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This project proposes a sustainable greywater filtration system for residential-scale water 

reuse. Recycled greywater can be used in toilet water, outdoor irrigation, car washing, and 

clothes washing, reducing the demand for potable water. Although pilot-scale systems have 

been demonstrated for greywater recycling, residential-scale applications remain 

unexplored, as treatment options on a residential scale are limited. This project designed 

and implemented a residential-scale greywater filtration system into reACT, the University 

of Maryland’s 2017 Solar Decathlon House. The system was constructed within the 

constraints of the Solar Decathlon, with an emphasis on sustainability. It used several 

filtration methods, including micron, mineral sand, activated carbon, and ultraviolet 

disinfection. Multi-phase water testing was conducted to evaluate pH, turbidity, chemical 

oxygen demand, total organic carbon, and total nitrogen. The prototype proved capable of 

functioning in a real-world setting and filtering water to meet several non-potable urban 

reuse standards.   
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Chapter 1: Introduction 

The United States uses more water per person than any other country.1 The average 

person in the United States uses about 70 gallons (265 L) per day indoors and 30 gallons 

(114 L) per day outdoors.1,2 With an increasing world population and changes in 

agriculture, water withdrawal for most uses, such as domestic, industrial, and livestock, is 

projected to increase by 50% by 2025.3 In 2015, 663 million people still did not have access 

to improved drinking water sources.4 Changes in temperature and increasingly variable 

weather conditions are projected to impact the availability, distribution, and quality of 

water.5 Higher global frequency of droughts also presents additional challenges to 

traditional water management infrastructure.6 Water is becoming an increasingly finite 

resource around the world. 

Residential water systems almost exclusively use potable water, meaning water 

filtered to drinking standards, but over 78% of water usage in homes does not require the 

water to meet potable standards.7 For example, potable water is not necessary for 

landscaping, gardening, irrigation, clothes washing, and toilets. Due to wasted water, the 

use of potable water where not necessary, and other factors, 40 U.S. states’ water managers 

expect water shortages in some part of their state in the next decade.8 

Traditional water management infrastructure mixes blackwater and greywater 

together in the same stream prior to filtration. Greywater is relatively clean wastewater 

from baths, sinks, washing machines, and other kitchen appliances, whereas blackwater is 

wastewater from toilets. The term “greywater” comes from the level of contamination of 

household appliances’ effluent relative to blackwater from toilets. This represents an 

inefficiency in the design of current systems, as the relatively clean greywater could be 

https://www.zotero.org/google-docs/?fM6Ujh
https://www.zotero.org/google-docs/?mLnkHN
https://www.zotero.org/google-docs/?ksre9Y
https://www.zotero.org/google-docs/?ulNNmX
https://www.zotero.org/google-docs/?W09ts2
https://www.zotero.org/google-docs/?Vx5Wms
https://www.zotero.org/google-docs/?D7gFfA
https://www.zotero.org/google-docs/?CDwywR


2 

 

purified more easily if it were not contaminated with blackwater. Recycled greywater can 

serve as a valuable to address water needs, while conserving potable water. 

This study proposed a residential greywater filtration system that aimed to recycle 

household greywater for unrestricted non-potable urban reuse. Unrestricted non-potable 

purposes include landscape and market crop irrigation, air conditioning, toilet flushing, 

construction, vehicle washing, and environmental enhancement. Recycling greywater for 

non-potable uses can both preserve potable water and improve the sustainability of 

individual households. By reducing the amount of potable water consumed, fewer 

resources and less energy will be used in the production of potable water. For every one 

million gallons of potable water conserved, almost 1,500 kWh of energy is saved.1 

Although energy on this order of magnitude may not appear significant, it is one of many 

inefficiencies that should be addressed. A case of greywater reuse in Australia resulted in 

cost savings, reduced sewage flows, and saved up to 38% of potable water.9 In Arizona, 

one study found that the average household generates 30,000 to 40,000 gallons of 

greywater per year, suggesting that greywater is a significant potential source for water 

conservation.9 Although there is significant literature on rainwater recycling, there is 

limited research on the efficacy of greywater recycling on a residential scale. The team 

explored the potential for residential-scale greywater recycling to address water 

management needs and promote sustainable design and more efficient use of resources. 

The team approached this challenge in two phases: the design phase and the testing 

phase. In the design phase, current and upcoming filtration techniques were assessed with 

an emphasis on selecting environmentally friendly filtration elements. Based on this 

literature review, the team designed a filtration system aimed at recycling greywater to 

https://www.zotero.org/google-docs/?1mCAYJ
https://www.zotero.org/google-docs/?AVXRH8
https://www.zotero.org/google-docs/?yiCM98
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unrestricted non-potable urban reuse standards. The water filtration system uses 

ultraviolet (UV) disinfection and physical filtration methods, including micron filters, a 

Next Sand filter, a ceramic filter, and a granular activated carbon (GAC) filter. 

After the prototype of the system was completed, it was implemented into the 

University of Maryland’s submission for the Department of Energy Solar Decathlon 

Competition, reACT, which won second place in the 2017 competition. The team 

continued to iterate on the design following the competition. Filters were replaced and 

some were upgraded to more efficient models. Changes were made to the plumbing to 

streamline water flow, improve water pressure, and incorporate newer filtration and 

measurement elements. After these modifications were completed, the team transitioned 

into the testing phase.  

In this phase, water quality testing was conducted on municipal water and synthetic 

greywater, both prior to and following treatment. The Environmental Protection Agency 

(EPA) specifies potable water standards with over 90 water quality parameters, but it does 

not provide regulatory values for non-potable water.10,11 For the purposes of evaluating the 

proposed water filtration system, seven water quality parameters of interest were identified: 

pH, turbidity, chemical oxygen demand (COD), biological oxygen demand (BOD), 

total organic carbon (TOC), total nitrogen (TN), and bacterial load. 

During the testing phase, municipal and synthetic greywater samples were run 

through the filtration system. pH, turbidity, COD, TOC, and TN measurements were 

collected first for both treated and untreated municipal water, and then for treated and 

untreated greywater. The results indicate that the filtration system is capable of meeting 

several non-potable urban reuse standards.   

https://www.zotero.org/google-docs/?7PPStV
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Chapter 2: Literature Review 

Greywater recycling methods can be broken down into three categories: physical, 

biological, and chemical. Physical filtration processes leverage characteristics of the 

greywater such as particle size and weight, making them most effective at removing large 

particulates and reducing turbidity.12 Sedimentation, which removes the heaviest solids 

from incoming greywater, is typically placed at the beginning of the water filtration 

process.13 Another common method of physical filtration is membrane filtration, which 

removes particulates on the basis of size. The efficiency of membrane filters is dictated by 

the size of their pores, which range from macroscale to nanoscale.12 A drawback of physical 

filters is that they must be periodically backwashed, cleaned, or replaced due to fouling, 

which incurs financial and time costs for maintenance.12  

Biological filtration techniques use microorganisms to improve the quality of 

wastewater by consuming most organic and some inorganic pollutants in the water.14 

Biological filtration methods are infrequently used on their own, as they are usually 

preceded by sedimentation or screening and followed by chemical filtration because both 

biological and chemical filtration require low turbidity to effectively kill pathogens.12 

Examples of biological filtration technologies include biosand filters and trickling filters. 

Biosand filters consist of a traditional sand filter with a bacterial layer on top, called a 

biofilm . The sand acts as an additional physical filter, while the bacterial layer decomposes 

organic matter. Biosand filters can remove organics and solids that were not removed by 

previous filters.12 Trickling filters enable organic pollutants to be decomposed by 

microorganisms in a biofilm.15 Trickling filters typically require periodic maintenance and 

https://www.zotero.org/google-docs/?RGPcCd
https://www.zotero.org/google-docs/?aGZCfN
https://www.zotero.org/google-docs/?akpLZu
https://www.zotero.org/google-docs/?0bhkkT
https://www.zotero.org/google-docs/?geUmgu
https://www.zotero.org/google-docs/?DTARxK
https://www.zotero.org/google-docs/?TdUYo8
https://www.zotero.org/google-docs/?J5AuX3
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may develop an odor due to solids buildup over time.15 Both biosand filters and trickling 

filters typically include aerobic and anaerobic bacteria.12  

Chemical filtration techniques induce chemical changes in the pollutants through 

the addition of various chemicals.14 Chemical disinfection mechanisms are typically placed 

at the end of filtration systems to kill remaining microorganisms and prevent regrowth, as 

they do not remove particulates and other pollutants.14 The placement of disinfection at the 

end of filtration is strategic because the greywater has already been purged of particulate 

matter that would otherwise shield microorganisms.16 The most common chemical 

disinfection technique is chlorination.12 The use of chlorination must be controlled 

because excessive residual chlorine can be hazardous to human health.17 A potentially safer 

option is ultraviolet disinfection, which uses UV light to kill microorganisms without 

altering other water quality parameters. UV disinfection does not require the synthesis, 

transportation, and consumption that chlorine does, making UV disinfection more 

environmentally friendly. Another chemical filtration method, coagulation, can be 

implemented earlier in filtration systems, working in conjunction with physical treatments. 

Coagulants can be added to inlet greywater to cause pollutants to stick together, forming 

large masses that can be more easily removed via physical filtration.14 Despite the 

effectiveness of chemical filtration techniques, they must be used with caution to avoid 

dosing the water beyond levels that the filtration system can safely handle. 

 

Testing Parameters 

The EPA lists regulations for more than 90 different contaminants in water.11 

Substantial resources would be required to quantify the levels of these contaminants; 

https://www.zotero.org/google-docs/?i84xwG
https://www.zotero.org/google-docs/?VLdyDu
https://www.zotero.org/google-docs/?X9McWX
https://www.zotero.org/google-docs/?Wu116j
https://www.zotero.org/google-docs/?kUxSvr
https://www.zotero.org/google-docs/?xgyMfS
https://www.zotero.org/google-docs/?dUeFxr
https://www.zotero.org/google-docs/?iUOXZJ
https://www.zotero.org/google-docs/?vNZt6X
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however, the general cleanliness of water can be gauged using seven measurements: pH, 

turbidity, COD, BOD, TOC, TN, and bacterial load. These measurements can encapsulate 

a substantial portion of the contaminants that the EPA regulates in just a few tests. 

The ideal pH of drinking water is between 6.5 and 8.5.18,19 While pH is important 

in determining how corrosive a water sample is, dissolved gases, colloidal matter, and other 

materials in water also determine the extent of corrosion in a system.18 Generally, as pH 

decreases, the potential for corrosion increases.18 Corrosive water can lead to the release 

of hazardous metal ions from piping materials, such as iron, manganese, copper, lead, and 

zinc. There are also health hazards associated with water with a pH above 8.5 because a 

high pH can cause adverse effects on the water’s odor, color, and appearance.18  

Turbidity, measured in nephelometric turbidity units (NTU), is an indication of the 

clarity of water.20 A turbidity of less than 10 NTU is considered normal for unagitated 

rivers, and a turbidity of less than 0.3 NTU in 95% of samples is listed as an EPA regulation 

for drinking water.11 High levels of turbidity indicate particulate matter in the water which 

causes light to be scattered, making the water appear cloudy or opaque. While moderate 

turbidity is aesthetically unappealing, it does not have a direct impact on human health.20 

The real hazard lies in the microorganisms that are shielded by the particulate matter in 

water, making them less likely to be inactivated. If left untreated, turbid water can become 

a breeding ground for potentially harmful pathogens. Once large particulate matter is 

effectively removed, chemical treatment or ultraviolet disinfection can effectively kill the 

remaining microorganisms and render the water safe to drink.  

 Chemical oxygen demand quantifies the amount of oxygen that can be consumed 

by chemical reactions per volume of water.21 COD tests use chemicals to oxidize almost 

https://www.zotero.org/google-docs/?HiMsUV
https://www.zotero.org/google-docs/?h7uU6X
https://www.zotero.org/google-docs/?uiwTsx
https://www.zotero.org/google-docs/?YmBVAL
https://www.zotero.org/google-docs/?XfTcP0
https://www.zotero.org/google-docs/?fMDvth
https://www.zotero.org/google-docs/?szqDQZ
https://www.zotero.org/google-docs/?xHf6fz
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all organic compounds. Standard COD testing protocols use a solution of potassium 

dichromate which is incubated with sulfuric acid.22 The COD test is non-specific, meaning 

that it is not able to differentiate the identities of the compounds it oxidizes.21 COD testing 

usually takes a few hours, providing quicker results than BOD5 tests, named for their 

testing period of five days.21 BOD is similar to COD, as it measures the possible 

consumption of oxygen by a volume of water. However, BOD only quantifies the 

biologically oxidizable chemicals, rather than all material capable of being oxidized, which 

means that BOD values are always less than or equal to COD values.21 Raw wastewater 

and treated wastewater typically exhibit BOD:COD ratios of 0.5:1 and 0.1:1, 

respectively.23  

Total organic carbon encompasses all of the organic material measured by COD 

tests and additional non-oxidizable organics.21 While TOC tests account for more than 

