors for 3DP technology adoption	
3.3 Market-related factors for 3DP technology adoption2	
3.4 Supply-chain related factors for 3DP technology adoption2	
Chapter 4 Research methodology of the thesis2	3

4.1 Organization of questionnaire	23
4.2 Data collection	24
4.3 Case selection and interview	25
Chapter 5 Data analysis	27
5.1 Respondent analysis	27
5.2 Response analysis by Content Validity Ratio (CVR)	
5.3 Derivations	43
5.4 Comparison of non-USA responses with USA responses	47
Chapter 6 Case studies	53
6.1 Yingchuang Building Technique (Shanghai) Co. Ltd, or Winsun, China	53
6.2 Contour Crafting Corporation, California, USA	65
6.3 Laticrete International, Connecticut, USA	71
Chapter 7 Results and discussions	76
Chapter 8 Conclusion and future work	78
Appendices	80
A. Questionnaire survey	80
B. Respondent information	84
C. Respondents years of experience in construction	90
D. Respondents education level	90
E. Respondents type of organization	91
F. Response statistics	
G. Frequency of USA and non-USA responses	98
References	

List of Tables

Table 1. Response analysis for Relative advantage factor	31
Table 2. Response analysis for Ease of use factor	32
Table 3. Response analysis for Trialability factor	33
Table 4. Response analysis for Compatibility factor	34
Table 5. Response analysis for Absorptive capacity factor	36
Table 6. Response analysis for External pressure factor	38
Table 7. Response analysis for Uncertainty factor	39
Table 8. Response analysis for Supply-side benefits factor	40
Table 9. Response analysis for Demand-side benefits factor	42
Table 10. Top 5 important measurement items	43
Table 11. Bottom 5 important measurement items	45
Table 12. Respondent analysis for all measurement items classified by non-USA and USA respondents	48
Table 13. Top 8 measurement items for non-USA and USA respondents	49
Table 14. Bottom 8 measurement items for non-USA and USA respondents	51
Table 15. Low CVR variables from non-USA and USA respondent categories	76

List of Figures

Figure 1. General 3D printing process	3
Figure 2. 3DP frame of concrete printing system	3
Figure 3. Startups offering range of 3DP services	5
Figure 4. Batiprint 3D's invented machine	6
Figure 5. Apis Cor's 3D printer design and configuration	7
Figure 6. Apis Cor's 3D printed building	8
Figure 7. D-shape's printer	8
Figure 8. Icon's printed homes	9
Figure 9. Eidhoven's proposed home design	9
Figure 10. Conceptual 3DP adoption model	22
Figure 11. Research model	23
Figure 12. Distribution of respondents by primary area of practice	27
Figure 13. Distribution of respondents by years of experience in construction	
Figure 14. Distribution of respondents by education level	28
Figure 15. Distribution of respondents by country	29
Figure 16. Distribution of measure of relative advantage	31
Figure 17. Distribution of measure of ease of use	32
Figure 18. Distribution of measure of trialability	33
Figure 19. Distribution of measure of compatibility	35
Figure 20. Distribution of measure of absorptive capacity	37
Figure 21. Distribution of measure of external pressure	38
Figure 22. Distribution of measure of uncertainty	39
Figure 23. Distribution of measure of supply-side benefits	41
Figure 24. Distribution of measure of demand-side benefits	42
Figure 25. Winsun's 3D printing process	54
Figure 26. Yingchuang 3D printed 6-storey project	56
Figure 27. Yingchuang 3D printed mansion	57
Figure 28. Winsun's Suzhou Industrial Park display, Shanghai	58
Figure 29. Yingchuang 3D printed building complex	59
Figure 30. 3D printed houses constructed in one day	60
Figure 31. Winsun's 3D printed toilet in Suzhou Yangshan in Jiangsu	61

Figure 32. Winsun's poverty alleviation toilets in Jinchang, gansu province	61
Figure 33. Winsun's tourist toilets in Hainam museum, Haikou	62
Figure 34. Winsun's first 3D printed bus stop	62
Figure 35. Winsun's future plan	64
Figure 36. Design prototype of building printing	66
Figure 37. 3D printed hollow walls	67
Figure 38. Automated installation of rebars	68
Figure 39. Automated plumbing installation	68
Figure 40. Automated installation of electrical unit	68
Figure 41. Proposed assembly for tower construction	69
Figure 42. Building with Martian material	70
Figure 43. Laticrete's column printing	72
Figure 44. Proposed design for pavilion for Ball State University	73
Figure 45. Laticrete's model of 3D printed toilet	74

List of Abbreviations

- 3D 3 Dimensional
- 3DP 3D Printing
- AM Additive Manufacturing
- SM Subtractive Manufacturing
- **RP** Rapid Prototyping
- 2D-2 Dimensional
- UV Ultraviolet
- USA United States of America
- UAE United Arab Emirates
- UK United Kingdom
- IDT Innovation Diffusion Theory
- TR Technology Readiness
- TAM Technology Acceptance Model
- CT Contingency Theory
- AC Absorptive Capacity
- RA Relative Advantage
- CX Complexity
- TR Trialability
- CP Compatibility
- AC Absorptive Capacity
- EP External Pressure
- UC Uncertainty
- SB Supply-side Benefits
- DB Demand-side Benefits
- CC Contour Crafting
- CVR Content Validity Ratio
- R&D Research and Development
- CNBR Co-operative Network of Building Researchers

- ASCE American Society of Civil Engineers
- GRG Special glass fiber reinforced gypsum board
- SRC Special glass fiber reinforced cement
- FRP Special glass fiber composite material
- CAD Computer Aided Design
- CEO Chief Executive Officer
- USC University of Southern California
- FDM Fused Deposition Modeling
- NASA National Aeronautics and Space Administration
- SSS Selective Separation Sintering

1. Introduction

3D printing technology was introduced to the world in the 1980s with the development of 3D printing equipment and material. Also known as Additive Manufacturing (AM), it is the process of creation of products by layer-by-layer formulation and joining of material from the design model. The traditional approach to manufacturing is material removal, or Subtractive Manufacturing (SM). Over the years, AM has found widespread potential in diversified industries such as manufacturing, medical, industrial, socio-cultural sectors and even food and clothing. In spite of being the one of the largest industry sectors in the world, the construction industry merely begun research and development in the direction of 3D Printing (3DP) in 1995. Initially the use of 3DP started for functional or conceptual prototyping in construction (Santos et al., 2006). Hence 3D printing has also come to be known as Rapid Prototyping (RP). The technology is now taking steps in partial printing or printing small components of a building unit, or decorative units of a structure, but RP remains the dominant application for construction (Mellor, Hao, & Zhang, 2014).

1.1. History of construction 3D printing

3DP was traditionally introduced to the market as a Rapid Prototyping (RP) technology in the mid-1980s. The first 3D printer was invented by Charles Hull in 1986. Over the years RP found various applications in the manufacturing, automobile, bioengineering, aerospace, food processing and industrial sectors. As technology expanded, attempts were made to use RP for construction-related printing. Construction industry slowly moved on to printing complex ceramic and concrete components, plastic and nylon fixtures and fittings, among other small-

scale building elements. The first attempt of cement based 3DP was made in 1997 (Agenda, 2017). During the 2000s, 3D printing was adopted to print architectural models. Over the next decade, with the advancement of technology, construction 3DP made its way into printing of entire small-scale buildings. Vigorous R&D efforts are now being made into large-scale building printing, reducing printing time for structural components and increasing the print accuracy (Wu, Wang, & Wang, 2016).

1.2. Printing technology

Five technologies have been commonly used for 3D printing in construction. Stereolithography uses laser to harden liquid polymer and resins and a perforated platform to form and place the multiple layers. Fused-deposition modeling is the process where the printing head is fed with elastomer, wax or metal and the head forms the multiple layers. A similar method of printing head deposition is Inkjet powder printing, which used powdered form of deposited material, polymer or metal. The product obtained is then oven-dried. Selective laser/heating sintering also uses powdered printing material, mostly nylon based, rapid steel or sand form, and each layer is consolidated using a laser beam. Contour crafting technology uses a computer-operated gantry system and a nozzle to deposit ceramic or concrete material (Wu et al., 2016).

1.3. Printing process

Similar to general 3D printing, for construction 3DP a digital model of the 3D component is first designed. An algorithm converts the 3D design into 2D slices.

The printer then prints each slice, depositing the material to form the 3D component (Labonnote, Rønnquist, Manum, & Rüther, 2016).

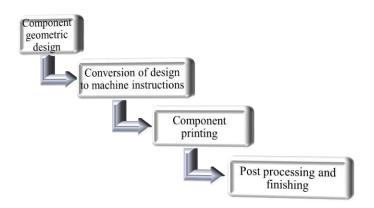


Figure 1. General 3D printing process (S. Lim et al., 2012)

3D modeling tools and software are used to develop the construction model. These tools allow the flexibility to design with high precision. Digital modeling allows processing of geometrical as well as material data. (Wu et al., 2016)

Figure 2. 3DP frame of concrete printing system (Sungwoo Lim et al.,

2018)

1.4. Need for 3D printing technology in construction

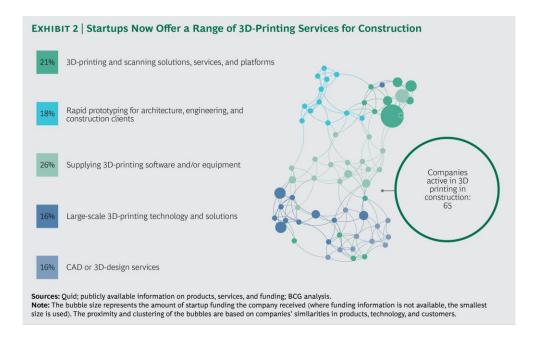
One of the major evolutions in major industries like manufacturing, medicine, automobile, etc., has been automation. Construction, being one of the largest industries in the world has not been able to fully adopt automation in practice. It is the only job still being done by hand. The construction industry has been slow in adopting new methods and innovations due to deep confidence in the efficiency of traditional processes, materials and codes. Since no change or innovation proposes growth of the sector, the construction industry has one of the lowest productivityincrease compared to other industries. It is even more important to automate construction activities given the risks associated with it. About 400,000 people are injured or killed every year in the USA during construction. These injuries and fatalities eventually translate to costs for society. Construction is also prone to corruption and political feuds. Hence the primary need for 3DP in construction is to reduce or eliminate human involvement in the design and development of the structure. It is also important that 3D printing be considered a standard construction practice by code bodies. Accepting the innovation can help set a common standard for global construction and solve the problem of labor skill variation from demographics and experience. Conventional means of construction being subtractive in nature also generate a lot of construction waste. 3D printing could be an effective way to reduce waste and make construction sustainable and environmentally friendly. Automation can help achieve more precision, design flexibility and complexity of construction. 3D printing is a rapid form of construction and can thus help reduce overall construction time and wait time,

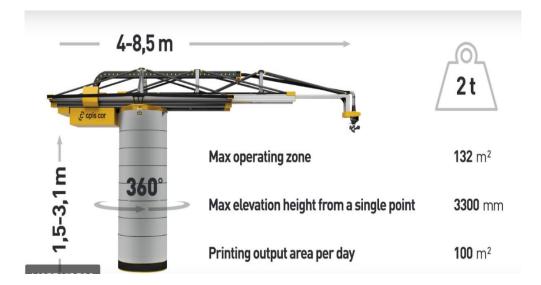
eventually reducing construction cost. 3D printing also eliminates the need for temporary formwork on site.

1.5. State of practice review

As of 2017 the construction 3D printing market is worth \$.07 billion and according to SmarTech Publishing it is expected to produce global revenue of \$40 billion in 2027 (Jamie, D., "3D printing: The Future of Construction", January 31st 2018).

Since early 2000s, several construction companies, manufacturing plants, start-ups, research institutions and universities have taken keen steps to implement innovative 3D printing technology. (Laubier R., Wunder M., Witthoft S., Rothballer C., "Will 3D Printing Remodel the Construction Industry?", January 23rd 2018).




Figure 3. Startups offering range of 3DP services

Constructions-3D, a French company invented a polar 3D printer which can print from inside the construction unit and once finished can leave through the building's front door. Cazza Construction developed a similar robot, with a mobile crane system which makes printing of higher structures on larger areas, and even whole houses possible. BatiPrint 3D developed a robot to print three layers at once, the middle layer of concrete and inner and outer layers of polymeric foam for insulation (Jamie, D., "3D printing: The Future of Construction", January 31st 2018).

Figure 4. Batiprint 3D's invented machine (Jamie, D., "3D printing: The Future of Construction", January 31st 2018).

Moscow based Apis Cor built the world's first 3D printed residential house within 24 hours on site. They use the mobile printer which takes 30 minutes to install. The machine can operate at temperatures as low as -35 degree Celsius. The construction saves 70% compared to conventional methods and claims to last for 175 years in the snow prone area ("Thanks to 3D printing, you can now build a home in just 24 hours", 2018, February 09).

Figure 5. Apis Cor's 3D printer design and configuration ("Thanks to 3D printing, you can now build a home in just 24 hours", 2018, February 09).

Figure 6. Apis Cor's 3D printed building ("Thanks to 3D printing, you can now build a home in just 24 hours", 2018, February 09).

