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In Chapter One, we examine evidence for a causal connection between 

income and mortality. There is widespread and longstanding agreement that life 

expectancy and income are positively correlated. However, it has proven much more 

difficult to establish a causal relationship since income and health are jointly 

determined. We use a major change in the Social Security law as exogenous variation 

in income to examine the impact of income on mortality in an elderly population. We 

compare mortality rates after age 65 for males born in the second half of 1916 and the 

first half of 1917.  Data from restricted-use versions of the National Mortality Detail 

File combined with Census data allows us to count all deaths among elderly 

Americans between 1979 and 1993. We find that the higher income group has a 

higher mortality rate, contradicting the previous literature.  We also found that the 

younger cohort responded to lower incomes by increasing post-retirement work 

effort.  These results suggest that moderate employment has beneficial health effects 

for the elderly.



In Chapter Two, we examine another potential determinant of mortality 
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mortality of children. We use the 1918 influenza epidemic as a health shock which is 

orthogonal to chronic health status. Our findings are that the influenza-exposed 

cohorts do not experience significantly higher mortality. This allows us to bound any 

Barker effect of the epidemic as raising mortality less than ten percent.
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CHAPTER ONE

THE IMPACT OF INCOME UPON MORTALITY: EVIDENCE 

FROM THE SOCIAL SECURITY NOTCH

1. Introduction

In 1996, the Advisory Commission to Study the Consumer Price Index, 

informally known as the Boskin Commission, released a report concluding that the 

Consumer Price Index (CPI) overstated the growth in prices by about 1.1 percentage 

points per year.  Because payments in many Federal programs are indexed by the 

CPI, the Commission concluded that this over-indexation has contributed to an 

excessive growth in these programs.  The Commission calculated that over the period 

1997–2008, the over-indexation of Federal programs would add an additional $1.07 

trillion to the national debt.  In their recommendations, the Commission suggested 

that if “...the purpose of indexing is accurately and fully to insulate the groups 

receiving transfer payments ...” then “[t]his could be done in the context of 

subtracting an amount partly or wholly reflecting the over-indexing from the current 

CPI-based indexing.” (p. 9)

The recommendation to adjust the CPI downward was criticized by a number 

of groups including those representing unions and senior citizens.  The incomes of 

these constituencies are in many cases tied to the CPI and any adjustment downward 

in how inflation is calculated would reduce future incomes for these groups.  Those 

testifying before Congress painted a grim picture of the elderly on fixed incomes 
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forced to choose between purchasing food or prescription drugs, a situation that 

would obviously be made worse if cost of living adjustments to Social Security 

payments were more modest after the CPI was adjusted downward.  Testimony from 

a number of witnesses even suggested that adopting the Boskin Commission’s 

recommendations would raise mortality rates among the elderly.

While the identity of the groups objecting to the Boskin Commission’s 

recommendations is predictable, some of their concerns are not without empirical 

backing.  A large body of literature that spans many disciplines has established that 

those with lower incomes have poorer health outcomes and higher mortality rates 

(Kitigawa and Hauser, 1973; Duleep, 1986; Wolfson et al., 1993; Fuchs 1993; 

Chapman and Hariharan, 1994; McDonough et al., 1997; Ettner, 1996; Lantz et al., 

1998; and Deaton and Paxson, 1998 and 1999).  A relationship between health and 

socioeconomic status (SES) has been documented for virtually all measures of health 

(infant mortality, mortality, disease incidence, health habits, and violence) and SES 

(income, wealth, occupation, and education1), within many countries (including 

Canada, the United Kingdom, The Netherlands, Sweden, France, the United States2) 

and over time,3 and recent research suggests that the statistical correlation between 

SES status and mortality may have actually increased over the past 40 years (Feldman 

                                               

1 See Menchik, 1993; Marmot and various co-authors, 1984, 1987, and 1991; and 
Townsend et al., 1988.

2 See Wolfson et al., 1993; Marmot et al., 1991; Townsend et al., 1988, Kunst et al., 
1990; and Feinstein, 1993.

3As one example, Adler et al. (1993) cite evidence that wealthy Rhode Island 
taxpayers in the 1860s had mortality rates less than half the population average.
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et al., 1989; Pappas et al., 1993; Preston and Elo, 1995; Deaton and Paxson, 1998).  A 

large literature also exists about the correlation between socioeconomic status and 

health in an elderly population, the particular interest of this paper (Mare, 1990; 

Menchik, 1993; Smith and Kington, 1997).