COD tests, TOC measurements on their own are not sufficient to characterize the oxygen 

demand in water. This is because TOC cannot differentiate between compounds with the 

same number of carbons in their molecular structures.24 For example, ethanol and oxalic 

acid both have two carbons in their structure, but the oxygen demand of ethanol is six times 

larger that of oxalic acid.24 TOC testing is performed by inserting a sample into a total 

organic carbon analyzer where the sample is heated, which oxidizes the carbon in the 

sample to CO2, which is then analyzed using nondispersive infrared sensing to determine 

concentration.25 Following this, acid is inserted into sample, which is heated up. The CO2 

measured after acid addition is the inorganic carbon, and can be subtracted from TOC 

measurements. In environmental sampling, non-purgeable organic carbon (NPOC) is used 

instead because there is a large quantity of inorganic carbon, which may interfere with 

https://www.zotero.org/google-docs/?5y0PIw
https://www.zotero.org/google-docs/?pARGKS
https://www.zotero.org/google-docs/?Z28lKQ
https://www.zotero.org/google-docs/?KEiCbv
https://www.zotero.org/google-docs/?Y6PBWI
https://www.zotero.org/google-docs/?uBKc5v
https://www.zotero.org/google-docs/?Sn5nNv
https://www.zotero.org/google-docs/?6aSqx0
https://www.zotero.org/google-docs/?Ud9qEH
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measurement of organic carbon. Instead of inserting acid into the sample following the 

measurement of organic carbon, sparging occurs first, causing the removal of inorganic 

carbon as well as a small amount of purgeable organic carbon (POC). Compared to the 

precision lost due to the high volume of inorganic carbon in the standard TOC procedure, 

the removal of POC in the NPOC procedure is negligible. Following the removal of POC 

and inorganic carbon, the amount remaining is recorded as NPOC.25 

Total nitrogen is a measure of the nitrogen present in organic nitrogen, ammonia, 

reduced nitrogen, nitrates, and nitrites.21 In natural water bodies throughout the US, values 

accepted as safe for the ecosystem for TN range from 2 to 6 mg/L.11,26 Accepted values of 

nitrates in drinking water vary upwards of 10 mg/L, which is the US standard.27 For testing 

purposes, the team began with a value of 10 mg/L as the target, keeping in mind the more 

stringent environmental reuse recommendations (as low as 2 mg/L). The Shimadzu method 

collected data for the same sources of nitrogen as the Kjeldahl method, which was 

previously the predominant method for data collection on nitrogen concentrations.28 These 

sources were organic nitrogen, found in proteins, as well as nitrates/nitrites and ammonia 

which provide much of the biochemical driver of water chemistry.28–30 A main failing of 

the Kjeldahl method of collection was its low recovery of nitrates and nitrites. The 

Shimadzu method resolved this problem, recovering all tested compounds, including 

nitrates/nitrites, ammonia, and organic nitrogen at over 90% recovery rate.28  

Testing for TN is done using a Total Organic Carbon Analyzer with the Total 

Nitrogen add on. Samples containing nitrogen are inserted into a chamber at 720℃, 

causing the formation of nitrogen monoxide. In the next chamber, nitrogen monoxide is 

combined with ozone to create NO2 and NO2
*, an excited form. The return of NO2

* to the 

https://www.zotero.org/google-docs/?ArIucA
https://www.zotero.org/google-docs/?ecuPdu
https://www.zotero.org/google-docs/?oRvXAN
https://www.zotero.org/google-docs/?nqu1JI
https://www.zotero.org/google-docs/?NM6d0N
https://www.zotero.org/google-docs/?lh713Z
https://www.zotero.org/google-docs/?YPUFsQ
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ground state is used to determine the types of nitrogen present. The amount of each type of 

nitrogen seen is compared to values seen for standards created beforehand.28,31 Testing for 

TN is quick and useful for determining pollution, particularly from microorganisms. This 

testing methodology fails to capture the presence of organic nitrogen, which can compose 

a significant fraction of the overall nitrogen within the water. Therefore, TN might better 

be defined as inorganic nitrogen within the water, mainly ammonia, nitrates, and nitrites. 

When considering regulation of non-potable water, the presence of additional organic 

nitrogen may be an important metric to consider.  

 The most common health risk associated with water is the presence of pathogens.21 

Thus, it is critical that a water treatment system be able to remove microorganisms 

completely, even if the water is not intended for ingestion. Bacterial load is monitored by 

plating a water sample in cell media and assessing its presence and growth. Plates must be 

handled carefully to ensure the samples are not contaminated by microorganisms that were 

not originally in the water, so as to not influence the results.21 

 

Sedimentation 

Sedimentation is a physical treatment process that typically follows coagulation, 

although it can be employed without any pretreatment. During sedimentation, water enters 

a rectangular settling tank with a single inlet and outlet. The inlet water is slowed to a low 

velocity so that suspended solids sink to the bottom of the tank.13 This is especially useful 

after coagulation because as small particles stick together, the increased size and weights 

accelerate sinking to the bottom of the tank.13 About 25-50% of BOD, 50-70% of total 

suspended solids (TSS), and 65% of oil and grease can be removed during the 

https://www.zotero.org/google-docs/?xx309I
https://www.zotero.org/google-docs/?Do6g0J
https://www.zotero.org/google-docs/?WNLQPA
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sedimentation process.32 However, contaminants that are dissolved or have a low specific 

gravity will stay suspended in the water. Thus, these pollutants are not effectively removed 

and must be isolated using another mechanism, such as pumping the water through a 

micron filter.14 

The solids that accumulate at the bottom of the tank are called primary sludge, and 

usually take up about three to five percent of the inlet water.14 Therefore, it is necessary to 

remove primary sludge from the sedimentation tanks. There are several removal 

techniques, such as installing mechanical equipment that continuously cleans the bottom 

of the tank or manually removing the sludge and cleaning the tank at regular intervals.14 

Sedimentation is almost always used as a primary filtration technique, despite its inability 

to remove small particulate matter, chemicals, or bacteria.14 

 

Coagulation 

Turbidity, TSS, and natural organic matter (NOM) are major indicators of water 

quality. Greywater contains significantly elevated levels of turbidity and suspended solids 

relative to clean drinking water.33 The concentration of NOM varies significantly from 

source to source, so the NOM presence in greywater is difficult to generalize. Nevertheless, 

the major contributor of organic chemicals in residential greywater is surfactants, so the 

concentration of NOM is determined by detergents and soaps chosen within the house.34 

NOM is also known to degrade the effectiveness and flow rate of membrane filters.35,36 

Therefore, reducing NOM concentration early in a filtration pathway will benefit 

downstream micron filters. Additionally, turbidity will negatively affect the performance 

and maintenance schedule of a biosand filter.37,38 Therefore, the removal of turbidity and 

https://www.zotero.org/google-docs/?St34HB
https://www.zotero.org/google-docs/?PAH948
https://www.zotero.org/google-docs/?f5kgT3
https://www.zotero.org/google-docs/?fl8cLK
https://www.zotero.org/google-docs/?vpkceX
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NOM serves a two-fold purpose of purifying the water and improving the efficiency of 

other filters. 

Coagulation relies on grouping chemicals together into particle-sized agglomerates. 

These agglomerates then form a sludge of congealed particles, which must be removed 

from solution via physical filtration techniques.36 Typically the removal of coagulated 

solids is achieved via sedimentation or dissolved air flotation, both of which provide phase 

separation between bulk solids and liquids to facilitate solids scraping.39 This process 

operates via the addition of inorganic salts, typically composed of aluminum or iron, which 

dissociate in the water and generate positive metal ions. These ions interact with colloids 

and NOM in the water, leading to coagulated particles that can be more easily treated.35,40 

Due to this mechanism, coagulation best treats water for turbidity, TSS, pathogens, and 

NOM, which subsequently improves the operating efficacy of both biosand and membrane 

filters downstream. 

There are many factors that affect the efficiency of coagulation, such as the mixture 

of coagulants used, coagulant dose, pH, temperature, influent water quality, and properties 

of the particulates and NOM.36,41 Therefore, it can be difficult to practically match the 

efficiencies achieved in laboratory settings.  

Table 1 offers an example of the effects of aluminum and ferric salts as coagulants 

on greywater produced from showers. Both forms of coagulant reduce turbidity by about 

90%, significantly reduce COD and BOD, and reduce the presence of several tested 

bacteria by more than 99.9%.42 

  

https://www.zotero.org/google-docs/?zSp6un
https://www.zotero.org/google-docs/?GVlGzx
https://www.zotero.org/google-docs/?jCDcp8
https://www.zotero.org/google-docs/?C0dtPp
https://www.zotero.org/google-docs/?JGcWu5
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Table 1: Contaminant Concentrations Following Treatments with Different 

Greywater Treatment Systems 

Optimum Raw 

MIEX® 

10 mg/L, 

30min 

Alum 

24 mg/L, 

pH 4.5 

Ferric 

44 mg/L, 

pH 4.5 

MIEX® + 

Al 

5 mg/L, 

pH 4.5 

MIEX® + 

Fe 

5 mg/L, 

pH 4.5 

Turbidity (NTU) 46.60 8.14 4.28 5.20 3.01 3.30 

COD (mg/L) 791 272 287 288 247 254 

BOD (mg/L) 205 33 23 30 27 29 

DOC (mg/L) 171.4 78.2 93.4 87.4 78.8 80.7 

TN (mg/L) 18 15.3 15.7 17.9 15.3 17.4 

NH4
+ (mg/L) 1.2 1.1 1.2 1.2 1.2 1.2 

PO4
3- (mg/L) 1.66 0.91 0.09 0.06 0.11 0.13 

Total coliforms 

(MPN/100 mL) 
56500 56 <1 <1 <1 <1 

Escherichia coli 

(MPN/100 mL) 
6490 8 <1 1 <1 <1 

Fecal 

Enterococci 

(MPN/100 mL) 

2790 <1 <1 <1 <1 <1 

Adapted from Pidou et al, 200842, table 3. Shower greywater characteristics post-treatment for the systems 

at optimum conditions. 

 

A relatively new form of coagulation is electrocoagulation. Soluble metal anodes 

of aluminum or iron are placed in the water. A current is passed through the water between 

the anode and cathode, causing the anode to dissolve metal ions for coagulation and driving 

the release of hydrogen gas at the cathode, which helps to float the coagulated particles to 

the surface.36,43 To improve the conductivity of the water, low concentrations of NaCl can 

be introduced prior to the electrocoagulation stage.43–45 Electrocoagulation can also 

function to increase the pH of raw water.45 The benefits of electrocoagulation are reduced 

handling of chemicals, reduced sludge formation, and slightly improved efficiency relative 

to chemical coagulation.36,46 A pilot-scale version of electrocoagulation was implemented 

in a large, individual building, where greywater was treated for non-potable reuse. The 

https://www.zotero.org/google-docs/?zxs5Kw
https://www.zotero.org/google-docs/?g1JNYV
https://www.zotero.org/google-docs/?xiKNKk
https://www.zotero.org/google-docs/?8UXxsT
https://www.zotero.org/google-docs/?LVkhlF
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quality met recommendations for reclaimed water stipulated by various nations, and this 

pilot plant achieved profitability, estimating a payback period of 5.5 years.47 

 

Biosand Filtration 

Biosand filtration is an aerobic and anaerobic filtration process capable of removing 

physical and biological pollutants from contaminated water.48 In a typical biosand 

configuration, layers of fine sand, coarse sand, and gravel fill a plastic or concrete 

container. Water is filled just over the height of the solids, with a biofilm forming on the 

uppermost surface of the sand-water interface. The thin biofilm layer typically forms on 

top of the fine sand layer and allows for biological decomposition. A diffuser plate is placed 

between the lid and the standing water layer to prevent incoming water from disrupting the 

bacteria. The fine sand is used to trap particulate matter flowing through the system. The 

layer of coarser sand below the fine stand prevents the fine sand from entering the outgoing 

pipe below. Finally, a layer of gravel supports both layers of sand and allows for water to 

flow through the outlet pipe without pushing sand into it. The outlet pipe travels along the 

side of the tank and drains above the height of the biofilm to ambient conditions, such that 

the height of the water in the filter never drops below the solids. Biosand filtration has been 

found to reduce turbidity to as low as 1 NTU and reduce bacterial and protozoan 

concentrations by 80-99%.37 Moreover, it has been found to reduce viral load by 70-99% 

in laboratory conditions.37 It typically has a flow rate of up to 0.6 L/min, depending on 

system sizing, which would allow for over 375 liters to be filtered in one day, even with a 

recommended recharge period of six hours. Currently, there are a few drawbacks to biosand 

filters, including the weight, need for frequent cleaning, and declining efficiency over long-

https://www.zotero.org/google-docs/?uY7Q9E
https://www.zotero.org/google-docs/?CeIFes
https://www.zotero.org/google-docs/?286gZH
https://www.zotero.org/google-docs/?sgEnT8
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term use.49 The biosand filter can take up to one month to prepare because the biofilm 

needs time to fully develop.37 

 

Trickling Filter 

The trickling filter is a biological filter designed to remove organic matter from 

wastewater. This filter is composed of microorganisms that live on rocks or other solid 

media, which also allow organic matter to accumulate.15  

One advantage of this filter is that it is easy to install and operate. It is also relatively 

inexpensive, as it is made up from rocks or slag and a biofilm. Trickling filters are effective 

against organic material, thereby reducing BOD and COD provided the biofilm is grown 

on the right type of medium.15,50 Trickling filters are also highly durable and require little 

energy.15 

One of the downsides of trickling filters is their incubation period of several days, 

which is required for microorganisms to grow on the media.51 While this could be a 

problem for new systems, proper planning can ensure the microorganisms have enough 

time to grow. Another disadvantage is that the system requires regular attention from a 

semi-skilled operator.15 This could be problematic for a trickling filter implemented in a 

residential setting, as the owner would need a working knowledge of the system and would 

have to maintain it carefully. Trickling filter maintenance requirements also lead to a 

relatively high clogging frequency.15 Additionally, there are odor problems associated with 

trickling filters.15 With proper precaution and containment factors these problems can be 

mitigated, if not removed. 

  

https://www.zotero.org/google-docs/?EH1ZWp
https://www.zotero.org/google-docs/?qo7aR7
https://www.zotero.org/google-docs/?b4gDpm
https://www.zotero.org/google-docs/?NevAMi
https://www.zotero.org/google-docs/?QiIjKc
https://www.zotero.org/google-docs/?Tg3dkO
https://www.zotero.org/google-docs/?DFio3b
https://www.zotero.org/google-docs/?YtJXX1
https://www.zotero.org/google-docs/?Pbrb42
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Reverse Osmosis 

Osmosis is the diffusion of water across a semipermeable membrane from areas of 

low solute concentration to areas of high solute concentration. This process requires no 

external input of energy and occurs spontaneously because it is thermodynamically 

favorable. The movement of water across a membrane to areas of higher solute 

concentration creates an osmotic pressure and tends to equalize solute concentrations on 

either side of the membrane. 