Italian architect Enrico Dini invented the 'D-shape' printer which relies on a unique binding powder poured onto layers of sand through a print head to harden them. (Jamie, D., "3D printing: The Future of Construction", January 31st 2018).

Figure 7. D-shape's printer (Jamie, D., "3D printing: The Future of Construction", January 31st 2018).

Branch Technology, a startup based in Tennessee directed their research towards printing materials and developed a process to print free-form polymer matrices which can be filled with cement or foam (Laubier R., Wunder M., Witthoft S., Rothballer C., "Will 3D Printing Remodel the Construction Industry?", January 23rd 2018).

Icon 3D based in Austin, USA aims to print complete homes in a day as well. They intend to print for under \$4,000 using Vulcan construction's 3D printer ("3D Printed Homes – 4 Most Fascinating Projects in 2019", 2019, February 20).

Figure 8. Icon's printed homes ("3D Printed Homes – 4 Most Fascinating Projects in 2019", 2019, February 20).

The project by Eindhoven University of Technology in Netherlands plans to print five single story, two-bedroom residences ("3D Printed Homes – 4 Most Fascinating Projects in 2019", 2019, February 20).

Figure 9. Eindhoven's proposed home design ("3D Printed Homes – 4 Most Fascinating Projects in 2019", 2019, February 20).

As far as the policies and subsidies are concerned, steps have been taken to encourage 3D printing adoption in construction. The UAE government is aiming to 3D print 25% of its new buildings by 2030 in the Middle East. The UK government has initiated a National Strategy for Additive Manufacturing predicting construction 3DP, creating several new jobs and contributing more than \$1 billion to annual GDP by the year 2025. The USA Department of Defense aims to study the idea of using local material to 3D print its military barracks worldwide (Laubier R., Wunder M., Witthoft S., Rothballer C., "Will 3D Printing Remodel the Construction Industry?", January 23rd 2018).

1.6. Purpose of the research

3D printing provides innovative, customizable, sustainable, low volume and economical solutions to the construction industry. With the current trends and needs, buildings and structures need more flexibility in design and construction while being economical at the same time (Mellor et al., 2014). Through this research, the socio-economic factors which might affect the scope of 3D printing in construction will be explored and analyzed. Assessing them will help professionals and researchers develop productive ways of utilizing and managing the technology in the future, thus expediting the adoption process.

1.7. Framework of the thesis

This introductory chapter is followed by the following sections in this dissertation:

Chapter 2 Literature review: The thesis begins with a brief literature review of the proposed factors and the various innovation and technology adaptation theories and concepts they have been derived from.

Chapter 3 Proposed factors and measurement items for 3D printing adoption in construction: Nine (9) factors and forty-two (42) measurement items which might affect the 3D printing technology adoption are proposed and discussed, while considering the current and future prospects of construction 3DP. This is the first phase of the research.

Chapter 4 Research methodology of the thesis: The second phase of the research elucidates the design and dissemination of the survey questionnaire. The third phase

of the study is data collection through the aforementioned questionnaire, personal interview and case study selection.

Chapter 5 Data analysis: The fourth phase of the research involves respondent analysis, response analysis by content validity ratio to quantitatively study the data recorded, derivations and comparison of non-USA and USA responses.

Chapter 6 Case studies: The quantitative analysis is followed by a qualitative analysis of the factors with three case studies.

Chapter 7 Results and discussion: Results obtained and the possible reasons for the observations are discussed.

Chapter 8 Conclusion and future work: Contribution of the research and future possibilities are discussed.

2. Literature Review

2.1. Relative advantage

Relative advantage is one of the major predictors of adaptation which reflects userattitude about the innovation. It is derived from the characteristics of **Innovation Diffusion Theory (IDT).** Diffusion can be defined as the communication of a new, innovative idea within a social system via certain channels, over a period of time (Everett, 1983). Innovation diffusion theory suggests that there exists a gap in time between the introduction of an innovation and its successful implementation in the industry. This gap is often several years. With this long gap, the innovation needs to reach a critical mass before being able to self-sustain. Therefore, innovation diffusion is considered to be primarily a social, rather than a technical process, since the innovation's reach largely depends on the client orientation of its diffusion channels (Everett, 1983). An idea can be perceived better than the conventional methods not just economically, but also socially (Everett, 1983).

Variables with similar meanings were found in Technology Acceptance Model (TAM) and Technology Readiness (TR) theory (Walczuch, Lemmink, & Streukens, 2007). The **Technology Acceptance Model's** characteristic "perceived usefulness" defines the prospective user's chances of using the innovation to increase job performance within his/her organization (Walczuch et al., 2007). This is the degree to which the user of the technology understands that using the innovation would enhance his or her job performance. **Technology Readiness** (**TR**) is displayed in the consumer's desire to adopt and use a new technology in order to achieve his/her daily/business goals (Parasuraman, A. 2000). It is a

measure of the positive or negative feeling/emotion towards the technology. "Optimism dimension", related to TR theory, directs the consumer's assurity in his/her ability to enhance the control, flexibility, and effectiveness in its life and work performance (Walczuch et al, 2007). This helps the individual build confidence and control over their performance (Walczuch et al., 2007).

These terms are similar in their expression that consumers' work performance can be increased by using the innovative 3DP technology, which replaces existing analogous. The term "relative advantage" is recognized across a variety of disciplines and thus will be proposed and maintained as a factor in 3DP technology adoption in this research.

2.2. Complexity

According to the characteristics of **Innovation Diffusion Theory**, the scale to which an innovation is considered difficult to understand by the user is complexity (Everett, 1983). More complex ideas are difficult to comprehend and thus, slower to adopt.

Technology Readiness theory's "discomfort scale" establishes the level of consumers' negative attitude to the new technology according to their understanding of this technology (Parasuraman, 2000). Discomfort scale is the individual's belief that their knowledge of the technology is not sufficient and so they may feel restless and uneasy. An antonym to complexity is "ease-of-use" factor deployed in **Technology Acceptance Model** and explained as the scope of

the user's understanding of the new technology to be effortless (Walczuch et al., 2007).

The close relation between these factors becomes obvious as they discuss the same issue from a positive and negative perspective. Aforementioned terms are combined in all-inclusive factor "complexity" for this research.

2.3. Trialability

Innovation Diffusion Theory's characteristic "trialability" can be explained as the innovation being experimented on a small-scale prior to its full-scale adoption (Everett, 1983). Trialability helps reduce some uncertainty regarding the innovation and increases chances of acceptance.

2.4. Compatibility

According to **Innovation Diffusion Theory**, compatibility is the characteristic of an innovation considered consistent with the existing norms, past experiences and future expectations (Everett, 1983). Based on statistical analysis that combines various studies, Tornatzky and Klein (1982) conclude that an innovation's compatibility is positively related with its adoption.

2.5. Absorptive capacity

Absorptive capacity is the user's skill to absorb the value of new technology, integrate it, and incorporate it to their work and is positively related to adoption of new technology(SANCHEZ, 2009).

2.6. External pressure

Technology Readiness theory's "Insecurity dimension" was included as a measurement of external pressure where the consumer does not trust to a technological product and doubts about product fulfillment through its task (Parasuraman, 2000). Hence it will be addressed as "external pressure" to analyze and study as a 3DP technology adoption factor.

2.7. Uncertainty

Contingency theory (CT) offers the potential to understand better how context (situation, atmosphere) affects innovation adoption (Tidd & Prajogo, 2016). Uncertainty is the contingency defined as the degree to which the consequences and impacts on the management of the work using an innovation cannot be predicted or established (Tidd & Prajogo, 2016). Uncertainty affects technology adoption negatively and will be studied as a factor in this research.

2.8. Supply-side benefits

Supply-chain management includes the planning, control and execution of a project's flow from procurement of raw material to production and distribution to the final customer. Two channels of supply are formed in any material management process, supply and demand. Supply focusses on the material procurement and product development phase of a project. The purpose of supply-chain management is to ensure that both these channels operate in an organized and effective manner. It is a highly customer-focused business approach. The interest and influence of the people and cross-functionals organizations involved in the process towards innovation can affect both the production and customer channels of the supply-

chain. The supply chain from the innovation vendor to the buyer of the technology becomes one crucial factor in 3DP adoption.

2.9. Demand-side benefits

Demand focusses on the product distribution or purchase by the customer. The demand chain is where the buyer of the technology will incorporate the technology in their work for their customers (Mellor et al., 2014).

3. Proposed success factors and measurement items for 3DP technology adoption

For each proposed factor, several measurement items were ensued by deriving construction 3D printing interpretations from technology innovation theories. These measurement items were then rated by professionals and academics in the field of construction 3D printing on a five-point scale of importance to evaluate the significance of the associated factor in 3DP technology adoption.

3.1. Technology-related factors for 3DP technology adoption

Technology-related factors determine the competitive and economic benefits that the 3D printing technology could help develop the business strategy. Three factors are proposed in this category.

a. Relative Advantage (RA)

The measure of relative advantage is expected to be metered by parameters such as the improvement or reduction in material usage and wastage by using 3D printing, the freedom of construction component design at no additional cost, the possibility to optimize the components, and the ability to construct in harsh and aggressive environments. Reduction in manpower requirements, overall cost of construction of printed components, construction time, safety issues and product quality problems by using 3D printing instead of conventional building methods were also evaluated.

b. Complexity (CX)

Complexity is measured by the ease of processing the computer-generated design and managing the digital construction activity. The effect of this factor

was also examined by weighing the importance of ease of operation and maintenance of the 3D printer.

c. Trialability (TR)

To rate the importance of trialability, the predictability of 3D printing material, the behavior of 3D printed product from a long-term perspective and the precision of printed objects within acceptable tolerances were proposed as measurement items.

3.2. Organization-related factors for 3DP technology adoption

Intra-organizational and inter-organizational influence in the adoption of construction 3D printing technology is critical and thus is measured by the proposed two factors.

a. Compatibility (CP)

The importance of compatibility in 3D printing technology adoption was tabled to be measured in terms of the flexibility to print various sizes of objects for different construction needs, the agreement of the construction site with 3DP technology, the suitability of printing conventional design elements, and the need to match the 3D printed material standards with the characteristics of legacy construction processes.

b. Absorptive Capacity (AC)

Absorptive capacity is proposed as a measure of the importance of allocating a significant share of the construction 3DP company's capital to R&D and the collaboration with other companies and research institutions for R&D. It is also measured by the importance of having a major share of employees with tertiary

level education on the project, their expertise and knowledge about 3DP, integrating a cross-functional team in the planning, design and construction of building product, the team's attitude towards 3D printing technology in general and the adequacy of company resources to produce, test and implement the 3DP technology.

3.3. Market-related factors for 3DP technology adoption

Market-related factors affect the organization through external channels. These factors are crucial to inherit an alignment of business, manufacturing and R&D strategies.(Mellor et al., 2014)

a. External Pressure (EP)

The external pressure will gauged by the significance of competitive pressure from other construction firms, the presence or absence of technical and quality standards or certification issues, the consumers' skeptical attitude and psychological barrier related to 3DP technology and its implementation, their lack of information on the technical and economic benefits of the technology, and the restrictions imposed by regulations, contractors or consultants associated with 3DP innovation.

b. Uncertainty (UC)

The perceived side-effects associated with 3DP technology, the printed component's resistance to environmental influences and failure from exposure to high stress and the uncertainty of the technology's profitability are the tendered measures of importance of uncertainty in 3DP adoption.

20

3.4. Supply-chain related factors for 3DP technology adoption

Projects are a work of collaboration of several units, and supply-chain management of 3DP in construction is an interaction of two supply chains, giving us two factors to analyze in this category.

a. Supply-side benefits (SB)

The importance of reducing and simplifying construction tasks, reducing the need for pre-assembly/assembly activities, transportation services, number of suppliers involved in construction and increasing collaboration among stakeholders involved in the 3DP project are the measures suggested to understand the supply-side benefits of technology adoption.

b. Demand-side benefits (DB)

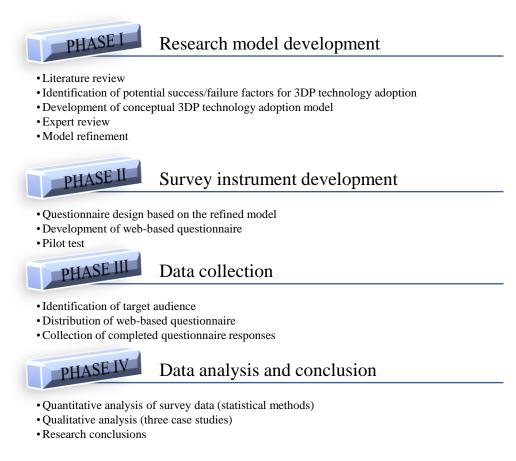

To weigh the significance of demand-side benefits, the measures are the value of customized production of printed components, the company's fast reaction to changing customer needs, and production in collaboration with the customer and the supplier.

Figure 10. Conceptual 3DP adoption model

4. Research methodology of the thesis

This research is divided into four phases. Phase I comprises the preceding literature review and development of the 3DP technology adoption model, which is followed by the proposed factors and measurement items.

