
ABSTRACT

Title of dissertation: EXTENDING THE APPLICABILITY OF
NON-MALLEABLE CODES

Mukul Ramesh Kulkarni
Doctor of Philosophy, 2019

Dissertation directed by: Professor Dana Dachman-Soled
Department of Electrical and Computer Engineering

Modern cryptographic systems provide provable security guarantees as long

as secret keys of the system remain confidential. However, if adversary learns some

bits of information about the secret keys the security of the system can be breached.

Side-channel attacks (like power analysis, timing analysis etc.) are one of the most

effective tools employed by the adversaries to learn information pertaining to cryp-

tographic secret keys.An adversary can also tamper with secret keys (say flip some

bits) and observe the modified behavior of the cryptosystem, thereby leaking infor-

mation about the secret keys. Dziembowski et al. (JACM 2018) defined the notion

of non-malleable codes, a tool to protect memory against tampering. Non-malleable

codes ensure that, when a codeword (generated by encoding an underlying message)

is modified by some tampering function in a given tampering class, if the decoding

of tampered codeword is incorrect then the decoded message is independent of the

original message.

In this dissertation, we focus on improving different aspects of non-malleable



codes. Specifically, (1) we extend the class of tampering functions and present ex-

plicit constructions as well as general frameworks for constructing non-malleable

codes. While most prior work considered “compartmentalized” tampering func-

tions, which modify parts of the codeword independently, we consider classes of

tampering functions which can tamper with the entire codeword but are restricted

in computational complexity. The tampering classes studied in this work include

complexity classes NC0, and AC0. Also, earlier works focused on constructing non-

malleable codes from scratch for different tampering classes, in this work we present

a general framework for constructing non-malleable codes based on average-case

hard problems for specific tampering families, and we instantiate our framework for

various tampering classes including AC0. (2) The locality of code is the number of

codeword blocks required to be accessed in order to decode/update a single block in

the underlying message. We improve efficiency and usability by studying the opti-

mal locality of non-malleable codes. We show that locally decodable and updatable

non-malleable codes cannot have constant locality. We also give a matching up-

per bound that improves the locality of previous constructions. (3) We investigate

a stronger variant of non-malleable codes called continuous non-malleable codes,

which are known to be impossible to construct without computational assumptions.

We show that setup assumptions such as common reference string (CRS) are also

necessary to construct this stronger primitive. We present construction of contin-

uous non-malleable codes in CRS model from weaker computational assumptions

than assumptions used in prior work.



EXTENDING THE APPLICABILITY OF NON-MALLEABLE
CODES

by

Mukul Ramesh Kulkarni

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Dana Dachman-Soled, Chair/Advisor
Professor Jonathan Katz
Dr. Tal Malkin, Columbia University
Professor Charalampos Papamanthou
Professor Gang Qu



c© Copyright by
Mukul Ramesh Kulkarni

2019





Dedication

To my grandparents Late Dinkar Keshav Raje & Late Pramila Dinkar Raje

and my father Late Ramesh Dwarkanath Kulkarni, who I know will be beaming with

pride.

ii



Acknowledgments

I am grateful to everybody who have made this thesis possible and to all who

have made my graduate experience memorable and worth cherishing.

First and foremost I wish to thank my advisor, Professor Dana Dachman-

Soled for trusting my abilities and providing me an invaluable opportunity to work

on engaging and intellectually stimulating projects throughout the past five years.

Her mentoring has taught me how to be a critical thinker, dedicated researcher,

and how to communicate my ideas effectively. Throughout the time we worked

together, she has always shared her invaluable insights, shown unwavering support,

and encouraged me to produce high quality research. I am honored and consider

myself fortunate to work with and learn from her.

I would also like to thank, Professor Tal Malkin. Who has been amazing

collaborator, and guide to me. Without her extraordinary ideas and expertise, this

thesis would have been a distant dream. Thanks are due to Professor Jonathan Katz,

Professor Charalampos (Babis) Papamanthou and Professor Gang Qu for agreeing

to serve on my thesis committee and for sparing their invaluable time reviewing the

manuscript.

My collaborators Marshall Ball, Aria Shahverdi, Huijing Gong, Professor Hui-

jia (Rachel) Lin, Professor Tudor Dumitras, Dr. Kartik Nayak, Soumya Indela

deserve a special acknowledgement since without their hard work and support it

would have been incredibly difficult if not impossible to explore different research

topics.

iii



I also wish to thank my colleagues at Maryland Cybersecurity Center who

enriched my graduate life. Dr. Alex Malozemoff, Dr. Aishwarya Thiryvengadam,

and Dr. Daniel Apon deserve a special mention for helping me settle during the ini-

tial days. I am thankful to Professor Arkady Yerukhimovich, Professor Seung-Geol

Choi, Dr. Xiao Wang, Professor Bhavana Kanukurthi, Dr. Nishanth Chandran,

Sruthi Sekar, Sai Lakshmi Bhavana Obbattu, and Dr. Samuel Ranellucci for many

fruitful discussions.

I am extremely grateful to Melanie Prange, William (Bill) Churma, Emily

Irwin, and Dana Purcell for their continued support and assistance to ensure that I

can focus on research without having to worry about any other administrative work.

I thank Professor Ankur Srivastava and other faculty members of ECE depart-

ment who have always provided their guidance and expertise whenever I requested.

I owe my deepest thanks to my family - my mother and sister who have always

believed in me and have sacrificed more than one can imagine to make my dream

possible. Words cannot express the gratitude I owe them. My wife, Devika, deserves

special thanks for her endless love, company, and patience. I am extremely fortunate

to have her in my life. I would also like to thank my brother-in-law Shailesh, and

my in-laws for their never ending support and encouragement.

My friends have been a crucial factor in my well being, have looked after me

and have accompanied me throughout this long journey which otherwise would have

been lonely. I’d like to express my gratitude to Matthew Reed, Helene Nguewou,

Vidya Raju, Swaminathan Sankarnarayanan, Ariyan Kabir, Sarah Al-Hussaini, Raji

iv



Samaraweera, Estefany Carrillo, Nidhi Rathi, Akshay & Papeeha Deshpande, Amit

& Girija Kulkarni, Gunesh & Priyanka Patil, Tejas & Anuja Kulkarni, Pratiksha

& Radhakrishna Tetali, Sujay Bhatt, Siddhi Shinde, Aditya Mishra, Shweta Vinod,

Aditi Joshi Bhavthankar, Kiran & Abhitosh Singh for their friendship and support.

I believe all the ups and downs experienced in graduate school will make me

a better person, son, and husband.

It is impossible to remember all, and I apologize to those I’ve inadvertently

left out.

Thank you all and thank God!

v



Table of Contents

Acknowledgements iii

Table of Contents vi

List of Tables x

List of Figures xi

List of Abbreviations xiii

1 Introduction 1

1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Non-Malleable Codes for Bounded Depth, Bounded Fan-in Circuits . 7

1.3 Non-Malleable Codes from Average-Case Hardness:
AC0, Decision Trees, and Streaming Space-Bounded Tampering . . . 8

1.4 Tight Upper and Lower Bounds for Leakage-Resilient, Locally De-
codable and Updatable Non-Malleable Codes . . . . . . . . . . . . . . 9

1.5 Upper and Lower Bounds for Continuous Non-Malleable Codes . . . . 12

2 Related Work 15

2.1 Non-Malleable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Locally Decodable and Updatable Non-Malleable Codes . . . . . . . . 20

2.3 Continuous Non-Malleable Codes . . . . . . . . . . . . . . . . . . . . 22

3 Preliminaries and Definitions 26

3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Non-Malleable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Non-Malleable Code in CRS Model . . . . . . . . . . . . . . . 31

3.2.2 Medium Non-Malleability . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Continuous Non-Malleable Codes (CNMC) . . . . . . . . . . . 36

3.2.4 Locally Decodable and Updatable Non-Malleable Codes
(LDUNMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Boolean Circuits and Related Definitions . . . . . . . . . . . . . . . . 42

3.3.1 Local Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Background on Boolean Analysis . . . . . . . . . . . . . . . . 45

vi



3.4 Public Key Encryption Scheme and PRG . . . . . . . . . . . . . . . . 47

3.4.1 Pseudorandom Generators of Space-Bounded Computation . . 49

3.5 Non-Interactive Zero Knowledge . . . . . . . . . . . . . . . . . . . . . 50

4 Non-Malleable Codes for Bounded Depth, Bounded Fan-in Circuits 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Non-Malleable Codes: Alternate Definitions . . . . . . . . . . 68

4.2.2 Tampering Families . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Reconstructable Probabilistic Encoding Scheme . . . . . . . . 70

4.3 Non-malleable Codes for Local
`i(n)
`o(n) . . . . . . . . . . . . . . . . . . . 72

4.3.1 Extending to Leaky Local . . . . . . . . . . . . . . . . . . . . 83

4.4 Extending to Localm(n) . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Achieving Resilience against o(n/ log n) Output Locality . . . . . . . 91

5 Non-Malleable Codes from Average-Case Hardness:
AC0, Decision Trees, and Streaming Space-Bounded Tampering 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Incompressible Functions . . . . . . . . . . . . . . . . . . . . . 121

5.2.2 Proof Systems for Circuit SAT . . . . . . . . . . . . . . . . . . 121

5.2.2.1 Circuit SAT proof system for the class L(C) with
prover complexity D and verifier complexity AC0 . . . 122

5.2.2.2 Circuit SAT proof system for the class L(C) with
prover complexity D and streaming verifier. . . . . . 123

5.2.3 Computational Model for Streaming Adversaries . . . . . . . . 125

5.3 Generic Construction for One-Bit Messages . . . . . . . . . . . . . . . 129

5.3.1 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . 135

5.3.2 One-Bit NMC for AC0 and beyond . . . . . . . . . . . . . . . 137

5.3.3 Tampering classes beyond AC0 . . . . . . . . . . . . . . . . . . 149

5.4 Construction for Multi-Bit Messages . . . . . . . . . . . . . . . . . . 152

5.4.1 Generic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4.2 Efficient, Multi-Bit NMC for AC0 . . . . . . . . . . . . . . . . 160

5.4.3 Tampering with decision trees . . . . . . . . . . . . . . . . . . 170

5.5 One-Bit NMC Against Streaming Adversaries . . . . . . . . . . . . . 172

5.5.1 The Hard Distribution Db (parameter n) . . . . . . . . . . . . 173

5.5.2 Encryption scheme E = (Encrypt,Decrypt) (parameter n′ ∈
ω(n)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.5.3 Weak Encryption Scheme (parameter n′′ ∈ o(n)) . . . . . . . . 174

vii



5.5.4 Non-Interactive Simulatable Proof System (parameter n′′ ∈
o(n)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.5.5 Multi-Bit NMC Against Streaming Adversaries . . . . . . . . 189

5.6 Figure to explain MPC in head from section 5.5.4 . . . . . . . . . . . 191

6 Tight Upper and Lower Bounds for Leakage-Resilient, Locally Decodable and
Updatable Non-Malleable Codes 193

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.1.2 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.1.2.1 Lower Bound for Deterministic Access Patterns . . . 198

6.1.2.2 Lower Bound for Randomized Access Patterns . . . . 203

6.1.2.3 Difficulty of Extending Techniques to the Adaptive
Setting . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.1.2.4 Upper Bound . . . . . . . . . . . . . . . . . . . . . . 207

6.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.2.1 Attack Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 209

6.2.2 Applying the Sunflower Lemma . . . . . . . . . . . . . . . . . 211

6.2.3 The Compression Functions . . . . . . . . . . . . . . . . . . . 212

6.2.4 Closeness of Distributions . . . . . . . . . . . . . . . . . . . . 212

6.2.5 The Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.2.6 Attack Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.3 Extending Lower Bound to Randomized Decode/Update . . . . . . . 222

6.3.1 Applying the Sunflower Lemma . . . . . . . . . . . . . . . . . 223

6.3.2 The Compression Functions . . . . . . . . . . . . . . . . . . . 224

6.3.3 Closeness of Distributions . . . . . . . . . . . . . . . . . . . . 225

6.3.4 The Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.3.5 Attack Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.4 Matching Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 246

7 Upper and Lower Bounds for Continuous Non-Malleable Codes 258

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

7.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

7.1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . 263

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7.2.1 Randomness Extractors . . . . . . . . . . . . . . . . . . . . . 270

7.2.2 Continuous Non-Malleable Randomness Encoder . . . . . . . . 270

7.2.3 Falsifiable Assumptions and Black-Box Reductions . . . . . . 272

7.2.4 (Strong) One-Time Signature Schemes . . . . . . . . . . . . . 273

7.2.5 Equivocal Commitment Scheme . . . . . . . . . . . . . . . . . 273

7.2.6 One-to-one Equivocal Commitment . . . . . . . . . . . . . . . 277

viii



7.2.7 Equivocal Commitment (with extra properties) in the CRS
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

7.3 Impossibility of CNMC with no CRS . . . . . . . . . . . . . . . . . . 281

7.4 2-State CNMC for One-Bit Messages . . . . . . . . . . . . . . . . . . 285

7.4.1 CNM Randomness Encoder to Single-Bit CNMC . . . . . . . 286

7.5 4-State CNMC for Multi-Bit Messages . . . . . . . . . . . . . . . . . 297

8 Conclusion and Future Directions 312

8.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Bibliography 315

ix



List of Tables

x



List of Figures

3.1 Non-Malleability Experiment TamperΠ,FA,m(n) . . . . . . . . . . . . . . 31

3.2 Non-Malleability Experiment IdealSim,m(n) . . . . . . . . . . . . . . 32

3.3 Strong Non-Malleability Experiment StrongTamperΠ,FA,m(n) . . . . . . 32

3.4 The experiment corresponding to the special predicate g. . . . . . . 34

3.5 Medium Non-Malleability Experiment MediumTamperΠ,FA,m,g(n) . . . . 34

4.1 Figure with caption indented . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 The adversary chooses tampering function f = (fL, fR) ∈ Local
do(k)
di(k)

which takes

inputs (~sL, ~sR) and produces outputs (~σL, ~σR). The highlighted bits of ~sL and ~sR

are the “bad” bits. E.g. note that bits sR2 and sRi affect the output bits σL
2 and σL

1

respectively after fL is applied to (~sL, ~sR). Thus we add 2 and i to the set SR→L.

Similarly, the bits sL1 and sL3 affect the bits {σR
1 , σ

R
i } and the bits {σR

2 , σ
R
i+1, σ

R
nR,}

respectively after the tampering function fR is applied to (~sL, ~sR). We therefore

add 1 to the sets S1L→R and SiL→R, while we add 3 to the sets S2L→R,S
i+1
L→R and

SnR

L→R. We also add both 1 and 3 to the set SL→R. . . . . . . . . . . . . . . . 76

4.3 The (Localdo
′
,LL, negl(n))-non-malleable reduction (E′,D′) . . 87

4.4 The (Localdo , SS, negl(k))-non-malleable reduction (E,D) . . . 93

5.1 Non-malleable code (CRSGen,E,D), secure against F tam-
pering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2 Encoding algorithm with simulated proofs. . . . . . . . . . . . . . . 131

5.3 Encoding algorithm with simulated proofs and encryptions. . . . . . 131

5.4 Extracting procedure Ext. . . . . . . . . . . . . . . . . . . . . 132

5.5 Alternate decoding procedure D′, given additional ex-
tracted key k as input. . . . . . . . . . . . . . . . . . . . . . . 132

5.6 The predicate g(crs,CW,CW∗, r). . . . . . . . . . . . . . . . . . 132

5.7 Non-malleable code (CRSGen,E,D), secure against F tam-
pering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.8 Encoding algorithm with simulated proofs. . . . . . . . . . . . . . . . 154

5.9 Encoding algorithm with simulated proofs and encryptions. . . . . . . 155

5.10 Extracting procedure Ext. . . . . . . . . . . . . . . . . . . . . 155

xi



5.11 Alternate decoding procedure D′, given additional ex-
tracted key [ki]i∈[m] as input. . . . . . . . . . . . . . . . . . . 155

5.12 The predicate g(crs,CW,CW∗, r). . . . . . . . . . . . . . . . . . 156

5.13 A pictorial representation of the Prover’s output in the NI
Simulatable Proof System Π. Let ` = 5 be the number of parties,
and λ be the security parameter. In the q-th iteration, each party Pi
for i ∈ [`] has inputs (wqi , s

q
i ). We encode each sqi as sqi ||s

q
i , where sqi is

the bit-wise complement of sqi . For example 001 is encoded as 001100.
For each bit of the encoding of sqi , if the bit is 1 then each party Pi
places a weak encryption of its view, viewi, in the corresponding slot
(represented by filled-in rectangles of various shades of gray in the
figure). Otherwise, if the bit is 0 then each party places a weak
encryption of all 0’s in the corresponding slot, (represented by blank
rectangles in the figure). During verification, the verifier checks in the
first step that input s = sq1 ⊕ s

q
2 ⊕ . . .⊕ s

q
` . To check the consistency

of the views, the verifier selects 2 columns (P2 and P4) and 2 rows (sqi
and sq`) at random and does the following: (1) checks that sqi and sq`
are consistent with the values read in the first step (2) runs Rec on
the weakly encrypted views and checks that the resulting views are
consistent with each other and internally. . . . . . . . . . . . . . . . 192

6.1 Illustration of a Sunflower . . . . . . . . . . . . . . . . . . . . . . . . 200

6.2 Illustration of 3-slice-Merkle Tree: The figure shows a 3-slice Merkle
tree with n = 81 number of blocks, where each block has size X . The
hash function h maps inputs of size X to outputs of size X/3. As a
concrete example, starting from leaf block α0

45, we apply the hash h
to obtain the leftmost (0-th) slice of block α1

15. Next, hashing α1
15,

we obtain the leftmost (0-th) slice of block α2
5. Then, hashing α2

5,
we obtain the rightmost (2-nd) slice of block α3

1. Finally, hashing
α3

1, we obtain the middle (1-st) slice of block α4
0. Thus, in order to

check consistency or update leaf block 45 at the bottom, we need to
access only the path to block 45, consisting of (α0

45, α
1
15, α

2
5, α

3
1, α

4
0),

as described above. Note that no sibling nodes are accessed. . . . . . 249

7.1 Construction of 2-State, Continuous, Non-Malleable Randomness En-
coder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

7.2 Decode in Hybrid 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.3 Gen and Challenge Codeword generation in Hybrid 2. . . . . . . . . 289

7.4 Decode in Hybrid 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

7.5 Decode in Hybrid 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

7.6 Construction of 4-state Continuous, Non-Malleable Code. . . . . . . 298

7.7 Algorithm D′3ΣEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

7.8 Algorithm D′4ΣEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

xii



List of Abbreviations

NMC Non-Malleable Codes
CNMC Continuous Non-Malleable Codes
LDUNMC Locally Decodable and Updatable Non-Malleable Codes
CRS Common Reference String
PRG Pseudo-Random Generator
ECC Error Correcting Codes
PKE Public Key Encryption
NMRE Non-Malleable Randomness Encoder
CNMRE Continuous Non-Malleable Randomness Encoder
RPE Reconstructable Probabilistic Encoding
OWF One Way Function
CRHF Collision Resistant Hash Function
NIZK Non Interactive Zero Knowledge

xiii



Chapter 1: Introduction

Cryptographic systems play an instrumental role in providing provable security

guarantees in situations where sensitive data is handled or transferred. Tradition-

ally, such systems assume that the adversarial entities interact with the system in

a black-box manner. Specifically, it is crucial for the security proof that some se-

cret internal state of the system cannot be manipulated (or even inferred) by the

attacker. Unfortunately, adversarial capabilities in practice often allow much more

access. Such attacks, often called side channel attacks, aim to recover the internal

secret state by analyzing extra information learned via side-channels such as power

consumption, timing analysis of certain computations etc. [28, 95]. An adversary

can also tamper with secret state (say flip some bits) in order to learn about the

secret by studying the modified input-output behavior; such attacks are known as

tampering attacks [24, 27,112,115].

In their seminal work in 2010, Dziembowski et al. [66] defined the notion of

non-malleable codes as an extension of error-correcting codes to achieve tamper

resilience. Whereas error-correcting codes provide the guarantee that (if not too

many errors occur) the receiver can recover the original message from a corrupted

codeword, non-malleable codes are essentially concerned with security. In other

1



words, correct decoding of corrupted codewords is not guaranteed (nor required),

but it is instead guaranteed that if the decoding is incorrect then it is independent of

the original message. Non-malleable codes can be used to encode the secret key in

the memory of a device such that a tampering adversary interacting with the device

does not learn anything more than the input-output behavior. Unfortunately, it

is impossible to construct non-malleable codes secure against arbitrary tampering,

since the adversary can always apply the tampering function that decodes the entire

codeword to recover the message m and then re-encodes a related message m′. Thus,

non-malleable codes are typically constructed against limited classes of tampering

functions F .

Somewhat formally, non-malleable codes are defined via a Ideal-Real paradigm

definition. In the real world, a challenger creates a codeword c by encoding some

underlying message m. The challenger then applies an adversarial tampering func-

tion f from a specific tampering class F , on the codeword c, and then decodes the

tampered codeword. The adversarial view in the real world comprises of the decoded

message obtained after the decoding the tampered codeword. On the other hand,

in an ideal world, there exists a simulator which is given the adversarial tampering

function f . The simulator then samples the decoded message from a distribution

which depends only on f . The simulator can also output a special symbol same∗, to

indicate that decoding of the tampered codeword matches the original message m

(note that, in the ideal world the simulator must indicate this without any knowl-

edge of m). The view of the adversary in the ideal world consists of the simulator’s

output. The coding scheme is called non-malleable if the adversarial views in the two

2



cases are indistinguishable from each other for all messages, and for all tampering

functions in the tampering class F .

Tampering Classes and Complexity Prior work, due to the impossibility re-

sult mentioned above, focused on providing resilience against split-state tampering

functions, where an attacker is allowed to arbitrarily modify two (or more) parts of

the secret key independently. In this dissertation we introduce a novel formalization

of tampering functions based on well-studied complexity classes which are known

to be strictly weaker from the class of all polynomial time algorithms (P). Studying

the tampering classes through the lens of complexity theory, allows us to achieve

security against attackers with limited computational resources, who can corrupt

the codeword in a non split-state manner. The work presented in this dissertation

is the first work to specifically investigate tampering functions that correspond to

well-studies classes in complexity theory. This research direction has generated sig-

nificant research interest and has been followed up by several important advances

in the study of non-malleable codes [15–18,36].

We begin, in chapter 4, by constructing explicit, efficient, and uncondition-

ally secure non-malleable codes against a powerful tampering class which includes

all bounded-depth circuits with bounded fan-in and unbounded fan-out; the well-

studied complexity class NC0 is a special case of this tampering class. The class of

bounded depth circuits is natural both as a complexity class and as a stepping stone

towards modeling practical tampering attacks, where an adversary has limited time

or other computational resources to tamper with memory before the memory gets

3



overwritten and/or refreshed.

The work presented in chapter 4, is based on a paper co-authored with Marshall

Ball, Dana Dachman-Soled, and Tal Malkin [17]; which is published in Eurocrypt

2016.

In chapter 5, we extend the previous direction and present general frameworks

for constructing non-malleable codes for encoding one and multiple bits against

broad classes of tampering functions F for which average case hardness results are

known. Note that one cannot simply use the NMC for encoding single bit, in order

to encode multiple bits by encoding each bit individually. This is because, a simple

tampering function which re-orders the encodings will reveal a related message after

decoding. Our frameworks include both a generic construction, which requires that

certain underlying primitives are instantiated in a suitable way, as well as a proof

“template.” We instantiate our framework for particular tampering classes F in

both the computational and information theoretic setting such as: (1) tampering

functions that are represented by polynomial size, constant-depth, unbounded fan-in

and unbounded fan-out circuits, such tampering functions correspond to AC0 circuits

(2) tampering functions represented by bounded-depth decision trees (3) tampering

functions that are represented by read-once, bounded-width branching programs,

such tampering functions correspond to the space-bounded, streaming setting.

The work presented in chapter 5, is based on a paper co-authored with Marshall

Ball, Dana Dachman-Soled, and Tal Malkin [18]; which is published in Eurocrypt

2018.

4



Improving Efficiency Standard non-malleable codes are not suitable in settings

where, say, an entire database must be protected; because they do not allow for

random access. For example, the entire database would have to be re-encoded even

if only a single entry is read/written by the user. Dachman-Soled et al. [54] proposed

a new notion called locally decodable and updatable non-malleable codes, which

informally speaking, provides the security guarantees of a non-malleable code while

also allowing for efficient random access. In chapter 6 we analyze the theoretical

upper and lower bounds on such constructions. In particular we show that any

locally decodable and updatable code must have super-constant locality in order to

be secure, as we show an efficient, explicit attack on schemes with lower locality. We

also improve the performance of the scheme presented by Dachman-Soled et al. [54]

and match the lower bound of super-constant locality.

The work presented in chapter 6, is based on a paper co-authored with Dana

Dachman-Soled, and Aria Shahverdi. A preliminary version of this work [53] is

published in Public Key Cryptography 2017, and the full version has been accepted

for publication in the Journal of Information & Computation.

Tamper Resilience Against Stronger Adversaries Recently, Faust et al. [71]

introduced the notion of continuous non-malleable codes (CNMC), which provides

stronger security guarantees than standard non-malleable codes, by allowing an

adversary to tamper with the codeword in a continuous way instead of one-time

tampering. They also showed that CNMC with information theoretic security can-

not be constructed in 2-split-state tampering model, and presented a construction

5



of the same in CRS (common reference string) model using collision-resistant hash

functions (CRHF) and non-interactive zero-knowledge proofs (NIZK).

Since it is known that 2-split-state CNMC imply one-way functions (OWF),

OWF is the minimal computational assumption necessary to construct CNMC. The

computational assumptions used in prior constructions (NIZK and CRHF) are be-

lieved to be stronger than one-way functions. Therefore, an interesting research

question is to reduce this gap by constructing 2-split-state CNMC from weaker

assumptions.

In chapter 7, we ask if it is possible to construct CNMC from such weaker

assumptions. We answer this question by presenting lower as well as upper bounds.

Specifically, we show that it is impossible to construct 2-split-state CNMC, with no

CRS, for one-bit messages from any falsifiable assumption with black-box reduction,

thus establishing the lower bound. Black-box reduction here means, that the security

reduction has only input/output (black-box) access to the adversary breaking the

security of CNMC. We additionally provide an upper bound by constructing 2-split-

state CNMC for one-bit messages, assuming only the existence of a family of injective

one way functions, which is believed to be a significantly weaker computational

assumption than NIZK. We also present a construction of 4-split-state CNMC for

multi-bit messages in CRS model from the same assumptions. Additionally, we

present definitions of the following new primitives: 1) One-to-one commitments, and

2) Continuous Non-Malleable Randomness Encoders, which may be of independent

interest.

The work presented in chapter 7, is based on a paper co-authored with Dana

6



Dachman-Soled [52]; which is published in Public Key Cryptography 2019.

We next give an outline of the dissertation, followed by overview of the chapters

presenting technical results.

1.1 Organization

The dissertation is structured as follows: Chapter 2 gives an overview of prior

work. It is followed by some preliminaries and standard definitions in chapter 3.

Chapter 4, presents the construction of non-malleable codes for bounded depth

bounded fan-in circuits, which is followed by presentation of general framework

for constructing non-malleable codes from average-case hardness in chapter 5. In

chapters 6 and 7 we present the upper and lower bounds on variants of standard

non-malleable codes (locally decodable and updatable NMC in chapter 6, and con-

tinuous non-malleable codes in chapter 7). We conclude by presenting conclusions

in chapter 8

1.2 Non-Malleable Codes for Bounded Depth, Bounded Fan-in Cir-

cuits

In chapter 4, we give a construction of non-malleable codes where the attacker

is allowed to tamper with the key arbitrarily in a non split-state manner, but is

constrained in the computational complexity of the tampering function. This model

is inspired from the need to capture real world attacks where an attacker usually

gets chance to tamper with the entire secret key but has limited time to carry out

7



the attack. In this work, we devise explicit, efficient, and unconditionally secure

non-malleable codes against a powerful tampering class which includes all bounded-

depth circuits with bounded fan-in and unbounded fan-out. This tampering class

includes NC0 . Specifically, we consider the class Localdo , consisting of all functions

f : {0, 1}n → {0, 1}n that can be computed with output locality do(n), where each

output bit depends on at most do(n) input bits. Note that this class includes all

fan-in-b circuits of depth at most logb do. Moreover, the class of bounded output

locality functions is a natural class in its own right, and is in fact much broader,

including arbitrarily complex functions (even those outside of P), as long as the

output locality constraint is maintained; we do not impose any constraints on the

number or type of gates in the circuit. Finally, as we discuss in chapter 4, our

constructions actually hold for an even broader class, that also includes all split

state functions, and beyond.

1.3 Non-Malleable Codes from Average-Case Hardness:

AC0, Decision Trees, and Streaming Space-Bounded Tampering

In chapter 5,we continue this line of research and consider constructing non-

malleable codes against various complexity classes, including: (1) AC0 tampering,

where the tampering function is represented by a polynomial size constant-depth,

unbounded fan-in/fan-out circuit, (2) tampering with bounded-depth decision trees,

where the tampering function is represented by a decision tree with n variables and

depth nε for ε < 1, (3) streaming tampering with quadratic space, where the tam-

8



pering function is represented by a read-once, bounded-width (2o(n
2)) branching

program, (4) small threshold circuits: depth d circuits of majority gates with a

quasilinear number of wires, (5) fixed polynomial time tampering: randomized tur-

ing machines running in time O(nk) for any fixed k. Constructing non-malleable

codes against a wide array of complexity classes is desirable since in practice, the

capabilities of a tampering adversary are uniquely tied to the computational setting

under consideration and/or the physical device being used. AC0 circuits, which are

constant-depth circuits, model attackers with limited time, since the propagation

delay of a circuit is proportional to the length of the longest path from input to

output.

We also present general frameworks for constructing non-malleable codes for

encoding one and multi-bits against various tampering classes F for which average

case hardness results are known. Our frameworks (one for single-bit and one for

multi-bit) include a generic construction, which requires suitable instantiations of

underlying primitives, along with a proof “template.” Our frameworks are inspired

by the well-known double-encryption paradigm for constructing CCA2-secure public

key encryption schemes [99,102,111].

1.4 Tight Upper and Lower Bounds for Leakage-Resilient, Locally

Decodable and Updatable Non-Malleable Codes

Another aspect of tamper and leakage resilient cryptography is the efficiency

of these schemes. The earlier works suffered from the severe drawbacks on this

9



front since those constructions did not support the random access of data., For

example, the entire database was needed to be re-encoded even if only a single file

was read/written by the user. This is not practical in setting such as cloud based

data storage systems where updates to data are often quite small in size compared to

overall data stored. The recent work of Dachman-Soled et al [54], addressed this by

introducing the locally decodable and updatable non-malleable codes (LDUNMC).

These codes allow the user to access only few blocks of data to be accessed (or

re-encoded) when the data is read (or updated). These codes therefore are useful in

large databases where random access to the data is desired, which is the case with

all practical systems.

Locally decodable and updatable non-malleable codes, (LDUNMC) informally

speaking, provides the security guarantees of a non-malleable code while also al-

lowing for efficient random access. In more detail, we consider a message m =

m1, . . . ,mn consisting of n blocks, and an encoding algorithm E(m) that outputs a

codeword Ĉ = ĉ1, . . . , ĉn̂ consisting of n̂ blocks. As introduced by Katz and Tre-

visan [92], local decodability means that in order to retrieve a single block of the

underlying message, one does not need to read through the whole codeword but

rather, one can access just a few blocks of the codeword. Similarly, local updata-

bility means that in order to update a single block of the underlying messages, one

only needs to update a few blocks of the codeword. Dachman-Soled et al. in [54]

considered LDUNMC that are also leakage-resilient (LR-LDUNMC), thus allowing

for adversaries who continually leak information about D in addition to tampering.

The locality achieved by the construction of [54] is Θ(log(n)), meaning that when

10



encoding messages of length n number of blocks, the decode and update procedures

each require access to Θ(log(n)) number of blocks of the encoding. Thus, when us-

ing the encoding scheme of [54] to compile a RAM program into its secure version,

the overhead is at least Ω(log(n)) memory accesses for each read/write access in the

underlying program. In practice, such an overhead is often prohibitive. 1

In chapter 6, we ask whether it is possible to construct leakage-resilient, locally

decodable and updatable non-malleable codes (LR-LDUNMC)that achieve signifi-

cantly better locality. When considering both leakage and tampering attacks (even

just a single leakage query followed in a later round by a single tampering query)

so-called rewind attacks become possible. In a rewind attack, the attacker does the

following (1) leak information on only a “few” blocks of memory in rounds 1, . . . , i;

(2) wait during rounds i + 1, . . . , j until these memory locations are (with high

probability) modified by the “updater” (the entity that models the honest compu-

tation on the data); (3) re-write the old information into these memory locations

in round j+ 1, with the goal of causing the state of the computation to be rewound.

Rewind attacks can be thwarted by ensuring that when the old information is writ-

ten back, it becomes inconsistent with other positions of the codeword and an error

is detected.

Our results show that any construction of LDUNMC in a threat model which

allows for a rewind attack as above will require “high locality.” Specifically, we

1Although the ORAM scheme used in the compiler also has ω(log(n)) overhead, in many appli-
cations of interest, properties of the specific RAM program can be leveraged so that the overhead of
ORAM can be reduced such that it becomes practically feasible. On the other hand, the Θ(log(n))
overhead of the encoding scheme of [54] is entirely agnostic to the RAM program being run on top
and thus, the high overhead would be incurred in all applications.

11



show tight upper and lower bounds: (1) Every such construction will require super-

constant locality, moreover; (2) Super-constant locality is sufficient for achieving

constructions in the same threat model as [54] (which, as discussed, allows for

rewind attacks). In this work, we assume that the decode and update procedures

are non-adaptive in the sense that the next block of the codeword accessed during

decode/update does not depend on the contents of the previous blocks accessed.

For non-adaptive decode and update we consider both deterministic as well as ran-

domized access patterns, for more details refer chapter 6.

1.5 Upper and Lower Bounds for Continuous Non-Malleable Codes

In chapter 7, we study continuous non-malleable codes which is a stronger

variant of non-malleable codes.

Standard non-malleable codes achieve security only against one-time tamper-

ing. This means that in applications, the non-malleable encoding of a secret key

must be continually decoded and re-encoded, each time the device is run, incurring

overhead in computation and in generation of randomness for re-encoding. This mo-

tivated a stronger notion of non-malleable codes, known as continuous non-malleable

codes (CNMC), introduced by Faust et al. [71]. This definition allows many-time

tampering, which means that the adversary can continuously tamper with the code-

word and observe the effects of the tampering. Due to known impossibility results,

there must also be a “self-destruct” mechanism. This means that if, upon decode,

the device detects an error, then a “self-destruct” mechanism, which erases the secret

12



key, is triggered, rendering the device useless.

The notion of CNMC with respect to a tampering class F is as follows: Given

a coding scheme Π = (E,D), where E is the encoding function and D is the decoding

function, the adversary gets to interact with an oracle OΠ(C), parameterized by

Π and an encoding of a message m, C ← E(m). We refer to the encoding C as

the “challenge” encoding. In each round, the adversary gets to submit a tampering

function f ∈ F . The oracle evaluates C ′ = f(C). If D(C ′) = ⊥, the oracle outputs

⊥ and a “self-destruct” occurs, aborting the experiment. Otherwise, if C ′ = C, the

oracle outputs a special message “same.” Otherwise, the oracle outputs C ′. We

emphasize that the entire tampered codeword is returned to the adversary in this

case. A CNMC is secure if for every pair of messages m0,m1, the adversary’s view

in the above game is computationally indistinguishable when the message is m0 or

m1.

The original CNMC paper of [71] showed an information-theoretic impossibil-

ity result for 2-split-state CNMC. This shows that the CNMC setting is distinguished

from other NMC settings, since information-theoretic (unconditional) security is im-

possible. Prior work [71] constructed 2-split-state CNMC in the CRS model using

collision-resistant hash functions and NIZK. On the other hand, CNMC’s imply com-

mitment schemes, which in turn imply OWF. It remains to determine where CNMC

lies in terms of complexity assumptions and what are the minimal computational

assumptions needed to achieve CNMC.

In chapter 7, we present upper and lower bounds for CNMC in the 2-split-state

model. First, we show that with no CRS, single-bit CNMC in the 2-split-state model

13



(with a black-box security proof) is impossible to construct from any falsifiable

assumption. On the other hand, in the CRS model, we show how to achieve single-

bit CNMC in the 2-split-state model from injective one-way functions.

14



Chapter 2: Related Work

In this chapter we give an overview of some related prior work.

2.1 Non-Malleable Codes

Study of non-malleable cryptography was initiated by Dolev, Dwork and Naor

in [59]. It has been studied in both computational and information theoretic set-

ting. Error-correcting codes along with early works on tamper resilience [77,87,88],

motivated the study of non-malleable codes.

Dziembowski, Pietrzak and Wichs [66] introduced and formalized the notion

of non-malleable codes. Non-malleable codes have also been studied in both the

computational and information-theoretic setting. In their seminal work [66] also

introduced the split-state tampering function class, which allows the adversarial

tampering function to tamper with different parts of the codeword independently.

They showed the existence of such codes for the class of all bit-wise independent

tampering functions (which can be viewed as split state with n parts).

Liu and Lysyanskaya [100], presented an efficient construction of computation-

ally secure non-malleable codes for split state functions, in the CRS model. Their

construction also provided security against continual split-state leakage.

15



Further studies on non-malleable codes for split state classes focused on im-

provements in terms of achieving information-theoretic security, gain stronger tam-

per resilience by reducing the number of states, and by improving the efficiency by

increasing the rate. Information theoretic non-malleable code for 1-bit messages

against 2 state split state functions, were constructed in [64], which was followed

by Aggarwal et.al [4], who used results from additive combinatorics to construct

information-theoretic non-malleable code for k-bit messages. Aggarwal et.al [3] pre-

sented an elegant framework for proving results about non-malleable codes via com-

posable non-malleable reductions.

Studies improving the efficiency of non-malleable codes include [4, 39], which

presented constructions for a constant (> 2) number of states with constant rate.

For computationally secure 2-split-state non-malleable codes [2] improved the rate to

1−o(1) (which is optimal). Since then a long line of research [2,10,38,90,97,98] has

improved the state-of-the-art. Recently, Kanukurthi et.al [91], gave a construction

for 3-split-state non-malleable codes with rate 1
3
.

Beyond Split-State Tampering While most of the research on non-malleable codes

prior to this work focused on split-state tampering we note few exceptions here.

Agrawal et.al. [8] gave a construction of non-malleable codes against tampering

functions which permute individual bits of the codeword (in addition to bit-wise in-

dependent tampering). Chabanne et.al [29] considered subclass of linear tampering

functions.

Prior to this work, other studies presented some existential [66], randomized

16



constructions (or efficient constructions in CRS model) of non-malleable codes [42,

73] for more general tampering classes.

For example, non-malleable codes secure against any ‘small-enough’ tampering

family (< 22n) were proved to exist in [66].

Faust et.al [73] constructed information theoretically secure, efficient non-

malleable codes in CRS model, for tampering function families F with size |F| ≤

2poly(n), where n is the length of codeword. Their construction was based on t-wise

independent hashing for t proportional to log |F|. Note that the construction of [73]

does not achieve security against the tampering functions f ∈ AC0 in general, rather

provides tamper resilience against specific families in AC0 (ACC0, etc.) This is be-

cause, the bound on the size of F is required to be fixed before t-wise independent

hash function h (CRS) is chosen. Whereas, AC0 contains all poly-size and constant

depth circuit families,

Cheraghchi and Guruswami [42] gave the first characterization of the rate

of non-malleable codes. They showed that non-malleable codes with information

theoretic security exist for tampering families F of size |F| ≤ 22αn . Moreover, they

also showed that these existential NMC have optimal rate of 1 − α. The efficiency

of the encoding and decoding algorithms in [42] construction, is proportional to

poly(1/ε) where ε is the error probability, this leads to inefficient instantiations

when error is negligible.

Following on the work presented in Chapter 4, Chattopadhyay and Li [36]

constructed non-malleable codes using seedless non-malleable extractors. They also

construct efficient NMC against t-local tampering functions, with deterministic de-

17



coding algorithm. (in contrast, the result in 4 has randomized decoding). We achieve

better locality parameters than [36]. They [36], also constructed inefficient non-

malleable codes for AC0 tampering functions. The length of the codeword for [36]

construction, is super-polynomial in the message length. Whereas, in chapter 5 we

present a construction of computationally secure efficient non-malleable code for

AC0 tampering functions in CRS model.

Recently, Faust et.al [70] considered larger tampering classes by considering

space bounded tampering adversaries in random oracle model. They defined a

new notion of leaky continuous non-malleable codes, where the adversary can learn

bounded information (log(|m|) bits) about the underlying message m, and gave

construction in random oracle model. In chapter 5 we present information theo-

retically secure NMC (with standard non-malleability definition in plain model) for

streaming space-bounded tampering functions.

Block-wise non-malleable codes (variant of standard NMC) was considered by

Chandran et.al in [31]. In this model, the codeword consists of number of blocks

and the adversary receives the codeword block-by-block. The tampering function

also consists of various function fis, where each fi can depend on codeword blocks

c1, . . . , ci and modifies ci to c′i. It can be observed that standard non-malleability

cannot be achieved in this model since, the adversary can simply wait to receive all

the blocks of the codeword and then decode the codeword as part of last tampering

function. Therefore, [31] define a new notion called non-malleability with replace-

ment which relaxes the non-malleability requirement and considers the attack to be

successful only if the tampered codeword is valid and related to the original message.

18



This work is followed by [15, 16, 19], which improves on the results in chap-

ters 4 and 5. In [15], Ball et.al construct efficient, information-theoretic NMC for

AC0 tampering functions, and further improvements are shown in [19] where they

construct NMC for tampering functions which can be modeled as sub-exponential

size AC0 circuits. Note that both [15, 19], consider tampering functions with depth

O(logn/log logn) which includes AC0 . Ball et.al in [16], present computational NMC

in plain (no-CRS) model, for tampering functions which run in any fixed bounded

polynomial-time, based on de-randomization assumptions, with inverse polynomial

adversarial advantage (instead of negligible). We view these results as complemen-

tary to the work presented in this dissertation, since together they highlight how

different choices of parameters such as size of the tampering circuit, security model

(CRS vs. plain vs. information-theoretic), and desired rate (codeword length), can

result in achieving tamper-resilience against adversaries with limited computational

resources.

Other works Several other variants and enhanced models were considered. For ex-

ample, [46], in the context of designing UC secure protocols via tamperable hardware

tokens, consider a variant of non-malleable codes which has deterministic encoding

and decoding. Locally decodable and updatable non-malleable code were intro-

duced by [54]. Faust et.al [71] considered stronger variant which allows continual

tampering, and [6] allow for bounded leakage model.

Other works on non-malleable codes include [7, 34,35,37,43,72,93,94,109].

19



2.2 Locally Decodable and Updatable Non-Malleable Codes

Locally Decodable Codes Katz and Trevisan [92] introduced locally decodable

codes. Where,they considered the problem of recovering individual bits of a code-

word from accessing a small number of bits from a (possibly) corrupted error cor-

recting codeword. They [92] also showed the impossibility of achieving the above

for schemes with linear codeword length. This work was followed by various works,

including [40, 67, 119] who achieved constant locality with super-polynomial code

length, while on the other hand locally decodable codes with constant rate and sub-

linear locality have been constructed by [81,84,96]. See [120] for a survey on locally

decodable codes.

Locally Updatable and Locally Decodable Codes The notion of locally up-

datable and locally decodable codes was introduced by Chandran et al. in [32] where

the constraint of locality, i.e. restricting the number of bits accessed, is further ap-

plied to updating any codeword obtained from encoding of another message. [32]

gave information theoretic construction with amortized update locality of O(log2 k)

and read locality of (super-linear) polynomial in k, where k is the length of input

message. Another variant called locally updatable and locally decodable-detectable

codes was also introduced in the same work which ensures that decoding never

outputs an incorrect message. [32] gave the construction of such codes in the com-

putational setting with poly-logarithmic locality.

20



Locally Decodable and Updatable Non-Malleable Codes Dachman-Soled

et al. introduced the notion of locally decodable and updatable non-malleable codes

in [54] and presented a construction in the computational setting. The construction

of [54] also achieves leakage resilience in addition to the tamper resilience. [54] then

used this notion to construct compilers that transform any RAM machine into a

RAM machine secure against leakage and tampering. This application was also

studied by Faust et al. [72], who presented a different approach which does not use

locally decodable and updatable non-malleable codes. Recently, Chandran et al. [33]

gave a construction of locally decodable and updatable non-malleable codes in the

information-theoretic setting. However, they addressed only the one-time leakage

and tampering case, and to achieve continual leakage and tampering, require a

periodic refresh of the entire memory.

Bounds on Non-Malleable Codes. Surprisingly, understanding the limitations and

bounds on NMC has received relatively less attention. While there have been a few

previous works exploring the lower and upper bounds on NMC and its variants [31,

42,66], most of the effort has been focused on understanding and/or improving the

bounds on the rates of NMC [2,8, 10,50,90,98]

Perhaps the closest to this work are the results of [42]. Cheragachi and Gu-

ruswami [42] studied the “capacity” of non-malleable codes in order to understand

the optimal bounds on the efficiency of non-malleable codes. They showed that

information theoretically secure efficient NMC exist for tampering families F of size

|F| if loglog|F| ≤ αn for 0 ≤ α < 1, moreover these NMC have optimal rate of 1−α

21



with error ε ∈ O(1/poly(n)).

In chapter 6, we study the bounds on the locality of locally decodable and

updatable NMC. We show that for any locally decodable and updatable NMC which

allows rewind attacks, the locality parameter of the scheme must be ω(1), and give

an improved version of [54] construction to match the lower bound in computational

setting.

In chapter 7, we study the bounds on continuous non-malleable codes (CNMC),

and show that 2-split-state CNMC cannot be constructed from any falsifiable as-

sumption without CRS. We also give a construction of 2-split-state CNMC from

injective one-way functions in CRS model. Faust et al. [71] showed the impossibility

of constructing information-theoretically secure 2-split-state CNMC.

2.3 Continuous Non-Malleable Codes

Continuous Non-Malleable Codes Continuous Non-Malleable codes (CNMC)

were introduced by Faust et.al. in [71]. They gave a construction of CNMC

based on existence of collision resistant hash functions (CRHFs) and non-interactive

zero knowledge proof systems (NIZKs) in common reference string (CRS) model.

They also showed the impossibility of constructing 2-split state CNMC informa-

tion theoretically. Subsequent to the original Faust et.al construction, Jafargholi

and Wichs [89] presented a general study of CNMCs and its variants with some

existential results. Recently, Aggarwal et. al. [5] gave first information theoretic

construction in 8-split-state model.

22



Recently, Ostrovsky et. al. [105] introduced a relaxed notion of CNMC,1 which

is sufficient for many applications. In the work of Ostrovsky et. al. [105], they refer

to the original notion as “continuous super-non-malleability” (since it is analogous

to “super-non-malleability”, a notion that was introduced in the non-continuous

setting [73]). They then presented a construction achieving the relaxed definition

(which they simply call “continuous non-malleability”), against 2-split-state tam-

pering functions, assuming the existence of injective one-way functions in the plain

model (without CRS).

The difference between the two CNMC notions is that in the original CNMC

notion, the tampering oracle returns the entire modified codeword C ′ if C ′ = f(C) 6=

C and D(C) 6= ⊥, whereas the relaxation only requires the oracle to return D(C ′)

but not C ′ itself. The original notion captures stronger types of tampering attacks;

specifically, it provides security against an adversary who learns arbitrary additional

information about the modified codeword C ′ through other side-channels.

Our result and the result of [105] are complementary and together give a full

picture of the landscape of assumptions required for CNMC. Our work shows that

it is necessary to rely on setup assumptions (CRS) in order to achieve the original,

stronger security definition of CNMC. Moreover, if one is willing to assume the

existence of a CRS, we show that this type of CNMC can be achieved from nearly

minimal computational assumptions. In contrast, if one is not willing to assume the

existence of a CRS, the work of [105] achieves weaker security guarantees in the

1A similar relaxed definition was previously given for a variant of CNMC, known as R-
CNMC [69], but in this setting it was shown that it is actually impossible to achieve the stronger
notion.

23



plain model (with no setup assumptions) from the same computational assumptions.

We also note that the work of Ostrovsky et. al. [105] explicitly lists the question we

address in this work as an interesting open problem. They state:

“Interesting open questions related to our work are, for instance, whether

continuous non-malleability can be achieved, under minimal assump-

tions, together with additional properties, such as strong non-malleability,

super-non-malleability, augmented non-malleability, and locality . . . ”

Other works on non-malleable codes include [50,69].

Non-Malleable Randomness Encoders (NMRE) NMRE were introduced

recently by Kanukurthi et. al. [91] as a building block for constructing efficient

(constant-rate) split-state NMC. In this work, we present the stronger variant Con-

tinuous NMRE which allows continual tampering in split-state model.

Black-Box Separations. Impagliazzo and Rudich ruled out black-box reduc-

tions from key agreement to one-way function in their seminal work [86]. Their

oracle separation technique was subsequently used to rule out black-box reductions

between various primitives such as collision resistant hash functions to one way

functions [114], oblivious transfer to public key encryption [79] and many more.

The meta-reduction technique (cf. [1, 22, 51, 74–76, 78, 106, 107, 113]) has been use-

ful for ruling out larger classes of reductions—where the construction is arbitrary

(non-black-box), but the reduction uses the adversary in a black-box manner. The

meta-reduction technique is often used to provide evidence that construction of some

24



cryptographic primitive is impossible under “standard assumptions” (e.g. falsifiable

assumptions or non-interactive assumptions).

25



Chapter 3: Preliminaries and Definitions

In this chapter we will present background material and definitions related

to non-malleable codes and its variants. We will also present definitions related to

boolean circuits and other cryptographic primitives which will be used in construc-

tions presented in chapters 4, 5 , 6, and 7

3.1 Notation

Firstly, we present some standard notations that will be used in what follows.

Let N be the set of all natural numbers, i.e., N = {1, 2, 3, . . .}. For n ∈ N, we

write [n] = {1, . . . , n}. If x = (x1, . . . , xn) ∈ Σn (for some set Σ), then xi:j :=

(xi, xi+1, . . . , xj−1, xj) for i ≤ j. If Σ is a set, then ΣΣ := {f : Σ→ Σ}, the set of all

functions from Σ to Σ. We say two vectors x, y ∈ Σn are ε-far if they disagree on at

least ε · n indices, |{i : xi 6= yi}| ≥ εn. Conversely, we say two vectors x, y ∈ Σn are

(1 − ε)-close if they agree on at least (1 − ε) · n indices, |{i : xi = yi}| ≥ (1 − ε)n.

Alternatively, for x, y ∈ GF(2)n define their distance to be d(x, y) := ‖x+y‖0
n

. (I.e. x

and y are ε-far if d(x, y) ≥ ε.)

For a set S, x ← S denotes, sampling an element x uniformly at random

from the set S. For an algorithm A, y ← A(x) is the output obtained on execution

26



of A on input x. If A(·, ·) is a randomized algorithm, then y ← A(x, r), is the

output random variable for input x and randomness r. We also write, A(x) instead

of A(x, r) if it is clear from the context for the brevity. A function δ(·) is called

negligible if for all sufficiently large n and for every polynomial p(·), it holds that

δ(n) < 1/p(n). We will denote a negligible function by negl(·).

For a random variable X, we sometimes also denote the corresponding prob-

ability distribution by X. An ensemble of probability distributions {Xλ}λ∈N is

a sequence of probability distributions. For two probability ensembles {X}λ and

{Y }λ, defined over a domain S with finite support we say that {X}λ and {Y }λ are

statistically indistinguishable if there exists a negligible function negl(·) such that

for all λ ∈ N,

1

2

∑
s∈S

|Pr [Xλ = s]− Pr [Yλ = s]| ≤ negl(λ)

We denote statistical indistinguishability by Xλ ≈s Yλ.

Similarly, we say that two probability ensembles {X}λ and {Y }λ, defined over

a domain S with finite support we say that {X}λ and {Y }λ are computationally

indistinguishable if for all probabilistic polynomial time distinguishersD, there exists

a negligible function negl(·) such that for all λ ∈ N,

∣∣∣∣ Pr
x←Xλ

[D(x) = 1]− Pr
y←Yλ

[D(y) = 1]

∣∣∣∣ ≤ negl(λ)

We denote computational indistinguishability by Xλ ≈c Yλ.

If S is a set, we denote by US the uniform distribution over S. For λ ∈ N, we

27



denote by Uλ the uniform distribution over λ-bit strings.

Remark 3.1.1. If a distribution D with support S of size 2` is statistically 2−λ-close

to the uniform distribution over S, denoted US , then for every x ∈ S,∣∣PrX←D[X = x]− 1/2`
∣∣ ≤ 1/2λ. This implies that 1/2` − 1/2λ ≤ PrX←D[X = x] ≤

1/2` + 1/2λ.

Where appropriate, we interpret functions f : S → {±1} as boolean functions

(and vice-versa) via the mapping: 0↔ 1 and 1↔ −1. The support of vector ~x is the

set of indices i such that xi 6= 0. A bipartite graph is an undirected graph G = (V,E)

in which V can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies

that either u ∈ V1 and v ∈ V2 or v ∈ V1 and u ∈ V2.

3.2 Non-Malleable Codes

In this section we define the notion of non-malleable codes and its variants. In

this work, we assume that the decoding algorithm of the non-malleable code may be

randomized and all of our generic theorems are stated for this case. Nevertheless,

only our instantiations in Chapter 4, and Section 5.5 requires a randomized decoding

algorithm, while our other instantiations enjoy deterministic decoding. We note

that this definition differs from the original one given in [66], in that we allow

the decoding to be randomized, while they required deterministic decoding. While

this technically weakens our definition (and a code with deterministic decoding

would be preferable), we feel that allowing randomized decoding fits the spirit and

motivation of non-malleable codes.More importantly, it may allow for a wider classes

28



of functions.

Definition 3.2.1 (Coding Scheme). Let Σ, Σ̂ be sets of strings, and κ, κ̂ ∈ N be some

parameters. A coding scheme consists of two algorithms (E,D) with the following

syntax:

• The encoding algorithm (perhaps randomized) takes input a block of message

in Σ and outputs a codeword in Σ̂.

• The decoding algorithm (perhaps randomized) takes input a codeword in Σ̂

and outputs a block of message in Σ.

We require that for any message m ∈ Σ, Pr[D(E(m)) = m] = 1, where the probability

is taken over the choice of the encoding algorithm. In binary settings, we often set

Σ = {0, 1}κ and Σ̂ = {0, 1}κ̂.

We next provide definitions of non-malleable codes of varying levels of security.

The following Definitions 3.2.2, 3.2.3 are the standard definitions of non-malleability

and strong non-mallebility, appropriate for the information theroetic setting (with-

out CRS). These definitions are special cases of the corresponding Definitions 3.2.4,

3.2.5, presented in Section 3.2.1; when taking crs to be ⊥ and G to be the set of all

functions (namely the adversary is not restricted, and there’s no CRS).

Definition 3.2.2 (Non-malleability [66]). Let k be the security parameter, F be

some family of functions. For each function f ∈ F , and m ∈ Σ, define the tampering

experiment:

29



Tamperfm
def
=


c← E(m), c̃ := f(c), m̃ := D(c̃).

Output : m̃.

 ,

where the randomness of the experiment comes from the encoding algorithm. We

say a coding scheme (E,D) is non-malleable with respect to F if for each f ∈ F ,

there exists a PPT simulator Sim such that for any message m ∈ Σ, we have

Tamperfm ≈ IdealSim,m
def
=


m̃ ∪ {same∗} ← Simf(·).

Output : m if output of Sim is same∗; otherwise m̃.


Here the indistinguishability can be either computational or statistical.

Definition 3.2.3 (Strong Non-malleability [66]). Let k be the security parameter,

F be some family of functions. For each function f ∈ F , and m ∈ Σ, define the

tampering experiment

StrongNMf
m

def
=


c← E(m), c̃ := f(c), m̃ := D(c̃)

Output : same∗ if c̃ = c, and m̃ otherwise.


The randomness of this experiment comes from the randomness of the encoding

algorithm. We say that a coding scheme (E,D) is strong non-malleable with respect

to the function family F if for any m,m′ ∈ Σ and for each f ∈ F , we have:

{StrongNMf
m}k∈N ≈ {StrongNMf

m′}k∈N

30



where ≈ can refer to statistical or computational indistinguishability.

3.2.1 Non-Malleable Code in CRS Model

Here, we present general, game-based definitions that are applicable even for

NMC that are in a model with a crs, or that require computational assumptions.

The corresponding original definitions of non-malleability (presented in Section 3.2),

appropriate for an unconditional setting without a CRS, can be obtained as a special

case of the following definitions when setting crs = ⊥ and taking G to include all

computable functions.

Definition 3.2.4 (Non-malleability). Let Π = (CRSGen,E,D) be a coding scheme.

Let F be some family of functions. For each attacker A, m ∈ Σ, define the tampering

experiment TamperΠ,FA,m(n):

1. Challenger samples crs← CRSGen(1n) and sends crs to A.

2. Attacker A sends the tampering function f ∈ F to the challenger.

3. Challenger computes c← E(crs,m).

4. Challenger computes the tampered codeword c̃ = f(c) and computes m̃ =
D(crs, c̃).

5. Experiment outputs m̃.

Figure 3.1: Non-Malleability Experiment TamperΠ,FA,m(n)

We say the coding scheme Π = (CRSGen,E,D) is non-malleable against tam-

pering class F and attackers A ∈ G, if for every A ∈ G there exists a PPT simulator

31



Sim such that for any message m ∈ Σ we have,

TamperΠ,FA,m(n) ≈ IdealSim,m(n)

where IdealSim,m(n) is an experiment defined as follows,

1. Simulator Sim has oracle access to adversary A and outputs m̃∪{same∗} ←
SimA(·)(n).

2. Experiment outputs m if Sim outputs same∗ and outputs m̃ otherwise.

Figure 3.2: Non-Malleability Experiment IdealSim,m(n)

Definition 3.2.5 (Strong Non-malleability). Let Π = (CRSGen,E,D) be a coding

scheme. Let F be some family of functions. For each attacker A, m ∈ Σ, define the

tampering experiment StrongTamperΠ,FA,m(n):

1. Challenger samples crs← CRSGen(1n) and sends crs to A.

2. Attacker A sends the tampering function f ∈ F to the challenger.

3. Challenger computes c← E(crs,m).

4. Challenger computes the tampered codeword c̃ = f(c).

5. Compute m̃ = D(crs, c̃).

6. Experiment outputs same∗ if c̃ = c, and m̃ otherwise.

Figure 3.3: Strong Non-Malleability Experiment StrongTamperΠ,FA,m(n)

We say the coding scheme Π = (CRSGen,E,D) is strong non-malleable against

32



tampering class F and attackers A ∈ G if we have

StrongTamperΠ,FA,m0
(n) ≈ StrongTamperΠ,FA,m1

(n)

for any A ∈ G, m0,m1 ∈ Σ.

3.2.2 Medium Non-Malleability

We now introduce an intermediate variant of non-malleability, called Medium

Non-malleability, which informally gives security guarantees “in-between” strong

and regular non-malleability. Specifically, the difference is that the experiment is

allowed to output same∗ only when some predicate g evaluated on (c, c̃) is set to

true. Thus, strong non-malleability can be viewed as a special case of medium non-

malleability, by setting g to be the identity function. On the other hand, regular

non-malleability does not impose restrictions on when the experiment is allowed to

output same∗. Note that g cannot be just any predicate in order for the definition

to make sense. g must be a predicate such that if g evaluated on (c, c̃) is set to true,

then (with overwhelming probability over the random coins of D) D(c̃) = D(c).

Definition 3.2.6 (Medium Non-malleability). Let Π = (CRSGen,E,D) be a coding

scheme. Let F be some family of functions.

Let g(·, ·, ·, ·) be a predicate such that, for each attacker A ∈ G, m ∈ Σ, the out-

put of the following experiment, ExptΠ,FA,m,g(n) is 1 with at most negligible probability:

For g as above, each m ∈ Σ, and attacker A ∈ G, define the tampering exper-

33



1. Challenger samples crs← CRSGen(1n) and sends crs to A.

2. Attacker A sends the tampering function f ∈ F to the challenger.

3. Challenger computes c← E(crs,m).

4. Challenger computes the tampered codeword c̃ = f(c).

5. Challenger samples r ← U`.

6. Experiment outputs 1 if g(crs, c, c̃, r) = 1] ∧ D(crs, c̃; r) 6= m).

Figure 3.4: The experiment corresponding to the special predicate g.

iment

MediumTamperΠ,FA,m,g(n) as shown in figure 3.5:

1. Challenger samples crs← CRSGen(1n) and sends crs to A.

2. Attacker A sends the tampering function f ∈ F to the challenger.

3. Challenger computes c← E(crs,m).

4. Challenger computes the tampered codeword c̃ = f(c).

5. Challenger samples r ← U` and computes m̃ = D(crs, c̃, r).

6. Experiment outputs same∗ if g(crs, c, c̃, r) = 1, and m̃ otherwise.

Figure 3.5: Medium Non-Malleability Experiment MediumTamperΠ,FA,m,g(n)

We say the coding scheme Π = (CRSGen,E,D) is medium non-malleable against

tampering class F and attackers A ∈ G if we have

MediumTamperΠ,FA,m0,g
(n) ≈ MediumTamperΠ,FA,m1,g

(n)

for any A ∈ G, m0,m1 ∈ Σ.

The following Definition 3.2.7 corresponds to a special case of Definition 3.2.6

34



of medium non-malleability that we introduced, appropriate for the information

theroetic setting (without CRS). Again,when taking crs to be ⊥ and G to be the set

of all functions (namely the adversary is not restricted, and there’s no CRS).

Definition 3.2.7 (Medium Non-malleability). Let k be the security parameter, F

be some family of functions. Let c← E(m) and let g(c, c̃, r) be a predicate such that,

for every c in the support of E(m) and every c̃,

Pr[g(c, c̃, r) = 1] ∧ D(c̃; r) 6= m] ≤ negl(n).

For g as above, each function f ∈ F , and m ∈ Σ, define the tampering

experiment

MediumNMf
m,g

def
=


c← E(m), c̃ := f(c), r ← U`, m̃ := D(c̃; r)

Output : same∗ if g(c, c̃, r) = 1, and m̃ otherwise.


The randomness of this experiment comes from the randomness of the encoding

algorithm and r (the random coins od decoding). We say that a coding scheme (E,D)

is medium non-malleable with respect to the function family F if there exists a g as

above and for any m,m′ ∈ Σ and for each f ∈ F , we have:

{MediumNMf
m,g}k∈N ≈ {MediumNMf

m′,g}k∈N

where ≈ can refer to statistical or computational indistinguishability.

35



It is straightforward to check that Medium Non-Malleability implies non-

malleability.

3.2.3 Continuous Non-Malleable Codes (CNMC)

Here, we present the definition of coding scheme, and continuous non-malleable

codes.

Definition 3.2.8 (Coding Scheme [66]). A coding scheme, Code = (E,D), consists

of two functions: a randomized encoding function E : {0, 1}λ → {0, 1}n, and a

deterministic decoding function D : {0, 1}n → {0, 1}λ ∪ [⊥] such that, for each

m ∈ {0, 1}λ, Pr [D(E(m)) = m] = 1 (over the randomness of encoding function).

Next, we present the definition of continuous non malleable codes in CRS

model for codes with split-state encoding schemes.