It has, however, been difficult isolating income as the causal element in this 

relationship.  The inferential problems are described in detail by Smith (1999).  There 

is for example the simple problem that an equally large literature demonstrates that 

poor health reduces earnings (Haveman et al., 1995; Bound, 1989) and therefore, low 

current income may be caused by poor health and not the other way around.  Smith 

(1999) also demonstrates that the onset of a poor health shock greatly increases a 

families’ out of pocket health expenses, possibly decreasing resources available in the 

future.  Likewise, low income and high mortality may reflect outcomes of the same 

process, thereby subjecting the income/mortality relationship to an omitted variables 

bias.  For example, Fuchs (1982) suggests that poor health and low income may both 

be generated by high discount rates.  A high discount rate will discourage both 

investment in human and health capital, thereby lowering income and raising 

mortality (Farrell and Fuchs, 1982).  This hypothesis is bolstered by evidence which 

suggests those with lower education have higher mortality and much poorer health 

habits (Kenkel, 1991; Pincus et al., 1987; Adler et al., 1993; Evans and Montgomery, 

1994; and Evans, Ringel and Stech, 1999).

One could isolate the impact of income on mortality by assigning different 

groups higher or lower income independent of observed characteristics. Absent this 

ideal research design, we must find field variation in income that mimics random 
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assignment.  Unfortunately, finding such variation has proven to be difficult.  The 

heart of this paper is the use of what is frequently termed the “benefits notch” in 

Social Security as an exogenous source of variation in the income of Social Security 

beneficiaries.  Concerned with rapidly increasing benefit payments, in 1977, the 

Federal government changed the way benefits were calculated for new beneficiaries, 

substantially decreasing the size of payments for recipients born after January 1, 

1917.  As a result of these changes, two people with identical earnings histories but 

different birth dates would receive substantially different retirement incomes.   Those 

born after the Notch had little time to adjust since the changes happened late in their 

work lives.  Most, for example, did not realize the impact of the law changes on 

payments until after they retired.  

We examine the link between income and health in an elderly population by 

estimating a reduced-form relationship between the benefits Notch and mortality.  

Our econometric model is a simple difference-in-difference estimator where we 

compare five-year mortality rates for those born in the fourth quarter of 1916 with 

those born in the first quarter of 1917.  Because there may be consistent differences in 

mortality based upon quarter of birth, we use as a comparison group mortality of men 

born in the fourth quarter of 1915 and the first quarter of 1916.  Because there may be 

cohort-specific differences in mortality rate, we use as a second comparison group 

women born in 1916:4 and 1917:1.  As we demonstrate empirically below, going into 

retirement, there is little to distinguish those born just before and after January 1, 

1917.  In the 1970 Census for example, there is no difference in the observed 

characteristics between those born in the fourth quarter of 1916 and the first quarter 
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of 1917.  If income does have a causal impact on mortality, we should find those born 

just before 1917 to have lower mortality after retirement.  

The Notch is an excellent opportunity to examine the income/mortality link 

for four reasons.  First, the changes in monthly payments generated by the notch were 

substantial.  Analysis from a variety of sources suggests that those born in the fourth 

quarter of 1916 had about 7–10 percent higher monthly Social Security payments and 

about 4 percent higher incomes than those born just one quarter later.  Second, 

mortality rates in the impacted groups are relatively high, making it easier to detect an 

effect of income on mortality if one exists. Third, the manner in which the Notch 

came to be minimized any pre-retirement reaction among the affected populations.  