In Reverse Osmosis (RO), an external pressure is applied to counteract this 

osmotic pressure and force water across the semipermeable membrane from areas of high 

solute concentration to areas of low solute concentration.52,53 This is the opposite of the 

natural tendency of the system to move toward thermodynamic equilibrium.52,53 

RO systems generally have a pore size of 0.1 nanometers, making them extremely 

effective at removing protozoa, bacteria, viruses, and common chemical contaminants 

found in water.54 RO systems are the standard for advanced water filtration and are capable 

of reducing COD by 99.9%, TSS by 99.8%, and dissolved salts by 99.9%.54 

Despite being highly effective at removing contaminants, RO water filtration 

systems have several drawbacks. RO relies on mechanical filtration with a membrane that 

accumulates contaminants and particles, which can build up and inhibit water flow. As a 

result, large amounts of water must be used to flush the membrane, resulting in 

contaminated brine. Although efficiencies are higher in large scale facilities, residential 

RO systems waste a vast majority of filtered water.53 RO systems release 4 to 20 L of 

briney wastewater for every liter of filtered water produced.55 Moreover, if leftover brine 

is fed back into the system for filtration in order to increase system efficiency, the 

https://www.zotero.org/google-docs/?9oDQcg
https://www.zotero.org/google-docs/?Hj2POC
https://www.zotero.org/google-docs/?IJYz6W
https://www.zotero.org/google-docs/?VCkfD9
https://www.zotero.org/google-docs/?Jdmui9
https://www.zotero.org/google-docs/?WAjw6V
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membrane life decreases drastically, resulting in higher maintenance costs.53 In addition to 

substantial water waste, RO filtration systems are expensive both to produce and install, 

negating their utility in a residential setting. 

 

Membrane Filtration 

Another method of water filtration is membrane filtration, which uses a thin layer 

of semi-permeable material capable of separating substances when pressure is applied 

across the membrane.56 This membrane can remove microorganisms, particulate matter, 

and organic matter responsible for color, odor, and various tastes within water.56 The most 

common forms of membrane filtration are nanofiltration (NF), ultrafiltration (UF), and 

microfiltration (MF). 

NF membranes are most commonly used to soften hard water.57 Processes 

requiring NF include desalination or softening, a technique used to remove ions such as 

magnesium and calcium from water.58 NF membranes do not allow valence ions, organic 

matter, or salts to pass through, thus softening the water. Because NF membranes do not 

remove dissolved substances, they are not sufficient alone for water purification. NF 

membranes are widely used in the reverse osmosis water treatment process. Seeing as 

reverse osmosis is expensive to use at a residential scale, it is not feasible to use NF systems 

in residential settings. 57,59 

UF membranes are the next largest membranes with pore sizes of 0.01 to 0.05 

microns. They are designed to remove particulates and microorganisms and generate 

filtrate with turbidity below 0.1 NTU.60 A special measurement system, known as 

molecular weight cut off (MWCO), has been instituted to classify the particulates removed 

https://www.zotero.org/google-docs/?4IYFMV
https://www.zotero.org/google-docs/?mp2Jj9
https://www.zotero.org/google-docs/?E3W3da
https://www.zotero.org/google-docs/?JluW20
https://www.zotero.org/google-docs/?WXOela
https://www.zotero.org/google-docs/?taeuBw
https://www.zotero.org/google-docs/?uXGpx3
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by the membrane based on molecular weight rather than size. The standard MWCO level 

for UF is between 10,000 and 50,000 Daltons. Most membranes used in water treatment 

only filter down to 100,000 Daltons.58 

MF membranes contain pore sizes of 0.1 to 10 microns and are mainly used for 

removal of colloidal and suspended particles through a similar sieving mechanism to UF.58 

Most MF filters can remove pathogens such as giardia, cryptosporidium, and some 

bacteria.58 This is all contingent on the nominal (average) size of the pores. Smaller MF 

filters can remove most of the three pathogens listed above. 

Membrane Cartridge Filtration (MCF) systems operate similarly to MF and UF 

systems because they use sieving mechanisms to remove particles from water.58 However, 

MCF uses filtration media capable of removing particles of 1.0 micron or larger.58 

 The Spin-down Filter, also known as Spin-out Filter, is a filter that uses an easily 

cleaned and reusable polyester or stainless steel filter screen.61 This filter is mostly found 

in the market with three pipe sizes: 1”, 1.5”, and 2”, which are designed to handle 

progressively higher flow rates.61 Spin-down filters operate at a maximum pressure of 150 

psi, which is more than enough for residential homes that typically do not exceed 60 psi 

water pressure. As spin-down filters continue to operate, their pores become clogged with 

debris, eventually blocking water flow. Moreover, filtered particles settle to the bottom of 

spin-down filters. To purge the settled sediments, spin-down filter come with a flush valve 

that allows for a quick removal of the contaminants. Additionally, to maintain the 

efficiency of the spin-down filter, the polyester or stainless steel filter is cleaned regularly 

(depending on the load and run time) in order to remove the solid particulates from the 

pores. Between the purge valve, which removes loose particulates and the washable nature 

https://www.zotero.org/google-docs/?LKSG4H
https://www.zotero.org/google-docs/?wrXOvF
https://www.zotero.org/google-docs/?jMIaTl
https://www.zotero.org/google-docs/?vMWZbv
https://www.zotero.org/google-docs/?eQllK6
https://www.zotero.org/google-docs/?erGHHQ
https://www.zotero.org/google-docs/?idxLf6
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of the membrane, spin-down filters require infrequent replacement when handling 

residential greywater. Spin-down filters trap large particles while supporting higher flow 

rates, making it sufficient for pre-screening greywater in residential homes.  

 

Ultraviolet Disinfection 

Ultraviolet (UV) disinfection can be incorporated into water filtration systems to 

kill the pathogens present in the water.16 UV disinfection incapacitates microorganisms by 

damaging their nucleic acids, so they can no longer function.62 UV filters can incapacitate 

bacteria, viruses, and protozoan cysts.62 Seeing as UV disinfection does not use chemical 

compounds, it does not change the composition of the water.59 Because UV disinfection 

only inactivates microbes and does not physically remove them, the microbial remains 

continue to contribute to the organic carbon and organic nitrogen loads. 

For mercury-based UV lamps, the UV dose, a measure of the filter’s effectiveness, 

depends on the mercury vapor pressure.62 Mercury lamps used in UV filters usually operate 

under either low or medium pressure. Low pressure lamps have a longer bulb life; however, 

medium pressure lamps require fewer bulbs to achieve the same UV dosage.62 Ballasts are 

used to regulate the current and voltage needed by the lamps. Ballasts are either magnetic 

or electronic.62 Electronic ballasts provide continuous changes in lamp intensity, whereas 

magnetic ballasts can only apply step changes in intensity.62 Electronic ballasts, however, 

are more susceptible to problems with power surges.62  

The effectiveness of UV disinfection is greatly reduced by the presence of large 

particulate matter in the water.16 Therefore, it is essential to reduce turbidity and suspended 

solids in water prior to treating it with ultraviolet radiation.64 In addition, chemicals, such 

https://www.zotero.org/google-docs/?1s9V9i
https://www.zotero.org/google-docs/?q954HX
https://www.zotero.org/google-docs/?wRx871
https://www.zotero.org/google-docs/?vtZZDl
https://www.zotero.org/google-docs/?OAiECP
https://www.zotero.org/google-docs/?iSXYPR
https://www.zotero.org/google-docs/?LyWCQB
https://www.zotero.org/google-docs/?4S6KOW
https://www.zotero.org/google-docs/?sR5Plr
https://www.zotero.org/google-docs/?P0u1JB
https://www.zotero.org/google-docs/?FI6uOz
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as calcium, iron, and other contaminants found in water can foul the surfaces of 

components of the UV filter system, particularly the outer quartz sleeve.62 The buildup of 

these contaminants can decrease the effective dosage of the UV lamp into the water.62 

Although temperature, pH, and alkalinity do not reduce the effectiveness of UV 

disinfection itself, they can cause contaminants to build up more quickly on the outer sleeve 

of the UV filter.64 Lamp sleeve cleaning methods can be used to combat this fouling.62 For 

large scale systems there are typically three sleeve cleaning methods: off-line chemical 

cleaning (OCC), on-line mechanical cleaning (OMC), and on-line mechanical-chemical 

cleaning (OMCC).62 In OCC systems, the lamp is turned off, drained, and then a cleaning 

solution is put through it.62 Both OMCC and OMC systems use wipers that move along the 

lamp sleeve.62 OMC and OMCC systems do not require the lamp to be drained; thus, they 

are on-line systems.  

 

Next Sand Filtration 

The Next Sand filtration method uses a mineral referred to as Next Sand that is 

highly processed and graded. It is a high purity clinoptilolite that offers characteristics of 

granular media filtration. Clinoptilolites are a natural zeolite that are used in water filtration 

for their unique absorption, catalytic, ion exchange, and molecular sieve properties.65 

Clinoptilolites are low-cost compared to other granular media filtration methods.65 Next 

Sand media provides three areas of possible improvement relative to typical multi-media 

filtration methods: turbidity reduction, service flow rate, and ease of use.  

Next Sand media is rated for a nominal filtration rating of 3-5 microns.66 Normal 

multi-media filtration is rated for a nominal filtration of 8-15 microns.66 The Next Sand 

https://www.zotero.org/google-docs/?AN7B0R
https://www.zotero.org/google-docs/?LnVAXt
https://www.zotero.org/google-docs/?5SgtZC
https://www.zotero.org/google-docs/?F6C9AE
https://www.zotero.org/google-docs/?G1m4mN
https://www.zotero.org/google-docs/?lcLvlE
https://www.zotero.org/google-docs/?RoXsCS
https://www.zotero.org/google-docs/?bxgTl9
https://www.zotero.org/google-docs/?lq7ujn
https://www.zotero.org/google-docs/?o6f46H
https://www.zotero.org/google-docs/?64LBbN
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media is also effective in decreasing turbidity levels. Typical multi-media can reduce the 

turbidity of feed water from 200 to 150 NTU.66 However, Next Sand media can reduce the 

turbidity of feed water from 200 to 50 NTU.66 Another possible advantage of Next Sand 

media is a greater flow rate of up to 12-20 gpm/ft².66 Normal multi-media filtration only 

allows for a flow rate up to 3-10 gpm/ft².66 Additionally, Next Sand media is capable of 

being backwashed, which involves reversing the flow through the system to allow for 

purging the media of previously filtered material.  

 

Granular Activated Carbon Filtration 

The primary role of GAC within water purification is to improve the taste and smell 

of water, which is why Brita filters are composed primarily of activated carbon.67 However, 

there is additional utility in GAC media aside from removing taste- and odor-producing 

compounds. GAC can also remove volatile organic compounds (VOCs), NOM, synthetic 

organics, and various disinfection byproducts.68 Therefore, GAC can be incorporated into 

a water filtration system to assist with nonpolar contaminants.  

The main contributor of organic chemicals in residential greywater is surfactants, 

introduced by detergents and soaps within the house, which can be mitigated by GAC 

treatment.34 Activated carbon filters are a suitable solution for treating greywater to non-

potable standards.69 GAC is able to reduce BOD values by 97%, COD by 94%, TOC by 

97%, surfactants by over 99%, TN by 98%, total phosphorus by 91%, and fecal coliforms 

by 91% (Table 2).69  

 

 

https://www.zotero.org/google-docs/?PjMEUO
https://www.zotero.org/google-docs/?Q8Yr6z
https://www.zotero.org/google-docs/?lNk5ho
https://www.zotero.org/google-docs/?Ec6HDH
https://www.zotero.org/google-docs/?HPPwES
https://www.zotero.org/google-docs/?FvoyCa
https://www.zotero.org/google-docs/?Ye30eU
https://www.zotero.org/google-docs/?WRu0PF
https://www.zotero.org/google-docs/?rcgEgy
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Table 2: Charcoal Filter Reduction in Contamination Level 

Parameter 
Concentration in influent 

(mg/L) 

Percentage reduction in 

effluent 

BOD 425 ± 56 97 ± 3 

COD 890 ± 130 94 ± 2 

TOC 304 97 ± 0 

TN 75 ± 10 98 ± 1 

Total Phosphorus 4.2 ± 0.2 91 ± 8 

Fecal Coliforms 1.73 ± 3.3 ⋅ 105 91 ± 11 

Reduction of select parameters in charcoal filtration Dalahmeh et al, 2012.69 

 

In another test, a batch adsorption process of three different types of GAC 

demonstrated roughly 90% removal of anionic surfactants and over 95% removal of non-

ionic surfactants.70 In a tabulated list of GAC adsorption capabilities, GAC was deemed 

“excellent” at removing cleaning compounds, detergents, disinfectants, organic chemicals, 

soaps, and a plethora of other common chemicals.71  

GAC filters operate as a packed bed of particles through which the water passes. 