Definition 3.2.9 (Split-State Encoding Scheme in the CRS model [71]). A split-

state encoding scheme in common reference string (CRS) model is a tuple of algo-

rithms, Code = (CRSGen,E,D) specified as follows:

• CRSGen takes the security parameter as input and outputs the CRS, crs ←

CRSGen(1λ).

• E takes a message x ∈ {0, 1}λ as input along with the CRS crs, and outputs a

codeword consisting of two parts (X0, X1) such that X0, X1 ∈ {0, 1}n.

• D takes a codeword (X0, X1) ∈ {0, 1}2n as input along with the CRS crs and

outputs either a message x′ ∈ {0, 1}λ or a special symbol ⊥.

36



Before defining the continuous non malleable codes consider the following ora-

cle, OCNM((X0, X1), (T0,T1)) which is parametrized by the CRS crs and “challenge”

codeword (X0, X1) and takes functions T0,T1 : {0, 1}n → {0, 1}n as inputs.

OCNM(crs, (X0, X1), (T0,T1)):

(X ′0, X
′
1) = (T0(X0),T1(X1))

If (X ′0, X
′
1) = (X0, X1) return same

If Dcrs(X
′
0, X

′
1) = ⊥, return ⊥ and “self destruct”

Else return (X ′0, X
′
1).

“Self destruct” here means that once Dcrs(X
′
0, X

′
1) outputs ⊥, the oracle an-

swers all the future queries with ⊥.

Definition 3.2.10 (Continuous Non Malleability [71]). Let Code = (CRSGen,E,D)

be a split-state encoding scheme in the CRS model. We say that Code is q-continuously

non-malleable code, if for all messages x, y ∈ {0, 1}λ and all PPT adversary A it

holds that {
CTamperA,x(λ)

}
λ∈N ≈c

{
CTamperA,y(λ)

}
λ∈N

where

CTamperA,x(λ)
def
=


crs← CRSGen(1λ); (X0, X1)← Ecrs(x);

outA ← AOCNM(crs,(X0,X1),(·,·)); output : outA


and A asks total of q queries to OCNM.

37



The following is an equivalent formulation

Definition 3.2.11 (Continuous Non Malleability [71], equivalent formulation). Let

Code = (CRSGen,E,D) be a split-state encoding scheme in the CRS model. We say

that Code is q-continuously non-malleable code, if for all messages m0, m1 ∈ {0, 1}λ,

all PPT adversary A and all PPT distinguishers D it holds that

Pr[D(outbA) = b] ≤ 1/2 + negl(λ)

where b← {0, 1} and

outbA ← AOCNM(crs,(Xb
0 ,X

b
1),(·,·)) : crs← CRSGen(1λ); (Xb

0, X
b
1)← Ecrs(mb)

and A asks total of q queries to OCNM.

3.2.4 Locally Decodable and Updatable Non-Malleable Codes

(LDUNMC)

Definition 3.2.1 (Locally Decodable and Updatable Code). Let Σ, Σ̂ be sets of

strings, and n, n̂, p, q be some parameters. An (n, n̂, p, q) locally decodable and updat-

able coding scheme consists of three algorithms (E,D,UP) with the following syntax:

The encoding algorithm E ( perhaps randomized) takes input an n-block (in Σ)

message and outputs an n̂-block (in Σ̂) codeword.

The (local) decoding algorithm D takes input an index in [n], reads at most p

blocks of the codeword, and outputs a block of message in Σ. The overall decoding

38



algorithm simply outputs (D(1),D(2), . . . ,D(n)).

The (local) updating algorithm UP ( perhaps randomized) takes inputs an index

in [n] and a string in Σ∪{ε}, and reads/writes at most q blocks of the codeword.

Here the string ε denotes the procedure of refreshing without changing anything.

Let Ĉ ∈ Σ̂n̂ be a codeword. For convenience, we denote DĈ ,UPĈ as the pro-

cesses of reading/writing individual block of the codeword, i.e. the codeword oracle

returns or modifies individual block upon a query. Here we view Ĉ as a random

access memory where the algorithms can read/write to the memory Ĉ at individual

different locations. In binary settings, we often set Σ = {0, 1}κ and Σ̂ = {0, 1}κ̂.

Definition 3.2.2 (Correctness). An (n, n̂, p, q) locally decodable and updatable cod-

ing scheme (with respect to Σ, Σ̂) satisfies the following properties. Let

Ĉ = (ĉ1, ĉ2, . . . , ĉn̂)← E(M) be a codeword output by the encoding algorithm for any

message M = (m1,m2, . . . ,mn) ∈ Σn. Then we have:

for any index i ∈ [n], Pr[DĈ(i) = mi] = 1, where the probability is over the

randomness of the encoding algorithm.

for any update procedure with input (j,m′) ∈ [n]×Σ∪{ε}, let Ĉ ′ be the resulting

codeword by running UPĈ(j,m′). Then we have Pr[DĈ′(j) = m′] = 1, where the

probability is over the encoding and update procedures. Moreover, the decodings

of the other positions remain unchanged.1

Remark 3.2.1. The correctness definition can be directly extended to handle any

1Our lower bound rules out even constructions with 1 − negl(n) correctness. We present the
correctness definition in terms of perfect correctness, as this is the standard notion in the coding
literature, including the non-malleable codes literature, see for example [30,33,43,54,66,71].

39



sequence of updates.

Definition 3.2.3 (Continual Tampering and Leakage Experiment). Let k be the se-

curity parameter, F ,G be some families of functions. Let (E,D,UP) be an (n, n̂, p, q)-

locally decodable and updatable coding scheme with respect to Σ, Σ̂. Let U be an

updater that takes input a message M ∈ Σn and outputs an index i ∈ [n] and

m ∈ Σ. Then for any blocks of messages M = (m1,m2, . . . ,mn) ∈ Σn, and any

(non-uniform) adversary A, any updater U , define the following continual experi-

ment CTamperLeakA,U ,M :

The challenger first computes an initial encoding Ĉ(1) ← E(M).

Then the following procedure repeats, at each round j, let Ĉ(j) be the current

codeword and M (j) be the underlying message:

• A sends either a tampering function f ∈ F and/or a leakage function g ∈ G

to the challenger.

• The challenger replaces the codeword with f(Ĉ(j)), or sends back a leakage

`(j) = g(Ĉ(j)).

•We define ~m(j) def
=
(
Df(Ĉ(j))(1), . . . ,Df(Ĉ(j))(n)

)
.

• Then the updater computes (i(j),m)← U(~m(j)) for the challenger.

• Then the challenger runs UPf(Ĉ(j))(i(j),m) and sends the index i(j) to A.

• A may terminate the procedure at any point.

Let t be the total number of rounds above. At the end, the experiment outputs

(
`(1), `(2), . . . , `(t), ~m(1), . . . , ~m(t), i(1), . . . , i(t)

)
.

40



Definition 3.2.4 (Non-malleability and Leakage Resilience against Continual At-

tacks). An (n, n̂, p, q)-locally decodable and updatable coding scheme with respect to

Σ, Σ̂ is continual non-malleable against F and leakage resilient against G if for all

ppt(non-uniform) adversaries A, and pptupdaters U , there exists some ppt(non-

uniform) simulator Sim such that for any M = (m1, . . . ,mn) ∈ Σn,

CTamperLeakA,U ,M is (computationally) indistinguishable to the following ideal

experiment IdealSim,U ,M :

The experiment proceeds in rounds. Let M (1) = M be the initial message.

At each round j, the experiment runs the following procedure:

• At the beginning of each round, Sim outputs (`(j), I(j), ~w(j)), where I(j) ⊆

[n].

• Define

~m(j) =


~w(j) if I(j) = [n]

~m(j)|I(j) := ⊥, ~m(j)|Ī(j) := M (j)|Ī(j) otherwise,

where ~x|I denotes the coordinates ~x[v] where v ∈ I, and the bar denotes the

complement of a set.

• The updater runs (i(j),m)← U(~m(j)) and sends the index i(j) to the simu-

lator. Then the experiment updates M (j+1) as follows: set M (j+1) := M (j)

for all coordinates except i(j), and set M (j+1)[i(j)] := m.

41



Let t be the total number of rounds above. At the end, the experiment outputs

(
`(1), `(2), . . . , `(t), ~m(1), . . . , ~m(t), i(1), . . . , i(t)

)
.

3.3 Boolean Circuits and Related Definitions

We now present the definitions of boolean circuits, circuit complexity classses

NC0 and AC0 . We also define input/output local functions in this section.

Definition 3.3.1 (Boolean Circuit). [14] For every n1, n2 ∈ N, a Boolean Circuit C

with n1 inputs and n2 outputs is a directed acyclic graph. It contains n1 nodes with 0

incoming edges; called input nodes and n2 nodes with 0 outgoing edges, called output

nodes. All other nodes are called gates correspond to one of the logical operations

(AND, OR, and NOT).

The AND and OR gates have fan-in 2, whereas NOT gate has fan-in 1.

The size of boolean circuit C, is the total number of nodes in the DAG. The depth

of the circuit is the length of the longest directed path from an input node to the

output node.

Definition 3.3.2 (Circuit Family). [14] Let p : N → N be a function. A circuit

family of size p(n) is a sequence of boolean circuits {Cn}n∈N, where Cn has n inputs

and a single output, such that size of each circuit Cn ≤ p(n) for all n.

Let f : {0, 1}∗ → {0, 1}∗ be a polynomially bounded function, i.e. ∃ some

constant c > 0, such that for all x ∈ {0, 1}∗, f(x) < |x|c. We call f implicitly

logspace computable if the mapping x, i → f(x)i can be computed in logarithmic

42



space, where f(x)i denotes the i-th bit of the output f(x).

Definition 3.3.3 (Logspace Uniform Circuit Families). [14]

A circuit family {Cn} is logspace uniform if there is an implicitly logspace

computable function mapping 1n to the description of the circuit Cn.

We now define the complexity classes NC0 and AC0 .

Definition 3.3.4 (NC). [14]

A language is in NCi if there are constants c, i > 0 such that it can be decided

by logspace uniform circuit family {Cn} where circuits Cn are of size O(nc) and

depth O(login).

The class NC is ∪i≥0NC
i.

NC0 corresponds to constant-depth bounded fan-in circuit family.

Definition 3.3.5 (AC). [14]

The class ACi is similar to NCi except that the gates in circuit Cn can have

unbounded fan-in.

The class AC is ∪i≥0AC
i.

AC0 corresponds to constant-depth unbounded fan-in circuit family.

Next, we present definitions related to local functions.

3.3.1 Local Functions

We next define a class of local functions, where the number of input bits that

can affect any output bit (input locality) and the number of output bits that depend

43



on an input bit (output locality) are restricted. Loosely speaking, an input bit xi

affects the output bit yj if for any boolean circuit computing f , there is a path in the

underlying DAG from xi to yj. The formal definitions are below, and our notation

follows that of [12]

Definition 3.3.6. We say that a bit xi affects the boolean function f ,

if ∃ {x1, x2, · · ·xi−1, xi+1, · · ·xn} ∈ {0, 1}n−1 such that,

f(x1, x2, · · ·xi−1, 0, xi+1, · · ·xn) 6= f(x1, x2, · · ·xi−1, 1, xi+1, · · ·xn).

Given a function f = (f1, . . . , fn) (where each fj is a boolean function), we

say that input bit xi affects output bit yj, or that output bit yj depends on input bit

xi, if xi affects fj.

Definition 3.3.7 (Output Locality). A function f : {0, 1}n → {0, 1}n is said to

have output locality m if every output bit fi is dependent on at most m input bits.

Definition 3.3.8 (Input Locality). A function f : {0, 1}n → {0, 1}n is said to have

input locality ` if every input bit fi is affects at most ` output bits.

Definition 3.3.9 (Local Functions). [12] A function f : {0, 1}n → {0, 1}n is said

to be (m, `)-local, f ∈ Localm` , if it has input locality ` and output locality m. We

denote the class Localmn (namely no restriction on the input locality) by Localm.

The above notions can be generalized to function ensembles {fn : {0, 1}n →

{0, 1}n}n∈Z with the following corresponding locality bound generalizations: `(n),m(n).

Recall that NC0 is the class of functions where each output bit can be computed

by a boolean circuit with constant depth and fan-in 2 (namely in constant parallel

time). It is easy to see that NC0 ⊆ LocalO(1).

44



We also recall some definitions and results related to boolean analysis and

present them next.

3.3.2 Background on Boolean Analysis

Definition 3.3.10. A function f : {0, 1}n → {0, 1} has correlation c with a function

g : {0, 1}n → {0, 1} if

| Pr
x←Un

[f(x) = 1|g(x) = 1|]− Pr
x←Un

[f(x) = 1|g(x) = 0|]| ≤ c.

Where, Un is the uniform random distribution over {0, 1}n.

Note that this is equivalent up to absolute value for a more common definition

of correlation in the literature when g is taken to be balanced (Pr[g(x) = 1] = 1/2)

Definition 3.3.11. A function f : {0, 1}n → {0, 1} has correlation c with a function

g : {0, 1}n → {0, 1} if

Pr
x←Un

[f(x) = g(x)] =
1 + c

2
.

Where, Un is the uniform random distribution over {0, 1}n.

The correlation c can also be expressed as follows: Let Pr[f(x) = g(x)] = 1+c
2

.

45



Then,

c = 2 Pr[f(x) = g(x)]]− 1

= 2 Pr[f(x) = 1|g(x) = 1] Pr[g(x) = 1] + 2 Pr[f(x) = 0|g(x) = 0] Pr[g(x) = 0]− 1

= Pr[f(x) = 1|g(x) = 1] + (1− Pr[f(x) = 1|g(x) = 0]− 1

= Pr[f(x) = 1|g(x) = 1]− Pr[f(x) = 1|g(x) = 0]

Theorem 3.3.1 ( [83,85]). Let f : {0, 1}n → {0, 1} be computed by a depth-d circuit

of size S. Then the correlation of f with parity is bounded by

2−cdn/ logd−1(S),

where cd is a positive constant dependent only on d.

Definition 3.3.12 (Random Restriction [82]). A random restriction ρ parameter-

ized by a small positive real number p is mapping which sets the elements xi of

a vector ~x independently as follows: Pr [xi = 0] = 1−p
2

, Pr [xi = 1] = 1−p
2

, and

Pr [xi = ?] = p.

Definition 3.3.13 (Boolean Function Restriction). For a vector v ∈ {0, 1, ∗}n and

a Boolean function f : {0, 1}n → {0, 1}n the restriction of f to v, f̃ |v is defined as

f̃ |v(x) = f(z) where,

zi =


xi vi = ∗

vi vi ∈ {0, 1}

46



Let f : D → {0, 1}r be a function. Then, we denote by fi the function

which outputs the i-th output bit of f . Let f : D → {0, 1}r be a function and let

v ∈ {0, 1}r be a vector. Then, we denote by fv the function which outputs all fi

such that vi = 1.

Lemma 3.3.1 ( [82, 118]). Let f : {0, 1}` → {0, 1} be a function computable by a

depth-d AC0 circuit of size s. Let ρ be a random restriction with Pr[?] = q < 1/9d.

The probability over ρ that fρ cannot be written as a decision tree of depth t is

≤ s(9q1/dt)t.

We next recall some standard definitions of public-key encryption (PKE), pseu-

dorandom generator (PRG), and non-interactive zero knowledge proof systems with

simulation soundness.

3.4 Public Key Encryption Scheme and PRG

In this section, we present the definitions of well known cryptographic primi-

tives such as public key encryption scheme and pseudorandom generator which are

used as building blocks for particular instantiations. A public key encryption scheme

E consists of three algorithms: (Gen,Encrypt,Decrypt).

• Gen(1n) → (pk, sk). The key generation algorithm takes in the security pa-

rameter and outputs a public key pk and a secret key sk.

• Encrypt(pk,m) → c. The encryption algorithm takes in a public key pk and

a message m. It outputs a ciphertext c.

47



• Decrypt(sk, c) → m. The decryption algorithm takes in a ciphertext c and a

secret key sk. It outputs a message m.

Correctness. The PKE scheme satisfies correctness if Decrypt(sk, c) = m with all

but negligible probability whenever pk, sk is produced by Gen and c is produced by

Encrypt(pk,m).

Security. We define IND-CPA security for PKE schemes in terms of the following

game between a challenger and an attacker. We let n denote the security parameter.

Setup Phase. The game begins with a setup phase. The challenger calls Gen(1n) to

create the initial secret key sk and public key pk.

Challenge Phase. The attacker receives pk from the challenger. The attacker chooses

two messages m0, m1 which it gives to the challenger. The challenger chooses

a random bit b ∈ {0, 1}, encrypts mb, and gives the resulting ciphertext to

the attacker. The attacker then outputs a guess b′ for b. The attacker wins

the game if b = b′. We define the advantage of the attacker in this game as∣∣∣12 − Pr[b′ = b]
∣∣∣.

Definition 3.4.1 (IND-CPA security). We say a Public Key Encryption scheme

E = (Gen,Encrypt,Decrypt) is IND-CPA secure if any probabilistic polynomial time

attacker only has a negligible advantage (negligible in n) in the above game.

Definition 3.4.2 (α-correctness [63]). For any function α : N→ [0, 1], a public-key

encryption scheme E = (Gen,Encrypt,Decrypt) is α-correct if

48



Pr [Decrypt(sk, (Encrypt(pk,m)) 6= m] ≤ 1 − α(n), where the probability is taken

over the random coins of Gen used to generate (pk, sk) ← Gen(1n), for uniform

random message m ∈ {0, 1}n, and for all possible random coins of Encrypt.

Definition 3.4.3 (Almost-all-keys Perfect Decryption [63]). A public-key encryp-

tion scheme E = (Gen,Encrypt,Decrypt) is almost-all-keys perfectly correct if with

all but negligible probability over the random coins of Gen used to generate (pk, sk)←

Gen(1n), for uniform random message m ∈ {0, 1}n, and for all possible random coins

of Encrypt, it holds that Pr [Decrypt(sk, (Encrypt(pk,m)) 6= m] = 0.

3.4.1 Pseudorandom Generators of Space-Bounded Computation

Definition 3.4.4 (Pseudorandom Generator). A pseudorandom generator is an

efficient, deterministic map prg : {0, 1}n → {0, 1}`(n), where `(n) > n such that

for all PPT distinguishers D; |Pr [D(G(x)) = 1] − Pr [D(y) = 1]| ≤ negl(n), when

x ∈ {0, 1}n and y ∈ {0, 1}`(n) are chosen uniform randomly.

Definition 3.4.5. [103] A generator prg : {0, 1}m → ({0, 1}n)k is a pseudorandom

generator for space(w) and block size n with parameter ε if for every finite state

machine, Q, of size 2w over alphabet {0, 1}n we have that

|Pr
y

[Q accepts y]− Pr
x

[Q accepts prg(x)]| ≤ ε

where y is chosen uniformly at random in ({0, 1}n)k and x in {0, 1}m.

Theorem 3.4.1. [103] There exists a fixed constant c > 0 such that for any w, k ≤

49



cn there exists an (explicit) pseudorandom generator prg : {0, 1}O(k)+n → {0, 1}n2k

for space(w) with parameter 2−cn. Moreover, prg can be computed in polynomial

time (in n, 2k).

3.5 Non-Interactive Zero Knowledge

Another important cryptographic primitive used in the constructions of non-

malleable codes in Chapter 5 is non-interactive zero knowledge proof systems.

Definition 3.5.1 (Non-Interactive Zero Knowledge [111]). Π = (`,P,V, Sim =

(Sim1, Sim2)) is an efficient adaptive single-theorem non-interactive zero knowledge

proof system for language L ∈ NP with witness relation W , if ` is a polynomial and

the following are true:

• Completeness: For all x ∈ L, and all w such that W (x,w) = 1, for all strings

crs of length `(|x|), we have V(x,P(x,w, crs), crs)) = 1

• Soundness: For all adversaries A, if crs ∈ {0, 1}`(k) is chosen randomly, then

Pr[V(x, π, crs) = 1] ≤ negl(k). Where, (x, π)← A(crs) and x /∈ L.

• Single-Theorem Zero Knowledge: For all non-uniform polynomial-time adver-

saries A = (A1, A2) we have that |Pr[ExptA(k) = 1] − Pr[ExptSimA (k) = 1]| ≤

negl(k) for following experiments ExptA(k) and ExptSimA (k)

50



ExptA(k):

crs← {0, 1}`(k)

(x,w, τ)← A1(crs)

π ← P(x,w, crs)

returnA2(π, τ)

ExptSimA (k):

(crs, κ)← Sim1(1k)

(x,w, τ)← A1(crs)

π ← Sim2(x, κ)

returnA2(π, τ)

Definition 3.5.2 (Weak Simulation Soundness [111]). Let Π = (`,P,V, Sim =

(Sim1, Sim2)) be an efficient adaptive single-theorem non-interactive zero knowledge

proof system for language L. We say that Π is simulation-sound if for all non-

uniform probabilistic polynomial-time adversaries A = (A1, A2), Pr[ExptSimA,Π(k) =

1] ≤ negl(k), where ExptSimA,Π(k) is the following experiment:

ExptSimA,Π(k):

(crs, κ)← Sim1(1k)

(x, τ)← A1(crs)

π ← Sim2(x, crs, κ)

(x∗, π∗)← A2(x, π, crs, τ)

Output 1 iff (π∗ 6= π) and (x∗ /∈ L) and (V(x∗, π∗, crs) = 1)

We say Π is one-time weak simulation sound if the above holds for any prob-

abilistic polynomial time A only allowed a single query to Sim.

Sahai [111] constructed one-time simulation sound NIZK proof system from

51



any given efficient non-interactive single-theorem adaptive zero knowledge proof sys-

tem, and strong one-time signature schemes (which was built from one-way functions

in the same work).

Definition 3.5.3 (Same-String NIZK [55]). A NIZK argument system is called

same-string NIZK if it satisfies the following property for all k:

• (Same-String Zero Knowledge): For all non-uniform probabilistic polynomial-

time adversaries A, we have that

|Pr[X = 1]− Pr[Y = 1]| ≤ negl(k)

where X and Y are as defined in (and all probabilities are taken over) the

experiment Expt(k) below:

Expt(k):

1. (crs, τ)← Sim1(1k)

2. X ← AP(·,·,crs)(crs)

3. Y ← ASim′(·,·,crs,τ)(crs)

where Sim′(x,w, crs, τ)
def
= Sim2(x, crs, τ)

• (Same-String Zero Knowledge,cont.): The distribution on crs produced

by Sim1(1k) is the uniform distribution over {0, 1}`(k).

Definition 3.5.4 (Non-Interactive Simulatable Proof System). A tuple of prob-

abilistic polynomial time algorithms ΠNI = (CRSGenNI,PNI,VNI, SimNI) is a non-

52



interactive simulatable proof system for language L ∈ NP with witness relation

W if (CRSGenNI,PNI,VNI, SimNI) have the following syntax:

• CRSGenNI is a randomized algorithm that outputs (crsNI, τsim).

• On input crs, x ∈ L and witness w such that W (x,w) = 1, PNI(crs, x, w)

outputs proof π.

• On input crs, x, π, VNI(crs, x, π) outputs either 0 or 1.

• On input crs, τsim and x ∈ L, SimNI(crs, τsim, x) outputs simulated proof π′.

Completeness: We require the following completeness property: For all x ∈ L, and

all w such that W (x,w) = 1, for all strings crsNI of length poly(|x|), and for all

adversaries A we have

Pr

(crsNI, τSim)← CRSGenNI(1n); (x,w)← A(crsNI);

π ← PNI(crsNI, x, w) : VNI(crsNI, x, π) = 1

 ≥ 1− negl(n)

Soundness: We say that ΠNI enjoys soundness against adversaries A ∈ G if: For

all x /∈ L, and all adversaries A ∈ G:

Pr

 (crsNI, τSim)← CRSGenNI(1n);

(x, π)← A(crsNI) : VNI(crsNI, x, π) = 0

 ≥ 1− negl(n)

The security properties that we require of ΠNI will depend on our particular

non-malleable code construction as well as the particular class, F , of tampering

53



functions that we consider. The exact properties needed are those that will arise from

Theorems 5.3.1 and 5.4.1. In subsequent sections, we will show how to construct

non-interactive simulatable proof systems satisfying these properties.

54



Chapter 4: Non-Malleable Codes for Bounded Depth, Bounded Fan-

in Circuits

4.1 Introduction

In this chapter, we devise explicit, efficient, and unconditionally secure non-

malleable codes against a powerful tampering class which includes all bounded-depth

circuits with bounded fan-in and unbounded fan-out. Specifically, we consider the

class Localdo , consisting of all functions f : {0, 1}n → {0, 1}n that can be computed

with output locality do(n), where each output bit depends on at most do(n) input

bits. Note that this class includes all fan-in-b circuits of depth at most logb do.

We prove the following.

Main Theorem (informal): For any do = o( n
logn

), there is an explicit,

unconditionally secure non-malleable code for Localdo, which encodes a

2k bit string into a string of length n = Θ(kdo) bits. The encoding and

decoding run in time polynomial in n, namely poly(k, do).

This construction can be instantiated for any do = o(n/ log n), and the resulting code

has rate Θ(1/do). In general, since the the output length is n = Θ(kdo) bits, this

may result in super-polynomial length encoding. However, using sublinear locality

55



nδ yields an efficient code. We highlight this, as well as the special cases of constant

depth circuits (a subset of LocalO(1)), in the following.

Corollaries: There are efficient, explicit, and unconditionally secure

non-malleable codes for the following classes:

• Localn
δ

for any constant 0 ≤ δ < 1, with inverse-polynomial rate.

• NC0 with rate Θ(1/do) for any do = ω(1).

• NC0
c for any constant c, with constant rate.

The first corollary follows by instantiating the main theorem with do = nδ, the

second by using any do that is super constant (e.g., log∗(n)), and the third by using

do = 2c (a constant).

While our result for NC0 correspond to constant depth circuits, the first corol-

lary above implies as a special case that the code is also non-malleable against any

δ log n depth NC circuit, for any constant 0 ≤ δ < 1. Note that, since separations be-

tween P and NC1 are not known, constructing (unconditional) non-malleable codes

against NC1 is unlikely, since an attacker in P can always decode and re-encode a

related message, thus immediately breaking non-malleability.

Intermediate Results for (Input-and-Output) Local Functions. To prove

our results, we use the concept of non-malleable reduction, introduced by Aggarwal

et al. [3]. Informally, a class of functions F reduces to the class G, if there is an

encoding and decoding algorithms satisfying the following: applying the encoding

to the input, then applying any f ∈ F , and then applying the decoding, can be

56



simulated by directly applying some function g ∈ G to the input. [3] prove that in

this case a non-malleable code for G can be used to construct one for F , and further

prove a composition theorem, providing an elegant and powerful way to construct

non-malleable codes.

Following this technique, we start by proving two separate results, and com-

pose them (together with known results for the class of split state functions), to

obtain a restricted variant of the main theorem above. We then use the same ideas

to show a single construction allowing for a better combined analysis that achieves

the full main theorem (via reduction to the class of split state functions). We believe

our techniques are more comprehensible presented in this modular fashion, and the

intermediate results are of independent interest.

First, we consider the class Localdodi of local functions, with output locality

do as well as input locality di (namely each input bit influences at most di output

bits). This class includes bounded-depth circuits with bounded fan-in and bounded

fan-out. Our first intermediate result shows that the class Local
Õ(
√
n)

Õ(
√
n)

(and in fact

a larger, leaky version of it) can be non-malleably reduced to the class of split

state functions. Plugging in known results for non-malleable split state codes, we

obtain a non-malleable code for this class. Our second result shows a non-malleable

reduction of the class LocalÕ(
√
n) to the above class (thus giving a non-malleable

code for functions with output locality Õ(
√
n)). Finally, we combine the encoding

schemes presented previously to a single encoding scheme (via a reduction to split

state class), and improve the analysis to show resilience against o(n/ log n) output

locality.

57



We remark that our first technical result for (input and output) local functions

is of independent interest, and although as stated it is strictly weaker than our

output-local results, the construction can have advantages in terms of complexity

and concrete parameters, and has stronger resilience to leakage and to tampering

functions that are both local and split-state, as we discuss next. We believe that both

Localdodi and Localdo are interesting classes, capturing natural types of tampering

adversaries.

Extended Classes: Combining with Split State and Beyond. Our results

are in fact broader than presented so far. First, every one of our results works not

only for the class of functions claimed, but also for any split state function. This

is because for all of our schemes, encoding is applied independently on each half of

the input, and thus can handle a split-state tampering function trivially.

Furthermore, our intermediate result for (input-output) local functions can

handle any function that applies arbitrary changes within each part and has bounded

input and output locality between the two parts (this class is much broader than

all functions that are either split state or local). More precisely, we can handle

functions where any bit on the left affects at most Õ(
√
n) bits on the right (and

vice-versa), and any bit on the left is affected by at most Õ(
√
n) bits on the right

(and vice-versa).

Finally, our constructions can also handle some leakage to the tampering func-

tion, capturing an adversary that first leaks some bits, and can then select a tam-

pering function. For our input-output local tampering result, the leakage can be a

58



constant fraction of the bits, while for our output-local tampering result, the leakage

is more limited.

Relation of Our Class to Previous Work. As mentioned above, almost all

previous results presenting explicit and efficient non-malleable codes, do so for a

split state tampering class (with two or more states). These classes are a special

case of ours, as we explained, which is not surprising given that we use results for

split state functions as a starting point to prove our result. As for the exceptions

that go beyond split state, we note that the class of functions that permute the bits

or apply bitwise manipulations, introduced by [9], is also a special case of our class,

as it is a subset of Local1 (in fact, even a subset of Local11). The restricted linear

tampering class considered by [29], on the other hand, seems incomparable to our

class of output-local functions.

Thus, in terms of the tampering class captured, our results simultaneously

encompass (and significantly extend) almost all previously known explicit, efficient

constructions of non-malleable codes (we are aware of only one exception). This is

not the case in terms of the rate, where several previous works focus on optimizing

the rate for smaller classes of functions (e.g., [43] achieve rate 1−o(1) non-malleable

codes for bit-wise tampering functions, and [2] do so for split-state functions under

computational assumptions), while we only achieve a constant rate for these classes.

We also mention that the original work of Dziembowski et al. [65] already con-

sidered the question of constructing non-malleable codes against the class Localδ·n,

where n is the length of the codeword and δ < 1 is a constant. We emphasize,

59



however, that in [65] (and an improvement in [42]), they showed a construction of

non-malleable codes against Localδ·n in a non-standard, random oracle model where

the encoding and decoding functions make queries to a random oracle, but the ad-

versarial tampering function does not query the random oracle. Our work shows

that it is possible to construct non-malleable codes for Localδ·n for δ = o(1/ log n)

in the standard model, with no random oracle.

On Randomized Decoding. Our constructions require the decoding function of

the non-malleable code to be randomized. We note that, unlike the case of error

correcting codes and encryption schemes, deterministic decoding for non-malleable

codes does not seem to be without loss of generality, even in the case where the

encoding scheme enjoys perfect correctness. To see why, note that while perfect

correctness guarantees that all possible coins of the decoding algorithm produce the

same output on a valid codeword, correctness provides no guarantees in the case

when the codeword is corrupted and so it is not possible to derandomize by simply

fixing an arbitrary sequence of coins for the decoder. Moreover, since the decoder

holds no secret key in the non-malleable codes setting, it is also not possible to

derandomize the decoding process by including the key of a pseudorandom function

in the secret key. Since the standard definition of non-malleable codes already allows

for randomized encoding, and since the standard definition of non-malleable codes

only guarantees security in the one-time setting—wherein each time the codeword

is decoded it must be refreshed by re-encoding the original message—we believe

that allowing randomized decoding is the natural and “correct” definition for non-

60



malleable codes (although the original definition required deterministic decoding).

Interestingly, we can combine our technical building blocks into a construc-

tion of non-malleable codes against Localdo for any do ≤ n1/4, using deterministic

decoding. Unfortunately, when compared to our construction utilizing randomized

decoding, this construction has a lower rate of O(1/do
2) (instead of O(1/do)), and

due to that also lower output locality that can be supported (Localn
1/4

instead of

any Localn
δ

efficient or Localo(n/ logn) inefficient).

We therefore leave as an interesting open question to resolve whether ramdom-

ized decoding is necessary for achieving security against certain tampering classes,

F , or whether there is a generic way to derandomize decoding algorithms for non-

malleable codes.

4.1.1 Technical Overview

We give a high level technical overview of our constructions. We use as an

underlying tool a so called “reconstructable probabilistic encoding scheme”, a code

that can correct a constant fraction of errors (denoted cerr), and enjoys some addi-

tional secret-sharing like properties: given a (smaller) constant fraction csec of the

codeword gives no information on the encoded message, and can in fact be completed

to a (correctly distributed) encoding of any message. This or similar tools were used

in previous works either implicitly or explicitly, e.g., the construction based on Reed

Solomon codes and Shamir secret sharing with Berlekamp-Welch correction, as used

already in [23] is a RPE (any small enough subset of shares is distributed uniformly

61



at random, and any such collection of shares can be extended to be the sharing of

any message of our choice). Other RPE schemes with possibly improved parameters

can be constructed from, e.g., [44, 45,49,57].

Handling Local Functions.

Local functions are functions that have both small input and small output

locality (i.e. each input bit affects a small number of output bits and each output

bit depends on a small number of input bits). Our goal is to show a non-malleable

reduction from a class of local functions with appropriate parameters, to the class

of split-state functions. Loosely speaking, a non-malleable reduction from a class F

to a class G, is a pair (E,D) of encoding/decoding functions along with a reduction

that transforms every f ∈ F into a distribution Gf over functions g ∈ G, such that

for every x, the distributions D(f(E(x))) and Gf (x) are statistically close. In the

case of reductions to split-state, we let x = (L,R) where L,R ∈ {0, 1}k. We want

to construct (E,D) such that, informally, given any local f , the effect of applying f

to the encoding E(x) and then decoding D(f(E(x))), can be simulated by applying

some split state function g = (gL, gR) directly to x = (L,R).

We will use an encoding that works on each half of the input separately, and

outputs E(L,R) = (EL(L), ER(R)) = (sL, sR), where |sL| = nL, |sR| = nR (we will re-

fer to these as “left” and “right” sides, though as we will see they will not be of equal

lengths, and we will have appropriately designed decoding algorithms for each part

separately). Now for any given local f , consider f(sL, sR) = (fL(sL, sR), fR(sL, sR)).

62



Clearly, if fL only depended on sL and fR only depended on sR, we would be done

(as this would naturally correspond to a distribution of split state functions on the

original x = (L,R)). However, this is generally not the case, and we need to take

care of “cross-effects” of sR on fL and sL on fR.

Let’s start with fL, and notice that if its output locality is at most do, then

at most nLdo bits from sR could possibly influence the output of fL. Thus, we will

use ER that is an RPE with nLdo ≤ csecnR. This means that we can just fix the

relevant nLdo bits from sR = ER(R) randomly (and independently of R), and now

fL will only depend on sL, while sR can still be completed to a correctly distributed

encoding of R. Note that this requires making the right side larger than the left side

(nR ≥ nLdo
csec

).

Now let’s consider fR. Clearly we cannot directly do the same thing we did

for fL, since that technique required nR to be much longer than nL, while applying

it here would require the opposite. Instead, we will take advantage of the smaller

size on the left, and its limited input locality. Specifically, if the input locality of fL

is di, then at most nLdi bits on the right side can be influenced by sL.

A first (failed) attempt would be to just make sure that the encoding on the

right can correct up to nLdi errors, and hope that we can therefore set sL arbitrarily

when computing fR and the resulting encoding would still be decoded to the same

initial value R. While this argument works if the only changes made to sR (a valid

codeword) are caused by the “crossing bits” from sL, it fails to take into account

that fR can in fact apply other changes inside sR, and so it could be that sR is

malformed in such a way that applying fR will cause it to decode differently in a

63



way that crucially depends on sL. The issue here seems to be that there is an exact

threshold for when the decoding algorithm succeeds or not, and thus the function

can be designed so that fR is just over or under the threshold depending on the left

side.

To overcome this problem, we use randomized decoding and a “consistency

check” technique introduced in [44], and a forthcoming version by the same au-

thors [45], in a different context. Roughly speaking, we make the right side encod-

ing redundant, so that any large enough subset of bits is enough to recover R. An

RPE has this property due its error correction capabilities. The decoding algorithm

will decode via the first such subset, but will check a random subset of bits were

consistent with a particular corrected codeword. This will yield similar behavior, re-

gardless of which subset is used to decode. This construction has various subtleties,

but they are all inherited from previous work, so we do not explain them here. The

main point is that, like in [44, 45], while the real decoding algorithm uses the first

subset large enough, it can be simulated by using any other large enough subset.

Now, using the fact that “large enough” is not too large, and that at most

nLdi bits on the right side can be influenced by sL, we can show that with high

probability, there is a large enough “clean” subset of sR that has no influence from

sL. The real decoding algorithm could be simulated by a decoding that uses this

clean subset, which in turn means that the output of the decoding on fR(sL, sR) is

in fact independent of sL, as needed.

Putting the above together provides us the first result, namely a non-malleable

reduction from local to split state functions. We note that the proof above in

64



fact works for a more general class of functions (a fact we will use in our second

construction). In particular, the first part requires a limit on the output locality of

fL, and the second part requires a limit on the output locality of fR and the input

locality of fL, where all of these only refer to “cross-over” influences (within each

part separately f can be arbitrary). Moreover, due to our use of encoding, security

is maintained even with leakage, as long as the leakage is a constant fraction of bits

on the left and a constant fraction on the right, independently. Similarly, security

is maintained even when a constant fraction of bits on the left do not adhere to the

input locality bound.

Removing Input Locality.

We next present a non-malleable reduction from output local functions (which

have no restriction on input locality) to local functions. Now let f be an output

local tampering function. Since the input and output to f are the same size, note

that the average input locality of f can be bounded by its output locality, do.

Our local construction above requires low input locality for the left side, but also

requires the left side to be much shorter than the right side. Unfortunately, what

this means is that the input locality of all bits on the left side of the local encoding

described above can be far higher than average. So, in order to bound the average

input locality of the left side, we must increase the length of the left side, but this

destroys our analysis from the first construction.

In order to achieve the best of both worlds, our idea is to construct a non-

65



malleable reduction which increases the size of the left side of the underlying local

encoding by adding dummy inputs. The “relevant” inputs, which correspond to bits

of the left side of the underlying local encoding, are placed randomly throughout the

left side of the new encoding. The idea is that since the adversary does not know

which bit positions on the left side are “relevant,” it cannot succeed in causing too

many “relevant” positions to have input locality that is too much above average.

But now, in order to decode properly, the decoding algorithm must be able to

recover these “relevant” locations, without sharing a secret state with the encoding

algorithm (which is disallowed in the standard non-malleable codes setting). In

order to do this, the first idea is to encode the relevant positions on the left side of

the new encoding in an additional string, which is then appended to the left side

during the new encoding procedure. Unfortunately, it is not clear how to make

this work: Since this additional string is long, it can depend on a large number of

input bits from both the left and right sides; on the other hand, in order to obtain a

reduction from output local to local functions, the reduction must be able to recover

this (possibly tampered) additional string so that it “knows” which output bits of

X̃L are relevant.

The solution is to use a PRG with a short seed. The seed of the PRG is now

the additional string that is appended to the left side and the output of the PRG

yields an indicator string which specifies the “relevant” locations for decoding. Note

that now since the PRG seed of length r is short, we can, using the leakage resilient

properties of the underlying local code, leak all r · do ≤ csec · nL ≤ csec · nR number

of bits affecting these output locations from both the left and right sides.

66



Moreover, because the tampering attacker is very limited, in the sense that

it must choose the tampering function before learning any information about the

output of the PRG, we are able to show that Nisan’s PRG (see Definition 3.4.5), an

unconditional PRG is sufficient for our construction. Thus, our construction does

not rely on any computational assumption.

Improving the parameters.

Ultimately the technique sketched above and presented in the body of the

paper imposes two restrictions on output locality (modulo smaller terms): (1)

nLdo ≤ nR (2)do ≈ di ≤ nL. Together these restrictions imply tolerance against out-

put locality of approximately
√
n. The first restriction follows from the asymmetric

encoding to handle bits on the left dependent on the right. The second restriction

results from handling bits on the left of affecting the right side’s consistency check.

To bypass this
√
n barrier, we consider the two encoding schemes as a single

scheme. Then in analysis, we can use the pseudorandom hiding of the left side

encoding to relax the second bound. Namely, with high probability only a small

portion of the left side RPE affects the consistency check, even if the consistency

check and/or output locality is large with respect to nL. This simple change in

analysis gives resilience against o(n/ log n) output locality.

67



4.2 Preliminaries

In this section we will provide some more definitions and background required

for our constructions and results presented in chapter 4.

4.2.1 Non-Malleable Codes: Alternate Definitions

Recall that, non-malleable codes were defined in the following manner:

Definition 4.2.1 (Non-Malleable Code). [3] Let F denote a family of tampering

functions. Let E : B → A, D : A → B be a coding scheme. For all f ∈ F and all

x ∈ B define:

Tamperfx := {c← E(x); c̃← f(c); x̃← D(c̃); output: x̃}.

Then, (E,D) is an ε-non-malleable code with respect to F , if there exists a distribu-

tion Df over {0, 1}k ∪ {⊥, same} such that ∀x ∈ B, the statistical distance between

Simf
x := {x̃← Df ; output: x if x̃ = same & x̃, otherwise},

and Tamperfx is at most ε.

The above of definition has its origins in [66]. Dziembowski, Pietrzak, and

Wichs required the simulator to be efficient. Aggarwal et al. demonstrated that

the above relaxation is, in fact, equivalent for deterministic decoding. Allowing

decoding to be randomized does not affect their proof. For this reason, we will

68



not concern ourselves with the efficiency of a simulator (or, equivalently, sampling

relevant distributions) for the remainder of this chapter.

Aggarwal et al. provide a simpler alternative to the above simulation-based

definition, which they prove equivalent. [3] Their definition is based on the notion

of non-malleable reduction, which we will use in this chapter.

Definition 4.2.2 (Non-Malleable Reduction). [3] Let F ⊂ AA and G ⊂ BB be

some classes of functions. We say F reduces to G, (F ⇒ G, ε), if there exists an

efficient (randomized) encoding function E : B → A, and an efficient (randomized)

decoding function D : A→ B, such that

(a) ∀x ∈ B,Pr[D(E(x)) = x] = 1 (over the randomness of E,D).

(b) ∀f ∈ F ,∃G : ∀x ∈ B, ∆(D(f(E(x)));G(x)) ≤ ε, where G is a distribution over

G and G(x) denotes the distribution g(x), where g ← G.

If the above holds, then (E,D) is an (F ,G, ε)-non-malleable reduction.

Definition 4.2.3 (Non-Malleable Code). [3] Let NMk denote the set of trivial

manipulation functions on k-bit strings, consisting of the identity function id(x) = x

and all constant functions fc(x) = c, where c ∈ {0, 1}k.

A coding scheme (E,D) defines an (F , k, ε)-non-malleable code, if it defines

an (F ,NMk, ε)-non-malleable reduction.

Aggarwal et al. also prove the following useful theorem for composing non-

malleable reductions.

69



Theorem 4.2.1 (Composition). [3] If (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒

H, ε1 + ε2).

We note that the proof given in [3] goes through unchanged with randomized

decoding.

4.2.2 Tampering Families

Definition 4.2.4 (Split-State Model). [66] The split-state model, SSk, denotes

the set of all functions:

{f = (f1, f2) : f(x) = (f1(x1:k) ∈ {0, 1}k, f2(xk+1:2k) ∈ {0, 1}k) for x ∈ {0, 1}2k}.

Theorem 4.2.2 (Efficient Split-State Non-malleable Codes). [97] For any k ∈ N,

there exists an efficient, explicit 2-state non-malleable code with block length 2k and

rate Ω(1/logk) with negligible error.

4.2.3 Reconstructable Probabilistic Encoding Scheme

Reconstructable Probabilistic Encoding (RPE) schemes were defined by Choi

et al. (in an in-submission journal version of [44], as well as in [45]), extending a

definition given by Decatur, Goldreich and Ron [57]. Informally, this is an error

correcting code, which has an additional secrecy property and reconstruction prop-

erty. The secrecy property allows a portion of the output to be revealed without

leaking any information about the encoded message. The reconstruction property

allows, given a message and a partial codeword for it, to reconstruct a complete

70



consistent codeword. Thus, this is a combination of error correcting code and se-

cret sharing, similar to what has been used in the literature already starting with

Ben-Or, Goldwasser, and Wigderson [23].

Definition 4.2.5 (Binary Reconstructable Probabilistic Encoding). [44, 45] We

say a triple (E,D,Rec) is a binary reconstructable probabilistic encoding scheme with

parameters (k, n, cerr, csec), where k, n ∈ N, 0 < cerr, csec < 1, if it satisfies the

following properties:

1. Error correction. E : {0, 1}k → {0, 1}n is an efficient probabilistic proce-

dure, which maps a message m ∈ {0, 1}k to a distribution over {0, 1}n. If we

let W denote the support of E, any two strings in W are 2cerr-far. Moreover,

D is an efficient procedure that given any w′ ∈ {0, 1}n that is (1− ε)-close to

some string w in W for any ε ≤ cerr, outputs w along with a consistent m.

2. Secrecy of partial views. For all m ∈ {0, 1}k and all sets S ⊂ [n] of size

≤ bcsec · nc, the projection of E(m) onto the coordinates in S, as denoted by

E(m)|S, is identically distributed to the uniform distribution over {0, 1}bcsecnc.

3. Reconstruction from partial views. Rec is an efficient procedure that

given any set S ⊂ [n] of size ≤ bcsec ·nc, any I ∈ {0, 1}n, and any m ∈ {0, 1}k,

samples from the distribution E(m) with the constraint ∀i ∈ S,E(m)i = Ii.

Choi et al. show that a construction of Decatur, Goldreich, and Ron [57] meets

the above requirements.

71



Lemma 4.2.1. [44,45] For any k ∈ N, there exists constants 0 < crate, cerr, csec < 1

such that there is a binary RPE scheme with parameters (k, cratek, cerr, csec).

Remark 4.2.1. To achieve longer encoding lengths ck, with the same cerr and csec

parameters, one can simply pad the message to an appropriate length.

Specifically, Decatur, Goldreich and Ron [57] construct a probabilistic encod-

ing scheme that possesses the first two properties listed above. Moreover, since the

construction they present, instantiates E with a linear error-correcting code, we have

that property (3) holds. (Any linear error-correcting code has efficient reconstruc-

tion.)

These are the parameters we use here, but we believe it may be possible to

achieve a better rate if we use parameters based on the recent result of Coretti et

al. [48] (see also [43]).

4.3 Non-malleable Codes for Local
`i(n)
`o(n)

Theorem 4.3.1. (E,D) is a (Local
do(k)
di(k) ⇒ SSk, negl(k))-non-malleable reduction

given the following parameters for Local
do(k)
di(k) (where crate, cerr, csec are taken from

lemma 4.2.1):

• do ≤ cratecseck
log2(k)

.

• di ≤ 12do/c
sec.

• n := crate k2

log2(k)
+ cratek = O

(
k2

log2(k)

)
.

72



Putting together Theorem 4.3.1 with Theorems 4.2.1 and 4.2.2, we obtain the

following.

Corollary 4.3.1. (E ◦ESS,DSS ◦D) is a (Local``, k, negl(k))-non-malleable code with

rate Θ(1/`), where ` = Õ(
√
n).

Remark 4.3.1. The reduction presented below is, in fact, a (XLocal`` ⇒ SSk, negl(k))-

non-malleable reduction, where ` = Õ(
√
n) and XLocal`` is the following class of

functions f : {0, 1}nL+nR → {0, 1}nL+nR:

• For i = 1, . . . , nL, there are at most ` indices j ∈ {nL + 1, . . . , nL + nR} such

that the i-th input bit affects fj. And, for i = nL + 1, . . . , nL + nR, there are

at most ` indices j ∈ {1, . . . , nL} such that the i-th input bit affects fj.

• For i = 1, . . . , nL, there are at most ` indices j ∈ {nL + 1, . . . , nL + nR} such

that the fi-th is affected by the j-th input bit. And, for i = nL+1, . . . , nL+nR,

there are at most ` indices j ∈ {1, . . . , nL} such that the fi-th is affected by

the j-th input bit.

In other words, the reduction holds for a generalized variant of split state tampering

where we only restrict locality with respect to the opposite side, and allow arbitrary

locality within each side. nL and nR are the lengths of the left and right side code-

words, respectively.

We construct an encoding scheme (E,D) summarized in Figure 4.1 and

parametrized below. We then show that the pair (E,D) is an (Local
do(k)
di(k) , SSk, negl(k))-

non-malleable reduction. This immediately implies that given a non-malleable en-

73



coding scheme (Ess,Dss) for class SSk (where SS is the class of split-state func-

tions), the encoding scheme scheme Π = (Ebd,Dbd), where Ebd(m) := E(Ess(m)) and

Dbd(~s) := Dss(D(~s)) yields a non-malleable code against Local
do(k)
di(k) .

We parametrize our construction for Local
do(k)
di(k) ⇒ SSk with the following:

• (EL,DL) parametrized by (k, nL, c
err
L , c

sec
L ) := (k, cratek, cerr, csec) where cerr, csec,

crate are taken from lemma 4.2.1.

• ncheck := log2(k).

• dsec :=
√

cnL
ncheck

= Θ(
√
k

log(k)
).

• (ER,DR) parametrized by (k, nR, c
err
R , c

sec
R ) := (k, doc

ratek
csec

, cerr, csec).

• n := doc
ratek + cratek = O( k2

log2(k))
.

Note that this setting of parameters is taken with our forthcoming reduction

in mind. (See Corollary 4.3.2 and Theorem 4.4.1.) One may take any parametriza-

tion for which (a) such RPEs exist, (b) (1 − cerr/4)ncheck is negligible in k, and (c)

Observation 1 (below) is satisfied. For certain applications, parametrization other

than ours may be advantageous.

Let f(~sL, ~sR) = (fL(~sL, ~sR), fR(~sL, ~sR)), where (~sL, ~sR) ∈ {0, 1}nL×{0, 1}nR and

fL(~sL, ~sR) ∈ {0, 1}nL and fR(~sL, ~sR) ∈ {0, 1}nR .

• Let SR→L denote the set of positions j such that input bit ~sRj affects the output

of fL.

• Let SL→R denote the set of positions i such that input bit ~sLi affects the output

of fR.

74



Let (EL,DL,RecL) be a binary reconstructable probabilistic encoding scheme with
parameters (k, nL, c

err
L , c

sec
L ) and let (ER,DR,RecR) be a binary reconstructable prob-

abilistic encoding scheme with parameters (k, nR, c
err
R , c

sec
R ).

Also let dsec, ncheck be parameters.

E(x := (L,R)):

1. Compute (sL1, . . . , s
L
nL

)← EL(L) and (sR1 , . . . , s
R
nR

)← ER(R).

2. Output the encoding (~sL, ~sR) := ([sLi ]i∈[nL], [s
R
i ]i∈[nR]).

D(~σ := (~σL, ~σR)):

1. Let (~σL, ~σR) := ([σLi ]i∈[nL], [σ
R
i ]i∈[nR]).

2. Compute ((wL
1 , . . . , w

L
nL

), L) ← DL(σL1 , . . . , σ
L
nL

). If the decoding fails, set
L :=⊥.

3. (decoding-check on right) Let t := dnR(1 − cerrR /4)e Define ~σ′
R

:=
σ′R1 , . . . , σ

′R
nR

as follows: Set σ′R` := σR` for ` = 1, . . . , t. Set σ′R` := 0 for
` = t + 1, . . . , nR. Compute ((wR

1 , . . . , w
R
nR

),R) ← DR(σ′R1 , . . . , σ
′R
t ). If the

decoding fails or (wR
1 , . . . , w

R
nR

) is not cerrR /4-close to (σR1 , . . . , σ
R
tR

), set R :=⊥.

4. (codeword-check on right) Pick a random subset Rcheck ⊂ [nR] of size
ncheck < csecR · nR. For all ` ∈ Rcheck, check that σR` = wR

` . If the check
fails, set R :=⊥.

5. (output) Output x := (L,R).

Figure 4.1: The (Local
do(k)
di(k) ,SS, negl(k))-non-malleable reduction (E,D)

75



• For J ⊂ [nR], let SJL→R denote the set of positions i such that input bit ~sLi

affects the output of fR
j for some j ∈ J .

• For a set Rcheck ⊆ nR of size ncheck, let Scheck denote the set of positions i such

that input bit ~sLi affects the output of fR
` for some ` ∈ Rcheck.

~sL and ~sR is the split state representation of the output of the encoded message.

sL1 sL2 sL3 · · · sLnL

σR
1 σR

2 σR
3 · · · σR

i−1 σR
i σR

i+1 · · · σR
nR−2 σ

R
nR−1 σR

nR

~σL and ~σR is the split state representation of the output of the tampering function.

σL
1 σL

2 σL
3 · · · σL

nL

sR1 sR2 sR3 · · · sRi−1 sRi sRi+1 · · · sRnR−2 sRnR−1 sRnR

Figure 4.2: The adversary chooses tampering function f = (fL, fR) ∈ Local
do(k)
di(k)

which takes

inputs (~sL, ~sR) and produces outputs (~σL, ~σR). The highlighted bits of ~sL and ~sR

are the “bad” bits. E.g. note that bits sR2 and sRi affect the output bits σL
2 and σL

1

respectively after fL is applied to (~sL, ~sR). Thus we add 2 and i to the set SR→L.
Similarly, the bits sL1 and sL3 affect the bits {σR

1 , σ
R
i } and the bits {σR

2 , σ
R
i+1, σ

R
nR,}

respectively after the tampering function fR is applied to (~sL, ~sR). We therefore add
1 to the sets S1L→R and SiL→R, while we add 3 to the sets S2L→R,S

i+1
L→R and SnR

L→R. We
also add both 1 and 3 to the set SL→R.

The sets defined above are illustrated in Figure 4.2. We observe the following

immediate facts about their sizes:

Observation 1. For f ∈ Localdodi , we have the following:

1. There is some set J∗ ⊂ [nR] such that |J∗| = t and |SJ∗L→R| = 0 (from now on,

J∗ denotes the lexicographically first such set).

(Since |SL→R| ≤ di · nL ≤ nR − t.)

2. By choice of parameters nL, ncheck, c
sec
L , we have that |Scheck| ≤ nL · csecL .

76



(Since Scheck ≤ do · ncheck.)

3. By choice of parameters nL, nR, c
sec
R , we have that |SR→L| ≤ do · nL ≤ nR · csecR .

Now, for every f ∈ Localdodi , we define the distribution Gf over SSk. A draw from

Gf is defined as follows:

• Choose a random subset Rcheck ⊆ [nR] of size ncheck.

• Choose vectors IL ∈ {0, 1}nL × {∗}nL , IR ∈ {∗}nL × {0, 1}nR uniformly at

random.

• Let J∗ be the subset of [nR] as described in Observation 1.

• The split-state tampering function g := (gL, gR) ∈ SSk has IL, IR hardcoded

into it and is specified as follows:

gL(L):

1. (apply tampering and plain decode on left) Let

~sL := Rec(Scheck, IL, L). Let (σL
1 , . . . , σ

L
nL

) := fL|IR(~sL).

Compute ((wL
1 , . . . , w

L
nL

), L̃)← DL(σL
1 , . . . , σ

L
nL

). If the decoding fails, set

L̃ :=⊥.

2. (output) Output L̃.

gR(R):

1. (apply tampering and decoding-check on right) Let

~sR = (sR1 , . . . , s
R
nR

) := Rec(SR→L, I
R,R). Let (σR

1 , . . . , σ
R
nR

) := fR|IL(~sR).

77



Define ~σ′R := σ′R1 , . . . , σ
′R
nR

as follows: Set σ′R` := σR
` for ` ∈ [J∗]. Set

σ′R` := 0 for ` /∈ [J∗]. Compute ((wR
1 , . . . , w

R
nR

), R̃) ← DR(σ′R1 , . . . , σ
′R
t ).

If the decoding fails or (wR
1 , . . . , w

R
nR

) is not cerrR /4-close to (σR
1 , . . . , σ

R
nR

),

then set R̃ :=⊥.

2. (codeword-check on right) For all ` ∈ Rcheck, check that σR
` = wR

` . If

the check fails, set R̃ :=⊥.

3. (output) Output R̃.

• Output g = (gL, gR).

Whenever Rec is run above, we assume that enough positions are set by S

such that there is only a single consistent codeword. If this is not the case, then

additional positions are added to S from IL, IR, respectively.

By the definition of a non-malleable reduction (Definition 4.2.2), in order to

complete the proof of Theorem 4.3.1, we must show that (E,D) have the following

properties:

1. For all x ∈ {0, 1}k, we have D(E(x)) = x with probability 1.

2. For all f ∈ Localdodi ,

∆(D(f(E(x)));Gf (x)) ≤ negl(k),

where Gf is the distribution defined above.

Item (1) above is trivial and can be immediately verified. In the following, we

prove Item (2) above by considering the following sequence of hybrid arguments for

78



each function f ∈ Localdodi (for the intermediate hybrids, we highlight the step in

which they are different from the desired end distributions).

Hybrid H0. This is the original distribution D(f(E(x)))

Hybrid H1. H1 corresponds to the distribution D′(f(E(x))), where D′ is defined as

follows:

D(~σ := (~σL, ~σR)):

1. (plain decode on left) Let (~σL, ~σR) := ([σL
i ]i∈[nL], [σ

R
` ]`∈[nR]). Compute

((wL
1 , . . . , w

L
nL

), L)← DL(σL
1 , . . . , σ

L
nL

). If the decoding fails, set L :=⊥.

2. (decoding-check on right) Define ~σ′R := σ′R1 , . . . , σ
′R
nR

as follows: Set σ′R` :=

σR
` for ` ∈ J∗ and σ′R` := 0 for ` /∈ J∗, where J∗ ⊆ [nR] is the lexicographically

first set such that |J∗| = t and |SJ∗L→R| = 0. Compute ((wR
1 , . . . , w

R
nR

),R) ←

DR(σ′R1 , . . . , σ
′R
tR

). If the decoding fails or (wR
1 , . . . , w

R
nR

) is not cerrR /4-close to

(σR
1 , . . . , σ

R
tR

), set R :=⊥.

3. (codeword-check on right) For all ` ∈ Rcheck, check that σR
` = wR

` . If the

check fails, set R :=⊥.

4. (output) Output x := (L,R).

Note that the only difference between D and D′ is that in decoding-check on

right, ~σR is decoded from J∗, instead of the first ncheck positions.

Claim 4.3.1.

H0
s
≈ H1.

79



Proof. Let δ :=
cerrR
4

. Additionally, define

ρ(nR, δ, ncheck) :=

(
(1−δ)nR
ncheck

)(
nR
ncheck

) .

Notice that our parametrization of ncheck, δ yields ρ(nR, δ, ncheck) = negl(k).

((1−δ)nR
ncheck

)
( nR
ncheck

)
= ((1−δ)nR)!ncheck!(nR−ncheck)!

ncheck!((1−δ)nR−ncheck)!nR!
=
(

(1−δ)nR
nR

)(
(1−δ)nR−1
nR−1

)
· · ·
(

(1−δ)nR−ncheck+1
nR−ncheck+1

)
≤ (1− δ)ncheck ,

where the last inequality follows due to the fact that for i ∈ {0, . . . , ncheck − 1},

(1−δ)nR−i
nR−i

≤ (1− δ). Since (1− δ) < 1 is a constant, we can set ncheck = ω(log(k)).

Note that correctness still holds for D′ with probability 1.

We want to show that for every ~σ = (~σL, ~σR) ← f(E(x)), D(~σ) = D′(~σ) with

high probability, over the coins of D,D′.

Let D := (DL,DR) (respectively, D′ := (D′L,D′R)), where DR (respectively, D′R)

correspond to the right output of the decoding algorithm. Notice that only decoding

on the right changes. So, it suffices to show that for each (~σL, ~σR) in the support of

the distribution f(E(x)),

Pr[D|~σL(~σR) = D′|~σL(~σR)] ≥ 1− negl(n), (4.3.1)

where the probabilities are taken over the coins of D,D′.

LetW denote the set of all valid codewords for the given reconstructable prob-

abilistic encoding scheme with parameters k, nR, c
err
R , c

sec
R ,GF(2)). For x ∈ GF(2)nR ,

80



define its distance from W to be d(x,W) := minw∈W d(x,w).

To analyze (4.3.1), we define the following set of instances (which intuitively

corresponds to the set of instances on which both D|~σL and D′|~σL are likely to output

⊥).

Π⊥ := {~σR ∈ {0, 1}nR d(~σ,W) ≥ δ}.

So, now consider the two cases:

• Suppose ~σR ∈ Π⊥. Then, both D(~σR) and D′(~σR) will fail the codeword-check

with probability ≥ 1− ρ(nR, δ, ncheck).

• Suppose ~σR /∈ Π⊥. Then, ∃w ∈ W such that d(~σR, w) ≤ δ. Moreover, in

both D and D′ it must be the case that ~σ′R is cerr/2-close to w. (Because

δ + (nR − t)/nR ≤ cerr/2). So both D and D′ must decode to the same w. Fix

a set of coins for D and D′. Therefore, when D and D′ are run with the same

coins, all comparisons made during the codeword-check are identical, and thus

the probability (over the coins of D,D′) that the codeword-check fails in D and

D′ is identical.

So for any ~σ = (~σL, ~σR), ∆({D(~σ)}, {D′(~σ)}) = ∆({DR|~σL(~σR)}, {D′R|~σL(~σR)}) ≤

ρ(nR, δ, ncheck). Therefore, ∆({D(f(E(x)))}, {D′(f(E(x)))} ≤ ρ(nR, δ, ncheck).

Hybrid H2. H2 corresponds to the distribution G′(x), where G′f is a distribution

over functions g′ = (g′L, g
′
R) defined as follows:

• Choose a random subset Rcheck ⊆ [nR] of size ncheck.

81



• Choose vectors IL ∈ {0, 1}nL , IR ∈ {0, 1}nR in the following way: IL ← EL(L),

IR ← ER(R).

• Let J∗ be the subset of [nR] as described in Observation 1.

• The split-state tampering function g := (gL, gR) ∈ SSk has IL, IR hardcoded

into it and is specified as follows:

gL(L):

1. (apply tampering and plain decode on left) Let ~sL := Rec(S :=

Scheck, IL, L). Let (σL
1 , . . . , σ

L
nL

) := fL|IR(~sL). Compute ((wL
1 , . . . , w

L
nL

), L̃)←

DL(σL
1 , . . . , σ

L
nL

). If the decoding fails, set L̃ :=⊥.

2. (output) Output L̃.

gR(R):

1. (apply tampering and decoding-check on right) Let

~sR = (sR1 , . . . , s
R
nR

) := Rec(SR→L, I
R,R). Let (σR

1 , . . . , σ
R
nR

) := fR|IL(~sR).

Define ~σ′R := σ′R1 , . . . , σ
′R
nR

as follows: Set σ′R` := σR
` for ` ∈ [J∗]. Set

σ′R` := 0 for ` /∈ [J∗]. Compute ((wR
1 , . . . , w

R
nR

), R̃) ← DR(σ′R1 , . . . , σ
′R
t ).

If the decoding fails or (wR
1 , . . . , w

R
nR

) is not cerrR /4-close to (σR
1 , . . . , σ

R
nR

),

then set R̃ :=⊥.

2. (codeword-check on right) For all ` ∈ Rcheck, check that σR
` = wR

` . If

the check fails, set R̃ :=⊥.

3. (output) Output R̃.

82



• Output g = (gL, gR).

Note that the only difference between Gf and G′f is that IL ← EL(L), IR ←

ER(R) are chosen honestly, instead of being chosen uniformly at random. Further-

more, note that g′ = (g′L, g
′
R) are not split-state, since g′L depends on IR and g′R

depends on IL.

Claim 4.3.2.