Fourth, and maybe most importantly, the incomes of the elderly are routinely changed 

by the Federal government through such factors as cost of living adjustments and 

Medicare 

premiums, and therefore, this research answers a question of direct policy relevance.4  

                                               

4Here are three examples of proposed Federal programs that would have changed the 
incomes of the elderly in amounts comparable to the income shift produced by the 
Notch.  As we mentioned above, The Boskin Commission’s report suggested that the 
Federal Government might consider indexing Social Security at a rate lower than the 
CPI.  Had the Commission’s recommendations been adopted, monthly Social 
Security payments would have dropped by about 5 percent over a 5-year period.  In 
1988, Congress passed legislation providing catastrophic health for seniors.  This 
proposal would have provided, among other benefits, unlimited coverage for hospital 
and nursing home stays.  Currently, Medicare only pays for the first 180 days of a 
hospital stay and does not normally pay for nursing home care.  This insurance would 
have been financed by a premium based upon a share of income up to $800/year for a 
single person and $1,600/year for married couples.   Finally, in the early 1980s, 
Congress instituted the QMB (Qualified Medicare Beneficiary) and SLMB 
(Specified, Low-income Medicare Beneficiary) programs.  QMB paid Medicare Part 
A (hospitalization) co-payments and deductibles for low income seniors while the 
SLMB program paid Part B premiums for low-income seniors with incomes too high 
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We are not the first to use the Notch as an exogenous source of variation in 

income.  Krueger and Pischke (1992) use the large increases in retirement benefits 

enjoyed by the pre-Notch cohorts to examine the impact of Social Security payments 

on labor supply among the elderly.  Recently, Engelhardt, Gruber and Perry (2002) 

use the income changes generated by the Notch to examine the role that Social 

Security benefits play in determining living arrangements.  The quasi-experiment we 

examine is conceptually similar to the one outlined in Case (2001).  In that paper, the 

author uses large unanticipated changes in the South African pension system to 

examine the impact of income on health.  In South Africa, pensions for elderly Blacks 

and Coloured men and women were increased to be on par with those received by 

whites.  Case found that in households that pooled income, individual health was 

positively related to the number of pensioners in the household while in households 

that did not pool resources, health is correlated with only the pension status of the 

recipient.

Our results are however quite different from the current literature.  Examining 

mortality rates after age 65, we find those born in the last half of 1916 have higher 

mortality than those born in the first half of 1917, even though the older group 

receives higher Social Security benefits.  Investigation of post-retirement labor supply 

                                                                                                                                     

to qualify for the QMB program.  The income limit for QMB eligibility is $716 for an 
individual and $958 for a couple while the SLMB limits are $855 for an individual 
4(continued) $1,145 for a couple (http://www.aarp.org/confacts/money/qmb.html).  
The current one-day deductible for a Medicare hospital stay is $792 or roughly one-
twelfth of the income of the highest-earning QMB-eligible person.  Likewise, the Part 
B premium is $50/month, or about 5.8 percent of the income of the highest-earning 
eligible SLMB beneficiary. 
(http://www.hhs.gov/news/press/2000pres/20001018.html)
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for these two groups suggests that the younger cohort has more part-time work than 

those born in 1916.  These results are consistent with research that suggests social 

isolation may increase mortality among the elderly.  If part-time work keeps the 

elderly engages in the community, then there may be some mortality benefits from

staying employed past retirement.

This chapter is structured as follows.  In the next section, we present an 

empirical baseline that provides an estimate of the impact of income on mortality for 

those just entering retirement.  The results in this section are in the spirit of previous 

work in the literature and provide a useful backdrop from which we can compare the 

reduced-form models presented later on in the paper.  In Section 3, we provide a short 

description of the Social Security notch and some estimates of how much the notch 

changed Social Security payments and family income.  In Section 4, we propose a 

simple difference estimator to examine this issue and describe how we use data from 

restricted-use versions of the Mortality Detail data files to implement this model.  In 

Section 5, we present our basic results.  Contrary to conventional wisdom, we find 

that those who received higher Social Security benefits actually had higher mortality 

than those from younger cohorts. In Section 6 we explore possible explanations for 

this result and suggest that increased part-time work of the elderly after age 65 is the 

likely cause. Using data from the March Current Population Survey, we show that the 

Notch cohorts have substantially higher probabilities of work than older, more highly 

compensated cohorts. Greater labor force participation can explain the lower 

mortality among the Notch cohorts if work reduces social isolation among an elderly.  