This media adsorbs the organics and other nonpolar compounds. Once a sufficient number 

of contaminants are adsorbed, the GAC becomes saturated.72 Further removal of 

contaminants is then inhibited, which is why a large surface area is imperative, enabling 

longer operating times before media replacement. Conventional activated carbons (mostly 

coal products) have surface areas of 10-200 m2/g.73,74  

Typically, the GAC media is derived from coal or charcoal, but it can also be 

generated from more sustainable materials, such as coconut shells.75 There are more than 

just environmental benefits to coconut shell GAC. For example, laboratory-grade coconut 

shell GACs can have surface areas as high as 2000 m2/g, but commercially available 

https://www.zotero.org/google-docs/?0FhVth
https://www.zotero.org/google-docs/?FPSvPN
https://www.zotero.org/google-docs/?A2H0J8
https://www.zotero.org/google-docs/?RF7OQB
https://www.zotero.org/google-docs/?v1nh9o
https://www.zotero.org/google-docs/?Fcdp7p
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coconut shell GACs typically have surface areas around 1100 m2/g.73,76,77 Modern-day 

bituminous coal GAC products are comparable with respect to specific surface area and 

some adsorption properties.78 However, when comparing their water purification abilities, 

coconut shell GAC typically outperforms coal-based GAC. Coconut shell GAC has up to 

50% more micropores (< 2 nm) relative to bituminous GAC, improving its ability to absorb 

VOCs.79,80 In addition, coconut shell GAC is typically harder and leaches less ash and dust 

into the water.79,80  

 

Production of Synthetic Greywater 

The production of synthetic greywater is necessary to evaluate the effectiveness of 

the prototype water filtration system.81 Ideal synthetic greywater emulates the composition 

of average residential greywater and is consistent across multiple batches.81 The makeup 

of real residential greywater is highly dependent on the location of the household and the 

chemical composition of municipal water, meaning different synthetic greywater 

compositions may be more or less representative of residential greywater depending on the 

greywater source that they are attempting to reproduce.81 Hourlier et al.81 proposed a 

synthetic greywater composition and compared their proposed formulation to actual 

residential greywater. The proposed composition is shown in Table 3. This composition is 

designed to emulate contamination from the human body, shampoo and shower gel, soap, 

deodorant, tooth paste, shaving and moisturising cream, make-up, and make-up remover. 

This study compared the proposed composition, other proposed compositions, and actual 

residential greywater by evaluating them based on pH, conductivity, turbidity, suspended 

solids, COD, BOD, total coliforms, fecal coliforms, and enterococcus.81  

https://www.zotero.org/google-docs/?F34Ro0
https://www.zotero.org/google-docs/?LrWSSo
https://www.zotero.org/google-docs/?HXn1sj
https://www.zotero.org/google-docs/?d81z6Q
https://www.zotero.org/google-docs/?dLG552
https://www.zotero.org/google-docs/?F3JcoG
https://www.zotero.org/google-docs/?R9MtPZ
https://www.zotero.org/google-docs/?jZH302
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Table 3: Synthetic Greywater Formula 

Product Purity  Function Concentration (mg/L) 

Lactic Acid >85% Acid produced by skin  100 

Cellulose  >90% Suspended solids  100 

Sodium Dodecyl Sulfate  >85% Anionic surfactant 50 

Glycerol  99% Denaturant, solvent, moisturizing agent 200 

Sodium Bicarbonate  >99% pH buffer 70 

Sodium Sulfate  99% Viscosity control agent 50 

Septic Effluent   Microbiological load 10 

Synthetic Bathroom Greywater Composition proposed by Hourlier et al. 81 

 

Table 4 shows the evaluation of both the model synthetic greywater and residential 

greywater collected from five households in northwestern France from both urban and rural 

areas.81 Based on this comparison, the authors of this study concluded that their proposed 

composition for model greywater is accurate and valid for the purpose of evaluating the 

performance of water filters.81 Table 5 shows other synthetic greywater compositions 

proposed by Diaper et al.82, Fenner and Komvuschara83, and Jefferson et al.84  

Table 4: Comparison of Synthetic Greywater to Real Greywater 

 Synthetic Greywater  Real Greywater  

pH 6.3 7.2 

Conductivity (µS/cm) 163 382 

Turbidity (NTU) 24 31 

COD (mg O2/L) 464 258 

BOD5 (mg O2/L) 63 115 

Fecal coliforms (CFU/100 mL) 7.9 ⋅ 103  3.6 ⋅ 106  

Enterococcus (CFU/100 mL) 2.5 ⋅ 103 2.0 ⋅ 104 

Analysis of Synthetic and Real Greywater prior to filtration proposed by Hourlier et al.81 

https://www.zotero.org/google-docs/?L3CtsL
https://www.zotero.org/google-docs/?0LJ7GU
https://www.zotero.org/google-docs/?6RqhY5
https://www.zotero.org/google-docs/?G2myZM
https://www.zotero.org/google-docs/?r399tg
https://www.zotero.org/google-docs/?ur2Vg9
https://www.zotero.org/google-docs/?JUO77V
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Table 5: Comparison of the Composition of Three Greywater Formulae 

Chemical 

Substances 

Diaper et al., 2008 Fenner and Komvuschara, 2005 Jefferson et al., 2001 

Secondary 

effluent 
20 mL/L E.coli culture 15 mL/L 

Tertiary 

effluent 
2.4 mL/L 

H3BO3 1.4 mg/L Amylodextrine 55 mg/L Synthetic soap 64 mg/L 

C3H6O3 28 mg/L Dextrine 85 mg/L   

Na2PO4 39 mg/L K2SO4 4.5 mg/L   

Na2SO4 35 mg/L Na2CO3 55 mg/L   

NaHCO3 25 mg/L NaH2PO4 11.5 mg/L   

Clay 

(Unimin) 
50 mg/L NH4Cl 75 mg/L   

Commercial 

Products 

Deodorant 10 mg/L Yeast extract 70 mg/L Shampoo 0.8 mL/L 

Shampoo 720 mg/L   Cooking oil 10 µL/L 

Laundry 150 mg/L     

Sunscreen or 

moisturizer 

15 or 10 

mg/L 
    

Toothpaste 32.5 mg/L     

Vegetable oil 7 mg/L     

Synthetic Greywater Composition proposed by Diaper et al.82, Fenner and Komvuschara83, Jeffereson et 

al.84 

 

In another study, the stability of synthetic greywater was evaluated over multiple 

storage times.85 The study showed that its proposed synthetic greywater composition was 

relatively stable with the exception of changes in BOD and nitrate-based nitrogen.85 

Contaminant levels were evaluated immediately after the water was produced, after 48 

hours of storage, and after seven days of storage.85  

 

  

https://www.zotero.org/google-docs/?ZwDGzI
https://www.zotero.org/google-docs/?BZx8bf
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Rainwater Harvesting 

 Rainwater is a common source of drinking water throughout much of the world. 

Currently, there exists no federal legislation on rainwater harvesting and as of 2010, there 

were only ten states with related legislation.86 Across nearly all state and federal guidelines 

for the harvesting of rainwater, the primary purpose is to offset the load of drinking quality 

water wasted on appliances like washing machines, toilets, and non-kitchen sinks. 

The physical act of harvesting rainwater becomes complex quickly. The water 

collected is taken from an outdoor roof and then purified to potable standards. In a study 

of harvested rainwater in a domestic environment, the quality of the collected rainwater 

with regards to its physicochemical parameters was found to be appropriate for greywater 

domestic use.87 The same samples of water were also analyzed to determine their safety 

for human consumption. The implementation of a first-flush system improved the 

physicochemical quality of the water but failed to avoid microbial contamination within 

the stored water.87 

As previously referenced, a first-flush system improves the quality of the water 

being harvested. First-flush refers to the concept of discarding the first water collected 

during a rainfall event in order to remove the physical debris and dirtiest water from 

being routed to the tanks and filtration units. Typical physical debris that could clog the 

water flow are leaves, sticks, acorns, dust, pollen, etc. However, the first-flush also 

removes bird or small mammal feces as well as deceased organisms on the roof. Also, the 

quality of a rainfall harvest is at its worst at the beginning of a rainfall event.88 Literature 

and commercial installations ubiquitously support first-flush mechanisms; however, it is 

still not certain exactly what amounts of water should be diverted under various 

https://www.zotero.org/google-docs/?5xFy9L
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scenarios.87–90 When it comes to the first-flush amount there is some general consensus, 

but the values offered as appropriate amounts of water to redirect are all fairly vague and 

heavily dependent on location and the number of days since the last rainfall.88 First-flush 

values suggested are from 0.4 liters to 0.8 liters per square meter, another suggests 0.4 

liters per square meter as a minimum, and after at least three dry days, 2 liters per square 

meter.88–90 

 

Solar Decathlon and Team Maryland’s reACT House 

 The Solar Decathlon is a biennial collegiate competition hosted by the U.S. 

Department of Energy. It is comprised of 10 contests that challenge student-led teams to 

design and build an environmentally sustainable home powered by renewable energy. The 

10 contests are in architecture, market potential, engineering, communications, innovation, 

water, health and comfort, appliances, home life, and energy.91 The competition has 

advanced technologies and solutions in the international residential building industry.91  

 The University of Maryland has participated in this event four times since the 

competition started in 2002. Most recently, the University of Maryland formed a team for 

the 2017 Solar Decathlon competition. This team was composed of both undergraduate and 

graduate students from various schools at the University of Maryland. All together the team 

came to develop the reACT house. reACT stands for Resilient Adaptive Climate 

Technology.92 The house was designed to adapt and respond to diverse communities and 

ecosystems. Team Purify worked together with Team Maryland on the reACT house, 

specifically focusing on the water reuse system and plumbing. 

https://www.zotero.org/google-docs/?Hj2Mxl
https://www.zotero.org/google-docs/?ZD2LHX
https://www.zotero.org/google-docs/?9TS8dz
https://www.zotero.org/google-docs/?n4dIYo
https://www.zotero.org/google-docs/?QAdMzr
https://www.zotero.org/google-docs/?qEw7IO
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 reACT’s specific goal in regards to water was to convert both captured rainwater 

and greywater to unrestricted non-potable urban reuse standards, which was used in the 

house’s hydroponics system. Inputs to the filtration system included the bathroom sink, 

shower, washing machine, and rainwater. All of these inlets were directed straight to the 

greywater tank due to space constraints. Ideally, rainwater and greywater should be filtered 

separately, but, in the final design, the rainwater was used to dilute the greywater. The 

rainwater was collected from the roof of the house and run through a first-flush system as 

described before. 

The house itself had constraints in regards to available space. The mechanical room 

was only 5’-8 ⅛” by 5’-5”. Not only was it a small space but the electrical and mechanical 

components of the house had to be situated in the mechanical room as well. The filtration 

system only had 120 V outlets available for use, which limited the selection of electrical 

components such as the pump and UV filter.  
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Chapter 3: Methodology 

Problem Statement  

Potable water is becoming an increasingly scarce resource. In 2015, 28.5% of 

people lacked safely managed drinking water services.93 Water needs are projected to 

increase while changes in weather and agriculture are projected to lead to a decrease in 

water availability.3,5 Most current water management techniques fail to utilize greywater 

as a potential solution to water needs and a means to conserve potable water. Areas without 

developed water management infrastructure could benefit from water filtration systems 

that act independently on a residential or community scale. Although there is substantial 

literature on the efficacy of rainwater recycling, limited research exists on water filtration 

systems designed to filter greywater to non-potable urban reuse standards.  

Residential-scale greywater filtration is a potential solution to issues with water 

scarcity. This study was conducted in two phases: a design phase and a testing phase. The 

aim of the design phase was to develop a sustainable greywater filtration system capable 

of filtering synthetic greywater to non-potable urban reuse standards. These standards were 

defined based on a synthesis of the existing state regulations and guidelines for non-potable 

unrestricted urban reuse. The testing phase of this study aimed to evaluate the capabilities 

of the system to filter water to the defined non-potable unrestricted urban reuse standards. 

 

Design Considerations 

The filtration system was designed for the express purpose of being implemented 

within the 2017 University of Maryland Solar Decathlon house, reACT. In order to meet 

the criteria outlined by the U.S. Department of Energy, various design constraints and 

https://www.zotero.org/google-docs/?YRLheW
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compromises had to be negotiated. The primary constraint in system development was the 

application space: a small residential house. Consequently, the filtration system had to 

occupy minimal space. The system also had to be specified for operational flow rates and 

volumes amenable to a two to four person household. External engineering and space 

limitations were placed on the design of the filtration system by various equipment and 

operational systems in the mechanical room. In addition, the system had to function without 

supervision and without the use of any chemical purification methods. These constraints 

immediately eliminated the possible incorporation of coagulants or chlorine within the 

system.  

Wastewater recycling and rainwater harvesting methods were implemented to help 

achieve net-zero water usage within reACT, which were spearheaded by team Purify. A 

composting toilet was selected, which removed the only blackwater stream from the house. 

General water conservation practices were also implemented, such as low flow devices. 

The removal of toilet effluent reduced the water streams within the house to potable water, 

rainwater, and greywater. Because there are many documented cases of rainwater 

harvesting for potable use, the major challenge confronting the team was greywater 

filtration.94 

 

Preliminary Design 

 Based on the design criteria set out for the team, residential greywater treatment to 

potable standards became the initial goal. One method to achieve this goal was using RO, 

which is more than capable of meeting potable standards; however, the team wanted to 

avoid RO due to the high costs of purchase and maintenance, as well as the wastewater it 

https://www.zotero.org/google-docs/?MNZ0fX
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produces.52,59 The absence of literature regarding small-scale greywater recycling to 

potable standards indicates the intractable nature of the problem. Through consultation 

with a wastewater engineer, the production of potable water without RO was also 

determined to incur exorbitant costs. However, commercial “under-sink” RO systems 

would not be feasible, as their flow rates and lifetimes fall significantly below the required 

values for a greywater treatment system. Consequently, the team designed a filtration 

pathway, which mirrored small commercial systems, with upstream filtration of particulate 

matter to extend the lifetime of the RO membrane. 

 Nevertheless, the complications associated with excessive RO waste streams 

remained unaddressed. The ratio of potable water to wastewater had been assumed close 

to unity throughout the preliminary design sketches, as commercial RO systems do not list 

a waste fraction. During the literature review of RO, this assumption was proven false. 