H1 ≡ H2.

The claim can be verified by inspection.

Hybrid H3. Hybrid H3 is simply the distribution Gf (x), defined previously.

Claim 4.3.3.

H2 ≡ H3.

Note that the result of fR only depends on the bits in J∗ and Rcheck. Moreover,

fR
χJ∗∪Rcheck

only depends on on ~sR, [sLi ]i∈Scheck . Moreover, note that fL depends only

on ~sL, [sRi ]i∈SR→L
. Since by Observation 1, we have that |Scheck| ≤ nL · csecL and

|SR→L| ≤ nR · csecR , the claim follows from the secrecy property of the reconstructable

probabilistic encoding scheme.

4.3.1 Extending to Leaky Local

The construction from Section 4.3 is actually secure against a slightly larger

class of tampering functions beyond Localdodi functions, which we call LL, or “Leaky

Local.” Notice that the parameters given above (as in observation 1) in fact yield:

83



1. |SJ∗L→R|+ |Scheck| = |Scheck| ≤ nL ·
csecL
3

.

2. |S+
R→L| ≤ do · nL ≤ nR ·

2csecR
3

.

It is not too hard to see that we can leak 1/3 of the security threshold, on both the

left and right, to a tampering adversary. Given this leakage, the adversary can then

select a tampering function from the subset of Localdo where all but a fraction of

the first nL bits have input locality di. Note that the input locality restrictions are

only needed on the left portions of codewords in the above proof. We formalize this

new class of tampering functions as follows.

Definition 4.3.1. Let LL ⊆ {{0, 1}qL × {0, 1}qR → {0, 1}qL × {0, 1}qR}, Leaky Lo-

cal, be the set of functions {ψf,h1,h2}, parametrized by functions (f, h1, h2), where

ψf,h1,h2(~sL, ~sR) := Cuniv(f(h1(~sL), h2(~sR)), ~sL, ~sR), f outputs a circuit C and Cuniv

is a universal circuit that computes the output of the circuit C on input (~sL, ~sR).

Moreover, we require that f, h1, h2 have the following form:

• On input ~sL ∈ {0, 1}qL, h1 outputs a subset of cerrL /3 of its input bits.

• On input ~sR ∈ {0, 1}qR, h2 outputs a subset of cerrR /3 of its input bits.

• On input h1(~sL), h2(~sL) ∈ {0, 1}cerrL /3 × {0, 1}cerrR /3, f outputs a circuit C :

{0, 1}qL × {0, 1}qR → {0, 1}qL × {0, 1}qR, where C has output-locality do. Of

the first qL input bits, all but at most cerrL /3-fraction have input-locality at most

di.

The following corollary can be easily verified.

Corollary 4.3.2. (E◦ESS,DSS ◦D) is an (LL, SSk, negl(k))-non-malleable reduction.

84



4.4 Extending to Localm(n)

We now state our theorem for Localm(n) tampering functions, or bounded fan-

in bounded-depth circuits.

Theorem 4.4.1. (E′,D′) is a (Localdo
′
⇒ LL, negl(n))-non-malleable reduction

given the following parameters for Localdo
′
:

• do′ := csec/12 · di, where di is the input locality of LL,

• E′ : {0, 1}n → {0, 1}N , where N = qin + 2n− nL, and r = log4(k), where n is

the output length of LL and nL is the length of the left output of LL.

We construct an encoding scheme (E′,D′) summarized in Figure 4.3 and

parametrized below. In brief, our encoding simply distributes the bits of the left

input pseudorandomly in a string comparable in length to the right input. We then

append a short description of where the encoding is hiding, a seed to pseudorandom

generator.

We then show that the pair (E′,D′) is an (Localdo
′
,LL, negl(n))-non-malleable

reduction. Combined with our previous construction, this immediately implies

that given a non-malleable encoding scheme (Ess,Dss) for SSk, the encoding scheme

scheme Π̂ = (Êbd, D̂bd), where Êbd(m) := E′(E(Ess(m))) and D̂bd(~s) := Dss(D(D′(~s)))

yields the following corollary, a non-malleable code against Localdo
′
.

Corollary 4.4.1. (E′,D′) yields, with previous results, a (LocalÕ(
√
n), k, negl(k))-

non-malleable reduction with sublinear rate, where n = Θ( k2

log2(k)
).

85



Remark 4.4.1. As before, the encoding scheme presented below is independent on

the left and right. Therefore, our reduction holds for not just for Localdo
′

but addi-

tionally any split-state function, independent on each side, trivially.

We parametrize our construction for Localdo
′
⇒ LL with the following:

• r := log4(k)

• τ := 2(n−nL), where n is the length of the output of LL and nL is the length

of the left output of LL.

Now, for every µ ∈ Localdo
′

where µ(ζ,XL, xR) := (µζ(ζ,XL, xR), µL(ζ,XL, xR),

µR(ζ,XL, xR)) we define the distribution Gµ over LL. A draw from Gµ is defined as

follows:

• Choose ζ ← {0, 1}r uniformly at random. Compute y := prg(ζ), where y =

y1, . . . , yτ . For i ∈ [τ ], compute Compute ρi := φ(yi).

• If ρ has less than nL number of ones, then set h1, h2, f all to the constant

function 0.

• Otherwise, choose vector IL ∈ {0, 1}τ+nR such that ∀ i such that 1 ≤ i ≤ τ if

ρi = 1 then ILi = ∗ and otherwise, ILi is chosen uniformly at random.

• The function h1 is defined as follows: h1 outputs the bits in input xL that

affect the output bits of µζ (at most r · do′ ≤ csecL /3 · nL).

• The function h2 is defined as follows: h2 outputs the bits in xR that affect the

output bits of µζ (at most r · do′ ≤ csecR /3 · nR).

86



Let prg be a pseudorandom generator for space bounded computations (see Defini-
tion 3.4.5), with inputs of length r and outputs of length log(τ) · τ .
Let G(ζ) be defined as follows:

1. Compute y := prg(ζ).

2. Divide pseudorandom tape y into blocks of bit strings y1, . . . , yτ . Let φ be
the randomized function that chooses a bit b ∈ {0, 1} with bias p := 3nL/2τ .
For i ∈ [τ ], let ρi = φ(yi), where yi is the explicit randomness of φ. Let
ρ = ρ1, . . . , ρτ . Let num denote the number of positions of ρ that are set to 1.

3. If num < nL, set ρ := 1nL0τ−nL .

4. Otherwise, flip all but the first nL 1’s in ρ to 0.

5. Output ρ.

Let E′ : {0, 1}n → {0, 1}N and D′ : {0, 1}N → {0, 1}n.

E′(xL := xL1, . . . , x
L
nL
, xR):

1. Choose ζ ← {0, 1}r uniformly at random. Choose ζ ← {0, 1}r uniformly at
random. Compute ρ := G(ζ).

2. For j ∈ [num], let posj denote the j-th position i such that ρi = 1.

3. Let XL ∈ {0, 1}τ be defined in the following way: For j ∈ [nL], XL
posj

:= xLj . In

all other locations, XL
i is set uniformly at random.

4. Output the encoding (ζ,XL, xR).

D′(Z := (ζ̃, X̃L, x̃R)):

1. (Recover ρ̃) Let ρ̃ := G(ζ̃). Let ñum ≥ nL denote the number of ones in
ρ̃ := ρ̃1, . . . , ρ̃τ .

2. (Recover x) For j ∈ [ñum], let posj denote the j-th position i such that ρ̃i = 1.

3. Let x̃Lj ∈ {0, 1}nL be defined in the following way: For j ∈ [min(ñum, nL)],

x̃Lj := X̃L
posj

.

4. (output) Output (x̃L, x̃R).

Figure 4.3: The (Localdo
′
,LL, negl(n))-non-malleable reduction (E′,D′)

87



• The function f is defined as follows:

– f computes ζ̃, given ζ and the output of h1, h2.

– f computes ỹ := prg(ζ̃), where ỹ = ỹ1, . . . , ỹτ .

– For i ∈ [τ ], f computes ρ̃i := φ(ỹi).

– Let ρ̃∗ ∈ {0, 1}τ be defined as follows: For i ∈ [pos∗], ρ̃∗ = ρ̃; for pos∗ <

i ≤ τ, ρ̃∗ = 0, where pos∗ is the index of the nL-th one in ρ̃ (and is set to

τ if no such index exists).

– Let µL,ζ (resp. µR,ζ) correspond to the function µL(ζ,XL, xR) (resp.

µR(ζ,XL, xR))), which has ζ hardcoded in it.

– Let C be the circuit corresponding to the following restriction:

((µL,ζ |IL)ρ̃∗ , µR,ζ |IL).

– If C is in LL, then f outputs C. Otherwise, f outputs the constant

function 0.

By the definition of a non-malleable reduction (Definition 4.2.2), in order to

complete the proof of Theorem 4.4.1, we must show that (E′,D′) has the following

properties:

1. For all x ∈ {0, 1}n, we have D′(E′(x)) = x with probability 1.

2. For all µ ∈ Localdo
′
,

∆(D′(µ(E′(x)));Gµ(x)) ≤ negl(n),

88



where Gµ is the distribution defined above.

Item (1) above is trivial and can be immediately verified.

In the following, we prove Item (2), above, by noting that the statistical dis-

tance ∆(D′(µ(E′(x)));Gµ(x)) is upper bounded by the probability that either ρ does

not contain at least nL number of ones or C is not in LL.

We first argue that if ρ is chosen uniformly at random, then the probability

that either of these events occurs is negligible and then show that the same must be

true when ρ is chosen via a PRG with appropriate security guarantees.

Clearly, by multiplicative Chernoff bounds, if ρ is chosen uniformly at random,

then the probability that ρ contains less than nL ones is negligible. We now show

that the probability that C /∈ LL is negligible. If C /∈ LL, it means that more than

csecL /3 number of positions i in XL are such that (1) XL
i has “high input locality”

(i.e. input locality greater than 12/csecL · do
′ = di) (2) ρi = 1.

Since the adversary first specifies the tampering function µ, all positions in

XL with “high input locality” are determined. Note that, by choice of parameters

(since τ ≥ N/2), there can be at most csecL ·τ/6 number of positions in XL with “high

input locality”. Since p = 3nL/2τ , we expect csecL · nL/4 number of positions i in XL

where (1) XL
i has “high input locality” and (2) ρi = 1. Therefore, by multiplicative

Chernoff bounds, the probability that more than csecL ·nL/3 number of positions i in

XL are such that (1) XL
i has “high input locality” and (2) ρi = 1 is negligible.

We now argue that these events must also occur with negligible probability

when ρ is pseudorandom. Assume the contrary, then the following is a distinguisher

89



T that can distinguish truly random strings y from strings y := prg(ζ) with non-

negligible probability.

T is a circuit that has a string w ∈ {0, 1}τ hardwired into it (non-uniform

advice). w corresponds to the high input locality positions determined by the tam-

pering function µ that was chosen by the adversary A. Intuitively, w is the string

that causes A to succeed in breaking security of the non-malleable code with highest

probability.

On input y = y1, . . . , yτ (where either y := prg(ζ) or y is chosen uniformly at

random), T (y) does the following:

1. Set count1 = 0, count2 = 0.

2. For i = 1 to τ :

(a) Run φ(yi) to obtain ρi.

(b) If ρi = 1, set count2 := count2 + 1

(c) If ρi = 1 and wi = 1, set count1 := count1 + 1.

3. If count1 > csecL · nL/3 or count2 < nL, output 0. Otherwise, output 1.

T can clearly be implemented by a read-once, Finite State Machine (FSM)

with 2O(log2(τ)) number of states. However, note that by Theorem 3.4.1, prg is a

pseudorandom generator for space log3(k) with parameter 2− log3(k). Thus, existence

of distinguisher T as above, leads to contradiction to the security of the Nisan PRG.

90



4.5 Achieving Resilience against o(n/ log n) Output Locality

We now present the proof of our final main theorem. The encoding scheme we

use is simply the composition of the two schemes presented previously with slightly

different parameters The only substantial difference is in the analysis.

Theorem 4.5.1. (E′,D′) is a (Localdo ⇒ SS, negl(n))-non-malleable reduction given

the following parameters for Localdo:

• do = o(n/ log(n)).

• E′ : {0, 1}2k → {0, 1}n, where n = O(dok).

Putting together Theorem 4.5.1 with Theorems 4.2.1 and 4.2.2, we obtain the

following.

Corollary 4.5.1. (E◦ESS,DSS ◦D) is a (Localdo , k, negl(k))-non-malleable code with

rate Θ(1/do), where do = o(n/ log n).

Remark 4.5.1. Note that n = Θ(dok). Thus, for resilience against do = n1−ε our

codes is of polynomial length n = k1/ε.

We construct an encoding scheme (E,D) summarized in Figure 4.1 and

parametrized below. We then show that the pair (E,D) is a (Localdo , SSk, negl(k))-

non-malleable reduction.

We parameterize our construction for Localdo ⇒ SSk with the following:

• t := dnR(1− cerrR /4)e.

91



• cdec := 1− t
nR

.

• δ := csec

9
.

• (EL,DL) parametrized by (k, nL, c
err
L , c

sec
L ) := (k, cratek, cerr, csec) where cerr, csec,

crate are taken from lemma 4.2.1.

• ncheck := k.

• nR := d2docratek
δcdeccsec

e

• (ER,DR) parametrized by (k, nR, c
err
R , c

sec
R ) := (k, nR, c

err, csec).

• r := k

• τ := d30docratek
(csec)2cdec

+ 1
δ
e

• n := r + τ + nR = O(dok).

Proof Overview. To prove the theorem, we analyze the composed encoding schemes

as a single reduction. As mentioned in the introduction, the idea is to use the PRG

to “free up” the restrictions relating the size of the left RPE (previously denoted by

nL) and do that is an artifact of the piecewise analysis.

Recall that our encoding scheme is comprised of three blocks: (1) the PRG

seed, (2) the “hidden” left side encoding, and (3) the right side encoding. First, (as

in the previous section) we claim that a number of good things happen if the left

side is “hidden” in a large block in a truly random way. Namely, we have that, with

respect to the tampering function, only a small fraction of bits in the hidden left-side

92



Let (EL,DL,RecL) be a binary reconstructable probabilistic encoding scheme with pa-
rameters (k, nL, c

err
L , c

sec
L ) and let (ER,DR,RecR) be a binary reconstructable probabilistic

encoding scheme with parameters (k, nR, c
err
R , c

sec
R ). Also, let ncheck be a parameter. Let

prg be a pseudorandom generator for space bounded computations (see Definition 3.4.5),
with inputs of length r and outputs of length log(τ) · τ . Let G(ζ) be defined as follows:

1. Compute y := prg(ζ).

2. Divide pseudorandom tape y into blocks of bit strings y1, . . . , yτ . Let φ be the
randomized function that chooses a bit b ∈ {0, 1} with bias p := 3nL/2τ . For
i ∈ [τ ], let ρi = φ(yi), where yi is the explicit randomness of φ. Let ρ = ρ1, . . . , ρτ .
Let num denote the number of positions of ρ that are set to 1.

3. If num < nL, set ρ := 1nL0τ−nL . Otherwise, flip all but the first nL 1’s in ρ to 0.

4. Output ρ.

E(x := (L,R)):

1. Compute ~sL = (sL1, . . . , s
L
nL

)← EL(L) and ~sR = (sR1 , . . . , s
R
nR

)← ER(R).

2. Choose ζ ← {0, 1}r uniformly at random. Compute ρ := G(ζ).

3. Otherwise, for j ∈ [nL], let posj denote the j-th position i such that ρi = 1.

4. Let XL ∈ {0, 1}τ be defined in the following way: For j ∈ [nL], XL
posj

:= sLj . In all

other locations, XL
i is set uniformly at random.

5. Output the encoding (ζ,XL, ~sR).

D(~σ := (ζ̃, X̃L, ~σR)):

1. (Recover ρ̃) Let ỹ := prg(ζ̃), where ỹ = ỹ1, . . . , ỹτ . For i ∈ [τ ], compute ρ̃i := φ(ỹi).
Let ñum denote the number of ones in ρ̃ := ρ̃1, . . . , ρ̃τ .

2. (Recover x) For j ∈ [ñum], let posj denote the j-th position i such that ρ̃i = 1.

3. Let ~σL ∈ {0, 1}nL be defined as: For j ∈ [min(ñum, nL)], σLj := X̃L
posj

.

4. (plain decoding on left) Compute ((wL
1 , . . . , w

L
nL

), L)← DL(σL1 , . . . , σ
L
nL

). If the
decoding fails, set L :=⊥.

5. (decoding-check on right) Let t := dnR(1−cerrR /4)e Define ~σ′R := σ′R1 , . . . , σ
′R
nR

as
follows: Set σ′R` := σR` for ` = 1, . . . , t. Set σ′R` := 0 for ` = t+ 1, . . . , nR. Compute
((wR

1 , . . . , w
R
nR

),R)← DR(σ′R1 , . . . , σ
′R
t ). If the decoding fails or (wR

1 , . . . , w
R
nR

) is not
cerrR /4-close to (σR1 , . . . , σ

R
tR

), set R :=⊥.

6. (codeword-check on right) Pick a random subset Rcheck ⊂ [nR] of size ncheck <
csecR · nR. For all ` ∈ Rcheck, check that σR` = wR

` . If the check fails, set R :=⊥.

7. (output) Output x := (L,R).

Figure 4.4: The (Localdo ,SS, negl(k))-non-malleable reduction (E,D)

93



RPE is either (1) of high input locality, (2) effects bits in the right-side’s consistency

check or (3) effects the PRG seed used in decoding. (1) Implies that there exists a

“safe” subset to simulate decoding from (as before), and (2) and (3) allow us to relax

the bounds on locality. Next, we use a hybrid argument to essentially disconnect

influence between the 3 blocks of our encoding (that is dependent on the underlying

message, (L,R)).

Proof. We will consider the “Left” side of the encoding to be (ζ,XL) and the

“Right” side to be ~sR.

Let f(ζ,XL, ~sR) = (fL(ζ,XL, ~sR), fR(ζ,XL, ~sR)), where (ζ,XL, ~sR) ∈ {0, 1}r+τ×

{0, 1}nR and fL(ζ,XL, ~sR) ∈ {0, 1}r+τ and fR(ζ,XL, ~sR) ∈ {0, 1}nR . Furthermore,

let fL = (fζ , fX) where fζ : {0, 1}r+τ+nR → {0, 1}r and fX : {0, 1}r+τ+nR → {0, 1}τ

• Let U = {i ∈ [τ ] : ρi = 1} denote the (relative) locations of ~sL.

• Let SR→L denote the set of positions j such that input bit ~sRj affects the output

of fL.

• Let SL→R denote the set of positions i such that input bit ~sLi affects the output

of fR.

• For J ⊂ [nR], let SJL→R denote the set of positions i such that input bit ~sLi

affects the output of fR
j for some j ∈ J .

• For a set Rcheck ⊆ nR of size ncheck, let Scheck denote the set of positions i such

that embedded input bit ~sLi affects the output of fR
` for some ` ∈ Rcheck.

94



• For a set Rcheck ⊆ nR of size ncheck, let S+
check denote the set of positions i such

that input bit XL
i affects the output of fR

` for some ` ∈ Rcheck.

• For a set Rcheck ⊆ nR of size ncheck, let Scheck denote the set of positions i such

that embedded input bit ~sLi affects the output of fR
` for some ` ∈ Rcheck.

• Let S+
in(di) denote the set of i such that XL

i has input locality greater than di.

• Let Sin(di) denote the set of i such that ~sLi has input locality greater than di.

• Let S+
L→ζ denote the set of positions i such that input bit XL

i affects the output

of fζ .

• Let SL→ζ denote the set of positions i such that input bit ~sLi affects the output

of fζ .

• Let SR→ζ denote the subset of SR→L that affects fζ .

We next define the following event Goodf .

Definition 4.5.1. The event Goodf occurs if for tampering function f ∈ Localdo

all of the following hold:

1. ρ contains at least nL ones.

2. |Scheck ∪ Sin(1/δ · do) ∪ SL→ζ | ≤ csec · nL.

3. There is some set J∗ ⊂ [nR] such that |J∗| = t and |SJ∗L→R \ Sin(1/δ · do)| = 0

(from now on, J∗ will denote the lexicographically first such set).

4. |SR→L| ≤ do · (r + nL) ≤ nR · csecR .

95



Claim 4.5.1. Suppose ρ is chosen truly at random (ones occuring with bias p =

3nL/2τ). Then for every f ∈ Localdo, Pr[Goodf ] ≥ 1− negl(n).

Proof. We consider each part of the event Goodf separately.

1. Recall that |ρ| = τ , nL = cratek, n = O(dok) and p = 3nL
2τ

.

Let the number of ones in ρ = ρ1. Note that ρ1 is a Binomial random variable

with parameters (τ, p).

Therefore, let µ = E[ρ1] = τp = τ 3nL
2τ

= 3nL
2

Using Chernoff’s bound we

can write,

Pr[ρ1 ≤ 2/3µ] ≤ e
−1/32

2
µ. Therefore,

Pr[ρ1 ≤ nL] ≤ e−
1
9
µ
2

= e−
1
9

3nL
4

= e−
nL
12 ,

which is negligible.

2. We know that, |S+
check| ≤ doncheck, |S+

in(1/δ · do)| ≤ δn ≤ 2δτ and |S+
L→ζ | ≤

dor. Therefore, we can upper bound |S+
check ∪ S

+
in(1/δ · do) ∪ S+

L→ζ | ≤ 3δτ .

We would now like to show that with high probability, |Scheck ∪ Sin(1/δ · do)∪

SL→ζ | ≤ csecnL. We consider a mental experiment, in which the adversary

fixes the tampering function f and only after f is fixed, Rcheck and ρ are cho-

sen. In this case, each position in S+
check ∪ S

+
in(1/δ · do) ∪ S+

L→ζ corresponds

96



to an ~sLi input variable (selected by ρ) with independent probability p. We

therefore observe that the size of |Scheck ∪ Sin(1/δ · do) ∪ SL→ζ | can be up-

per bounded by a Binomial random variable V with parameters (3δτ, p). Let

µ = E[V] = 3δτp = 3τδ 3nL
2τ

= 9
2
nL ·δ Using Chernoff’s bound we can write,

Pr[V ≥ 2µ] ≤ e−
3·nL·δ

2 . Therefore, since δ = csec

9
, we have that Pr[|Scheck ∪

Sin(1/δ · do) ∪ SL→ζ | ≥ 9nL · δ = csec · nL] ≤ e−
csec·nL

6 , which is negligible.

3. Clearly, |SL→R \ Sin(1/δ · do)| ≤ nL · 1/δ · do. Thus, in order to prove this

part of the claim, it is sufficient to show that nR − nL · 1/δ · do ≥ t, where

t = dnR(1− cerrR /4)e. Plugging in our choice of parameters, we get

nR − nL · 1/δ · do ≥ d
2doc

ratek

δcdeccsec
e − dc

ratek · do
δ

e

≥ dnR(1− cdeccsec

2
)e

Since cdeccsec

2
≤ cerrR /4, the inequality holds.

4. We need to show that |SR→L| ≤ do · (r + nL) ≤ nR · csecR .

The first inequality |SR→L| ≤ do · (r+ nL), holds from the definition of output

locality. Recall that csecR ·nR = csecR ·d2docratek
δcdeccsec

e ≥ 2doc
ratek. Thus, by substituting

parameters we get do · (r + nL) = do · (k + cratek) ≤ 2doc
ratek, since crate > 1

and so the second inequality holds as well.

97



Now, for every f ∈ Localdo , we define the distribution Gf over SSk. A draw,

g = (gL, gR), from Gf is defined as follows:

• Choose ζ ← {0, 1}r uniformly at random. Compute ρ := G(ζ).

• If Goodf does not hold, then set g to the constant function 0.

• Otherwise, choose vectors IR ∈ {0, 1}nR , IL ∈ {0, 1}nL uniformly at random.

Imask ∈ {0, 1, ∗}τ such that if i ≤ pos (the location of the nL-th 1 in ρ ) and

ρi = 1, then Imask
i = ∗ and is uniformly independently drawn from {0, 1}

otherwise.

Let IX be Imask where the i-th ∗ is replaced by the ith bit of IL. (id|Imask(IL).)

• Compute ζ̃ according to fζ , given inputs ζ and ILSL→ζ , I
R
SR→ζ .

• Compute ρ̃ := G(ζ̃), where ρ̃ = ρ̃1, . . . , ρ̃τ . Let Ũ = {i ∈ [τ ] : ρ̃i = 1}.

• Choose a random subset Rcheck ⊆ [nR] of size ncheck.

• Let J∗ be the the lexicographically first subset of [nR] such that |J∗| = t and

|SJ∗L→R \ Sin(do/δ)| = 0. Note that such J∗ must exist since Goodf occurs.

• The split-state tampering function g := (gL, gR) ∈ SSk has IL, IR, Imask, ζ

hardcoded into it (as well as Ũ , ζ̃, ρ̃) and is specified as follows:

gL(L):

1. (apply tampering and plain decode on left) Let ~sL := Rec(Scheck ∪

SL→ζ ∪ Sin(do/δ), I
L, L).

98



Let (σL
1 , . . . , σ

L
nL

) := (fX |ζ,Imask,IR(~sL))Ũ . Recall that the above notation

denotes (1) applying the function fX to the input (ζ,XL, IR), where

XL is Imask where the i-th ∗ is replaced by the ith bit of ~sL. (2) out-

putting the positions of fX indexed by Ũ . Compute ((wL
1 , . . . , w

L
nL

), L̃)←

DL(σL
1 , . . . , σ

L
nL

). If the decoding fails, set L̃ :=⊥.

2. (output) Output L̃.

gR(R):

1. (apply tampering and decoding-check on right) Let

~sR = (sR1 , . . . , s
R
nR

) := Rec(SR→L, I
R,R).

Let (σR
1 , . . . , σ

R
nR

) := fR|ζ,IX (~sR). Define ~σ′R := σ′R1 , . . . , σ
′R
nR

as fol-

lows: Set σ′R` := σR
` for ` ∈ [J∗]. Set σ′R` := 0 for ` /∈ [J∗]. Com-

pute ((wR
1 , . . . , w

R
nR

), R̃) ← DR(σ′R1 , . . . , σ
′R
t ). If the decoding fails or

(wR
1 , . . . , w

R
nR

) is not cerrR /4-close to (σR
1 , . . . , σ

R
nR

), then set R̃ :=⊥.

2. (codeword-check on right) For all ` ∈ Rcheck, check that σR
` = wR

` . If

the check fails, set R̃ :=⊥.

3. (output) Output R̃.

• Output g = (gL, gR).

Whenever Rec is run above, we assume that enough positions are set by S

such that there is only a single consistent codeword. If this is not the case, then

additional positions are added to S from IL, IR, respectively.

99



Remark 4.5.2. Note that g = (gL, gR) drawn from the distribution Gf is a split-

state function with probability 1. This is true since if the event Goodf does not hold,

then g is set to the constant function 0 (which is in split-state). If the event Goodf

does hold, then as can be seen by inspection above, gL takes only L as input, gR takes

only R as input.

By the definition of a non-malleable reduction (Definition 4.2.2), in order to

complete the proof of Theorem 4.3.1, we must show that (E,D) have the following

properties:

1. For all x ∈ {0, 1}2k, we have D(E(x)) = x with probability 1.

2. For all f ∈ Localdo ,

∆(D(f(E(x)));Gf (x)) ≤ negl(k),

where Gf is the distribution defined above.

Item (1) above is trivial and can be immediately verified.

In the following, we prove Item (2) above by considering the following sequence

of hybrid arguments for each function f ∈ Localdo (for the intermediate hybrids, we

highlight the step in which they are different from the desired end distributions).

Our reduction will move in three phases to essentially disconnect influence

between the 3 blocks of our encoding (that is dependent on the underlying message,

x.

Firstly, we will argue that with high probability, the pseudorandomness of the

100



PRG is sufficient to obtain that the event Goodf holds even when ρ is chosen via

the PRG (instead of being truly random). This will give us bounds on the “bad”

bits in the output of the encoding of the left input, L.

Next, we will use two hybrids to show that we can safely sample bits in SR→ζ ,

SR→L, SL→ζ , Scheck, and Sin uniformly at random. Given our first claim, the sizes of

all of these sets together will be below the secrecy threshold of the respective Recon-

structible Probablitistic Encodings. As such, the distribution over the randomness

of the encoding procedure will be identical, for any message. Notice that at this

stage we can simulate the entire left hand side, as well as codeword check on the

right. All that we need to handle is influence from ~sL on the rest of ~σR.

So for our final hybrid, we will use a technique from [44] to show that we can

decode from a “clean” portion of ~σR, J∗. This is possible because, by Claim 4.5.2

(and previous hybrids), the only non-uniformly-random bits in ~sL have bounded

input locality. Thus, these bits on the left can only effect a constant fraction of bits

on the right.

To begin, we prove the following claim to bound the set of “bad” bits on the

left side.

Claim 4.5.2. In any given tampering experiment, with tampering function f ∈∈

Localdo, the event Goodf holds with all but negligible probability, even when ρ gen-

erated according to Figure 4.4.

Proof. Suppose not, then there exists some f that violates the above constraints, or

any f will because the PRG will not select enough ones. Notice that f determines

101



Sin(do/δ). (SL→ζ ,Scheck are determined by f and the randomness of E.)

Recall by choice of parameters when ρ is chosen at random, there can be at

most donR+δn+dor ≤ csecτ/3 number of positions in XL in Scheck∪Sin(do/δ)∪SL→ζ .

Since p = 3nL/2τ , we expect csecL · nL/2 number of positions i in XL where (1)

XL
i ∈ Scheck∪Sin(do/δ)∪SL→ζ (is “bad”) and (2) ρi = 1. Therefore, by multiplicative

Chernoff bounds, the probability that more than csecL · nL number of positions i in

XL are such that (1) XL
i is “bad” and (2) ρi = 1 is negligible.

We now argue that these events must also occur with negligible probability

when ρ is pseudorandom. Assume the contrary, then the following is a distinguisher

T that can distinguish truly random strings y from strings ρ := G(ζ) with non-

negligible probability.

T is a circuit that has a string w ∈ {0, 1}τ hardwired into it. w corresponds

to the characteristic vector of Sin(do/δ) ∪ SL→ζ ∪ Scheck.

On input y = y1, . . . , yτ (where either y := prg(ζ) or y is chosen uniformly at

random), T (y) does the following:

1. Set count1 = 0, count2 = 0.

2. For i = 1 to τ :

(a) Run φ(yi) to obtain ρi.

(b) If ρi = 1, set count2 := count2 + 1

(c) If ρi = 1 and wi = 1, set count1 := count1 + 1.

3. If count1 > csecL · nL/3 or count2 < nL, output 0. Otherwise, output 1.

102



T can clearly be implemented by a read-once, Finite State Machine (FSM)

with 2O(log2(τ)) number of states. However, note that by Theorem 3.4.1, prg is a

pseudorandom generator for space log3(k) with parameter 2−k. Thus, existence of

distinguisher T as above, leads to contradiction to the security of the Nisan PRG.

Hybrid H0. This is the original distribution D(f(E(x)))

Hybrid H1. H1 corresponds to the distribution D(f(E′(x))), where E′ is defined as

follows:

E′(x := (L,R)):

1. Given f , find SR→ζ , SR→L, SL→ζ , Scheck, and Sin(do/δ).

2. Compute ~sL = (sL1, . . . , s
L
nL

)← Rec(Scheck ∪ SL→ζ ∪ Sin(do/δ),EL(L), L)

and ~sR = (sR1 , . . . , s
R
nR

)← Rec(SR→L,ER(R),R).

3. Choose ζ ← {0, 1}r uniformly at random. Compute ρ := G(ζ).

4. Otherwise, for j ∈ [nL], let posj denote the j-th position i such that ρi = 1.

5. Let XL ∈ {0, 1}τ be defined in the following way: For j ∈ [nL], XL
posj

:= sLj .

In all other locations, XL
i is set uniformly at random.

6. Output the encoding (ζ,XL, ~sR).

Note that the only difference between E and E′ is that we are reconstructing

codewords before outputting. As the original codewords are already complete, the

output is identical.

103



Claim 4.5.3.

H0 ≡ H1.

The claim follows trivially from the definition of the reconstruction procedure.

Hybrid H2 H2 corresponds to the distribution D(f(E(2)(x))), where E(2) is defined

as follows:

E(2)(x := (L,R)):

1. Given f , find SR→ζ , SR→L, SL→ζ , Scheck, and Sin(do/δ).

2. Choose IL ∈ {0, 1}nL , IR ∈ {0, 1}nR uniformly at random.

3. Compute ~sL = (sL1, . . . , s
L
nL

)← Rec(Scheck ∪ SL→ζ ∪ Sin(do/δ), I
L, L)

and ~sR = (sR1 , . . . , s
R
nR

)← Rec(SR→L, I
R,R).

4. Choose ζ ← {0, 1}r uniformly at random. Compute ρ := G(ζ).

5. For j ∈ [nL], let posj denote the j-th position i such that ρi = 1.

6. Let XL ∈ {0, 1}τ be defined in the following way: For j ∈ [nL], XL
posj

:= sLj .

In all other locations, XL
i is set uniformly at random.

7. Output the encoding (ζ,XL, ~sR).

Claim 4.5.4.

H1 ≡ H2.

By Claim 4.5.2, the sets reconstructed from are below the security thresholds

104



of the respective RPE schemes. Thus by definition, the distribution of E(2)(x) is

identical to that of E(x).

Hybrid H3. H3 corresponds to the distribution D′(f(E(2)(x))), where D′ is defined

as follows:

D(~σ := (ζ̃ , X̃L, ~σR)):

1. (Recover ρ̃) Let ỹ := prg(ζ̃), where ỹ = ỹ1, . . . , ỹτ . For i ∈ [τ ], compute

ρ̃i := φ(ỹi). Let ñum denote the number of ones in ρ̃ := ρ̃1, . . . , ρ̃τ .

2. (Recover x) For j ∈ [ñum], let posj denote the j-th position i such that ρ̃i = 1.

3. Let ~σL ∈ {0, 1}nL be defined in the following way: For j ∈ [min(ñum, nL)],

σL
j := X̃L

posj
.

4. (plain decoding on left) Compute ((wL
1 , . . . , w

L
nL

), L) ← DL(σL
1 , . . . , σ

L
nL

).

If the decoding fails, set L :=⊥.

5. (decoding-check on right) Let t := dnR(1−cerrR /4)eDefine ~σ′R := σ′R1 , . . . , σ
′R
nR

as follows: Set σ′R` := σR
` for ` = 1, . . . , t. Set σ′R` := 0 for ` = t +

1, . . . , nR. Compute ((wR
1 , . . . , w

R
nR

),R) ← DR(σ′R1 , . . . , σ
′R
t ). If the decoding

fails or (wR
1 , . . . , w

R
nR

) is not cerrR /4-close to (σR
1 , . . . , σ

R
tR

), set R :=⊥.

6. (codeword-check on right) Pick a random subset Rcheck ⊂ [nR] of size

ncheck < csecR · nR. For all ` ∈ Rcheck, check that σR
` = wR

` . If the check

fails, set R :=⊥.

7. (output) Output x := (L,R).

105



8. (decoding-check on right) Define ~σ′R := σ′R1 , . . . , σ
′R
nR

as follows: Set σ′R` :=

σR
` for ` ∈ J∗ and σ′R` := 0 for ` /∈ J∗, where J∗ ⊆ [nR] is the lexicograph-

ically first set such that |J∗| = t and |SJ∗L→R ∩ ¯Sin(do/δ)| = 0. Compute

((wR
1 , . . . , w

R
nR

),R) ← DR(σ′R1 , . . . , σ
′R
tR

). If the decoding fails or (wR
1 , . . . , w

R
nR

)

is not cerrR /4-close to (σR
1 , . . . , σ

R
tR

), set R :=⊥.

9. (codeword-check on right) For all ` ∈ Rcheck, check that σR
` = wR

` . If the

check fails, set R :=⊥.

10. (output) Output x := (L,R).

Note that the only difference between D and D′ is that in decoding-check on

right, ~σR is decoded from J∗, instead of the first ncheck positions.

Claim 4.5.5.

H2
s
≈ H3.

We want to show that for every ~σ = (~σL, ~σR) ← f(E(x)), D(~σ) = D′(~σ) with

high probability, over the coins of D,D′. The proof is identical to the proof of Claim

4.3.1.

Hybrid H4. Hybrid H4 is simply the distribution Gf (x), defined previously.

Claim 4.5.6.

H3 ≡ H4.

This claim follows by inspection.

106



Chapter 5: Non-Malleable Codes from Average-Case Hardness:

AC0, Decision Trees, and Streaming Space-Bounded Tam-

pering

5.1 Introduction

In this chapter, we present general frameworks for constructing non-malleable

codes for encoding one and multi-bits against various tampering classes F for which

average case hardness results are known. Our frameworks (one for single-bit and

one for multi-bit) include both a generic construction, which requires that certain

underlying primitives are instantiated in a suitable way, as well as a proof “tem-

plate.” Our frameworks are inspired by the well-known double-encryption paradigm

for constructing CCA2-secure public key encryption schemes [99,102,111]. And al-

though we rely on techniques that are typically used in the cryptographic setting, we

instantiate our framework for particular tampering classes F in both the computa-

tional setting and in the information theoretic one. For the computational setting,

our results rely on computational assumptions, and require a common-reference

string (CRS), which the adversary can see before selecting the tampering function

(as typical in other NMC works using CRS or random oracles). For the information

107



theoretic setting, our results do not require CRS nor any computational assumption

(as the primitives in our framework can be instantiated information theoretically).

Our general theorem statements provide sufficient conditions for achieving NMC

against a class F . Somewhat informally, the main such condition, especially for the

one-bit framework, is that there are sufficiently strong average-case hardness results

known for the class F . In particular, we obtain the following results, where

all the constructions are efficient and, for the multi-bit NMC, the achieved rate is

1/ poly(m) where m is the length of the message being encoded.

• Constructions for AC0 tampering: We obtain computational NMC in

the CRS model against AC0 tampering. Our constructions require public

key encryption schemes with decryption in AC0, which can be constructed

e.g. from exponential hardness of learning parity with noise [26], as well as

non-interactive zero knowledge (NIZK), which can be constructed in the CRS

model from enhanced trapdoor permutations.

Previous results by Chattopadhyay and Li [36] achieve NMC for AC0 with

information theoretic security (with no CRS), but are inefficient, with super-

polynomial rate.

• Constructions for bounded-depth decision trees: We obtain computa-

tional NMC in the CRS model against tampering with bounded-depth decision

trees. Our construction requires the same computational assumptions as the

AC0 construction above. The depth of the decision tree we can handle is mε,

where m is the number of bits being encoded, and ε is any constant.

108



No results for this class were previously known.

• Constructions for streaming, space-bounded tampering: We obtain

unconditional non-malleable codes against streaming, space-bounded tamper-

ing, where the tampering function is represented by a read-once, bounded-

width branching program. Our construction does not require CRS or compu-

tational assumptions.

No NMC results for this standard complexity theoretic class were previously

known. However, this tampering class can be viewed as a subset (or the

intersection) of the space bounded class considered by Faust et al. [70] (who

don’t limit the adversary to be streaming), and the block-wise tampering class

considered by Chandran et al. [31] (who don’t bound the adversary’s space,

but don’t give security in the event that decoding fails). In both cases there

cannot be NMC with the standard notion of security, and so those previous

works must relax the security requirement (and [70] also relies on a random

oracle). In contrast, we achieve standard (in fact, even stronger) notion of

NMC, without random oracle (nor CRS, nor any computational assumption)

for our class.

• Additional Constructions: We also briefly note two additional applications

of our paradigm as proof of concept. Both complexity classes can be repre-

sented circuits of size O(nc) for some fixed c, a class which [73] provide non-

malleable codes for in the CRS model, without computational assumptions.

We include these results here, merely to show the applicability of our frame-

109



work to general correlation bounds; for example strong correlation bounds

against ACC0[p] or TC0 are likely immediately lead to non-malleable codes

against the same classes using our framework.

1. Under the same assumptions invoked in the constructions against AC0

and bounded-depth decision trees we obtain computational NMC in the

CRS model against tampering with small threshold circuits: threshold

circuits with depth d and n1+ε wires.

2. Assuming any public key encryption scheme and zk-SNARKs, we obtain

computational NMC in the CRS model against tampering by Turing

Machines running in time O(nk), where k is a constant. However, we

should note that these codes have weak tampering guarantees: tampering

experiments with respect to different messages are only polynomially close

to one another.

5.1.1 Technical Overview

We begin by describing our computational NMC construction (in the CRS

model) for one-bit messages secure against tampering in AC0, which will give the

starting point intuition for our results. We then show how the AC0 construction can

be modified to derive a general template for constructing NMC for one-bit messages

secure against a wider range of tampering classes F , and discuss various classes

F for which the template can be instantiated. We then discuss how the template

can be extended to achieve NMC for multi-bit messages secure against a wide range

110



of tampering classes F . Finally, we discuss some particular instantiations of our

multi-bit template, including our constructions of computational NMC (in the CRS

model) against tampering in AC0 and against bounded-depth decision trees, as well

as our unconditional NMC (with no CRS) against streaming tampering adversaries

with bounded memory.

The starting point: Computational NMC against AC0 for one-bit messages. The

idea is to use a very similar paradigm to the Naor and Yung paradigm for CCA1

encryption [102] (later extended to achieve CCA2 [99, 111]), using double encryp-

tion with simulation-sound NIZK. The main observation is that using the tableaua

method, we can convert any NIZK proof system with polynomial verification into a

NIZK proof system with a verifier in AC0.

We also need a PKE scheme with perfect correctness and decryption in AC0(this

can be constructed using the transformation of Dwork et al. [63] on top of the scheme

of Bogdanov and Lee [26]).

We now sketch (a slightly simplified version of) the NM encoding scheme:

The CRS will contain a public key pk for an encryption scheme

E = (Gen,Encrypt,Decrypt) as above, and a CRS for a NIZK. For b ∈ {0, 1}, Let Db

denote the distribution over x1, . . . , xn ∈ {0, 1}n such that x1, . . . , xn are uniform

random, conditioned on the parity of the bits being equal to b.

To encode a bit b:

1. Randomly choose bits x1, . . . , xn from Db

2. Compute c1 ← Encryptpk(x1), . . . , cn ← Encryptpk(xn) and c← Encryptpk(b).

111



3. Compute n NIZK proofs π1, . . . , πn that c1, . . . , cn are encryptions of bits

x1, . . . , xn.

4. Compute a NIZK proof π that there exists a bit b′ such that the plaintexts

underlying c1, . . . , cn are in the support of Db′ and b′ is the plaintext underlying

c.

5. Compute tableaus T1, . . . , Tn of the computation of the NIZK verifier on

π1, . . . , πn.

6. Compute a tableau T of the computation of the NIZK verifier on proof π.

7. Output (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)).

To decode (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)):

1. Check the tableaus T1, . . . , Tn, T .

2. If they all accept, output the parity of x1, . . . , xn.

In the proof we will switch from an honest encoding of b to a simulated encod-

ing and from an honest decoding algorithm to a simulated decoding algorithm. At

each point we will show that the decodings of tampered encodings stay the same.

Moreover, if, in the final hybrid, decodings of tampered encodings depend on b, we

will use this fact to build a circuit in AC0, whose output is correlated with the parity

of its input, reaching a contradiction. In more detail, in the first hybrid we switch

to simulated proofs. Then we switch c1, . . . , cn, c, in the ”challenge” encoding to

encryptions of garbage c′1, . . . , c
′
n, c
′, and next we switch to an alternative decoding

112



algorithm in AC0 , which requires the trapdoor sk (corresponding to the public key

pk which is contained in the CRS).

Alternative Decoding Algorithm:

To decode (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)):

1. check the tableaus T1, . . . , Tn, T

2. If it accepts, output the decryption of c using trapdoor sk.

In the final hybrid, the simulator will not know the parity of x1, . . . , xn in

the challenge encoding and will have received precomputed T 0
1 , T

1
1 , . . . , T

0
n , T

1
n , T as

non-uniform advice, where T is a simulated proof of the statement “the plaintexts

underlying c′1, . . . , c
′
n and the plaintext underlying c′ have the same parity” and for

i ∈ [n], β ∈ {0, 1}, T βi is a simulated proof of the statement “c′i is an encryption of

the bit β”.

We will argue by contradiction that if the decoding of the tampered encoding

is correlated with the parity of x1, . . . , xn then we can create a circuit whose out-

put is correlated with the parity of its input in AC0 . Specifically, the AC0 circuit

will have the crs, sk, precomputed c′1, . . . , c
′
n, c
′, T, T 0

1 , T
1
1 , . . . , T

0
n , T

1
n and adversarial

tampering function f hardwired in it. It will take x1, . . . , xn as input. It will com-

pute the simulated encoding in AC0 by selecting the correct tableaus: T x1
1 , . . . , T xnn

according to the corresponding input bit. It will then apply the adversarial tamper-

ing function (in AC0 ), perform the simulated decoding (in AC0 ) and output a guess

for the parity of x1, ..xn based on the result of the decoding. Clearly, if the decoding

in the final hybrid is correlated with parity, then we have constructed a distribution

113



over AC0 circuits such that w.h.p. over choice of circuit from the distribution, the

output of the circuit is correlated with the parity of its input. This contradicts

known results on the hardness of computing parity in AC0 .

A general template for one-bit NMC. The above argument can be used to de-

rive a template for the construction/security proof of NMC against more general

classes F . The idea is to derive a high-level sequence of hybrid distributions and

corresponding minimal requirements for proving the indistinguishability of consec-

utive hybrids. We can now instantiate the tampering class F , “hard distributions”

(D0,D1), encryption scheme and NIZK proof in any way that satisfies these minimal

requirements. Note that each hybrid distribution is a distribution over the output

of the tampering experiment. Therefore, public key encryption and NIZK against

arbitrary PPT adversaries may be too strong of a requirement. Indeed, it is by

analyzing the exact security requirements needed to go from one hybrid to the other

that (looking ahead) we are able to remove the CRS and all computational assump-

tions from our construction of NMC against streaming adversaries with bounded

memory. In addition, we can also use our template to obtain constructions (in the

CRS model and under computational assumptions) against other tampering classes

F .

Extending the template to multi-bit NMC. The construction for AC0 given above

and the general template do not immediately extend to multi-bit messages. In

particular, encoding m bits by applying the parity-based construction bit-by-bit

114



fails, even if we use the final proof T to “wrap together” the encodings of multiple

individual bits. The problem is that the proof strategy is to entirely decode the

tampered codeword and decide, based on the results, whether to output 0 or 1 as

the guess for the parity of some x1, . . . , xn. But if we encode many bits, b1, . . . , bm,

then the adversary could maul in such a way that the tampered codeword decodes

to b′1, . . . , b
′
m where each of b′i is individually independent of the parity of the cor-

responding xi1, . . . , x
i
n, but taken as a whole, the entire output may be correlated.

As a simple example, the attacker might maul the codeword so that it decodes to

b′1, . . . , b
′
m that are uniform subject to satisfying b′1⊕· · ·⊕b′m = b1⊕· · ·⊕bm. Clearly,

there is a correlation here between the input and output, but we cannot detect this

correlation in AC0, since detecting the correlation itself seems to require computing

parity!

In the case of parity (and the class AC0 ), the above issue can be solved by

setting m sufficiently small (but still polynomial) compared to n. We discuss more

details about the special case of parity below. However, we would first like to explain

how the general template must be modified for the multi-bit case, given the above

counterexample. Specifically, note that the difficulty above comes into play only

in the final hybrid. Thus, we only need to modify the final hybrid slightly and

require that for any Boolean function F over m variables, it must be the case that

the composition of F with the simulated decoding algorithm is in a computational

class that still cannot distinguish between draws x1, . . . , xn from D0 or D1. While the

above seems like a strong requirement, we show that by setting m much smaller than

n, we can still obtain meaningful results for classes such as AC0 and bounded-depth

115



decision trees.

Multi-bit NMC against AC0. If we want to encode m bits, for each of the underlying

encodings i ∈ [m], we will use n :≈ m3 bits: ~xi = xi1, . . . , x
i
n. To see why this works,

we set up a Hybrid argument, where in each step we will fix all the underlying

encodings except for a single one: ~x = x1, . . . , xn, which we will switch from having

parity 0 to having parity 1. Therefore, we can view C—the function computing the

output of the tampering experiment in this hybrid—to be a function of variables

~x = x1, . . . , xn only (everything else is constant and “hardwired”). For i ∈ [m], let

Ci denote the i-th output bit of C. We use PAR(~x) to denote the parity of ~x.

Now, for any Boolean function F overm variables, consider F (C1(~x), C2(~x), . . . ,

Cm(~x)), where we are simply taking an arbitrary Boolean function F of the decod-

ings of the individual bits. Our goal is to show that F (C1(~x), C2(~x), . . . , Cm(~x)) is

not correlated with parity of ~x. Consider the Fourier representation of F (y1, . . . , ym).

This is a linear combination of parities of the input variables y1, . . . , ym, denoted

χS(y1, . . . , ym), for all subsets S ∈ {0, 1}m. (See here [56]).

On the other hand, F (C1(~x), C2(~x), . . . , Cm(~x)) is a Boolean function over

n ≈ m3 variables (i.e. a linear combination over parities of the input variables

x1, . . . , xn, denoted χS′(x1, . . . , xn), for all subsets S ′ ∈ {0, 1}n). A representation of

F (C1(~x), C2(~x), . . . , Cm(~x)) can be obtained by taking each term F̂ (S)χS(y1, . . . , ym)

in the Fourier representation of F and composing with C1, . . . , Cm to obtain the term

F̂ (S)χS(C1(~x), C2(~x), . . . , Cm(~x)). Since, by well-known properties of the Fourier

transform, |F̂ (S)| ≤ 1, we can get an upper bound on the correlation of

116



F (C1(~x), C2(~x), . . . , Cm(~x)) and PAR(~x), by summing the correlations of each func-

tion χS(C1(~x), C2(~x), . . . ,

Cm(~x)) and PAR(~x). Recall that the correlation of a Boolean function g with PAR(~x)

is by definition, exactly the Fourier coefficient of g corresponding to parity function

χ[n]. Thus, to prove that the correlation of χS(C1(~x), C2(~x), . . . , Cm(~x)) and PAR(~x)

is low, we use the fact that χS(C1(~x), C2(~x), . . . , Cm(~x)) can be computed by a (rel-

atively) low depth circuit. To see this, note that each Ci is in AC0 and so has low

depth, moreover, since S has size at most m, we only need to compute parity over

m variables, which can be done in relatively low depth when m � n. We now

combine the above with Fourier concentration bounds for low-depth circuits [117].

Ultimately, we prove that for each S, the correlation of χS(C1(~x), C2(~x), . . . , Cm(~x))

and PAR(~x), is less than 1/2m(1+δ), where δ is a constant between 0 and 1. This

means that we can afford to sum over all 2m terms in the Fourier representation of

F and still obtain negligible correlation.

Multi-bit NMC against bounded-depth decision trees. Our result above extends to

bounded-depth decision trees by noting that (1) If we apply a random restriction

(with appropriate parameters) to input x1, . . . , xn then, w.h.p. the AC0 circuit used

to compute the output of the tampering experiment collapses to a bounded-depth

decision tree of depth mε − 1; (2) on the other hand, again choosing parameters

of the random restriction appropriately, PAR(x1, . . . , xn) collapses to parity over at

least m1+ε variables; (3) any Boolean function over m variables can be computed by

a decision tree of depth m; (4) the composition of a depth-mε − 1 decision tree and

117



depth-m decision tree yields a decision tree of depth at most (mε − 1)(m) < m1+ε.

Finally, we obtain our result by noting that decision trees of depth less than m1+ε

are uncorrelated with parity over m1+ε variables.

Unconditional NMC (with no CRS) against bounded, streaming tampering. Re-

cently, Raz [110] proved that learning parity is hard for bounded, streaming adver-

saries. In particular, this gives rise to hard distributions Db, b ∈ {0, 1} such that

no bounded, streaming adversary can distinguish between the two. Db corresponds

to choosing a random parity χS, outputting random examples (~x, χS(~x)) and then

outputting ~x∗ such that χS(~x∗) is equal to b. The above also yields an uncondi-

tional, “parity-based” encryption scheme against bounded, streaming adversaries.

Note, however, that in order to decrypt (without knowledge of the secret key), we

require space beyond the allowed bound of the adversary. Given the above, we

use Db, b ∈ {0, 1} as the hard distributions in our construction and use the parity-

based encryption scheme as the “public key encryption scheme” in our construction.

Thus, we get rid of the public key in the CRS (and the computational assumptions

associated with the public key encryption scheme).

To see why this works, note that in the hybrid where we require semantic secu-

rity of the encryption scheme, the decryption algorithm is not needed for decoding

(at this point the honest decoding algorithm is still used). So essentially we can

set the parameters for the encryption scheme such that the output of the Tamper-

ing experiment in that hybrid (which outputs the decoded value based on whether

x1, .., xn is in the support of D0 or D1) can be computed in a complexity class that is

118



too weak to run the decryption algorithm. On the other hand, we must also consider

the later hybrid where we show that the output of the Tampering experiment can be

computed in a complexity class that is too weak to distinguish D0 from D1. In this

hybrid, we do use the alternate decoding procedure. But now it seems that we need

decryption to be contained in a complexity class that is too weak to decide whether

x1, . . . , xn is in the support of D0 or D1, while previously we required exactly the

opposite! The key insight is that since we are in the streaming model and since (1)

the simulated ciphertexts (c′1, . . . , c
′
n, c
′) in this hybrid contain no information about

x1, . . . , xn and (2) the simulated ciphertexts precede x1, . . . , xn, the output of the

tampering function in blocks containing ciphertexts does not depend on x1, . . . , xn

at all. So the decryption of the tampered ciphertexts can be given as non-uniform

advice, instead of being computed on the fly, and we avoid contradiction.

In order to get rid of the CRS and computational assumption for the NIZK, we

carefully leverage some additional properties of the NMC setting and the streaming

model. First, we consider cut-and-choose based NIZK’s (based on MPC-in-the-

head), where the Verifier is randomized and randomly checks certain locations or

“slots” in the proof to ensure soundness. Specifically, given a Circuit-SAT circuit

C and witness w, the prover will secret share w := w1 ⊕ · · · ⊕ w` and run an MPC

protocol among ` parties (for constant `), where Party i has input wi and the parties

are computing the output of C(w1⊕ · · · ⊕w`). The prover will then “encrypt” each

view of each party in the MPC protocol, using the parity-based encryption scheme

described above and output this as the proof. This is then repeated λ times (where

λ is security parameter). The Verifier will then randomly select two parties from

119



each of the λ sets, decrypt the views and check that the views correspond to the

output of 1 and are consistent internally and with each other.

We next note that in our setting, the NIZK simulator can actually know the

randomness used by the Verifier. This is because the simulated codeword and the de-

coding are done by the same party in the NMC security experiment. Therefore, the

level of “zero-knowledge” needed from the simulation of the NIZK is in-between hon-

est verifier and malicious. This is because the adversary can still use the tampering

function to “leak” information from the unchecked slots of the proof to the checked

slots, while a completely honest verifier would learn absolutely nothing about the

unchecked slots. In order to switch from a real proof to a simulated proof, we fill in

unchecked slots one-by-one with parity-based encryptions of garbage. We must rely

on the fact that a bounded, streaming adversary cannot distinguish real encryp-

tions from garbage encryptions in order to argue security. Specifically, since we are

in the bounded streaming model, we can argue that the adversary can only “leak”

a small amount of information from the unchecked slots to the checked slots. This

means that the entire output of the experiment can be simulated by a bounded,

streaming adversary, which in turn means that the output of the experiment must

be indistinguishable when real, unchecked encodings are replaced with encodings

of garbage. Arguing simulation soundness, requires a similar argument, but more

slots are added to the proof and slots in an honest proof are only filled if the corre-

sponding position in the bit-string corresponding to the statement to be proven is

set to 1. We encode the statement in such a way that if the statement changes, the

adversary must switch an unfilled slot to a filled slot. Intuitively, since the bounded

120



streaming attacker can only carry over a small amount of information from previous

slots, this will be as difficult as constructing a new proof from scratch.

5.2 Definitions

In this section we will provide some more definitions and background required

for our constructions and results presented in chapter 5.

5.2.1 Incompressible Functions

Definition 5.2.1. A function ψ : {0, 1}n → {0, 1} is ε-incompressible by function

f : {0, 1}n → {0, 1}` if for every function h : {0, 1}` → {0, 1}, for uniform random

x ∈ {0, 1}n, Pr [h(f(x)) = ψ(x)] ≤ 1
2

+ ε.

We say, ψ is (`, ε)-incompressible by class F , if for every f : {0, 1}n →

{0, 1}` ∈ F , ψ is ε-incompressible by f .

Following theorem was proved by [62]

Theorem 5.2.1 (Parity is incompressible [62]). Let 0 < δ < 1 be a constant. Parity

is (nδ, 2−Ω(n
1−δ
d )) - incompressible by circuits of depth d ≥ 2 of size 2O(n

1−δ
d ).

5.2.2 Proof Systems for Circuit SAT

We now consider proof of knowledge systems for Circuit SAT, where the prover

and/or verifier have limited computational resources.

Definition 5.2.2 (Proof of Knowledge Systems for Circuit SAT with

Computationally Bounded Prover/Verifier). For a circuit C, let L(C) denote the

121



set of strings x such that there exists a witness w such that C(x,w) = 1. For a

class C, let L(C) denote the set {L(C) | C ∈ C}. Π = (P,V) is a Circuit SAT proof

system for the class L(C) with prover complexity D and verifier complexity E if the

following are true:

• For all C ∈ C and all valid inputs (x,w) such that C(x,w) = 1, P(C, ·, ·) can

be computed in complexity class D.

• For all C ∈ C, V(C, ·, ·) can be computed in complexity class E.

• Completeness: For all C ∈ C and all (x,w) such that C(x,w) = 1, we have

V(C, x,P(C, x, w)) = 1

• Extractability: For all (C, x, π), if Prr[V(C, x, π; r) = 1] is non-negligible, then

given (C, x, π) it is possible to efficiently extract w such that C(x,w) = 1.

We construct Circuit SAT proof systems for the class L(P/poly) with verifier

complexity AC0 in this section. We also construct Circuit SAT proof systems for

the class. L(P/poly) with streaming verifier

5.2.2.1 Circuit SAT proof system for the class L(C) with prover com-

plexity D and verifier complexity AC0 .

• P(C, x, w) the prover simply outputs a tableau T of the computation C(x,w) =

1.

• V(C, x, T ) the verifier computes an AND of all the local checks.

122



Completeness clearly holds. To show extractability, note that the inputs to

the tableau T correspond to x,w. Thus if tableau T accepts then the extractor can

simply output those inputs corresponding to w.

Given the above, we have the following theorem:

Theorem 5.2.2. Assuming the existence of same-string, weak one-time simulation

sound NIZK with deterministic verifier, there exists same-string, weak one-time

simulation sound NIZK with verifier in AC0 .

5.2.2.2 Circuit SAT proof system for the class L(C) with prover com-

plexity D and streaming verifier.

• P(C, x, w) the prover computes a tableau T of the computation C(x,w) = 1.

Let d denote the depth of the tableau T . For each level i ∈ [d], the i-th level,

Ti, consisting of ` gates is the following ordered tuple:

[(Gj
i , in

j,a
i , in

j,b
i , out

j
i )]j∈`,

where Gj
i denotes the j-th gate at that level, (inj,ai , in

j,b
i ) denote the j-th pair

of input wires at that level and outji denotes the j-th output wire at that level.

For simplicity of notation, we assume that the input wires to the first level,

T1 consist only of x, and that wires corresponding to the input w will occur

as outputs of level T1. The P outputs (T1, . . . , Td).

• V(C, x, T1, . . . , Td) the verifier chooses k at random and computes h0 = hk(x),

123



where h is a universal hash function. For each level i ∈ [d], the verifier then

does the following:

– Parse Ti = [(Gj
i , in

j,a
i , in

j,b
i , out

j
i )]j∈`.

– For j ∈ [`], (1) Check consistency of the gate’s computation, (2) Add

(inj,ai , in
j,b
i ) to the streaming computation of the hash hk([(in

j,a
i , in

j,b
i )]j∈`),

(3) Add outji to the streaming computation of the hash hk([out
j
i ]j∈`).

– Check that hk([(in
j,a
i , in

j,b
i )]j∈`) = hi−1.

– Set hi := hk([out
j
i ]j∈`).

– If any of the above checks fail, abort and output 0.

If all checks succeed, the verifier outputs 1.

Completeness clearly holds. To show extractability, note that the only way

the inputs/outputs of level T1 do not correspond to x,w such that C(x,w) = 1 and

yet all checks pass is if the proof ouputted by the prover consists of consecutive lev-

els Ti, Ti+1 such that hk([(in
j,a
i+1, in

j,b
i+1)]j∈`) = hk([out

j
i ]j∈2`) but [(inj,ai+1, in

j,b
i+1)]j∈` 6=

[outji ]j∈2`. The probability over choice of k that this occurs for a single pair of con-

secutive levels is 1/22`, since h is universal. So the probability it occurs for any pair

of consecutive levels is at most d/22`, which is negligible.

Theorem 5.2.3 ( [110]). For any c < 1
20

, there exists α > 0, such that the the

following holds: Let x
u← {0, 1}n. Let m ≤ 2αn. Let A be an algorithm that is

given as input a stream of samples, (a1, b1), . . . , (am, bm), where each at is uniformly

124



distributed over {0, 1}n and for every t, bt = at · x. Assume A uses at most cn2

memory bits and outputs a string x̃ ∈ {0, 1}n. Then, Pr[x̃ = x] ≤ O(2−αn).

Lemma 5.2.1 (Inner Product is a strong extractor [108]). Let X, Y be random

variables over {0, 1}n such that H∞(X) ≥ kX and H∞(Y ) ≥ kY . Let u ≤ kX

d(〈X, Y 〉|X : U) ≤ 2(2u−kX + 2(n+1−u−kY )/2),

where d(X|Y ) :
∑

y Pr[Y = y]∆(X|Y = y;U) for U the uniform distribution (inde-

pendent of X).

5.2.3 Computational Model for Streaming Adversaries

In this section we discuss the computational model used for analysis of the

streaming adversaries. This model is similar to the one used in [110].

We first discuss streaming adversaries in general, and then discuss the specific

case of streaming adversaries for learning parity and streaming tampering functions..

General Streaming Adversaries. The input is represented as a stream S1, . . . , S`,

where for i ∈ [`], each Si ∈ {0, 1}B, where B is the block length. We model the

adversary by a branching program. A branching program of length ` and width

w, is a directed acyclic graph with the vertices arranged in ` + 1 layers such that

no layer contains more than w vertices. Intuitively, each layer represents a time

step of computation whereas, each vertex in the graph corresponds to the potential

memory state learned by the adversary. The first layer (layer 0) contains a single

125



vertex, called the start vertex, which represents the input. A vertex is called leaf

if it has out-degree 0, and represents the output (the learned value of x) of the

program. Every non-leaf vertex in the program has exactly 2n+1 outgoing edges,

labeled by elements S ∈ {0, 1}B, with exactly one edge labeled by each such S, and

all the edges from layer j − 1 going to vertices in layer j. Intuitively, these edges

represent the computation on reading Si as streaming input. The stream S1, . . . , S`,

therefore, define a computation-path in the branching program.

We discuss the streaming branching program adversaries, and streaming ad-

versaries for learning parity next.

Definition 5.2.3 (Streaming Branching Program Adversaries). A branching pro-

gram of length m and width w is a directed acyclic graph with vertices arranged in

m + 1 layers containing at most w vertices each. In the first layer, that we call

layer 0, there is only one vertex, called the start vertex. A vertex of out-degree 0

is called a leaf. All the vertices in the layer m are leaves. Every non-leaf vertex in

the program has exactly 2n+1 outgoing edges, labeled by elements S ∈ {0, 1}B, with

exactly one edge labeled by each such S, and all the edges from layer j − 1 going to

vertices in layer j.