A number of researchers have demonstrated a strong positive correlation between 
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social isolation and mortality, especially among the elderly.  We close with some 

concluding remarks in Section 7.

2. An Empirical Baseline

In later sections, we examine whether reduced Social Security payments 

generated by the Notch produced higher mortality rates for younger cohorts.  This 

section sets a baseline for discussing the likely magnitude of the effects by estimating 

a single-equation model for our population of interest.  The backdrop for this work is 

the large social science literature that has examined the income/mortality relationship.  

The genesis for much of the work in social sciences is the research of Kitagawa and 

Hauser (1973) who matched survey data from the 1960 Census long form, conducted 

in April of 1960, to death records from the May–October 1960 period.  The stylized 

facts from their work are that mortality rates decline with income but at a decreasing 

rate.  This relationship is present for all age groups but Kitagawa and Hauser find less 

variation in mortality across socioeconomic groups for the elderly.  The more 

democratic nature of mortality among the elderly has also been recently documented 

by Hurd, McFadden and Merrill (1999) and Deaton and Paxson (1998).  As we 

illustrate below, these stylized facts are present in data sets 30 years later than the one 

analyzed by Kitigawa and Hauser.  

The data for the analysis in this section is a sample of individuals from the 

National Health Interview Survey’s (NHIS) Multiple Cause of Death (MCOD) file.  

The NHIS is an annual survey of 100,000 people from 40,000 households designed to 

track illness and disability among the non-institutionalized population.  Each NHIS 
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had two components.  The first is a household file that contains basic demographic 

information, self-reported health status, height and weight, lists of chronic and acute 

conditions, and counts of doctor visits and hospitalizations as well as a measure of 

family income for all household members.  The second component of the NHIS are 

special-interest modules that survey samples of core respondents about current health 

topics. Modules vary in size and scope and in many years there are numerous special 

topics.

In an important extension of the NHIS data, the MCOD data file was 

constructed by merging individual-level records from the 1986-1994 data files with 

the National Death Index.  The MCOD/NHIS identifies whether individuals in the 

NHIS have died by the end of 1995, when they died, and the multiple causes of death.  

As we explain below, our test for whether the Notch altered mortality is to 

compare mortality rates over the first five to eight years of retirement for those born 

just before and after the notch.  The relevant population is therefore people roughly 

65 years of age.  We want our baseline to reflect the long follow-up periods we use 

later on so we must eliminate the latest years of analysis from NHIS/MCOD data.  

We also delete the first year of data, 1986, because the NHIS/MCOD was only one-

half the size of other years.  Because our population of interest is such a small birth 

cohort, we would like to pool as many NHIS surveys together as possible to enhance 

the sample sizes.  Unfortunately, one shortcoming of the NHIS is that family income 
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is a categorical variable where categories have not changed for many years.5  Inflation 

makes it impossible to group more than a few years worth of data. To provide as large 

a data set as possible, we pool data from the first three full-size surveys, 1987-1989.

For each year of the NHIS/MCOD, we have detailed demographic 

information from the core NHIS data file as well as month, year and cause of death 

for those who died.  NHIS respondents are surveyed throughout the year and the 

quarter and week within the quarter when the interviews are conducted are coded on 

the data file.  From this information, as well as the data on the month and year of 

death, we can construct an indicator that measures whether a person died within 5 

years to the month of their initial NHIS interview.6  

To illustrate that this data set can reproduce the stylized facts regarding the 

correlation between income and mortality, we estimate linear probability equations 

for three populations: males aged 21–44, 45–59, and 60 and up.  The dependent 

variable is whether a person dies within 5 years of the initial survey.  The controls 

include a complete set of single-year age effects, indicators for white and black 

respondents (with other race being the reference group), an indicator for Hispanics, 

seven education dummy variables, plus measures of family income.

                                               

5For the years of NHIS/MCOD that we consider, the family income variable has 27 
groups: 20 categories in $1000 increments through $20,000, 6 groups in $5,000 
increments through $50,000, and those making in excess of $50,000 per year.  