Figure 11. Research model

4.1. Organization of questionnaire

Phase II of the research consists of the survey instrument development. The questionnaire was formed on and distributed via Qualtrics. It is divided into two sections. The first section asks the respondents of the survey to rate the importance of each proposed factor in construction 3D printing on a scale of 1-5, where 1 is

'very low importance', 2 is 'low importance', 3 is 'fairly important', 4 is 'very important' and 5 is 'extremely important'. The section has the 42 proposed measurement items classified in 9 groups. The second section collects general information about the respondents such as their organization, their positions in the organization, country, education, primary area of professional practice and years of experience in construction.

4.2. Data collection

Phase III of the research is data collection. All responses were collected electronically. Respondents belonged to a wide range of firms capable of, or interested in, designing, specifying, producing or installing 3D printed components for construction projects. Respondents also included academics involved in 3D printing research or with exposure to construction 3D printing.

In order to get access to the respondents' contact information, several sources were used. For researchers and scholars, the contact details were obtained from journals and papers. The names and emails of academic professionals were obtained from institutions' websites. Contact information for industry professionals was retrieved from company websites, Co-operative Network of Building Researchers (CNBR) and American Society of Civil Engineers (ASCE) webpage and LinkedIn postings. These professionals were identified and the survey was dispatched to them.

A total of 5,246 surveys were sent out, out of which 544 responses were returned. The response rate of the survey was 10.37%. Out of these 544 responses, 82 were considered valid and accounted for since the remaining 462 questionnaires were either incomplete or incorrect and were considered void.

4.3. Case Selection and Interview

Phase IV involves the analysis of data. For the qualitative analysis, several candidates were considered for the case and interview, based on their level of interest in the research and participation in the steps following the questionnaire survey.

Yingchuang Building Technique (Shanghai) Co. Ltd. Or Winsun, China was selected for the first case study. This construction 3D printing company has about two decades of experience in 3DP projects and R&D. This case study provides perspective into an international, large scale manufacturer of 3D printed products having already made several advancements in the field and the factors that have affected their projects in the past and present.

Contour Crafting Corporation, USA was selected for the second case study. Contour Crafting is a robotics firm which builds robots that use the CC process to automate construction practices. This case study looks into the factors affecting a developing manufacturer of 3D printing robots and their projects.

Laticrete International, USA was selected for the third case study to understand the factors influencing projects by a young, 3D printed products contractor.

Once the respondents returned the filled survey, a telephone interview was scheduled. A list of all the factors with measurement items was sent to them in advance for reference during the interview. During the interview, the interviewee was asked to provide general information about their company, collaborations and research with 3D printing project in construction. The interviewees were then asked to provide their views and interpretation of each factor and measurement item for 3D printing technology adoption and how they have influenced their work so far. All questions were open-ended to seek detailed information from the interviewees and to avoid bias. The presence or absence of each factor in the project was questioned and checked if implemented meaningfully. Each interview lasted about 30 to 40 minutes.

5. Data analysis

5.1. Respondent Analysis

Of the total of 82 respondents to the questionnaire survey, 26 belonged to academic institutions, 15 respondents from engineering consultants, 18 3DP producers, 6 from government R&D and engineering services, 4 from construction project management companies, and 10 from other areas like Health & Safety in infrastructure, natural and cultural resources, quantity surveying and mining. 3 respondents' area of practice was not specified.

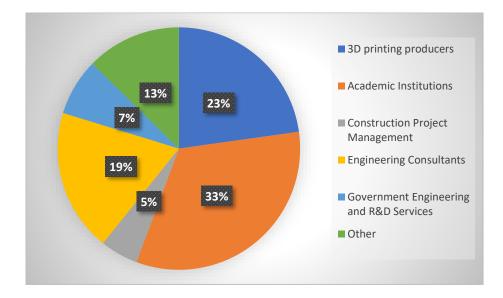


Figure 12. Distribution of respondents by primary area of practice

29 respondents have construction experience for 1-5 years (36.71%), 13 respondents have worked in construction for 6-10 years (16.46%), 17 for 11-20 years (21.52%), and 20 have been working in the construction industry for more than 20 years (25.32%).

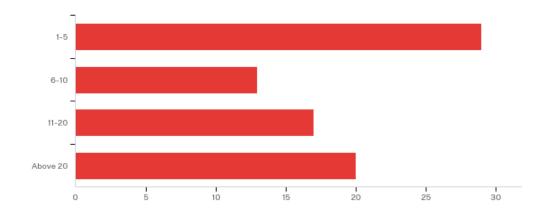


Figure 13. Respondent's years of experience in construction industry

31 respondents hold a doctoral degree (38.75%), 30 a master's degree (37.50%), 11% hold a bachelor's degree (13.75%) and 2 a high school diploma (2.50%). 6 of respondents hold other degrees such as diploma, associate degree, technical college etc. (7.50%). Two respondents' education level was not specified.

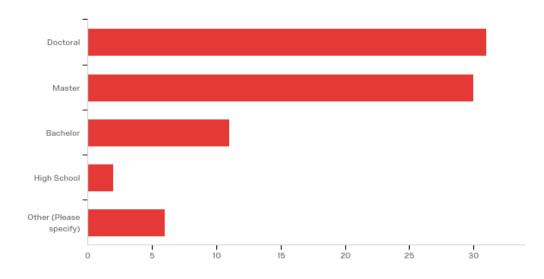


Figure 14. Distribution of respondents by education level

36.58% of the respondents were based in the USA, and the remaining 63.42% were international respondents from Spain, Sweden, UAE, Singapore, France, Oman, South Africa, Australia and Hungary among many others.

Figure 15. Distribution of respondents by country

5.2. Response Analysis by Content Validity Ratio (CVR)

Lawshe's method (Lawshe,1975) suggests that significance analysis of the proposed measurement items can also be performed by calculating the content validity ratio (CVR) for each item. CVR is used to understand the importance of the variable based on recorded responses using the formula:

$$CVR = \frac{n - N/2}{N/2}$$

Where,

CVR = Content Validity Ratio

n = number of respondents who rated the item '3', '4' or '5'

N = Total number of respondents

For this analysis, respondents who rated the measurement item '3', '4' or '5' on the 5-point scale in the questionnaire are considered to have marked the variable as relatively essential.

CVR value ranges from 0 to 1, value closer to 1 suggest the variable as more essential and value closer to 0 suggests the variable to be less essential (Wilson, Pan, & Schumsky, 2012).

The CVR values and mean importance value for each factor's variables is recorded in the following tables.

i. Relative Advantage

The factor is studied using the ranking allocated to its nine proposed measurement items.

Measurement Item		Number of Ranking		Resp	onses	CVR	Mean
	1	2	3	4	5		
Improve material usage	0	5	22	32	23	0.878	3.890
Freedom of design at no extra cost	1	9	14	25	33	0.756	3.976
Optimize components/ structures and integrate more functionality into them	2	6	20	35	19	0.805	3.768
Construct in harsh and aggressive environments	5	15	25	22	15	0.512	3.329
Reduce manpower requirement	4	3	23	30	22	0.829	3.768
Reduce cost of construction component/structure	0	8	22	25	27	0.805	3.866
Reduce construction time	1	1	17	26	37	0.951	4.183
Reduce safety hazards	0	10	19	22	31	0.756	3.902
Reduce product quality problems	3	8	29	29	13	0.732	3.500

Table 1. Response analysis of Relative advantage factor

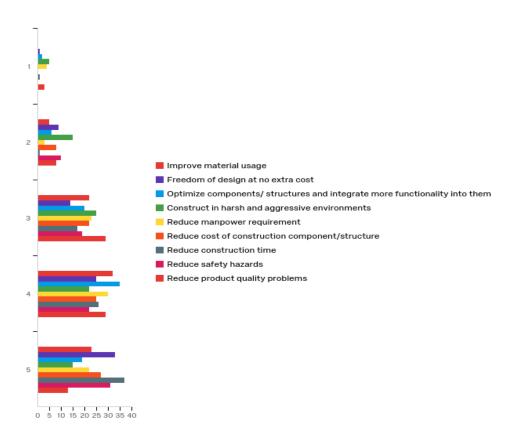


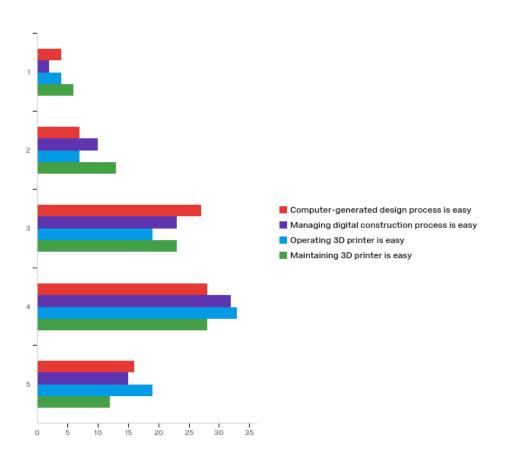
Figure 16. Distribution of measure of Relative Advantage

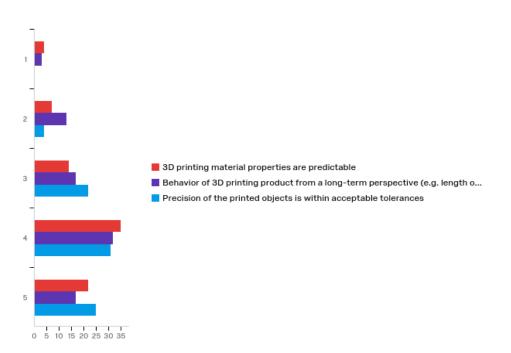
ii. Complexity

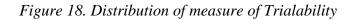
The factor is studied using the ranking allocated to its four proposed measurement items.

Measurement Item	Number Ranking		of	Resp	onses	CVR	Mean
	1	2	3	4	5		
Computer-generated design process is easy	4	7	27	28	16	0.732	3.549
Managing digital construction process is easy	2	10	23	32	15	0.707	3.585
Operating 3D printer is easy	4	7	19	33	19	0.732	3.683
Maintaining 3D printer is easy	6	13	23	28	12	0.537	3.329

Table 2. Response analysis for Ease of Use factor



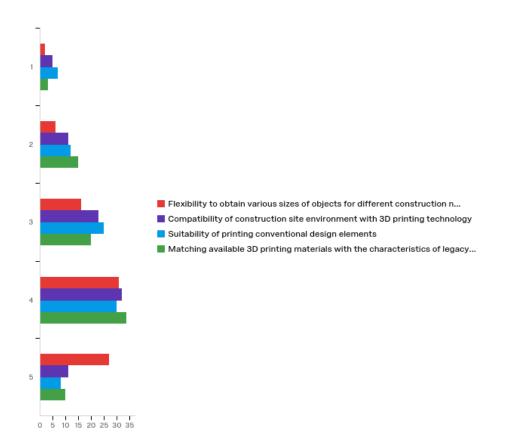

Figure 17. Distribution of measure of Ease of Use

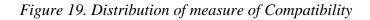

iii. Trialability

The factor is studied using the ranking allocated to its three proposed measurement items.

Measurement Item	Number of Respo Ranking		Responses C		Mean		
	1	2	3	4	5		
3D printing material properties are predictable	4	7	14	35	22	0.732	3.780
Behavior of 3D printing product from a long-term perspective (e.g. length of the product life cycle)	3	13	17	32	17	0.610	3.573
Precision of the printed objects is within acceptable tolerances	0	4	22	31	25	0.902	3.939

Table 3. Response analysis for Trialability factor




iv. Compatibility

The factor is studied using the ranking allocated to its four proposed measurement items.

Measurement Item	Number Ranking		of	Resp	onses	CVR	Mean
	1	2	3	4	5		
Flexibility to obtain various sizes of objects for different construction needs	2	6	16	31	27	0.805	3.915
Compatibility of construction site environment with 3D printing technology	5	11	23	32	11	0.610	3.402
Suitability of printing conventional design elements	7	12	25	30	8	0.537	3.244
Matching available 3D printing materials with the characteristics of legacy construction processes	3	15	20	34	10	0.561	3.402

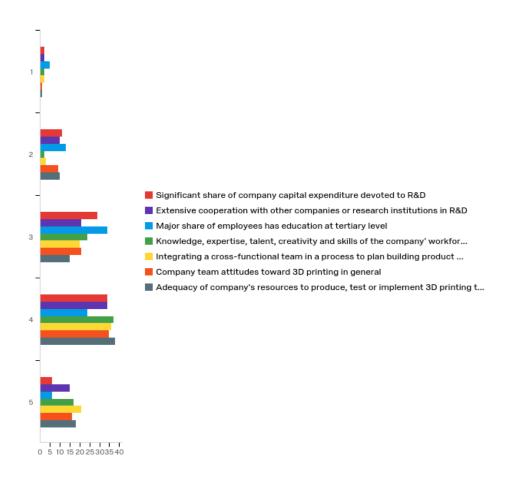
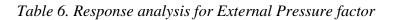
Table 4. Response analysis for Compatibility Factor

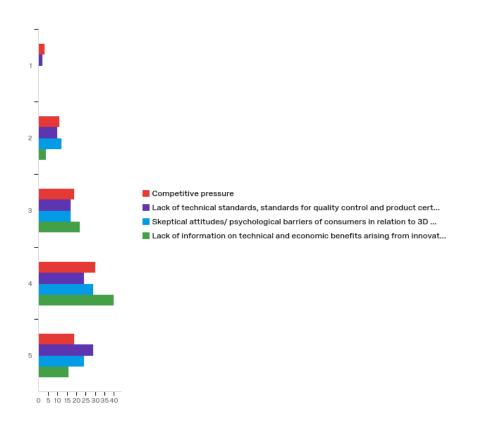
v. Absorptive Capacity

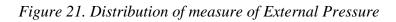
The factor is studied using the ranking allocated to its seven proposed measurement items.