Typical residential RO systems operate with a ratio of roughy 7:1 waste water to purified 

water, although the driving force of high pressure systems can improve this ratio.95 If the 

household produced 75 gallons of greywater per day (the initial consumption estimate for 

reACT) at most only 10 gallons would be reconstituted to potable water for the subsequent 

day. In this scenario, at least 65 gallons per day of rainwater would also need to be collected 

and filtered to potable standards to reach net-zero water usage. This would necessitate a 

second set of pumps, pipes, tanks, and filters, which would interfere with the space 

constraint. Such a system only makes sense in a climate that consistently experiences 

rainfall that is more than 85% and less than 100% of the required potable water supply. 

Only in this optimal range is RO filtration of greywater both sufficient and necessary to 

achieve a net-zero water balance. 

https://www.zotero.org/google-docs/?KN5j1J
https://www.zotero.org/google-docs/?gxQtth
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 Trickling filters were also considered in preliminary designs. Trickling filters are 

optimal for rapidly reducing BOD and organics.15 Although trickling filters are a simple, 

reliable, biological process, they are mostly used for large scale water filtration. They also 

require occasional maintenance, as the incidence of clogging can be relatively high.15 For 

these reasons, the team decided against using trickle filtration. 

 

Non-Potable Design 

In an effort to recycle as much greywater as possible, the team compromised and 

selected unrestricted non-potable urban reuse standards as the new target. By settling for 

non-potable reuse, greywater produced within the house could be used for outdoor 

irrigation, washing cars, flushing toilets, and washing clothes.93 Due to the limited space 

available within the mechanical room, the team had to combine harvested rainwater and 

greywater streams into one filtration system. As the production of potable water directly 

from rainwater could no longer be achieved, the goal of net-zero water was technically 

infeasible; however, as long as the volume of rainwater harvested surpassed the 

consumption of potable water, the team could practically achieve net-zero with a two-

stream filtration method for greywater and rainwater.  

The primary water quality metrics of interest were turbidity, TSS, bacterial load, 

COD, pH, TN, and TOC. To reduce these parameters to acceptable levels, the initial design 

included micron filters ranging from 100 microns to 1 micron in pore diameter, GAC 

media, and a UV filter. However, concerns regarding bacterial load, turbidity, and 

surfactant removal led to the incorporation of a biosand filter in the design. The biosand 

filter introduced numerous complexities and manual labor. Because the biosand filter could 

https://www.zotero.org/google-docs/?FYyYed
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not be constructed in a pressure vessel, it was not included in the final design. In its place, 

a ceramic filter was added, which could remove more than 99.9% of bacteria and was 

nominally rated for filtration down to 0.5 microns.96 Nevertheless, the main role of the 

biosand filter, specifically the removal of soap in the form of surfactants, was unsolved by 

the ceramic filter. Household surfactant levels are highly variable across different sources 

and within the same source across samples, with an average load of 17.5 mg/L.97 A Next 

Sand filter was added for the purpose of reducing turbidity, prolonging the membrane life 

of the one micron filter, and crucially assisting with the surfactant load.  

 

Final Design of the System  

 The main considerations for hardware selection, in order of preference, were 

performance, sustainability, and price. A filter element was only purchased if it met the 

design criteria, allowed for some form of reuse or sustainable sourcing, and remained 

within the team’s budgetary constraints. Commercial products were tested against these 

considerations before their purchase could be justified for prototype testing. An example 

of this methodology in practice wass the selection of piping material used for the 

purification system. Most any material would have met the performance necessities, so the 

decision came down to sustainability and pricing. Fully recyclable polypropylene piping 

was chosen over PVC or copper due to the environmentally friendly nature of the material’s 

disposal. Aqautherm brand piping provided a polypropylene option within the budget, so 

it was selected over the cheaper PVC counterpart despite equivalent functionality.  

 

  

https://www.zotero.org/google-docs/?mxvJU7
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Final System 

 

 
Figure 1: Schematic showing the flow of water through the filtration system. 
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Figure 2: Assembled filtration system. 
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The final system schematic appears in Figure 1 and a picture of the system is shown 

in Figure 2. The first method of filtration within the system is the spin-down micron filter 

prior to the pump, which removes large particulate matter that may otherwise clog the 

pump (Figure 3B).  

 
Figure 3A: Inlet Tank (Used for municipal water then later greywater). 

 

 
Figure 3B: Rusco Spin-Down Filters (74 microns). 
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Figure 3C: Grundfos SCALA2 Pump. 

 

 

 
Figure 3D: Next Sand Filter. 
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Figure 3E: One Micron Bag Filter. 

 

 

 
Figure 3F: Ceramic Filter. 
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Figure 3G: GAC Filter.  

 

 

 
Figure 3H: UV Filter. 

 

 

The pump must be capable of pulling water through an upstream filter and 

pressurizing the water through multiple downstream filters. Following the pump, the water 

flows through a large, pressurized Next Sand filter before passing through a 1 micron bag 

filter and a ceramic filter (Figure 3D-3F). Next, the water passes through a large GAC 
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filter, providing a similar function to a Brita filter (Figure 3G). Finally, the water flows 

through a UV filter, killing any remaining pathogens before release (Figure 3H). 

 

Rusco Spin-Down Filters 

Rusco spin-down filters offer several benefits over other membrane filters. One 

important advantage is that they cover a wide range of filtration ratings. Initial design 

iterations included multiple Rusco filters prior to the pump; however, this design was 

altered to reduce the inlet pressure requirement for the pump. As such, the final prototype 

only incorporates a single spin-down filter directly before the pump.  

The team decided to use the spin-down filters to catch particulate matter entering 

the system from the raw greywater. The four filter ratings of the initial design were 140 

mesh (104 microns), 250 mesh (61 microns), 500 mesh (30 microns), and 1000 mesh (15 

microns), all made from polyester membranes. The filters were placed in decreasing 

micron size to ensure that larger particulates were caught in the coarser filters, inhibiting 

membrane fouling of the finer filters. However, in the final prototype, a single 200 mesh 

(74 micron) metal filter was implemented upstream of the pump, yielding a lower pressure 

drop. Dropping from four sequential micron filters to one single filter element decreases 

the filter life, for which the metal (rather than polyester) membrane compensates. 

The Rusco spin-down filter also enables easier practical maintenance. It has a clear 

cover, allowing the user to observe membrane degradation and purge the reservoir when 

filled. Rusco filters also have a unique centrifugal spin-down technique that traps sediment 

in the bottom reservoir of the filter housing.61 As a result, the purge valve at the bottom of 

https://www.zotero.org/google-docs/?lS10Ya
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the filter can discharge accumulated particulates and the filter does not need to be washed 

as frequently as other designs. 

 One downside of Rusco spin-down filters is that they are manufactured with PVC 

piping, so the connections must be with other PVC components. This means that the system 

cannot be completely composed of recyclable materials, unless custom-made Aquatherm 

were purchased. Although PVC was used in the final design, it was only for a small portion 

of the system. After interfacing the filter with PVC, an Aquatherm-to-PVC adapter was 

implemented. 

 

Grundfos SCALA2 Pump 

The two major restrictions for the system’s pump were that it had to operate at 120 

V and pull water from a large depth. The 120 V constraint was placed on the system by the 

reACT electrical team, and the ability to pump water from a reservoir stemmed from the 

need of a greywater storage tank underneath the house. A 240 V pump would have provided 

greater power, which would have enabled greater outlet flow rate and pressure. It also may 

have eliminated the need to remove some of the Rusco spin-down filters upstream of the 

pump. Grundfos SCALA2 (Figure 3C) was chosen for several reasons: it was quiet, run-

dry capable, efficient, and capable of pulling water from a depth of eight meters.98 The 

team was also able to obtain a discount from the manufacturer to demonstrate their new 

pump. 
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Next Sand Filter 

The Next Sand filter is a large pressure vessel that is roughly two-thirds filled with 

fine gravel and Next Sand media, which is an absorptive mineral sand with ion exchange 

capabilities.65 The most important factor in choosing Next Sand media was the integrated 

pressure vessel form factor, which was compatible with the existing prototype hardware. 

This setup enabled high flow rates without user supervision and with minimal maintenance 

as it required infrequent backwashing. In addition, the material was advertised as a means 

of reducing the presence of surfactants and other soap byproducts. Next Sand has a 

filtration performance of less than 5 microns and a high flow rate capability in larger 

vessels.65 The selected vessel also has a timer module that notifies the user when the system 

requires backwashing.65  

 

One Micron Filter and Ceramic Filter 

 The 1 micron filter (Pentek BP-420-1) and ceramic filter (Doulton Rio 2000) are 

key components of the filtration system. The 1 micron filter is a simple bag filter that 

operates identically to the spin-down filters. This bag filter physically removes particulate 

matter larger than one micron. Implementing this filter prior to the ceramic filter greatly 

extends the operation period between cleanings of the ceramic filter. The ceramic filter has 

a 0.9 micron rating of greater than 99.99% removal efficiency and a 0.5 micron rating of 

greater than 99.9% removal efficiency. Specifically, it provides comprehensive pathogen 

removal (Table 6).96 

  

https://www.zotero.org/google-docs/?AJoMTJ
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Table 6: Ceramic Filter Reduction in Bacteria/Cysts 

Bacteria Removal 

E. Coli >99.99% 

Vibrio Cholerae (Cholera) >99.99% 

Shigella >99.999% 

Salmonella Typhi (Typhoid) >99.999% 

Klebsiella Terrigenna >99.999% 

Cyst Removal 
Cryptosporidium  >99.999% 

Giardia  >99.999% 

Product Performance of ceramic filter proposed by the manufacturer.96 

 

The ceramic filter addresses the stringent bacterial load requirements while still 

avoiding the use of chemicals. The ceramic filter is easy to maintain, as it can be 

periodically cleaned to improve flow rate, reduce pressure drop, and extend lifespan. The 

filter elements are brittle and susceptible to cracking and must be handled carefully. In the 

prototyping phase, one of the six ceramic candles was shattered after a valve upstream was 

opened, allowing water to flow back into the empty filter. 

 

Granular Activated Carbon Filter 

GAC is an imperative media filter for small-scale systems. GAC is found in many 

U.S. households in the form of a Brita filter; however, for the purpose of greywater 

filtration, there are additional benefits to including GAC filtration. Most importantly, GAC 

removes surfactants and other organic compounds, all of which were concerns in the 

filtration pathway. By incorporating a GAC filter, the team aimed to reduce most of the 

COD, TOC, and TN. 

https://www.zotero.org/google-docs/?DcKhll
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 The largest available Pentek filter housing was chosen to increase the mean 

residence time of the system, one of the most important metrics for increasing the 

efficiency of the GAC filter.69 In keeping with the desire for sustainable materials, a 

coconut shell-derived GAC media was selected, which also has some benefits for the 

purpose of water filtration, such as greater VOC absorption.78,79 

 

Ultraviolet Filter 

 Because the rules of the 2017 Solar Decathlon competition prohibited chemical 

treatment of recycled water, UV disinfection was the default means of eliminating 

pathogens. To meet standards set by the National Water Research Institute, a dosage of at 

least 100 mJ/cm2 needed to be delivered at all flow rates.99 Few UV systems were available 

that could meet these standards. Of these, the team selected one (Viqua Model E4+) that 

was cost effective and provided a sensor to constantly evaluate that sufficient dosage was 

being met.  

 The UV system provides redundancy on the inactivation of microorganisms, which 

should be almost entirely removed upstream at the ceramic filter. This redundancy is 

critical because, from a practical perspective, one of the most important water quality 

parameters is the pathogenic load. During the Solar Decathlon competition, the only 

official water quality standard provided was the certainty that the water could not harm an 

animal after ingestion. The UV filter also inactivates viruses, which are small enough to 

make it through all filter elements within the system. The choice of UV disinfection over 

chemical inactivation methods was dictated by the Solar Decathlon, but it also plays into 

the design criteria that the team set. By implementing UV disinfection, the only operating 

https://www.zotero.org/google-docs/?zr7JI3
https://www.zotero.org/google-docs/?01EpAW
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input is electricity, which can be sourced from renewable energy. Conversely, the use of 

chlorine would inherently require nonrenewable operation and also introduce chlorine to 

the environment upon water use. Chlorination is also less effective than ultraviolet 

disinfection at penetrating and inactivating biofilms due to the rapid reaction rate of free 

chlorine.100 

 

Synthesis of Non-Potable Water Standards  

The testing methodology for the system aimed to verify if the effluent water met 

non-potable urban reuse standards. The EPA regulates potable water; however, there are 

no national standards for unrestricted non-potable urban reuse.10,12 32 states or territories 

have rules, regulations, or guidelines that address unrestricted non-potable urban reuse, 

and 40 states or territories have rules, regulations, or guidelines addressing restricted non-

potable urban reuse.93 Unrestricted reuse encompasses cases that allow public access to 

the released water, and restricted reuse implies some form of physical or institutional 

barrier to public access. 

 Unrestricted water regulations have more stringent standards than restricted water 

standards. For example, multiple states with unrestricted non-potable urban reuse 

standards require a minimum of secondary treatment and disinfection. Some states 

require even more rigorous levels of treatment.  

The team chose to aim for unrestricted non-potable urban reuse standards because 

these standards are more pertinent to residential water use. To define non-potable water 

quality standards, the team synthesized various regulatory standards and literature 

recommendations. Table 7 is a synthesis of the most stringent standards for each water 

quality parameter in the states that regulate non-potable water quality. Any water quality 

https://www.zotero.org/google-docs/?UvonAR
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parameter that is regulated by a state for non-potable urban reuse was included Table 7. 

However, the team elected to ignore mandated treatment pathways such as secondary 

treatment and coagulation, which were infeasible on the residential scale. 