Computation Path: The stream S1, . . . , S` ∈ {0, 1}B that are given as input,

define a computation-path in the branching program, by starting form the start vertex

and following at step i the edge labeled by Si, until reaching a leaf.

Streaming Adversaries for Learning Parity. Recall, that in the Parity Learning set-

ting, the adversary aims to learn a uniform random string x ∈ {0, 1}n, from a stream

126



of samples, (a1, b1), (a2, b2), . . . , (am, bm), where each ai is uniformly distributed over

{0, 1}n and for every i, bi = ai · x.

Definition 5.2.4 (Streaming Branching Program for Parity Learning). [110] A

branching program of length m and width w, for parity learning is a directed acyclic

graph with vertices arranged in m+ 1 layers containing at most w vertices each. In

the first layer, that we call layer 0, there is only one vertex, called the start vertex.

A vertex of out-degree 0 is called a leaf. All the vertices in the layer m are leaves.

Every non-leaf vertex in the program has exactly 2n+1 outgoing edges, labeled by

elements (a, b) ∈ {0, 1}n × {0, 1}, with exactly one edge labeled by each such (a, b),

and all the edges from layer j − 1 going to vertices in layer j.

Computation Path: The samples (a1, b1), (a2, b2), . . . , (am, bm) ∈ {0, 1}n ×

{0, 1} that are given as input, define a computation-path in the branching program,

by starting form the start vertex and following at step i the edge labeled by (ai, bi),

until reaching a leaf.

Streaming Tampering Functions. The input is represented as a stream S1, . . . , S`,

where for i ∈ [`], each Si ∈ {0, 1}B, where B is the block length. We model the

adversary by a branching program, which reads in a block of length B and writes

out a block of length B in each step. A branching program of length ` and width

w, is a directed acyclic graph with the vertices arranged in ` + 1 layers such that

no layer contains more than w vertices. Intuitively, each layer represents a time

step of computation whereas, each vertex in the graph corresponds to the potential

memory state learned by the adversary. The first layer (layer 0) contains a single

127



vertex, called the start vertex, which represents the input. A vertex is called leaf if it

has out-degree 0, and represents the output (the learned value of x) of the program.

Every non-leaf vertex in the program has exactly 2n+1 outgoing edges, labeled by

pairs of elements Sin, Sout ∈ {0, 1}B, with exactly one edge labeled by each such Sin,

and all the edges from layer j−1 going to vertices in layer j. Intuitively, these edges

represent the computation on reading Si as streaming input, as well as the output

in that time step. The stream S1, . . . , S`, therefore, define a computation-path in

the branching program.

Definition 5.2.5 (Streaming Tampering Functions). A branching program of length

m and width w is a directed acyclic graph with vertices arranged in m + 1 layers

containing at most w vertices each. In the first layer, that we call layer 0, there

is only one vertex, called the start vertex. A vertex of out-degree 0 is called a leaf.

All the vertices in the layer m are leaves. Every non-leaf vertex in the program has

exactly 2n+1 outgoing edges, labeled by pairs of elements Sin, Sout ∈ {0, 1}B, with

exactly one edge labeled by each such Sin, and all the edges from layer j− 1 going to

vertices in layer j.

Computation Path: The stream S1, . . . , S` ∈ {0, 1}B that are given as input,

define a computation-path in the branching program, by starting form the start vertex

and following at step i the edge labeled by Si, until reaching a leaf.

In this work we consider the Polynomial-time uniform family of branching

programs which can be informally defined as follows:

A family of branching programs of size s (number of nodes in the branching

128



program), denoted by BP = {BPs : s ∈ N} is Polynomial-time uniform if there

exists a deterministic Turing machine M , such that

• M runs in polynomial time (i.e. poly(s)), and

• For all s ∈ N, M outputs the description (nodes and corresponding labels) of

BPs on input 1s

5.3 Generic Construction for One-Bit Messages

In this section we present the generic construction for encoding a single bit

messages.

129



Let E = (Gen,Encrypt,Decrypt) be a public key encryption scheme with perfect correctness
(see Definition 3.4.3). Let ΠNI = (CRSGenNI,PNI,VNI, SimNI) be a non-interactive simulat-
able proof system with soundness against adversaries A ∈ G (see Definition 3.5.4). Note
that in the CRS model, we implicitly assume that all algorithms take the CRS as input,
and for simplicity of notation, sometimes do not list the CRS as an explicit input.
CRSGen(1n):

1. Choose (pk, sk)← Gen(1n).

2. Choose [(crsNIi , τ
i
sim)]i∈{0,...n} ← CRSGenNI(1n). Let −→crsNI := [crsNIi ]i∈{0,...n} and let

−→τ sim := [τ isim]i∈{0,...n} and output crs := (pk,−→crsNI).

Languages. We define the following languages:

• Lβi : For i ∈ [n], β ∈ {0, 1}, s := (~̂k,~c, c) ∈ Lβi iff the i-th ciphertext ci := ki ⊕ β
(where ~c = c1, . . . , cn) and the i-th encryption k̂i (where ~̂k = k̂1, . . . , k̂n+1) is an
encryption of ki under pk (where pk is hardwired into the language).

• L: s := (~̂k,~c, c) ∈ L iff (x1, . . . , xn) is in the support of Db where:

1. For i ∈ [n], xi := ci ⊕ ki, and b := c⊕ kn+1

2. ~̂k is an encryption of k1, . . . , kn+1 under pk (where pk is hardwired into the
language).

E(crs, b):

1. Sample ~x← Db, where ~x = x1, . . . , xn.

2. Choose an n+1-bit key ~k = k1, . . . , kn, k uniformly at random. For i ∈ [n], compute

k̂i ← Encrypt(pk, ki) and compute k̂n+1 ← Encrypt(pk, k). Let ~̂k := k̂1, . . . , k̂n+1.

3. Compute c1 := k1 ⊕ x1, . . . , cn := kn ⊕ xn. Let ~c := c1, . . . , cn. Also, compute
c := b⊕ k.

4. For i ∈ [n], compute a non-interactive, simulatable proof Ti proving s := (~̂k,~c, c) ∈
Lxii relative to crsNIi .

5. Compute a non-interactive, simulatable proof T proving s := (~̂k,~c, c) ∈ L relative
to crsNI0 .

6. Output CW := (~̂k, c1, . . . , cn, c, T, x1, T1, .., xn, Tn).

D(crs,CW):

1. Parse CW := (~̂k, c1, . . . , cn, c, T, x1, T1, .., xn, Tn)

2. Check that VNI outputs 1 on all proofs T1, .., Tn, T , relative to the corresponding
CRS. If yes, output b such that x1...xn is in the support of Db. If not, output 0.

Figure 5.1: Non-malleable code (CRSGen,E,D), secure against F tampering.

130



E1(crs,−→τ sim, r, b):

1. Sample ~x← Db, where ~x = x1, . . . , xn.

2. Choose an n + 1-bit key ~k = k1, . . . , kn, k uniformly at random. For i ∈ [n],

compute k̂i ← Encrypt(pk, ki) and compute k̂n+1 ← Encrypt(pk, k). Let ~̂k :=
k̂1, . . . , k̂n+1.

3. Compute c1 := k1 ⊕ x1, . . . , cn := kn ⊕ xn. Let ~c := c1, . . . , cn.

4. Compute c := b⊕ k.

5. For i ∈ [n], use τ isim and r to simulate a non-interactive proof T ′i proving

(~̂k,~c, c) ∈ Lxii , relative to crsNIi .

6. Use τ0
sim and r to simulate a non-interactive proof T ′ proving (~̂k,~c, c) ∈ L,

relative to crsNI0 .

7. Output CW := (~̂k, c1, . . . , cn, c, T
′, x1, T

′
1, .., xn, T

′
n).

Figure 5.2: Encoding algorithm with simulated proofs.

E2(crs,−→τ sim, r, b):

1. Sample ~x← Db, where ~x = x1, . . . , xn.

2. Choose c′1, . . . , c
′
n uniformly at random. Let ~c′ := c′1, . . . , c

′
n.

3. Choose c′ uniformly at random.

4. Set ~k′ = c′1, . . . , c
′
n, c
′. For i ∈ [n], compute k̂′i ← Encrypt(pk, k′i) and compute

k̂′n+1 ← Encrypt(pk, k′).

Let ~̂k′ := k̂′1, . . . , k̂
′
n+1.

5. For i ∈ [n], use τ isim and r to simulate a non-interactive proof T ′i proving

( ~̂k′, ~c′, c) ∈ Lxii , relative to crsNIi .

6. Use τ0
sim and r to simulate a non-interactive proof T ′ proving ( ~̂k′, ~c′, c) ∈ L,

relative to crsNI0 .

7. Output CW := (~̂k′, c′1, . . . , c
′
n, c
′, T ′, x1, T

′
1, .., xn, T

′
n).

Figure 5.3: Encoding algorithm with simulated proofs and encryptions.

131



Ext(crs, sk,CW):

1. Parse CW := (~̂k, c1, . . . , cn, c, T, x1, T1, .., xn, Tn),

2. Output Decrypt(sk, k̂n+1).

Figure 5.4: Extracting procedure Ext.

D′(crs, k,CW):

1. Parse CW := (~̂k, c1, . . . , cn, c, T, x1, T1, .., xn, Tn),

2. Check that VNI outputs 1 on all proofs T1, .., Tn, T , relative to the corresponding
CRS,

3. If not, output 0. Otherwise, output b := k ⊕ c.

Figure 5.5: Alternate decoding procedure D′, given additional extracted key
k as input.

g(crs,CW,CW∗, r):

1. Parse CW = (~̂k,~c, c, T, x1, T1, .., xn, Tn), CW∗ = (~̂k∗,~c∗, c∗, T ∗, x∗1, T
∗
1 , .., x

∗
n, T

∗
n).

2. If (1) VNI outputs 1 on all proofs T ∗, T ∗1 , .., T
∗
n , relative to the corresponding

CRS; and (2) (~̂k,~c, c) = (~̂k∗,~c∗, c∗), then output 1. Otherwise output 0.

Figure 5.6: The predicate g(crs,CW,CW∗, r).

132



Let Ψ(p, c, x, y, r, z) be defined as a function that takes as input a predicate p,

and variables c, x, y, r, z. If p(c, x, y, r) = 1, then Ψ outputs 0. Otherwise, Ψ outputs

z.

Theorem 5.3.1. Let (E,D), E1, E2, Ext, D′ and g be as defined in Figures 5.1, 5.2,

5.3, 5.4, 5.5 and 5.6. Let F be a computational class. If, for every adversary A ∈ G

outputting tampering functions f ∈ F , all of the following hold:

Simulation of proofs.

1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈

Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r0, r1 are sampled uniformly

at random,

CW0 ← E(crs, 0) and CW1 ← E1(crs,−→τ sim, r1, 0).

Simulation of Encryptions.

1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈

Ψ(g, crs,CW2, f(CW2), r2,D(crs, f(CW2); r2)),

133



where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly

at random,

CW1 ← E1(crs,−→τ sim, r1, 0) and CW2 ← E2(crs,−→τ sim, r2, 0).

Simulation Soundness.

Pr

D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)

∧g(crs,CW2, f(CW2), r2) = 0

 ≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly at

random and

CW2 ← E2(crs,−→τ sim, r, 0).

Hardness of Db relative to Alternate Decoding.

1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. D′(crs,Ext(sk, f(CW2)), f(CW2); r2) ≈ D′(crs,Ext(sk, f(CW3)), f(CW3); r3),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly

at random,

CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ← E2(crs,−→τ sim, r3, 1).

Then the construction presented in Figure 5.1 is a non-malleable code for class

F against adversaries A ∈ G.

134



5.3.1 Proof of Theorem 5.3.1

In this subsection we prove Theorem 5.3.1.

We take g to be the predicate that is used in the MediumTamperΠ,FA,m,g(n) tam-

pering experiment. We must argue that for every m ∈ {0, 1} and every attacker

A ∈ G the output of the experiment ExptΠ,FA,m,g(n) is 1 with at most negligible prob-

ability.

Assume towards contradiction that for some A ∈ G the output of the experi-

ment is 1 with non-negligible probability. Then this means that the probability in the

last line of experiment ExptΠ,FA,m,g(n) that g(crs,CW,CW∗, r) = 1∧D(crs,CW∗; r) 6= m

is non-negligible. Parse CW = (~̂k,~c, c, T, x1, T1, .., xn, Tn), and

CW∗ = (~̂k∗,~c∗, c∗, T ∗, x∗1, T
∗
1 , .., x

∗
n, T

∗
n).

Recall that D(crs,CW; r) = m. Thus, if the above event occurs, it means that

D(crs,CW; r) 6= D(crs,CW∗; r). But since g(crs,CW,CW∗, r) = 1, it means that VNI

outputs 1 on all proofs T ∗, [T ∗i ]i∈[n] and (~̂k,~c, c) = (~̂k∗,~c∗, c∗).

This, in turn, means that there must be some bit xi, x
∗
i that CW and CW∗ differ

on. But note that by assumption ci = c∗i . Due to the fact that CW is well-formed

and perfect correctness of the encryption scheme, it must mean that c∗i /∈ L
x∗i
i . But

recall that by assumption, proof T ∗i verifies correctly. This means that soundness is

broken by A ∈ G. This contradicts the security of the proof system ΠNI.

Next, recall that we wish to show that for any adversary A ∈ G outputting

tampering function

{MediumTamperΠ,FA,0,g}k∈N ≈ {MediumTamperΠ,FA,1,g}k∈N

135



To do so we consider the following hybrid argument:

Hybrid 0: The real game, MediumTamperΠ,FA,0,g, relative to g, where the real

encoding CW0 ← E(crs, 0) and the real decoding oracle D are used.

Hybrid 1: Replace the encoding from the previous game with

CW1 ← E1(crs,−→τ sim, r1, 0) where r1 is chosen uniformly at random and g, D

use random coins r1.

Hybrid 2: Replace the encoding from the previous game with CW2 ←

E2(crs,−→τ sim, r2, 0), where r2 is chosen uniformly at random and g, D use ran-

dom coins r2.

Hybrid 3: Replace the decoding from the previous game, with

D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2). where r2 is chosen uniformly at ran-

dom and g, E2 use random coins r2.

Hybrid 4: Same as Hybrid 3, but replace the encoding with

CW3 ← E2(crs,−→τ sim, r3, 1), where r3 is chosen uniformly at random and g, D′

use random coins r3.

Now, we prove our hybrids are indistinguishable.

Claim 5.3.1. Hybrid 0 is computationally indistinguishable from Hybrid 1.

Proof. The claim follows immediately from the Simulation of proofs property in

Theorem 5.3.1.

Claim 5.3.2. Hybrid 1 is computationally indistinguishable from Hybrid 2.

136



Proof. The claim follows immediately from the Simulation of Encryptions prop-

erty in Theorem 5.3.1.

Claim 5.3.3. Hybrid 2 is computationally indistinguishable from Hybrid 3.

Proof. This claim follows from the fact that (1) if g(crs,CW,CW∗, r) = 1, then the

experiment outputs same∗ in both Hybrid 2 and Hybrid 3; and (2) the probability

that g(crs,CW,CW∗, r) = 0 and the output of the experiment is different in Hybrid

2 and Hybrid 3 is at most negligible, due to the Simulation Soundness property

in Theorem 5.3.1.

Claim 5.3.4. Hybrid 3 is computationally indistinguishable from Hybrid 4.

Proof. This follows from the fact that (1) for γ ∈ {2, 3} if g(crs,CW2, f(CW2), r2) =

1 then

D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ) always outputs 0 and so

D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)

≡ Ψ(g, crs,CWγ, f(CWγ), rγ,D
′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ));

and (2) the Hardness of Db relative to Alternate Decoding property in The-

orem 5.3.1.

5.3.2 One-Bit NMC for AC0 and beyond

In this section, we show that our generic construction yields efficient NMC

for AC0 in the CRS model, when each of the underlying primitives is appropriately

137



instantiated.

Theorem 5.3.2. Π = (CRSGen,E,D) (presented in Figure 5.1) is a one-bit, com-

putational, non-malleable code in the CRS model, secure against tampering by AC0

circuits, if the underlying components are instantiated in the following way:

• E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect

correctness and decryption in AC0 .

• ΠNI := (CRSGenNI,PNI,VNI, SimNI) is a same-string, weak one-time simulation-

sound NIZK with verifier in AC0 .

• For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at

random, conditioned on x1 ⊕ · · · ⊕ xn = b.

Note that given Theorem 5.2.2, proof systems ΠNI as above exist, under the

assumption that same-string, weak one-time simulation-sound NIZK with (arbitrary

polynomial-time) deterministic verifier exists. Such NIZK can be constructed in the

CRS model from enhanced trapdoor permutations [111]. Public key encryption

with perfect correctness and decryption in AC0 can be constructed by applying the

low-decryption-error transformation of Dwork et al. [63] to the (reduced decryption

error) encryption scheme of Bogdanov and Lee [26]. We now provide an instantiation

of the public key encryption scheme.

Public key encryption in AC0 . We now present the result presented by Bogdanov

and Lee in [26] which showed that the encryption scheme given by Applebaum et

138



al. in [13] can be implemented by circuit with constant depth and size polynomial

in the security parameter.

PKE Scheme based on Bipartite Graphs [13]

• Gen(1n): The key generation algorithm takes security parameter n as input

and outputs a random bipartite graph G = ((U1, U2), E) as the public key pk,

where |U1| = n and |U2| = r = n0.9 generated in the following way. First choose

the random subsets S1 ⊆ U1 and S2 ⊆ U2 of sizes s and s/3 respectively for

s = O(log n). Each vertex in S1 is connected to d (possibly repeated) random

vertices in S2 and each vertex outside S1 is connected to d random vertices in

U2. The secret key sk is an odd size subset of S1 such that each vertex in S2

has an even number of neighbors in sk.

• Encrypt(pk, b): To encrypt bit b ∈ {0, 1}, choose a random subset S ′2 ⊂ U2

and output ~c = ~y+~e+b·~1, where each coordinate of ~y ∈ {0, 1}n is the degree of

corresponding vertex in S1 restricted to S ′2 mod 2, ~e ∈ {0, 1}n is a vector with

each coordinate (ei : i ∈ [n]) sampled from distribution η̂ with Pr [ei = 0] = η

independently, and ~1 ∈ {0, 1}n is the vector of all 1s.

• Decrypt(sk,~c): Output b =
∑

i∈sk ci mod 2.

Refer [13] for the security of the scheme presented above. We next present the

AC0 implementation of the PKE presented above as shown in [26].

AC0 Implementation of [13] PKE Scheme based on Bipartite Graphs [26]

139



• Gen:

1. Sample y1, y2, . . . , ys from [n] and w1, w2, . . . , ws/3 from [r] to represent

the subsets S1 ⊆ U1 and S2 ⊆ U2 respectively.

2. Sample vi,1, vi,2, . . . , vi,d from [r] for all i ∈ [n]. These represent the

random neighbors of each vertex in U1 \ S1.

3. Sample v̂i,1, v̂i,2, . . . v̂i,d from [s/3] for all i ∈ [s]. These become the random

neighbors of the vertices in S1 after being mapped to the wi’s by the index

function ι : [s/3]→ [r] such that ι(i) = wi. This is written as:

ι(i) =

s/3∨
j=1

[(i = j) ∧ wj]

.

The key generation circuit outputs vi,1, vi,2, . . . , vi,d if the vertex i is not in

S1 and outputs ι(v̂i,1), ι(v̂i,2), . . . ι(v̂i,d) otherwise. Now we can output the jth

random neighbor of each vertex i ∈ U1 as

[
δi ∧

s∨
k=1

[(i = k) ∧ ι(v̂k,j)]

]
∨ (δ̄i ∧ vi,j),

where δi :=
∨s
k=1(i = yk) indicates whether i belongs to S1.

To come up with secret key sk, we enumerate all the possible subsets of S1

(this is still efficient since s = O(log n)) and output the first one that satisfies

the linear dependency. Given an odd size subset of S1 indicated by the support

140



of the vector ~a ∈ {0, 1}s, note that the formula

f~a =

s/3∨
j=1

⊕
i:ai=1

d⊕
k=1

(v̂i,k = j)

outputs 0 only if every vertex in S2 has an even number of neighbors in support

of ~a and outputs 1 otherwise. (Since the XOR involves only O(d log n) inputs

it can be calculated with a circuit of depth 2 and size nO(d).) We can therefore,

enumerate all the possible ~a ∈ {0, 1}s with odd hamming weight and output

the first ~a such that f~a = 0. The secret key is represented by a vector ~z

containing s entries in [n], where each non-zero entry corresponds to a vertex

in sk. More precisely, we output ith entry as

zi = ι

 ∨
~a∈{0,1}s:wt(~a) is odd

f̄~a ∧
∧

~a′<~a

f~a′

 ∧ (ai ∧ i)

 .

• Encrypt: Given a public key represented by the neighbors vi,1, vi,2, . . . , vi,d of

each vertex i ∈ U1. To encrypt bit b ∈ {0, 1}, choose a random vector ~x ∈

{0, 1}r whose support forms the subset S ′2 of U2, a noise vector ~e ∈ {0, 1}n

by choosing each of its entries independently from η̂. The ith bit of ciphertext

can then be written as

∨
ki 6=kj ;

1≤i≤j≤d;
ki∈[r];

a1,...,ad:a1+···+ad=1 mod 2

[
d∧
j=1

(vi,j = kj) ∧ (xk1 = a1) ∧ · · · ∧ (xkd = ad)

]
⊕ ei ⊕ b

141



• Decrypt: Given the ciphertext ~c and secret key sk represented by the vector

~z ∈ {0, 1}s×logn, output
s⊕
i=1

n∨
k=1

[(zi = k) ∧ ck].

Reducing the decryption error The [13] encryption scheme suffers from significant

encryption error (and thus decryption error) however, this can be minimized ar-

bitrarily by encrypting the message multiple times independently. The decryption

algorithm can then take approximate majority to compute the encrypted bit. Ap-

proximate majority can be computed with constant depth circuits [11] (depth 3)

and thus the overall decryption algorithm is still in AC0 .

We now use the following transformation given by [63] to obtain almost-all

keys perfect decryption for the above encryption scheme.

Let E = (Gen,Encrypt,Decrypt) be any public-key encryption scheme. Also

let `(n) > n be the number of bits used by Encrypt to encrypt n-bit messages.

Let prg be a pseudorandom generator that expands n bits to `(n) bits. Then the

modified encryption scheme E ′ = (Gen′,Encrypt′,Decrypt′) is obtained as follows: On

input 1n, Gen′ outputs ((pk, r̄), sk) where (pk, sk) ← Gen(1n) and r̄ ∈ {0, 1}`(n) is

chosen uniform randomly. To encrypt message m, Encrypt′ samples a random n-bit

string r and outputs Encrypt(pk,m) using prg(r) ⊕ r̄ as randomness for Encrypt.

Decrypt′ is same as Decrypt, note that this preserves the computational complexity

of decryption.

Theorem 5.3.3. [63] Let E = (Gen,Encrypt,Decrypt) be any (1 − 2−4n) cor-

rect public key encryption scheme with Decrypt being deterministic. Then E ′ =

142



(Gen′,Encrypt′,Decrypt) is an almost-all-key perfectly correct public encryption scheme.

Furthermore, if E is IND-CPA secure then so is E ′.

Note that the above transformation takes a public key encryption scheme E

with sufficiently low decryption error and transforms it into a public key encryption

scheme that enjoys perfect correctness, and furthermore, note that the decryption

algorithm Decrypt remains unchanged. Therefore, if we start with the (reduced de-

cryption error) version of the AC0 Bogdanov and Lee public key encryption scheme,

we obtain a perfectly correct public key encryption scheme with decryption in AC0

, as desired.

Proof of theorem 5.3.2. To prove the theorem, we need to show that for every PPT

adversary A outputting tampering functions f ∈ F , the necessary properties from

Theorem 5.3.1 hold. We next go through these one by one.

• Simulation of proofs.

1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈

Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r0, r1 are sampled uniformly

at random,

CW0 ← E(crs, 0) and CW1 ← E1(crs,−→τ sim, r1, 0).

143



This follows immediately from the zero-knowledge property of

ΠNI = (CRSGenNI,PNI,VNI, SimNI).

• Simulation of Encryptions.

1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈

Ψ(g, crs,CW2, f(CW2), r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly

at random,

CW1 ← E1(crs,−→τ sim, r1, 0) and CW2 ← E2(crs,−→τ sim, r2, 0).

This follows immediately from the fact that ~c, c and ~c′, c′ are identically dis-

tributed when generated by E1 versus E2 and from the semantic security of

the public key encryption scheme E = (Gen,Encrypt,Decrypt).

• Simulation Soundness.

Pr

D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)

∧g(crs,CW2, f(CW2), r2) = 0

 ≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly at

random and

144



CW2 ← E2(crs,−→τ sim, r, 0).

Note that g(crs,CW2, f(CW2), r2) = 0 only if either of the following is true:

(1) VNI did not output 1 on all tampered proofs T ∗, T ∗1 , . . . , T
∗
n in f(CW2); or

(2) the first 3 elements of CW2 and f(CW2) are not identical (i.e., (~̂k,~c, c) 6=

( ~̂k∗, ~c∗, c∗)). Now in case (1), both D(crs, f(CW2); r2), and

D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) output 0. This is contradiction to the

claim that D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2). In

case (2), the extractor Ext(crs, sk, f(CW2)) outputs k∗n+1 := Decrypt(sk, k̂∗n+1)

and D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) outputs b∗ = c∗ ⊕ k∗n+1. Now, if

D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) but VNI outputs

1 on all tampered proofs T ∗, T ∗1 , . . . , T
∗
n in f(CW2) then one-time simulation

soundness of ΠNI = (CRSGenNI,PNI,VNI, SimNI) does not hold.

• Hardness of Db relative to Alternate Decoding.

1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈

D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly

at random,

CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ← E2(crs,−→τ sim, r3, 1).

145



Let ~X denote a random variable where ~X is sampled from D0 with probability

1/2 and ~X is sampled from D1 with probability 1/2 and let random variable

CW denote the output of E2 when ~X replaces ~x.

To show (1), assume Pr[g(crs,CW2, f(CW2), r2) = 1] and

Pr[g(crs,CW3, f(CW3), r3) = 1] differ by a non-negligible amount. This im-

plies that takes as input ~X, hardwires all other random variables, and outputs

1 in the case that g(crs,CW, f(CW), r) = 1 and 0 otherwise, implying that

it has non-negligible correlation to the parity of its input ~X. We will show

that the above can be computed by an AC0 circuit with input ~X, thus contra-

dicting Theorem 3.3.1, which says that an AC0 circuit has at most negligible

correlation with parity of its input ~X, denoted P( ~X). Details follow.

We construct the distribution of circuits C1
F . A draw C ∼ C1

F is done as follows:

1. Sample (crs, sk,−→τ sim)← CRSGen(1n).

2. Sample tampering function A(crs)→ f .

3. Sample ~c′, c′ uniformly at random.

4. Set ~k′ = c′1, . . . , c
′
n, c. For i ∈ [n], compute k̂′i ← Encrypt(pk, k′i) and

compute k̂′n+1 ← Encrypt(pk, k′).

5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β
i ]β∈{0,1},i∈[n] and T ′ (as described in Fig-

ure 5.3).

7. Output the following circuit C that has the following structure:

146



– hardwired variables: crs, sk, f , ~̂k′, ~c′, c′, r, [T
′β
i ]β∈{0,1},i∈[n].

– input: ~X.

– computes and outputs:

g(crs,CW, f(CW), r).

Note that given all the hardwired variables, computing CW is in AC0 since

all it does is, for i ∈ [n], select the correct simulated proof T
′xi
i based on

the corresponding input bit xi. Additionally, f in AC0 and g in AC0 ,

since bit-wise comparison is in AC0 and V SAT is in AC0 . Thus, the entire

circuit is in AC0 .

To show (2), assume D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) and

D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3) have non-negligible statistical distance.

This implies that a circuit that takes as input ~X, hardwires all other ran-

dom variables, and outputs D′(crs,Ext(crs, sk, f(CW)), f(CW); r2) has non-

negligible correlation to the parity of ~X. We will show that

D′(crs,Ext(crs, sk, f(CW)), f(CW); r2) can be computed by an AC0 circuit with

input ~X, thus contradicting Theorem 3.3.1, which says that an AC0 circuit has

at most negligible correlation with the parity of its input ~X, denoted P( ~X).

Details follow.

We construct the distribution of circuits C2
F . A draw C ∼ C2

F is done as follows:

1. Sample (crs, sk,−→τ sim)← CRSGen(1n).

147



2. Sample tampering function A(crs)→ f .

3. Sample ~c′, c′ uniformly at random.

4. Set ~k′ = c′1, . . . , c
′
n, c. For i ∈ [n], compute k̂′i ← Encrypt(pk, k′i) and

compute k̂′n+1 ← Encrypt(pk, k′).

5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β
i ]β∈{0,1},i∈[n] and T ′ (as described in Fig-

ure 5.3).

7. Output the following circuit C that has the following structure:

– hardwired variables: crs, sk, f , ~̂k′, ~c′, c′, r, [T
′β
i ]β∈{0,1},i∈[n].

– input: ~X.

– computes and outputs:

D′(crs,Ext(crs, sk, f(CW)), f(CW); r2).

Note that Ext ∈ AC0 since decryption for E := (Gen,Encrypt,Decrypt) in

AC0 . Moreover, as above, given all the hardwired variables, computing

CW is in AC0 since all it does is, for i ∈ [n], select the correct simulated

proof T
′xi
i based on the corresponding input bit xi. Additionally, f in

AC0 and D′ is in AC0 , since xor of two bits is in AC0 and V SAT is in AC0

. Thus, the entire circuit is in AC0 .

We present the analysis for more tampering classes next.

148



5.3.3 Tampering classes beyond AC0 .

Let F ( P be a tampering class. Relative to this class F , define the circuit

classes C1
F and C2

F as in the proof above.

Theorem 5.3.4. Let {D0,D1} be (probabilistic polynomial time) samplable distri-

butions with disjoint support. If the following hold:

• There exists a ppt distinguishing algorithm D such that for b ∈ {0, 1},

Pr
~x∼Db

[D(~x) = b] = 1.

• For all C ∈ C1
F ∪ C2

F

∣∣∣∣ Pr
~x∼D0

[C(~x) = 1]− Pr
~x∼D1

[C(~x) = 1]

∣∣∣∣ ≤ negl(n).

Then, under the same assumptions as Theorem 5.3.2, Π = (CRSGen,E,D) is a

computational non-malleable code against tampering by F that encodes a single bit.

We informally argue that Theorem 8 yields non-malleable codes against new

classes: small threshold circuits and time-bounded probabilistic RAM machines. As

noted earlier, non-malleable codes (in the CRS model without computational as-

sumptions) from [73] are resilient against these classes. We provide theorems simply

to demonstrate the applicability of our framework to a broad class of correlation

bounds.

149



Theorem 5.3.5 ( [41]). For all d there exists εd > 0 such that the following holds.

There exists a probabilistic polynomial time computable f (the Generalized Andreev

Function) such that for any depth-d threshold circuit with n1+εd wires, C, f has

correlation at most 2−n
Ω(1)

with C.

Corollary 5.3.1. Let f be as in Theorem 5.3.5. Fix x0, x1 such that f(xb) = b.

Let Db define a variable, X, which is defined by rejection sampling the uniform

distribution over {0, 1}n conditioned on f(X) = b; if after O(n) tries the rejection

sampling has not succeeded, output xb.

Then, assuming PKE in AC0 and same-string weak one-time simulation-

simulation sound NIZK, there exists a constant d0 such that for d > d0, Π =

(CRSGen,E,D) is a computational non-malleable code against depth-d threshold cir-

cuits with n1+ε′d wires, where ε′d is any positive constant less than εd from Theo-

rem 5.3.5.

The corollary follows from the fact that given the appropriate choice of se-

curity parameters for the encryption scheme and NIZK, any C ∈ C1
F ∪ C2

F has a

representation as depth-d threshold circuit with 1 + εd wires, so long as d is large

enough, and the fact that rejection sampling fails with very low probability as f is

balanced.

Using a generalization of a Theorem from [20] (combined with a result on

prime finding from [104]):

Theorem 5.3.6 ( [20]). Let k be an integer (constant). Assuming one of the fol-

lowing:

150



1. a randomized variant of the Strong Exponential Time Hypothesis (BPSETH):

∀ε > 0,∃q such that no randomized algorithm running in time O(21−ε)n) is

correct with probability > 2/3 on every instance of qSAT.

2. the randomized k-Orthogonal Vector Conjecture (BPkOVC): the k-Orthogonal

Vector problem requires time Ω(nk−o(1)) for randomized algorithms that are

correct with probability > 2/3 on every instance.

k-Othogonal Vector is a generalization of the well-studied Orthogonal Vector

problem that asks given k sets of vectors U1, . . . , Uk ⊂ {0, 1}log2 n each of size

n, does there exist

u(1) ∈ U1, . . . , u
(k) ∈ Uk such that

∑
i∈[log2n] u

(1)
i · · ·u

(k)
i = 0?

Then, there exists a function FOVk such that any randomized time t = Ω(2logε n) (for

ε > 0) algorithm whose output (on a random instance x) is correct (the algorithm

outputs FOVk(x)with probability at least δ must obey the following bound:

t

δ2
= Ω(nk−o(1))

Combining the above with simulation sound zk-SNARKS, for example from [80],

to reduce the proof size and verification time we get the following corollary.

Corollary 5.3.2. Let k ∈ N. Let t(n) = Ω(2logε(n)) and δ(n) > 0 such that T/δ2 =

Ω(nk−o(1)). Let Lk be as in Theorem 5.3.5. Fix x0, x1 such that Lk(xb) = b. Let Db

define a variable, X, which is defined by rejection sampling the uniform distribution

over {0, 1}n conditioned on Lk(X) = b; if after O(n) tries the rejection sampling

151



has not succeeded, output xb.

Then, assuming BPSETH or BPkOVC, PKE, and simulation sound zk-SNARK,

Π = (CRSGen,E,D) is a computational (BPTIME(t(n)), δ(n)+negl(n))-non-malleable

code.

In other words, for all A ∈ BPP,

Tamper
Π,BPTIME(t(n))
A,0 ≈δ(n)+negl(n) Tamper

Π,BPTIME(t(n))
A,1

Note, however, that the tampering experiments are only inverse-polynomially

indistinguishable (not negligible). Stronger bounds on the probability of correctness

(δ) in Theorem 5.3.6 will yield stronger bounds on the tampering experiments.

5.4 Construction for Multi-Bit Messages

The construction for encoding multi-bit messages is similar to that for encoding

a single bit, presented in section 5.3. The construction repeats the procedure for

encoding single bit m times, for encoding m-bit messages and binds it with a proof

T .

152



Let E = (Gen,Encrypt,Decrypt) be a public key encryption scheme with perfect correctness
(see Definition 3.4.3). Let ΠNI = (CRSGenNI,PNI,VNI, SimNI) be a non-interactive simulat-
able proof system with soundness against adversaries A ∈ G (see Definition 3.5.4). Note
that in the CRS model, we implicitly assume that all algorithms take the CRS as input,
and for simplicity of notation, sometimes do not list the CRS as an explicit input.
CRSGen(1n): Choose (pk, sk) ← Gen(1n). Choose [crsNIi,j , τ

i,j
sim](i,j)=(0,0),i∈[m],j∈[n] ←

CRSGenNI(1n). Let −→crsNI := [crsNIi,j ](i,j)=(0,0),i∈[m],j∈[n] and let −→τ sim :=

[τ i,jsim](i,j)=(0,0),i∈[m],j∈[n], and output crs := (pk,−→crsNI).
Languages. We define the following languages:

• Lβi,j : For i ∈ [m], j ∈ [n], β ∈ {0, 1}, s := ([~̂ki]i∈[m],~c, c) ∈ L
β
i,j iff the (i, j)-th

ciphertext cij := kij ⊕ β (where ~c = [cij ]i∈[m],j∈[n]) and the (i, j)-th encryption k̂ij

(where ~̂ki = k̂i1, . . . , k̂
i
n+1) is an encryption of kij under pk (where pk is hardwired

into the language).

• L: s := ([~̂ki]i∈[m],~c, c) ∈ L iff For each i ∈ [m], (xi1, . . . , x
i
n) is in the support of Dbi

where:

1. For i ∈ [m], j ∈ [n], xij := cij ⊕ kij , and bi := ci ⊕ kin+1 (where c := c1, . . . , cm)

2. ~̂ki is an encryption of ki1, . . . , k
i
n+1 under pk (which is hardwired into the

language).

E(crs,~b := b1, . . . , bm):

1. Sample ~x := ~x1, . . . , ~xm ← D~b, where for i ∈ [m], ~xi = xi1, . . . , x
i
n.

2. Choose an m · (n + 1)-bit key ~k := [~ki]i∈[m] = [ki1, . . . , k
i
n, k

i]i∈[m] uniformly at

random. For i ∈ [m], j ∈ [n + 1], compute k̂ij ← Encrypt(pk, kij). For i ∈ [m], let

~̂ki := k̂i1, . . . , k̂
i
n+1. For i ∈ [m], j ∈ [n], compute cij := kij⊕xij . Let~c := [cij ]i∈[m],j∈[n].

3. For i ∈ [m], compute ci := ki ⊕ bi. Let c := [ci]i∈[m]. For i ∈ [m], j ∈ [n], compute a

NI, simulatable proof T ij proving ([~̂ki]i∈[m],~c, c) ∈ L
xij
i,j relative to crsNIi,j .

4. Compute a NI, simulatable proof T proving ([~̂ki]i∈[m],~c, c) ∈ L relative to crsNI
0,0.

5. Output CW := ([~̂ki]i∈[m],~c, c, T, [(x
i
j , T

i
j )]i∈[m],j∈[n]).

D(crs,CW):

1. Parse CW := ([~̂ki]i∈[m],~c, c, T, [(x
i
j , T

i
j )]i∈[m],j∈[n])

2. Check that VNI outputs 1 on all proofs [T ij ]i∈[m],j∈[n], T , relative to corresponding

CRS. If yes, output [bi]i∈[m] such that xi1...x
i
n is in the support of Dbi . Else, output

~0.

Figure 5.7: Non-malleable code (CRSGen,E,D), secure against F tampering.

153



E1(crs,−→τ sim, r,~b := b1, . . . , bm):

1. Sample ~x := ~x1, . . . , ~xm ← Db, where for i ∈ [m], ~xi = xi1, . . . , x
i
n.

2. Choose an m · (n + 1)-bit key ~k := [~ki]i∈[m] = [ki1, . . . , k
i
n, k

i]i∈[m] uniformly at

random. For i ∈ [m], j ∈ [n + 1], compute k̂ij ← Encrypt(pk, kij). For i ∈ [m],

let ~̂ki := k̂i1, . . . , k̂
i
n+1.

3. For i ∈ [m], j ∈ [n], compute cij := kij ⊕ xij . Let ~c := [cij ]i∈[m],j∈[n].

4. For i ∈ [m], compute ci := ki ⊕ bi. Let c := [ci]i∈[m].

5. For i ∈ [m], j ∈ [n], simulate, using τ i,jsim and r, a non-interactive proof T
′i
j

proving s := ([~̂ki]i∈[m],~c, c) ∈ L
xij
i,j , relative to crsNIi,j .

6. Simulate, using τ0,0
sim and r, a non-interactive proof T ′ proving

s := ([~̂ki]i∈[m],~c, c) ∈ L,relative to crsNI0,0.

7. Output CW := ([~̂ki]i∈[m],~c, c, T
′, [(xij , T

′i
j )]i∈[m],j∈[n]).

Figure 5.8: Encoding algorithm with simulated proofs.

154



E2(crs,−→τ sim, r,~b := b1, . . . , bm):

1. Sample ~x := ~x1, . . . , ~xm ← Db, where for i ∈ [m], ~xi = xi1, . . . , x
i
n.

2. Choose [c
′i
j ]i∈[m],j∈[n] uniformly at random. Let ~c′ := [c

′i
j ]i∈[m],j∈[n].

3. Choose [c
′i]i∈[m] uniformly at random. Let c′ := [c

′i]i∈[m].

4. Set the m · (n+ 1)-bit key ~k
′
:= [~k

′i
]i∈[m] = [c

′i
1 , . . . , c

′i
n , c

′i]i∈[m].

For i ∈ [m], j ∈ [n+ 1],

compute k̂
′i
j ← Encrypt(pk, k

′i
j ). For i ∈ [m], let ~̂k

′i := k̂
′i
1 , . . . , k̂

′i
n+1.

5. For i ∈ [m], j ∈ [n], simulate, using τ i,jsim and r, a non-interactive proof T
′i
j

proving s := ([~̂ki]i∈[m],~c, c) ∈ L
xij
i,j , relative to crsNIi,j .

6. Simulate, using τ0,0
sim and r, a non-interactive proof T ′ proving s :=

([~̂ki]i∈[m],~c, c) ∈ L, relative to crsNI0,0.

7. Output CW := ([~̂k
′i

]i∈[m],~c
′, c′, T ′, [(xij , T

′i
j )]i∈[m],j∈[n]).

Figure 5.9: Encoding algorithm with simulated proofs and encryptions.

Ext(crs, sk,CW):

1. Parse CW := ([~̂ki]i∈[m],~c, c, T, [(x
i
j , T

i
j )]i∈[m],j∈[n]),

2. Output [Decrypt(sk, k̂in+1)]i∈[m].

Figure 5.10: Extracting procedure Ext.

D′(crs, [ki]i∈[m],CW):

1. Parse CW := ([~̂ki]i∈[m], ,~c, c, T, [(x
i
j , T

i
j )]i∈[m],j∈[n]),

2. Check that VNI outputs 1 on all proofs [T ij ]i∈[m],j∈[n], T , relative to the corre-
sponding CRS,

3. For i ∈ [m], output bi := ki ⊕ ci.

Figure 5.11: Alternate decoding procedure D′, given additional extracted
key [ki]i∈[m] as input.

155



g(crs,CW,CW∗, r):

1. Parse CW = ([~̂ki]i∈[m],~c, c, T, [(x
i
j , T

i
j )]i∈[m],j∈[n]), CW∗ =

([~̂k
∗i

]i∈[m],~c
∗, c∗, T ∗, [(x∗ij , T

∗i
j )]i∈[m],j∈[n]).

2. If (1) VNI outputs 1 on all proofs T ∗, [T ∗ij )]i∈[m],j∈[n], relative to the correspond-

ing CRS; and (2) ([~̂ki]i∈[m],~c, c) = ([~̂k
∗i

]i∈[m],~c
∗, c∗), then output 1. Otherwise

output 0.

Figure 5.12: The predicate g(crs,CW,CW∗, r).

Let Ψ(p, c, x, y, r, z) be defined as a function that takes as input a predicate

p, and variables c, x, y, r, z. If p(c, x, y, r) = 1, then Ψ outputs the m-bit string ~0.

Otherwise, Ψ outputs z.

Theorem 5.4.1. Let (E,D), E1, E2, Ext, D′ and g be as defined in Figures 5.7, 5.8,

5.9, 5.10, 5.11 and 5.12. Let F be a computational class. If, for every pair of m-bit

messages ~b0,~b1 and if, for every adversary A ∈ G outputting tampering functions

f ∈ F , all of the following hold:

• Simulation of proofs.

1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈

Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r0, r1 are sampled uniformly

at random, CW0 ← E(crs,~b0) and CW1 ← E1(crs,−→τ sim, r1,~b0).

• Simulation of Encryptions.

156



1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈

Ψ(g, crs,CW2, f(CW2), r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly

at random, CW1 ← E1(crs,−→τ sim, r1,~b0) and CW2 ← E2(crs,−→τ sim, r2,~b0).

• Simulation Soundness.

Prr[D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ∧

g(crs,CW2, f(CW2), r2) = 0] ≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly at

random and CW2 ← E2(crs,−→τ sim, r,~b0).

• Hardness of D~b relative to Alternate Decoding.

1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈

F ◦ D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly

at random, CW2 ← E2(crs,−→τ sim, r2,~b0) and CW3 ← E2(crs,−→τ sim, r3,~b1).

Then the construction presented in Figure 5.7 is a non-malleable code for class

F against adversaries A ∈ G.

157



We present the proof of theorem 5.4.1 next.

5.4.1 Generic Analysis

Similarly to the one-bit case, we take g to be the predicate that is used in the

MediumTamperΠ,FA,m,g(n) tampering experiment. We must argue that for every m ∈ Σ

and every attacker A ∈ G the output of the experiment ExptΠ,FA,m,g(n) is 1 with at

most negligible probability

Assume towards contradiction that for some A ∈ G the output of the experi-

ment is 1 with non-negligible probability. Then this means that the probability in the

last line of experiment ExptΠ,FA,m,g(n) that g(crs,CW,CW∗, r) = 1∧D(crs,CW∗; r) 6= m

is non-negligible. Parse CW = ([~̂ki]i∈[m],~c, c, T, [(x
i
j, T

i
j )]i∈[m],j∈[n]),

CW∗ = ([~̂k
∗i

]i∈[m],~c
∗, c∗, T ∗, [(xij, T

∗i
j ]i∈[m],j∈[n]).

Recall that D(crs,CW; r) = m. Thus, if the above event occurs, it means that

D(crs,CW; r) 6= D(crs,CW∗; r). But since g(crs,CW,CW∗, r) = 1, it means that

VNI outputs 1 on all proofs T ∗, [T ∗ij )]i∈[m],j∈[n] and ([~̂ki]i∈[m],~c, c) = ([~̂k
∗i

]i∈[m],~c
∗, c∗).

This, in turn, means that there must be some bit xij, x
∗i
j that CW and CW∗ differ

on. But note that by assumption cij = c∗ij . Due to the fact that CW is well-formed

and perfect correctness of the encryption scheme, it must mean that c∗ij /∈ Lx
∗i
j

i,j . But

recall that by assumption, proof T ∗ij verifies correctly. This means that soundness

is broken by A ∈ G. This contradicts the security of the proof system ΠNI.

Next, recall that we wish to show that for any ~b0,~b1 and any adversary A ∈ G

outputting tampering function f ∈ F ,

158



{MediumTamperΠ,F
A,~b0,g
}k∈N ≈ {MediumTamperΠ,F

A,~b1,g
}k∈N

To do so we consider the following hybrid argument, which proceeds almost

identically to the hybrid argument for the one-bit case:

Hybrid 0: The real game, MediumTamperΠ,F
A,~b0,g

, relative to g, where the real

encoding CW0 ← E(crs,~b0) and the real decoding oracle D are used.

Hybrid 1: Replace the encoding from the previous game with CW1 ←

E1(crs,−→τ sim, r1,~b0) where r1 is chosen uniformly at random and g, D use ran-

dom coins r1.

Hybrid 2: Replace the encoding from the previous game with CW2 ←

E2(crs,−→τ sim, r2,~b0), where r2 is chosen uniformly at random and g, D use

random coins r2.

Hybrid 3: Replace the decoding from the previous game, with

D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2). where r2 is chosen uniformly at ran-

dom and g, E2 use random coins r2.

Hybrid 4: Same as Hybrid 3, but replace the encoding with CW3 ←

E2(crs,−→τ sim, r3,~b1), where r3 is chosen uniformly at random and g, D′ use

random coins r3.

The proofs of indistinguishability of consecutive hybrid distributions follow

identically to the one bit case, except for the final hybrid.

Claim 5.4.1. Hybrid 3 is computationally indistinguishable from Hybrid 4.

159



Proof. First note that for γ ∈ {2, 3} if g(crs,CW2, f(CW2), r2) = 1 then

D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ) always outputs ~0 and so

D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)

≡ Ψ(g, crs,CWγ, f(CWγ), rγ,D
′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)).

Now, assume towards contradiction that the two distributions

Ψ(g, crs,CW2, f(CW2), r2,D
′(crs,Ext(sk, f(CW2)), f(CW2); r2)) and

Ψ(g, crs,CW3, f(CW3), r3,D
′(crs,Ext(sk, f(CW3)), f(CW3); r3)) are distinguishable.

By the above, this implies that D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) and

D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3) are distinguishable. Note that since D′ out-

puts m bits, this implies that there exists a distinguishing circuit F over m-bit

inputs such that

∣∣Pr[F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) = 1]

− Pr[F ◦ D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3)] = 1
∣∣ ≥ negl(n).

But this yields a contradiction to the Hardness of D~b relative to Alternate

Decoding property in Theorem 5.4.1.

5.4.2 Efficient, Multi-Bit NMC for AC0

Theorem 5.4.2. Π = (CRSGen,E,D) (presented in Figure 5.7) is an m-bit, compu-

tational, non-malleable code in the CRS model against tampering by depth-(mlogδm/2−

160



c) circuits with unbounded fan-in and size δ · logm
log logm

− p(n) (where c is constant and

p(·) is a fixed polynomial), and m is such that n = m3+5δ, if the underlying compo-

nents are instantiated in the following way:

• E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect

correctness and decryption in AC0 .

• ΠNI := (CRSGenNI,PNI,VNI, SimNI) is a same-string, weak one-time simulation-

sound NIZK with verifier in AC0 .

• For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at

random, conditioned on x1 ⊕ · · · ⊕ xn = b.

For as in the one-bit case, given Theorem 5.2.2, proof systems ΠNI as above

exist, under the assumption that same-string, weak one-time simulation-sound NIZK

with (arbitrary polynomial-time) deterministic verifier exists. See the beginning of

Section 5.3.2 for a discussion of how such NIZK and public key encryption can be

instantiated.

Before proving the theorem, we state some claims on Fourier concentration

of AC0 circuits and then prove Claim 5.4.3, which will be used in the proof of

Theorem 5.4.2.

Claim 5.4.2 ( [117]). AC0 circuits of depth d and size k have at most 2−Ω(n/(log k)d−1

of their Fourier mass at level n or above.

Setting d = (2 + δ) · logm
log logm

, k = mlogδm, n = m3+5δ, for constant 0 ≤ δ < 1,

161



and noting that

n

(log k)d−1
≥ n

(log k)d
=

m3+5δ

(logm)(1+δ)d
=

m3+5δ

2(1+δ)d·log logm
=

m3+5δ

2(1+δ)(2+δ) logm

=
m3+5δ

m2+3δ+δ2 = m1+2δ−δ2 ∈ Ω(m1+δ),

We have the following corollary:

Corollary 5.4.1. An AC0 circuit of depth d = (2 + δ) · logm
log logm

and size k = mlogδm

has at most ε ∈ 2−Ω(m1+δ) of its Fourier mass at level n := m3+5δ or above.

We now prove the main technical claim of this section:

Claim 5.4.3. Let n be security parameter. Let C ∈ AC0 be a circuit of depth

d ≤ (2 + δ) · logm
log logm

and size k ≤ mlogδm that takes inputs ~x of length n bits. Let

m be such that n = m3+5δ, where 0 < δ ≤ 1. For γ ∈ {0, 1} let ~Xγ be a random

variable distributed as Dγ. Then for every Boolean function F over m variables,

|Pr[F (C( ~X0)) = 1]− Pr[F (C( ~X1)) = 1]| ∈ 2−Ω(mδ).

Note, the above claim implies that

F (C( ~X0))
s
≈ F (C( ~X1)).

of Claim 5.4.3. The conclusion of the claim is implied by showing that |Pr[F (C(~x)) =

1 | PAR(~x) = 1]−Pr[F (C(~x)) = 1 | PAR(~x) = −1]| ∈ 2−Ω(mδ), where the probability

is taken over choice of ~x from the distribution which sets ~x ← D0 with probability

162



1/2 and ~x ← D1 with probability 1/2. Thus, in order to prove the claim, it is

sufficient to show that for every (inefficient) distinguisher F ,

|E[F ◦ C(~x) · PAR(~x)]| ∈ 2−Ω(mδ).

Recall that the correlation of F ◦ C with PAR(~x) is defined as |E[F ◦ C(~x) ·

PAR(~x)]|. Thus, to complete the proof, we must show that for every (inefficient) F ,

the correlation of F ◦ C with PAR(~x) is negligible.

Analyzing the correlation of χS ◦C with PAR(~x). First, note that since each output

bit of C, computed by Ci, i ∈ [m] is in AC0 it has depth at most δ · logn
log logn

.

We next claim that for S ⊆ [m], there is a circuit computing χS ◦ C(~x) =

χS(C1(~x), . . . , Cn(~x)) of depth at most d = (2 + δ) · logm
log logm

and size at most k =

mlogδm.

This follows since the circuit for χS(C1(~x), . . . , Cm(~x)) can be constructed by

computing C(~x) := C1(~x), . . . , Cm(~x) in size mlogδm/2 and depth δ · logm
log logm

and then

feeding this into a circuit that computes parity over (at most) m bits, which (by

recursively computing parity over logm bits in depth 2 and polynomial size), has

size mlogδm/2 and depth 2 logm
log logm

.

By plugging in Claim 5.4.1, we have that
(
χ̂S ◦ C([n])

)2

= ε. Since |E[χS ◦

C(~x) · PAR(~x)]| = χ̂S ◦ C([n]), we have that for S ⊆ [m], the correlation of

163



χS(C1(~x), . . . , Cn(~x)) with PAR(~x) is at most
√
ε ∈ 2−Ω(m1+δ):

|E[χS ◦ C(~x) · PAR(~x)]| ≤
√
ε. (5.4.1)

Analyzing the correlation of F ◦ C with PAR(~x). Since F ◦ C(~x) =
∑

S⊆[m] F̂ (S) ·

χS(C1(~x), . . . , Cn(~x)), we have that

|E[F ◦ C(~x) · PAR(~x)]| = |
∑
S⊆[m]

F̂ (S)E[χS(C1(~x), . . . , Cm(~x)) · PAR(~x)]|

≤
∑
S⊆[m]

|F̂ (S)||E[χS(C1(~x), . . . , Cm(~x)) · PAR(~x)]| (5.4.2)

≤ 2m ·
√
ε ∈ 2−Ω(mδ), (5.4.3)

where (5.1) follows by the triangle inequality and (5.2) follows from (5.4.1)

and the fact that for all S ⊆ [n], |F̂ (S)| ≤ 1.

So we have shown that |E[F ◦C(~x) ·PAR(~x)]| is negligible (in m and therefore

also in n, since m and n are polynomially related), thus completing the proof.

We are now ready to complete the proof of the theorem.

of Theorem 5.4.2. The proof proceeds identically to the one-bit proof, until we reach

the final property:

Hardness of Db relative to Alternate Decoding.

1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

164



2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈

F ◦ D′(Ext(crs, sk, f(CW3)), f(CW3); r3),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly at

random, CW2 ← E2(crs,−→τ sim, r2,~b0) and CW3 ← E2(crs,−→τ sim, r3,~b1).

We consider a sequence of distributions where we switch the internal random

variables of E2 from from ~xi ← Dbi0
, for all i ∈ [m] to ~xi ← Dbi1

, for all i ∈ [m].

Namely, for each i ∈ {0, . . . ,m} we consider a distribution where for j ≤ i, ~xj ← Dbi1

and for j > i, ~xj ← Dbi0
.

We must show that (1) and (2) hold for each consecutive pair of distributions.

When considering the i-th consecutive pair, fix all random variables except the i-

th variable ~X i to values ~x1, . . . , ~xi−1, ~xi+1, . . . , ~xm. Let ~X i be a random variable

such that with probability 1/2, ~X i ← Dbi0
and with probability 1/2, ~X i ← Dbi1

.

~X i = ~X i,γ where γ ← {0, 1}, and let random variable CWi denote the output of E2

when using random variables ~x1, . . . , ~xi−1, ~X i, ~xi+1, . . . , ~xm.

To show (1), assume Pr[g(crs,CW2, f(CW2), r2) = 1] and

Pr[g(crs,CW3, f(CW3), r3) = 1] differ by a non-negligible amount. This implies that,

for some i ∈ [m], there is a circuit that takes as input ~X i, hardwires all other random

variables, and outputs 1 in the case that g(crs,CWi, f(CWi), r) = 1 and 0 otherwise,

implying that it has non-negligible correlation to the parity of its input ~X i. We

will show that the above can be computed by an AC0 circuit with input ~X i, thus

contradicting Theorem 3.3.1, which says that an AC0 circuit has at most negligible

165



correlation with parity of its input ~X i, denoted P( ~X i). Details follow.

We construct the distribution of circuits C1
F . A draw C ∼ C1

F is done as follows:

1. Sample (crs, sk,−→τ sim)← CRSGen(1n).

2. Sample tampering function A(crs)→ f .

3. Sample ~c′, c′ uniformly at random,

4. Set the m · (n+1)-bit key ~k
′
:= [~k

′i
]i∈[m] = [c

′i
1 , . . . , c

′i
n, c

′i]i∈[m]. For i ∈ [m], j ∈

[n+ 1], compute k̂
′i
j ← Encrypt(pk, k

′i
j ). For i ∈ [m], let ~̂k

′i := k̂
′i
1 , . . . , k̂

′i
n+1.

5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β,i
j ]β∈{0,1},i∈[m],j∈[n] and T ′ (as described in Fig-

ure 5.8).

7. Sample ~x1, . . . , ~xi−1 from Dbi0
, and ~xi+1, . . . , ~xm from Dbi1

.

8. Output the following AC0 circuit C that has the following structure:

• hardcoded variables: crs, sk, f , [~̂k
′i]i∈[m],~c

′, c′, r, [T
′β,i
j ]β∈{0,1},i∈[m],j∈[n],

~x1, . . . , ~xi−1, ~xi+1, . . . , ~xm.

• input: ~X i.

• computes and outputs:

g(crs,CW, f(CW), r).

166



Note that given all the hardwired variables, computing CW is in AC0 since

all it does is, for j ∈ [n], select the correct simulated proof T
′Xi
j ,i

j based on

the corresponding input bit X i
j. Additionally, f in AC0 and g in AC0 , since

bit-wise comparison is in AC0 and V SAT is in AC0 . Thus, the entire circuit is

in AC0 .

To show (2), assume D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) and

D′(Ext(crs, sk, f(CW3)), f(CW3); r3) have non-negligible statistical distance. This

implies that there exists a distinguisher F (represented by an m-bit Boolean func-

tion) such that F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) is far from

F ◦ D′(Ext(crs, sk, f(CW3)), f(CW3); r3). This implies that, for some i ∈ [m], the

output of F ◦D′(crs,Ext(crs, sk, f(CWi)), f(CWi); ri) is correlated with the parity of

its input ~X i. We will show that

D′(crs,Ext(crs, sk, f(CWi)), f(CWi); ri) can be computed by an AC0 circuit C (drawn

from some distribution C) with input ~X i. We then use Claim 5.4.3, which says that

if C is an AC0 circuit taking inputs of length n bits and F is any m-bit function

then the output F (C( ~X i)), conditioned on the parity of ~X i being 0 is statistically

close to the output F (C( ~X i)), conditioned on the parity of ~X i being 1. This yields a

contradiction, since it means that F ◦D′(crs,Ext(crs, sk, f(CWi)), f(CWi); ri) cannot

be correlated with the parity of its input ~X i. Details follow.

We construct the distribution of circuits C2
F . A draw C ∼ C2

F is done as follows:

1. Sample (crs, sk,−→τ sim)← CRSGen(1n).

2. Sample tampering function A(crs)→ f .

167



3. Sample ~c′, c′ uniformly at random,

4. Set the m · (n+1)-bit key ~k
′
:= [~k

′i
]i∈[m] = [c

′i
1 , . . . , c

′i
n, c

′i]i∈[m]. For i ∈ [m], j ∈

[n+ 1], compute k̂
′i
j ← Encrypt(pk, k

′i
j ). For i ∈ [m], let ~̂k

′i := k̂
′i
1 , . . . , k̂

′i
n+1.

5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β,i
j ]β∈{0,1},i∈[m],j∈[n] and T ′ (as described in Fig-

ure 5.8).

7. Sample ~x1, . . . , ~xi−1 from Dbi0
, and ~xi+1, . . . , ~xm from Dbi1

.

8. Output the following AC0 circuit C that has the following structure:

• hardcoded variables: crs, sk, f , [~̂k
′i]i∈[m],~c

′, c′, r, [T
′β,i
j ]β∈{0,1},i∈[m],j∈[n],

~x1, . . . , ~xi−1, ~xi+1, . . . , ~xm.

• input: ~X i.

• computes and outputs:

D′(crs,Ext(crs, sk, f(CWi)), f(CWi); ri)

.

Note that Ext ∈ AC0 since decryption for E := (Gen,Encrypt,Decrypt) in AC0

. Moreover, as above, given all the hardwired variables, computing CWi is in

AC0 since all it does is, for j ∈ [n], select the correct simulated proof T
′Xi
j ,i

j

based on the corresponding input bit X i
j. Additionally, f in AC0 and D′ is in

168



AC0 , since xor of two streams of bits is in AC0 and V SAT is in AC0 . Thus, the

entire circuit is in AC0 .

Remark 5.4.1. We wish to highlight that for AC0 tampering, the condition on the

encryption scheme used in Sections 5.3.2, and 5.4.2, that Decrypt algorithm must

be in AC0 can be relaxed. Note that in the proof we need to show that for PPT

distinguisher Dist, the entire tampering experiment can be simulated in AC0 after

we switch the decoding algorithm to alternate decoding D′. On a high level the main

difference between the decoding algorithm D and the alternate decoding algorithm D′

is that if the NIZK proofs are accepted then, D′ uses the “trapdoor” (secret key) to

decrypt the ciphertext and recover the underlying message. In the proof, we need to

argue that Dist cannot distinguish between the output of alternate decoding D′ in the

two tampering experiments when the input distribution is switched from D0 to D1.

Recall that this is argued by invoking incompressibility of parity function (over n bits)

PARn and noting that the length of the output of D′ is m << n. We can split the

alternate decoding algorithm D′, as follows: D′ = D′1 ◦D′2 where, (1) D′2 first checks

if the NIZK proofs are accepted and if so, simply output the ciphertext corresponding

to the underlying message (which is part of the codeword), and then (2) D′1 finds

the underlying message by brute-force, instead of decrypting the ciphertext. Now,

instead of proving Dist cannot distinguish between the tampering experiments when

the input distribution is switched from D0 to D1, we need to show that Dist ◦ D′1

cannot distinguish between the tampering experiments when the input distribution is

169



switched from D0 to D1. However, since the output of D′2 is the size of m ciphertexts

(so m · λ), by setting n polynomial sufficiently large even an unbounded Dist ◦D′1 is

not correlated with the parity due to the incompressibility theorem (Theorem 5.2.1).

Thus, by appropriate choice of parameters such that n is sufficiently large compared

to m number of ciphertexts encrypting a single bit, we no longer need that Decrypt ∈

AC0 .1

5.4.3 Tampering with decision trees

Theorem 5.4.3. Π = (CRSGen,E,D) (presented in Figure 5.7) is an m-bit, compu-

tational, non-malleable code in the CRS model against tampering by depth-d circuits

with unbounded fan-in and size ≤ 2m
ε

(where d, ε are constants), and m is such that

n = m1+ε, if the underlying components are instantiated in the following way:

• E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect

correctness and decryption in AC0 .

• ΠNI := (CRSGenNI,PNI,VNI, SimNI) is a same-string, weak one-time simulation-

sound NIZK with verifier in AC0 .

• For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at

random, conditioned on x1 ⊕ · · · ⊕ xn = b.

The proof of this theorem follows exactly as the proof of Theorem 5.4.2, ex-

cept we replace Claim 5.4.3 with Claim 5.4.4 below. But first, we present a simple

corollary of the theorem.

1We thank Vinod Vaikuntanathan and the other attendees at CIS seminar, MIT on February
23rrd, 2018, for insightful discussion which brought this improvement to our notice.