Measurement Item	Nun Ran		of	Resp	onses	CVR	Mean
	1	2	3	4	5		
Significant share of company capital expenditure devoted to R&D	2	11	29	34	6	0.683	3.378
Extensive cooperation with other companies or research institutions in R&D	2	10	21	34	15	0.707	3.610
Major share of employees has education at tertiary level	5	13	34	24	6	0.561	3.159
Knowledge, expertise, talent, creativity and skills of the company' workforce	2	2	24	37	17	0.902	3.793
Integrating a cross-functional team in a process to plan building product and process design, and construction activity	2	3	20	36	21	0.878	3.866
Company team attitudes toward 3D printing in general	1	9	21	35	16	0.756	3.683
Adequacy of company's resources to produce, test or implement 3D printing technology	1	10	15	38	18	0.732	3.756

Table 5. Response analysis for Absorptive Capacity factor

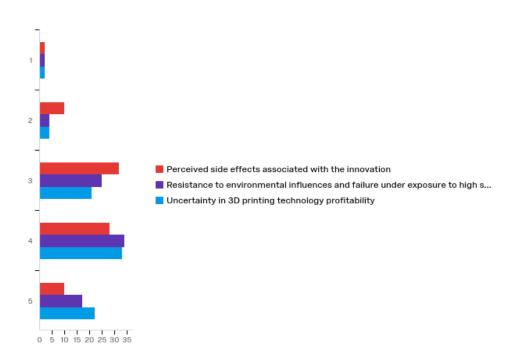



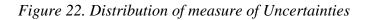

Figure 20. Distribution of measure of Absorptive Capacity


vi. External Pressure

The factor is studied using the ranking allocated to its four proposed measurement items.

Measurement Item	surement Item Number of Ranking		of	Responses		CVR	Mean
	1	2	3	4	5		
Competitive pressure	3	11	19	30	19	0.659	3.622
Lack of technical standards, standards for quality control and product certification issues	2	10	17	24	29	0.707	3.829
Skeptical attitudes/ psychological barriers of consumers in relation to 3D printing technologies and product implementations	0	12	17	29	24	0.707	3.793
Lack of information on technical and economic benefits arising from innovation and restrictions imposed by regulations, contractors and consultants isolated from one another	0	4	22	40	16	0.902	3.829




vii. Uncertainty

The factor is studied using the ranking allocated to its three proposed measurement items.

Measurement Item	Number Ranking		of	Responses		CVR	Mean
	1	2	3	4	5		
Perceived side effects associated with the innovation	2	10	32	28	10	0.707	3.415
Resistance to environmental influences and failure under exposure to high stress	2	4	25	34	17	0.854	3.732
Uncertainty in 3D printing technology profitability	2	4	21	33	22	0.854	3.841

Table 7.	Response	analysis for	Uncertainty	factor
	· · · · · · · ·	·····		J

viii. Supply-side Benefits

The factor is studied using the ranking allocated to its five proposed measurement items.

Measurement Item	Number Ranking		of	Resp	onses	CVR	Mean
	1	2	3	4	5		
Reducing and/or simplifying construction tasks	0	7	13	41	21	0.829	3.927
Reducing the need for pre- assembly/ assembly activities	3	9	24	26	20	0.707	3.622
Reducing the need for transportation services	3	16	15	29	19	0.537	3.549
Reducing number of suppliers involved in construction process	1	8	26	30	17	0.780	3.659
Increasing collaboration among stakeholders (architects, engineers, constructors, suppliers, etc.)	1	10	18	35	18	0.732	3.720

Table 8: Response analysis for Supply-side Benefits factor

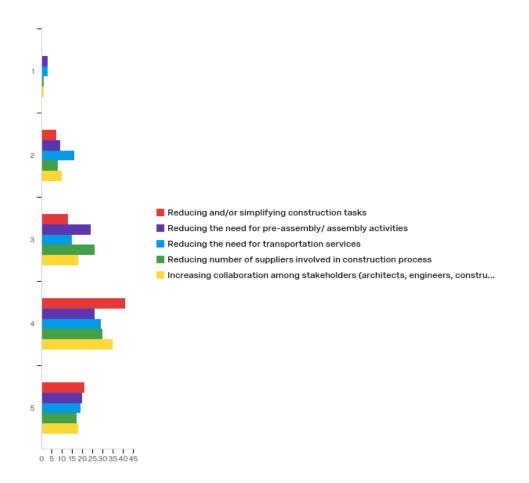


Figure 23. Distribution of measure of Supply-side benefits

ix. Demand-side Benefits

The factor is studied using the ranking allocated to its three proposed measurement items.

Measurement Item		mber of nking		Resp	onses	CVR	Mean
	1	2	3	4	5		
Customized production of printed components	1	5	18	39	19	0.854	3.854
Faster reaction to changing customer needs	2	4	18	34	24	0.854	3.902
Production in collaboration with the customer and supplier (e.g. customers integrated in product development)	4	4	21	31	22	0.805	3.768

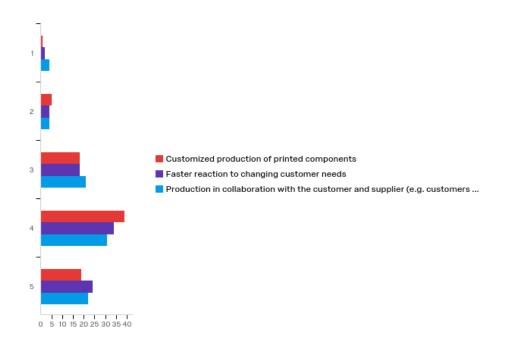


Figure 24. Distribution of measure of Demand-side Benefits

As can be derived from the scale of importance in the survey, all responses marked 3 or above on the scale of importance are deemed significant by the respondents. The mean rating of importance of all measurement variables suggest that all items have an average rating of more than 3, hence can all be considered significant in studying the success/failure of technology adoption in construction.

The CVR values of these measurement items provide a statistical understanding of the significance of the proposed success factors. When all responses are considered, it can be observed that all variables have a CVR value above 0.50 and hence can all be considered significant in studying the success/failure of technology adoption in construction.

5.3. Derivations

The top five important measurement items according to all respondents are:

Measurement Item	Factor
Reduce construction time	Relative Advantage
Precision of the printed objects is within acceptable tolerances	Trialability
Knowledge, expertise, talent, creativity and skills of the company' workforce	Absorptive Capacity
Lack of information on technical and economic benefits arising from innovation and restrictions imposed by regulations, contractors and consultants isolated from one another	External Pressure
Improve material usage	Relative Advantage

Table 10. Top 5 important measurement items

"Reduce construction time" is the top variable with highest CVR value. Evidently, construction 3D printing was initially introduced as a medium for Rapid Prototyping and later moved on to a process of Rapid Construction. Therefore, it can be concluded that reducing construction time using automation and machinery is the primary purpose of 3D printing.

It is also primary that automation of any process using machine ensures the product's accuracy and precision when compared to production by hand. This feature can be conveniently displayed by printing 'Rapid Prototypes' of any scale. Using standardized designs as input to the 3D printing machine ensures that the "Precision of the printed objects is within acceptable tolerances".

It is not surprising that the "Knowledge, expertise, talent, creativity and skills of the company's workforce" is highly ranked by the respondents. Construction 3D printing aims to reduce the reliance on physical manpower and generate more opportunities for brain power in the industry by making the process semi or fully autonomous. Understanding the design and technology and its implementation shifts the importance of construction site workers to employees with knowledge and expertise in the technology.

The "Lack of information on technical and economic benefits arising from innovation and restrictions imposed by regulations, contractors and consultants isolated from one another" is highly rated by the respondents suggesting the major challenge posing in front of the 3DP technology adoption. Since 3DP is not a standardized construction practice yet, there is no code or regulation either. This makes it difficult to explore, adopt and trust even within the stakeholders inside the business. The final top variable is "Improved material usage". In addition to being a rapid construction process, additive manufacturing reduces the overall usage and waste of printing material as compared to the conventional subtractive manufacturing in construction. This in turn, provides more relative advantage like sustainability and reducing the overall construction cost.

The **bottom five** important measurement items according to the respondents are:

Measurement Item	Factor
Construct in harsh and aggressive environments	Relative Advantage
Reducing the need for transportation services	Supply-side Benefits
Maintaining 3D printer is easy	Complexity
Suitability of printing conventional design elements	Compatibility
Major share of employees has education at tertiary level	Absorptive Capacity

Table 11. Bottom 5 important measurement items

The least important measurement item according to all respondents is "Construct in harsh and aggressive environments". This can be explained by the fact that, most 3D printed components for construction are printed off-site in a controlled environment and then transported and assembled on site. Several R&D teams have only recently begun exploring the means to print on site using special configurations for the printer and printing material. The lack of exposure to this change and limitations in innovative compatible products explains the lower importance associated with this variable. "Reducing the need for transportation services" is also ranked low and is also related to the fact that majority construction 3D printing is performed off-site. Instead of transporting the construction material to site for conventional building, 3D printed components need to be transported to the site. This process hardly reduces the construction cost. It is possible to reduce the cost of transportation by printing on site, but it is highly likely that the product quality might get compromised or the printer is too large or expensive to assemble or use on site.

"Maintaining 3D printer is easy" is expected to be an important factor but is surprisingly rated relatively low on the importance scale. This could possibly be a bias since 77% of all respondents do not belong to 3D Printing Production Companies and might have underestimated the significance of maintaining the 3D printer given its size, configuration and compatibility with the printing materials and printing environment.

The "Suitability of printing conventional design elements" is also rated lower than other variables. 3D printing is used in the construction market to make complex and unconventional construction of elements and structures easier using automation. The scope of construction 3DP goes beyond replacing the means of constructing conventional design elements. Most companies still use 3D printing for architectural and decorative building components. Hesitation also exists in adopting a new practice when the conventional method is already highly reliable and standardized.

"Major share of employees has education at tertiary level" also has a relatively low importance. Organizations participating in construction 3D printing have either been in business for years or are start-up companies diving in the innovation market. The employees' approach towards innovation, experience with the construction process, machinery and new materials and creativity are practically more or as important as education in the field.

Non-USA responses			USA responses		
Factor	CVR	Mean	Factor	CVR	Mean
RA1	0.923	3.846	RA1	0.742	3.839
RA2	0.769	4.058	RA2	0.677	3.710
RA3	0.808	3.692	RA3	0.742	3.774
RA4	0.577	3.365	RA4	0.355	3.161
RA5	0.846	3.712	RA5	0.742	3.742
RA6	0.808	3.808	RA6	0.742	3.806
RA7	0.923	4.135	RA7	0.935	4.097
RA8	0.769	3.827	RA8	0.677	3.871
RA9	0.692	3.481	RA9	0.742	3.387
CX1	0.769	3.635	CX1	0.613	3.290
CX2	0.769	3.654	CX2	0.548	3.355
CX3	0.808	3.808	CX3	0.548	3.355
CX4	0.577	3.346	CX4	0.419	3.194
TA1	0.769	3.846	TA1	0.613	3.548
TA2	0.577	3.481	TA2	0.613	3.613
TA3	0.923	3.962	TA3	0.806	3.774
CP1	0.885	3.981	CP1	0.613	3.677
CP2	0.577	3.423	CP2	0.613	3.258
CP3	0.462	3.154	CP3	0.613	3.290
CP4	0.615	3.404	CP4	0.419	3.290
AC1	0.654	3.385	AC1	0.677	3.258
AC2	0.692	3.673	AC2	0.677	3.387
AC3	0.654	3.212	AC3	0.355	2.968
AC4	0.923	3.827	AC4	0.806	3.613
AC5	1.000	4.000	AC5	0.613	3.452

5.4. USA responses with USA responses

AC6	0.731	3.500	AC6	0.742	3.806
AC7	0.731	3.712	AC7	0.677	3.645
EP1	0.731	3.692	EP1	0.484	3.387
EP2	0.654	3.846	EP2	0.742	3.677
EP3	0.731	3.808	EP3	0.613	3.645
EP4	0.885	3.788	EP4	0.871	3.774
UC1	0.692	3.308	UC1	0.677	3.484
UC2	0.962	3.788	UC2	0.677	3.613
UC3	0.885	3.846	UC3	0.677	3.613
SS1	0.846	4.000	SS1	0.742	3.677
SS2	0.692	3.519	SS2	0.677	3.677
SS3	0.538	3.423	SS3	0.484	3.645
SS4	0.885	3.712	SS4	0.548	3.452
SS5	0.846	3.904	SS5	0.484	3.290
DS1	0.885	3.942	DS1	0.742	3.581
DS2	0.923	4.077	DS2	0.677	3.516
DS3	0.923	4.038	DS3	0.548	3.226

Table 12. Respondent analysis for all measurement items classified by non-USA

and USA respondents

The **top eight** important measurement items for both categories are:

Non-USA respondents		USA respondents		
Measurement Item	Factor	Measurement Item	Factor	
Integrating a cross- functional team in a process to plan building product and process design, and construction activity	Absorptive Capacity	Reduce construction time	Relative Advantage	
Resistance to environmental influences and failure under exposure to high stress	Uncertainty	Lack of information on technical and economic benefits arising from innovation and restrictions imposed by regulations, contractors and consultants isolated from one another	External Pressure	
Improve material usage	Relative Advantage	Precision of the printed objects is within acceptable tolerances	Trialability	
Reduce construction time	Relative Advantage	Knowledge, expertise, talent, creativity and skills of the company' workforce	Absorptive Capacity	
Precision of the printed objects is within acceptable tolerances	Trialability	Improve material usage	Relative Advantage	
Knowledge, expertise, talent, creativity and skills of the company' workforce	Absorptive Capacity	Company team attitudes toward 3D printing in general	Absorptive Capacity	
Flexibility to obtain various sizes of objects for different construction needs	Compatibility	Optimize components/ structures and integrate more functionality into them	Relative Advantage	
Customized production of printed components	Demand-side Benefits	Reduce manpower requirement	Relative Advantage	

Table 13. Top 8 measurement items for non-USA and USA respondents

Similarities:

"Improve material usage", "Reduce construction time", "Precision of the printed objects is within acceptable tolerances" and "Knowledge, expertise, talent, creativity and skills of the company's workforce" are the common top variables for non-USA and USA respondents. These are in congruence with the top variables established in the previous section.