6We should note that the NHIS/MCOD is limited in that it only contains data for the 
non-institutionalized.  This is not a problem for those aged 21-44, but for higher age 
groups, the fraction of those institutionalized increases and deaths are high for these 
groups.  In contrast, our reduced-form results in section V contain data for those 
institutionalized as well.
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In the top portion of Table 1, we report the sample means and sample sizes for 

each age group.  The stark difference in five-year mortality rates across age groups 

illustrates the need to estimate models for separate age groups.  In the next block of 

results, we report linear probability estimates where the key covariate is income 

coded as a categorical variable in $10,000 increments.  The reference groups in these 

models are those with annual family incomes less than $10,000. The results from 

these models illustrate that for all age groups, higher income groups have lower 

mortality but as incomes rise, the coefficients increase (in absolute value) at a 

decreasing rate.  Consider the case of those aged 45–59.  Moving from the lowest to 

the second lowest income group decreases the 5-year mortality probability by 2.5 

percentage points.  However, moving from $30,000–$39,000 to incomes in excess of 

$40,000 only changes this probability by .61 percentage points.  In the final column 

of Table 1, we report results for those aged 65 and 66 which is representative of the 

population we examine below.  In this case, we see the protective effects of income 

but a much more linear relationship between income and five-year mortality.  As we 

move through the income groups, adding $10,000 in income (1st to 2nd income group, 

2nd to 3rd, 3rd to 4th, 4th to 5th) reduces the probability of death by 5.67, 0.48, 2.20 and 

4.62 percentage points, respectively.  In general, moving from the 1st to 2nd group 

does produce a larger decline in mortality than movements between other income 

groups, but the estimated impact is not monotonic.
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Table 1
Linear Probability Estimates, 5-Year Mortality Equations

1987-1989 NHIS/MCOD Data

Age Group

Variable 21-44 45-59 60+ 65-66

Observations 53,606 20,748 19,967 2,253

Sample mean of Dep. Variable 0.010 0.042 0.197 0.130

Model 1

Income $10,000 - $19,999 -0.0049
(0.0018)

-0.0250
(0.0065)

-0.0395
(0.0084)

-0.0567
(0.0235)

Income $20,000 - $29,999 -0.0073
(0.0018)

-0.0456
(0.0065)

-0.0743
(0.0096)

-0.0615
(0.0259)

Income $30,000 - $39,000 -0.0092
(0.0018)

-0.0538
(0.0066)

-0.0842
(0.0114) 

-0.0835
(0.0304)

Income $40,000 + -0.0116
(0.0018)

-0.0599
(0.0064)

-0.1016
(0.0108)

-0.1297
(0.0290)

Model 2

In (Income) -0.0037
(0.0005)

-0.0178
(0.0019)

-0.0402
(0.0039)

-0.0504
(0.0103)

Elasticity at sample mean -0.370 -0.424 -0.204 -0.388

Other covariates include a complete set of single-year age effects, indicators for white 
and black respondents, an indicator for Hispanics, and seven education dummy
variables.

We can capture the nonlinear relationship between income and mortality using 

log-income as the single covariate of interest.  Unfortunately, income is top-coded at 

$50,000 in the NHIS and 19 percent of all men aged 21 and higher report this top-

coded value.  We use the following procedure to compensate for top-coding.  First, 

we assume income is log normally distributed with a mean of µ and a standard 

deviation of  and use the responses to the 26 income categories to estimate an 

ordered probit model.  This model produces maximum likelihood estimates of u ̂ and 
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̂̂, and with these values, we calculate the expected value of log income given that it 

is top coded.  Finally, we use this amount for top-coded responses.  For all other 

persons we use the log of their income category’s midpoint.

The results from models with log income as the covariate of interest are 

reported in the bottom of Table 1.  Comparing the first three broad age groups, a fixed 

percentage change in income actually has a larger impact on mortality for older 

respondents, but the implied income/mortality elasticity is much lower for the oldest 

respondents.  Both of these results are driven by the higher probabilities of death for 

those aged 60 and up.  The marginal impact of a change in income for our population 

of interest, those 65 and 66, is 20 percent larger that for those aged 60 and up, but the 

elasticity is roughly similar to the one for those aged 45–50.  