170



Corollary 5.4.2. Under the assumptions of Theorem 5.4.3, (CRSGen,E,D) is an

m-bit, computational, non-malleable code against tampering by decision trees of com-

plexity ≤ mε, where 0 < ε ≤ 1 is a constant, and n = m1+ε.

This follows from the above theorem when put together with the fact that deci-

sion trees of depth t can be represented as a disjunction of 2t terms (each term is a

path to some 1).

Claim 5.4.4. Let n be security parameter. Fix some d ∈ Z. Let ε ≥ 1/d. Let m be

such that n = m1+ε Let C : {0, 1}n → {0, 1}m be composed of depth-d circuit with

unbounded fan-in and size s = 2m
ε
. For γ ∈ {0, 1} let ~Xγ be a random variable

distributed as Dγ. Then for every Boolean function F : {0, 1}m → {0, 1} over m

variables,

∣∣∣Pr[F ◦ C( ~X0) = 1]− Pr[F ◦ C( ~X1) = 1]
∣∣∣ ≤ 1

2
+

(k + 1)

2 exp(mε)
.

Proof. Let n = m1+ε/q for 1 > ε ≥ 1/d. Let ρ be a random restriction over {0, 1}`

such that Pr[?] = q = 1
18dedmdε

≤ 1
18dedm

. Let t = mε. Then, by lemma 3.3.1 and a

union bound the probability that some output bit of Cρ cannot be represented by a

decision tree of depth t− 2 is at most ms(9q1/dt)t.

ms(9q1/dt)t ≤ m2m
ε

(
9mε

18emε
mε)m

ε

(5.4.4)

= m exp(−mε). (5.4.5)

If Cρ can be represented by a decision tree of depth t− 1 call Cρ “simple.”

171



Any F : {0, 1}m → {0, 1} has decision tree complexity at most than m. If

we compose this with a simple Cρ, the resulting decision tree has complexity <

m1+ε − 1 [116].

Additionally, by standard Chernoff bounds, the probability that ρ contains

more than 4`q ?’s is at most exp(−mε). Call such a ρ “bad.” Note that if this is

the case, then Cρ is a function over at least m1+ε variables.

If neither event happens, ρ is not bad and Cρ is simple, then F◦Cρ is completely

uncorrelated with parity. Otherwise, the correlation is bounded by 1. Therefore, we

can simply bound correlation with the probability that either ρ is bad or Cρ is not

simple: (m+ 1) exp(−mε).

5.5 One-Bit NMC Against Streaming Adversaries

We begin by describing constructions of the underlying components required to

instantiate the generic constructions in the streaming adversaries setting.

In the following, we assume that the tampering class F corresponds to stream-

ing adversaries with memory o(n′′). We then choose parameter n ∈ ω(n′′) and

parameter n′ ∈ ω(n). n is the parameter for the hard distribution described in Sec-

tion 5.5.1, n′ is the parameter for the encryption scheme described in Section 5.5.2,

n′′ is the parameter for the weak encryption scheme (Hide,Rec) described in Sec-

tion 5.5.3.

172



5.5.1 The Hard Distribution Db (parameter n)

Let n = (µ+ 1)2 − 1

For b ∈ {0, 1}, a draw from the distribution Db is defined as follows: Choose

a parity χS uniformly at random from the set of all (non-zero) parities over µ vari-

ables (∅ 6= S ⊆ [µ]). Choose y1, . . . , yµ ∼ {0, 1}µ uniformly at random. Choose y

uniformly at random, conditioned on χS(y) = b. Output the following n-bit string:

[(yi, χS(yi)]i∈[µ]||y.

The hardness of the distribution follows from Theorems 5.2.3 and lemma 5.2.1.

Claim 5.5.1. Let A be a streaming algorithm with o(n) space, and α > 0. Then,

‖ Pr
x∼D0

[A(x) = 0]− Pr
x∼D1

[A(x) = 0]‖ ≤ 2αn/3.

5.5.2 Encryption scheme E = (Encrypt,Decrypt) (parameter n′ ∈

ω(n))

The Learning Parity problem yields an encryption scheme with semantic se-

curity against streaming adversaries with o(n′) storage. We can use this encryption

scheme to encrypt the key k, bit-by-bit, thus yielding an encryption scheme with the

necessary properties.

To encrypt a bit b, Encrypt(b) outputs z, where z ∼ Db and Db is the same as

above, except with parameter n′.

To decrypt a ciphertext z, with Θ(n′) storage, Decrypt(z) runs the parity learn-

173



ing algorithm to recover b.

Renaming variables and plugging in Claim 5.5.1 from above, we have

Claim 5.5.2. Let A be a streaming algorithm with o(n) space, and α > 0. Then,

‖ Pr
z∼Encrypt(0)

[A(z) = 0]− Pr
z∼Encrypt(1)

[A(z) = 0]‖ ≤ 2αn/3.

5.5.3 Weak Encryption Scheme (parameter n′′ ∈ o(n))

Let n′′ = (µ′′+ 1)2− 1 Given a bit string k = k1, . . . , kµ′′ of length µ′′ bits, and

a vector y := y1, . . . , yµ′′ of length µ′′ bits, let Sk ⊆ [µ′′] denote the set of positions

in k that are set to 1. Let m = m1, . . . ,m` be a bit string of length ` bits (where `

is polynomial in µ′′). let χSk(y) :=
⊕

i∈Sk yi.

On input m ∈ {0, 1}` and k as above, Hide(k,m) chooses random strings

y0
1, . . . , y

0
µ′′, y1, . . . , y` ← Uµ′′ and outputs ([y0

i , χSk(y
0
i )]i∈[µ′′], [(yi, χSk(yi)⊕mi)]i∈[`]).

On input ([y0
i , χSk(y

0
i )]i∈[µ′′], [(yi, χSk(yi) ⊕ mi)]i∈[`]), Rec uses the first µ′′ ex-

amples to learn χSk and then returns [mi]i∈[`] := χSk(yi)⊕m′i.

5.5.4 Non-Interactive Simulatable Proof System (parameter n′′ ∈

o(n))

In the following construction, inputs and proofs have λ parallel components,

corresponding to λ parallel invocations of the MPC-in-the-head paradigm. To sim-

plify the exposition, we assume that the bounded, streaming computations read in λ

symbols in parallel from each of the λ parallel components and output λ symbols in

174



parallel for each of the λ parallel components. Note that this increases the required

storage by a factor of λ, but since we set λ� n′′, the overall storage bound remains

below n′′.

We begin by introducing a simplified proof system and proving its soundness.

We then present the actual proof system used in our construction. Looking ahead,

proving that the Simulation Soundness property required by Theorem 5.3.1 holds,

will reduce to the soundness of the simplified proof system.

Simplified Proof System Π′ Let λ′ be security parameter and ` is a constant (e.g.

` = 5).

P: On input statement s, encoding [s1
u, . . . , s

λ′
u ]u∈[`] and witness w:

1. Check that for q ∈ [λ′], sq1 ⊕ · · · ⊕ s
q
` = s: Compute streaming hash h∗ :=

Hh(s) and λ′ streaming hashes in parallel, hq := [Hh(sq1⊕ · · · ⊕ s
q
`)]q∈λ′, where

H is Merkle Damgard and h ← H, where H is a universal family of hash

function. Check that for all q ∈ [λ′], hq = h∗. If not, output ⊥.

2. Run MPC-in-the-head: For q ∈ [λ], secret share w into ` additive shares

(wq1, . . . , w
q
` ) and run

MPC(P1(sq1, w
q
1) . . . , P`(s

q
` , w

q
` ), producing views [Viewqu]q∈[λ′],u∈[`] (here, each view

is a tableau of the parties’ computation, as described in the construction of cir-

cuit SAT proof system for streaming verifiers in Section 5.2.2).

Note that of the input wires to the views, some will be public (corresponding to

175



the shares of s) and some will be private (corresponding to the shares of w).

3. Encrypt the Views. For q ∈ [λ′], u ∈ [`], choose kqu uniformly at random

from {0, 1}µ′′. Compute Squ ← Hide(kqu,View
q
u), where Hide is run with param-

eter n′′. Output proof T = ([k̂qu, S
q
u]q∈[λ′],u∈[`]).

V: On input statement s, encoding [s1
u, . . . , s

λ′
u ]u∈[`] and proof T , parse T = ([k̂qu, S

q
u]q∈[λ′],u∈[`]).

1. Generate randomness. Choose randomness r1, . . . , rλ′ and hash function

h← H. For each q ∈ [λ], choose a subset Sq ⊆ [`] using random coins rq.

2. Check that for q ∈ [λ], sq1 ⊕ · · · ⊕ s
q
` = s: Repeat the same steps as P to

check that for q ∈ [λ], sq1 ⊕ · · · ⊕ s
q
` = s if not, output ⊥.

3. Prepare hashes of input for later equality checks. This is done in

parallel to the previous item. For q ∈ [λ′], u ∈ Sq, compute hq,u = Hh(squ).

4. Open selected views. For q ∈ [λ], u ∈ S1
q , recover kqu = Decap(k̂qu), recover

Viewqu, where Viewqu := Rec(Squ) (where Rec is run with parameter n′′) and

corresponding inputs s̃qu, w̃
q
u.

5. Check consistency of views. This is done in parallel to the previous item.

(1) Check that the opened views are internally consistent (using the verifier

described in the construction of circuit SAT proof system for streaming verifiers

in Section 5.2.2.2). (2) Check that the opened views are consistent with each

other (i.e. same transcript) using similar hashing techniques as above. (3)

Check that hq,u = Hh(s̃qu).

176



6. Output. If all checks succeed, output 1. Otherwise, output 0.

Claim 5.5.3. Soundness of proof system follows from perfect correctness of the

MPC and security of the universal hash function family H.

The Actual Proof System Π As above, in the following construction, inputs and

proofs have λ parallel components, corresponding to λ parallel invocations of the

MPC-in-the-head paradigm. To simplify the exposition, we assume that the bounded,

streaming computations read in λ symbols in parallel from each of the λ parallel

components and output λ symbols in parallel for each of the λ parallel components.

Note that this increases the required storage by a factor of λ, but since we set λ� n′′,

the overall storage bound remains below n′′.

Let λ be security parameter and ` is a constant.

P: On input statement s := s1, . . . , st, encoding [sq1, . . . , s
q
` ]q∈[λ] and witness w:

1. Check that for q ∈ [λ], sq1 ⊕ · · · ⊕ s
q
` = s: Compute streaming hash h∗ :=

Hh(s) (with block length λ) and λ streaming hashes (all with block length λ) in

parallel, hq := [Hh(sq1⊕· · ·⊕s
q
`)]q∈λ, where H is Merkle Damgard and h← H,

where H is a universal family of hash function. Check that for all q ∈ [λ],

hq = h∗. If not, output ⊥.

2. Run MPC-in-the-head: For q ∈ [λ], secret share w into ` additive shares

(wq1, . . . , w
q
` ) and run

MPC(P1(sq1, w
q
1) . . . , P`(s

q
` , w

q
` )), producing views [Viewqu]q∈[λ],u∈[`].

177



Note that of the input wires to the views, some will be public (corresponding to

the shares of s) and some will be private (corresponding to the shares of w).

3. Select the Slots. For each position q, u there are ` · 2t slots [Sz,pq,u]z∈[`],p∈[2t],

where t = |s|. Let sq[z, p] denote the p-th bit position of the string sqz. Let S ′q,z

be the set of positions in the string [sq[z, p]||sq[z, p]]p∈[t] that are set to 1. Note

that |S ′q,z| = t.

4. Encrypt the Views. For q ∈ [λ], u ∈ [`], z ∈ [`], p ∈ [2t], choose kz,pq,u

uniformly at random from {0, 1}µ′′. For q ∈ [λ], u ∈ [`], z ∈ [`] and p ∈ S ′q,z,

compute Sz,pq,u ← Hide(kz,pq,u,View
q
u), where Hide is run with parameter n′′. For

q ∈ [λ], u ∈ [`], z ∈ [`] and p /∈ S ′q,z, set Sz,pq,u ← Hide(kz,pq,u,~0). Output proof

T = ([k̂z,pq,u, S
z,p
q,u]q∈[λ],u∈[`],z∈[`],p∈[2t]).

V: On input statement s := s1, . . . , st, encoding [sq1, . . . , s
q
` ]q∈[λ], and proof T , parse

T = ([k̂pq,u, S
p
q,u]q∈[λ],u∈[`],p∈[2t]).

1. Generate Randomness. Choose randomness (r1
1, r

2
1) . . . , (r1

λ, r
2
λ) and hash

function h ← H. Choose subsets S1
q ,S2

q ⊆ [`], each of size 2, using random

coins (r1
q , r

2
q).

2. Check that for q ∈ [λ], sq1 ⊕ · · · ⊕ s
q
` = s: Repeat the same steps as P to

check that for q ∈ [λ], sq1 ⊕ · · · ⊕ s
q
` = s if not, output ⊥.

3. Prepare hashes of input for later equality checks. This is done in

parallel to the previous item. Do the following in parallel: (1) For q ∈ [λ],

u ∈ S1
q , compute h1

q,u = Hh(squ) in a streaming fashion, using block size λ and

178



space O(λ2). (2) For q ∈ [`], u ∈ S2
q , compute h2

q,u = Hh(squ) in a streaming

fashion, using block size λ and space O(λ2).

4. Open selected views and check consistency across slots. For q ∈ [λ],

u ∈ S1
q , do the following: (1) For each z ∈ [S2

q ], p ∈ [2t], recover kz,pq,u =

Decap(k̂pq,u). (2) For each z ∈ [S2
q ], recover Viewz,pq,u, where Viewz,pq,u := Rec(Sz,pq,u),

and Rec is run with parameter n′′. Let [Viewz,pq,u]p∈S′zq,u be the views (out of

[2t]) that do not decrypt to ~0 (i.e. S ′zq,u is the set of slots that are filled).

Let s′zq,u denote the vector corresponding to S ′zq,u. (3) Use hashing as above

to check that for each q, r all the recovered views Viewz,pq,u are identical. (4)

Let Viewqu denote the contents of these identical views and let (s̃qu, w̃
q
u) be the

corresponding inputs.

5. Check consistency of views. This is done in parallel to the previous item.

(1) For q ∈ [λ], u ∈ S1
q check that the view Viewqu is internally consistent

(using the verifier described in the construction of circuit SAT proof system

for streaming verifiers in Section 5.2.2.2). (2) For q ∈ [λ], Check that the views

[Viewqu]u∈S′q are consistent with each other (i.e. same transcript) using similar

hashing techniques as above. (3) For each u ∈ S1
q , check that h1

q,u = Hh(s̃qu).

(4) For each u ∈ S2
q , check that h2

q,u = Hh(s̃qu).

6. Output. If all checks succeed, output 1. Otherwise, output 0.

Sim: On input statement s := s1, . . . , st, encoding [sq1, . . . , s
q
` ]q∈[λ], . . . , [s

q
1, . . . , s

q
` ]q∈[λ]:

1. Check that for q ∈ [λ], sq1 ⊕ · · · ⊕ s
q
` = s: Compute streaming hash h∗ :=

179



Hh(s) and λ streaming hashes in parallel, hq := [Hh(sq1 ⊕ · · · ⊕ s
q
`)]q∈λ, where

H is Merkle Damgard and h ← H, where H is a universal family of hash

function. Check that for all q ∈ [λ], hq = h∗. If not, output ⊥.

2. Run MPC-in-the-head Simulation: For q ∈ [λ], choose subset S1
q ⊆

[`] using random coins r1
q . run SimMPC to produce the views of parties Pu,

u ∈ S1
q (note that each of these parties has public input squ) producing views

[Viewqu]q∈[λ],u∈Sq .

3. Select the Slots. For each position q, u there are `·2t slots [q, u, z, p]z∈[`],p∈[2t],

where t = |s|. Let sq[z, p] denote the p-th bit position of the string sqz. Let S ′q,z

be the set of positions in the string [sq[z, i]||sq[z, i]]i∈[t] that are set to 1. Note

that |S ′q,z| = t.

4. Encrypt the Views. Choose subset S2
q ⊆ [`] using random coins r2

q . For

q ∈ [λ], u ∈ [`], z ∈ [`], p ∈ [2t], choose kz,pq,u uniformly at random from {0, 1}µ′′.

For q ∈ [λ], u ∈ [S1
q ], z ∈ [S2

q ] and p ∈ S ′q,z, compute Sz,pq,u ← Hide(kz,pq,u,View
q
u),

where Hide is run with parameter n′′. For q ∈ [λ] and u, z, p such that u /∈

[S1
q ] OR z /∈ [S2

q ] OR p /∈ S ′q,z, set Sz,pq,u ← Hide(kz,pq,u,~0). Output proof π =

([k̂z,pq,u, S
z,p
q,u]q∈[λ],u∈[`],z∈[`],p∈[2t]).

Remark 5.5.1. Note that if the simulated proof and encoding [sq1, . . . , s
q
` ]q∈[λ] are

generated at the same time, then we can first produce the simulated proof π in-

dependently of s. This can be done because the simulated proof depends only on

[squ]q∈[λ],u∈[S1
q∪S2

q ], which can be chosen uniformly at random (since our parameter

settings ensure that |S1
q |+ |S2

q | = `− 1). Given the simulated proof π and the choice

180



of [sqy]q∈[λ],y∈[S1
q∪S2

q ], we can then output the entire encoding

[sq1[1], . . . , sq` [1]]q∈[λ], . . . , [s
q
1[t′], . . . , sq` [t

′]]q∈[λ] and proof π in a streaming fashion,

given input s in a streaming fashion, requiring only O(λ2) memory. This is done by

hardwiring [sqy]q∈[λ],y∈[S1
q∪S2

q ], and, in a block-by-block streaming fashion (with block

length λ), outputting, in parallel, the i-th block of each share for each q ∈ [λ], along

with the missing share: [s⊕
(⊕

y∈[S1
q∪S2

q ] s
q
y

)
]q∈λ.

Remark 5.5.2. Note that for two statements s1 6= s2 and their proofs πs1, πs2,

for each q, there exists a pair (z∗q , p
∗
q) such that for each u ∈ [`], slot [q, u, z∗q , p

∗
q]

contains encryptions of ~0 in πs1 and encryptions of Viewqu in πs2. Moreover, for

any two statements s1 6= s2 and every q ∈ [λ], the probability over choice of r2 that

z∗q ∈ [S2
q ], (which means that slots [q, u, z∗, p∗]u∈S1

q
will be checked by V) is at least

1/`.

Claim 5.5.4. Let A be an unbounded adversary that takes as input random variable

S1
tamp||S2

tamp. Let S1, S2 denote the random variables corresponding to the initial

contents of A’s input (before tampering).

Let f be a streaming tampering function with memory o(n′′) that reads in

random variable S1||I||S2 (chunk-by-chunk), where I = Hide(k,m) is an encoding

of m with random key k and parameter n′′, and (in a streaming fashion) outputs the

random variable S1
tamp||Itamp||S2

tamp (chunk-by-chunk). For i ∈ [3], let f(S1||I||S2)[i]

denote the i-th chunk outputted by f .

Then for any m0,m1, when I encodes m0 vs. I encodes m1 the resulting output

distributions of A(f(S1||I||S2)[1], f(S1||I||S2)[3]) are statistically close.

181



Proof. If the claim is false, then there exists a distinguisherD. UsingD, A, f , we can

now construct a streaming branching program with space o(n′′) that distinguishes

whether I encodes 0 or 1. We do so in the following way:

1. Fix the random variables S1 = s1 and S2 = s2

2. Construct a branching program BPs1,s2,D,A,f that hardcodes s1, s2 and emu-

lates f(s1||I||s2). Note the following about the emulation:

• S1
tamp = s1

tamp = f(s1||I||s2)[1] and the entire inner state of f up to

the moment right before it starts reading I can be hardcoded into the

transition function for BP .

• from this point on, we can emulate f(s1||I||s2) using space o(n′′) until

the moment that f finishes reading I.

• from this point on, we can determine the output of

A(s1
tamp, f(S1||I||S2)[3]) without requiring any more memory. To do this,

we use the fact that s1, s1
tamp, s

2 are hardcoded and simply precompute

the output of A(s1
tamp, f(s1||I||s2)[3]) for each of the possible 2o(n

′′) in-

ternal states of f (by using the internal state of f at the moment that

f finishes reading I to compute S2
tamp = s2

tamp and then running A on

(s1
tamp, s

2
tamp)) and then output whatever D outputs. This implies that

given the internal state of f at the moment f finishes reading I, we

can immediately transition to the output level of the branching program,

without requiring additional state.

182



3. Note that BP succeeds with the same probability as D.

Theorem 5.5.1. Π = (E,D) (presented in Figure 5.1) is a one-bit, unconditional

non-malleable code against streaming adversaries with space o(n′′), if the underlying

components are instantiated in the following way:

• E := (Encrypt,Decrypt) is the encryption scheme described in Section 5.5.2

(with parameter n′ := n′(n)).

• ΠNI := (PNI,VNI, SimNI) the simulatable proof system with streaming verifier

described in Section 5.5.4 with parameter n′′ := n′′(n).

• For b ∈ {0, 1}, Db is the distribution described in Section 5.5.1 (with paramter

n).

Note that no CRS or computational assumptions are needed for this result.

Indeed we can assume that the adversary A outputting tampering function f is

computationally unbounded. To maintain consistency, we continue to use the

variables crs, sk, −→τ sim but we simply assume that all of them are set to ⊥.

Proof. To prove the theorem, we need to show that the necessary properties from

Theorem 5.3.1 hold. We next go through these one by one.

• Simulation of proofs.

1. Pr[g(CW0, f(CW0), r0) = 1] ≈ Pr[g(CW1, f(CW1), r1),= 1],

183



2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈

Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly

at random, CW0 ← E(crs,~b0) and CW1 ← E1(crs,−→τ sim, r1,~b0).

To prove this, we must switch from all real proofs (as outputted by E) to

all simulated proofs (as outputted by E). Looking closer at the construction

from Section 5.5.4, to switch from a real to a simulated proof, we must go

through a sequence of hybrids starting from honestly generated proofs from

E and ending with simulated proofs from E1. In hybrid H[q,u,p] we switch to

using encoding algorithm E[q,u,p], which works the same way as the encoding

in the previous hybrid, except when generating the proofs, if r /∈ Sq, it sets

random variable Spq,u to Spq,u ← Hide(kpq,u,~0). Note that for u ∈ Sq, H[q,u,p]

is identical to the previous hybrid. Let CW[q,u,p] denote the random variable

representing the codeword in each hybrid distribution. We use Claim 5.5.4

to show that for every fixed random string r and u /∈ Sq, the output of g in

consecutive hybrids is indistinguishable and the output of Ψ in consecuitve

hybrids is indistinguishable. To see this, note that we set A from Claim 5.5.4

to be equal to D, f = f , S1 denotes the codeword up to the [q, u, p] position,

S2 denotes the codeword after the [q, u, p] position, and I := Spq,u. The key

is that VNI (which checks the proofs during computation of g and Ψ) with

random coins r := r1, . . . rq will not check slot [q, u, p] when determining its

output and so the conditions of Claim 5.5.4 are satisfied.

184



• Simulation of Encryption.

1. Pr[g(CW1, f(CW1), r1) = 1] ≈ Pr[g(CW2, f(CW2), r2),= 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈

Ψ(g, crs,CW2, f(CW2), r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly

at random,

CW1 ← E1(crs,−→τ sim, r1,~b0) and CW2 ← E2(crs,−→τ sim, r2,~b0).

To see this, we will show that g(CW1, f(CW1), r1),

Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) can be computed in a streaming

fashion with memory o(n′), while distinguishing encryptions of ki from encryp-

tions of k′i in a streaming fashion requires memory Ω(n′) (see Claim 5.5.2). We

will show that each of E1/E2, f,D, g can be computed in a streaming fashion

with memory o(n′). This implies that their (parallel) composition can also be

computed in a streaming fashion with memory o(n′).

To see that this is true for E1/E2, we use the observation from Remark 5.5.1.

It is true for f by definition of the tampering class F . D consists of (1)

determining b such that ~x is in the support of Db and (2) running the verifier

for Π. Note that (1) can be done in a streaming fashion using Θ(n) bits

of memory. Since we choose n′ = ω(n), the required memory is o(n′). (2)

can be done in a streaming fashion with space o(n′), since the only memory

intensive part of the verification is running Rec. Similar to the above, we set

parameters of Hide/Rec such that this can be done using Θ(n′′) bits of memory,

185



where n′′ = o(n). Finally, g consists of a bit-wise comparison of two strings

obtained in a streaming fashion and running the verifier for Π, both of which

can be done in a streaming fashion with memory o(n′). Thus, we have shown

that each of each of E1/E2, f,D, g can be computed in a streaming fashion with

memory o(n′).

• Simulation Soundness.

Prr[D(f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ∧

g(CW2, f(CW2), r2) = 0] ≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly at

random and CW2 ← E2(crs,−→τ sim, r, 0).

We give a reduction from the above property with Π instantiated with security

parameter λ to the soundness of Π′ with security parameter λ′ = λ/2`.

First, if g(CW2, f(CW2), r2) = 0 then it must be the case that either the

verification of the proofs rejects (in both D and D′, since they are the same) or

s1 6= s2, where s1 is the statement for the proofs in CW and s2 is the statement

for the proofs in f(CW), and s2 /∈ L. Therefore, by Remark 5.5.2, for each q,

there exists a pair (z∗q , p
∗
q) such that for each u ∈ [`], slot [q, u, z∗q , p

∗
q] contains

encryptions of ~0 in πs1 and (is supposed to contain) encryptions of Viewqu in

πs2 .

We now consider the distribution over slots ([q, u, z∗q , p
∗
q]q∈[λ],u∈[`]). Note that

by Claim 5.5.4 the distribution over these slots only is statistically close in the

case that f gets as input a codeword with a simulated proof, versus a proof

186



where all Sz,pq,u encrypt ~0.

Therefore, our reduction R will construct a simulated proof

π′ = ([k̂z,pq,u, S
z,p
q,u]q∈[λ],u∈[`],z∈[`],p∈[2t]), for s1 where all Sz,pq,u encrypt ~0. Note that

this simulated proof π′ has no dependence on (r1
1, r

2
1) . . . , (r1

λ, r
2
λ), since all

slots encrypt ~0 so there is no information at all in the proof. R will then

extract a proof π′′ = ([k̂z,pq,u, S
z,p
q,u]q∈[λ],r∈[`],z∈[`],p∈[2t]) for some statement s2 6= s1

from the tampered codeword. It will now choose random coins r2
q and sets

S2
q ⊆ [`], for q ∈ [λ] (using random coins r2

q). Using Remark 5.5.2, we know

that the probability over choice of random coins r2
q that z∗q ∈ S2

q is at least 1/`.

Therefore, with all but negligible probability, there is a set Q ⊆ [λ] of size at

least 1/2` · λ such that z∗q ∈ S2
q for all q ∈ Q. Moreover, note that if w.h.p.

over choice of r1
1, . . . , r

2
λ, all checks for [k̂z,pq,u, S

z,p
q,u]q∈Q,u∈[`],z∈[`],p∈[2t] pass then it

must be the case that [k̂
z∗q ,p

∗
q

q,u , S
z∗q ,p

∗
q

q,u ]q∈[Q],u∈[`] is a proof for statement s2 for

proof system Π′ for which VΠ′ accepts w.h.p. But this breaks the soundness

of proof system Π′ with security parameter λ′ = |Q| ≥ λ/2`.

• Hardness of Db relative to Alternate Decoding.

1. Pr[g(CW2, f(CW2), r2) = 1] ≈ Pr[g(CW3, f(CW3), r3) = 1],

2. D′(crs,Ext(sk, f(CW2)), f(CW2); r2) ≈ D′(Ext(sk, f(CW3)), f(CW3); r3),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly

at random, CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ← E2(crs,−→τ sim, r3, 1).

Let ~X denote a random variable where ~X ← D0 with probability 1/2 and

187



~X ← D1 with probability 1/2 and let random variable CW denote the output

of E2 when ~X replaces ~x.

To show (1), assume Pr[g(CW2, f(CW2), r2) = 1] and Pr[g(CW3, f(CW3), r3) =

1] differ by a non-negligible amount. This implies that a circuit that takes as

input ~X, hardwires all other random variables, and outputs 1 in the case

that g(CW, f(CW), r) = 1 and 0 otherwise, implying that it has non-negligible

correlation to the function that outputs b such that ~X is in the support of

Db. We will show that the above can be computed by a streaming adversary

with storage o(n) and input ~X, thus contradicting Claim 5.5.1. Indeed, this

follows since the output of E2 can be computed in a streaming fashion using a

similar trick to the AC0 case, f can be computed by streaming adversaries with

storage o(n) by definition of tampering class F , and verification for Π can also

be computed in a streaming fashion with memory Θ(n′′), where n′′ = o(n). So

the composition of the three can also be computed by streaming adversaries

with storage o(n).

To show (2), assume D′(crs,Ext(sk, f(CW2)), f(CW2); r2) and

D′(crs,Ext(sk, f(CW3)), f(CW3); r3) have non-negligible statistical distance.

This implies that a circuit that takes as input ~X, hardwires all other random

variables, and outputs D′(crs,Ext(sk, f(CW)), f(CW); r2) has non-negligible

correlation to the function that outputs b such that ~X is in the support of

Db. We will show that D′(crs,Ext(sk, f(CW)), f(CW); r2) can be computed

by a streaming adversary with storage o(n) and input ~X, thus contradicting

188



Claim 5.5.1. To show this, note first that the output kn+1 of Ext(sk, f(CW))

can be given as non-uniform advice since it does not depend on ~X. This is

the case because the key is extracted by looking at the first part of the tam-

pered codeword, which is independent of ~X. Since the tampering function is

streaming as well, it means that the output of the tampering function was

determined independently of ~X.

Now, we must show that E2, f , and D′(crs, kn+1, ·; r2) can all be computed in

a streaming fashion. We have already argued that E2, f can be computed in

a streaming fashion. Note that D′(crs, kn+1, ·; r2) simply decrypts (by xor’ing

kn+1 with c) and checks all proofs using the verifier of Π, which can be done

in a streaming fashion, with space Θ(n′′) = o(n).

5.5.5 Multi-Bit NMC Against Streaming Adversaries

The result from the previous section extends trivially for any number m of bits.

Moreover, when we increase the number of bits m, all other parameters (n, n′, n′′)

can remain the same and do not need to be increased as in our previous multi-bit

constructions. To see this, note that the only additional property that needs to be

proved in the multi-bit case is that for every Boolean function, represented by a cir-

cuit F over m variables,

F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈

F ◦ D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3).

189



But in the bounded, streaming model, F as above can be computed without requiring

any additional memory beyond what is required in the one-bit case. To see this,

recall that the streaming adversary can receive the decryptions of the m ciphertexts

in the tampered codeword as non-uniform advice, since tampering on this part of

the codeword does not depend on the values of [~xi]i∈[m]. Thus, the streaming ad-

versary needs only to check the m · n + 1 proofs, in a streaming fashion, in order

to determine the output of D′: If all proofs verify correctly, the output of D′ will

consist of the hardcoded, “candidate” bits; otherwise, D′ will output ~0. Thus, the

streaming adversary can compute the output of D′ using the same amount of space

as in the one-bit case. Now, F needs to be applied to the output of D′. But note that

computing F does not require any additional space. Indeed, given the state of the

streaming adversary at the moment the output of D′ is determined, we can simply

hardcode the output of F in the transition function. Thus, no additional memory is

required.

190



5.6 Figure to explain MPC in head from section 5.5.4

191



0
1
1
1
1
0

0
0
1
1
0
0

1
0
1
1
0
1

P1 P2 P3 P4 P5

sq1

· · ·

sqi

· · ·

sq`

Figure 5.13: A pictorial representation of the Prover’s output in the NI Simu-
latable Proof System Π. Let ` = 5 be the number of parties, and λ be the
security parameter. In the q-th iteration, each party Pi for i ∈ [`] has inputs
(wqi , s

q
i ). We encode each sqi as sqi ||s

q
i , where sqi is the bit-wise complement

of sqi . For example 001 is encoded as 001100. For each bit of the encoding
of sqi , if the bit is 1 then each party Pi places a weak encryption of its view,
viewi, in the corresponding slot (represented by filled-in rectangles of various
shades of gray in the figure). Otherwise, if the bit is 0 then each party places
a weak encryption of all 0’s in the corresponding slot, (represented by blank
rectangles in the figure). During verification, the verifier checks in the first
step that input s = sq1⊕ s

q
2⊕ . . .⊕ s

q
` . To check the consistency of the views,

the verifier selects 2 columns (P2 and P4) and 2 rows (sqi and sq`) at random
and does the following: (1) checks that sqi and sq` are consistent with the
values read in the first step (2) runs Rec on the weakly encrypted views and
checks that the resulting views are consistent with each other and internally.

192



Chapter 6: Tight Upper and Lower Bounds for Leakage-Resilient,

Locally Decodable and Updatable Non-Malleable Codes

6.1 Introduction

As discussed in chapter 1 standard non-malleable codes are useful for protecting

small amounts of secret data stored on a device (such as a cryptographic secret key)

but unfortunately are not suitable in settings where, say, an entire database must

be protected. In a recent result, [54] proposed a new notion called locally decodable

and updatable non-malleable codes, which informally speaking, provides the security

guarantees of a non-malleable code while also allowing for efficient random access.

In more detail, we consider a message m = m1, . . . ,mn consisting of n blocks, and

an encoding algorithm E(m) that outputs a codeword Ĉ = ĉ1, . . . , ĉn̂ consisting of n̂

blocks.

As observed by [54], achieving these locality properties requires a modification

of the previous definition of non-malleability: Suppose a tampering function f only

modifies one block of the codeword, then it is likely that the output of the decoding

algorithm, D, remains unchanged in most locations. (Recall D gets as input an index

i ∈ [n] and will only access a few blocks of the codeword to recover the i-th block

193



of the message, so it may not detect the modification.) In this case, the (overall)

decoding of the tampered codeword f(Ĉ) (i.e. (Df(Ĉ)(1), . . . ,Df(Ĉ)(n))) can be highly

related to the original message, which intuitively means it is highly malleable.

To handle this issue, [54] consider a more fine-grained experiment. Informally,

they require that for any tampering function f (within some class), there exists a

simulator that, after every update instruction, computes a vector of decoded messages

~m∗, and a set of indices I ⊆ [n]. Here I denotes the coordinates of the underlying

messages that have been tampered with. If I = [n], then the simulator thinks that

the decoded messages are ~m∗, which should be unrelated to the original message as

well as the messages placed in each position by the updater. On the other hand,

if I ( [n], the simulator thinks that all the messages not in I remain unchanged

(equivalent to the most recent values placed there by the simulator or the original

message, if no update has occurred in that position), while those in I become ⊥. This

intuitively means the tampering function can do only one of the following cases:

1. It destroys a block (or blocks) of the underlying messages while keeping the

other blocks unchanged, OR

2. If it modifies a block of the underlying message to a valid encoding, then it must

have modified all blocks to encodings of unrelated messages, thus destroying the

original message.

It turns out, as shown by [54], that the above is sufficient for achieving tamper-

resilience for RAM computations. Specifically, the above (together with an ORAM

scheme) yields a compiler for any RAM program with the guarantee that any ad-

194



versary who gets input/output access to the compiled RAM program Π running on

compiled database D who can additionally apply tampering functions f ∈ F to the

database D adaptively throughout the computation, learns no more than what can be

learned given only input/output access to Π running on database D.

Rewind attacks As discussed earlier in chapter 1, when considering both leakage

and tampering attacks (even just a single leakage query followed in a later round

by a single tampering query) so-called rewind attacks become possible. In a rewind

attack, the attacker does the following (1) leak information on only a “few” blocks

of memory in rounds 1, . . . , i; (2) wait during rounds i+1, . . . , j until these memory

locations are (with high probability) modified by the “updater” (the entity that models

the honest computation on the data); (3) re-write the old information into these

memory locations in round j + 1, with the goal of causing the state of the computa-

tion to be rewound. Rewind attacks can be thwarted by ensuring that when the old

information is written back, it becomes inconsistent with other positions of the code-

word and an error is detected. On the other hand, a bad outcome of a rewind attack

occurs if when decoding certain blocks of memory, with non-negligible probability,

the old values from round i are recovered and no error is detected. This is a problem

since such an outcome cannot be simulated by a simulator as required in the security

definition: The decoding of these blocks depends on the original message and yet is

no longer equal to “same” (since the values decoded are not the most recent values

placed in those positions by the updater).

195



6.1.1 Our Results

Our results show that any construction of locally decodable and updatable non-

malleable codes in a threat model that allows for a rewind attack as above will require

“high locality.” Specifically, we show tight upper and lower bounds: (1) Every such

construction will require super-constant locality, moreover; (2) Super-constant local-

ity is sufficient for achieving constructions in the same threat model as [54] (which,

as discussed, allows for rewind attacks). Throughout the paper, we assume that the

decode and update procedures are non-adaptive in the sense that the next block of

the codeword accessed during decode/update does not depend on the contents of the

previous blocks accessed. For non-adaptive decode and update we consider two set-

tings: In the first, simpler setting, which we call non-adaptive decode and update

with deterministic accesses we assume that once the encoding scheme Π = (E,D,UP)

is specified, for each n ∈ N, the sets of codeword blocks Si := SD
i ∪ SUP

i accessed in

order to decode/update the i-th message block, i ∈ [n], are fixed. This is a natural re-

quirement, which holds true for the encoding scheme of [54]. This is the setting that

was considered in the conference version of this paper [53]. In this work, we also

consider a second, more complex setting, which we call non-adaptive decode and

update with randomized accesses. Here we assume that the locations accessed by

decode/update can depend on random coins r ∈ {0, 1}ρ, in addition to the message

index i. Specifically, once the encoding scheme Π = (E,D,UP) is specified, for each

n ∈ N, the sets of codeword blocks Si,r := SD
i,r ∪ SUP

i,r corresponding to the locations

accessed in order to decode/update the i-th message block, i ∈ [n], with random coins

196



r, are fixed. Note that since the access pattern depends on the random coins r, the

blocks of the codeword accessed each time location i is decoded/updated may differ.

Nevertheless, the access pattern is still non-adaptive since the next accessed location

depends only on the message index i to be decoded/updated and on random coins r,

but does not depend on the contents of previously read blocks.

We show the following:

Theorem 6.1.1 (Informal). Let λ be security parameter and let Π = (E,D,UP) be

a locally decodable and updatable non-malleable code that has non-adaptive decode

and update with deterministic accesses in a threat model which allows for a rewind

attack, which takes messages over alphabet Σ and outputs codewords over alphabet Σ̂,

where |Σ|, |Σ̂| ∈ poly(λ). Then, for n = poly(λ), Π must have locality δ(n) ∈ ω(1).

Moreover, for every δ(n) ∈ ω(1), there exists a computationally secure, locally

decodable and updatable non-malleable code Π = (E,D,UP) that has non-adaptive

decode and update with deterministic accesses, in a threat model which allows for

a rewind attack, which takes messages over alphabet Σ and outputs codewords over

alphabet Σ̂, where |Σ|, |Σ̂| ∈ poly(λ) and such that for n = poly(λ), Π has locality

δ(n).

Specifically, for the positive result, the construction of leakage resilient locally

decodable updatable codes is secure against the same classes of tampering and leakage

functions, F , G, as the construction of [54], but improves the locality from O(log n)

to δ(n), for any δ(n) ∈ ω(1).

In this work, we extend our lower bound beyond the setting considered in the

197



conference version [53], to the setting where the locations accessed by decode and

update may be randomized:

Theorem 6.1.2 (Informal). Let λ be security parameter and let Π = (E,D,UP) be a

locally decodable and updatable non-malleable code that has non-adaptive decode and

update with randomized accesses which takes messages over alphabet Σ and outputs

codewords over alphabet Σ̂, where |Σ|, |Σ̂| ∈ poly(λ), in a threat model which allows

for a rewind attack. Then, for n = poly(λ), Π has locality δ(n) ∈ ω(1).

We emphasize that, for both lower bounds, our attacks work even in a threat

model which allows only a single bit of leakage in each round.

We also note that since our attacks are efficient, the lower bounds are appli-

cable in the computational setting and therefore also rule out constructions based on

computational assumptions.

We leave as an open question extending our lower bound to the setting where

the access pattern of decode and update, in addition to being randomized, may also

be adaptive (i.e. the next position accessed by decode and/or update depends on the

values read in the previous positions). In Section 6.1.2.3, we discuss the difficulties

of extending our technique to the setting in which decode and update are adaptive.

6.1.2 Our Techniques

6.1.2.1 Lower Bound for Deterministic Access Patterns

We assume that there exists a locally decodable and updatable non-malleable

code with non-adaptive decode and update and constant locality, c, for all message

198



lengths n = poly(λ) (where n is the number of blocks in the message). We then

arrive at contradiction by showing that for every constant c, there exists a constant

c′ > c, such that the security guarantee cannot hold when encoding messages of

length X c′ number of blocks, where X ∈ poly(λ) is the bit length of the codeword

blocks. Specifically, for messages of length n := X c′ ∈ poly(λ) number of blocks,

we will present an explicit (efficient) attacker and an explicit updater for which

there cannot exist a simulator as required by the definition of locally decodable and

updatable non-malleable codes.

The attack we present is a rewind attack, as discussed before. Intuitively,

the main difficulty of designing the attack is to determine which positions of the

codeword are to be leaked and subsequently re-wound to their original values so that

with high probability in the real game, the corresponding message block will decode

(with no error detected) to the original value in that position, as opposed to the

most recently updated value. For purposes of our attack, we assume that the original

message is either equal to 0 in all n blocks or equal to 1 in all n blocks.

Sunflower Lemma Informally speaking, a sunflower of size k is a collection of k

sets {S1, . . . , Sk} such that the intersection of any pair is equal to the core core,

i.e. for sets Si and Sj, Si ∩ Sj = core. There exists k petals, Si \ core, and it is

required that none of them are empty. Figure 6.1 shows a sunflower and the gray

area represents a sample set Si.

We now describe how sunflowers are employed in our setting. We begin by

considering the following collection of sets ({S1, . . . , Sn̂}) (which is not necessarily

199



petal core

Figure 6.1: Illustration of a Sunflower

a sunflower): For i ∈ [n], let the sets Si ⊆ [n̂] correspond to the blocks (where each

block has size X ∈ poly(λ) bits) of the codeword accessed in order to decode/update

the i-th block of the message. Note that by the locality assumption, the size of each

set Si is |Si| = c. The celebrated Sunflower Lemma of Erdős and Rado [68] tells

us that any sufficiently large collection of sets (such as {S1, . . . , Sn̂}), must contain

a sunflower, whose size depends on the number of sets and the size of each set.

Specifically, since the size of each set in {S1, . . . , Sn̂} is constant in our setting, the

Sunflower Lemma of Erdős and Rado [68] implies that we can choose constant c′

large enough such that when the message is of length n := X c′ number of blocks, we

are guaranteed to have a sunflower SF := {Si0 , Si1 , . . . , Sik}, where i0, . . . , ik ∈ [n],

of size k+ 1, where k � X · c. The collection of sets forming a sunflower are of the

form Sij for j ∈ [k] and the intersection of any pair is equal to the core core, i.e.

Sij ∩Si` = core for all j 6= `. There also exist k petals Sij \ core, and, as mentioned,

none of them are empty. See Sections 6.2.1, 6.2.2 for more details.

The Compression Function In the following, we explicitly define a compression

function that is implicitly computed during a run of the security experiment. We

200



define this function since its stability properties (discussed below) will be crucial for

the analysis of our attack. Given a fixed initial codeword Ĉ and sunflower SF (as

defined above) we define a (randomized) compression function FĈ : {0, 1, same}k →

{0, 1}X·c which takes as input values x1, . . . , xk ∈ {0, 1, same} indicating how to

update (or not) the corresponding message block ij, j ∈ [k], where Sij is in the

sunflower. Specifically, for j = 1 to k: If xj = same, message block ij does

not get updated. Otherwise the update algorithm, UPĈ(ij, xj) is executed. The

output of the function FĈ is the contents of the sunflower core, core, after all

the updates have been completed. Note that core can consist of at most c code-

word blocks since core ⊆ Sij for all j ∈ [k]. Therefore, the output length of

FĈ is at most X · c bits. Note that this means that FĈ is a compression func-

tion, since we chose k � X · c. Now this, in turn, means that the output of

FĈ cannot contain all of the information in its input and satsifies certain stabil-

ity properties. Indeed, it can be shown (cf. [61]) that with high probability over the

choice of j∗ ∈ [k], the two distributions FĈ(X1, . . . , Xj∗−1, same, Xj∗+1, . . . , Xk) and

FĈ(X1, . . . , Xj∗−1, Xj∗ , Xj∗+1, . . . , Xk) are statistically close when each Xj, j ∈ [k]

is chosen uniformly at random from {0, 1, same}. See Sections 6.2.1, 6.2.3, 6.2.4

for more details.

The Attacker and the Updater The attacker first finds the sunflower SF := {Si0 ,

Si1 , . . . , Sik} in polynomial time and then chooses j∗ ∈ [k] at random. In the first

round (or multiple rounds if the attacker is allowed only a single bit of leakage) the

attacker leaks the contents of the positions in Ĉ corresponding to the decoding of ij∗

201



(Sij∗ ), minus the contents of the blocks in the core of the sunflower. We denote the

entire leaked information by yj∗. The attacker then writes those same values, yj∗,

back in the k+1-st round. The updater chooses values x1, . . . , xk ∈ {0, 1, same} and

in each round from 1 to k, requests the corresponding update (i.e. update message

block ij to 0, if xj = 0, update to 1 if xj = 1 and do not update this block at all, if

xj = same). See Section 6.2.5 for more details.

Putting it All Together Note that the input to the decoding algorithm when decoding

position ij∗ is exactly: (yj∗ , FĈ0
(X1, . . . , Xj∗−1, Xj∗ , Xj∗+1, . . . , Xk)) (the contents

of the positions in Ĉ corresponding to decoding of ij∗, minus the contents of the

blocks in the core of the sunflower, and the core itself). Additionally, note that

since {Si0 , Si1 , . . . , Sik} form a sunflower, if xj∗ = same, then the rewind attack

has no effect (since the blocks in Sij∗ \ core were not accessed during any update

request) and so decode on input (yj∗ , FĈ0
(X1, . . . , Xj∗−1, same, Xj∗+1, . . . , Xk)) must

correctly output 1 if the original encoding was 1 and 0 if the original encoding was 0

(without outputting ⊥). Since FĈ is a compression function, it means that with high

probability decode on input (yj∗, FĈ(X1, . . . , Xj∗−1, Xj∗ , Xj∗+1, . . . , Xk)) will output

1 if the original encoding was 1 and 0 if the original encoding was 0, regardless of

the value of Xj∗. Intuitively, since the output of decode now depends on the original

message block in the ij∗-th position, as opposed to the most recently updated value,

the simulator must fail in at least one of the two cases (either when the original

message was 0 or 1) and so the encoding scheme cannot satisfy the non-malleability

definition. See Section 6.2.6 for more details.

202



6.1.2.2 Lower Bound for Randomized Access Patterns

We next present a technical overview of the results that are new to this work

and did not appear in the conference version [53]. In the following, we highlight the

main technical challenges that arise in this setting and the approaches for addressing

them.

• We need to define a sunflower for the randomized access pattern setting. The

natural way to do this is to consider the collection of sets Si,r ⊆ [n̂], for i ∈ [n],

r ∈ {0, 1}ρ, corresponding to the blocks of the codeword accessed in order to

decode/update the i-th block of the message with randomness r. Note that by

the locality assumption, the size of each set Si,r is still |Si,r| = c. Thus, we can

still find a sufficiently large sunflower contained in the collection of sets above.

However, when launching a rewind attack, while we can still randomly select

(i, r1), leak information about blocks corresponding to some set Si,r1, and write

back to Si,r1 at a later point, it is now possible that the decode algorithm will

actually access a different set of blocks Si,r2 during decoding in the final round,

corresponding to some other randomness r2. The key observation is that since

the number of blocks n̂ in the codeword is polynomial in security parameter λ,

and since the total number of blocks accessed by each decode/update is a con-

stant, c, then for each i ∈ [n], there must be some set of c blocks Ri such that

the same set Ri is accessed by the decode algorithm for position i with proba-

bility at least 1/n̂c, which is inverse polynomial in the security parameter. We

thus consider the collection of sets {S1,r∗1
, . . . , Sn,r∗n}, where for i ∈ [n], r∗i is the

203



randomness corresponding to the set Ri described above. We may now apply

the Sunflower Lemma to obtain a sunflower SF := {Si0,r∗i0 , Si1,r∗i1 , . . . , Sik,r∗ik},

where i0, . . . , ik ∈ [n], of size k+1, where k � X ·c2, contained in the collection

of sets. For technical reasons, we also choose a slightly smaller sunflower, SF−,

which is a subset of SF. We omit this part of the analysis from the overview

and refer the reader to Section 6.3.1 for more details.

• Analogously to our previous rewind attack, we would like the attacker to select

an index j∗ ∈ [k], leak the contents of the positions in Ĉ corresponding to

decoding of ij∗ with random coins r∗ij∗ (Sij∗ ,r∗ij∗
), minus the contents of the

blocks in the core of the sunflower, and then write those same values back in

some later round (call this the k′ + 1-st round). Crucial to our analysis of

the attack, is that if no update occurs on position ij∗, then the rewind attack

makes no change at all to the state of the codeword in the k′ + 1-st round.

However, this is now not straightforward to argue. The reason is that the

other k′ updates that occur are now randomized and may overwrite locations

contained in the set Sij∗ ,r∗ij∗
\ core. In more detail, note that the adversary

does not control the randomness of the updater and so cannot ensure that the

updater accesses only the sets of the sunflower (corresponding to random coins

r∗ij) during the updates. Indeed, since the updater samples its own randomness,

it is extremely unlikely that this will happen. To address this issue, note that

we now choose a larger sunflower SF := {Si0,r∗i0 , Si1,r∗i1 , . . . , Sik,r∗ik} of size

k + 1, where k � X · c2, whereas in the deterministic access pattern case we

204



chose a sunflower of size k + 1 where k � X · c. The fact that k is larger

allows us to now choose a random subset of the sunflower SF, which is also a

sunflower and still has sufficiently large size. Specifically, we choose a random

subset T ⊆ [k] of size k′, such that T := {z1, . . . , zk′} and consider updates

to the sets Sizj , j ∈ [k′]. Now, due to the structure of the sunflower (which

guarantees that all the sets (Sij ,r∗ij
\ core) are pairwise disjoint) we will argue

that (when k′ is sufficiently small relative to k), with high probability over the

random choice of T , j∗ ∈ [k′], and randomness of the updater, if no update

occurs on position izj∗ then there is no intersection between the updated sets

and the chosen set Sizj∗ ,r∗zj∗
\ core. See Sections 6.3.3, 6.3.5 for more details.

• Recall that the analysis of the previous case proceeds by showing that after

the rewind attack occurs, the probability that the decode algorithm on position

iz∗j outputs the original value, is “close” whether or not an update occurred

on position izj∗ . Unfortunately, the argument we used in the previous section

only allows us to bound the difference in probabilities by a constant. This is

no longer sufficient to complete the proof in the randomized case, since recall

that in the randomized case, we can only argue that, when no update occurs,

the decode algorithm on position izj∗ outputs the original value with probability

1/n̂c–when the attacker gets lucky and correctly guesses the random coins used

by the decoder. This means that our previous techniques cannot rule out the

case that when an update occurs, the decode algorithm outputs the original

value with probability 0. Therefore, we must define a different event and show

205



that this event is both observable given the output of the experiment, and occurs

with 1/ poly(λ) probability. We then show that conditioned on this observable

event occurring, the probability that the decode algorithm outputs the original

value at another randomly chosen location i`∗ is high. See Section 6.3.5 for

more details.

6.1.2.3 Difficulty of Extending Techniques to the Adaptive Setting

In both the deterministic and randomized case, our techniques crucially rely on

using the access patterns to define a sunflower. Specifically, we consider a collection

of sets {Si}, where each set Si contains the indeces of the blocks of the codeword ac-

cessed in order to decode/update the i-th block of the message. If access patterns are

adaptive, then as updates occur, the sets Si may change, depending on the contents

of the updates. This means that the structure of the sunflower may keep changing in

each round of the experiment. Moreover, since the sets Si are now defined in a way

that depends on the messages input to the encode and update procedures, they are

now unknown to the attacker. Therefore, it is not clear how to define an attack for

such a case (since the attacker doesn’t know the sets Si and so doesn’t know which

positions to leak and write back), or which mathematical tools would be useful for

analyzing an attack (since our main technical tool–the Sunflower Lemma–assumes

a static collection of sets).

206



6.1.2.4 Upper Bound

Overview of Locally Decodable and Updatable NMC [54] In [54], the authors con-

struct locally decodable and updatable non-malleable codes from a symmetric encryp-

tion scheme E = (Gen,Encrypt,Decrypt), a standard (non-local) non-malleable code

NMC = (E′,D′), and a collision resistant hash function family H.

Encoding E(m): In order to encode message m = (m1,m2, . . . ,mn), they first gen-

erate the secret key sk of by running Gen and choose hash function h ← H. Then

the algorithm encrypts each message block mi using sk to get the encrypted blocks

(e1, e2, . . . en) corresponding to each message block. They then compute the Merkle

tree Th of these encrypted blocks using the collision-resistant hash function h, along

with the root of the merkle tree (Th) as (Rh). They finally encode the secret key

sk, the description of the hash function h, and the root Rh using the standard

non-malleable code to generate c ← E′(sk, h, Rh) and output the encoded message

C = (c, e1, e2, . . . , en, Th).

Decoding DC(i): In order to decode the i-th block of C, they first recover (sk, h, Rh) =

D′(c). Then the algorithm checks the consistency of the path path to leaf ei in tree

Th and outputs mi = Decrypt(sk, ei). If any of the consistency checks, decoding of

c, or decryption fails then the algorithm outputs ⊥.

Update UPC(i,m′i): In order to update a message block mi with m′i the algorithm

first recovers (sk, h, Rh) = D′(c) along with the path path to leaf ei in tree Th. If D′

outputs ⊥ then the algorithm updates the first block of C with ⊥ denoting failure.

Otherwise, computes the fresh encryption e′i and updates the path path′ and root

207



R′h in the merkle tree Th by replacing the leaf ei with e′i and computing the path

to the root. Finally, update c′ as c′ ← E′(sk, h, R′h). The construction of [54] pro-

vides computational security against polynomial size tampering functions f = (f1, f2)

such that f1 ∈ F tampers with c, and the underlying non-local NMC (E′,D′) is se-

cure against F , whereas f2 tampers with rest of the codeword arbitrarily. For more

details please refer to Section 6.4.

Here we take advantage of the fact that codeword blocks are large–X ∈ Ω(λ1/µ)

number of bits, for constant 0 < µ < 1–number of bits—to replace the Merkle Tree

used in the original construction of [54] with an alternative data structure we call a

t-slice Merkle Tree. Note that the Ω(log λ) locality of the construction of [54] came

from the fact that an entire path (and siblings) of the binary Merkle tree from root to

leaf of length log(n) had to be traversed for each decode and update instruction. Our

new data structure is a t := X 1−µ-ary tree and uses as a building block a collision

resistant hash function h : {0, 1}X → {0, 1}Xµ (note h has output length X µ ∈ Ω(λ))

and so, for messages of length n = poly(λ) blocks, an entire path of the tree from

root to leaf will always have length at most δ(n), for any δ(n) ∈ ω(1). Moreover, the

root of the tree can be updated and verified without reading any of the siblings along

the path from root to leaf, due to the use of a hash function with a specific structure.

This allows us to achieve a locally decodable and updatable non-malleable codes with

locality δ(n), for any δ(n) ∈ ω(1). See Section 6.4 for more details.

208



6.2 Lower Bound

In this section we prove the following theorem:

Theorem 6.2.1. Let λ be security parameter and let Π = (E,D, UP) be a locally

decodable and updatable non-malleable code that has non-adaptive decode and up-

date with deterministic accesses which takes messages over alphabet Σ and out-

puts codewords over alphabet Σ̂, where log |Σ|, log |Σ̂| ∈ poly(λ), in a threat model

which allows for a rewind attack. Then, for n := n(λ) ∈ poly(λ), Π has locality

δ(n) ∈ ω(1).

We denote by X := log |Σ̂| ∈ poly(λ) the number of bits in each block of the

codeword. For purposes of the lower bound, we can take X to be any polynomial in

λ (or smaller).

In the following, we assume that Π = (E,D, UP) is a locally decodable and up-

datable non-malleable code with non-adaptive decode and update with deterministic

accesses and with constant locality. We then present an efficient rewind attacker

along with an updater that break the security of Π, thus proving the theorem.

6.2.1 Attack Preliminaries

Definition 6.2.1 (Sunflower). A sunflower (or ∆-system) is a collection of sets Si

for 1 ≤ i ≤ k such that the intersection of any two set is core Y , i.e. Si ∩ Sj = core

for all i 6= j. There exists k petals S−i := Si \ core and it’s required that none of

them are empty. A family of pairwise disjoint sets form a sunflower with an empty

209



core.

The following famous lemma is due to Erdős and Rado.

Lemma 6.2.1 (Sunflower Lemma [68]). Let F be family of sets each of cardinality

s. If |F| > s!(k − 1)s then F contains a sunflower with k petals.

Definition 6.2.2 (Statistical Distance). Let D1 and D2 be two distribution over a

shared universe of outcomes. let supp(D) be the set of values assumed by D with

nonzero probability, and let D(u) := Pr[D = u]. The statistical distance of D1 and

D2 is defined as

||D1 −D2||stat :=
1

2

∑
u∈supp(D1)∪supp(D2)

|D1(u)−D2(u)|.

Definition 6.2.3 (Distributional Stability [61]). Let U be a finite universe and

t, n ≥ 1 be integers. Let Di for 1 ≤ i ≤ t be a collection of t mutually independent

distributions over {0, 1}n and F be a possibly-randomized mapping F (x1, . . . , xt) :

{0, 1}n×t → U , for j ∈ [t] let

γj := E
y∼Dj

[||F (D1, . . . ,Dj−1, y,Dj+1, . . . ,Dt)− F (D1, . . . ,Dt)||stat].

F is δ-distributionally stable for δ ∈ [0, 1] with respect to D1, . . . ,Dt if

1

t

t∑
j=1

γj ≤ δ.

210



Lemma 6.2.2 (Compression Functions are Distributionally Stable [61]). Let

R(x1, . . . , xt) : {0, 1}n×t → {0, 1}≤t′ be any possibly-randomized mapping, for any

n, t, t′ ∈ N+. R is δ-distributionally stable with respect to any independent input

distributions D1, . . . ,Dt, where it may take either of the following two bounds:

1. δ :=
√

ln 2
2
. t
′+1
t

2. δ := 1− 2−
t′
t
−3.

6.2.2 Applying the Sunflower Lemma

For i ∈ [n], the sets Si ⊆ [n̂] correspond to the blocks (each of size X ) of

the codeword accessed in order to update/decode mi (i.e. the set Si := SD
i ∪ SUP

i ,

where SD
i , SUP

i are the sets of blocks accessed by the decode and update procedures,

respectively). By hypothesis, we have that for i ∈ [n], |Si| = c, for constant c.

Choose n = X c′ ∈ poly(λ), where c′ is a constant such that

X c′ > c! · (22, 500 · c · X )c

Then by the Sunflower Lemma, {S1, . . . , Sn} contains a sunflower with k + 1 :=

22, 500 ·c ·X +1 petals and core core. Let SF := {Si0 , Si1 , . . . , Sik}, where i0, . . . , ik ∈

[n]. For codeword Ĉ, let core(Ĉ) denote the content of the set of blocks that make up

the core of the sunflower. For set S`, ` ∈ [n], let set`(Ĉ) denote the content of the

blocks in set S`, and let set−` (Ĉ) denote the content of the blocks in set S−` , where

S−` := S` \ core.

211



6.2.3 The Compression Functions

Given a fixed initial codeword Ĉ, sunflower SF := {Si0 , . . . , Sik}, where

i0, . . . , ik ∈ [n] (as defined above) with k + 1 := 22, 500 · c · X + 1 petals, define the

following (randomized) function FĈ : {0, 1, same}k → {0, 1}X·c as follows:

• On input x1, . . . , xk ∈ {0, 1, same}

• For j = 1 to k:

– If xj = same, run UPĈ
(j)

(i0, 0).

– Otherwise run UPĈ
(j)

(ij, xj).

where Ĉ(j) denotes the codeword immediately before the j-th update.

• Run UPĈ
(k+1)

(i0, 0).

• Output the contents of core(Ĉ(k+1)+), where Ĉ(k+1)+ denotes the codeword im-

mediately after the k + 1-st update.

6.2.4 Closeness of Distributions

For ` ∈ [k], let X` be a random variable distributed as X, where X is distributed

as U{0,1,same}, i.e. its value is chosen uniformly from the set {0, 1, same}. Let Ĉ0 ←

E(0 . . . 0) and Ĉ1 ← E(1 . . . 1). We prove the following claim, which will be useful in

the subsequent analysis.

Claim 6.2.1. For every Ĉ0 ← E(0 . . . 0) and Ĉ1 ← E(1 . . . 1), we have that:

212



• The statistical distance between FĈ0
(X1, . . . , Xj−1, same, Xj+1, . . . , Xk) and

FĈ0
(X1, . . . , Xk) is at most 0.1, with probability at least 0.8 over j ∼ [k].

• The statistical distance between FĈ1
(X1, . . . , Xj−1, same, Xj+1, . . . , Xk) and

FĈ1
(X1, . . . , Xk) is at most 0.1, with probability at least 0.8 over j ∼ [k].

Proof. First, by Lemma 6.2.2 and the fact that FĈ is a compression function, we

have that for every codeword Ĉ:

1

k

k∑
j=1

E
x∼X

[||FĈ(X1, . . . , Xj−1, x,Xj+1, . . . , Xk)− FĈ(X1, . . . , Xk)||stat] <
√
c · X
k

.

By linearity of expectation, we have

E
x∼X

[
1

k

k∑
j=1

(||FĈ(X1, . . . , Xj−1, x,Xj+1, . . . , Xk)− FĈ(X1, . . . , Xk)||stat)

]
<

√
c · X
k

.

Now, by Markov’s inequality, we have that

1

k

k∑
j=1

(||FĈ(X1, . . . , Xj−1, same, Xj+1, . . . , Xk)− FĈ(X1, . . . , Xk)||stat) < 3

√
c · X
k

.

Applying Markov’s inequality again, we have that with probability at least 0.8 over

choice of j ∼ [k],

||FĈ(X1, . . . , Xj−1, same, Xj+1, . . . , Xk)− FĈ(X1, . . . , Xk)||stat < 15 ·
√
c · X
k

= 0.1,

where the final equality holds since we take k + 1 := 22, 500 · c · X + 1. Finally,

213



since the above holds for every Ĉ, the claim is immediate. we have that for every

Ĉ0 ← E(0 . . . 0), and Ĉ1 ← E(1 . . . 1):

• The statistical distance between FĈ0
(X1, . . . , Xj−1, same, Xj+1, . . . , Xk) and

FĈ0
(X1, . . . , Xk) is at most 0.1, with probability at least 0.8 over j ∼ [k].

• The statistical distance between FĈ1
(X1, . . . , Xj−1, same, Xj+1, . . . , Xk) and

FĈ1
(X1, . . . , Xk) is at most 0.1, with probability at least 0.8 over j ∼ [k].

This concludes the proof of the claim.