Table 7: Unrestricted Non-Potable Urban Reuse Standards 

pH 
Turbidity 

(NTU) 

TSS 

(mg/L) 

BOD5 

(mg/L) 

TN 

(mg/L) 

Total Coliforms 

(CFU/100 mL) 

6.5-8.5 <2 <5 <10 <10 
Average: <2.2 

Maximum: <23 

Synthesis of states unrestricted non-potable urban reuse standards based on the most stringent standards 

 

 The pH range of 6.5-8.5 was derived from the EPA’s suggested secondary 

drinking water regulations.19 A turbidity of less than 2 NTU is specified by several 

states.92 TSS below 5 mg/L is specified by Florida, New Jersey, and North Carolina.92 

BOD below 10 mg/L is specified by North Carolina and Virginia.92 TN regulation is less 

common, but New Jersey, Arizona, and North Carolina all specify some nitrogen-based 

guidelines. Arizona uses 10 mg/L as a cutoff for some special requirements, New Jersey 

requires less than 10 mg/L ammonia- and nitrate-based nitrogen, and North Carolina 

requires less than 4 mg/L monthly ammonia values.92 To incorporate both ammonia and 

nitrate values, the New Jersey regulation was selected to represent the team’s desired TN 

value. One of the most common regulations for fecal coliforms is a seven day median 

below 2.2 CFU/100 mL; however, a more stringent total coliforms seven day median 

cutoff of 2.2 CFU/100 mL is regulated by California, Nevada, and Washington.92  

TOC is the only tested variable not specifically controlled in water quality testing. 

This is because TOC is typically only measured as an analysis for post-chemical treatment. 

Therefore, TOC removal is expressed as a percentage removal from the starting value, 

rather than a numerical threshold. The percentage removal value is based on the starting 
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TOC as well as the initial alkalinity (Table 8). All measured greywater TOC values were 

around 100 mg/L or higher, so the row corresponding to a TOC over 8 mg/L was used. 

Alkalinity was not explicitly measured, but it was estimated by converting pH values to 

alkalinity values (Table 9). Because pH was always within the range of 6.50-7.80, the 

“alkalinity of 0-60” column was used. Based on the starting parameters, 50% of the TOC 

needed to be removed for the sample to be considered successfully treated.  

Table 8: TOC Removal Standards 

Water  Raw Water Alkalinity (mg/L as CaCO3)  

TOC (mg/L)  Less than 60 60 to 120 Over 120 

2 to 4 35% 25% 15% 

4 to 8 45% 35% 25% 

Over 8 50% 40% 30% 

TOC removal standards adapted from the Texas Commission on Environmental Quality.101 
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Table 9: Conversion of pH to alkalinity 

pH Alkalinity in ppm CaCO3 pH Alkalinity in ppm CaCO3 

6.5 3 7.3 20 

6.6 4 7.4 25 

6.7 5 7.5 31 

6.8 6 7.6 38 

6.9 8 7.7 50 

7 10 7.8 60 

7.1 12 7.9 80 

7.2 15 8 100 

Conversion of pH into an estimate of alkalinity based on experimental data. Table adapted from Leitritz.102 

 

 

Testing Methodology 

Once the system was fully assembled, the filters were replaced and the system was 

charged with municipal water. Testing occurred over a period of eight weeks: the first four 

weeks focused on testing municipal water and the final four weeks focused on testing 

synthetic greywater. The municipal water testing phase established baseline values for 

water cleanliness, identified which filters contributed to different contaminant reductions, 

and determined the best sampling practices. The greywater testing phase was designed to 

simulate the system’s filtration of residential greywater and assess the capability of the 

system to successfully filter contaminants to non-potable urban reuse standards.  

Municipal water was obtained from the tap located in room 1224 in A. James Clark 

Hall at the University of Maryland. Before testing, the water was pumped into a holding 

tank that was connected to the filtration system. Municipal water was run through the 

precharged system for about one and a half residence times prior to sample collection. Once 

https://www.zotero.org/google-docs/?P7hluB
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the system was purged, a 500 mL sample was collected at the inlet and outlet of the system. 

Another two samples were collected at the outlet after one and two additional residence 

times, respectively. The samples were then stored for measurement the following day. 

These samples were run in parallel with untreated municipal samples from the same source 

in order to establish a control. This control was used to show that the system did not 

contaminate the water. Additional side experiments were conducted to isolate and observe 

the effects that the Next Sand and GAC filters had on water quality. Samples were taken 

before and after the filters and compared against untreated municipal water as a control.  

 Greywater testing was conducted in a similar manner, but after pumping municipal 

water into the storage tank, synthetic contaminants were added and stirred until the mixture 

became homogeneous. The synthetic formula consisted of lactic acid, bentonite, cellulose, 

sodium dodecyl sulfate, glycerol, sodium bicarbonate, and sodium sulfate as described by 

Hourlier et al.81 The components, functions, and concentrations can be found in Table 3. 

Greywater quality changes as it ages, so, to maintain consistency, all greywater that was 

unused after testing was disposed of after 48 hours, and the tank was cleaned and emptied.  

After the samples were collected, they were tested for pH, turbidity, COD, TOC, 

and TN. Testing for municipal and greywater samples included various biological, 

physical, and chemical compounds that could be observed. Turbidity was measured using 

a Hach 2100N turbidimeter. Calibration was done using a set of standards including 

turbidity values of 0.0, 20.0, 200.0, 1000.0, and 4000.0 NTU. A 20 mL sample was 

obtained from the original collection flask and vortexed. The sample was then inserted into 

the turbidimeter and measured immediately. Then, the sample was removed, the lid was 

https://www.zotero.org/google-docs/?2AJoxJ
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closed, and absorbance reading was allowed to return to zero. This process was repeated 

twice for a total of three replicate measurements per sample. 

Several chemical measurements were taken in addition to the physical 

measurements. These include pH, COD, TOC, and TN, which were used to assess whether 

the filtration system could sufficiently remove contaminants to reach the target non-potable 

urban reuse standards.  

 

pH 

The pH measurements were taken using a VMR Symphony B40PCID pH probe. 

The pH probe was calibrated using standard solutions at pH 4.00, 7.00, and 10.00. The 

sample collection bottle was shaken before inserting the pH probe directly into the source. 

Three replicate measurements were taken for each sample. Between measurements the pH 

probe was rinsed with deionized water and dried using Kimwipes.  

 

Total Organic Carbon and Total Nitrogen 

TOC and TN measurements were taken using the same equipment, the TOC-L 

Shimadzu Total Organic Carbon Analyzer with TNM. The large sampling container was 

shaken, then 40 mL of sample were poured into a sampling tube which had been pre-baked 

at 450℃ for two hours to sterilize and remove any moisture and residual organic matter 

from the cleaning process. In addition to one sampling tube for each sample, four standard 

solutions were created ranging from 0 to 10 mg/L nitrogen (0-17.17 mg/L carbon) taken in 

dilutions from a stock glycine solution at 1000 mg/L nitrogen (1715 mg/L carbon). These 
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solutions were used to create standard calibration curves for nitrogen and carbon 

concentrations expected in the sample. 

 

Chemical Oxygen Demand 

Finally, COD measurements were run on the Hach DRB200 COD analyzer. 

Samples were collected from the larger sampling vial after shaking and added to solutions 

containing K2Cr2O7. K2Cr2O7 oxidizes chemically active species in the sample, and is itself 

reduced to Cr3+. K2Cr2O7 absorbs at 400 nm, while Cr3+ absorbs at 600 nm.22 COD will 

almost always come out higher than BOD because BOD5 does not account for chemical 

species that cannot be oxidized by biological processes. The ratio of BOD to COD for the 

synthetic greywater recipe that the team used was 0.14:1.81 COD results are more reliable 

and reproducible than BOD5 results.103 BOD was not measured in the team’s experiments 

because BOD5 tests take much longer, and they detect fewer pollutants,. The mixture of 

K2Cr2O7 and sample was incubated for two hours at 150℃ ± 2℃ and then measured with 

a spectrophotometer. Each sample was measured three times, and the replicate 

measurements were averaged to give the reported COD values. Samples were typically run 

once a week (similarly to TOC and TN) and stored in a 4℃ refrigerator until measured.  

 

Statistical Analysis 

Statistical testing for the data occurred in two steps, Analysis of Variance 

(ANOVA), and Tukey’s Post-Hoc Analysis. ANOVA is used for comparing means across 

several groups. Typically, comparison of two groups is done using a t-test, which assesses 

the difference between the means in comparison to the pooled standard deviations divided 

https://www.zotero.org/google-docs/?cvGE2E
https://www.zotero.org/google-docs/?dnc98K
https://www.zotero.org/google-docs/?um7pt7
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by degrees of freedom. However, when multiple groups are analyzed together, the 

possibility of making an error, alpha, increases from 0.05 to 1 − 0.95𝑘, where k is the 

number of t-tests combined to determine whether there is a difference across all of the 

groups.104,105 For this experiment, in which four different test groups were used, the 

likelihood of making a mistake would be 0.185, more than three times higher than in a 

single t-test. ANOVA testing avoids the possibility of creating such errors. In the ANOVA 

test, the means of the sum of squares within and between treatments are compared. The 

mean of the sum of squares between treatments (MSB) is found by taking the difference 

between individual group means and the average of the group means, squaring and 

summing those values, and then dividing by the degrees of freedom. Mean of the sum of 

squares within treatments (MSW) is found by finding the difference between individual 

observations and the group mean, squaring those, adding them, and then dividing by 

degrees of freedom. The final statistic for the ANOVA test is the Fisher coefficient, found 

by dividing MSB by MSW. If this value falls above the critical Fisher coefficient value, 

then at least some of the groups tested are statistically significant from each other.104,105 At 

a Fisher coefficient value over the critical threshold, p < 0.05, the likelihood of accepting 

a significant result by mistake is 5%.  

In order to further determine which groups are statistically different from each 

other, a Tukey’s Post-hoc test is used on each set of means. In a Tukey’s test, the means 

for each group are compared against each other. The difference of the means is then divided 

by the standard error between the groups, found by dividing MSW in the ANOVA 

calculation by the number of samples in each group. If the number of samples in each group 

is different, the groups are averaged by taking the number of groups (k) and dividing by 

https://www.zotero.org/google-docs/?5rKlaY
https://www.zotero.org/google-docs/?BE6RXc
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the sum of the reciprocals of the numbers in each group (i.e. 1/Na + 1/Nb). This is different 

than performing a t-test because the statistic using the squares within groups and the 

number of samples within groups takes into account the effects of all tested groups rather 

than just the two in the individual comparison being done.106,107 

 

 

  

https://www.zotero.org/google-docs/?q27JjO
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Chapter 4: Results 

To determine the effectiveness of the filtration system, municipal water and 

greywater were analyzed across several parameters both prior to and following treatment. 

The mean and standard deviation values for each parameter were determined and analyzed 

with ANOVA and Tukey’s Post Hoc Analysis.  

 

Figure 4: Values for treated and untreated 

municipal and greywater samples across measured 

parameters. From  top left to bottom right: pH (A), 

turbidity (B), COD (C), TOC (D), TN (E). For 

municipal data, n = 19, where n is the number of 

samples. For greywater samples, n = 10. 
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Water quality was assessed by measuring pH, turbidity, COD, TOC, and TN for 

each sample collected. Prior to treatment by the filtration system, the average pH of the 

source municipal water was 7.27 ± 0.09 (Figure 4A). After treatment, the pH rose to 7.79 

± 0.19. The pH of the synthetic greywater was more acidic, with a pH value of 6.47 ± 0.27. 

After running greywater through the system, the pH increased to 7.30 ± 0.75, which was 

similar to the pH of untreated municipal water.  

Before and after treatment by the filtration system, the average turbidity of the 

municipal water was 1.3 ± 0.5 and 1.4 ± 0.8 NTU, respectively, with the average values 

differing by 0.1 NTU (Figure 4B). The turbidity of untreated synthetic greywater was 45.6 

± 27.1 NTU, which was highly variable. After treatment, the turbidity was reduced to 9.7 

± 5.2 NTU.  

Untreated and treated municipal water had average COD values of 67 ± 47 and 83 

± 91 mg/L, respectively (Figure 4C). Untreated and treated synthetic greywater had COD 

values of 401 ± 43 and 245 ± 52 mg/L, respectively. The filtration system moderately 

reduced COD for greywater but not to the levels observed in municipal water. The system 

also increased the COD of relatively clean tap water. The COD values were highly variable, 

even for untreated municipal water, which calls into question the validity of the data.  

The average TOC values for untreated and treated municipal water were 5.7 ± 2.0 

and 5.7 ± 1.6 mg/L, respectively, with a difference in average TOC of only 0.025 mg/L 

(Figure 4D). The TOC values for greywater were much higher, measuring 129.1 ± 16.5 

mg/L prior to filtration and 99.4 ± 7.2 mg/L after.  

The average TN values for untreated and treated municipal water were 2.430 ± 

0.268 and 2.537 ± 0.234 mg/L, respectively (Figure 4E). The TN values for both untreated 
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and treated greywater were lower than their municipal counterparts. Untreated greywater 

was more variable, with TN values of 2.215 ± 0.596 mg/L. Unlike treated municipal water, 

treated greywater showed significant reduction to TN levels of 0.401 ± 0.255 mg/L.  

 

 
 

 

 

 

 

 

 

Figure 5: Analysis of Variance and Tukey’s Post Hoc Analysis were performed across all four treatment 

groups (treated and untreated greywater and municipal water). The letters above the graph indicate which 

groups have statistically similar means. From top left to bottom right, pH (A), turbidity (B), COD (C), TOC 

(D), TN (E). 