Our results, similar to those of other researchers suggest that if single-equation 

estimates are consistent, for those aged 65, we would expect a 10 percent increase in 

income to reduce five-year mortality rates by a half a percentage point, from 13.5 

percent to 13 percent, a change in the rate of 3.88 percent. This is the standard of 

comparison for the estimates that follows.

3. The Social Security “Benefits Notch”

The codes establishing Social Security were contained in three sections of 

Public Law 271, enacted in 1935 by the 74th Congress.  Initial Old Age and Survivors 

Insurance (OASI) payments were a function of the beneficiary’s “average nominal 

wage” and the retiree’s age at the time of retirement. These payments remained fixed 

until Congress passed legislation altering either the method for calculating the 
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average wage or the schedule of benefits.  Although beneficiaries lost ground to 

inflation until Congress acted, it did so frequently, amending the benefit formula 16 

times between 1935 and 1972.  The real value of Social Security benefits increased 

substantially over this time. Part of this increase was due to the higher real wages of 

younger cohorts, but much was due to Congress’ generosity. By the early 1970s, 

Social Security was the largest and least controversial government social program 

(Munnell, 1977; Tynes, 1996). 

Social Security has, from the start, been a pay-as-you-go system. Taxes on 

current workers finance current retirees’ benefits. Until the 1970s benefits were 

figured by computing an average wage and reading the appropriate benefit from a 

table set by statute. During this pre-70s period, nominal wages rose faster than 

inflation and the pool of workers paying Social Security taxes expanded. This led to a 

large current surplus in Social Security and a large projected surplus when current 

benefit levels were compared to inflated future wages. Based on these projected 

surpluses, between 1972 and 1974 Congress substantially increased benefit levels.  At 

the same time, Congress instituted a system for indexing the benefit table to the 

Consumer Price Index (CPI).  The early 1970s were a period of relatively high 

inflation; waiting for statutory adjustment was increasingly costly, and consequently 

unpopular with seniors. 

In figuring benefits based upon an unindexed average wage and an indexed 

benefit table Congress set the stage for Social Security’s first financial crisis. 

Indexation shields current retirees from inflation, but it also leads to higher initial 

benefits for new retirees with a given (nominal) wage.  However, wages do not stay 
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fixed during a period of inflation. A worker with rising nominal but flat real wages 

still has a rising “average wage,” thus even an unindexed benefit schedule will lead to 

higher (nominal) initial Social Security payments. When the benefit schedule is fully 

indexed to inflation, initial benefits will rise faster than inflation.

Looking back, the double indexation of benefits seems clearly an error. If, 

however, wages and prices had behaved in the 1970s as they had in the previous 

decades, the increase in real benefits would have been consistent with long term 

trends and the wage base would have been sufficient to support such benefits. 

However, during the 1970s, wages’ growth lagged inflation and projections showed a 

possibility of insolvency as soon as the mid-1980s (Commission on the Social 

Security “Notch” Issue, 1996).  This led Congress to address the problem with 

uncharacteristic speed. The result was the first widespread reduction in the generosity 

of the Social Security system and as a side effect, the creation of the “Benefit Notch.”

Congress chose to correct the system by replacing the nominal wage with an 

indexed wage. The average wage in the year a claimant turned 60 would be used as a 

basis, and the claimant’s earnings in year x would be multiplied by the ratio between 

average earnings in year x and average earnings in the year he or she turned 60.  The 

legislation, enacted in 1977, allowed those who were eligible for retirement before the 

new amendments became effective to stay in the old system. Those who were not yet 

eligible would be forced to use the new system. The effective date of the new 

amendments was January 1, 1979.  Therefore, those born on or before January 1, 

1917 could stay in the old system. Those born after January 1, 1917 would be in the 

new system. 
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To minimize the abruptness of this change, Congress created a special five-

year transitional method for people born between 1917 and 1921. Retirees born 

between 1917 and 1921 are the group commonly known as the “Notch Babies.” The 

transitional method was identical to the old method except earnings after age 61 could 

not be used in figuring benefits, and after 1978, no inflation adjustments would be 

made until age 62.  Retirees in the 1917–21 cohorts could take the higher of the two 

benefits, the new or the transitional.  Since earnings after the age of 61 were generally 

years of high nominal earnings, these rules were of limited assistance. They typically 

helped only those who retired in or near 1979, but were of little help to the majority 

who worked into the 1980s.  The transitional method was only designed to lessen the 

impact of the law change.  It did not alter the fact that people born after January 1, 