6.2.5 The Attack

In this section we describe the polynomial-time attacker and updater:

Description of attacker:

• Find the Sunflower SF := {Si0 , . . . , Sik}, where i0, . . . , ik ∈ [n] and k + 1 :=

22, 500 · c · X + 1, contained in {S1, . . . , Sn} in polynomial time.1

• Choose j∗ ∼ [k]

• In the first round, submit leakage function `(Ĉ) defined as `(Ĉ) := set−ij∗ (Ĉ)

which returns Leaked, i.e. the contents of the positions in Ĉ corresponding to

decoding of ij∗, minus the contents of the blocks in the core of the sunflower.2

1It is not hard to see that the original inductive proof of the Sunflower lemma by Erdős and
Rado yields an efficient (polynomial in (n, c, k)) algorithm for finding the sunflower. For further
information, see for example [?].

2If the attacker may leak only a single bit per round, we instead add here r < X · c number of
rounds where in each round the attacker leaks a single bit from set−ij∗ (Ĉ). During each of these

rounds, the updater requests a “dummy” update, UPĈ
(j)

(i0, 0).

214



• Wait until the (k + 2)-nd round. In the (k + 2)-nd round, choose tamper-

ing function f which replaces the contents of set−ij∗(Ĉ
(k+1)+)—where Ĉ(k+1)+

denotes the contents of the codeword immediately after the (k + 1)-st update–

corresponding to decoding of ij∗, minus the contents of the blocks in the core

of the sunflower, with the values, Leaked, that were leaked via `.

Description of Updater:

• Choose x1, . . . , xk ∼ {0, 1, same}k.

• For j = 1 to k:

– If xj = same, request UPĈ
(j)

(i0, 0)

– Otherwise request UPĈ
(j)

(ij, xj)

where Ĉ(j) denotes the codeword immediately before the j-th update.

• In round k + 1, request UPĈ
(k+1)

(i0, 0).

6.2.6 Attack Analysis

We begin with some notation and basic facts. Let J∗ be the random variable

corresponding to choice of j∗ in the attack described above. For j ∈ [k], let UPij

be the event that location ij gets updated and let UPij be the event that location ij

does not get updated. Recall that ~m ∈ {0n, 1n} denotes the original message. For

j ∈ [n], mj denotes the original message in block j. m
(t)
j denotes the decoding of

Ĉ(t) in the j-th position, where Ĉ(t) denotes the codeword immediately before the t-th

215



update. m
(t)+
j denotes the decoding of Ĉ(t)+ in the j-th position, where Ĉ(t)+ denotes

the codeword immediately after the t-th update. We have the following properties,

which can be verified by inspection:

Fact 6.2.1. (a) For j ∈ [k], Pr[UPij | mij = 0] = Pr[UPij | mij = 1] = 0.67;

Pr[UPij | mij = 0] = Pr[UPij | mij = 1] = 0.33.

(b) For j ∈ [k], if the ij-th block of original message was a mij = 0, then condi-

tioned on an update occurring on block ij, m
(k+1)
ij

= 0 with probability 0.5 and

m
(k+1)
ij

= 1 with probability 0.5. Conditioned on no update occurring on block

ij, m
(k+1)
ij

= 0 with probability 1.

(c) For j ∈ [k], if the ij-th block of original message was a mij = 1, then condi-

tioned on an update occurring on block ij, m
(k+1)
ij

= 1 with probability 0.5 and

m
(k+1)
ij

= 0 with probability 0.5. Conditioned on no update occurring on block

ij, m
(k+1)
i = 1 with probability 1.

(d) For j ∈ [k], m
(k+1)
ij

= m
(k+1)+
ij

, since in the k + 1-st round only the position i0

gets updated.

We next present the main technical lemma of this section:

Lemma 6.2.3. For the attack and updater specified in Section 6.2.5:

Case 1: If the original message was ~m = ~0, then with probability at least 0.7,

m
(k+2)
iJ∗

= 0.

Case 2: If the original message was ~m = ~1, then with probability at least 0.7,

m
(k+2)
iJ∗

= 1.

216



We first show how to use Lemma 6.2.3 to complete the proof of Theorem 6.2.1

and then present the proof of Lemma 6.2.3.

Proof (of Theorem 6.2.1.). We show that the above claim implies that the candidate

scheme is not secure under Definition 3.2.3 and Definition 3.2.4. Definition 3.2.4

requires the existence of a simulator Sim which (for the above attack and updater)

outputs one of {same,⊥} ∪ {0, 1}κ for the decoding of each position i ∈ [n] in each

round j ∈ [k + 2]. We denote by m
(j)
i,Sim the output of Sim in round j for position

i. Recall that if Sim outputs same in round j for position i, then the output of the

experiment in the corresponding position, denoted m̃
(j)
i,Sim, is set to m̃

(j)
i,Sim := m

(j−1)+
i .

We begin by defining the following notation for each j ∈ [k]:

p0
up,j := Pr[m

(k+2)
ij ,Sim

= same | mij = 0 ∧ UPij ]

p1
up,j := Pr[m

(k+2)
ij ,Sim

= same | mij = 1 ∧ UPij ]

p0
up,j := Pr[m

(k+2)
ij ,Sim

= same | mij = 0 ∧ UPij ]

p0
0,j := Pr[m

(k+2)
ij ,Sim

= 0 | mij = 0]

p1
0,j := Pr[m

(k+2)
ij ,Sim

= 0 | mij = 1]

Note that since Sim does not see the original message, we have that for each j ∈ [k]:

(a) p0
up,j = p1

up,j (b) p0
0,j = p1

0,j. (6.2.1)

217



Additionally we have, for each j ∈ [k]::

Pr[m
(k+2)
ij ,Sim

= same ∧m(k+1)
ij

= 0 ∧ UPij | mij = 0]

= Pr[UPij | mij = 0] · Pr[m
(k+2)
ij ,Sim

= same | mij = 0 ∧ UPij ]

· Pr[m
(k+1)
ij

= 0 | mij = 0 ∧ UPij ]

= 0.67 · p0
up,j · 0.5, (6.2.2)

Where the first equality follows since (m
(k+2)
ij ,Sim

= same | mij = 0∧UPij) and (m
(k+1)
ij

=

0 | mij = 0∧UPij) are independent events and the last line follows from Fact 6.2.1,

items (a) and (b). Similarly, for each j ∈ [k]:

Pr[m
(k+2)
ij ,Sim

= same ∧m(k)
ij

= 0 ∧ UPij | mij = 1]

= Pr[UPij | mij = 1] · Pr[m
(k+2)
ij ,Sim

=| mij = 1 ∧ UPij ]

· Pr[m
(k+1)
ij

= 0 | mij = 1 ∧ UPij ]

= 0.67 · p1
up,j · 0.5

= 0.67 · p0
up,j · 0.5, (6.2.3)

where the second to last line follows from Fact 6.2.1, items (a) and (c), and the last

218



line follows due to (6.2.1)(a). Moreover, we have for each j ∈ [k]:

Pr[m
(k+2)
ij ,Sim

= same ∧m(k+1)
ij

= 0 ∧ UPij | mij = 0]

= Pr[UPij | mij = 0] · Pr[m
(k+2)
ij ,Sim

= same | mij = 0 ∧ UPij ]

= 0.33 · p0
up,j, (6.2.4)

where the last line follows from Fact 6.2.1, item (a). Finally, for each j ∈ [k]:

Pr[m
(k+2)
ij ,Sim

= same ∧m(k+1)
ij

= 0 ∧ UPij | mij = 1] = 0, (6.2.5)

since if no update occurs on position ij then m
(k+1)
ij

= 1.

Given Lemma 6.2.3, in order for Sim to succeed, if the original message was

~m = ~0, then m
(k+2)
iJ∗ ,Sim

must be equal to 0 with probability (nearly) 0.7, whereas if

the original message was ~m = ~1, then m
(k+2)
iJ∗ ,Sim

must be equal to 1 with probability

(nearly) 0.7. Thus we have that:

0.7− negl(λ) =
∑
j∈[k]

Pr[J∗ = j] · Pr[m̃
(k+2)
ij ,Sim

= 0 | mij = 0]

=
∑
j∈[k]

1

k
· (Pr[m

(k+2)
ij ,Sim

= same ∧m(k+1)
ij

= 0 ∧ UPij | mij = 0]

+ Pr[m
(k+2)
ij ,Sim

= same ∧m(k+1)
ij

= 0 ∧ UPij | mij = 0]

+ Pr[m
(k+2)
ij ,Sim

= 0 | mij = 0])

=
∑
j∈[k]

1

k
· (0.67 · p0

up,j · 0.5 + 0.33 · p0
up,j + p0

0,j), (6.2.6)

219



where the second equality follows due to the fact that if m
(k+2)
ij ,Sim

= same then m̃
(k+2)
ij

=

m
(k+1)+
ij

and Fact 6.2.1, item (d) (which says that m
(k+1)+
ij

= m
(k+1)
ij

), and the last

line follows due to (2) and (4). On the other hand we have:

0.3 + negl(λ) =
∑
j∈[k]

Pr[J∗ = j] · Pr[m̃
(k+1)
ij ,Sim

= 0 | mij = 1]

=
∑
j∈[k]

1

k
· (Pr[m

(k+2)
ij ,Sim

= same ∧m(k+1)
ij

= 0 ∧ UPij | mij = 1]

+ Pr[Pr[m
(k+2)
ij ,Sim

= same ∧m(k+1)
ij

= 0 ∧ UPij | mij = 1]

+ Pr[Pr[m
(k+2)
ij ,Sim

= 0 | mij = 1])

=
∑
j∈[k]

1

k
· (0.67 · p0

up,j · 0.5 + p1
0,j)

=
∑
j∈[k]

1

k
· (0.67 · p0

up,j · 0.5 + p0
0,j). (6.2.7)

where the second equality follows due to the fact that if m
(k+2)
ij ,Sim

= same then m̃
(k+2)
ij

=

m
(k+1)+
ij

and Fact 6.2.1, item (d) (which says that m
(k+1)+
ij

= m
(k+1)
ij

), the second

to last line follows due to (3) and (5) and the last line follows due to (1)(b). But

subtracting (7) from (6), this implies that 0.33 ·
∑

j∈[k]
1
k
· p0

up,j ≥ 0.4, which is

impossible since for each j ∈ [k], p0
up,j ≤ 1. Thus we have reached contradiction and

so the theorem is proved.

We conclude by proving the Lemma.

Proof (of Lemma 6.2.3). Let y0
j∗ := set−ij∗ (Ĉ0) and y1

j∗ := set−ij∗ (Ĉ1) The proof relies

on the fact that, in the (k+2)-nd round, decode takes as input D(y0
j∗ , FĈ0

(X1, . . . , Xk))

in Case 1 and D(y1
j∗ , FĈ1

(X1, . . . , Xk)) in Case 2, Now note that, due to the struc-

220



ture of the Sunflower, updates to positions i0, . . . , ij∗−1, ij∗+1, . . . , ik do not modify

the blocks in S−ij∗ (corresponding to the contents of set−ij∗ (Ĉ0) or set−ij∗ (Ĉ1)). So

D(y0
j∗ , Fĉ0(X1, . . . , Xj∗−1, same, Xj∗+1, . . . , Xk)) = 0 with overwhelming probability

and D(y1
j∗ , Fĉ1(X1, . . . , Xj∗−1, same, Xj∗+1, . . . , Xk)) = 1 with overwhelming proba-

bility, since when Xj = same, the rewind attack has no effect and decode outputs the

original message.

Moreover, due to Claim 6.2.1 and the fact that y0
j∗ (resp. y1

j∗) is fully deter-

mined by Ĉ0 (resp. Ĉ1), which is part of the description of the compression function

FĈ0
(resp. FĈ1

), we have that for every Ĉ0 ← E(0 . . . 0) and Ĉ1 ← E(1 . . . 1):

1. The statistical distance between (y0
j , FĈ0

(X1, . . . , Xj∗−1, same, Xj∗+1, . . . , Xk))

and (y0
j , FĈ0

(X1, . . . , Xk)) is at most 0.1, with probability at least 0.8 over

j∗ ∼ [k].

2. The statistical distance between (y1
j , FĈ1

(X1, . . . , Xj∗−1, same, Xj∗+1, . . . , Xk))

and (y1
j , FĈ1

(X1, . . . , Xk)) is at most 0.1, with probability at least 0.8 over

j∗ ∼ [k].

Hence each will not be satisfied with probability at most 0.2. Now, conditioned on

each being satisfied, it can be concluded from (1) that the probability of

D(y0
j , FĈ0

(X1, . . . , Xk)) = 1 is at most 0.1. Similarly from (2),

D(y1
j , FĈ1

(X1, . . . , Xk)) = 0 with probability at most 0.1. Taking a union bound,

we have that in each case, the D procedure will fail to output the original message

with probability at most 0.3. This means that with probability at least 0.7 over all

coins, D(y0
j∗ , FĈ0

(X1, . . . , Xk)) = 0, and with probability at least 0.7 over all coins

221



D(y1
j∗ , FĈ1

(X1, . . . , Xk)) = 1, completing the proof of the claim.

6.3 Extending Lower Bound to Randomized Decode/Update

In this section we prove the following theorem:

Theorem 6.3.1. Let λ be security parameter and let Π = (E,D, UP) be a locally de-

codable and updatable non-malleable code that has non-adaptive decode and update

with randomized accesses which takes messages over alphabet Σ and outputs code-

words over alphabet Σ̂, where log |Σ|, log |Σ̂| ∈ poly(λ), in a threat model which al-

lows for a rewind attack. Then, for n := n(λ) ∈ poly(λ), Π has locality δ(n) ∈ ω(1).

As before, we denote by X := log |Σ̂| ∈ poly(λ) the number of bits in each

block of the codeword. For purposes of the lower bound, we can take X to be any

polynomial in λ (or smaller).

In the following, we assume that Π = (E,D, UP) is a locally decodable and

updatable non-malleable code with non-adaptive decode and update with randomized

accesses and with constant locality. We then present an efficient rewind attacker

along with an updater that break the security of Π, thus proving the theorem.

The formal analysis is at some points quite similar to the analysis in Sec-

tion 6.2. For completeness, we present the full proof. To aid the reader, we point

out which parts of the proof are similar to the previous analysis and which parts are

significantly different.

222



6.3.1 Applying the Sunflower Lemma

As in Section 6.2, we will use the access patterns to define a sunflower, but

since the access patterns are now randomized, we will have to take into account

the randomness of the decode/update procedures as well as the position i ∈ [n].

For i ∈ [n], r ∈ {0, 1}ρ(λ) the sets Si,r ⊆ [n̂] correspond to the blocks (each of

size X ) of the codeword accessed in order to update/decode mi with randomness r

(i.e. the set Si,r := SD
i,r ∪ SUP

i,r where SD
i,r, S

UP
i,r are the sets of blocks accessed when

the decode/update procedures are run with randomness r ∈ {0, 1}ρ(λ)). For i ∈ [n],

let Ri correspond to a particular access pattern consisting of a set of c blocks that

occurs with probability at least 1/n̂c when decoding/updating position i (note that

such an access pattern must exist by an averaging argument). For simplicity of

notation, we assume that each such set Ri corresponds to random coins r∗i ∈ {0, 1}ρ,

where ρ := ρ(λ) := c · log(n̂) = O(log λ) (i.e. for i ∈ [n], Si,r∗i = Ri). We also

require a larger sunflower for the randomized case. Consider the system of sets

{S1,r∗1
, . . . , Sn,r∗n}. By hypothesis, we have that for i ∈ [n], |Si,r∗i | = c, for constant

c. Choose n = X c′ ∈ poly(λ), where c′ is a constant such that

X c′ > c! · (15, 840, 011 · c2 · X )c

Then by the Sunflower Lemma, {S1,r∗1
, . . . , Sn,r∗n} contains a sunflower with k+ 1 :=

15, 840, 011 · c2 · X + 1 petals and core core. Let SF := {S`0,r∗`0 , S`1,r∗`1 , . . . , S`k,r∗`k},

where `0, . . . , `k ∈ [n]. As before, for codeword Ĉ, let core(Ĉ) denote the content of

223



the set of blocks that make up the core of the sunflower. Additionally, we slightly

extend the previous notation as follows: For set S`,r, ` ∈ [n], let set`,r(Ĉ) denote the

content of the blocks in set S`,r and for j ∈ [k], let set−`j ,r∗`j
(Ĉ) denote the content

of the blocks in set S−`j ,r∗`j
, where S−`j ,r∗`j

:= S`j ,r∗`j
\ core. Let Shi denote the set

of blocks of the codeword that are accessed by D[i], UP[i, v] with probability at least

1/11c over random choice of i ∈ [n] and over choice of random coins (note that

by the non-adaptivity assumption, the set does not depend on the value v input to

UP). Note that |Shi| ≤ 11c2. We remove the at most 11c2 sets S`j ,r∗`j
from SF such

that S−`j ,r∗`j
∩ Shi 6= ∅. This step was not needed for the analysis in Section 6.2,

but will be necessary to complete the analysis in the proof of Lemma 6.3.1. Let

SF− := {Si0 , Si1 , . . . , Sik̃} denote the remaining sets. Note that SF− is a sunflower

that has size at least k̃ + 1 ≥ 15, 840, 000 · c2 · X + 1.

6.3.2 The Compression Functions

Given a fixed initial codeword Ĉ, sunflower SF− := {Si0 , . . . , Sik̃}, where

i0, . . . , ik̃ ∈ [n] (as defined above) with k̃ + 1 := 15, 840, 000 · c2 · X + 1 petals,

and random subset T ⊆ [k̃] of size k′ := 1, 440, 000 · c · X , where T = {z1, . . . , zk′}

(where we assume the zi’s are ordered in lexicographic order), define the following

(randomized) function FĈ,T ,r : {0, 1, same}k′ → {0, 1}X·c as follows:

• On input x1, . . . , xk′ ∈ {0, 1, same}

• Parse r := r1, . . . , rk′+1

• For j = 1 to k′:

224



– If xj = same, run UPĈ
(j)

(i0, 0; rj).

– Otherwise run UPĈ
(j)

(izj , xj; rj).

where Ĉ(j) denotes the codeword immediately before the j-th update.

• Run UPĈ
(k′+1)

(i0, 0; rk′+1).

• Output the contents of core(Ĉ(k′+1)+), where Ĉ(k′+1)+ denotes the contents of

the codeword immediately after the k′ + 1-st update.

Note that the subset T was not needed in the analysis in Section 6.2, and is

added here since it will be used in the attack in Section 6.3.4 and in the proof of

Lemma 6.3.1. Otherwise, the compression function defined above is essentially the

same as before, except the randomness for encode/decode is “hardwired” into the

compression function.

6.3.3 Closeness of Distributions

For ` ∈ [k′], let X` be a random variable distributed as X, where X is dis-

tributed as U{0,1,same}, i.e. its value is chosen uniformly from the set {0, 1, same}.

Let Ĉ0 ← E(0 . . . 0) and Ĉ1 ← E(1 . . . 1). For zj ∈ T , let y0
j := setizj (Ĉ0) \ core(Ĉ0)

denote the contents of the positions in Ĉ0 corresponding to decoding of izj , mi-

nus the contents of the blocks in the core of the sunflower. Similarly, let y1
j :=

setizj (Ĉ1) \ core(Ĉ1) denote the contents of the positions in Ĉ1 corresponding to de-

coding of izj , minus the contents of the blocks in the core of the sunflower. We

prove the following claim (similar to Claim 6.2.1 in Section 6.2, but with different

225



parameters), which will be useful in the subsequent analysis.

Claim 6.3.1. For every r and every Ĉ0 ← E(0 . . . 0) and Ĉ1 ← E(1 . . . 1), we have

that:

• With probability at least 0.9 over j ∼ [k′], the statistical distance between

FĈ0
(X1, . . . , Xj−1, same, Xj+1, . . . , Xk′) and FĈ0

(X1, . . . , Xj−1, 1, Xj+1, . . . , Xk′)

is at most 0.1.

• With probability at least 0.9 over j ∼ [k′], the statistical distance between

FĈ1
(X1, . . . , Xj−1, same, Xj+1, . . . , Xk′) and FĈ1

(X1, . . . , Xj−1, 0, Xj+1, . . . , Xk′)

is at most 0.1.

Proof. First, by Lemma 6.2.2 and the fact that FĈ is a compression function, we

have that for every codeword Ĉ:

1

k′

k′∑
j=1

E
x∼X

[||FĈ(X1, . . . , Xj−1, x,Xj+1, . . . , Xk′)− FĈ(X1, . . . , Xk′)||stat] <
√
c · X
k

By linearity of expectation, we have

E
x∼X

[
1

k′

k′∑
j=1

(||FĈ(X1, . . . , Xj−1, x,Xj+1, . . . , Xk′)− FĈ(X1, . . . , Xk′)||stat)

]
<

√
c · X
k′

.

Now, by Markov’s inequality, we have that

1

k′

k′∑
j=1

(||FĈ(X1, . . . , Xj−1, same, Xj+1, . . . , Xk′)− FĈ(X1, . . . , Xk′)||stat) < 3

√
c · X
k′

.

Applying Markov’s inequality again, we have that with probability at least 0.95 over

226



choice of j ∼ [k],

||FĈ(X1, . . . , Xj−1, same, Xj+1, . . . , Xk′)−FĈ(X1, . . . , Xk′)||stat < 60·
√
c · X
k′

= 0.05,

where the final equality holds since we take k′ + 1 := 1, 440, 000 · c · X + 1.

Similarly, we can repeat the above analysis to obtain that with probability at

least 0.95 over choice of j ∼ [k′],

||FĈ(X1, . . . , Xj−1, 1, Xj+1, . . . , Xk′)− FĈ(X1, . . . , Xk′)||stat < 60 ·
√
c · X
k′

= 0.05,

and that with probability at least 0.95 over choice of j ∼ [k′],

||FĈ(X1, . . . , Xj−1, 0, Xj+1, . . . , Xk′)− FĈ(X1, . . . , Xk′)||stat < 60 ·
√
c · X
k′

= 0.05.

Finally, since the above hold for every Ĉ, we have by a union bound that for

every Ĉ0 ← E(0 . . . 0), and Ĉ1 ← E(1 . . . 1):

• With probability at least 0.9 over j ∼ [k′], the statistical distance between

FĈ0
(X1, . . . , Xj−1, same, Xj+1, . . . , Xk′) and FĈ0

(X1, . . . , Xj−1, 1, Xj+1, . . . , Xk′)

is at most 0.1.

• With probability at least 0.9 over j ∼ [k′], the statistical distance between

FĈ1
(X1, . . . , Xj−1, same, Xj+1, . . . , Xk′) and FĈ1

(X1, . . . , Xj−1, 0, Xj+1, . . . , Xk′)

is at most 0.1.

This concludes the proof of the claim.

227



The following claim can be verified by inspection:

Claim 6.3.2. The following two distributions D, D′ are equivalent:

D:

1. Choose r uniformly at random from {0, 1}(k′+1)ρ

2. Choose ~x uniformly at random from {0, 1, same}k′

3. Choose T ⊆ [k̃] uniformly at random from all subsets of [k̃] of size k′. Set

T = {z1, . . . , zk′}, where the elements are in lexicographic order.

4. Choose j∗ uniformly at random from [k′].

5. Choose `∗ uniformly at random from [n]

6. Output (r, ~x, T , j∗, `).

D′:

1. Choose r̂ := r̂1, . . . , r̂k′ , rk′+1 uniformly at random from {0, 1}(k′+1)ρ.

2. Choose ~̂x := x̂1, . . . , x̂k′ uniformly at random from {0, 1, same}k′.

3. Choose T − := {z1 . . . , zk
′−1} uniformly at random from all subsets of [k] of

size k′ − 1.

4. Choose z∗ uniformly at random from [k̃] \ T −. Set T := T − ∪ {z∗}.

5. Choose `∗ uniformly at random from [n].

6. Set j∗ to the lexicographic index of element z∗ in the set T . Let {z1, . . . , zk′}

denote the lexicographical ordering of T and note that zj∗ := z∗.

228



7. Set r := r̂π(1), . . . , r̂π(k′), rk′+1 and ~x := x̂π(1), . . . , x̂π(k′), where π(i) := j iff zj

is the element with lexicographic index i in the set T .

8. Output (r, ~x, T , j∗, `).

Again, the above distributions did not appear in the analysis in Section 6.2,

and are added here since they will be used in the proof of Lemma 6.3.1.

6.3.4 The Attack

In this section we describe the polynomial-time attacker and updater. At a

high-level, the attack is similar to the one from Section 6.2.5. However, the defini-

tion of the sunflower is slightly different, the attack employs the additional set T ,

and the parameters of the attack are different.

Description of attacker:

• For i ∈ [n], find the sets Ri corresponding to the set of c blocks that is accessed

with probability at least 1/n̂c by D and UP for position i and the corresponding

random coins r∗i ∈ {0, 1}ρ, where ρ := c · log(n̂) = O(log λ) in polynomial

time.3

• Find the Sunflower (with petals containing blocks from the set Shi removed)

SF− := {Si0,r∗0 , . . . , Sik̃,r∗i
k̃

}, where i0, . . . , ik̃ ∈ [n] and k̃ + 1 := 8, 640, 000 · c2 ·

3This can be done by, for each i ∈ [n], taking a sufficiently large (but still polynomial) set of
random coins r ∈ {0, 1}ρ, running D and UP for position i on an arbitrary codeword Ĉ for each
r in the set, and selecting the access pattern, Ri, that appears a sufficient number of times. By
standard Chernoff bounds, a sufficiently good set, Ri, will be selected with high probability.

229



X + 1, contained in {S1,r∗1
, . . . , Sn,r∗n} in polynomial time time.4

• Choose a random subset T ⊆ [k̃] of size k′ and choose j∗ ∼ [k′].

• In the first round, submit leakage function `(Ĉ) defined as `(Ĉ) := set−iz∗
j
,r∗zj∗

(Ĉ)

which returns Leaked, i.e. the contents of the positions in Ĉ corresponding to

decoding of iz∗j with randomness r∗z∗j , minus the contents of the blocks in the

core of the sunflower.5

• Wait until the (k′ + 2)-nd round. In the (k′ + 2)-nd round, choose tampering

function f which replaces the contents of set−iz∗
j
,r∗zj∗

(Ĉ(k+1)+), i.e. the positions

in Ĉ(k+1)+—where Ĉ(k+1)+ denotes the contents of the codeword immediately

after the (k + 1)-st update–corresponding to decoding of izj∗ with randomness

r∗zj∗ , minus the contents of the blocks in the core of the sunflower, with the

values, Leaked, that were leaked via `.

Description of Updater:

• Choose x1, . . . , xk′ ∼ {0, 1, same}k′.

• For j = 1 to k′:

– If xj = same, request UPĈ
(j)

(i0, 0)

4As mentioned previously, the original inductive proof of the Sunflower lemma by Erdős and
Rado yields an efficient (polynomial in (n, c, k̃)) algorithm for finding the sunflower.

5If the attacker may leak only a single bit per round, we instead add here r < X · c number
of rounds where in each round the attacker leaks a single bit from set−iz∗

j
,r∗zj∗

(Ĉ). During each of

these rounds, the updater requests a “dummy” update, UPĈ
(j)

(i0, 0). In order for the analysis to

go through, we must increase the size of k so that the ratio of (k′+1+c·X )c
k−k′ ≤ 0.2 (in the current

analysis we only need that (k′+1)·c
k̃−k′

≤ 0.2).

230



– Otherwise request UPĈ
(j)

(izj , xj)

where Ĉ(j) denotes the codeword immediately before the j-th update.

• In round k′ + 1, request UPĈ
(k′+1)

(i0, 0).

6.3.5 Attack Analysis

We begin with some notation and basic facts. Let J∗ be the random variable

corresponding to choice of j∗ in the attack described above. Let L∗ be a random

variable chosen uniformly at random from [n]\T . For zj ∈ T , let UPizj be the event

that location izj gets updated and let UPizj be the event that location izj does not get

updated. Recall that ~m ∈ {0n, 1n} denotes the original message. For j ∈ [n], mj

denotes the original message in block j. m
(t)
j denotes the decoding of Ĉ(t) in the j-th

position, where Ĉ(t) denotes the codeword immediately before the t-th update. m
(t)+
j

denotes the decoding of Ĉ(t)+ in the j-th position, where Ĉ(t)+ denotes the codeword

immediately after the t-th update. We have the following properties, which can be

verified by inspection:

Fact 6.3.1. (a) For j ∈ [k′], Pr[UPizj | ~m = ~0] = Pr[UPizj | ~m = ~1] = 0.67;

Pr[UPizj | ~m = ~0] = Pr[UPizj | ~m = ~1] = 0.33.

(b) For j ∈ [k′], if the original message was ~0, then conditioned on an update

occurring on block izj , m
(k′+1)
izj

= 0 with probability 0.5 and m
(k′+1)
izj

= 1 with

probability 0.5. Conditioned on no update occurring on block izj , m
(k′+1)
izj

= 0

with probability 1.

231



(c) For j ∈ [k′], if the original message was ~1, then conditioned on an update

occurring on block izj , m
(k′+1)
izj

= 1 with probability 0.5 and m
(k′)+
izj

= 0 with

probability 0.5. Conditioned on no update occurring on block izj , m
(k′+1)
i = 1

with probability 1.

(d) Sim must output same for each position i ∈ [n] in rounds 1, . . . , k′+ 1, since no

tampering of the codeword occurs before round k′ + 2.

(e) For j ∈ [k′], m
(k′+1)
izj

= m
(k′+1)+
izj

, since in the k′ + 1-st round only the position

i0 gets updated.

The following is the main technical lemma of this section. Note that the lemma

differs significantly from the analogous lemma (Lemma 6.2.3) in Section 6.2.6. The

lemma below considers the probability of the decoding of position iL∗ being equal to 0

or 1, conditioned on another event occurring in position izJ∗ , whereas Lemma 6.2.3

considered only the probability of the decoding of position iJ∗ being equal to 0 or 1.

Lemma 6.3.1. For the attack and updater specified in Section 6.3.4, the probability

that all three of the following events occur simultaneously is at least 1/ poly(λ), both

when the original message was ~m = ~0 and when the original message was ~m = ~1:

(a) position izJ∗ gets updated, (b) m
(k′+1)
izJ∗

= m
(k′+1)+
izJ∗

6= m
(k′+2)
izJ∗

and (c) m
(k′+2)
izJ∗

6= ⊥.

Moreover, we have the following:

Case 1: If the original message was ~m = ~0, then conditioned on (a), (b), and (c)

occurring, we have that m
(k′+2)
iL∗

= 0 with probability at least 0.9.

Case 2: If the original message was ~m = ~1, then conditioned on (a), (b), and (c)

232



occurring, m
(k′+2)
iL∗

= 1 with probability at least 0.9.

We first show how to use Claim 6.3.1 to complete the proof of Theorem 6.3.1

and then present the proof of Claim 6.3.1.

Proof (of Theorem 6.2.1.). We show that the above claim implies that the candidate

scheme is not secure under Definition 3.2.3 and Definition 3.2.4. Definition 3.2.4

requires the existence of a simulator Sim which (for the above attack and updater)

outputs one of {same,⊥} ∪ {0, 1}κ for the decoding of each position i ∈ [n] in each

round j ∈ [k′ + 2]. We denote by m
(j)
i,Sim the output of Sim in round j for position

i. Recall that if Sim outputs same in round j for position i, then the output of the

experiment in the corresponding position, denoted m̃
(j)
i,Sim, is set to m̃

(j)
i,Sim := m

(j−1)+
i .

We begin by defining the following notation for each pair j ∈ [k′], ` ∈ [n]:

p1,0
up,j,` := Pr[m

(k′+2)
izj ,Sim

= 1,m
(k′+2)
`,Sim = 0 | ~m = ~0 ∧ UPizj ]

p1,1
up,j,` := Pr[m

(k′+2)
izj ,Sim

= 1,m
(k′+2)
`,Sim = 0 | ~m = ~1 ∧ UPizj ]

p0,0
up,j,` := Pr[m

(k′+2)
izj ,Sim

= 0,m
(k′+2)
`,Sim = 0 | ~m = ~0 ∧ UPizj ]

p0,1
up,j,` := Pr[m

(k′+2)
izj ,Sim

= 0,m
(k′+2)
`,Sim = 0 | ~m = ~1 ∧ UPizj ]

p′
1,0
up,j := Pr[m

(k′+2)
izj ,Sim

= 1 | ~m = ~0 ∧ UPizj ]

p′
1,1
up,j := Pr[m

(k′+2)
izj ,Sim

= 1 | ~m = ~1 ∧ UPizj ]

233



p′
0,0
up,j := Pr[m

(k′+2)
izj ,Sim

= 0 | ~m = ~0 ∧ UPizj ]

p′
0,1
up,j := Pr[m

(k′+2)
izj ,Sim

= 1 | ~m = ~1 ∧ UPizj ]

Note that since Sim does not see the original message, we have that for each

j ∈ [k′], ` ∈ [n]:

(a) p1,0
up,j,` = p1,1

up,j,` (b) p0,0
up,j,` = p0,1

up,j,` (c) p′
1,0
up,j = p′

1,1
up,j (d) p′

0,0
up,j = p′

0,1
up,j.

(6.3.1)

Since the output of the ideal experiment (IdealSim,U ,~0) is computationally in-

distinguishable from the output of the real experiment (CTamperLeakA,U ,~0), if the

original message ~m = ~0, then by Lemma 6.3.1, we must have:

234



0.9− negl(λ) ≤ Pr[m̃
(k′+2)
iL∗ ,Sim

= 0 | UPizJ∗ ∧ m̃
(k′+2)
izJ∗ ,Sim

6= m̃
(k′+1)
izJ∗ ,Sim

∧ m̃(k′+2)
izJ∗ ,Sim

6= ⊥ ∧ ~m = ~0]

= Pr[m̃
(k′+2)
iL∗ ,Sim

= 0 | UPizJ∗ ∧ m̃
(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧ m̃(k′+2)
izJ∗ ,Sim

6= ⊥ ∧ ~m = ~0]

(6.3.2)

= Pr[m̃
(k′+2)
iL∗ ,Sim

= 0 | UPizJ∗ ∧m
(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧m(k′+2)
izJ∗ ,Sim

∈ {0, 1} ∧ ~m = ~0]

(6.3.3)

= Pr[m
(k′+2)
iL∗ ,Sim

= 0 | UPizJ∗ ∧m
(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧m(k′+2)
izJ∗ ,Sim

∈ {0, 1} ∧ ~m = ~0]

(6.3.4)

=

Pr[m
(k′+2)
iL∗ ,Sim

= 0 ∧m(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧m(k′+2)
izJ∗ ,Sim

∈ {0, 1}| ~m = ~0 ∧ UPizJ∗ ]

Pr[m
(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧m(k′+2)
izJ∗ ,Sim

∈ {0, 1} | ~m = ~0 ∧ UPizJ∗ ]

=

∑
j,` Pr[J∗ = j ∧ L∗ = `] · 1/2 · (p1,0

up,j,` + p0,0
up,j,`)∑

j Pr[J∗ = j] · 1/2 · (p′1,0up,j + p′0,0up,j)
(6.3.5)

=

∑
j,` Pr[J∗ = j ∧ L∗ = `] · (p1,0

up,j,` + p0,0
up,j,`)∑

j Pr[J∗ = j] · (p′1,0up,j + p′0,0up,j)
(6.3.6)

Where (9) follows since by Fact 6.3.1, Sim outputs same for each position in

rounds 1, . . . , k′ + 1 and so m̃
(k′+1)
izJ∗ ,Sim

= m
(k′+1)
izJ∗

. (10) follows since if (m̃
(k′+2)
izJ∗ ,Sim

6=

m
(k′+1)+
izJ∗

∧ m̃(k′+2)
izJ∗ ,Sim

6= ⊥), then Sim cannot output same or ⊥ in position izJ∗ and

so Sim must output m
(k′+2)
izJ∗ ,Sim

= m̃
(k′+2)
izJ∗ ,Sim

∈ {0, 1}. (11) follows since if Sim does not

output same or ⊥ in position izJ∗ then Sim also cannot output same in position iL∗

(by definition of the ideal experiment IdealSim,U ,~0). And (12) follows since the event

that position izJ∗ gets updated to 0 (resp. updated to 1) occurs with probability 1/2,

235



conditioned on (UPizJ∗ ∧ ~m = ~0) (see Fact 6.3.1) and is independent of the event

that Sim outputs 1 (resp. outputs 0) in position izJ∗ .

Similarly, by Lemma 6.3.1 we also must have:

0.1 + negl(λ) ≥ Pr[m̃
(k′+2)
iL∗ ,Sim

= 0 | UPizJ∗ ∧ m̃
(k′+2)
izJ∗ ,Sim

6= m̃
(k′+1)
izJ∗ ,Sim

∧ m̃(k′+2)
izJ∗ ,Sim

6= ⊥ ∧ ~m = ~1]

= Pr[m̃
(k′+2)
iL∗ ,Sim

= 0 | UPizJ∗ ∧ m̃
(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧ m̃(k′+2)
izJ∗ ,Sim

6= ⊥ ∧ ~m = ~1]

= Pr[m̃
(k′+2)
iL∗ ,Sim

= 0 | UPizJ∗ ∧m
(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧m(k′+2)
izJ∗ ,Sim

∈ {0, 1} ∧ ~m = ~1]

= Pr[m
(k′+2)
iL∗ ,Sim

= 0 | UPizJ∗ ∧m
(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧m(k′+2)
izJ∗ ,Sim

∈ {0, 1} ∧ ~m = ~1]

=

Pr[m
(k′+2)
iL∗ ,Sim

= 0 ∧m(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧m(k′+2)
izJ∗ ,Sim

∈ {0, 1} | ~m = ~1 ∧ UPizJ∗ ]

Pr[m
(k′+2)
izJ∗ ,Sim

6= m
(k′+1)
izJ∗

∧m(k′+2)
izJ∗ ,Sim

∈ {0, 1} | ~m = ~1] ∧ UPizJ∗

=

∑
j,` Pr[J∗ = j ∧ L∗ = `] · 1/2 · (p1,1

up,j,` + p0,1
up,j,`)∑

j Pr[J∗ = j] · 1/2 · (p′1,1up,j + p′0,1up,j)

=

∑
j,` Pr[J∗ = j ∧ L∗ = `] · (p1,1

up,j,` + p0,1
up,j,`)∑

j Pr[J∗ = j] · (p′1,1up,j + p′0,1up,j)

But by (6.3.1) we must have

∑
j,` Pr[J∗ = j ∧ L∗ = `] · (p1,0

up,j,` + p0,0
up,j,`)∑

j Pr[J∗ = j] · (p′1,0up,j + p′0,0up,j)
=

∑
j,` Pr[J∗ = j ∧ L∗ = `] · (p1,1

up,j,` + p0,1
up,j,`)∑

j Pr[J∗ = j] · (p′1,1up,j + p′0,1up,j)
,

thus leading to contradiction.

236



We conclude by proving the Lemma.

Proof (of Lemma 6.3.1). We prove that (a), (b), (c) occur with probability at least

1/ poly(λ) when ~m = ~0 and we prove that if the original message was ~m = ~0, then

conditioned on (a), (b), (c) occurring, we have that m
(k′+2)
iL∗

= 0 with probability at

least 0.9. The proof for the case ~m = ~1 is entirely analogous.

Recall that random variables ~X := X1, . . . , Xk′ are i.i.d. variables distributed

uniformly in {0, 1, same}. We define the random variables CW(r, Ĉ0, T , ~X, var),

C̃W(r, Ĉ0, T , ~X, var) as follows, where CW represents the value of the codeword im-

mediately before the tampering occurs in round k′ + 2, C̃W represents the value of

the codeword immediately after the tampering occurs in round k′ + 2.

CW(r, Ĉ0, T , ~X, j∗, var):

1. Parse r = r1, . . . , rk′+1

2. Set Xj∗ := var, where var ∈ {same, 1}.

3. For j = 1 to k′:

• If Xj = same, run UPĈ
(j)
0 (i0, 0; rj).

• Otherwise run UPĈ
(j)
0 (ij, Xj; rj).

where Ĉ
(j)
0 denotes the codeword immediately before the j-th update.

4. Run UPĈ
(k′+1)
0 (i0, 0; rk′+1).

5. Output the contents of Ĉ
(k′+1)+
0 , where Ĉ

(k′+1)+
0 denotes the codeword immedi-

ately after the k′ + 1-st update.

237



C̃W(r, Ĉ0, T , ~X, j∗, var):

1. Set y0
j∗ := set−ij∗ ,r∗j∗

(Ĉ0)

2. Parse r = r1, . . . , rk′+1

3. Set Xj∗ := var, where var ∈ {same, 1}.

4. For j = 1 to k′:

• If Xj = same, run UPĈ
(j)
0 (i0, 0; rj).

• Otherwise run UPĈ
(j)
0 (ij, Xj; rj).

where Ĉj
0 denotes the codeword immediately before the j-th update.

5. Replace the current contents of set−ij∗ ,r∗j∗
(Ĉ

(k′+)
0 ) with y0

j∗, where Ĉ
(k′+)
0 denotes

the codeword immediately after the k′-th update, yielding codeword Ĉ
(k′+1)
0 .

6. Run UPĈ
(k′+1)
0 (i0, 0; rk′+1).

7. Output the contents of Ĉ
(k′+2)
0 , where Ĉ

(k′+2)
0 denotes the codeword immediately

before the k′ + 2-st update.

Note that for any setting of ~X := X1, . . . , Xk′ and any setting of var,

core(CW(r, Ĉ, T , ~X, j∗, var)) ≡ FĈ0,T ,r(X1, . . . , Xj∗−1, var, Xj∗+1, . . . , Xk′) (6.3.7)

and

core(C̃W(r, Ĉ0, T , ~X, j∗, var)) ≡ core(CW(r, Ĉ0, T , ~X, j∗, var)). (6.3.8)

238



To prove Lemma 6.3.1, we show that (1) with probability at least, 1/5n̂c =

1/ poly(λ) it is the case that position izj∗ is updated to 1 in round j∗ ∈ [k′] (and

so decodes to 1 in round k′ + 1) and decodes to 0 in round k′ + 2; (2) regardless of

the decoding of position izj∗ , position `∗ decodes to 0 with probability at least 0.9 in

round k′ + 2.

Showing that w.h.p., position izj∗ is updated to 1 but decodes to 0 after

tampering The proof relies on the fact that, when decoding the tampered codeword,

assuming position iz∗j has been updated to 1 during the first k′ rounds, decode for

position iz∗j takes the following as input: (a) randomness r′;

(b) set−ij∗ ,r′(C̃W(r, Ĉ0, T , ~X, j∗, 1)); (c) core(C̃W(r, Ĉ0, T , ~X, j∗, 1)).

Recall that y0
j∗ := set−izj∗ ,r∗zj∗

(Ĉ0), First, note that due to correctness of DEC,

Pr[D(set−izj∗ ,r∗zj∗
(CW(r, Ĉ0, T , ~X, j∗, same), core(CW(r, T , Ĉ0, ~X, j

∗, same))) = 0] = 1,

(6.3.9)

Since in experiment CW(r, Ĉ0, T , ~X), j∗, same), the original message is ~m := ~0, no

update occurs to position izj∗ (since Xj∗ is set to same) and no tampering occurs.

We next consider a sequence of hybrid distributions and show that consecutive

hybrids are statistically close:

Hybrid 0

(
set−izj∗ ,r∗zj∗

(
CW

(
r, Ĉ0, T , ~X, j∗, same

))
, core

(
CW

(
r, T , Ĉ0, ~X, j

∗, same
)))

239



where r is chosen at random from {0, 1}(k′+1)ρ, T is a set of size k′ chosen at

random from [k], j∗ is chosen at random from [k′] and ~X is chosen at random from

{0, 1, same}k′.

Hybrid 1

(
set−izj∗ ,r∗zj∗

(
CW

(
r, Ĉ0, T , ~x

)
, j∗, same

)
, core

(
CW

(
r, T , Ĉ0, ~X, same

)))

where

• r̂ := r̂1, . . . , r̂k′ , rk′+1 is chosen uniformly at random from {0, 1}(k′+1)ρ.

• ~̂x := x̂1, . . . , x̂k′ is chosen uniformly at random from {0, 1, same}k′.

• T − := {z1 . . . , zk
′−1} is chosen uniformly at random from all subsets of [k] of

size k′ − 1.

• z∗ is chosen at random from [k] \ T − and T := T − ∪ {z∗}.

• `∗ is chosen at random from [n].

We then set j∗ to the lexicographic index of element z∗ in the set T , set r :=

r̂π(1), . . . , r̂π(k′), rk′+1, and set ~x := x̂π(1), . . . , x̂π(k′), where π(i) := j iff zj is the

element with lexicographic index i in the set T .

Claim 6.3.3. Hybrid 0 and Hybrid 1 are identical.

This follows immediately from Claim 6.3.2.

240



Hybrid 2 (
y0
j∗ , core

(
CW

(
r, T , Ĉ0, ~x, same

)))
where

1. r̂ := r̂1, . . . , r̂k′ , rk′+1 is chosen uniformly at random from {0, 1}(k′+1)ρ.

2. ~̂x := x̂1, . . . , x̂k′ is chosen uniformly at random from {0, 1, same}k′.

3. T − := {z1 . . . , zk
′−1} is chosen uniformly at random from all subsets of [k] of

size k′ − 1.

4. z∗ is chosen at random from [k] \ T − and T := T − ∪ {z∗}.

5. `∗ is chosen at random from [n].

We then set j∗ to the lexicographic index of element z∗ in the set T , set zk
′
:= zj∗ :=

z∗, set r := r̂π(1), . . . , r̂π(k′), rk′+1, and set ~x := x̂π(1), . . . , x̂π(k′), where π(i) := j iff zj

is the element with lexicographic index i in the set T .

Claim 6.3.4. Hybrid 1 and Hybrid 2 are 0.8-close.

Proof. We show that for every setting of ~̂x, r̂, with probability 0.8 over choice of

T , j∗

set−izj∗ ,r∗zj∗
(CW(r, Ĉ0, T , j∗, ~X, same)) = y0

j∗ , (6.3.10)

Note that (6.3.10) holds as long as none of the updates made during experiment

C̃W(r, Ĉ0, T , ~X) modify blocks in S−izj∗ ,r∗zj∗
. To show that this is indeed the case,

observe that the updates corresponding to positions i0, iz1 , . . . , izk′−1 touch at most

241



(k′ + 1) · c positions outside the core, core, and that these positions are completely

determined immediately after Step 3 in the sampling procedure above (i.e. imme-

diately after r̂, ~̂x and T − are sampled). This is due to the fact that the position

corresponding to iz∗ = izj∗ will never be updated since var := same in experiment

CW(r, T , Ĉ0, ~x, j
∗, same) and the fact that for j ∈ [k′], the accessed positions cor-

responding to izj depend only on r̂j, x̂j, but not on the contents of the codeword.

Additionally all of the accessed positions corresponding to i0 also depend only on

r̂j, x̂j, but not on the contents of the codeword. Now, due to the structure of the

Sunflower, these positions can modify at most (k′ + 1) · c petals out of the k petals

in the Sunflower. Thus, the probability that z∗ chosen at random from [k̃] \ T − in

Step 4 hits one of these petals is at most

(k′ + 1) · c
k̃ − k′

≤ 2 · k′ · c
k̃ − k′ · c

≤ 2 · 1, 440, 000 · c2 · X
14, 400, 000 · c2 · X

= 0.2.

Therefore, with probability 0.8, the blocks in the set Sz∗,r∗
z∗

= Szj∗ ,r∗zj∗
have not been

modified at all, which means that

setiz∗ ,r∗z∗ (CW(r, Ĉ1, T , j∗, ~X)) = setizj∗ ,r
∗
izj∗

(CW(r, Ĉ1, T , j∗, ~X)) = y0
j∗.

Hybrid 3 (
y0
j∗ , core

(
CW

(
r, T , Ĉ0, ~X, j

∗, same
)))

where r is chosen at random from {0, 1}(k′+1)ρ, T is a set of size k′ chosen at

random from [k], j∗ is chosen at random from [k′] and ~X is chosen at random from

{0, 1, same}k′.

242



Claim 6.3.5. Hybrid 2 and Hybrid 3 are identical.

This follows again by Claim 6.3.2.

Hybrid 4 (
y0
j∗ , FĈ0,r,T (X1, . . . , Xj∗−1, same, Xj∗+1, Xk′)

)
where r is chosen at random from {0, 1}(k′+1)ρ, T is a set of size k′ chosen at random

from [k], j∗ is chosen at random from [k′] and X1, . . . , Xj∗−1, same, Xj∗+1, Xk′ are

chosen at random from {0, 1, same}k′.

Claim 6.3.6. Hybrid 3 and Hybrid 4 are identical.

This follows from Equation (6.3.7).

Hybrid 5 (
y0
j∗ , FĈ0,T ,r (X1, . . . , Xj∗−1, 1, Xj∗+1, Xk′)

)
where r is chosen at random from {0, 1}(k′+1)ρ, T is a set of size k′ chosen at random

from [k], j∗ is chosen at random from [k′] and X1, . . . , Xj∗−1, same, Xj∗+1, Xk′ are

chosen at random from {0, 1, same}k′.

Claim 6.3.7. Hybrid 4 and Hybrid 5 are 0.8-close.

Proof. We argue that with probability at least 0.9 over j∗ ∼ [k], the statistical

distance between Hybrid 5 and Hybrid 6 is at most 0.1. This follows from Claim 6.2.1

and the fact that y0
j∗ is fully determined by Ĉ0, which is part of the description of

the compression function FĈ0,T ,r.

243



Hybrid 6 (
y0
j∗ , core

(
C̃W

(
r, Ĉ0, T , j∗, ~X, 1

)))
where r is chosen at random from {0, 1}(k′+1)ρ, T is a set of size k′ chosen at

random from [k], j∗ is chosen at random from [k′] and ~X is chosen at random from

{0, 1, same}k′.

Claim 6.3.8. Hybrid 5 and Hybrid 6 are identical.

This follows from (6.3.7) and (6.3.8).

Hybrid 7

(
set−ij∗ ,r∗j∗

(
C̃W

(
r, Ĉ0, T , ~X, j∗, 1

))
, core

(
C̃W

(
r, T , Ĉ0, ~X, j

∗, 1
)))

where r is chosen at random from {0, 1}(k′+1)ρ, T is a set of size k′ chosen at

random from [k], j∗ is chosen at random from [k′] and ~X is chosen at random from

{0, 1, same}k′.

Claim 6.3.9. Hybrid 8 and Hybrid 9 are identical.

This follows from the definition of C̃W(r, Ĉ0, T , ~X, j∗, 1).

Now, conditioned on r′ = r∗j , the view of the decode algorithm in position j∗

(assuming position j∗ got updated to 1) will be exactly

(
set−ij∗ ,r∗j∗

(
C̃W

(
r, Ĉ0, T , ~X, j∗, 1

))
, core

(
C̃W

(
r, T , Ĉ0, ~X, j

∗, 1
)))

.

Thus, combining (6.3.13) and Claims 6.3.3, 6.3.4, 6.3.5, 6.3.6, 6.3.7, 6.3.8,

244



6.3.9 we have that, conditioned on r′ = r∗j∗ and Xj∗ = 1, the D algorithm outputs 0

for position izj∗ in round k′ + 1 with probability at least 0.6. Thus, the probability

that position j∗ is updated to 1 in round j∗ ∈ [k′] (and so decodes to 1 in round k′)

and decodes to 0 in round k′ + 1 is

0.6 · Pr[r′ = r∗J∗ ∧XJ∗ = 1] = 0.6 · 1/n̂3 · 1/3 =
1

5n̂c
.

Showing that w.h.p. position `∗ decodes to 0 in round k′+ 2 Let r′′ denote

the randomness of the decode for position `∗ in round k′ + 2. First, as long as

`∗ /∈ T ∪ {i0} (which occurs with probability at most |T |+1
n

= k′+1
n
≤ .001, for

sufficiently large n), by correctness we have that:

Pr
[
D
(
seti`∗ ,r′′

(
CW

(
r, Ĉ0, T , ~X, j∗, 1

)))
= 0
]

= 1. (6.3.11)

We want to show that:

Pr
[
D
(
seti`∗ ,r′′

(
C̃W

(
r, Ĉ0, T , ~X, j∗, 1

)))
= 0
]
≥ 0.9. (6.3.12)

Note that indeed,

(
seti`∗ ,r′′

(
CW

(
r, Ĉ0, T , ~X, j∗, 1

)))
≡
(
seti`∗ ,r′′

(
C̃W

(
r, Ĉ0, T , ~X, j∗, 1

)))
,

(where r′′ is chosen uniformly at random, r is chosen uniformly at random, T is

chosen at random and j∗ ∼ [k]), as long as (1) `∗ /∈ T ∪{i0} and (2) the set of tam-

245



pered blocks, S−j∗,r∗
j∗

, does not intersect with S`∗,r′′. We have already upperbounded

(1) by .001. To upperbound (2), fix T , j∗ and thus the set S−j∗,r∗
j∗

. Since, by construc-

tion, S−j∗,r∗
j∗
∩ Shi = ∅, we have that the probability over random choice of `∗ ∈ [n]

and random choice of r′′ that S`∗,r′′ accesses any of the at most c blocks in S−j∗,r∗
j∗

is

at most c · 1
11c
≤ 0.091, then, by a union bound, we have that

Pr
[
D
(
set−i`∗ ,r′′

(
C̃W

(
r, Ĉ0, T , ~X, j∗, 1

)))
= 0
]
≥ 0.9. (6.3.13)

6.4 Matching Upper Bound

As discussed earlier in Section 6.1.2.4, the locally decodable and updatable

NMC of [54] is constructed from a symmetric encryption scheme

E = (Gen,Encrypt,Decrypt), a standard non-malleable code NMC = (E′,D′), and

a collision resistant hash function family H. We also stated that the construction

of [54] provides computational security against polynomial size tampering functions

f = (f1, f2) such that f1 ∈ F tampers with c independently, where the underlying

non-local NMC (E′,D′) is secure against F . Whereas f2 tampers with rest of the

codeword arbitrarily. In fact, the locally decodable and updatable non-malleable code

of [54] provides computational security against a slightly more general tamper class.

Specifically, they achieve computational tamper resilience against the tampering class

F̄ where f ∈ F̄ satisfies the following: f = (f1, f2) where f1 gets access to the entire

codeword but it is required that f1 restricted in the first block (corresponding to c) is

in tampering class F . As in the previous case f2 can be arbitrary poly-size tampering

246



function which tampers with the encryptions and Merkle tree (and does not get access

to c). In this work we achieve tamper resilience against the same tampering class

as [54], for the formal definition of F̄ refer to Theorem 6.4.2.

We now show how to construct a locally updatable and decodable non-malleable

code with super-constant locality. This is achieved by replacing the Merkle Tree in the

construction presented in [54] by a new data structure, t-slice Merkle Tree which we

defined below (see Definition 6.4.1). Intuitively, the locality of updating/decoding in

the construction given by Dachman-Soled et al. [54] is lower-bounded by the depth of

the Merkle Tree, since, in order to detect tampering, each update/decode instruction

must check the consistency of a leaf by traversing the path from leaf to root. Our

initial idea is to replace the binary Merkle Tree of depth log(n) with a t-ary Merkle

tree (where t is a super-constant function of n defined below) of constant depth.

Unfortunately, this simple solution does not quite work. Recall that in order to verify

consistency of a leaf in a standard Merkle tree, one needs to access not only the path

from leaf to root, but also the siblings of each node on the path. This would mean

that in the t-ary tree, we would need to access at least Ω(t) sibling nodes, where t is

super-constant, thus still requiring super-constant locality. Our solution, therefore,

is to construct t-ary Merkle trees of a particular form, where verifying consistency

of a leaf can be done by traversing only the path from leaf to root, without accessing

any sibling nodes. We call such trees t-slice Merkle trees. Details of the construction

follow in Definition 6.4.1, and Algorithms 1, 2, 3 and 4. Finally, in Theorem 6.4.1

we show that the t-slice Merkle Tree is collision resistant, which allows us to retain

security while replacing the Merkle tree in the construction of [54] with our t-slice

247



Merkle Tree. This then leads to our matching upper bound in Theorem 6.4.2.

Definition 6.4.1 (t-slice Merkle Tree). Let X , t ∈ N and let X be a multiple of t.

Let h : {0, 1}X → {0, 1}X/t be a hash function that maps a block of size X to block

of size X/t. Denote a block of data at level j with index i by αji and the input data

by M = (m1,m2, . . . ,mn) ∈ {0, 1}X·n. Let α0
i := mi+1 for 0 ≤ i ≤ n − 1. A t-slice

Merkle Tree Treeth(M) is defined recursively in the following way:

• Bottom layer of the tree contains n blocks of data each of size

X , i.e., (α0
0, α

0
1, . . . , α

0
n−1).

• To compute the content of non-leaf node at level j with index i set αji :=

h(αj−1
i·t ) || . . . || h(αj−1

((i+1)·t)−1).

• Once a single block αj0 remains, set the root of Merkle Tree Rooth
t
h(M) := αj0

and the height of tree H := j + 1 and terminate.

The internal blocks of Merkle Tree (including the root) are denoted as Treeth(M).

Definition 6.4.2 (kth-slice). Let αji be a block in Merkle Tree Treeth. We divide αji

into t parts of size χ
t
, and call these individual smaller parts as slices. Then, for k ∈

{0, 1, . . . , t−1} the kth-slice, denoted by αji [k] is the slice consisting (k·χ
t
, . . . , (k+1)·χ

t
)

.

For reference, we provide a pictorial representation of a t-slice Merkle Tree in

Figure 6.2.

248



… …

… …

… …

Level 0

Level 1

Level 2

Level 3

Level 4

H
 =

 5

↵0
0 ↵0

45 ↵0
46 ↵0

47 ↵0
80

↵1
14 ↵1

15 ↵1
16

↵2
3 ↵2

4 ↵2
5

↵3
0 ↵3

1 ↵3
2

↵4
0Root3h

Figure 6.2: Illustration of 3-slice-Merkle Tree: The figure shows a 3-slice Merkle tree with
n = 81 number of blocks, where each block has size X . The hash function h
maps inputs of size X to outputs of size X/3. As a concrete example, starting
from leaf block α0

45, we apply the hash h to obtain the leftmost (0-th) slice of
block α1

15. Next, hashing α1
15, we obtain the leftmost (0-th) slice of block α2

5.
Then, hashing α2

5, we obtain the rightmost (2-nd) slice of block α3
1. Finally,

hashing α3
1, we obtain the middle (1-st) slice of block α4

0. Thus, in order to
check consistency or update leaf block 45 at the bottom, we need to access only
the path to block 45, consisting of (α0

45, α
1
15, α

2
5, α

3
1, α

4
0), as described above.

Note that no sibling nodes are accessed.

249



Lemma 6.4.1. Let X ∈ Ω(λ1/µ), h : {0, 1}X → {0, 1}Xµ, and t := X 1−µ, for

constant 0 < µ < 1. Assuming n = poly(λ) := X c for constant c, the height of the

t-slice Merkle Tree will be constant H = c
1−µ + 1.

Proof. In the beginning the message blocks M = (m1,m2, . . . ,mn) are at the leaves

of the tree and size of each block is X , i.e. |mi| = X . After applying a hash function

to each of the blocks separately, their size becomes X µ and by concatenating X 1−µ

number of hashes a single block of size X will be formed. In this level there will

therefore be X c
X 1−µ = X c+µ−1 block of size X . Applying hash function to each of them

will form new blocks of size X µ and there will be X c+2µ−2 blocks of size X . In general

in level i-th there will be X c+iµ−i blocks of size X . The root of the t-slice Merkle Tree

is of size X which is just a single block, so the height of the tree is for the case where

X c+iµ−i = 1 (= X 0) resulting in i as c
1−µ . Since i starts from 0 the total height of

the tree is given by H = c
1−µ + 1.

We next present various algorithms which are used to manipulate the t-slice

merkle tree data structure. Specifically, Parent (see Algorithm 1), returns the par-

ent of a node, Path (see Algorithm 2), returns the path from a leaf to the root,

consistencyCheck (see Algorithm 3), checks the consistence of a path with a given

root, and Update (see Algorithm 4), updates a leaf of the tree and the corresponding

path. It may be helpful for the reader to refer to Figure 6.2 alongside the following

algorithms.

250



Algorithm 1 Parent(Treeth,H, node): Returns the parent of the block node in Treeth
of height H

1: procedure Parent(Treeth,H, α
j
i )

2: if j = H then
3: print “ Rooth

t
h does not have any parent. ”

4: return NULL
5: else
6: ĵ := j + 1
7: î := b i

t
c . bkc denotes greatest integer less than or equal to k.

8: return αĵ
î

9: end if
10: end procedure

Algorithm 2 Path(Treeth,H, node): Returns the path to the root of the tree
(Rooth

t
h) from the block node as a list of blocks starting at node.

1: procedure Path(Treeth,H, α
j
i )

2: path := φ . Initialize an empty list to store the path
3: currentNode := αji

4: while currentNode 6= NULL do
5: path.append(currentNode) . Add current block to the path.
6: currentNode := PARENT (Treeth,H, currentNode)
7: end while

8: return path
9: end procedure

251



Algorithm 3 consistencyCheck(path,Rooth
t
h): Returns boolean value TRUE if given

path of nodes in Merkle Tree Treeth is consistent with its root Rooth
t
h, and returns

FALSE otherwise.
1: procedure consistencyCheck(path,Rooth

t
h)

2: ` := length(path) . function length(·) returns the total number of elements
in the list.

3: valid = TRUE . Initializing the boolean flag to be returned.
4: for j = 0 to `− 2 do
5: αj+1

i := pathj+1 . Here pathj is jth element of the list.

6: αji := pathj
7: k := imod t
8: if αj+1

i [k] == h(αji ) then
9: valid = valid ANDTRUE

10: else
11: valid = FALSE
12: break
13: end if
14: end for
15: if Rooth

t
h 6= path`−1 then

16: valid = FALSE
17: else
18: valid = valid ANDTRUE
19: end if

20: return valid
21: end procedure

Algorithm 4 Update(Treeth,H, i,m′i): Updates the tree Treeth by replacing leaf α0
i

by m′i and re-computing the necessary internal blocks.

1: procedure Update(Treeth,H, i,m′i)
2: α0

i := m′i
3: path := PATH(Treeth,H, α0

i )
4: for j = 0 to H− 2 do
5: αj` := pathj
6: k := `mod t
7: pathj+1[k] := h(pathj) . Note that here the value is written in the Treeth

and not just in the local variable.
8: end for
9: end procedure

252



Theorem 6.4.1. Let X ∈ Ω(λ1/µ), h : {0, 1}X → {0, 1}Xµ, and t := X 1−µ, for

constant 0 < µ < 1. Assume h is a collision resistant hash function. For any mes-

sage M = (m1,m2, . . . ,mn) ∈ {0, 1}X·n, where n := X c, consider the corresponding

t-slice Merkle Tree, Treeth with root Rooth
t
h. Then for any i ∈ [n] and any polynomial

time adversary A,

Pr

 mi 6= m′i ∧ m′i = path′0 ∧

consistencyCheck(path′,Rooth
t
h) = TRUE

∣∣∣∣(m′i, path′)← A(M,h)

 ≤ negl(λ)

Moreover, given a path path passing the leaf mi, and a new value m′i, the

Update algorithm computes Rooth
t
h(M

′) in time Θ(H), where H := c
1−µ + 1, where

M ′ = (m1, . . . ,mi−1,m
′
i,mi+1, . . . ,mn).

Proof. The second part of Theorem 6.4.1 is immediate by inspection of Algorithm 4.

For the first part of the theorem, we assume towards contradiction that for some

message M = (m1,m2, . . . ,mn) with mi ∈ {0, 1}X , there is an efficient adversary A

such that

Pr

 mi 6= m′i ∧ m′i = path′0 ∧

consistencyCheck(path′,Rooth
t
h) = TRUE

∣∣∣∣(m′i, path′)← A(M,h)

 = ε(λ)

for non-negligible ε(·). Let path be the path returned by Path (see Algorithm 2) on

input (Treeth,H, α0
i = mi). Note that path0 = mi. We construct adversary A′ which

finds a collision in hash function h with non-negligible probability. The procedure is

as follows:

253



1. On input h, adversary A′ instantiates A on input (M,h).

2. Adversary A returns (m′i, path
′), where path′ := path′0, . . . , path

′
H−1.