Differences:

In addition to the common variables mentioned before, "Resistance to environmental influences and failure under exposure to high stress", "Flexibility to obtain various sizes of objects for different construction needs" and "Customized production of printed components" were also rated as highly important by non-USA respondents.

"Lack of information on technical and economic benefits arising from innovation and restrictions imposed by regulations, contractors and consultants isolated from one another", "Company team attitudes toward 3D printing in general", "Optimize components/ structures and integrate more functionality into them" and "Reduce manpower requirement" have high CVR values considering responses from USA.

The **bottom eight** important measurement items for both categories are:

Non-USA respondents		USA respondents		
Measurement Item	Factor Measurement Item		Factor	
Suitability of printing conventional design elements	Compatibility	Construct in harsh and aggressive environments	Relative Advantage	
Reducing the need for transportation services	Supply-side Benefits	Major share of employees has education at tertiary level	Absorptive Capacity	
Compatibilityofconstructionsiteenvironmentwith3Dprinting technology	Compatibility	Maintaining 3D printer is easy	Complexity	
Behavior of 3D printing product from a long- term perspective (e.g. length of the product life cycle)	Trialability	Matching available 3D printing materials with the characteristics of legacy construction processes	Compatibility	
Maintaining 3D printer is easy	Complexity	Reducing the need for transportation services	Supply-side Benefits	
Construct in harsh and aggressive environments	Relative Advantage	Increasing collaboration among stakeholders (architects, engineers, constructors, suppliers, etc.)	Supply-side Benefits	
Matching available 3D printing materials with the characteristics of legacy construction processes	Compatibility	Competitive pressure	External Pressure	
Major share of employees has education at tertiary level	Absorptive Capacity	Production in collaboration with the customer and supplier (e.g. customers integrated in product development)	Demand-side Benefits	

Table 14. Bottom 8 measurement items for non-USA and USA respondents

Similarities:

Reducing the need for transportation services", "Maintaining 3D printer is easy", "Construct in harsh and aggressive environments", "Matching available 3D printing materials with the characteristics of legacy construction processes" and "Major share of employees has education at tertiary level" are the rated relatively lower than both groups.

Differences:

"Suitability of printing conventional design elements", "Compatibility of construction site environment with 3D printing technology" and "Behavior of 3D printing product from a long-term perspective (e.g. length of the product life cycle" have lower CVR values for non-USA respondent group.

"Increasing collaboration among stakeholders (architects, engineers, constructors, suppliers, etc.)", "Competitive pressure" and "Production in collaboration with the customer and supplier (e.g. customers integrated in product development)" are allocated lower importance by USA respondents.

6. Case study

6.1. Yingchuang Building Technique (Shanghai) Co. Ltd, Or Winsun, China

a. Introduction

Yingchuang Building Technique (Shanghai) Co. Ltd, or Winsun in China is one of the first companies in the world to realize the potentials of 3D printing in construction. Winsun has been working on 3D printing structures, new building material production, inventions, design architecture and R&D. Winsun is known for owning over 150 national patents and contributing to more than 500 real estate projects. Winsun holds the achievement of developing universal 3D ink and spray nozzle. The company also developed the largest continuous 3D printer (150m L, 10m W, 6.6m H). Winsun has production factories based in Shanghai, Suzhou and Xiangyang (Winsun's Website, n.d.).

b. Printing process

The client's 3D Computer Aided Design (CAD) model is converted to 2D models and the material is added layer-by-layer through the spray nozzle. Each layer is 0.6cm to 3cm thick. The process allows printing of hollow structures to accommodate wiring and piping. The structure is often printed off-site and the finished parts are transported to the construction site for installation. Traditional foundations, steel or cement reinforcements and fittings and fixtures are assembled in accordance with the regional building regulations and customer requirements. The process saves about 80% of the construction cost, 60% of the labor cost and 60% of waste material (Winsun's Website, n.d.).

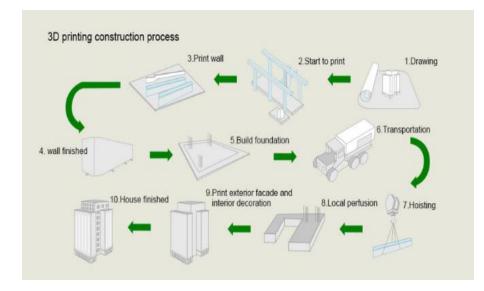


Figure 25. Winsun's 3D printing process (Winsun's Website, n.d.).

c. Background History

Winsun was born an advanced building material supplier in 2002. It specialized in complex interior décor and exterior structures (*Winsun*, n.d.).

Special materials: Winsun's earliest inventions included new building materials such as GRG (special glass fiber reinforced gypsum board) in 2002, SRC (special glass fiber reinforced cement) and FRP (special glass fiber composite material) in 2006 and 3D printing Crazy Magic Stone (CMS) in 2007 (Winsun's Website, n.d.).

3D printing equipment: Winsun invented the first 3D printing spray nozzle in 2005. It also invented specialized 3D printing ink made by recycling construction waste. In 2008, the company developed the first continuous 3D

printer with integrated input data collection, analysis and printing-output control system (Winsun, n.d.).

Building printing: Over the years 2008-2019, Winsun has printed products for construction and decoration of large-scale public buildings and used its expertise and experience in materials and architecture to step into sustainable and innovative construction for the benefit of the environment and society (Winsun's Website, n.d.).

d. Projects

Winsun printed and assembled the world's first tallest 3D printed building in January, 2015. Located in Suzhou Industrial Park, Shanghai in China, the building has 6 floors (5 floors above ground level and 1 floor below ground level). Each floor took one day to print and two days to assemble. The building construction was completed in 15 days. Reinforced masonry wall standards were used and longitudinal and transverse rebar are inserted during printing for strength. Safety and quality inspection was conducted by Tongji University and the 3D printed building was reported to conform with the existing national building standards (Winsun's Website, n.d.).

Figure 26: Yingchuang 3D printed 6-storey project (Winsun's Website, n.d.).

The two-story 1100 square-meter residence costing \$161,000 is the world's largest 3D printed mansion. It was completed in 2015 and is also on display in Suzhou Industrial Park, Shanghai. Sections of the building were printed by Winsun's 3D printer from CAD drawings. The printing material is made of cement, glass fiber, steel, hardening agents and recycled construction waste material and the building component was erected with internal bar

structures. Each floor took one day to print and two days to assemble. Only three workmen were needed. Winsun claims that the construction is completed with significant reduction in building material volume, production time and labor cost. The mansion acts as a prototype for a set of ten orders by Taiwan based real estate company Tomson Group Limited ("China's WinSun Unveils Two New 3D Printed Buildings" 2015, January 28).

Figure 27. Yingchuang 3D printed mansion (Winsun's Website, n.d.).

Figure 28: Winsun's Suzhou Industrial Park display, Shanghai (Winsun's Website, n.d.).

Winsun also holds the achievement of building the world's largest 3D printed complex of seven buildings to be used as the company's Global 3D Printing Research and Development Center. Printing utilizes only one drawing, one computer and one printer for 50,000 square meter construction, and only one crane and several construction workers for on site assembly of building blocks. 70% of this project uses a specialized ink made by recycling construction and industrial (steel plant, power plant, coal industry) solid waste, providing environmental protection whilst building a more strong, durable and ecological complex (Winsun's Website, n.d.).

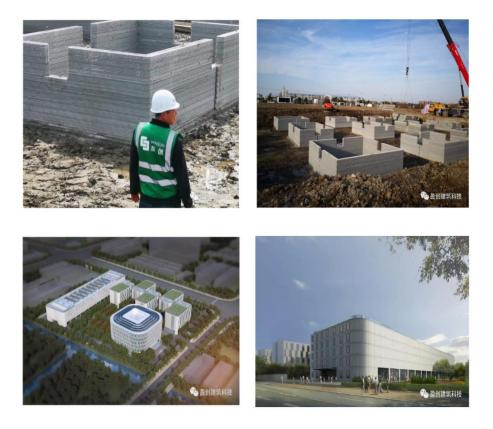


Figure 29. Yingchuang 3D printed building complex (Winsun's Website, n.d.).

Winsun printed 10 single room houses in the year 2015 in under 24 hours, for about \$4,800 each using special ink made with high-grade cement and glass fiber base ("China's WinSun Unveils Two New 3D Printed Buildings" 2015, January 28).

Figure 30. 3D printed houses constructed in one day ("China's WinSun Unveils Two New 3D Printed Buildings" 2015, January 28).

Winsun also constructed the world's first 3D printed toilet in 2016 for the scenic spot of Suzhou Yangshan in Jiangsu province and was awarded the Best Public Toilet award by the China Urban Environment Health Association. In addition to this project, the company has also worked on printing poverty alleviation toilets in Jinchang, Gansu province and tourist toilets in Hainan museum, Haikou (Winsun's Website, n.d.).

Figure 31. Winsun's 3D printed toilet in Suzhou Yangshan in Jiangsu (Winsun's Website, n.d.).

Figure 32. Winsun's poverty alleviation toilets in Jinchang, Gansu province (Winsun's Website, n.d.).

Figure 33. Winsun's tourist toilets in Hainan museum, Haikou (Winsun's Website, n.d.).

In 2018, Winsun also 3D printed what is commonly known as the World's Ugliest Bus Stop. But according to Winsun, the bus stop serves its primary purpose whilst contributing to environmental protection and energy conversation since the special ink made from solid construction and industrial waste was used as the primary printing material (Winsun's Website, n.d.).

Figure 34: Winsun's first 3D printed bus stop (Winsun's Website,

n.d.).

e. Influencing Factors

Winsun has established itself in the construction 3D printing industry with over almost 2 decades of experience, research and innovation. The role of success factors influencing the absorption of new technology within the industry changed as the company grew. Relative advantage was the most important factor to be considered in Winsun's research and development phase. The company's primary aim in its initial years was to provide a better solution to construction needs by inventing new materials and equipment to reduce overall construction time and cost, improve material usage and reduce construction waste. Once these new products were introduced in the business, Winsun moved forward to publicize the innovation in the market. Winsun's idea of 3D printing several large structures and displaying them to the public as live prototypes to demonstrate the technology and its feasibility brings in the success of the Triability factor by the company. Winsun succeeded in demonstrating that 3D printing may not be limited to small scale structures and prototypes, and the material and structural properties are predictable and within acceptable tolerances. In order to work on the hesitation by clients and contractors towards participating in 3D printing, Winsun makes collaborations with several universities to educate the architects about the possibilities of 3DP.Winsun soon grew in business and landed several contracts from China, Dubai and Egypt governments for several units of their active building designs. Thus, after years of practice and experience in the innovation industry Demand-side benefits were eventually achieved. Winsun's future plan to setup a cloud-based platform to connect clients and designers to the company introduces the importance of **Supply-side benefits** factor by making an attempt to increase communication and collaboration among the stakeholders. All building prototypes by Winsun are **Compatible** with the building environment, and equipment with the material. The company tries to ensure all **Uncertainty** related to its products is eliminated.

The company has been in construction 3D printing business and **Absorptive Capacity** was a crucial factor in the initial developing phase, and was successfully implemented. The company continues to expend on R&D and resource allocation for innovation. Not enough information could be obtained on the **Complexity** of the design and operation for 3D printing, since its market started focusing on assembling large scale structures using conventional component design models. Hence, the factor has not been pro-actively investigated by the company. **External Pressure** is also a factor that does not affect the company at present because of its recognition in the market.

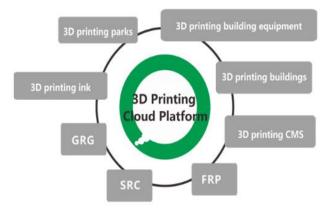


Figure 35. Winsun's future plan (Winsun's Website, n.d.).