1917 would receive, with few exceptions, lower benefits than those born prior to that 

year.  This of course was the intent of the 1977 law.  This was the first and, to date, 

only time the generally rising trend in Social Security benefits was reversed.

The principal novelty of what has become known as the “benefit notch” is that 

younger cohorts of Social Security beneficiaries generally receive less in old age 

benefits than older cohorts with similar work histories. The Social Security Act had 

been amended many times, but before 1977, changes in the act generally allowed a 

beneficiary to choose whether to claim under the new provisions or under the prior 

law. This meant that new provisions could only increase a retiree’s benefits. The 1977 

amendments offered no such choice; unlike earlier amendments their purpose was to 

reduce payments.
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In the next section, we document the differences in monthly benefits between 

those born before and after January 1, 1916.  The Notch became as large as it did for 

two reasons. First, those born before 1917 could continue to benefit from the effects 

of over-indexation no matter when they retired. Second, the years when the pre-1917 

cohorts were likely to remain in the labor force were years of high inflation.  In the 

years 1979 through 1982, the annual increases in the CPI were 9.9, 14.3, 11.2 and 7.4 

percent, respectively.  Had inflation remained at 5 percent between 1979 and 1982, 

the difference in monthly payments between those born before and after January 1, 

1917 would have been much smaller.

It is customary to refer to the cohorts born between 1917 and 1921 as the 

“Notch babies.”  These workers were subject to the transition rules and they received 

less money than those born slightly earlier.  Their benefits however, were in line with 

long term trends.  It is probably more helpful to think of those born just before the 

Notch cohorts as the “treatment” group. They received more income than the long run 

trend of OASI payments and more income than Congress intended to give. This is an 

important distinction in understanding the continuity of retirement behavior across the 

cohorts.  In effect, the Notch was a windfall for the older cohorts, not a calamity for 

younger cohorts. 

There is scattered evidence about the impact of the Notch on Social Security 

payments.  The bipartisan Commission on the Notch used estimates calculated by the 

Social Security Administration’s (SSA) Office of the Actuary using the same 

computer program that Social Security field offices use to calculate actual benefits.  A 

necessary input into the program were estimates of the work history of the Notch 
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cohorts.  Because the impact of the Notch on payments is a function of retirement 

age, simulations were conducted for two groups: those that retire at 62 and 65.  The 

numbers from these simulations suggest that the Notch generates a loss of $7 for 

those born after January 1, 1917 and retiring at 62.  The difference however rises to 

$110 if a worker retires at age 65.  Krueger and Pischke (1992) take a similar 

approach, but they calculate benefits for each cohort at many different retirement 

ages.  In both cases, the authors use as wage histories the average covered earnings 

for the years these cohorts were working.  

We use a similar methodology as the two previous efforts, but we use a 

different time series of earnings histories for the Notch cohorts.  Since the wage 

profile varies with age, and since there are significant cohort effects on wages, using 

average earnings for all workers potentially introduces errors into the calculation of 

benefits.  We use instead cohort-specific earnings profiles constructed from Census 

data and various March Current Population Surveys (CPS).  In particular, we 

calculate time series for three groups of male workers: those that report 8, 12, or 16 or 

more years of education.  Data for the years 1964 through 1982 are taken from the 

March CPS.  We calculate the earnings for only those who are from the 1916 and 

1917 birth cohorts (e.g., approximated by those who report ages of 59 and 60 in the

March 1976 CPS).  Data from the 1950, 1960, and 1970 Census PUMS generates 

estimates for 1949, 1959, and 1969 respectively.  Data for the period 1950 through 

1963 are interpolated using the Census estimates.  Revisions to the Social Security 

law eliminate the need to consider earnings before 1950 in calculating benefits; 
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benefits are figured only on post-1950 wages for those with income after 1950.  The 

time series of earnings for the three education groups is displayed in Figure 1. 