3. A′ checks that path′H−1 = Rooth
t
h(M).

4. For j ∈ [H − 2], if path′j+1 = pathj+1 and path′j 6= pathj, then A′ returns

collision (path′j, pathj).

We must first argue that there must be some j ∈ [H− 2] for which the condition in

Item (4) evaluates to TRUE. Specifically, there must be some j ∈ [H− 2] such that

path′j+1 = pathj+1 and path′j 6= pathj. To see why this is so, recall that we require

m′i 6= mi and so by definition we must have path′0 6= path0. On the other hand,

path′H−1 = pathH−1 = Rooth
t
h(M). Thus, there must be some j ∈ [H− 2] such that

path′j+1 = pathj+1 and path′j 6= pathj.

Next, we argue that for j ∈ [H − 2] such that path′j+1 = pathj+1 and

path′j 6= pathj, (path′j, pathj) yields a collision on h. This follows from the defi-

nition of the consistencyCheck algorithm in Algorithm 3 and the fact that, by as-

sumption, consistencyCheck(path′,Rooth
t
h) = TRUE. Specifically, we know that both

consistencyCheck(path,Rooth
t
h) = TRUE and consistencyCheck(path′,Rooth

t
h) =

TRUE. Therefore, during the runs of both algorithms, it must be the case

that, for j as above, the condition in Line 8, αj+1
i [k] == h(αji ), evaluated

to True. Let us now look at the settings of αj+1
i and αji during the runs of

consistencyCheck(path,Rooth
t
h) = TRUE and consistencyCheck(path′,Rooth

t
h) =

TRUE. In Line 5 of the run of consistencyCheck(path,Rooth
t
h) = TRUE, αj+1

i

is set to αj+1
i := pathj+1, while in Line 6, αji is set to αji := pathj. Thus,

254



the condition in Line 8 ensures that pathj+1[k] = h(pathj). On the other hand,

in Line 5 of the run of consistencyCheck(path′,Rooth
t
h) = TRUE, αj+1

i is set to

αj+1
i := path′j+1, while in Line 6, αji is set to αji := path′j. Thus, the con-

dition in Line 8 ensures that path′j+1[k] = h(path′j). However, recall that we

chose j such that path′j+1 = pathj+1 and path′j 6= pathj. Therefore, this implies

that h(path′j) = path′j+1[k] = pathj+1[k] = h(pathj). We therefore conclude that

(path′j, pathj) yields a collision on h.

Thus, the above adversary A′ will succeed with same probability as the adver-

sary A and breaks collision resistance of h with non-negligible probability ε(λ). Thus,

we arrive at contradiction and so the theorem is proved.

Theorem 6.4.2. Assume there exists a semantically secure symmetric encryption

scheme, and a non-malleable code against the tampering function class F , and leak-

age resilient against the function class G. Then there exists a locally decodable and

updatable non-malleable code that has non-adaptive decode and update with deter-

ministic accesses and is non-malleable against continual attacks of the tampering

class

F̄ def
=



f : Σ̂2n+1 → Σ̂2n+1 and |f | ≤ poly(k), such that :

f = (f1, f2), f1 : Σ̂2n+1 → Σ̂, f2 : Σ̂2n → Σ̂2n,

∀(x2, . . . , x2n+1) ∈ Σ̂2n, f1( · , x2, . . . , x2n+1) ∈ F ,

f(x1, x2, . . . , x2n+1) = (f1(x1, x2, . . . , x2n+1), f2(x2, . . . , x2n+1)) .


,

255



and is leakage resilient against the class

Ḡ def
=


g : Σ̂2n+1 → Y and |g| ≤ poly(k), such that :

g = (g1, g2), g1 : Σ̂2n+1 → Y ′, g2 : Σ̂2n → Σ̂2n,

∀ (x2, . . . , x2n+1) ∈ Σ̂2n, g1( · , x2, . . . , x2n+1) ∈ G.


.

Moreover, for n := X c ∈ poly(λ), the coding scheme has locality δ(n), for any

δ(n) ∈ ω(1).

Our construction is exactly the same as that of Dachman-Soled et al. [54],

except we replace their (standard) Merkle tree with our t-slice Merkle tree with the

parameters described above. We note that the only property of the Merkle hash

used in the security proof of [54] is the “collision resistance” property, analogous

to our Theorem 6.4.1 above for the t-slice Merkle tree. Thus, our security proof

follows exactly as theirs does and we therefore omit the full proof. On the other

hand, as described in Algorithms 4 and 3, updates and consistency checks require

time and number of accesses to memory proportional to the height of the tree, H,

which is c
1−µ + 1 for our choice of parameters, as shown in Lemma 6.4.1 above.

Since n = X c ∈ poly(λ), it means that the height of the tree will always be less than

δ(n), for any δ(n) ∈ ω(1). On the other hand, [54] used a standard (binary) Merkle

tree with height Θ(log n). Therefore, while [54] requires locality Θ(log n), we achieve

locality δ(n), for any δ(n) ∈ ω(1).

Finally, we give a concrete example of the resulting leakage and tampering

classes we can tolerate via Theorem 6.4.2 when instantiating the underlying non-

256



malleable code with a concrete construction. Specifically, we consider instantiat-

ing the underlying non-malleable code with the construction of of Liu and Lysyan-

skaya [100], which achieves both leakage and tamper resilience for split-state func-

tions. Combining the constructions of [100] and [54] yields codewords consisting of

2n+ 1 blocks. We next describe the leakage and tampering classes Ḡ, F̄ that can be

tolerated on the 2n + 1-block codeword. Ḡ consists of leakage functions g such that

g restricted to the first block (i.e. g1) is any (poly-sized) length-bounded split-state

function; g2 on the other hand, can leak all other parts. F̄ consists of tampering

functions f such that f restricted to the first block (i.e. f1) is any (poly-sized) split-

state function. On the other hand f restricted to the rest (i.e. f2) is any poly-sized

function. We also remark that the function f2 itself can depend on the split-state

leakage on the first part.

257



Chapter 7: Upper and Lower Bounds for Continuous Non-Malleable

Codes

7.1 Introduction

In this chapter we study continuous non-malleable codes (CNMC) and analyze

the minimal computational assumptions required to construct CNMC.

Recall, that CNMC with respect to a tampering class F is informally defined as

follows: Given a coding scheme Π = (E,D), where E is the encoding function and D is

the decoding function, the adversary interacts with an oracle OΠ(C), parameterized

by Π and an encoding of a message m, C ← E(m). We refer to the encoding C as the

“challenge” encoding. In each round, the adversary submits a tampering function

f ∈ F . The oracle evaluates C ′ = f(C). If D(C ′) = ⊥, the oracle outputs ⊥ and

a “self-destruct” occurs, aborting the experiment. If C ′ = C, the oracle outputs a

special message “same.” Otherwise, the oracle outputs C ′. We emphasize that the

entire tampered codeword is returned to the adversary in this case. A CNMC is

secure if for every pair of messages m0,m1, the adversary’s view in the above game

is computationally indistinguishable when the message is m0 or m1.

258



Information-theoretic impossibility. The original CNMC paper of [71] showed an

information-theoretic impossibility result for 2-split-state CNMC. To aid the subse-

quent discussion, we present an outline of this result. The impossibility result consid-

ers a property of 2-split-state CNMC known as (perfect) “uniqueness.” Informally,

perfect uniqueness means that there do not exist triples (x, y, z) such that either (1)

y 6= z∧D(x, y) 6= ⊥∧D(x, z) 6= ⊥ OR (2) x 6= y∧D(x, z) 6= ⊥∧D(y, z) 6= ⊥. First,

a perfectly unique CNMC cannot be information-theoretically secure since, given L,

the split-state tampering function can find the unique R such that D(L,R) 6= ⊥ and

then tamper based on m = D(L,R). On the other hand, if the CNMC is not perfectly

unique, then the following is an efficient attack (with non-uniform advice): Given a

tuple L′1, L
′
2, R

′ such that D(L′1, R
′) 6= ⊥ and D(L′2, R

′) 6= ⊥, the adversary can learn

L bit-by-bit by using the following tampering function in the i-th round: fL does the

following: If the i-th bit of L is equal to 0, replace L with L′1. Otherwise, replace L′

with L′2. fR always replaces R with R′. Now, in the i-th round, if the oracle returns

(L′1, R
′), then the adversary learns that the i-th bit of L is equal to 0. If the oracle

returns (L′2, R
′), then the adversary learns that the i-th bit of L is equal to 1. Once

L is fully recovered, the adversary can tamper based on m = D(L,R).

The computational setting. The above shows that the CNMC setting is distin-

guished from other NMC settings, since information-theoretic (unconditional) se-

curity is impossible. Prior work has shown how to construct 2-split-state CNMC

in the CRS model under the assumptions of collision-resistant hash functions and

NIZK. On the other hand, CNMC’s imply commitment schemes, which in turn imply

259



OWF. It remains to determine where CNMC lies in terms of complexity assumptions

and what are the minimal computational assumptions needed to achieve CNMC. As

mentioned previously, a very recent work of Ostrovsky et al. [105] addressed minimiz-

ing computational assumptions under a relaxed definition of CNMC. See Section 2.3

for more details.

Black-box reductions. In general, it is not feasible to unconditionally rule out the

construction of a primitive G from a cryptographic assumption H, since uncondi-

tionally ruling it out is as hard as proving P 6= NP . Despite this, we can still

show that the proof techniques we have at hand cannot be used to construct G from

assumption H. In the literature, this is typically done by showing that there is no

black-box reduction from primitive G to assumption H. In this work, what we mean

by a black-box reduction is a reduction that accesses the adversary in an input/output

fashion only. However, we allow non-black-box usage of the assumption H in both

the construction and the proof (see Definition 7.2.3 for a formal definition tailored to

CNMC). While there are some exceptions [21,25], the vast majority of cryptographic

reductions are black-box in the adversary.

7.1.1 Our Results

We present upper and lower bounds for CNMC in the 2-split-state model. First,

we show that with no CRS, single-bit CNMC in the 2-split-state model (with a black-

box security proof) is impossible to construct from any falsifiable assumption.

Theorem 7.1.1 (Informal). There is no black-box reduction from a single-bit, 2-

260



split-state, CNMC scheme Π = (E,D) to any falsifiable assumption.

On the other hand, in the CRS model, we show how to achieve single-bit CNMC

in the 2-split-state model from injective one-way functions.

Theorem 7.1.2. Assuming the existence of an injective one-way function family,

there is a construction of a 2-split-state CNMC for encoding single bit, in the CRS

model. Moreover, the corresponding reduction is black-box.

Actually, we show a somewhat more general result: First, we define a (to the

best of our knowledge) new type of commitment scheme called one-to-one commit-

ment schemes in the CRS model. Informally, these commitment schemes have the

additional property that with all but negligible probability over Σ produced by CRS

generation, for every string com, there is at most a single string d that will be

accepted as a valid decommitment for com (See Definition 7.2.5 for a formal def-

inition). We also define the notion of a 2-split-state CNM Randomness Encoder,

which is the continuous analogue of the non-malleable randomness encoder recently

introduced by [91] (See Definition 7.2.1). We then show the following:

Theorem 7.1.3. Assuming the existence of one-to-one commitment schemes in the

CRS model, there is a construction of a 2-split-state CNM Randomness Encoder in

the CRS model. Moreover, the corresponding reduction is black-box.

One-to-one commitment schemes in the CRS model can be constructed from

any injective one-way function family. Furthermore, we show (in Section 7.4.1)

that 2-split-state CNM Randomness Encoders in the CRS model imply 2-split-state

261



CNMC for encoding single bit, in the CRS model. We therefore obtain Theorem 7.1.2

as a corollary. Moreover, CNMC with perfect uniqueness in the CRS model implies

one-to-one commitment schemes in the CRS model in a straightforward way.

We leave open the question of constructing CNMC in the CRS model from

(non-injective) one-way functions and/or showing a black-box separation between the

two primitives. Finally, we extend the techniques from our single-bit construction

above to achieve the following:

Theorem 7.1.4. Assuming the existence of one-to-one commitment schemes in the

CRS model, there is a construction of a multi-bit, 4-split-state CNMC in the CRS

model. Moreover, the corresponding reduction is black-box.

Are prior CNMC reductions “black-box”? Prior CNMC reductions often proceed

in a sequence of hybrids, where in the final hybrid, the description of the adversary is

incorporated in the definition of a leakage function. It is then shown that the leakage-

resilience properties of an underlying encoding imply that the view of the adversary

is statistically close when the encoded message is set to m0 or m1. While this may

seem like non-black-box usage of the adversary, we note that typically the leakage-

resilience of the underlying encoding is information-theoretic. When converting a

hybrid-style proof to a reduction, the reduction will choose one of the hybrid steps at

random and use the fact that a distinguisher between some pair of consecutive hybrids

implies an adversary breaking an underlying assumption. Therefore, reductions of

the type discussed above are still black-box in the adversary, pairs of consecutive

hybrids whose indistinguishability is implied by a computational assumption yield a

262



reduction in which the adversary is used in a black-box manner.

7.1.2 Technical Overview

Lower bound. Recall that prior work has shown that if a CNMC is not perfectly

unique, then there is an efficient attack (with non-uniform advice). Thus, it remains

to show that there is no black-box reduction from a single-bit, perfectly unique CNMC

scheme to any falsifiable assumption. We use the meta-reduction approach, which

is to prove impossibility by showing that given only black-box access to the split-

state adversary, A = (AL, AR), the reduction cannot distinguish between the actual

adversary and a simulated (efficient) adversary (which is possibly stateful). Since

the view of the reduction is indistinguishable in the two cases, the reduction must

also break the falsifiable assumption when interacting with the simulated adversary.

But this in turn means that there is an efficient adversary (obtained by composing

the reduction and the simulated adversary), which contradicts the underlying falsi-

fiable assumption. Consider the following stateless, inefficient, split-state adversary

A = (AL, AR), which leverages the uniqueness property of the CNMC scheme: The

real adversary, given L (resp. R), recovers the corresponding unique valid codeword

(L,R) (if it exists) and decodes to get the bit b. If b = 0, the real adversary encodes

a random bit b′ using internal randomness that is tied to (L,R), and outputs the

left/right side as appropriate. If b = 1 or there is no corresponding valid codeword,

the real adversary outputs the left/right side of a random encoding of a random bit,

b′′ (generated using internal randomness that is tied to L or R respectively). The

263



simulated adversary is stateful and keeps a table containing all the L and R values

that it has seen. Whenever a L (resp. R) query is made, the simulated adversary

first checks the table to see if a matching query to R (resp. L) such that D(L,R) 6= ⊥

was previously made. If not, the simulated adversary chooses a random encoding,

(L′, R′), of a random bit b′, stores it in the table along with the L/R query that was

made and returns either L′ or R′ as appropriate. If yes, the simulated adversary

finds the corresponding R (resp. L) along with the pair (L′, R′) stored in the table.

The simulated adversary then decodes (L,R) to find out b. If b = 0, the simulated

adversary returns either L′ or R′ as appropriate. Otherwise, the simulated adver-

sary returns the left/right side of an encoding of a random bit b′′. The uniqueness

property allows us to prove that the input/output behavior of the real adversary is

identical to that of the simulated adversary. See Section 7.3 for additional details.

For a discussion on why our impossibility result does not hold for the relaxed CNMC

notion considered by [105], see Section 2.3.

Upper bound. For the upper bound, we construct a new object called a continuous

non-malleable randomness encoder (see Definition 7.2.1), which is the continuous

analogue of the non-malleable randomness encoder recently introduced by [91]. Infor-

mally, a continuous non-malleable randomness encoder is just a non-malleable code

for randomly chosen messages. It is then straightforward to show that a continu-

ous non-malleable randomness encoder implies a single-bit continuous non-malleable

code (see Section 7.4.1).

At a high level, the difficulty in proving continuous non-malleability arises

264



from the need of the security reduction to simulate the interactive tampering oracle,

without knowing the message underlying the “challenge” encoding. The approach of

prior work such as [71] was to include a NIZK Proof of Knowledge in each part of

the codeword to allow the simulator to extract the second part of the encoding, given

the first. This then allowed the simulator (with some additional leakage) to respond

correctly to a tampering query, while knowing only one of the two split-states of the

original encoding. In our setting, we cannot use NIZK, since our goal is to reduce

the necessary complexity assumptions; therefore, we need a different extraction tech-

nique.1 Our main idea is as follows: To respond to the i-th tampering query, we

run the adversarial tampering function on random (simulated) codewords (L′, R′)

that are consistent with the output seen thus far (denoted outi−1
A ) and keep track of

frequent outcomes (occurring with non-negligible probability) of the tampering func-

tion, L̂, R̂. I.e. SL (resp. SR) is the set of values of L̂ (resp. R̂) such that with

non-negligible probability over choice of L′ (resp. R′), it is the case that L̂ = fL(L′)

(resp. R̂ = fR(R′)). We then show that if the outcome of the tampering function

applied to the actual “challenge” split-state L or R is not equal to one of these fre-

quent outcomes (i.e. fL(L) /∈ SL or fR(R) /∈ SR), then w.h.p. the decode function D

outputs ⊥. This will allow us to simulate the experiment with only a small amount

of leakage (to determine which of the values in SL/SR should be outputted). Note

that, while the sets SL/SR are small, and so only a few bits are needed to specify

the outcome, conditioned on the outcome being in SL/SR, the CNMC experiment

1Note that our extraction technique is inefficient. This is ok, since the goal of the extraction
technique is simply to show that the view of the adversary can be simulated given a small amount
of leakage on each of the two split-states. Then, information-theoretic properties of the encoding
are used to show that the view of the adversary must be independent of the random encoded value.

265



runs for an unbounded number of times, and so even outputting a small amount of

information in each round can ultimately lead to unbounded leakage. To solve this

problem, we also consider the most frequent outcome in the sets SL/SR. This is

the value of L̂ (resp. R̂) that occurs with the highest probability when fL(L′) (resp.

fR(R′)) is applied to consistent L′ (resp. R′). Note that if a value L̂′ (resp. R̂′) is

not the most frequent value, then it occurs with probability at most 1/2. We argue

that, for each round i of the CNMC experiment, the probability that a value L̂′ (resp.

R̂′) that is not the most frequent value is outputted by fL (resp. fR) and self-destruct

does not occur is at most 1/2. This allows us to bound, w.h.p., the number of times

in the entire tampering experiment that the value outputted by fL (resp. fR) is not

the most frequent value. Thus, when the value outputted by fL (resp. fR) is the most

frequent value, the leakage function outputs nothing, since the most frequent value

can be reconstructed from the given information. In contrast, if the value outputted

by fL (resp. fR) is not the most frequent value, but is in the sets SL/SR, then it

has a small description and, moreover, this event occurs a bounded number of times.

Therefore, we can afford to leak this information up to some upperbounded number

of rounds, while the total amount of leakage remains small relative to the length

of the encoding. Looking ahead, our construction will use a two-source extractor,

whose properties will guarantee that even given the leakage (which contains all the

information needed to simulate the CNMC experiment), the decoded value remains

uniform random.

To show that if the outcome of the tampering function is not in SL or SR,

then decode outputs ⊥ w.h.p., we first use the “uniqueness” property, which says

266



that for every L̂ = fL(L) (resp. R̂ = fR(R)), there is at most a single “match”, R̂′

(resp. L̂′), such that DΣ(L̂, R̂′) 6= ⊥ (resp. DΣ(L̂′, R̂) 6= ⊥). Given the “uniqueness”

property, it is sufficient to show that for every setting of L,outi−1
A

Pr[fR(R) = R̂′ ∧ R̂′ /∈ SR | L ∧ outi−1
A ] ≤ negl(n) (7.1.1)

and that for every setting of R ∧ outi−1
A

Pr[fL(L) = L̂′ ∧ L̂′ /∈ SL | R ∧ outi−1
A ] ≤ negl(n). (7.1.2)

To prove the above, we first argue that for the “challenge” codeword, (L,R),

the split-states L and R are conditionally independent, given outi−1
A (assuming no ⊥

has been outputted thus far) and an additional simulated part of the codeword. This

means that the set of frequent outcomes SL (resp. SR) conditioned on outi−1
A is the

same as the set of frequent outcomes SL (resp. SR) conditioned on both outi−1
A and

R (resp. L). So for any R̂ /∈ SR,

Pr[fR(R) = R̂ | L ∧ outi−1
A ] ≤ negl(n)

and for any L̂ /∈ SL,

Pr[fL(L) = L̂ | R ∧ outi−1
A ] ≤ negl(n).

Since R̂′ (resp. L̂′) is simply a particular setting of R̂ /∈ SR (resp. L̂ /∈ SL), we have

267



that (7.1.1) and (7.1.2) follow.

For the above analysis, we need the encoding scheme to possess the following

property: The L,R sides of the “challenge” codeword are conditionally independent

given outi−1
A (and an additional simulated part of the codeword), but any tampered

split-state fL(L) or fR(R) created by the adversary has at most a single “match,”

R̂′ or L̂′.

To explain how we achieve this property, we briefly describe our construction.

Our construction is based on a non-interactive, equivocal commitment scheme in

the CRS model and a two-source (inner product) extractor. Informally, an equivocal

commitment scheme is a commitment scheme with the normal binding and hiding

properties, but for which there exists a simulator that can output simulated commit-

ments which can be opened to both 0 and 1. In the CRS model, the simulator also

gets to sample a simulated CRS. Moreover, the CRS and commitments produced by

the simulator are indistinguishable from real ones.

To encode a random value m, random vectors cL, cR such that 〈cL, cR〉 = m are

chosen. We generate a commitment com to cL||cR. The commitment scheme has the

additional property that adversarially produced commitments are statistically binding

(even if an equivocal commitment has been released) and have at most a single

valid decommitment string. The left (resp. right) split-state L (resp. R) consists

of com and an opening of com to the bits of cL (resp. cR). The special properties

of the commitment scheme guarantee the “perfect uniqueness” property of the code.

In the security proof, we replace the statistically binding commitment com in the

“challenge” codeword with an equivocal commitment. Thus, each split-state of the

268



challenge encoding, L (resp. R), contains no information about cR (resp. cL).

Moreover, assuming “⊥” is not yet outputted, the output received by the adversary

in the experiment at the point that the i-th tampering function is submitted, denoted

outi−1
A is of the form (f 1

L(L) = v1, f
1
R(R) = w1), . . . , (f i−1

L (L)) = vi−1, f
i−1
R (R) =

wi−1), where for j ∈ [i − 1], vj is equal to the left value outputted in response to

the j-th query and wj is equal to the right value outputted in response to the j-th

query. (note that vj/wj can be set to “same” if the tampering function leaves L/R

unchanged). This allows us to argue that the distribution of L | outi−1
A , R (resp.

R | outi−1
A , L) is identical to the distribution of L | outi−1

A (resp. R | outi−1
A ) which

implies that the left and right hand sides are conditionally independent given outi−1
A

and the equivocal commitment, as desired. See Section 7.4 for additional details.

Extension to 4-state CNMC in CRS model from OWF. To encode a message m we

now generate random (cL,1, cR,1, cL,2, cR,2) conditioned on 〈cL,1, cR,1〉+〈cL,2, cR,2〉 = m

(where addition is over a finite field). Now, we generate a commitment com to

cL,1||cR,1||cL,2||cR,2. Each of the four split states now consists of com and an opening

of com to the bits of cL,b (resp. cR,b). The analysis is similar to the previous case

and requires the property that at each point in the experiment the distribution of

〈cL,1, cR,1〉 (resp. 〈cL,2, cR,2〉) is uniform random, conditioned on the output thus far.

Our techniques are somewhat similar to those used in [60] in their construction of 2t-

split-state continuously non-malleable codes from t-split-state one-way continuously

non-malleable codes. See Section 7.5 for additional details.

269



7.2 Preliminaries

In this section we will provide some more definitions and background required

for our constructions and results presented in chapter 7.

7.2.1 Randomness Extractors

The following lemma is from [108].

Lemma 7.2.1 (Inner-Product Two-Source Extractor). Let ~X, ~Y, Z be correlated

variables, where ~X, ~Y have their support in {0, 1}` = F
`
λ

2λ
and λ|`, and are indepen-

dent conditioned on Z. Let Uλ be uniform and independent on F2λ. Then

∆((Z, 〈 ~X, ~Y 〉), (Z,Uλ)) ≤ 2−s

for some s ≥ 1 + 1
2
(kX + kY − `− λ), where kX := H̃∞( ~X|Z), kY := H̃∞(~Y |Z)

7.2.2 Continuous Non-Malleable Randomness Encoder

The following definition is an adaptation of the notion of Non-Malleable Ran-

domness Encoders [91] to the continuous setting.

Definition 7.2.1. Let Code = (CRSGen,CNMREnc,CNMRDec) be such that CRSGen

takes security parameter λ as input and outputs a string of length crs1 = poly(λ)

as CRS. CNMREnc : {0, 1}crs1 × {0, 1}r → {0, 1}λ × ({0, 1}n1 , {0, 1}n2) is defined as

CNMREnc(r) = (CNMREnc1,crs(r),CNMREnc2,crs(r)) = (m, (x0, x1)) and CNMRDec :

{0, 1}crs1 × {0, 1}n1 × {0, 1}n2 → {0, 1}λ.

270



We say that (CRSGen,CNMREnc,CNMRDec) is a continuous non-malleable

randomness encoder with message space {0, 1}λ and codeword space {0, 1}n1×{0, 1}n2,

for the distribution R on {0, 1}r with respect to the 2-split-state family F if the fol-

lowing holds true:

• Correctness:

Pr
r←R

[CNMRDeccrs(CNMREnc2,crs(r)) = CNMREnc1,crs(r)] = 1

• Continuous Non-Malleability:

(crs,CNMREnc1,crs(R), outcrs,A(R)) ≈c (crs, Uλ, outcrs,A(R))

where crs← CRSGen(1λ), R is a uniform random variable over {0, 1}r, Uλ is

a uniform random variable over {0, 1}λ and outcrs,A(R) is defined as follows:

outcrs,A(R)← AOCNM(crs,(X0,X1),(·,·)) : (X0, X1)← CNMREnc2,crs(R)

where OCNM runs with CNMRDec as decoding algorithm.

Next, we present definitions related to falsifiable assumptions and black-box

reductions, strong one-time signature schemes, and equivocal commitment scheme.

271



7.2.3 Falsifiable Assumptions and Black-Box Reductions

Definition 7.2.2. A falsifiable assumption consists of ppt interactive challenger

C(1λ) that runs in time poly(λ) and a constant 0 ≤ δ < 1. The challenger C

interacts with a machine A and may output special symbol win. If this occurs, A is

said to win C. For any adversary A, the advantage of A over C is defined as:

Adv
(C,δ)
A = |Pr

[
A(1λ) wins C(1λ)

]
− δ|,

where the probability is taken over the random coins of A and C. The assump-

tion associated with the tuple (C, δ) states that for every (non-uniform) adversary

A(1λ) running in time poly(λ),

Adv
(C,δ)
A = negl(λ).

If the advantage of A is non-negligible in λ then A is said to break the as-

sumption.

Definition 7.2.3. Let Π = (E,D) be a split-state CNMC. We say that the non-

malleability of Π can be proven via a black-box reduction to a falsifiable assumption,

if there is an oracle access machine M(·) such that for every (possibly inefficient)

Π-adversary P∗, the machineMP∗ runs in time poly(λ) and breaks the assumption.

272



7.2.4 (Strong) One-Time Signature Schemes

A digital signature scheme consists of a triple of ppt algorithms (Gen, Sign,Verify)

such that:

• Gen takes the security parameter 1λ as input and generates a pair of keys: a

public verification key vk, and a secret signing key sk.

• Sign takes as input a secret key sk and a message m, and generates a signature

σ. We write this as σ ← Signsk(m).

• Verify takes as input a verification key vk, a message m, and a (purported)

signature σ and outputs a single bit indicating acceptance or not.

For correctness, we require that for all (vk, sk) output by Gen(1λ), for all messages

m, and for all σ ← Signsk(m), we have Verifyvk(m,σ) = 1.

7.2.5 Equivocal Commitment Scheme

We start by defining the basic commitment schemes and then present the notion

of equivocal bit-commitment schemes introduced by Di Crescenzo et al. in [58].

Definition 7.2.4 (Commitment Scheme). A (non-interactive) commitment scheme

in the CRS model for the message space M, is a triple (CRSGen,Commit,Open)

such that:

• crs← CRSGen(1λ) generates the CRS.

273



• For all m ∈ M, (com, d) ← Commitcrs(m) is the commitment/opening pair

for the message m. Specifically; com is the commitment value for m, and d

is the opening.

• Opencrs(com, d) → m̃ ∈ M ∪ {⊥}, where ⊥ is returned when com is not a

valid commitment to any message.

The commitment scheme must satisfy the standard correctness requirement,

∀λ ∈ N,∀m ∈M and crs ∈ CRS, Pr [Opencrs(Commitcrs(m)) = m] = 1

where, CRS is the set of all possible valid CRS’s generated by CRSGen(1λ) and

where the probability is taken over the randomness of Commit.

The commitment scheme provides the following 2 security properties:

Hiding: It is computationally hard for any adversary A to generate two messages

m0,m1 ∈M such that A can distinguish between their corresponding commit-

ments. Formally, for any PPT adversary A = (A1,A2) it should hold that:

Pr

b = b′

∣∣∣∣∣∣∣∣
crs← CRSGen(1λ), (m0,m1, α)← A1(crs), b← {0, 1},

(com, d)← Commitcrs(mb), b
′ ← A2(com, α)

 ≤ 1

2
+negl(λ)

Binding: It is computationally hard for any adversary A to find a triple (com, d, d′)

such that both (com, d) and (com, d′) are valid commitment/opening pairs for

274



some m,m′ ∈M respectively, and m 6= m′. Formally, for any PPT adversary

A it should hold that:

Pr

 m 6= m′∧

m,m′ 6= ⊥

∣∣∣∣∣∣∣∣
crs← CRSGen(1λ), (com, d, d′)← A(crs),

m← Opencrs(com, d),m′ ← Opencrs(com, d
′)

 ≤ negl(λ)

Definition 7.2.5 (One-to-One Commitment Scheme in the CRS Model). Let

(CRSGen,Commit,Open) be a bit-commitment scheme in CRS model. We say that

(CRSGen,Commit,Open) is a one-to-one commitment scheme if with all but negligi-

ble probability over b← {0, 1}, crs← CRSGen(1λ), (com, d)← Commitcrs(b), d′ = d

is the unique string such that Open(com, d′) 6= ⊥.

Definition 7.2.6 (Non-Interactive Equivocable Bit-Commitment Scheme). Let

(CRSGen,Commit,Open) be a bit-commitment scheme in CRS model. We say that

(CRSGen,Commit,Open) is a non-interactive equivocable bit-commitment scheme

in the CRS model if there exists an efficient probabilistic algorithm SEq which on

input 1λ outputs a 4-tuple (crs′, com′, d′0, d
′
1) satisfying the following:

• Pr[Opencrs′(com
′, d′b) = b] for b ∈ {0, 1}.

• For b ∈ {0, 1}, it holds that outCommit(b) ≈ε outSEq(b) where the random vari-

ables outCommit(b) and outSEq(b) are defined as follows:
crs← CRSGen(1λ); (com, d)← Commitcrs(b);

outCommit(b) : (crs, com, d)



275



≈


(crs′, com′, d′0, d

′
1)← SEq(1

λ);

outSEq(b) : (crs′, com′, d′b)


We now present variant of the commitment scheme presented by Naor in [101],

specifically we present the same construction in CRS model. This is also presented

in [58].

Let λ > 0 be an integer, let G : {0, 1}λ → {0, 1}3λ be a pseudo-random gener-

ator.

• CRSGen(1λ): Output a uniform random string crs of length 3λ.

• Commitcrs(b): Choose uniform random seed s ∈ {0, 1}λ and compute t = G(s).

If b = 0, set com := t. If b = 1, set com := t ⊕ crs. Output c. Output

decommitment d = s.

• Opencrs(com, d): If com = G(d), then output 0. Else if, com = G(d) ⊕ crs,

then output 1. Output ⊥ otherwise.

Claim 7.2.1.The scheme presented above is equivocal commitment scheme.

In order to prove claim 7.2.1 we need to show an efficient simulator SEq which

outputs (crs′, com′, d′0, d
′
1) on input 1λ. Following is the description of SEq: On input

1λ, SEq chooses two uniform random seeds s0, s1 ∈ {0, 1}λ and computes u = G(s0)

and v = G(s1). Set crs′ = u⊕ v, com′ = u, and for b ∈ {0, 1}, set d′b = sb.

Clearly SEq can open both 0 and 1 by choosing d′0 or d′1 respectively. Moreover,

for any algorithm distinguishing between real transcript and interaction with SEq

we can present a distinguisher which breaks the security of G with same advantage.

276



This can be achieved by replacing the string v by the challenge string in the pseudo-

random generator experiment.

7.2.6 One-to-one Equivocal Commitment

We present a modification of the above scheme that allows us to achieve an

equivocal commitment scheme with the one-to-one property: for every statistically

binding commitment, there is at most a single opening string that will be accepted by

the receiver during the decommitment phase. As an underlying ingredient, we use

any commitment scheme Π = (CRSGenΠ,CommitΠ,OpenΠ) (not necessarily equivo-

cal) with the above property.

Let λ > 0 be an integer, let G1 : {0, 1}λ′ → {0, 1}3λ′ and G2 : {0, 1}λ →

{0, 1}t·λ′ be pseudo-random generators.

• CRSGen(1λ): Run CRSGenΠ(1λ) to generate crsΠ. Output crs = crsΠ, crs1, crs2

where crs1, crs2 are uniform random strings of length 3λ.

• Commitcrs(b): Choose uniform random seeds s1, s2 ∈ {0, 1}λ and compute t1 =

G(s1), t2 = G(s2). Choose β ∈ {0, 1}. Set c1 = t1 ⊕ (b · crs1). Set c2 =

t2⊕ (β · crs2). Generate (comβ, dβ) = CommitcrsΠ(s1||s2) and (com1−β, d1−β) =

CommitcrsΠ(02n). Output commitment com := (c1, c2, com0, com1). Output

decommitment information s := (s1, s2, dβ).

• Opencrs(com, s): Parse com = (c1, c2, com0, com1) and s = s1||s2||d. If c2 =

G(s2), set β = 0. If c2 = G(s2)⊕ crs2, set β = 1. Run OpencrsΠ(comβ, d) and

check that it outputs s1||s2. Otherwise, output ⊥. If c1 = G(s1), output 0. If

277



c1 = G(s1)⊕ crs1, output 1. Output ⊥ otherwise.

Clearly, by the binding of the original commitment scheme and the unique

string decommitment property of Π, the modified scheme has the unique string de-

commitment property.

To create equivocal commitments/openings one can do the following: Run

CRSGenΠ(1λ) to generate crsΠ. Choose uniform random seeds s0
1, s

1
1, s

0
2, s

1
2 ∈ {0, 1}λ

and compute t01 = G(s0
1), t02 = G(s0

2), t11 = G(s1
1), t12 = G(s1

2). Choose β ← {0, 1}

Generate (comβ, dβ) = CommitcrsΠ(s0
1||s

β
2 ) and (com1−β, d1−β) = CommitcrsΠ(s1

1||s
1−β
2 ).

Set c1 = t01. Set c2 = t02. Set crs1 = c1 ⊕ t11. Set crs2 = c2 ⊕ t12. Output commitment

com′ := (c1, c2, com0, com1).

To open the commitment to a 0, output (s0
1||s

β
2 ||dβ), where dβ is the decommit-

ment information for comβ.

To open the commitment to a 1, output (s1
1||s

1−β
2 ||d1−β), where d1−β is the

decommitment information for com1−β.

7.2.7 Equivocal Commitment (with extra properties) in the CRS

model

Let Π′ = (Gen′Com,Com
′,Open′, S′Eq), be an equivocal, one-to-one `-bit commit-

ment scheme in the CRS model (given in Section 7.2.6). Let (GenSign, Sign,Verify) be

a strong, one-time signature scheme. We construct Π = (GenCom,Com,Open, SEq),

which is an equivocal commitment scheme, with several additional properties that we

describe at the end of the section and which will be useful for our constructions in

278



Sections 7.4 and 7.5.

Key generation GenCom is as follows: On input security parameter 1λ, run

Gen′Com 2t times to generate t pairs of CRS’s [(Σ0,i
Eq,Σ

1,i
Eq)]i∈[t], where t is the length

of the verification key vk output by GenSign.

Commitment Com is as follows: To commit to a message m of length `, gener-

ate a key pair (vk, sk)← GenSign. For i ∈ [t], generate (comi, di)← Com′(Σvki,i,m),

where comi is the commitment and di is the decommitment information. Generate

σ ← Signsk([comi]i∈[t]). Output commitment c = (vk, [comi]i∈[`], σ). A sender can

decommit separately to any set of bits of the message m. Decommitment informa-

tion for a set S of message bits consists of d[S] = [di,j]i∈[t],j∈[S], where di,j is the

decommitment information contained in di corresponding to the j-th bit.

Decommitment Open w.r.t. a set S: Given a set S, a commitment com, and

an opening [di,j]i∈[t],j∈S, Open does the following: Parse commitment as

(vk, [comi,j]i∈[t],j∈[`], σ). (1) Check that Verifyvk([comi,j]i∈[t],j∈[`], σ) = 1 (2) For i ∈ [t],

j ∈ S, check that di,j is a valid decommitment for comi,j w.r.t. CRS Σvki,i.

Equivocal CRS generation and commitment SEq is as follows: On in-

put security parameter 1λ, generate a key pair (vk, sk) ← GenSign. Run S′Eq t

times to generate [Σvki,i]i∈[t], equivocal commitments [comi]i∈[t] and decommitments

[(d0
i,j, d

1
i,j)]i∈[t],j∈[`]. Run Gen′Com t times to generate [Σ1−vki,i]i∈t.

279



Set ΣEq := [(Σ0,i
Eq,Σ

1,i
Eq)]i∈[t]. Compute σ ← Signsk([comi]i∈[t]).

Output (crs = ΣEq, c = (vk, [comi]i∈[`], σ), d0 = [d0
i,j]i∈[t],j∈[`], d

1 = [d1
i,j]i∈[t],j∈[`]).

Additional check functionality: Given a Σ and commitments

com = (vk, [comi]i∈[`], σ), com′ = (vk′, [com′i]i∈[`], σ
′), checkΣ(com, com′) outputs 1 if

(1) vk = vk′; (2) Verifyvk([com
′
i]i∈[`], σ

′) = 1.

Additional properties:

1. With overwhelming probability over generation of Σ, for every set S ⊆ [`] and

every string com, there is at most a single string d[S] such that

OpenΣ(S, com, d[S]) = 1. This property is achieved by using the equivocal,

one-to-one, commitment scheme given in Section 7.2.6 as the underlying com-

mitment scheme.

2. Given a pair (Σ, com), a PPT adversary outputs com′ such that com 6= com′

but checkΣ(com, com′) = 1 with negligible probability. This property follows

from the security of the one-time signature scheme.

3. Given equivocal commitment (ΣEq, com), for every string com′, if

checkΣEq(com, com
′) = 0 then (with overwhelming probability over generation

of ΣEq) com
′ has at most one valid opening. Specifically, for every set S ⊆ [`],

there is at most a single string d[S] such that OpenΣEq
(S, com′, d[S]) = 1.

Again, this property is achieved by using the equivocal, one-to-one, commit-

ment scheme given in Section 7.2.6 as the underlying commitment scheme.

280



7.3 Impossibility of CNMC with no CRS

In this section we present Theorem 7.3.1, stating the impossibility of construct-

ing CNMC without CRS.

Theorem 7.3.1. There is no black-box reduction from a single-bit CNMC scheme

Π = (E,D) to any falsifiable assumption, unless the assumption is false.

We know from prior work that continuous NMC are impossible in the info-

theoretic setting. Assume we have a construction of single-bit, continuous NMC

from some falsifiable assumption with no CRS. We only allow black-box usage of the

adversary in the reduction. However, the underlying assumption can be used in a

non-black-box way in the construction/proof.

Preliminaries. Given adversary A = (AL, AR), we say that A has advantage α in

the simplified no-Σ CNMC game against construction Π = (E,D) if:

∣∣∣Pr[D(AL(L), AR(R)) 6= ⊥ | (L,R)← E(1n, 0)]

−Pr[D(AL(L), AR(R)) 6= ⊥ | (L,R)← E(1n, 1)]
∣∣∣ = α,

Clearly, if A = (AL, AR) has non-negligible advantage in the simplified no-Σ CNMC

game, it can be used to break the CNMC security of Π = (E,D).

Definition 7.3.1. A tuple (x, y, z) is bad relative to CNMC scheme Π = (E,D) if

either:

• y 6= z ∧ D(x, y) 6= ⊥ ∧ D(x, z) 6= ⊥ OR

281



• x 6= y ∧ D(x, z) 6= ⊥ ∧ D(y, z) 6= ⊥.

Definition 7.3.2. A single-bit CNMC Π = (E,D) in the standard (no CRS model)

is perfectly unique if there exist no bad tuples relative to Π = (E,D).

We next present the following two lemmas, which, taken together, imply The-

orem 7.3.1.

Lemma 7.3.1. If a single-bit CNMC scheme Π = (E,D) is not perfectly unique

then it is insecure.

This is immediate, since if a bad tuple exists, it can be given to the adversary

as non-uniform advice. Then the same attack from the literature (reviewed in the

introduction) can be run.

Lemma 7.3.2. There is no BB reduction from a single-bit CNMC scheme Π =

(E,D) which is perfectly unique to any falsifiable assumption.

The basic idea is that, given only black-box access to the split-state adversary,

A = (AL, AR), the reduction cannot tell the difference between the actual adversary

and a simulated adversary. The simulated adversary simply waits to get matching

L and R queries from the reduction, decodes, and re-encodes a fresh value that is

related to the decoded value. The challenges are that the L and R queries are not

received simultaneously. In fact, there could be many queries interleaved between a

L and R match. So the simulated adversary must return a value upon seeing the

L or R half before seeing the other half and before knowing whether the encoded

value is a 0 or a 1. Therefore, the simulated adversary does the following: It keeps a

282



table containing all the L and R values that it has seen. Whenever a L or R query

is made, the simulated adversary first checks the table to see if a matching query

was previously made. If not, the simulated adversary chooses a random encoding,

(L′, R′), of a random bit b′, stores it in the table along with the L/R query that was

made and returns either L′ or R′ as appropriate. If yes, the simulated adversary

finds the corresponding L/R along with the pair (L′, R′) stored in the table. The

simulated adversary then decodes (L,R) to find out b. If b = 0, the simulated

adversary returns either L′ or R′ as appropriate. Otherwise, the simulated adversary

returns the left/right side of an encoding of a random bit b′′. We prove that the view

generated by the reduction interacting with this adversary is identical to the view

of the reduction interacting with the following real adversary: The real adversary,

given L or R, recovers the corresponding unique valid codeword (L,R) (if it exists)

and decodes to get the bit b. If b = 0, the real adversary encodes a random bit b′ =

RO1(L||R) using randomness r = RO2(L||R) (where RO1,RO2 are random oracles

internal to the real adversary that are used to generate consistent randomness across

invocations) and outputs the left/right side as appropriate. Otherwise (i.e. if the

corresponding unique codeword does not exist or if D(L,R) = 1), the real adversary

outputs the left/right side of encoding of a random bit, b′′ = RO3(L) (or b′′ =

RO3(R)) using randomness r′′ = RO4(L) (or r′′ = RO4(R)) (where RO3,RO4 are

random oracles internal to the real adversary that are used to generate consistent

randomness across invocations). Note that since the CNMC is perfectly unique, the

real adversary obtains non-negligible advantage of 1− negl(n) in the simplified no-Σ

CNMC game.

283



Proof. We will construct a meta-reduction as follows:

Consider the following inefficient, split state adversary A = (AL, AR) with

internal random oracles RO1,RO2, RO3, and RO4:

AL: On input L, find the unique R such that D(L,R) 6= ⊥ (if it exists). Let b :=

D(L,R). If b = 0, encode b′ = RO1(L||R) using randomness r = RO2(L||R) to

obtain (L′, R′) := E(b′; r) and output L′. If such R does not exist or if b = 1,

compute a random encoding of a random bit b′′ = RO3(L) using randomness

r′′ = RO4(L) to obtain (L′′, R′′) := E(b′′, r′′) and output L′′.

AR: On input R, find the unique L such that D(L,R) 6= ⊥ (if it exists). Let b :=

D(L,R). If b = 0, encode b′ = RO1(L||R) using randomness r = RO2(L||R) to

obtain (L′, R′) := E(b′; r) and output R′. If such L does not exist or if b = 1,

compute a random encoding of a random bit b′′ = RO3(R) using randomness

r′′ = RO4(R) to obtain (L′′, R′′) := E(b′′, r′′) and output R′′.

Clearly, A succeeds with advantage 1− negl(n) in the simplified no-Σ CNMC

game.

The following adversary A′ simulates the above efficiently: Let T be a table

that records internal randomness. T is initialized to empty. A′ is a stateful adversary

that proceeds as follows:

1. On input L, check if the corresponding R such that D(L,R) 6= ⊥ has been

queried. If yes, decode to get bit b := D(L,R). If b = 0, check the table

T to recover (R,L′, R′). Output L′. Otherwise, if L ∈ T then output L′′

284



corresponding to entry (L,L′′, R′′). If L /∈ T , choose a random encoding of a

random bit b′′: (L′′, R′′)← E(b′′). Store (L,L′′, R′′) in T . and output L′′.

2. On input R, check if the corresponding L such that D(L,R) 6= ⊥ has been

queried. If yes, decode to get bit b := D(L,R). If b = 0, check the table

T to recover (L,L′, R′). Output R′. Otherwise, if R ∈ T then output R′′

corresponding to entry (R,L′′, R′′). If R /∈ T , choose a random encoding of a

random bit b′′: (L′′, R′′)← E(b′′). Store (R,L′′, R′′) in T and output R′′.

By properties of the random oracle, the view of the reduction Red when

interacting with A versus A′ are equivalent.

Since the reduction succeeds when interacting with Real adversary A with non-

negligible probability p and since the view of the reduction is identical when inter-

acting with A or A′, Red interacting with A′ must also succeed with non-negligible

probability p. But Red composed with A′ yields an efficient adversary, leading

to an efficient adversary breaking the underlying falsifiable assumption, which is a

contradiction.

7.4 2-State CNMC for One-Bit Messages

In this section we prove the following theorem:

Theorem 7.4.1. Assuming the existence of one-to-one commitment schemes in the

CRS model, there is a construction of a 2-split-state CNM Randomness Encoder in

the CRS model.

The corollary is immediate, given the following transformation.

285



7.4.1 CNM Randomness Encoder to Single-Bit CNMC

Let Π = (CRSGen,E = (E1,E2),D) be a CNM Randomness Encoder. To con-

struct a CNMC for a single bit from Π, we must show how to use E to encode

a message b ∈ {0, 1}. In the case of the CNM Randomness Encoder given in Sec-

tion 7.4, this can be done by choosing random cL, cR ∈ F
`
λ

2λ
, conditioned on the parity

of 〈cL, cR〉 being equal to b. and then running E(cL||cR||renc||rL||rR) In general, one

can run E(r) repeatedly until E2(r) outputs a random message m with parity equal

to b. (this will give an encode algorithm that runs in polynomial time with all but

negligible probability).

Now, it can be immediately seen that an adversary who breaks the security

formulation of CNMC given in Definition 3.2.11 must also break the security of the

CNM Randomness Encoder, given in Definition 7.2.1.

Corollary 7.4.1. Assuming the existence of one-to-one commitment schemes in the

CRS model, there is a construction of a single-bit, 2-split-state CNMC in the CRS

model.

Notation and parameters. λ is security parameter and length of encoded random-

ness. ` = `(λ) ∈ Θ(λ2) and we assume for simplicity that λ|`. Sets SL, SR ⊆ [2`]

are defined as follows: SL = [`], SR = [2`] \ [`]. yo = yo(`) ∈ Θ(`1/2), yt = yt(`) ∈

Θ(`1/2).

The construction of the 2-state CNM Randomness Encoder is given in Figure 7.1.

To prove Theorem 7.4.1, we show that the construction above is a secure CNM

286



Let (CRSGenCom,Com,Open, SEq) be the non-interactive, equivocal, one-to-one com-
mitment in the CRS model given in Section 7.2.7.

CRSGen(1λ): Σ← CRSGenCom(1λ). Output Σ.

EΣ(cL||cR||rcom):

1. Parse cL, cR as strings in F
`
λ

2λ
.

2. (com, d = d1, . . . , d2`)← ComΣ(cL||cR; rcom)

3. Let d[SL] (resp. d[SR]) correspond to the decommitment of com to the bits
corresponding to SL (resp. SR).

4. E2,Σ outputs L = (com, d[SL]); R = (com, d[SR]). E1,Σ outputs 〈cL, cR〉.

DΣ(L̃, R̃):

1. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).

2. Check that c̃om = c̃om′.

3. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that
c̃L 6= ⊥ and c̃R 6= ⊥.

4. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Figure 7.1: Construction of 2-State, Continuous, Non-Malleable Randomness Encoder.

287



Randomness Encoder, via the following sequence of hybrids.

Hybrid 0: This is the “Real” security experiment.

Hybrid 1: The experiment is identical to Hybrid 0 except we modify the decode

algorithm from DΣ to D1
Σ to abort if the tampered codeword submitted is differ-

ent from the challenge codeword and the check function outputs 1. Specifically, let

(L := (com, d[SL]), R = (com, d[SR])) be the “challenge” codeword (i.e. the codeword

generated by the security experiment).

D1
Σ(L̃, R̃):

1. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).

2. If L̃ 6= L and checkΣ(com, c̃om) = 1 or R̃ 6= R and checkΣ(com, c̃om′) = 1
then output ⊥.

3. Check that c̃om = c̃om′.

4. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that
c̃L 6= ⊥ and c̃R 6= ⊥.

5. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Figure 7.2: Decode in Hybrid 1.

Hybrid 2: The experiment is identical to Hybrid 1, except we switch to equivocal

commitments in the codeword (L,R) that is given to the adversary. Specifically,

CRSGen is replaced with CRSGen2 and the challenge codeword is generated as shown

in Figure 7.3.

Hybrid 3: The experiment is identical to Hybrid 2, except we modify D1 to D3,

which aborts if the outcome of f iL(L) or f iR(R) is not a “likely value.”

288



CRSGen2(1λ): (ΣEq, com, d
0 = d0

1 . . . d
0
2`, d

1 = d1
1 . . . d

1
2`)← SEq(1

λ). Output ΣEq.
Challenge codeword:

1. Sample cL, cR uniform randomly from F
`
λ

2λ
.

2. Set d[SL] := [d
cL[i]
i ]i∈SL ; Set d[SR] := [d

cR[i]
i ]i∈SR ;

3. Output L = (com, d[SL]); R = (com, d[SR]).

Figure 7.3: Gen and Challenge Codeword generation in Hybrid 2.

Specifically, given (ΣEq, com, d
0 = d0

1 . . . d
0
2`, d

1 = d1
1 . . . d

1
2`) and the adversary’s

current output outi−1
A = Ôut

i−1

A , we define the sets SL, SR, S ′L, S ′R as follows:

• SL contains all values of L̂′ that occur with probability at least ε = 1/2yo/3,

where values of L̂′ are sampled as follows: Sample ĉL conditioned on the out-

put of the experiment in Hybrid 2 thus far being equal to outi−1
A = Ôut

i−1

A .

Compute equivocal decommitment of com: d̂[SL] := [d
ĉL[i]
i ]i∈SL. Apply f iL to

L̂ = (com, d̂[SL]) to obtain L̂′ (or “same” if the output is L̂ itself).

• SR contains all values of R̂′ that occur with probability at least ε = 1/2yo/3,

where values of R̂′ are sampled as follows: Sample ĉR conditioned on the out-

put of the experiment in Hybrid 2 thus far being equal to outi−1
A = Ôut

i−1

A .

Compute equivocal decommitment of com: d̂[SR] := [d
ĉR[i]
i ]i∈SR. Apply f iR to

R̂ = (com, d̂[SR]) to obtain R̂′ (or “same” if the output is R̂ itself).

• Let S ′L ⊆ SL be the set of L̂′ such that there is a “matching” R̂′ ∈ SR such

that D1
ΣEq

(L̂′, R̂′) 6= ⊥.

• Let S ′R ⊆ SR be the set of R̂′ such that there is a “matching” L̂′ ∈ SL such

that D1
ΣEq

(L̂′, R̂′) 6= ⊥.

289



Note that the decode oracle is now stateful and depends on the current round

of interaction, as well as the outputs returned in previous rounds. Specifically, note

that the sets S ′L, S ′R change in each round i, since the likely outputs depend on the

tampering function (f iL, f
i
R) submitted by the adversary in round i, and are con-

ditioned on the output outi−1
A = Ôut

i−1

A seen by the adversary thus far in rounds

1, . . . , i− 1.

D3
ΣEq

((f iL, f
i
R), L̃, R̃):

1. Check that L̃ ∈ S ′L and that R̃ ∈ S ′R. If not, output ⊥.

2. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).

3. Check that c̃om = c̃om′.

4. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that
c̃L 6= ⊥ and c̃R 6= ⊥.

5. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Figure 7.4: Decode in Hybrid 3.

Hybrid 4: The experiment is identical to Hybrid 3, except we modify D3 to D4

which aborts if there are more than yt number of queries f iL (resp. f iR) such that

the outcome of f iL(L) (resp. f iR(R)) is not the most “likely value”. Specifically, at

the beginning of the experiment, we initialize counters countL, countR to 0. We also

define L∗ (resp. R∗) to be the element of S ′L (resp. S ′R) that occurs most frequently.

More precisely, we consider the sets

L∗ := argmaxL′∈S′L Pr[f iL(L̂) = L′ | outi−1
A = Ôut

i−1

A ].

290



R∗ := argmaxR′∈S′R Pr[f iR(R̂) = R′ | outi−1
A = Ôut

i−1

A ].

Then L∗ (resp. R∗) is defined to be the lexicographically first element in L∗ (resp.R∗).

D4
ΣEq

((f iL, f
i
R), L̃, R̃):

1. Check that L̃ ∈ S ′L and that R̃ ∈ S ′R. If not, output ⊥.

2. If L̃ 6= L∗, then set countL := countL + 1.

3. If R̃ 6= R∗, then set countR := countR + 1.

4. If countL > yt or countR > yt, output ⊥.

5. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).

6. Check that c̃om = c̃om′.

7. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that
c̃L 6= ⊥ and c̃R 6= ⊥.

8. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Figure 7.5: Decode in Hybrid 4.

Claim 7.4.1. Hybrids 0 and 1 are computationally indistinguishable.

This follows from the additional properties of the equivocal commitment scheme

given in Section 7.2.7.

Claim 7.4.2. Hybrids 1 and 2 are computationally indistinguishable.

This follows from the security of the equivocal commitment scheme.

Claim 7.4.3. Hybrids 2 and 3 are ε · 2q-close, where ε = 1/2yo/3 and yo ∈ O(`1/2).

Proof. To prove indistinguishability of Hybrids 2 and 3, it is sufficient to show that

for each i ∈ [q], Pr[f iL(L) /∈ S ′L ∧ D1
ΣEq

(f iL(L), f iR(R)) 6= ⊥] ≤ ε and Pr[f iL(R) /∈

S ′R ∧ D1
ΣEq

(f iL(L), f iR(R)) 6= ⊥] ≤ ε. The result then follows by a union bound over

the q LHS and q RHS queries.

291



To bound the above, we in fact show something stronger: (1) for each i ∈ [q],

each value of outi−1
A = Ôut

i−1

A (which does not contain a ⊥ output) and each value

of R = R̂,

Pr[f iL(L) /∈ S ′L ∧ D1
ΣEq

(f iL(L), f iR(R)) 6= ⊥ | R = R̂ ∧ outi−1
A = Ôut

i−1

A )] ≤ ε;

and (2) for each i ∈ [q], each value of outi−1
A = Ôut

i−1

A (which does not contain a ⊥

output) and each value of L = L̂,

Pr[f iR(R) /∈ S ′R ∧ D1
ΣEq

(f iL(L), f iR(R)) 6= ⊥ | L = L̂ ∧ outi−1
A = Ôut

i−1

A )] ≤ ε.

We first fix (ΣEq, com, d
0 = d0

1 . . . d
0
2`, d

1 = d1
1 . . . d

1
2`). Note that for fixed

ΣEq, com, d
0 = d0

1 . . . d
0
2`, d

1 = d1
1 . . . d

1
2`, there is a bijection φL (resp. φR) between

cL (resp. cR) and (com, d[SL]) (where d[SL] := [d
cL[i]
i ]i∈SL). Therefore the probability

of a particular value of cL (resp. cR) occurring is equivalent to the probability of

L = φL(cL) (resp. R = φR(cR)) occurring. Additionally, Let ρL (resp. ρR) be the

function that given f iR(R) (resp. f iL(L)) returns the unique L′ (resp. R′) if it exists

such that, D1
ΣEq

(L′, f iR(R)) 6= ⊥ (resp. D1
ΣEq

(f iL(L), R′) 6= ⊥). Note that L′ (resp.

R′) is equal to “same” if and only if f iR(R) = “same” (resp. f iL(L) = “same”). To see

why this is so, recall that in D1, ⊥ is outputted if L̃ 6= L and checkΣ(com, c̃om) = 1

or R̃ 6= R and checkΣ(com, c̃om′) = 1. Now, if L′ is equal to same, then it must be

that checkΣ(com, c̃om) = 1. Therefore, by the above, the only value of f iR(R), for

which ⊥ will not be output is f iR(R) = “same′′. The same is true for the case that

292



f iR(R) = “same′′.

We first show that for i ∈ [q], cL, cR are conditionally independent given

outiA = Ôut
i

A. This follows from the fact that the information contained in Ôut
i

A is

of the form (f 1
L(φL(cL)) = v1, f

1
R(φR(cR)) = w1), . . . , (f iL(φL(cL)) = vi, f

i
R(φR(cR)) =

wi), where for j ∈ [i], vj is equal to the L′ value outputted in response to the

j-th query and wj is equal to the R′ value outputted in response to the j-th

query. (note that vj/wj can be set to “same” if the tampering function leaves

L/R unchanged). Thus, the distribution of cL, cR conditioned on (f 1
L(φL(cL)) =

v1, f
1
R(φR(cR)) = w1), . . . , (f iL(φL(cL)) = vi, f

i
R(φR(cR)) = wi) is equal to (U` |

(f 1
L(φL(U`)) = v1, . . . , f

i
L(φL(U`)) = vi))×(U` | (f 1

R(φR(U`)) = w1, . . . , f
i
R(φR(U`)) =

wi)). Moreover, due to the discussion above, L,R are also conditionally independent

given outi−1
A = Ôut

i−1

A . Therefore, to show (1), we note that for every (L̂, R̂, Ôut
i−1

A ),

Pr[L = L̂ | R = R̂ ∧ outi−1
A = Ôut

i−1

A )] = Pr[L = L̂ | outi−1
A = Ôut

i−1

A )]. So we

have that for every fixed R = R̂ (for which Pr[R = R̂∧outi−1
A = Ôut

i−1

A )] > 0), and

every L′ /∈ S ′L, Pr[f i(L) = L′ | R = R̂ ∧ outi−1
A = Ôut

i−1

A )] ≤ ε. Therefore,

Pr[f iL(L) /∈ S ′L ∧ D1
ΣEq

(f iL(L), f iR(R)) 6= ⊥ | R = R̂ ∧ outi−1
A = Ôut

i−1

A )]

= Pr[f iL(L) /∈ S ′L ∧
(
f iL(L) = ρL(f iR(R))

)
| R = R̂ ∧ outi−1

A = Ôut
i−1

A )]

≤ ε.

The proof for (2) is analogous.

Claim 7.4.4. Hybrids 3 and 4 are statistically indistinguishable.

293



Proof. To prove indistinguishability of Hybrids 3 and 4, we must show that the

probability that the event (1) f iL(L) is not most frequent and D3
ΣEq

(f iL(L), f iR(R))

6= ⊥ or event (2) f iR(R) is not most frequent and D3
ΣEq

(f iL(L), f iR(R)) 6= ⊥ occurs

more than yt times in a single execution is at most (1/2)yt .

We first analyze the event (1). Recall that set S ′L contains values, L′, that occur

with probability p in some experiment. By “most frequent value” in S ′L, we mean

the value L′ in S ′L with the maximum associated probability p. Note that if L′ is not

the most frequent value, the associated probability p is at most 1/2, since otherwise,

the probabilities will sum to more than 1. More precisely, if f iL(L) = L′ is not the

most frequent query in S ′L then, by definition of the set S ′L and the above argument,

Pr[f iL(L̂) = L′ | outi−1
A = Ôut

i−1

A ] ≤ 1/2. Recall that in the proof of the previous

claim, we have shown that for i ∈ {0, . . . , q}, L,R are conditionally independent

given outiA. Therefore, Pr[f iL(L) = L′ | outi−1
A = Ôut

i−1

A ∧ R = R̂] ≤ 1/2. This

implies that for every fixed R = R̂ (for which Pr[R = R̂ ∧ outi−1
A = Ôut

i−1

A ] > 0),

Pr[f iL(L) 6= L∗ ∧ D3
ΣEq

(f iL(L), f iR(R)) 6= ⊥ | R = R̂ ∧ outi−1
A = Ôut

i−1

A )]

≤ Pr[f iL(L) 6= L∗ ∧ f iL(L) = ρL(f iR(R)) | R = R̂ ∧ outi−1
A = Ôut

i−1

A )]

≤ 1/2.

We consider the number of adversarial queries such that both f iL(L) = L′ is

not the most frequent value (L∗) ∈ S ′L and D3
ΣEq

(f iL(L), f iR(R)) 6= ⊥. (note that the

total number of adversarial queries can be much higher). By the above argument,

the probability that there are yt number of rounds i such that both f iL(L) = L′

294



is not the most frequent value (L∗) ∈ S ′L and D3
ΣEq

(f iL(L), f iR(R)) 6= ⊥ is at most

(1/2)yt ∈ negl(λ). Thus, we have concluded the proof for event (1). The proof for

event (2) is analogous.

We finally show the main technical claim of this section, which completes the

proof of Theorem 7.4.1.

Claim 7.4.5. In Hybrid 4, the encoded randomness 〈cL, cR〉 is statistically close to

uniform, given the view of the adversary.

Proof. Towards proving the claim, we consider the following leakage functions:

Leakage function on cL: Fix ΣEq, com, d
0, d1, universal hash h : {0, 1}α →

{0, 1}yo ∈ H (where α is the length of a single split-state of the encoding) and

adversary A. On input cL, set output outA to “” and outL to “”. Set L =

(com, [d
cL[i]
i ]i∈[`]). Repeat the following in rounds i = 1, 2, . . .:

1. Obtain the next tampering function (fL, fR) from adversary A. If A terminates

then terminate with output outL.

2. Set L′ := fL(L). If L′ ∈ S ′L, then:

(a) Find the unique R̂′ ∈ S ′R such that D1
ΣEq

(L′, R̂′) 6= ⊥. Return (L′, R̂′) to

the adversary. Set outA = outA||(L′, R̂′).

(b) If L′ is not the most frequent output in S ′L, set outL := outL||(i||h(L′)) If

|outL| > (log(q)+yo)·yt then terminate with output outL := outL||(i||⊥).

295



3. If L′ /∈ S ′L, output ⊥ to the adversary and terminate with output outL :=

outL||(i||⊥).

The leakage function for the RHS is analogous.