6.2. Contour Crafting Corporation, California, USA

a. Introduction

Contour Crafting is a startup company by Professor Behrokh Khoshnevis of the University of Southern Carolina. The company works on building fully automated machines to aid in construction 3D printing. The company aims to prepare the printing material and construct whole structures on site, saving all transportation costs and making construction fully autonomous. Contour Crafting isn't on the market yet, it is more of an engineering and robotics research firm. Company CEO Koshnevis has over 100 related active patents in the domain at present. The professor hopes to introduce an entry-level machine to the market in the near future with new investments from construction companies.

b. Background History

Professor Khoshnevis filed his first construction 3D printing patent in 1996 and built the first concrete 3D printed wall in 2004 under USC research. He developed an FDM 3D printer mounted on a robotic arm that extrudes layers of concrete to create the 3D model. The machine developed has a reach of 24 feet to 40 feet, and runs along the length of the building ground. The machine weighs less than 800 lbs and is easy to bring to site. His discovery marks the beginning of construction 3D printing (Muoio, D., 2016, July 30).

c. Printing Process

The method the company used is also called contour crafting. In order to print the whole complete structure instead of parts and pieces of it, rails are installed around the building ground to direct the robotic arm, which moves back and forth extruding quick setting concrete from the nozzle. The machine can print single detached buildings, and can be modified to multi-nozzle assembly for larger buildings. Construction cost by this process is projected to be about one fifth of the conventional construction cost Muoio, D. (2016, July 30).

Figure 36. Design prototype for building printing (Contour Crafting Co.'s Website. (n.d.)).

d. Projects

The professor began by proposing to use his invention to provide accelerated construction of homes for emergency reconstruction for disaster relief. But the scope of this printing was expanded to providing low-income housing to the poor and homeless. According to the World Health Organization, about 865 million people live in slums. Contour Crafting proposes that a 2500 square foot house can be 3D printed with automated installations (segments of

reinforcements, plumbing, electrical network) along with automated finishing work, tiling and painting in 20 hours. High performance concrete mixed with composite fibers is used as printing material, which provides 10,000 psi strength as compared to 3,000 psi strength of normal concrete. The walls printed are hollow, light and provide heat conduction. Construction cost per square foot reduces to \$50 as compared to \$150 for conventional construction. Process eliminates the need if all physical labor, and creates new opportunities for brain power in construction industry. Construction is also done without waste, noise, dust and pollution (Contour Crafting Co.'s Website. (n.d.)).

Figure 37. 3D printed hollow walls (Contour Crafting Co.'s Website. (n.d.)).

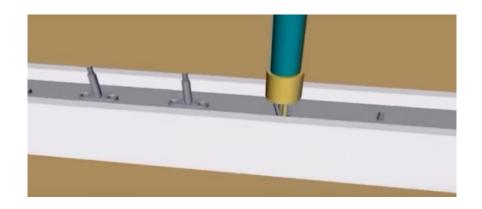
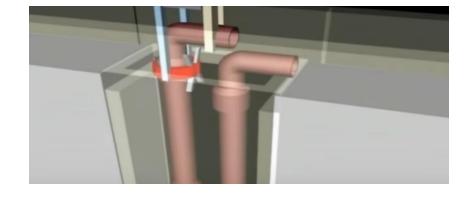



Figure 38: Automated installation of rebars (Contour Crafting Co.'s Website.

(n.d.)).

Figure 39: Automated plumbing installation (Contour Crafting Co.'s Website.

(*n.d.*)).

Figure 40: Automated installation of electrical unit (Contour Crafting Co.'s Website. (n.d.)).

Contour crafting proposes a new method of autonomous construction of tall concrete towers for wind turbines, bridge pylons, water towers, silos, chimneys etc. The method involves a set of vertically climbing robots to carry the nozzle assembly upwards and an elevating material deposition system in the center. This innovation aims to eliminate need for transporting the large steel tower sections from the factory to the wind farm. Towers taller than 100 meters can be constructed as the expense to build higher reaching cranes is eliminated. A small-scale prototype of the robot has been developed and tested for feasibility by the company. They soon aim to develop full scale towers.

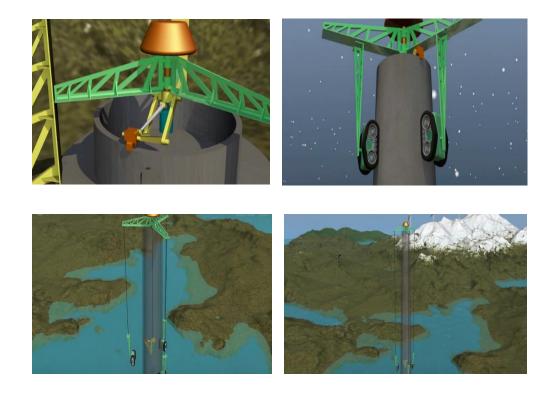


Figure 41: Proposed assembly for tower construction (Contour Crafting Co.'s

Website. (*n.d.*)).

Contour Crafting recently received a grant for NASA to develop situ material into 3D printing material to construct structures on the moon and Mars by the process called Selective Separation Sintering (SSS) as a part of the Martian civilization project. SSS is a technique developed by a USC engineer that can effectively work in zero gravity condition. Planetary material is used for construction since it costs about \$50,000 to transport a pound of building material to Mars. Koshnevis proposes the use of martian soil containing Sulphur be melted at 240 degrees F to make it act like cement and extrude it via a nozzle to print the desired structure on Mars. The process will be used to build small habitats on the planet, including landing pads, roads, hangers for landers, support walls, radiation protection walls, lunar fuel vessels etc. The company has printed a prototype using martian soil simulant with no water and Sulphur binder (Contour Crafting Co.'s Website. (n.d.)).

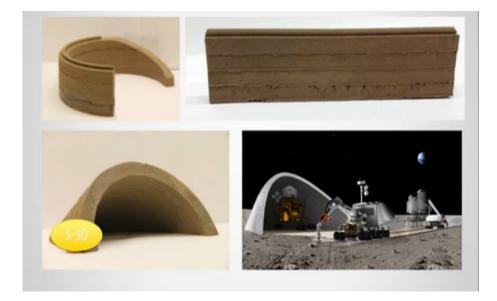


Figure 42: Building with Martian material (Contour Crafting Co.'s Website.

(*n.d.*)).

e. Influencing Factors

By simplifying construction tasks by automation and eliminating the need for pre-assembly/assembly activities, supplier requirements and transportation services, Contour Crafting achieves excellent **Supply-side benefits**. Providing innovative solutions for ensuring the printing technology's **Compatibility** with the construction site has been the focus of the company. The implementation of contour crafting technology has been difficult in the United States due to prevailing labor and zoning policies. Hence the hesitation and resistance to 3DP technology adoption addresses the importance of **External Pressure** and **Uncertainties**.

Contour Crafting emphasizes the importance of **Relative Advantage** by aiming for complete autonomy in its innovations by reducing manpower requirement and safety issues in construction. The company focuses on innovative robotic applications and thus has **Absorptive Capacity** through a workforce of engineers and expert technicians who ensure that **Complexity** is not a limitation. Contour Crafting has not provided for the market yet, thus **Demandside Benefit** factor is not applicable to their case.

6.3. Laticrete International, Connecticut, USA

a. Introduction

Founded in 1956, Laticrete International is a leader of construction installations providing tile and stone installation and maintenance, floor heating and decorative finishes. Headquartered in Bethany (New Haven), Connecticut, USA, Laticrete started working on 3D printing projects in 2017. Laticrete works with printing partners worldwide, printing building column components, wall sections, and decorative shapes. Most of Laticrete's current and future work is for Dubai, UAE based projects. The company has several printing projects upcoming in Dubai. The company also has a team dedicated to construction 3D printing research and development.

b. Projects

2018 project in Dubai, UAE in collaboration with KKrane, LLC, an industrial automation company founded in 2016 in Forest, Virginia that develops and produces concrete 3D printers. Laticrete provided 3D printed, non-standard shaped columns and wall sections for the project currently completed and undergoing weather testing. The total budget allocated for 3D printing is approximately \$20,000 which includes procuring and dispatching the printer to Dubai, construction material costs, manpower and engineering services.

Figure 43. Laticrete's column printing

Laticrete is currently printing a pavilion for Ball State University in Indiana, USA. This project will be out for display at Ball State's architectural event Columbus Exhibit. 150 cement-based components are being printed off-site, transported to site and assembled into a 50 feet x 30 feet pavilion over a span of one month. The project has a complex design and 3D printing makes its construction easier when compared to conventional means.

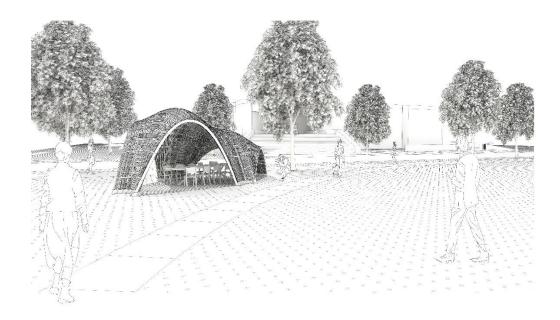


Figure 44. Proposed design for pavilion for Ball State University

Laticrete is also working with the Center for Rural Information and Action in India to 3D print multiple toilets in Khadibhandar, Bihar in India. This project is a 6-stacked modular component design, each unit is proposed to be 1.5m x 1.5m floor area and will be made of cement. The units will be printed off-site in Laticrete's office in Hyderabad and then transported and assembled in Bihar.

Figure 45: Laticrete's model of 3D printed toilet

c. Influencing Factors

Laticrete being young in the 3D printing business aims to focus on encouraging the acceptance of the technology within the organization and among their contractors. The **Absorptive Capacity** of the company and its employees is a crucial success factor. Several other companies, including 3D printer and component suppliers, and raw material vendors contributed and collaborated in the project's R&D. Most employees working on the project have tertiary-level education. Laticrete believes that integrating a cross-functional team is primary. The project's material usage was not improved, in fact more material waste was registered while attempting to attain the desired pumping pressure to pour material, which is common in small-scale projects. Hence the importance of **Relative Advantage** comes into consideration for the future. **Compatibility** of printed products and managing **Supply-side** and **Demand-side Benefits** are factors which the company is working towards to promote their practices to the market. **Complexity**, **Uncertainty** and **Trialability** are not factors that influence Laticrete's practices since they are a small-scale contractor.

7. Results obtained and discussions

After qualitative and quantitative analysis of the data, the importance of each measurement item associated with each factor could be measured and compared.

- a. All proposed factors are deemed important to consider in determining the successful adoption on 3D printing in construction. All measurement items are significant because mean response is more than 3 and CVR values of all measurement variables are more than 0.50 for all respondents.
- b. Deeper study of CVR values for non-USA and USA respondent categories provide a few variables with CVR less than 0.50.

Respondent Category	Measurement Item	CVR	Factor
USA	Construct in harsh and aggressive environments	0.355	Relative Advantage
USA	Major share of employees has education at tertiary level	0.355	Absorptive Capacity
USA	Maintaining 3D printer is easy	0.416	Complexity
USA	Matching available 3D printing materials with the characteristics of legacy construction processes	0.416	Compatibility
Non-USA	Suitability of printing conventional design elements	0.462	Compatibility
USA	Reducing the need for transportation services	0.484	Supply-side Benefits
USA	Increasing collaboration among stakeholders (architects, engineers, constructors, suppliers, etc.)	0.484	Supply-side Benefits
USA	Competitive pressure	0.484	External Pressure

Table 15. Low CVR variables from non-USA and USA respondent categories

Irrespective of the low importance indicated for the variables by CVR, the measurement items must still be considered significant because the low importance rated might be a result of bias arising due to:

- i. Respondent not considering the future possibilities and scope of 3D printing in construction while rating the variables and their importance.
- Respondent not considering the importance of the measurement item outside of their professional field and restricting their opinion to their 3D printing area of practice.
- Lack of a standard code of practice forming differences in practices and expectations of professionals from different countries, backgrounds and experiences.
- c. The similarity in top and bottom important variables conveys that 3D printing technology is primarily expected to provide technical advantages over conventional means of construction, irrespective of the country or industry that adopts or develops it.
- d. The differences in top and bottom important variables for the two groups suggest a different phase of technology adoption outside USA compared to within USA. Non-USA respondents seem to focus on future developments and applications of 3D printing technology in construction by emphasizing the importance of increasing product quality, flexibility and creativity in design. USA respondents seem to focus on troubleshooting the legal, organizational and market barriers in adopting the technology. This suggests more autonomy and development outside the USA and hesitation and restrictions within the USA.

8. Conclusion and future work

Construction industry has taken several efforts to adopt 3D printing technology. But despite being a great promise, its current usefulness is still limited. Apart from economic reasons, there are several social, market and business aspects of the technology which affect the extent and rate of 3DP adoption. The need to address these aspects and identify the factors affecting the success/failure of construction 3DP projects as the first step to pursue implementation of the technology prompted this research.

Nine success factors and forty-two corresponding measurement items have been identified and analyzed through literature review, case studies, surveys, interviews and correspondence with worldwide construction 3D printing experts and professionals. All factors are finally determined important to consider for the success of a construction 3DP project at its current phase. Relative significance of the factors and measurement items have been determined based on 82 questionnaire survey responses.