 

Analysis of Variance (ANOVA) was performed for all measured values for the 

treated municipal, treated greywater, municipal, and greywater samples, followed by 

Tukey’s Post-Hoc Analysis to determine which of the treatment groups were significantly 

different from the others. For pH, across all four groups, there was statistically significant 
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variation in sample means F(3,51) = 30.09, p = 2.44e-11. Municipal and treated greywater 

had similar pH values, while treated municipal water had a higher pH than municipal and 

treated greywater, and greywater had a lower pH (Figure 5A). Turbidity also had 

statistically significant differences across the four treatments F(3,51) = 37.78, p = 5.34e-

13 (Figure 5B). Values measured for untreated and treated municipal waters as well as 

treated greywater were similar, while those for untreated greywater were statistically 

significantly different. Similar patterns were seen across COD and TOC measurements 

(Figures 5C-5D). Both tests resulted in statistically significant differences across all four 

groups. For COD, F(3,51) = 71.53, p = 2.78e-18. For TOC, F(3,51) = 869.28, p = 9.36e-

44. For both tests, untreated greywater had the highest mean, which was significantly 

different from treated greywater. Both of these values were also significantly different from 

the values seen for treated and untreated municipal water. TN values displayed a pattern 

not seen in any of the previous tests performed (Figure 5E). There was a statistically 

significant difference between the four treatment groups of F(3,51) = 16.53, p = 1.25e-7. 

However, upon analysis using Tukey’s Post-Hoc Analysis, it was determined that three of 

the treatment groups were actually similar to each other. Treated municipal water, 

untreated municipal water, and untreated greywater had similar means, while treated 

greywater had a significantly lower mean.     
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Figure 6: Changes in water quality relative to 

municipal source water. Left: values measured before and after the Next Sand filter. Right: values measured 

before and after the GAC filter.  

  

To better isolate individual filtration methods, samples were taken from various 

locations in the system. All of the data were collected from runs using municipal water. 

Figure 6 shows the results of samples taken from the source water, the end of the system, 

and directly after the Next Sand filter. The filters up to and including the Next Sand 

ostensibly added both turbidity and COD to the source water (Figure 6). Although the 

relative change in turbidity appears significant, the absolute value change was below 3 

NTU. The increase in turbidity was easily mitigated by downstream filtration; however, 

the change in COD saw only moderate attenuation.  

Another filter element of interest for isolation was the GAC media filter. In this 

case, the samples were taken immediately prior to the GAC filter and after the UV. This 

essentially isolated the GAC because the UV only affects pathogenic load. As such, the 

observations from this experiment were entirely attributable to the GAC filter. The GAC 

clearly assisted in improving the water quality with regards to the COD and TOC, with 

smaller improvements in the turbidity and the TN loads. Although not obvious due to the 

scale of the vertical axis, the pH was also moderately adjusted by the GAC, which shifted 

the water to be more alkaline.  
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Chapter 5: Discussion 

Discussion of Experimental Results 

The goal for this system was to filter synthetic greywater to unrestricted non-

potable urban reuse standards. These standards are an amalgamation of the most stringent 

standards set by U.S. states that have regulations or guidelines for unrestricted non-potable 

urban reuse (Table 7). The EPA does not publish national standards for any form of non-

potable water recycling. College Park, MD municipal water likely fails the BOD standards 

for non-potable water depending on the true ratio of BOD/COD. This speaks to both the 

difficulty of achieving these standards and the relatively poor quality of municipal water 

in the local area.  

 

pH 

The pH values increased after treatment for both municipal water and synthetic 

greywater (Figure 4A, 5A). These results are within the range of expected values and, for 

all treated water samples, meet the EPA recommendations for drinking water (6.5-8.5).19 

The increase in pH after filtration can be attributed to the Next Sand and the GAC filters. 

With the GAC media, pH changes are not surprising, as the media is capable of CO2 

adsorption, which increases the pH of the water.108,109 The Next Sand may be acting in a 

similar manner to the GAC, but there is no literature specifically on the sorptive properties 

of Next Sand material.  

 Although difficult to observe due to the scale of the axes, the data represented in 

Figure 6 demonstrate that the pH of municipal water increased following treatment by the 

GAC and by the Next Sand filter in the isolation experiments. In the case of the samples 

https://www.zotero.org/google-docs/?WmtfMR
https://www.zotero.org/google-docs/?JV17Tm
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taken at the Next Sand outlet, the data suggests that 97% of the change in pH is attributable 

to the Next Sand filter, with an initial pH of 7.30, a final pH of 7.73, and a reading of 7.72 

after the Next Sand. Although the pump and the 74 micron spin-down filter could have 

technically contributed to the observed pH change, their contribution is expected to have 

been inconsequential. In the case of samples taken directly prior to the GAC, the data 

suggests that 43% of the pH change is attributable solely to the GAC media, with an initial 

pH of 7.24, a pH of 7.57 prior to the GAC, and a pH of 7.82 after the GAC and UV. These 

two data points appear to conflict, with one experiment showing nearly all pH changes 

coming from the Next Sand and the other showing about half coming from the GAC.  

The synthetic greywater is moderately acidic relative to the municipal water from 

which it was synthesized. Among all greywater samples, the average pH was 6.47, and the 

average municipal pH was 7.27. The filtration system noticeably increased the pH for both 

sets of water samples, with an average overall increase in pH of 0.63. This increase was 

imperative in shifting the greywater samples into the potable water range of 6.50 to 8.50, 

which is identical to the non-potable standard for this project.  

 

Turbidity 

Untreated and treated municipal water both had very low turbidity values, which 

were well within the acceptable range. The turbidity of untreated synthetic greywater was 

highly variable, ranging from 19.4 to 87.9 NTU. The composition of real greywater is 

highly variable based on household and location, so the variation in turbidity values of the 

synthetic greywater is acceptable. Treated synthetic greywater was less variable with a 

standard deviation of 5.2 NTU and a decrease in mean turbidity of 35.9 NTU, although the 
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decrease in variability may be attributed to the lower mean. While this reduction was 

consistent across variabilities of source water, the treated water still had turbidity levels 

above the non-potable water standard of 2.0 NTU (Figure 4B, 5B).  

The team isolated the Next Sand filter and measured the turbidity of municipal 

water entering and exiting the filter and found that the turbidity of the outlet water was 

nearly three times the turbidity of the inlet water. This large relative change was because 

the untreated municipal water was initially clear (with a turbidity of 1.1 NTU) and had an 

absolute increase in turbidity of only 2.1 NTU. The team also measured the turbidity of the 

municipal water exiting the entire system and found that it decreased back to the inlet value 

(Figure 6). These results suggest that the Next Sand filter may have been leaching some of 

its mineral media into the water, which was consequently removed by the 1 micron and 

ceramic filters. It is possible that this source of extra contamination caused the 1 micron 

filter and ceramic filter to foul more quickly, reducing the flow rates and increasing the 

pressure loss. 

 

Chemical Oxygen Demand 

There was a sizeable degree of variation among all of the COD testing results, even 

for clean municipal water, suggesting potential issues with sample preparation or the 

equipment itself. To test this, the COD value of a single sample of water was measured 

four consecutive times, with values of 47, 96, 79, and 93 mg/L. This confirmed that the 

COD measurements were inconsistent. Because of this, it is difficult to draw strong 

conclusions about the COD data. However, even with the high variability, there was still a 
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substantial reduction in COD before and after treating the synthetic greywater, decreasing 

from an average of 401 to 245 mg/L (Figure 4C, 5C).  

Because of the difficulty in measuring BOD5 and the large variance associated with 

it, the team opted for the measurement of COD, which is inherently greater than or equal 

to BOD. Raw wastewater typically exhibits BOD/COD ratios on the order of 0.5:1, while 

treated water can have ratios near 0.1:1.23,81  

To compare COD and BOD values within the greywater samples, literature data 

will be used to fill the gap in BOD5 sampling capability. The literature on greywater 

synthesis reported a BOD/COD ratio of 0.14:1.81 Considering the similarity between 

literature greywater properties and this system’s greywater formulation, this BOD/COD 

ratio will be assumed identical for the considerations relative to the BOD regulatory 

standard. 

Unfortunately, the calculated BOD equivalent of the average COD values for the 

treated greywater was still higher than the team’s target limit. The measured COD value of 

245 mg/L converted to a BOD equivalent of 34 mg/L, which exceeded the limit of 10 mg/L. 

The Next Sand and GAC isolation experiments suggested that COD increased after 

being filtered through the Next Sand filter and decreased following the GAC filter. One 

possible explanation for this is that the Next Sand filter or other components prior to the 

Next Sand filter leached contaminants into the water stream (Figure 6). 

 

Total Organic Carbon 

The TOC levels for municipal water before and after treatment were low. This is to 

be expected as any increase in TOC levels would mean that the system added unwanted 

https://www.zotero.org/google-docs/?Is8HI7
https://www.zotero.org/google-docs/?GCITwY
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organic carbon to the water. During greywater testing, TOC levels were reduced on average 

by 23% relative to the pre-treatment samples. The filtration system was consistent in this 

reduction, albeit small in magnitude (Figure 4D, 5D). 

The Next Sand isolation experiment showed minimal change in TOC after the Next 

Sand filter. On average, the TOC concentrations for untreated and treated municipal water 

were nearly identical, indicating that the filtration system may be unable to effectively 

reduce TOC when it is below a lower limit. However, the results of the GAC isolation 

experiment suggest that there was carbon introduced to the system before the GAC inlet; 

the TOC value at the GAC inlet was greater than double the TOC value of the source water. 

The data suggest that the GAC was able to reduce the TOC value back to double the inlet 

municipal water (Figure 6). This seemingly contradicts the TOC results for other 

experiments, because, in this specific case, the outlet TOC value was twice the inlet TOC 

value. Because the source was clean municipal water, the observed increase in TOC was 

very small in absolute terms; it increased from 2.4 mg/L to 4.9 mg/L. This change may 

have been due to leaching of the Next Sand media.  

 

Total Nitrogen 

The average TN values for untreated and treated municipal water were very similar, 

differing only by 0.107 mg/L. Untreated greywater had slightly lower TN values than 

municipal water. Treated greywater showed a moderate reduction in TN, from 2.215 to 

0.401 mg/L. This difference is surprising, considering the insignificant change in TN from 

untreated to treated municipal water. It is possible that the introduction of certain 

contaminants, like surfactants, actually caused the nitrogen-containing compounds to be 
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removed by adhering to other contaminants, which were then removed as expected. The 

treated greywater water met the target range for non-potable reuse (Figure 4E, 5E).  

 The isolation experiments showed no significant change in TN before and after the 

Next Sand filter, suggesting that the Next Sand media did not play a role in the removal of 

nitrogen-containing compounds. The GAC isolation experiment showed a two-fold 

increase in TN levels before the GAC inlet compared to the source municipal water. The 

TN levels did not significantly change at the GAC outlet. However, this means that the TN 

value at the outlet of the system was almost double that of the inlet. While in absolute terms 

this change is small, this result seemingly contradicts with the rest of the data on average, 

as the TN values remained similar for the rest of the municipal samples (Figure 6).  

 

Discussion of system design 

 While testing the system and working with it on a frequent basis, many of its faults 

and shortcomings became apparent. There is room for improvement within both the chosen 

hardware as well as the design itself. The hardware improvements range from eliminating 

the presence of PVC to the incorporation of additional filtration elements.  One 

operational shortcoming of the system is the drop in outlet pressure and flow rate over time 

as the system is run. As the membranes foul due to continued use, the pressure drop across 

the elements increases, which consequently reduces the system outlet to a trickle over the 

course of a few hundred liters of water. One simple solution to this issue would be a more 

powerful pump. Alternatively, an additional pump could be integrated to the system on the 

downstream side of the ceramic filter because most of the pressure drop in the system 

occurs across this filter. For integration with reACT, a more powerful pump would be 
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difficult to implement, as no 240 V circuits are available in the mechanical room. A second 

pump would also prove troublesome, as the number of 120 V outlets is limited. Either 

improvement would require a significant rework of the electrical system. 

 Another hardware addition that could improve the operation of the system would 

be a floating intake for the greywater storage tank. Because the storage tank can function 

similarly to a settling tank, it would work to pull water from the top of the tank to avoid 

potential intake of settled solids. The current design falls short in this regard, as it pulls 

water from near the bottom of the tank. For the laboratory purposes, this did not prove 

troublesome because synthetic greywater shows minimal settling. However, in practice, 

the system should implement a floating intake, as solids will settle in real greywater.  

 The system proved poor in reducing COD of the synthetic greywater. Although 

GAC is very effective at combating COD over long time scales, at the relatively low mean 

residence time of the system, GAC is only able to moderately reduce COD. To improve 

this, hardware changes are necessitated. Either additional or larger GAC filters must be 

implemented within the system to increase the overall contact time, or new filters must be 

added. Trickling filters can remove upwards of 80% of COD and coagulation can remove 

upwards of 60% of COD.42,50 Although coagulation is not feasible on this small scale, a 

trickling filter may be viable. Nevertheless, additional GAC requires the least maintenance 

and is the most proven of these technologies on a residential scale. 

With regards to water filtration in reACT, the major design change that should be 

considered is the separation of rainwater and greywater into different filtration systems. 

Rainwater should be treated separately to produce potable water, which could supply any 

household purpose. This differentiation between water sources would vastly improve the 

https://www.zotero.org/google-docs/?dqCBNS
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water budget of the house by introducing a potable source, while also allowing the 

rainwater to be downcycled to greywater for irrigation. This could enable a true net-zero 

water budget in the scenario that more rainwater can be harvested than the amount of 

potable water consumed.  

Overall, the system generally functioned as expected, but it fell short on certain 

metrics of importance. The turbidity and the COD of treated greywater were higher than 

desired. Further reduction of turbidity is nontrivial, because the ceramic filter is already 

nominally catching all particulates greater than 500 nm in size. Incorporation of 

ultrafiltration or nanofiltration would improve the turbidity reduction at the cost of a much 

greater pressure drop. Considering the pump has already reached its pressurization limits 

with the existing filters, the incorporation of additional filters that are even more taxing 

would likely incapacitate the system. Taken together, the many considerations and 

outstanding challenges of the treatment of greywater on a residential scale demonstrate the 

intractable nature of the problem.  