We now show that given outL and outR we can reconstruct the full output

sequence for the adversary’s view with probability 1 − 2q
ε2·2yo = 1 − 2q

2y0/3
in the

following way:

Fix ΣEq, com, d
0 = d0

1 . . . d
0
2`, d

1 = d1
1 . . . d

1
2`, universal hash h← H and adver-

sary A. Set output outA to “” and outL to “”. Repeat the following in rounds

i = 1, 2, . . . , q:

1. Obtain the next tampering function (fL, fR) from adversary A given its current

view, outA.

2. If (i,⊥) ∈ outL or (i,⊥) ∈ outR, set outA = outA||⊥ and abort.

3. If (i, y) ∈ outL, for some y 6= ⊥, set L′ = L̂′ such that L̂′ ∈ S ′L and h(L̂′) = y.

4. If (i, ·) /∈ outL, set L′ = L̂′ such that L̂′ ∈ S ′L is the most frequent value.

5. If (i, y) ∈ outR, for some y 6= ⊥, set R′ = R̂′ such that R̂′ ∈ S ′R and h(R̂′) = y.

6. If (i, ·) /∈ outR, set R′ = R̂′ such that R̂′ ∈ S ′R is the most frequent value.

7. If L′ = “same” and R′ = “same” output “same” and set outA = outA||“same”.

8. Else if one of L′, R′ is “same” and not the other, set outA = outA||⊥ and

abort.

296



9. Else Parse L′ := (com, d[SL]) and R′ := (com′, d[SR]). If com 6= com′, set

outA = outA||⊥ and abort.

10. Otherwise, set outA = outA||(L′, R′).

It can be determined by inspection that the incorrect value is output only if

in one of the at most 2q instances, there are two distinct values L̂′, L̂′′ ∈ S ′L or

R̂′, R̂′′ ∈ S ′R such that h(L̂′) = h(L̂′′) or h(R̂′) = h(R̂′′). Due to universality of h

and the fact that |S ′L| = |S ′R| = 1/ε, this can occur with probability at most 2q
ε2·2yo ,

as claimed. 2

Since |outL| ≤ (log(q)+yo) ·yt ≤ 2yo ·yt ≤ c ·` for constant c < 1 and |outR| ≤

(log(q) + yo) · yt ≤ 2yo · yt ≤ c · ` for constant c < 1, we can use the properties of the

inner product extractor given in Lemma 7.2.1 to argue that 〈cL, cR〉 is statistically

close to uniform random, given outL,outR. Moreover, since we have shown that the

view of the adversary in the Hybrid 4 can be fully reconstructed given outL,outR,

we have that, in the Hybrid 4, the encoded randomness 〈cL, cR〉 is statistically close

to uniform, given the adversary’s view in the CNMC experiment.

7.5 4-State CNMC for Multi-Bit Messages

In this section we prove the following theorem:

Theorem 7.5.1. Assuming the existence of one-to-one commitment schemes in the

CRS model, there is a construction of a multi-bit, 4-split-state CNMC in the CRS

2 Recall that S ′L ⊆ SL, and SL contains all the values of L̂′ which occur with probability at
least ε. Therefore |SL| ≤ 1/ε (and thus |S ′L| ≤ 1/ε), since otherwise the sum of the probabilities
would exceed 1. A similar argument is true for S ′R.

297



model.

Notation and parameters. λ is security parameter and length of encoded mes-

sage. ` = `(λ) ∈ Θ(λ2) and we assume for simplicity that λ|`. k = 2λ. Sets

SL,1, SR,1, SL,2, SR,2 ⊆ [4`] are defined as follows: SL,1 = [`], SR,1 = [2`] \ [`],

SL,2 = [3`] \ [2`], SR,2 = [4`] \ [3`]. yo = yo(`) ∈ Θ(`1/2), yt = yt(`) ∈ Θ(`1/2).

The construction of the multi-bit, 4-state CNMC is presented in Figure 7.6.

Let (CRSGenCom,Com,Open, SEq) be the non-interactive, equivocal, one-to-one com-
mitment in the CRS model given in Section 7.2.7.

CRSGen′(1λ): Run Σ← CRSGenCom(1λ). Output Σ.

E′Σ(m) for m ∈ {0, 1}λ:

1. Choose at random m1,m2 ∈ F2λ such that m1 +m2 = m.

2. For b ∈ {1, 2}, Choose (cL,b, cR,b) at random, from F
`
λ

2λ
, conditioned on

〈cL,b, cR,b〉 = mb.

3. (com, d = d1, . . . , d4`)← ComΣ([cL,b||cR,b]b∈{1,2})

4. For b ∈ {1, 2}, let d[SL,b] (resp. d[SR,b]) correspond to the decommitment of
com to the bits corresponding to SL,b (resp. SR,b).

5. Output L1 = (com, d[SL,1]); R1 = (com, d[SR,1]); L2 = (com, d[SL,2]); R2 =
(com, d[SR,2]).

D′Σ(L̃1, R̃1, L̃2, R̃2): //For simplicity of notation, we assume D′ can take its inputs in
any order.

1. For b ∈ {1, 2}, parse L̃b = (c̃omb, d[SL,b]), R̃b = (c̃om′b, d[SR,b]).

2. Check that c̃om1 = c̃om′1 = c̃om2 = c̃om′2.

3. For b ∈ {1, 2}, let c̃L,b = OpenΣ(SL,b, c̃om, d̃[SL,b]) and c̃R,b =

OpenΣ(SR,b, c̃om, d̃[SR,b]). Check that c̃L,b 6= ⊥ and c̃R,b 6= ⊥.

4. For b ∈ {1, 2}, compute m̃b = 〈cL,b, cR,b〉.

5. If all the above checks pass, output m̃1 + m̃2; otherwise, output ⊥.

Figure 7.6: Construction of 4-state Continuous, Non-Malleable Code.

298



To prove Theorem 7.5.1, we show that the construction above is a secure multi-

bit CNMC, via the following sequence of hybrids.

Hybrid 0: This is the Experiment from Definition 3.2.11.

Hybrids 1 and 2 are analogous to the first and second hybrids in Section 7.4.

We therefore give an abbreviated description.

Hybrid 1: The experiment is identical to Hybrid 0 except we modify the decode algo-

rithm from D′Σ to D′1Σ to abort if the tampered codeword (L̃1, R̃1, L̃2, R̃2) is different

from the challenge codeword (L1, R1, L2, R2) but the corresponding commitment is

not statistically binding.

Hybrid 2: The experiment is identical to Hybrid 1, except we switch to equivocal

commitments in (L1, R1) (resp. (L2, R2)) that is given to the adversary. We de-

note the corresponding CRS’s, and equivocal commitment and decommitments by

ΣEq, com, d
0 = d0

1 . . . d
0
4`, d

1 = d1
1 . . . d

1
4`.

We now define some terminology which will be needed for the next sequence of

hybrids. Given (ΣEq, com, d
0 = d0

1 . . . d
0
4`, d

1 = d1
1 . . . d

1
4`) an output (outi−1

A,1 ,outi−1
A,2),

for b ∈ {1, 2}, we define the sets SL,b, SR,b, S ′L,b, S ′R,b as follows:

• SL,b contains all values of L̂′b that occur with probability at least ε = 1/2yo/3,

where values of L̂′b are sampled as follows: Sample ĉL,b conditioned on outi−1
A,b .

Compute equivocal decommitment of com: d̂[SL,b] := [d
ĉL,b[i]
i ]i∈SL,b. Apply f iL,b

to L̂b = (comb, d̂[SL,b]) to obtain L̂′b (or “same” if the output is L̂b itself).

299



• SR,b contains all values of R̂′b that occur with probability at least ε = 1/2yo/3,

where values of R̂′b are sampled as follows: Sample ĉR,b conditioned on outi−1
A,b .

Compute equivocal decommitment of com: d̂[SR,b] := [d
ĉR,b[i]
i ]i∈SR,b. Apply f iR,b

to R̂b = (comb, d̂[SR,b]) to obtain R̂′b (or “same” if the output is R̂b itself).

• Let S ′L,b ⊆ SL,b be the set of L̂′b such that there is a “matching” R̂′b ∈ SR,b such

that D′1ΣEq(L̂
′
b, R̂

′
b, ·, ·) 6= ⊥.

• Let S ′R,b ⊆ SR,b be the set of R̂′b such that there is a “matching” L̂′b ∈ SL,b such

that D′1ΣEq(L̂
′
b, R̂

′
b, ·, ·) 6= ⊥.

We also give two alternate decoding procedures in Figures 7.7 and 7.8.

D′3ΣEq([(f
i
L,b, f

i
R,b), L̃b, R̃b]b∈{1,2}):

1. For b ∈ {1, 2}, check that L̃b ∈ S ′L,b and that R̃b ∈ S ′R,b. If not, output ⊥.

2. For b ∈ {1, 2}, parse L̃b = (c̃omb, d̃[SL,b]), R̃b = (c̃om′b, d̃[SR,b]).

3. Check that c̃om1 = c̃om′1 = c̃om2 = c̃om′2.

4. For b ∈ {1, 2}, let c̃L,b = OpenΣ(SL,b, c̃om, d̃[SL,b]) and c̃R,b =

OpenΣ(SR,b, c̃om, d̃[SR,b]). Check that c̃L,b 6= ⊥ and c̃R,b 6= ⊥.

5. For b ∈ {1, 2}, compute m̃b = 〈c̃L,b, c̃R,b〉.

6. If all the above checks pass, output m̃1 + m̃2; otherwise, output ⊥.

Figure 7.7: Algorithm D′3ΣEq .

For the following decode algorithm, we assume that at the beginning of the

experiment, for b ∈ {1, 2}, counters countL,b, countR,b are initialized to 0. We also

define L∗b (resp. R∗b) to be the element of S ′L,b (resp. S ′R,b) that occurs most frequently.

We next present a sequence of intermediate hybrids H2 = H2,0,b, H2,1,a . . . ,

H2,q,b = H3, defined as follows:

300



D′4ΣEq([(f
i
L,b, f

i
R,b), L̃b, R̃b]b∈{1,2}):

1. Check that L̃ ∈ S ′L and that R̃ ∈ S ′R. If not, output ⊥.

2. For b ∈ {1, 2}, if L̃b 6= L∗b , then set countL,b := countL,b + 1.

3. For b ∈ {1, 2}, if R̃b 6= R∗b , then set countR,b := countR,b + 1.

4. For b ∈ {1, 2}, if countL,b > yt or countR,b > yt, output ⊥.

5. For b ∈ {1, 2}, parse L̃b = (c̃omb, d̃[SL,b]), R̃b = (c̃om′b, d̃[SR,b]).

6. Check that c̃om1 = c̃om′1 = c̃om2 = c̃om′2.

7. For b ∈ {1, 2}, let c̃L,b = OpenΣ(SL,b, c̃om, d̃[SL,b]) and c̃R,b =

OpenΣ(SR,b, c̃om, d̃[SR,b]). Check that c̃L,b 6= ⊥ and c̃R,b 6= ⊥.

8. For b ∈ {1, 2}, compute m̃b = 〈c̃L,b, c̃R,b〉.

9. If all the above checks pass, output m̃1 + m̃2; otherwise, output ⊥.

Figure 7.8: Algorithm D′4ΣEq .

Hybrid H2,i,a for i ∈ [q]: The experiment is identical to the previous hybrid, except

we respond to the i-th query to the decoding oracle using D′3ΣEq .

Hybrid H2,i,b for i ∈ [q]: The experiment is identical to the previous hybrid, except

we respond to the i-th query to the decoding oracle using D′4ΣEq .

Claim 7.5.1. Hybrids 0 and 1 are computationally indistinguishable.

This follows from the security of the one-time signature scheme and “unique-

ness of opening” property of the underlying commitment.

Claim 7.5.2. Hybrids 1 and 2 are computationally indistinguishable.

This follows from the security of the equivocal, non-malleable commitment

scheme.

We say that an output pair (outi−1
A,1 = Ôut

i−1

A,1 ,outi−1
A,2 = Ôut

i−1

A,2) is good

301



if the marginal distribution over m1 is statistically 2−k-close to uniform random

conditioned on (outi−1
A,1 = Ôut

i−1

A,1 ,outi−1
A,2 = Ôut

i−1

A,2) and the marginal distribu-

tion over m2 is statistically 2−k-close to uniform random conditioned on (outi−1
A,1 =

Ôut
i−1

A,1 ,outi−1
A,2 = Ôut

i−1

A,2).

Claim 7.5.3. For i ∈ {0, . . . , q}, in Hybrid H2,i,b, the outcome

(outi−1
A,1 = Ôut

i−1

A,1 ,outi−1
A,2 = Ôut

i−1

A,2) is good with probability 1− 2−k/q.

Proof. Towards proving the claim, we consider the following leakage functions:

Leakage function on cL,b, for b ∈ {1, 2}: Fix ΣEq, com, d
0 = d0

1 . . . d
0
4`, d

1 =

d1
1 . . . d

1
4`, universal hash h : {0, 1}α → {0, 1}yo ∈ H (where α is the length of a

single split-state of the encoding) and adversary A. On input cL, set output outA,b

to “” and outL,b to “”, and set Lb = (com, [d
cL,b[i]
i ]i∈[`]), for b ∈ {1, 2}. Repeat the

following in rounds i = 1, 2, . . .:

1. Obtain the next tampering function [(fL,b, fR,b)]b∈{1,2} from adversary A. If A

terminates then output outL,b.

2. Set L′b := fL,b(Lb). If L′b ∈ S ′L,b, then:

(a) Find the unique R̂′b ∈ S ′R,b such that D′1ΣEq(L
′
b, R̂

′
b, ·, ·) 6= ⊥. Return

(L′b, R̂
′
b) to the adversary. Set outA,b = outA,b||(L′b, R̂′b).

(b) If L′b is not the most frequent output in S ′L,b, set outL,b := outL,b||(i||h(L′b))

If |outL,b| > (log(q) + yo) · yt then terminate with output outL,b :=

outL,b||(i||⊥).

302



3. If L′b /∈ S ′L,b, output ⊥ to the adversary and terminate with output outL,b :=

outL,b||(i||⊥).

The leakage function for cR,b is analogous.

We now show that given outL,1, outR,1, outL,2, outR,2 we can reconstruct the

full output sequence for the adversary’s view with probability 1− 4q
ε2·2yo = 1− 4q

2y0/3

in the following way:

Fix ΣEq, com, universal hash h ← H and adversary A. Set output outA,1 to

“” and outA,2 to “”. Repeat the following in rounds i = 1, 2, . . . , q:

1. Obtain the next tampering function (fL,1, fR,1, fL,2, fR,2) from adversary A

given its current view, outA = (outA,1,outA,2).

2. If for b ∈ {1, 2}, (i,⊥) ∈ outL,b or (i,⊥) ∈ outR,b, then for b ∈ {1, 2}, set

outA,b = outA,b||(i,⊥) and abort.

3. If for b ∈ {1, 2}, (i, y) ∈ outL,b, for some y 6= ⊥, set L′b = L̂′b such that

L̂′b ∈ S ′L,b and h(L̂′b) = y.

4. If for b ∈ {1, 2}, (i, ·) /∈ outL,b, set L′b = L̂′b such that L̂′b ∈ S ′L,b is the most

frequent value.

5. If for b ∈ {1, 2}, (i, y) ∈ outR,b, for some y 6= ⊥, set R′b = R̂′b such that

R̂′b ∈ S ′R,b and h(R̂′b) = y.

6. If for b ∈ {1, 2}, (i, ·) /∈ outR,b, set R′b = R̂′b such that R̂′b ∈ S ′R,b is the most

frequent value.

303



7. If for all b ∈ {1, 2}, L′b = “same” and R′b = “same” output “same” and for

b ∈ {1, 2}, set outA,b = outA,b||“same”.

8. Else if at least one of [L′b, R
′
b]b∈{1,2} is “same” but not all, then for b ∈ {1, 2},

set outA,b = outA,b||⊥ and abort.

9. Else for b ∈ {1, 2}, parse L′b := (comb, d[SL,b]) and R′b := (com′b, d[SRb ]). Check

that com1 = com′1 = com2 = com′2. If not, set outA,b = outA,b||⊥ and abort.

10. Otherwise, for b ∈ {1, 2} set outA,b = outA,b||(L′b, R′b).

It can be determined by inspection that the incorrect value is output only if

in one of the at most q instances, for some b ∈ {1, 2}, there are two distinct values

L̂′b, L̂
′′
b ∈ S ′L,b or R̂′b, R̂

′′
b ∈ S ′Rb such that h(L̂′b) = h(L̂′′b ) or h(R̂′b) = h(R̂′′b ). Due to

universality of h and the fact that for b ∈ {1, 2}, |S ′L,b| = |S ′R,b| ≤ 1/ε, this can occur

with probability at most 4q
ε2·2yo , as claimed.

Since for b ∈ {1, 2}, |outL,b| ≤ (log(q) +yo) ·yt ≤ 2yo ·yt ≤ c · `, and |outR,b| ≤

(log(q) + yo) · yt ≤ 2yo · yt ≤ c · `, for constant c < 1, we have that with probability

1−2−k/q over choice of (outi−1
A,1 = Ôut

i−1

A,1 ,outi−1
A,2 = Ôut

i−1

A,2), the min-entropy of cL,b

(resp. cR,b) conditioned on (outi−1
A,1 = Ôut

i−1

A,1 ,outi−1
A,2 = Ôut

i−1

A,2) is at least c′ · ` for

constant c′ < 1. We can use the properties of the inner product extractor given in

Lemma 7.2.1 to argue that 〈cL,b, cR,b〉 is statistically close to uniform random, given

outL,1, outR,1, outL,2, outR,2. Moreover, since we have shown that the view of the

adversary outiA,1,outiA,2 can be fully reconstructed given outL,outR, we have that

〈cL,b, cR,b〉 is statistically close to uniform, given the adversary’s view in the CNMC

experiment.

304



Claim 7.5.4. For i ∈ {0, . . . , q−1}, Hybrids H2,i,b and H2,i+1,a are 4(ε′+2−k)-close,

where ε′ = (1 + 2−λ)ε.

Proof. To prove indistinguishability of Hybrids 2 and 3, it is sufficient to show that

for and b ∈ {1, 2}, Pr[f iL,b(Lb) /∈ S ′L,b ∧ D′1ΣEq(f
i
L,b(Lb), f

i
R,b(Rb), ·, ·) 6= ⊥] ≤ ε′ and

Pr[f iR,b(Rb) /∈ S ′R,b ∧ D′1ΣEq(f
i
L,b(L), f iR,b(Rb), ·, ·) 6= ⊥] ≤ ε′. The result then follows

by a union bound.

Given Claim 7.5.3, to bound the above it is sufficient to show: (1) for b ∈ {1, 2},

each good pair outi−1
A,1 = Ôut

i−1

A,1 (which does not contain ⊥), outi−1
A,2 = Ôut

i−1

A,2 (which

does not contain ⊥), and each value of Rb = R̂b,

Pr

 f iL,b(Lb) /∈ S ′L,b∧

D′
1
ΣEq

(f iL,b(Lb), f
i
R,b(Rb), ·, ·) 6= ⊥

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1∧

outi−1
A,2 = Ôut

i−1

A,2

 ≤ ε′;

and (2) for b ∈ {1, 2}, each good pair outi−1
A,1 = Ôut

i−1

A,1 (which does not contain ⊥),

outi−1
A,2 = Ôut

i−1

A,2 (which does not contain ⊥), and each value of Lb = L̂b,

Pr

 f iR,b(Rb) /∈ S ′R,b∧

D′
1
ΣEq

(f iL,b(Lb), f
i
R,b(Rb), ·, ·) 6= ⊥

∣∣∣∣∣∣∣∣
Lb = L̂b ∧ outi−1

A,1 = Ôut
i−1

A,1

∧outi−1
A,2 = Ôut

i−1

A,2

 ≤ ε′.

We first fix (ΣEq, com, d
0 = d0

1 . . . d
0
4`, d

1 = d1
1 . . . d

1
4`).

Note that fixed ΣEq, com, d
0 = d0

1 . . . d
0
4`, d

1 = d1
1 . . . d

1
4` and b ∈ {1, 2}, there is a bi-

jection φL,b (resp. φR,b) between cL,b (resp. cR,b) and (com, d[SL,b]), where d[SL,b] =

[d
cL,b[i]
i ]i∈[`]. Therefore the probability of a particular value of cL,b (resp. cR,b) oc-

curring is equivalent to the probability of Lb = φL,b(cL,b) (resp. Rb = φR,b(cR,b)).

305



Additionally, Let ρL,b (resp. ρR,b) be the function that given f iR,b(Rb) (resp. f iL,b(Lb))

returns the unique L′b (resp. R′b) if it exists such that, D′1ΣEq(L
′
b, f

i
R,b(Rb), ·, ·) 6= ⊥

(resp. D′1ΣEq(f
i
L,b(Lb), R

′
b, ·, ·) 6= ⊥). Note that L′b (resp. R′b) is equal to “same” if

and only if f iR,b(Rb) = “same” (resp. f iL,b(Lb) = “same”).

Now, note that for b = 1 and every (ĉL,1, ĉR,1) and every good pair ÔutA,1, ÔutA,2):

Pr[cL,1 = ĉL,1 | cR,1 = ĉR,1 ∧ outi−1
A,1 = ÔutA,1,outi−1

A,2 = ÔutA,2]

=
∑

ĉL,2,ĉR,2

(
Pr[cL,2 = ĉL,2, cR,2 = ĉR,2 | outi−1

A,2 = ÔutA,2]

· Pr[cL,1 = ĉL,1, cR,1 = ĉR,1 | outi−1
A,1 = ÔutA,1 ∧ 〈cL,2, cR,2〉 = 〈ĉL,2, ĉR,2〉]

)
=
∑
m2

Pr[〈cL,2, cR,2〉 = m2 | outi−1
A,2 = ÔutA,2]

· Pr[cL,1 = ĉL,1, cR,1 = ĉR,1 | outi−1
A,1 = ÔutA,1 ∧m2]

∈
∑
m̂2

(2−λ ± 2−k) · Pr[cL,1 = ĉL,1 | cR,1 = ĉR,1 ∧ outi−1
A,1 = ÔutA,1 ∧m2 = m̂2]

(7.5.1)

= (2−λ ± 2−k)
∑
m2

Pr[cL,1 = ĉL,1 | cR,1 = ĉR,1 ∧ outi−1
A,1 = ÔutA,1 ∧m2 = m̂2]

= (1± 2λ−k) · Pr[cL,1 = ĉL,1 | ∧outi−1
A,1 = ÔutA,1]

= (1± 2−λ) · Pr[cL,1 = ĉL,1 | cR,1 ∧ outi−1
A,1 = ÔutA,1],

where (7.5.1) follows from Claim 7.5.3. An analogous statement holds for b = 2.

Morever, by the same reasoning as in the proof of Claim 7.4.3 (where we showed

306



conditional independence of cL,b, cR,b) we have that for every (ĉL,b, ĉR,b, ÔutA,b):

Pr[cL,b = ĉL,b | cR,b ∧ outi−1
A,b = ÔutA,b] = Pr[cL,b = ĉL,b | outi−1

A,b = ÔutA,b].

Therefore, for every every (ĉL,1, ĉR,1) and every good pair ÔutA,1, ÔutA,2):

Pr

Lb = L̂b

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1

∧outi−1
A,2 = Ôut

i−1

A,2

 ∈ (1±2−λ) Pr[Lb = L̂b | outi−1
A,b = Ôut

i−1

A,b ].

So for every Rb = R̂b, every good pair ÔutA,1, ÔutA,2) and every L′b /∈ S ′L,b:

Pr

f iL,b(Lb) = L′b

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1∧

outi−1
A,2 = Ôut

i−1

A,2

 ≤ (1 + 2−λ)ε ≤ ε′.

Therefore,

Pr

 f iL,b(Lb) /∈ S ′L,b ∧

D′
1
ΣEq

(f iL,b(Lb), f
i
R,b(Rb), ·, ·) 6= ⊥

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1 ∧

outi−1
A,2 = Ôut

i−1

A,2



= Pr

 f iL,b(Lb) /∈ S ′L,b ∧

f iL,b(Lb) = ρL(f iR,b(Rb))

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1∧

outi−1
A,2 = Ôut

i−1

A,2


≤ ε′.

The proof for (2) is analogous.

Claim 7.5.5. For i ∈ {1, . . . , q}, Hybrids H2,i,a and H2,i,b are 4(ε′+2−k)-close, where

307



ε′ = 2 · ε.

Proof. To prove indistinguishability, we must show that for i ∈ {1, . . . , q}, b ∈ {1, 2}

the probability that the event (1) f iL,b(Lb) is not most frequent and

D′1ΣEq(f
i
L,b(Lb), f

i
R,b(Rb), ·, ·) 6= ⊥ occurs more than yt times in H2,i,a is at most

((1 + 2−λ)/2)yt + 2−k and the probability that the event (2) f iR,b(Rb) is not most

frequent and D′1ΣEq(f
i
L,b(L), f iR,b(Rb), ·, ·) 6= ⊥ occurs more than yt times in H2,i,a is

at most ((1 + 2−λ)/2)yt + 2−k.

We first analyze the event (1). If f iL,b(Lb) = L′b is not the most frequent query

in S ′L,b then, by definition,

Pr[f iL,b(L̂b) = L′b | outi−1
A = Ôut

i−1

A ] ≤ 1/2. (7.5.2)

Recall that, by the arguments in the proof of the previous Claim, in H2,i−1,b (and

hence also H2,i,a), for good pairs (outi−1
A,1 = Ôut

i−1

A,1 ∧ outi−1
A,2 = Ôut

i−1

A,2):

Pr

f iL,b(Lb) = L′b

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1∧

outi−1
A,2 = Ôut

i−1

A,2


∈ (1± 2−λ) Pr[f iL,b(Lb) = L′b | outi−1

A,b = Ôut
i−1

A,b ].

Combining with (7.5.2):

Pr

f iL,b(Lb) = L′b

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1∧

outi−1
A,2 = Ôut

i−1

A,2

 ≤ (1 + 2−λ)/2.

308



This implies that for every fixed Rb = R̂b (for which Pr[Rb = R̂b∧outi−1
A,1 = Ôut

i−1

A,1 ∧

outi−1
A,2 = Ôut

i−1

A,2 ] > 0),

Pr

 f iL,b(Lb) 6= L∗b∧

D′(f iL,b(Lb), f
i
R,b(Rb)) 6= ⊥

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1∧

outi−1
A,2 = Ôut

i−1

A,2



= Pr

 f iL,b(Lb) 6= L∗b∧

f iL,b(L) = ρL(f iR,b(Rb))

∣∣∣∣∣∣∣∣
Rb = R̂b ∧ outi−1

A,1 = Ôut
i−1

A,1∧

outi−1
A,2 = Ôut

i−1

A,2


≤ (1 + 2−λ)/2.

The probability that this occurs yt times for yt distinct values of j ≤ [i], where

all outcomes of outjA,1 = Ôut
j

A,1 ∧ outjA,2 = Ôut
j

A,2 are good for all j is at most

((1+2−λ)/2)yt . Since by Claim 7.5.3, with probability 1−2−k, all outcomes outjA,1 =

Ôut
j

A,1 ∧ outjA,2 = Ôut
j

A,2 are good for all j ∈ [q], the upperbound for event (1)

follows.

The proof for event (2) is analogous.

Claim 7.5.6. In Hybrid 3, for all (even inefficient) distinguishers D, it holds that

Pr[D(outbA) = b] ≤ 1/2 +O(2−λ).

309



Proof. We first compute

O =
∑
m′2

Pr[m2 = m′
2 ∧m1 = m0 +m′

2 | outA,1,outA,2]

+
∑
m′2

Pr[m2 = m′
2 ∧m1 = m1 +m′

2 | outA,1,outA,2]

=
∑
m′2

Pr[m2 = m′
2 | outA,1,outA,2] · Pr[m1 = m0 +m′

2 | outA,1,outA,2]

+
∑
m′2

Pr[m2 = m′
2 | outA,1,outA,2] · Pr[m1 = m1 +m′

2 | outA,1,outA,2]

≥ (2−λ − 2−k) · (
∑
m′2

Pr[m1 = m0 +m′
2 | outA,1,outA,2]

+
∑
m′2

Pr[m1 = m1 +m′
2 | outA,1,outA,2])

= 2 · (2−λ − 2−k)

= 2 · 2−λ − 2 · 2−k.

where the first inequality follows from Claim 7.5.3.

310



So

Pr[ message is mb | outA,1,outA,2]

=

∑
m′2

Pr[m2 = m′2 | outA,1,outA,2] · Pr[m1 = mb +m2 | outA,1,outA,2]

O

≤ (2−λ + 2−k) ·
∑

m′2
Pr[m1 = mb +m2 | outA,1,outA,2]

O

=
2−λ + 2−k

O

=
2−λ + 2−k

2 · 2−λ − 2 · 2−k

≤ 2−λ + 3 · 2−k

2 · 2−λ

= 1/2 +
3 · 2−k

2 · 2−λ

= 1/2 +O(2−λ).

311



Chapter 8: Conclusion and Future Directions

In this dissertation, we have shown following contributions to improve the

applicability of non-malleable codes.

• We explore a novel connection between tampering classes of non-malleable

codes and well studied complexity classes. Exploring these connections to com-

plexity theory has made it possible to construct explicit, efficient non-malleable

codes for broader tampering classes. Specifically,

– We construct first explicit, efficient non-malleable codes with information

theoretic security for the tampering functions which can be modeled as

bounded-depth, bounded fan-in circuits. This tampering class includes

NC0.

– We present a general framework to construct non-malleable codes from

average-case hardness properties for various complexity classes which are

known/believed to be strictly weaker from the class of all polynomial time

algorithms (P).

– We construct first explicit, efficient non-malleable codes for AC0, decision

tress of depth nε for constant 0 < ε < 1 in with computational security

312



in CRS model. We also construct information theoretically secure, non-

malleable codes for streaming, space-bounded tampering functions.

This line of research has sparked interest in the community and led to follow-up

work focusing on construction of non-malleable codes for well studied complex-

ity classes.

• We present lower and upper bounds on the optimal locality (efficiency), which

is number of codeword blocks required to be accessed in order to decode/update

the codeword, of locally decodable and updatable non-malleable codes which

allow random access (i.e. entire codeword need not be read to access just

a single block) to the codeword blocks. Specifically, we show that LDUNMC

allowing rewind attacks cannot have constant locality. We also improve the

locality of previous construction to match the lower bound.

• We show that continuous non-malleable codes, providing security against stronger

attacks which tamper the codeword continually, cannot be constructed from any

falsifiable assumption without CRS for 2-split-state tampering with black-box

reduction security proofs (such reductions have only input/output access to the

adversary breaking the underlying assumption). Prior work already showed

2-split-state CNMC cannot be constructed with information theoretic security.

We then construct CNMC for 2-split-state tampering from injective one-way

functions in CRS model. We also construct CNMC for multi-bit messages

for 4-split-state tampering functions from injective one-way functions in CRS

model.

313



8.1 Future Directions

An important future direction would be to find practical applications of non-

malleable codes to achieve tamper resilience. The Rowhammer attack (introduced

by [112]) can be a potential threat to be considered. Since this attack tampers with

the memory but does not interfere with the computation, which is precisely the threat

model considered by non-malleable codes.

Recently, Cojocar et.al [47], studied the effectiveness of error-correcting codes

against the rowhammer attack (introduced by [112]). They [47], tried to inject un-

detectable, silent corruptions in ECC memory by combining single bit flips caused

by rowhammer attack and then caused 2 more bits to flip. It is an interesting re-

search direction to explore whether the type of tampering induced by Rowhammer is

captured by local tampering functions. Therefore, studying the effectiveness of non-

malleable codes against such types of attacks can be an interesting step forward in

improving the applicability of non-malleable codes.

314



Bibliography

[1] Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving sig-
natures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.)
Advances in Cryptology – ASIACRYPT 2011. Lecture Notes in Computer
Science, vol. 7073, pp. 628–646. Springer, Heidelberg, Germany, Seoul, South
Korea (Dec 4–8, 2011)

[2] Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran,
M.: Optimal computational split-state non-malleable codes. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016-A: 13th Theory of Cryptography Conference,
Part II. Lecture Notes in Computer Science, vol. 9563, pp. 393–417. Springer,
Heidelberg, Germany, Tel Aviv, Israel (Jan 10–13, 2016)

[3] Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reduc-
tions and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual
ACM Symposium on Theory of Computing. pp. 459–468. ACM Press, Port-
land, OR, USA (Jun 14–17, 2015)

[4] Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combi-
natorics. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of
Computing. pp. 774–783. ACM Press, New York, NY, USA (May 31 – Jun 3,
2014)

[5] Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Con-
tinuous non-malleable codes in the 8-split-state model. In: Ishai, Y., Rijmen,
V. (eds.) Advances in Cryptology – EUROCRYPT 2019, Part I. Lecture Notes
in Computer Science, vol. 11476, pp. 531–561. Springer, Heidelberg, Ger-
many, Darmstadt, Germany (May 19–23, 2019)

[6] Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient
non-malleable codes. Cryptology ePrint Archive, Report 2014/807 (2014),
http: // eprint. iacr. org/ 2014/ 807

315

http://eprint.iacr.org/2014/807


[7] Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient
non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015: 12th
Theory of Cryptography Conference, Part I. Lecture Notes in Computer Sci-
ence, vol. 9014, pp. 398–426. Springer, Heidelberg, Germany, Warsaw, Poland
(Mar 23–25, 2015)

[8] Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit
non-malleable codes against bit-wise tampering and permutations. In: Gen-
naro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology – CRYPTO 2015,
Part I. Lecture Notes in Computer Science, vol. 9215, pp. 538–557. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

[9] Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Ex-
plicit non-malleable codes against bit-wise tampering and permutations. In:
Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2015, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 9215, pp. 538–557. Springer (2015), http: // dx. doi. org/ 10. 1007/
978-3-662-47989-6_ 26

[10] Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and
permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015: 12th Theory
of Cryptography Conference, Part I. Lecture Notes in Computer Science,
vol. 9014, pp. 375–397. Springer, Heidelberg, Germany, Warsaw, Poland
(Mar 23–25, 2015)

[11] Ajtai, M.: σ1
1-formulae on finite structures. Annals of Pure and Applied Logic

24, 607–620 (1983)

[12] Applebaum, B.: Cryptography in Constant Parallel Time. Information Secu-
rity and Cryptography, Springer (2014), http: // dx. doi. org/ 10. 1007/

978-3-642-17367-7

[13] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from dif-
ferent assumptions. In: Schulman, L.J. (ed.) 42nd Annual ACM Symposium
on Theory of Computing. pp. 171–180. ACM Press, Cambridge, MA, USA
(Jun 5–8, 2010)

[14] Arora, S., Barak, B.: Computational complexity: a modern approach. Cam-
bridge University Press (2009)

[15] Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable
codes for small-depth circuits. In: Thorup, M. (ed.) 59th Annual Symposium
on Foundations of Computer Science. pp. 826–837. IEEE Computer Society
Press, Paris, France (Oct 7–9, 2018)

316

http://dx.doi.org/10.1007/978-3-662-47989-6_26
http://dx.doi.org/10.1007/978-3-662-47989-6_26
http://dx.doi.org/10.1007/978-3-642-17367-7
http://dx.doi.org/10.1007/978-3-642-17367-7


[16] Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-
malleable codes against bounded polynomial time tampering. In: Ishai, Y.,
Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019, Part I. Lec-
ture Notes in Computer Science, vol. 11476, pp. 501–530. Springer, Heidel-
berg, Germany, Darmstadt, Germany (May 19–23, 2019)

[17] Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes
for bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.S.
(eds.) Advances in Cryptology – EUROCRYPT 2016, Part II. Lecture Notes
in Computer Science, vol. 9666, pp. 881–908. Springer, Heidelberg, Germany,
Vienna, Austria (May 8–12, 2016)

[18] Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes
from average-case hardness: AC0, decision trees, and streaming space-bounded
tampering. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EU-
ROCRYPT 2018, Part III. Lecture Notes in Computer Science, vol. 10822, pp.
618–650. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3,
2018)

[19] Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. IACR
Cryptology ePrint Archive 2019, 379 (2019)

[20] Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Average-case fine-grained
hardness. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017. pp. 483–496. ACM (2017),
http: // doi. acm. org/ 10. 1145/ 3055399. 3055466

[21] Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd An-
nual Symposium on Foundations of Computer Science. pp. 106–115. IEEE
Computer Society Press, Las Vegas, NV, USA (Oct 14–17, 2001)

[22] Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal - an O(n2)-
query attack on any key exchange from a random oracle. In: Halevi, S. (ed.)
Advances in Cryptology – CRYPTO 2009. Lecture Notes in Computer Science,
vol. 5677, pp. 374–390. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 16–20, 2009)

[23] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
20th Annual ACM Symposium on Theory of Computing. pp. 1–10. ACM
Press, Chicago, IL, USA (May 2–4, 1988)

[24] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski Jr., B.S. (ed.) Advances in Cryptology – CRYPTO’97. Lecture
Notes in Computer Science, vol. 1294, pp. 513–525. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 17–21, 1997)

317

http://doi.acm.org/10.1145/3055399.3055466


[25] Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new
non-black-box simulation technique. In: 53rd Annual Symposium on Founda-
tions of Computer Science. pp. 223–232. IEEE Computer Society Press, New
Brunswick, NJ, USA (Oct 20–23, 2012)

[26] Bogdanov, A., Lee, C.H.: Homomorphic evaluation requires depth. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A: 13th Theory of Cryptogra-
phy Conference, Part I. Lecture Notes in Computer Science, vol. 9562, pp.
365–371. Springer, Heidelberg, Germany, Tel Aviv, Israel (Jan 10–13, 2016)

[27] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating
errors in cryptographic computations. Journal of Cryptology 14(2), 101–119
(Mar 2001)

[28] Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Net-
works 48(5), 701–716 (2005)

[29] Chabanne, H., Cohen, G.D., Patey, A.: Secure network coding and non-
malleable codes: Protection against linear tampering. In: Proceedings of the
2012 IEEE International Symposium on Information Theory, ISIT 2012,
Cambridge, MA, USA, July 1-6, 2012. pp. 2546–2550. IEEE (2012), http:
// dx. doi. org/ 10. 1109/ ISIT. 2012. 6283976

[30] Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-
wise non-malleable codes. Cryptology ePrint Archive, Report 2015/129 (2015),
http: // eprint. iacr. org/ 2015/ 129

[31] Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-
wise non-malleable codes. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani,
Y., Sangiorgi, D. (eds.) ICALP 2016: 43rd International Colloquium on Au-
tomata, Languages and Programming. LIPIcs, vol. 55, pp. 31:1–31:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Rome, Italy (Jul 11–15, 2016)

[32] Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally
decodable codes. In: Lindell, Y. (ed.) TCC 2014: 11th Theory of Cryptogra-
phy Conference. Lecture Notes in Computer Science, vol. 8349, pp. 489–514.
Springer, Heidelberg, Germany, San Diego, CA, USA (Feb 24–26, 2014)

[33] Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local
non-malleable codes and their applications. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016-A: 13th Theory of Cryptography Conference, Part II. Lecture
Notes in Computer Science, vol. 9563, pp. 367–392. Springer, Heidelberg,
Germany, Tel Aviv, Israel (Jan 10–13, 2016)

[34] Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes,
with their many tampered extensions. In: Wichs, D., Mansour, Y. (eds.) 48th
Annual ACM Symposium on Theory of Computing. pp. 285–298. ACM Press,
Cambridge, MA, USA (Jun 18–21, 2016)

318

http://dx.doi.org/10.1109/ISIT.2012.6283976
http://dx.doi.org/10.1109/ISIT.2012.6283976
http://eprint.iacr.org/2015/129


[35] Chattopadhyay, E., Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Privacy
amplification from non-malleable codes. Cryptology ePrint Archive, Report
2018/293 (2018), https: // eprint. iacr. org/ 2018/ 293

[36] Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: Hatami, H., McKenzie, P., King, V. (eds.)
49th Annual ACM Symposium on Theory of Computing. pp. 1171–1184. ACM
Press, Montreal, QC, Canada (Jun 19–23, 2017)

[37] Chattopadhyay, E., Li, X.: Non-malleable extractors and codes for composi-
tion of tampering, interleaved tampering and more. Cryptology ePrint Archive,
Report 2018/1069 (2018), https: // eprint. iacr. org/ 2018/ 1069

[38] Chattopadhyay, E., Li, X.: Non-malleable extractors and codes in the inter-
leaved split-state model and more. arXiv preprint arXiv:1804.05228 (2018)

[39] Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant
split-state tampering. In: 55th Annual Symposium on Foundations of Com-
puter Science. pp. 306–315. IEEE Computer Society Press, Philadelphia, PA,
USA (Oct 18–21, 2014)

[40] Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.F.: Query-efficient lo-
cally decodable codes of subexponential length. computational complexity 22(1),
159–189 (2013), http: // dx. doi. org/ 10. 1007/ s00037-011-0017-1

[41] Chen, R., Santhanam, R., Srinivasan, S.: Average-case lower bounds and
satisfiability algorithms for small threshold circuits. In: Raz, R. (ed.) 31st
Conference on Computational Complexity, CCC 2016, May 29 to June 1,
2016, Tokyo, Japan. LIPIcs, vol. 50, pp. 1:1–1:35. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016), https: // doi. org/ 10. 4230/ LIPIcs.

CCC. 2016. 1

[42] Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor,
M. (ed.) ITCS 2014: 5th Conference on Innovations in Theoretical Computer
Science. pp. 155–168. Association for Computing Machinery, Princeton, NJ,
USA (Jan 12–14, 2014)

[43] Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and
split-state tampering. In: Lindell, Y. (ed.) TCC 2014: 11th Theory of Cryptog-
raphy Conference. Lecture Notes in Computer Science, vol. 8349, pp. 440–464.
Springer, Heidelberg, Germany, San Diego, CA, USA (Feb 24–26, 2014)

[44] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction
of a non-malleable encryption scheme from any semantically secure one. In:
Canetti, R. (ed.) TCC 2008: 5th Theory of Cryptography Conference. Lecture
Notes in Computer Science, vol. 4948, pp. 427–444. Springer, Heidelberg,
Germany, San Francisco, CA, USA (Mar 19–21, 2008)

319

https://eprint.iacr.org/2018/293
https://eprint.iacr.org/2018/1069
http://dx.doi.org/10.1007/s00037-011-0017-1
https://doi.org/10.4230/LIPIcs.CCC.2016.1
https://doi.org/10.4230/LIPIcs.CCC.2016.1


[45] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: A note on improved,
black-box constructions of non-malleable encryption from semantically-secure
encryption. Manuscript (2015)

[46] Choi, S.G., Kiayias, A., Malkin, T.: BiTR: Built-in tamper resilience. In:
Lee, D.H., Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011.
Lecture Notes in Computer Science, vol. 7073, pp. 740–758. Springer, Heidel-
berg, Germany, Seoul, South Korea (Dec 4–8, 2011)

[47] Cojocar, L., Razavi, K., Giuffrida, C., Bos, H.: Exploiting correcting codes:
On the effectiveness of ecc memory against rowhammer attacks. In: 2019
2019 IEEE Symposium on Security and Privacy (SP). vol. 1, pp. 279–295.
IEEE Computer Society, Los Alamitos, CA, USA (may 2019), https: //

doi. ieeecomputersociety. org/ 10. 1109/ SP. 2019. 00089

[48] Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryp-
tion: Simpler, shorter, stronger. Cryptology ePrint Archive, Report 2015/772
(2015), http: // eprint. iacr. org/ 2015/ 772

[49] Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption:
Simpler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A:
13th Theory of Cryptography Conference, Part I. Lecture Notes in Computer
Science, vol. 9562, pp. 306–335. Springer, Heidelberg, Germany, Tel Aviv,
Israel (Jan 10–13, 2016)

[50] Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for con-
tinuously non-malleable codes. Cryptology ePrint Archive, Report 2019/055
(2019), https: // eprint. iacr. org/ 2019/ 055

[51] Coron, J.S.: Security proof for partial-domain hash signature schemes. In:
Yung, M. (ed.) Advances in Cryptology – CRYPTO 2002. Lecture Notes in
Computer Science, vol. 2442, pp. 613–626. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 18–22, 2002)

[52] Dachman-Soled, D., Kulkarni, M.: Upper and lower bounds for continuous
non-malleable codes. In: Lin, D., Sako, K. (eds.) PKC 2019: 22nd Interna-
tional Conference on Theory and Practice of Public Key Cryptography, Part I.
Lecture Notes in Computer Science, vol. 11442, pp. 519–548. Springer, Hei-
delberg, Germany, Beijing, China (Apr 14–17, 2019)

[53] Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower
bounds for leakage-resilient, locally decodable and updatable non-malleable
codes. In: Fehr, S. (ed.) PKC 2017: 20th International Conference on Theory
and Practice of Public Key Cryptography, Part I. Lecture Notes in Computer
Science, vol. 10174, pp. 310–332. Springer, Heidelberg, Germany, Amsterdam,
The Netherlands (Mar 28–31, 2017)

320

https://doi.ieeecomputersociety.org/10.1109/SP.2019.00089
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00089
http://eprint.iacr.org/2015/772
https://eprint.iacr.org/2019/055


[54] Dachman-Soled, D., Liu, F.H., Shi, E., Zhou, H.S.: Locally decodable and
updatable non-malleable codes and their applications. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015: 12th Theory of Cryptography Conference, Part I. Lec-
ture Notes in Computer Science, vol. 9014, pp. 427–450. Springer, Heidelberg,
Germany, Warsaw, Poland (Mar 23–25, 2015)

[55] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust non-interactive zero knowledge. In: Kilian, J. (ed.) Advances in Cryp-
tology – CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp.
566–598. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–
23, 2001)

[56] De Wolf, R.: A brief introduction to fourier analysis on the boolean cube.
Theory of Computing, Graduate Surveys 1, 1–20 (2008)

[57] Decatur, S.E., Goldreich, O., Ron, D.: Computational sample complexity.
SIAM Journal on Computing 29(3), 854–879 (2000)

[58] Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable
commitment. In: 30th Annual ACM Symposium on Theory of Computing. pp.
141–150. ACM Press, Dallas, TX, USA (May 23–26, 1998)

[59] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal
on Computing 30(2), 391–437 (2000)

[60] Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continu-
ously non-malleable codes in the constant split-state model. Cryptology ePrint
Archive, Report 2017/357 (2017), http: // eprint. iacr. org/ 2017/ 357

[61] Drucker, A.: New limits to classical and quantum instance compression. SIAM
Journal on Computing 44(5), 1443–1479 (2015)

[62] Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:
Kleinberg, J.M. (ed.) 38th Annual ACM Symposium on Theory of Computing.
pp. 711–720. ACM Press, Seattle, WA, USA (May 21–23, 2006)

[63] Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from
decryption errors. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptol-
ogy – EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp.
342–360. Springer, Heidelberg, Germany, Interlaken, Switzerland (May 2–6,
2004)

[64] Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-
source extractors. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology
– CRYPTO 2013, Part II. Lecture Notes in Computer Science, vol. 8043, pp.
239–257. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–
22, 2013)

321

http://eprint.iacr.org/2017/357


[65] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao,
A.C.C. (ed.) ICS 2010: 1st Innovations in Computer Science. pp. 434–452.
Tsinghua University Press, Tsinghua University, Beijing, China (Jan 5–7,
2010)

[66] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM
65(4), 20:1–20:32 (Apr 2018), http: // doi. acm. org/ 10. 1145/ 3178432 ,
extended abstract appeared in Innovations in Computer Science (ICS) 2010

[67] Efremenko, K.: 3-query locally decodable codes of subexponential length. In:
Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Comput-
ing. pp. 39–44. ACM Press, Bethesda, MD, USA (May 31 – Jun 2, 2009)

[68] Erds, P., Rado, R.: Intersection theorems for systems of sets. Journal of
the London Mathematical Society s1-35(1), 85–90 (1960), http: // dx. doi.
org/ 10. 1112/ jlms/ s1-35. 1. 85

[69] Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-
malleable codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.)
ACNS 18: 16th International Conference on Applied Cryptography and Net-
work Security. Lecture Notes in Computer Science, vol. 10892, pp. 121–139.
Springer, Heidelberg, Germany, Leuven, Belgium (Jul 2–4, 2018)

[70] Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes
for space-bounded tampering. In: Katz, J., Shacham, H. (eds.) Advances in
Cryptology – CRYPTO 2017, Part II. Lecture Notes in Computer Science,
vol. 10402, pp. 95–126. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 20–24, 2017)

[71] Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-
malleable codes. In: Lindell, Y. (ed.) TCC 2014: 11th Theory of Cryptogra-
phy Conference. Lecture Notes in Computer Science, vol. 8349, pp. 465–488.
Springer, Heidelberg, Germany, San Diego, CA, USA (Feb 24–26, 2014)

[72] Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage
resilient von neumann architecture. In: Katz, J. (ed.) PKC 2015: 18th In-
ternational Conference on Theory and Practice of Public Key Cryptography.
Lecture Notes in Computer Science, vol. 9020, pp. 579–603. Springer, Heidel-
berg, Germany, Gaithersburg, MD, USA (Mar 30 – Apr 1, 2015)

[73] Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable
codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q.,
Oswald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014. Lecture
Notes in Computer Science, vol. 8441, pp. 111–128. Springer, Heidelberg,
Germany, Copenhagen, Denmark (May 11–15, 2014)

[74] Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010.

322

http://doi.acm.org/10.1145/3178432
http://dx.doi.org/10.1112/jlms/s1-35.1.85
http://dx.doi.org/10.1112/jlms/s1-35.1.85


Lecture Notes in Computer Science, vol. 6110, pp. 197–215. Springer, Heidel-
berg, Germany, French Riviera (May 30 – Jun 3, 2010)

[75] Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology –
ASIACRYPT 2014, Part II. Lecture Notes in Computer Science, vol. 8874, pp.
82–101. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–
11, 2014)

[76] Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions
for discrete log based signatures. In: Wagner, D. (ed.) Advances in Cryptology
– CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157, pp. 93–107.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2008)

[77] Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorith-
mic tamper-proof (ATP) security: Theoretical foundations for security against
hardware tampering. In: Naor, M. (ed.) TCC 2004: 1st Theory of Cryptogra-
phy Conference. Lecture Notes in Computer Science, vol. 2951, pp. 258–277.
Springer, Heidelberg, Germany, Cambridge, MA, USA (Feb 19–21, 2004)

[78] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual
ACM Symposium on Theory of Computing. pp. 99–108. ACM Press, San Jose,
CA, USA (Jun 6–8, 2011)

[79] Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The
relationship between public key encryption and oblivious transfer. In: 41st
Annual Symposium on Foundations of Computer Science. pp. 325–335. IEEE
Computer Society Press, Redondo Beach, CA, USA (Nov 12–14, 2000)

[80] Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge
from simulation-extractable snarks. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 10402, pp. 581–612. Springer (2017),
https: // doi. org/ 10. 1007/ 978-3-319-63715-0_ 20

[81] Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In:
Kleinberg, R.D. (ed.) ITCS 2013: 4th Innovations in Theoretical Computer
Science. pp. 529–540. Association for Computing Machinery, Berkeley, CA,
USA (Jan 9–12, 2013)

[82] H̊astad, J.: Computational limitations of small-depth circuits (1987)

[83] H̊astad, J.: On the correlation of parity and small-depth circuits. SIAM Jour-
nal on Computing 43(5), 1699–1708 (2014)

323

https://doi.org/10.1007/978-3-319-63715-0_20


[84] Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander
codes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D. (eds.)
ICALP 2013: 40th International Colloquium on Automata, Languages and
Programming, Part I. Lecture Notes in Computer Science, vol. 7965, pp. 540–
551. Springer, Heidelberg, Germany, Riga, Latvia (Jul 8–12, 2013)

[85] Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for ac
0. In: Proceedings of the twenty-third annual ACM-SIAM symposium on Dis-
crete Algorithms. pp. 961–972. Society for Industrial and Applied Mathematics
(2012)

[86] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way
permutations. In: 21st Annual ACM Symposium on Theory of Computing.
pp. 44–61. ACM Press, Seattle, WA, USA (May 15–17, 1989)

[87] Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) Advances in Cryptol-
ogy – EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp.
308–327. Springer, Heidelberg, Germany, St. Petersburg, Russia (May 28 –
Jun 1, 2006)

[88] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003.
Lecture Notes in Computer Science, vol. 2729, pp. 463–481. Springer, Heidel-
berg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2003)

[89] Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable
codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015: 12th Theory of Cryp-
tography Conference, Part I. Lecture Notes in Computer Science, vol. 9014,
pp. 451–480. Springer, Heidelberg, Germany, Warsaw, Poland (Mar 23–25,
2015)

[90] Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes
with explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017: 15th
Theory of Cryptography Conference, Part II. Lecture Notes in Computer Sci-
ence, vol. 10678, pp. 344–375. Springer, Heidelberg, Germany, Baltimore,
MD, USA (Nov 12–15, 2017)

[91] Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness en-
coders and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) Advances
in Cryptology – EUROCRYPT 2018, Part III. Lecture Notes in Computer
Science, vol. 10822, pp. 589–617. Springer, Heidelberg, Germany, Tel Aviv,
Israel (Apr 29 – May 3, 2018)

[92] Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: 32nd Annual ACM Symposium on Theory of Computing.
pp. 80–86. ACM Press, Portland, OR, USA (May 21–23, 2000)

324



[93] Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-
more extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Conference on Com-
puter and Communications Security. pp. 1317–1328. ACM Press, Vienna,
Austria (Oct 24–28, 2016)

[94] Kiayias, A., Liu, F.H., Tselekounis, Y.: Non-malleable codes for partial func-
tions with manipulation detection. In: Shacham, H., Boldyreva, A. (eds.) Ad-
vances in Cryptology – CRYPTO 2018, Part III. Lecture Notes in Computer
Science, vol. 10993, pp. 577–607. Springer, Heidelberg, Germany, Santa Bar-
bara, CA, USA (Aug 19–23, 2018)

[95] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener,
M.J. (ed.) Advances in Cryptology – CRYPTO’99. Lecture Notes in Com-
puter Science, vol. 1666, pp. 388–397. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 15–19, 1999)

[96] Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time
decoding. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Sympo-
sium on Theory of Computing. pp. 167–176. ACM Press, San Jose, CA, USA
(Jun 6–8, 2011)

[97] Li, X.: Improved non-malleable extractors, non-malleable codes and indepen-
dent source extractors. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th
Annual ACM Symposium on Theory of Computing. pp. 1144–1156. ACM
Press, Montreal, QC, Canada (Jun 19–23, 2017)

[98] Li, X.: Non-malleable extractors and non-malleable codes: Partially optimal
constructions. Cryptology ePrint Archive, Report 2018/353 (2018), https:

// eprint. iacr. org/ 2018/ 353

[99] Lindell, Y.: A simpler construction of cca2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) Advances in Cryptology – EURO-
CRYPT 2003. Lecture Notes in Computer Science, vol. 2656, pp. 241–254.
Springer, Heidelberg, Germany, Warsaw, Poland (May 4–8, 2003)

[100] Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state
model. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology –
CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 517–532.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

[101] Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.)
Advances in Cryptology – CRYPTO’89. Lecture Notes in Computer Science,
vol. 435, pp. 128–136. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 20–24, 1990)

325

https://eprint.iacr.org/2018/353
https://eprint.iacr.org/2018/353


[102] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Comput-
ing. pp. 427–437. ACM Press, Baltimore, MD, USA (May 14–16, 1990)

[103] Nisan, N.: Pseudorandom generators for space-bounded computation. Combi-
natorica 12(4), 449–461 (1992)

[104] Oliveira, I.C., Santhanam, R.: Pseudodeterministic constructions in subexpo-
nential time. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017. pp. 665–677. ACM (2017),
http: // doi. acm. org/ 10. 1145/ 3055399. 3055500

[105] Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-
malleable codes in the split-state model from minimal assumptions. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018,
Part III. Lecture Notes in Computer Science, vol. 10993, pp. 608–639.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018)

[106] Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiv-
alent to discrete log. In: Roy, B.K. (ed.) Advances in Cryptology – ASI-
ACRYPT 2005. Lecture Notes in Computer Science, vol. 3788, pp. 1–20.
Springer, Heidelberg, Germany, Chennai, India (Dec 4–8, 2005)

[107] Pass, R.: Limits of provable security from standard assumptions. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory of
Computing. pp. 109–118. ACM Press, San Jose, CA, USA (Jun 6–8, 2011)

[108] Rao, A.: An exposition of bourgains 2-source extractor. In: Electronic Collo-
quium on Computational Complexity (ECCC). vol. 14 (2007)

[109] Rasmussen, P.M.R., Sahai, A.: Expander graphs are non-malleable codes.
Cryptology ePrint Archive, Report 2018/929 (2018), https: // eprint.

iacr. org/ 2018/ 929

[110] Raz, R.: Fast learning requires good memory: A time-space lower bound for
parity learning. CoRR abs/1602.05161 (2016), http: // arxiv. org/ abs/

1602. 05161

[111] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th Annual Symposium on Foundations of Computer
Science. pp. 543–553. IEEE Computer Society Press, New York, NY, USA
(Oct 17–19, 1999)

[112] Seaborn, M., Dullien, T.: Exploiting the dram rowhammer bug to gain kernel
privileges

326

http://doi.acm.org/10.1145/3055399.3055500
https://eprint.iacr.org/2018/929
https://eprint.iacr.org/2018/929
http://arxiv.org/abs/1602.05161
http://arxiv.org/abs/1602.05161


[113] Seurin, Y.: On the exact security of Schnorr-type signatures in the random
oracle model. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptol-
ogy – EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp.
554–571. Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012)

[114] Simon, D.R.: Finding collisions on a one-way street: Can secure hash func-
tions be based on general assumptions? In: Nyberg, K. (ed.) Advances in Cryp-
tology – EUROCRYPT’98. Lecture Notes in Computer Science, vol. 1403, pp.
334–345. Springer, Heidelberg, Germany, Espoo, Finland (May 31 – Jun 4,
1998)

[115] Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In:
Kaliski Jr., B.S., Koç, Çetin Kaya., Paar, C. (eds.) Cryptographic Hardware
and Embedded Systems – CHES 2002. Lecture Notes in Computer Science,
vol. 2523, pp. 2–12. Springer, Heidelberg, Germany, Redwood Shores, CA,
USA (Aug 13–15, 2003)

[116] Tal, A.: Properties and applications of boolean function composition. In:
Kleinberg, R.D. (ed.) ITCS 2013: 4th Innovations in Theoretical Computer
Science. pp. 441–454. Association for Computing Machinery, Berkeley, CA,
USA (Jan 9–12, 2013)

[117] Tal, A.: Tight bounds on the fourier spectrum of AC0. In: O’Donnell, R. (ed.)
32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga,
Latvia. LIPIcs, vol. 79, pp. 15:1–15:31. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2017), https: // doi. org/ 10. 4230/ LIPIcs. CCC. 2017.
15

[118] Viola, E.: Extractors for circuit sources. SIAM J. Comput. 43(2), 655–672
(2014), http: // dx. doi. org/ 10. 1137/ 11085983X

[119] Yekhanin, S.: Towards 3-query locally decodable codes of subexponential
length. J. ACM 55(1), 1:1–1:16 (Feb 2008), http: // doi. acm. org/ 10.

1145/ 1326554. 1326555

[120] Yekhanin, S.: Locally decodable codes: A brief survey. In: Chee, Y.M., Guo,
Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) Coding and Cryp-
tology: Third International Workshop, IWCC 2011, Qingdao, China, May 30-
June 3, 2011. Proceedings, pp. 273–282. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011), http: // dx. doi. org/ 10. 1007/ 978-3-642-20901-7_

18

327

https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.4230/LIPIcs.CCC.2017.15
http://dx.doi.org/10.1137/11085983X
http://doi.acm.org/10.1145/1326554.1326555
http://doi.acm.org/10.1145/1326554.1326555
http://dx.doi.org/10.1007/978-3-642-20901-7_18
http://dx.doi.org/10.1007/978-3-642-20901-7_18

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Organization
	Non-Malleable Codes for Bounded Depth, Bounded Fan-in Circuits
	Non-Malleable Codes from Average-Case Hardness:  AC0, Decision Trees, and Streaming Space-Bounded Tampering
	Tight Upper and Lower Bounds for Leakage-Resilient, Locally Decodable and Updatable Non-Malleable Codes
	Upper and Lower Bounds for Continuous Non-Malleable Codes

	Related Work
	Non-Malleable Codes
	Locally Decodable and Updatable Non-Malleable Codes
	Continuous Non-Malleable Codes

	Preliminaries and Definitions
	Notation
	Non-Malleable Codes
	Non-Malleable Code in CRS Model
	Medium Non-Malleability
	Continuous Non-Malleable Codes (CNMC)
	Locally Decodable and Updatable Non-Malleable Codes  (LDUNMC)

	Boolean Circuits and Related Definitions
	Local Functions
	Background on Boolean Analysis

	Public Key Encryption Scheme and PRG
	Pseudorandom Generators of Space-Bounded Computation

	Non-Interactive Zero Knowledge

	Non-Malleable Codes for Bounded Depth, Bounded Fan-in Circuits
	Introduction
	Technical Overview

	Preliminaries
	Non-Malleable Codes: Alternate Definitions
	Tampering Families
	Reconstructable Probabilistic Encoding Scheme

	Non-malleable Codes for Localo(n)i(n)
	Extending to Leaky Local

	Extending to Localm(n)
	Achieving Resilience against o(n/logn) Output Locality

	Non-Malleable Codes from Average-Case Hardness:  AC0, Decision Trees, and Streaming Space-Bounded Tampering
	Introduction
	Technical Overview

	Definitions
	Incompressible Functions
	Proof Systems for Circuit SAT
	Circuit SAT proof system for the class L(C) with prover complexity D and verifier complexity AC0 .
	Circuit SAT proof system for the class L(C) with prover complexity D and streaming verifier.

	Computational Model for Streaming Adversaries

	Generic Construction for One-Bit Messages
	Proof of Theorem 5.3.1
	One-Bit NMC for AC0 and beyond
	Tampering classes beyond AC0 .

	Construction for Multi-Bit Messages
	Generic Analysis
	Efficient, Multi-Bit NMC for AC0 
	Tampering with decision trees

	One-Bit NMC Against Streaming Adversaries
	The Hard Distribution Db (parameter n)
	Encryption scheme E = (Encrypt, Decrypt) (parameter n' (n))
	Weak Encryption Scheme (parameter n'' o(n))
	Non-Interactive Simulatable Proof System (parameter n'' o(n))
	Multi-Bit NMC Against Streaming Adversaries

	Figure to explain MPC in head from section 5.5.4

	Tight Upper and Lower Bounds for Leakage-Resilient, Locally Decodable and Updatable Non-Malleable Codes
	Introduction
	Our Results
	Our Techniques
	Lower Bound for Deterministic Access Patterns
	Lower Bound for Randomized Access Patterns
	Difficulty of Extending Techniques to the Adaptive Setting
	Upper Bound


	Lower Bound
	Attack Preliminaries
	Applying the Sunflower Lemma
	The Compression Functions
	Closeness of Distributions
	The Attack
	Attack Analysis

	Extending Lower Bound to Randomized Decode/Update
	Applying the Sunflower Lemma
	The Compression Functions
	Closeness of Distributions
	The Attack
	Attack Analysis

	Matching Upper Bound

	 Upper and Lower Bounds for Continuous Non-Malleable Codes
	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Randomness Extractors
	Continuous Non-Malleable Randomness Encoder
	Falsifiable Assumptions and Black-Box Reductions
	(Strong) One-Time Signature Schemes
	Equivocal Commitment Scheme
	One-to-one Equivocal Commitment
	Equivocal Commitment (with extra properties) in the CRS model

	Impossibility of CNMC with no CRS
	2-State CNMC for One-Bit Messages
	CNM Randomness Encoder to Single-Bit CNMC

	4-State CNMC for Multi-Bit Messages

	Conclusion and Future Directions
	Future Directions

	Bibliography