The research attempts at qualitatively and quantitatively understand the importance of the proposed factors and measurement items. Yet, the study has some limitations.

- The study is based on a small number of responses.
- Worldwide responses are considered but a major portion of respondents are USAbased. Scattered responses are obtained from other countries, with different economic backgrounds and construction practices.
- Responses from all stakeholders with uncommon areas of practice are accounted.
- Research assumes that the responses are unbiased. The possible biases are addressed.

78

Findings of the research may be used by practitioners to strategize for improvement of future 3D printing research and implementation in construction. Proposed factors can be updated by extending the literature to more studies and theories in the area of innovation and construction. Altogether, the findings can help achieve an understanding of 3DP and increase the likelihood of successful adoption in various sectors within construction.

Appendices

A. Questionnaire survey

Part I. Rating the importance of success/failure factors for 3D printing in construction

Factors	Measurement items	Scale of	of impo	rtance		
		1 (very low imp)	2 (low imp)	3 (fair imp)	4 (very imp)	5 (extr- emel y imp)
Relative	Reduce construction time					
advantage	Freedom of design at no extra cost					
	Improve material usage					
	Reduce safety issues					
	Reducing cost of construction component/structure					
	Optimize components/ structures and integrate more functionality into them					
	Reduce manpower requirement					
	Reduce product quality problems					
	Construct in harsh and aggressive environments					
Complexity	Operating 3D printer is easy					
	Managing digital construction process is easy					
	Computer-generated design process is easy					
	Maintaining 3D printer is easy					
Trialability	Precision of the printed objects is within acceptable tolerances					
	3D printing material properties are predictable					
	Behavior of 3D printing product from a long-term perspective					
Compatibilit	Flexibility to print various sizes of					
У	objects for different construction needs					
	Matching available 3D printing materials with the characteristics of legacy construction processes					
	Compatibility of construction site environment with 3D printing technology					
	Suitability of printing conventional design elements					

A 1	Teterneting a survey C (1) 1 (
Absorptive	Integrating a cross-functional team in			
capacity	a process to plan building product and			
	process design, and construction			
	activity		 	
	Knowledge, expertise, talents,			
	creativity and skills of a company'			
	workers	 	 	
	Adequacy of company's resources to			
	produce, test or implement 3D			
	printing technology			
	Company team attitudes toward 3D			
	printing in general			
	Extensive cooperation with other			
	companies or research institutions in			
	R&D			
	Significant share of company capital			
	expenditure devoted to R&D			
	Major share of employees has			
	education at tertiary level			
External	Lack of information on technical and			
pressure	economic benefits arising from the			
pressure	innovation and restrictions imposed			
	consultants isolated from one another		 	
	Skeptical attitudes/psychological			
	barriers of consumers in relation to			
	3D printing technologies and product			
	implementations		 	
	Lack of technical standards, standards			
	for quality control and product			
	certification issues	 	 	
	Competitive pressure			
Uncertainty	Uncertainty in 3D printing technology			
	profitability			
	Resistance to environmental			
	influences and failure under exposure			
	to high stress			
	Perceived side effects associated with			
	the innovation.			
Supply-side	Reducing and/or simplifying			
benefits	construction tasks			
	Increasing collaboration among			
	stakeholders (architects, engineers,			
	constructors, suppliers, etc.)			
	Reducing the need for pre-assembly/			
	assembly activities			
	Reducing number of suppliers			
	involved in construction process		 	
	Reducing the need for transportation			
	services			

Demand-side benefits	Faster reaction to changing customer needs
	Customized production of printed components
	Production in collaboration with the customer and supplier (e.g. customers integrated in product development)

Part II. Respondent Information

Q. 1. Respondent data

Name

Organization

Organization website

Title/Position

Email

Country

Q.2. Respondent's years of experience in construction industry

- o 1-5
- o 6-10
- o 11-20
- o Above 20

Q.3. Respondent's education level

- o Doctoral
- o Master
- o Bachelor
- High school
- Other (Please specify)

Q.4. Respondent's primary area of professional practice

- 3D printing organizations and manufacturing
- Academic and professional institutions
- Developers and clients
- Construction project management
- Engineering consulting
- Quantity surveying
- Manufacturers and suppliers
- Estate and facilities management
- Government organizations
- Other (Please specify)

B. Respondent Information

Name	Organization	Organization Website	Title/Po sition	Email
Ali Kazemi an	Contour Crafting Corporation			
Adithy a VS	Tvasta Manufacturing Solutions Private Ltd.	tvastagroup.in	C.E.O	adithyavs@tvastagroup.i n
wei	hkust	null	stu	wzhangay@ust.hk
Ole Ellingh ausen	COBOD International A/S	www.cobod.com	Head of Producti on	ole@cobod.com
	CyBe Construction	CyBe.eu		
Ehab Samir Awad	Orascom Construction	Orascom.com	Senior Project Controls Manager	ehab.awad@orascom.co m
Alvino Levario	Gilton construction		Carpente r	alvinolevario691@icloud .com
Andre Fuqua	Entech Engineering PC	www.entech.nyc	Project Engineer	andrefuqua@columbia.e du
Dorotty a Tamasi	Lafarge Cement Hungary Ltd.	www.lafarge.hu	Quality manager	dorottya.tamasi@lafarge holcim.com
Maider Azpeiti a	TECNALIA	www.tecnalia.com	Reseach er	maider.azpeitia@tecnalia .com
Liz Brathw aite	Skanska	www.skanska.co.uk	Health & Safety Manager	liz.brathwaite@skanska.c o.uk
Timoth y Wangle r	ETH Zurich Institute for Building Materials		Senior Researc her	wangler@ifb.baug.ethz.c h
Ming Qu	Purdue University	Www.purdue.edu	Associat e prof	Mqu@purdue.edu
Johan Potgiet er	Massey University	http://massey.ac.nz	Professo r	j.potgieter@massey.ac.nz
Frank W. Gayle	NIST - Advanced Manufacturing National Program Office	manufacturing.gov	Deputy Director, Office of Advance d	fgayle@nist.gov

			Manufac turing	
Joshua Scott Steelma n	University of Nebraska - Lincoln		Assistan t Professo r	joshua.steelman@unl.ed u
Mikel	TECNALIA		Market Manager	mikel.barrado@tecnalia. com
Mo Ehsani	QuakeWrap, Inc.	www.QuakeWrap.com	Presiden t & CEO	Mo@QuakeWrap.com
Eric Compt on	Genesis Dimensions	www.GenesisDimensions.com	Principal Engineer	Eric@G3D.IO
Patti Harbur g- Petrich	BuroHappold		Principal	patti.harburg- petrich@burohappold.co m
Brian Post	Oak Ridge National Laboratory	www.ornl.gov/manufacturing	R&D Staff Member	Postbri@gmail.com
Yong Gan	Cal Poly Pomona	www.cpp.edu	Professo r	yxgan@cpp.edu
John Read	Arup	Www.arup.com	Associat e Director	john.read@arup.com
Negar Kalant ar	California College of the Arts	California College of the Arts	Assistan t Professo r	kalantar@cca.edu
Toni Tolone n	SGS	sgs.com	Team Leader	toni.tolonen@sgs.com
D Honour	Aurecon	www.aurecon.com	Professi onal technolo gist	dave.honour@aurecongr oup.com
Jose A CHICA	TECNALIA	www.tecnalia.com	Digital Construc tion Director	joseantonio.chica@tecnal ia.com
Patricia Clayton	University of Texas at Austin		Assistan t Professo r	clayton@utexas.edu
Amaia Aramb uru	TECNALIA	www.tecnalia.com	Leader of 3d Platfrom in Construc tion	

M. BRUU RS	Witteveen+Bos	witteveenbos.com	Consulta nt digital construc	marijn.bruurs@witteveen bos.com
WEST EEL	TTO OUEST VALORISATI ON	www.ouest-valorisation.com	tion Marketi ng Director	bruno.westeel@ouest- valorisation.fr
Richar d Murph	Aurecon	https://www.aurecongroup.com/	Technic al director	richard.murphy@aurecon group.com
y Luis Clemen te	ACCIONA Construccion SA	acciona.com	3D Printing Executiv e director	lclemente@acciona.com
Declan Barrett	Aurecon	www.aurecongroup.com	Digital Practice Leader	declan.barrett@aurecong roup.com
Ho Chaw Sing	NTUitive	www.namic.sg	MD	chawsing@ntuitive.sg
Ignacio Fernan dez	Arup	www.arup.com	Associat e Director	ignacio.fernandez@arup. com
Biranc hi Panda	Nanyang Technological University, Singapore	Nanyang Technological University, Singapore		BIRANCHI001@e.ntu.e du.sg
Kjell Skjegge rud	HeidelbergCem ent Norway		Head of Develop ment	
		Www.rvo.nl		
Tony Bisio				TONY.BISIO@ARUP.C OM
MASSI MO BORS A	ITALCEMENT I - HEIDELBERG CEMENT GROUP	www.heidelbergcement.com	Head of Innovati on Laborato ries - Global Product Innovati on Departm ent	m.borsa@italcementi.it
Leonar d Dodd	ErectorBot	ErectorBot.com	CEO	admin@erectorbot.com

Eric Herrm	Institute of structural	https://www.tu- braunschweig.de/ite	Researc h	e.herrmann@tu-bs.de
ann	Design	braunsenweig.de/ne	assistant	
jihoon Chung	Yonsei University		Graduat e Researc	j_chung@yonsei.ac.kr
			her Assitant	
Kroon			IP consulta nt	yp.kroon@rvo.nl
Gita Sakale	Heidelbergcem ent, HC Betons Latvia	https://www.hcbetons.lv/lv	Quality manager	gita.sakale@heidelbergce ment.com
Viaches lav Markin	TU Dresden			v.markin@outlook.de
Francis co Shwort shik	Holcim Central América	www.holcim.com.sv	Commer cial Director Central America	francisco.shwortshik@laf argeholcim.com
Frank Will	TU Dresden / Stiftungsprofes sur für Baumaschinen	tu- dresden.de/ing/maschinenwesen/i md/bm	Professo r	frank.will@tu-dresden.de
Florian Storch	Technische Universität Dresden	https://tu- dresden.de/ing/maschinenwesen/i md/bm	research assistant	florian.storch@tu- dresden.de
Klaudi us Henke	TUM Chair of Timber Structures and Building Construction	http://www.hb.bgu.tum.de/startsei te/	Researc h Associat e	henke@tum.de
Julian Leland Bell	MIT Media Lab, Mediated Matter Group	https://mediatedmattergroup.com/	Researc h Assistan t (Former)	jleland@mit.edu
Matthe w Carli	Laticrete	Www.laticrete.com	Director innovati on	Mdcarli@laticrete.com
Rick Blanton	Terrapin Works	terrapinworks.umd.edu	DTO	rlbjr@umd.edu
Andre w Oliver	Terrapin Works	terrapinworks.umd.edu	Senior Lab Manager	terrapinworks@umd.edu
George Tryfon os	University Of Cyprus	http://www.ucy.ac.cy	Special Scientist	at07tg2@ucy.ac.cy

Vukore	BTU		Prof.	
p Martin Krause	Technical University Dresden	https://tu- dresden.de/bu/bauingenieurwesen /ibb	Scientifi c Assistan t	martin.krause3@tu- dresden.de
Peng FENG	Tsinghua University	http://www.tsinghua.edu.cn/publis h/thu2018/index.html	Professo r	fengpeng@tsinghua.edu. cn
Mahmo ud Awad	LafargeHolcim		Quality Manager	mahmooud.awad@gmail .com
Blair Souter	Armatron Systems	www.armatron.com	COO	blair@armatron.com
Dr. Guiller mo A Riveros	USACE		Researc h Civil engineer	guillermo.a.riveros@usa ce.army.mil
Heron Werner Junior	Clinica de Diagnóstico por Imagem - CDPI	www.feto3d.com	MD/Ph D	heronwerner@hotmail.co m
Izabela Hager	Cracow University of Technology	Cracow University of Technology	Dr	ihager@pk.edu.pl
Perrot Arnaud	Université de Bretagne Sud	Université de Bretagne Sud	associate professo r, PhD	arnaud.perrot@univ- ubs.fr
Tom Newma n	Holcim (US) Inc.		Geologis t	tom.newman@lafargehol cim.com
Kathy Mitchel l	US Army Corps of Engineers		Environ mental Agreem ents PM	kathy.s.mitchell@usace.a rmy.mil
Lixiong Cai	Huazhong University of Science and Technology		Postdoct oral	cailixiongjob@163.com
Kho Verian	Laticrete International, Inc.	Laticrete International, Inc.	Scientist	kverian@laticrete.com
Sebasti an Bendall	TallOaksConstructionPTY LTD		Director	seb_c_b@hotmail.com
Batoul	UAE University	https://www.uaeu.ac.ae/en/	Researc h Assistan t	b_hittini@uaeu.ac.ae
Denis van der Graaff	3D Potter	https://3dpotter.com/	IT Manager	techsupport@3dpotter.co m

TT	Tyson James	AECOM	aecom.com	Civil Engineer	Tyson.James@aecom.co m
----	----------------	-------	-----------	-------------------	---------------------------