Based on these results, the team recommends that a community-scale version of 

greywater filtration be considered. Pulling from this project, a pilot-scale plant capable of 

successfully reaching the required standards is a more viable real-world system. It removes 

much of the economic infeasibility observed on a single-household scale, and allows for 

more intensive purification techniques such as coagulation and trickling filters. Isolation 

studies have suggested that the Next Sand filter may be a potential source of leaching. 

Rapid sand filters can replace the Next Sand filter and can include process intensification 

by incorporating GAC with the sand media. A community of this type would necessitate 

dual plumbing for blackwater and greywater, so it would only be viable for new 
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developments. Additionally, on the residential scale, rainwater can be collected for initial 

potable demand, with greywater supply from the central community plant.  

 

Maintenance Schedule 

 To maintain peak system operation, the system components must be properly 

cleaned. The Rusco spin-down filter should be purged when solids can be seen 

accumulating beneath the filter. The spin-down filters must also be washed by hand 

whenever the membrane surface has become visibly brown or black in color. The 1 micron 

bag filter can be washed by hand approximately once every other week. The ceramic filter 

fouled very quickly, on the order of hundreds of liters of greywater. This filter element 

needs to be cleaned whenever the output flow rate drops below desired levels. Washing the 

filter instantly improves flow rate and decreases pressure drop. Lastly, the GAC filter 

media should be replaced whenever the carbon surfaces become saturated. Although this 

is difficult to measure because it is heavily dependant on the influent quality and flow rate, 

a possible proxy indicator for GAC efficacy could be pH increase per residence time, which 

may be integrated with in-line monitoring. In the team’s practice, the GAC was replaced 

approximately once every two to three months.  

 

Best Practices and Lessons Learned 

 In the design and testing of the greywater filtration system, the team overcame 

numerous challenges and learned many useful lessons. From these experiences, a set of 

best practices were developed to enhance system functionality and ease testing and 

maintenance. In terms of system functionality, the most significant lesson in hindsight was 
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that the Next Sand filter may not only be ineffective, but might also have been 

contaminating the water rather than purifying it. This conclusion is ostensibly supported 

by the data from the isolation experiment; however, such a design decision merits further 

analysis. Another potential mistake was to incorporate too many filters prior to the pump. 

While solids filtration before a pump is necessary to prevent clogging or damaging of the 

pump, the result is large head loss before the pump. Because most pumps viable for 

household integration can only pull water from moderate depths, there is little room for 

upstream pressure loss. The team also recommends keeping the reservoir height above the 

inlet. During the time that the system was integrated with reACT, the upstream pressure 

losses were exacerbated by having to pull greywater from a depth of a couple meters. In 

addition, the team suggests the use of a floating intake filter for the reservoir to avoid the 

suction of solids from the greywater tank. 

The team also uncovered several helpful practices for testing and maintenance. It 

is important to avoid leaving stagnant greywater within the filtration system. The 

composition of the greywater promotes large amounts of bacterial buildup on filters 

elements, requiring additional maintenance and a long period of flushing the system. When 

the system must remain idle for extended periods of time, all remaining greywater should 

be purged from the system. Removing filter elements may also be beneficial, allowing for 

easy maintenance upon return. The team also suggests plumbing the system with valves 

and unions before and after every filter, allowing for the isolation of any component and 

easy manipulation of the system. The team recommends the inclusion of pressure gauges 

throughout the system and a flow meter near the outlet. This would enable immediate 

pressure drop readings, allowing timely maintenance when systems have fouled. Another 
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improvement for maintenance and system uptime would be the incorporation of parallel 

elements for the filters most prone to fouling. This would allow the operation of the system 

while one version of the element is being maintained. In the team’s system, the ceramic 

filter fouled the quickest and reduced the flow rate substantially, which necessitated 

frequent cleaning at the cost of system downtime and reduced testing. 

 

Future Research 

Future research should include supplemental greywater data collection to reduce 

the variance of the existing data. Additionally, the isolation experiments should be 

reproduced using both municipal and greywater sources. To clarify the effects of GAC and 

Next Sand filters on pH, further testing must be run from the same pairs of valve locations, 

as well as intermediate locations. The use of intermediate locations will confirm which of 

the physical filtration techniques are contributing to the changes in pH and to what degree.  

Future research could more thoroughly focus on the Next Sand filter during 

filtration of synthetic greywater to better understand the extent of leaching versus filtration. 

Additionally, isolation studies on the micron filters, ceramic filter, and UV filter should 

also be performed. Additional isolation studies would also provide insight on the inclusion 

of stepped micron filters versus a single, fine micron filter. 

Additionally, because household greywater is guaranteed to contain bacterial 

contaminants, future research should include retroactively testing all samples that have 

been refrigerated, for bacterial load. Testing should also include the intentional 

introduction of bacterial contaminants into synthetic greywater to analyze the capability of 

the filtration system to inactivate microorganisms. Ideally, aliquots of blackwater should 
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be incorporated into the synthetic greywater to most accurately mimic the microbiological 

characteristics of real greywater.  

In addition to the isolation study extensions and the introduction of biological 

contamination testing, future testing should include new methods designed to better 

understand the cycling of nitrogen during the filtration pathway. As mentioned above, 

reduction in nitrogen loads in the treated greywater were not seen in treated municipal 

samples. To better understand this phenomena, the team proposes using a series of specific 

nitrogen tests in order to determine which components of total nitrogen are being reduced, 

and in what ratios they are found throughout various locations of the system. To measure 

dissolved nitrogen, the team recommends an alkaline persulfate oxidation method.110 

Nitrate and nitrites can be analyzed using cadmium-copper or cadmium-mercury 

columns.111–113 Finally, ammonia and ammonium can be collected and separated using an 

annular denuder. Ammonia and volatile amines can be collected using gas washing.114 The 

concentration of these amines can be calculated based on the ammonia concentration 

determined by experiments in the annular denuder. Proteins amino acids and other 

unmeasured compounds can be estimated based on the total nitrogen levels and the amount 

of unaccounted-for nitrogen left. 

Lastly, the team proposes the addition of phosphorus testing. Phosphorus is 

generally present as phosphates in many nutritional sources, personal care products, and 

detergents.115 While phosphorus is an essential element for most bodily systems, it 

becomes toxic at high levels and causes damage in those same systems.116 Future testing 

of phosphate levels will reveal whether or not the system adequately lowers contaminant 

levels and whether the system needs an additional element to further address the issue. 

https://www.zotero.org/google-docs/?CFjbc0
https://www.zotero.org/google-docs/?JYAgFw
https://www.zotero.org/google-docs/?AcvVlr
https://www.zotero.org/google-docs/?JsWH08
https://www.zotero.org/google-docs/?yhOi4L
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Testing of iron and aluminum levels could be similarly revealing as they bind readily to 

phosphates and can affect detectable phosphorus levels.117  

Future design iterations could incorporate the team’s proposed changes, as well as 

expand upon the design beyond restrictions enforced by the Department of Energy’s Solar 

Decathlon competition. It would also be worthwhile to perform an economic analysis on 

the system to compare it to existing small-scale filtration designs, giving a better idea of 

the feasibility to scale the system to a community level.  

 

  

https://www.zotero.org/google-docs/?V47Sz4
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Chapter 6: Conclusion 

Greywater filtration offers the possibility of conserving an invaluable resource. In 

a society and global climate moving towards water crisis, the advent of technology to reuse 

the salvageable fraction of household wastewater could prove critical. This system aims to 

advance current energy- and water-saving technologies on a residential scale. In the design, 

the team took into account the constraints of a conceptual house, the University of 

Maryland Solar Decathlon reACT house, for which the system was initially designed.  

The team researched myriad filtration technologies focused on removing chemical, 

physical, and biological contaminants before settling on the five filters in the system: 

micron, Next Sand, ceramic, GAC, and ultraviolet. After constructing the house alongside 

the Solar Decathlon team, the team took the system out of the house for isolated testing, 

where the focus was turned towards quantifying pH, turbidity, COD, TOC, and TN. The 

team found that the system has the capacity to increase pH for both municipal and 

greywater samples post-treatment. All pH values fell within acceptable ranges for 

unrestricted urban non-potable reuse standards. Turbidity was low in both municipal and 

treated municipal samples. Municipal samples were also found to have comparable values 

to treated greywater, though greywater turbidity exceeded the limit for non-potable 

standards. Treated greywater showed improvements in COD and TOC, but failed to reach 

non-potable standards for either. TN was significantly lower in treated greywater than in 

any of the other samples.  

The team isolated system components that may have contributed to the observed 

values. The Next Sand filter is believed to have slightly increased turbidity (less than 3 
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NTU), an effect which was outweighed by downstream compensation. Additionally, the 

GAC is believed to have significantly contributed to improving COD and TOC.  

In the future, the team expects the system to be reinstalled in the Solar Decathlon 

reACT house so that it may serve as an active learning site and laboratory for the continued 

exploration of sustainable technologies. The team hopes to see the continuation of data 

collection on greywater filtration to non-potable and potable standards, as well as research 

into the potential application of this technology beyond reACT and into the future at the 

residential and community scales.  
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Glossary 

Aerobic bacteria - bacteria that can survive and grow in oxygenated environment. 

Anaerobic bacteria - bacteria that cannot live and grow in the presence of oxygen. 

Biofilm - a thin, slimy film of bacteria that adheres to a wet surface. 

Biosand filter - a filter which removes pathogens and suspended solids from water using 

biological and physical processes that take place in a sand column covered with a 

biofilm. 

Blackwater - wastewater from toilets that cannot be practically reused or recycled.  

Biological oxygen demand - measure of the amount of dissolved oxygen needed by 

biological organisms to metabolize organic matter in water. 

Ceramic filters - a type of physical filter that utilizes the small pore size of ceramic 

material to trap contaminants. 

Chemical oxygen demand - measure of the amount of oxygen that can be consumed in 

reactions in a given solution. 

Chlorination - adding of chlorine or chlorine compounds to water. 

Coagulation - process of a liquid changing to a semi-solid or solid state. 

Colloids - homogeneous non-crystalline substance that contains large molecules or 

microscopic particles that do not settle, and cannot be removed via common filtration 

methods such as suspension. 

Effluent - the out-flowing stream of water. 

Electrical ballasts - device that limits the amount of current in an electrical circuit. 

Electrocoagulation - type of coagulation of fluids that occurs when electric current is 

applied to produce concentrated heat. 
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First flush - the diversion of the first flow of water away from a rainwater catchment 

system. 

Granular activated carbon filter - device consisting of bed of heated or treated carbon 

that uses chemical adsorption to remove impurities and contaminants. 

Greywater - Recyclable, clean wastewater from baths, sinks, washing machines, and 

other kitchen appliances. 

Hard water - water that has deposited high mineral content, such as calcium and 

magnesium carbonate, that forms soap lather with difficulty and leaves solid salt deposits 

when being heated.  

Improved drinking water - World Health Organization classification for sources that, 

by nature of their construction or through active intervention, are protected from outside 

contamination, particularly faecal matter. 

Influent - the in-flowing stream of water. 

Magnetic ballasts - a lighting equipment that regulates the voltage received by a 

fluorescent light so as to not damage its bulb. 

Membrane cartridge filtration - a filtration system that uses sieving mechanism to 

remove particles from water running through its membranes with pore sizes of 1.0 

microns and larger. 

Microfiltration - a physical filtration process that separates microorganisms and 

suspended solids from the contaminated fluid by forcing it to pass through membranes 

with pore sizes usually between 0.1 - 10 microns. 

Micron filter - a type of physical filter that removes a wide range of contaminants using 

a membrane. 
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Nanofiltration - process that desalinates hard water by rejecting valence ions, organic 

matter, and salts from passing through. 

Natural organic matter - complex mixture of organic molecules found in water from 

plant or animal sources, which as a result make it vary significantly from source to 

source. 

Next Sand - a sand or multimedia filtration device composed of high purity alumino-

silicate that uses adsorption, catalytic and ion exchange, and molecular sieve properties to 

purify water. 

Nominal filtration - filtration of the smallest possible particle size trapped by a filter. 

Reverse osmosis - process of directing a solvent through a porous membrane against the 

natural osmosis direction by subjecting pressure higher than the osmotic pressure. 

Secondary treatment - Secondary treatment process include activated sludge processes, 

trickling filters, and rotating biological contactors. 

Sedimentation - the process of depositing particles in a fluid to the bed of the container 

they are held in thereby clearing the top region of the fluid from large degree.  

Surfactants - compounds that lower the surface tension of liquids they are dissolved in. 

Total coliforms - representation of the bacteria found in water supply. 

Total nitrogen - a measure of the particulate and dissolved nitrogen including nitrogen 

derived protein substances, ammonia, reduced nitrogen, nitrates/nitrites and organic 

carbon. 

Total organic carbon - a measure of the carbon found in organic compounds in a 

solution.  
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Total suspended solids - solids that can not pass through a 0.45-micron filter and remain 

suspended when dispersed in water. 

Turbidity - the cloudiness or haziness or a liquid caused by particulate matter. 

Ultrafiltration - filtration using a medium fine enough to retain colloidal particles, 

viruses, or large molecules. 

Ultraviolet disinfection- disinfection technique using ultraviolet irradiation to inactivate 

biological agents. 

Unrestricted non-potable urban reuse - a classification of water purity deemed safe for 

use in irrigation of outdoor areas, toilet flushing, air conditioning, fire protection, 

construction, and ornamental water features. 

Volatile organic compounds - organic chemical compounds whose composition makes 

it possible for them to evaporate under normal indoor atmospheric conditions. 

Zeolite - microporous substance containing aluminum and silicate.  
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