C. Respondents years of experience in construction

Answer	%	Count	
1-5	37.50%	30	
6-10	16.25%	13	
11-20	21.25%	17	
Above 20	25.00%	20	
Total	100%	80	

D. Respondents education level

Answer	%	Count
Doctoral	38.75%	31
Master	37.50%	30
Bachelor	13.75%	11
High School	2.50%	2
Other (Please specify)	7.50%	6
Total	100%	80

E. Respondents type of organization

Answer	%	Count
3D printing producers	22.78%	18
Academic Institutions	32.91%	26
Construction Project Management	5.06%	4
Engineering Consultants	18.99%	15
Government Engineering and R&D Services	7.59%	6
Other	12.66%	10
Total	100.00%	79

F. Response Statistics

i. Relative Advantage

Measurement Item	1		2		3		4		5		Total
Improve material usage	0.00%	0	6.10%	5	26.83%	22	39.02%	32	28.05%	23	82
Freedom of design at no extra cost	1.22%	1	10.98%	9	17.07%	14	30.49%	25	40.24%	33	82
Optimize components/	2.44%	2	7.32%	6	24.39%	20	42.68%	35	23.17%	19	82
Construct in harsh and aggressive environments	6.10%	5	18.29%	15	30.49%	25	26.83%	22	18.29%	15	82
Reduce manpower requirement	4.88%	4	3.66%	3	28.05%	23	36.59%	30	26.83%	22	82
Reduce cost of construction component/structure	0.00%	0	9.76%	8	26.83%	22	30.49%	25	32.93%	27	82
Reduce construction time	1.22%	1	1.22%	1	20.73%	17	31.71%	26	45.12%	37	82
Reduce safety hazards	0.00%	0	12.20%	10	23.17%	19	26.83%	22	37.80%	31	82
Reduce product quality problems	3.66%	3	9.76%	8	35.37%	29	35.37%	29	15.85%	13	82

ii. Ease of Use

Measurement Item	1		2		3		4		5		Total
Computer-generated design process is easy	4.88%	4	8.54%	7	32.93%	27	34.15%	28	19.51%	16	82
Managing digital construction process is easy	2.44%	2	12.20%	10	28.05%	23	39.02%	32	18.29%	15	82
Operating 3D printer is easy	4.88%	4	8.54%	7	23.17%	19	40.24%	33	23.17%	19	82
Maintaining3Dprinter is easy	7.32%	6	15.85%	13	28.05%	23	34.15%	28	14.63%	12	82

iii. Trialability

Measurement Item	1		2		3		4		5		Total
3D printing material properties are predictable	4.88%	4	8.54%	7	17.07%	14	42.68%	35	26.83%	22	82
Behavior of 3D printing product from a long-term perspective (e.g. length of the product life cycle)	3.66%	3	15.85%	13	20.73%	17	39.02%	32	20.73%	17	82
Precision of the printed objects is within acceptable tolerances	0.00%	0	4.88%	4	26.83%	22	37.80%	31	30.49%	25	82

iv. Compatibility

Measurement Item	1		2		3		4		5		Total
Flexibility to obtain various sizes of objects for different construction needs	2.44%	2	7.32%	6	19.51%	16	37.80%	31	32.93%	27	82
Compatibilityofconstructionsiteenvironment with 3Dprinting technology	6.10%	5	13.41%	11	28.05%	23	39.02%	32	13.41%	11	82
Suitability of printing conventional design elements	8.54%	7	14.63%	12	30.49%	25	36.59%	30	9.76%	8	82
Matching 3Davailable printing materialsmaterialswith the characteristicsof legacyconstruction processes	3.66%	3	18.29%	15	24.39%	20	41.46%	34	12.20%	10	82

v. Absorptive Capacity

Measurement Item	1		2		3		4		5		Total
Significant share of company capital expenditure devoted to R&D	2.44%	2	13.41%	11	35.37%	29	41.46%	34	7.32%	6	82
Extensive cooperation with other companies or research institutions in R&D	2.44%	2	12.20%	10	25.61%	21	41.46%	34	18.29%	15	82
Major share of employees has education at tertiary level	6.10%	5	15.85%	13	41.46%	34	29.27%	24	7.32%	6	82
Knowledge, expertise, talent, creativity and skills of the company' workforce	2.44%	2	2.44%	2	29.27%	24	45.12%	37	20.73%	17	82
Integrating a cross- functional team in a process to plan building product and process design, and construction activity	2.44%	2	3.66%	3	24.39%	20	43.90%	36	25.61%	21	82
Company team attitudes toward 3D printing in general	1.22%	1	10.98%	9	25.61%	21	42.68%	35	19.51%	16	82
Adequacyofcompany'sresourcestoproduce, testorimplement3Dprinting technology	1.22%	1	12.20%	10	18.29%	15	46.34%	38	21.95%	18	82

vi. External Pressure

Measurement Item	1		2		3		4		5		Total
Competitive pressure	3.66%	3	13.41%	11	23.17%	19	36.59%	30	23.17%	19	82
Lack of technical standards, standards for quality control and product certification issues	2.44%	2	12.20%	10	20.73%	17	29.27%	24	35.37%	29	82
Skeptical attitudes/ psychological barriers of consumers in relation to 3D printing technologies and product implementations	0.00%	0	14.63%	12	20.73%	17	35.37%	29	29.27%	24	82
Lack of information on technical and economic benefits arising from innovation and restrictions imposed by regulations, contractors and consultants isolated from one another	0.00%	0	4.88%	4	26.83%	22	48.78%	40	19.51%	16	82

vii. Uncertainty

Measurement Item	1		2		3		4		5		Total
Perceived side effects associated with the innovation	2.44%	2	12.20%	10	39.02%	32	34.15%	28	12.20%	10	82
Resistancetoenvironmentalinfluencesandfailureunderexposuretohighstress	2.44%	2	4.88%	4	30.49%	25	41.46%	34	20.73%	17	82
Uncertainty in 3D printing technology profitability	2.44%	2	4.88%	4	25.61%	21	40.24%	33	26.83%	22	82

viii. Supply-side Benefits

Measurement Item	1		2		3		4		5		Total
Reducing and/or simplifying construction tasks	0.00%	0	8.54%	7	15.85%	13	50.00%	41	25.61%	21	82
Reducing the need for pre-assembly/ assembly activities	3.66%	3	10.98%	9	29.27%	24	31.71%	26	24.39%	20	82
Reducing the need for transportation services	3.66%	3	19.51%	16	18.29%	15	35.37%	29	23.17%	19	82
Reducingnumberofsuppliersinvolvedinconstructionprocess	1.22%	1	9.76%	8	31.71%	26	36.59%	30	20.73%	17	82
Increasing collaboration among stakeholders (architects, engineers, constructors, suppliers, etc.)	1.22%	1	12.20%	10	21.95%	18	42.68%	35	21.95%	18	82

ix. Demand-side Benefits

Measurement Item	1		2		3		4		5		Total
Customized production of printed components	1.22%	1	6.10%	5	21.95%	18	47.56%	39	23.17%	19	82
Faster reaction to changing customer needs	2.44%	2	4.88%	4	21.95%	18	41.46%	34	29.27%	24	82
Productionincollaboration with thecustomerandsupplier(e.g.customersinproductdevelopment)	4.88%	4	4.88%	4	25.61%	21	37.80%	31	26.83%	22	82

G. Frequency of USA and non-USA responses

i. Non-USA (52 responses)

Factor/Respondent	1	2	3	4	5
RA1	0	2	16	22	12
RA2	0	6	8	15	23
RA3	1	4	15	22	10
RA4	3	8	18	13	10
RA5	2	2	15	23	10
RA6	0	5	15	17	15
RA7	1	1	9	20	21
RA8	0	6	14	15	17
RA9	1	7	18	18	8
CX1	0	6	18	17	11
CX2	0	6	14	24	8
CX3	1	4	13	20	14
CX4	2	9	15	21	5
TA1	2	4	8	24	14
TA2	2	9	10	24	7
TA3	0	2	14	20	16
CP1	2	1	12	18	19
CP2	3	8	12	22	7
CP3	5	9	15	19	4
CP4	3	7	14	22	6
AC1	2	7	17	21	5
AC2	1	7	11	22	11
AC3	3	6	25	13	5
AC4	1	1	15	24	11
AC5	0	0	15	22	15
AC6	0	7	18	21	6
AC7	0	7	11	24	10
EP1	1	6	13	20	12
EP2	0	9	9	15	19
EP3	0	7	11	19	15
EP4	0	3	13	28	8
UC1	2	6	23	16	5
UC2	1	0	17	25	9
UC3	1	2	13	24	12
SS1	0	4	6	28	14
SS2	1	7	17	18	9
SS3	2	10	12	20	8

SS4	0	3	20	18	11
SS5	0	4	11	23	14
DS1	0	3	12	22	15
DS2	0	2	10	22	18
DS3	1	1	10	23	17

ii. USA (30 responses)

Factor/Respondent	1	2	3	4	5
RA1	0	3	6	10	11
RA2	1	3	6	10	10
RA3	1	2	5	13	9
RA4	2	7	7	9	5
RA5	2	1	8	7	12
RA6	0	3	7	9	11
RA7	0	0	8	7	15
RA8	0	4	5	8	13
RA9	2	1	11	12	4
CX1	4	1	9	11	5
CX2	2	4	9	8	7
CX3	3	3	6	13	5
CX4	4	4	8	7	7
TA1	2	3	6	11	8
TA2	1	4	7	8	10
TA3	0	2	8	11	9
CP1	0	5	4	13	8
CP2	2	3	11	10	4
CP3	2	3	10	11	4
CP4	0	8	6	12	4
AC1	0	4	12	13	1
AC2	1	3	10	12	4
AC3	2	7	9	11	1
AC4	1	1	9	13	6
AC5	2	3	6	14	5
AC6	1	2	4	14	9
AC7	1	3	5	14	7
EP1	2	5	6	10	7

EP2	2	1	8	9	10
EP3	0	5	6	10	9
EP4	0	1	9	12	8
UC1	0	4	9	12	5
UC2	1	3	8	9	9
UC3	1	3	8	9	9
SS1	0	3	7	13	7
SS2	2	2	7	8	11
SS3	1	6	3	9	11
SS4	1	5	6	12	6
SS5	1	6	7	12	4
DS1	1	2	6	17	4
DS2	2	2	8	11	7
DS3	3	3	11	7	6

References

- 3D Printed Homes 4 Most Fascinating Projects in 2019. (2019, February 20). Retrieved July 30, 2019, from https://all3dp.com/2/3d-printed-homes-most-fascinating-projects/
- 3D Printing: The Future of Construction. (2019, February 04). Retrieved July 30, 2019, from https://www.3dnatives.com/en/3d-printing-construction-310120184/
- Agenda, I. (2017). Shaping the Future of Construction Inspiring innovators redefine the industry. (February).
- Everett, M. R. (1983). Elements of Diffusion. *Diffusion of Innovations*, 453. https://doi.org/10.1525/aa.1963.65.5.02a00230
- Labonnote, N., Rønnquist, A., Manum, B., & Rüther, P. (2016). Additive construction: State-ofthe-art, challenges and opportunities. *Automation in Construction*, 72, 347–366. https://doi.org/10.1016/j.autcon.2016.08.026
- Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F., & Thorpe, T. (2012).
 Developments in construction-scale additive manufacturing processes. *Automation in Construction*, 21(1), 262–268. https://doi.org/10.1016/j.autcon.2011.06.010
- Lim, Sungwoo, Le, T., Webster, J., Buswell, R., Austin, S., Gibb, A., & Thorpe, T. (2018).
 Fabricating Construction Components Using Layered Manufacturing Technology. *Global Innovation in Construction Conference 2009*, 512–520.
 https://doi.org/10.1016/j.autcon.2011.06.010
- Mellor, S., Hao, L., & Zhang, D. (2014). Additive manufacturing: A framework for implementation. *International Journal of Production Economics*, 149, 194–201.

https://doi.org/10.1016/j.ijpe.2013.07.008

- Parasuraman, A. (2000). Technology Readiness Index (Tri): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. Journal of Service Research, 2(4), 307-320. https://doi.org/10.1177/109467050024001. (n.d.).
- SANCHEZ, R. (2009). A Competence Perspective on Strategic Learning and Knowledge Management. *Strategic Learning in a Knowledge Economy*, 23–35. https://doi.org/10.1016/b978-0-7506-7223-8.50004-6
- Tidd, J., & Prajogo, D. I. (2016). Innovation management in context: environment, organization and performance إدارة الابتكار في السياق. *International Journal of Production Economics*, *171*(3), 169–183. https://doi.org/10.1016/j.ijpe.2015.07.037
- Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees' technology readiness on technology acceptance. *Information and Management*, 44(2), 206–215. https://doi.org/10.1016/j.im.2006.12.005
- Wilson, F. R., Pan, W., & Schumsky, D. A. (2012). Recalculation of the critical values for Lawshe's content validity ratio. *Measurement and Evaluation in Counseling and Development*, 45(3), 197–210. https://doi.org/10.1177/0748175612440286

Winsun. (n.d.).

Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. *Automation in Construction*, 68, 21–31. https://doi.org/10.1016/j.autcon.2016.04.005