Figure 1
Wage Profiles of Men Born 1916-1917 by Education

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

49 54 59 64 69 74 79

Earning Year (CPS and Census Data)

A
nn

ua
l E

ar
ni

ng
s,

 N
om

in
al

 D
ol

la
rs

grade 8 grade 12 grade 16 avg covered max covered

Our calculation of OASI benefits is done by first breaking the Notch cohorts 

into a series of cells based on age at retirement and years of education.  We then 

calculate a benefit for each side of the Notch in each cell, take the differences, and 

figure an average difference by weighting each cell according to its share of the 

cohort. To obtain estimates of the fraction of the population that retires at particular 

ages, we use data from the Social Security Administration’s New Beneficiary Survey 

(NBS).  The NBS is a one-percent sample of all those making an initial claim for 

benefits between June 1980 and May 1981. We use the entire population of male 

retirees to estimate the age distribution of new claimants. Since the NBS contains 

month of birth and month of initial claim we can figure age at claiming to the month. 

Figure 2 shows that the distribution of claims is extremely lumpy. Virtually half of all 
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claims by men are filed the month of the pensioner’s 62 birthday (22 percent) or 65th

birthday (25 percent).7  After the first month, claims are steady at one percent per 

month for ages 62 and 63, rising to 2 percent per month at age 64. Over 95 percent of 

males filing initial claims were between the ages of 62 and 65. In the early 1980s 

there was only a very small enhancement to benefits for working beyond age 65.  

From the data in Figure 1 we create five (year/month) cells, 62.0, 62.6, 63.6, 64.6 and 

65.0.  We have placed those working past 65 into the 65.0 cell. 

The number of sample points in each year’s data is quite small, but this makes 

little difference in the final estimates for two reasons. Social Security is figured from 

a simple average of the highest N years of covered earnings (N=21 or 22 for these 

two cohorts), so the averaging across years reduces the impact of any year-to-year 

estimate. Second, the “covered” earnings are limited to a certain maximum, so 

variations in wages above the maximum will have no effect on benefits. Figure 1 

shows the three profiles and the maximum covered wage for each year. For most of 

the period under consideration the Social Security system was quite egalitarian, 

average wages of high school graduates (and certainly college graduates) exceeded 

the maximum. A large fraction of the working population earned identical Social 

Security “credits,” even when their wages differed substantially.

                                               

7A change in the law governing minimum age for claiming actually occurred during 
the year from which the NBS drew its data. We use 62.0, even though the minimum 
age changed to 62.1 in January 1981 to simplify exposition.)
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Figure 2
Distribution of Age at Initial Social Security Claim
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In figuring the weights for each education/retirement age cell, we used the 

proportions from the 1980 Census data for each of the three levels of educational 

attainment. We did not make any effort to assign other educational levels to one 

group or another. Given the mild gradient in the Notch effect across the educational 

levels, inclusion of other education levels could have only minor effects on the 

results.

Table 2 presents our findings from these simulations. They are in line with 

previous estimates, showing that the Notch is very small for those retiring at 62 and 

much larger for those who work an additional 3 years. The resulting 7 percent 

difference in benefits is thus an amalgam of a large group with a reduction around 10 

percent, and a smaller group with a reduction of 1 or 2 percent.  Also, the 10 percent 

reduction is conservative, since there is a small group working past 65, who will 
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continue to add additional years of high earnings to their benefits.  In the end, we 

estimate that the 1916 cohort was receiving on average $41 more per month than 

those born in 1917.  For these groups, average family income was about $12,000 per 

year when they reached age 65, so this represents about a 4 percent increase in 

income.

Table 2
OASI Monthly Payments By Age of Retirement and Education Level

Payment for Men Born 1st Quarter 1917 and
(Difference between 1916:4 and 1917:1)

Age at 
retirement 

(year/months)

% that 
retires at 

age

Grammar 
school 

graduate 
(28%)

High 
school 

graduate 
(62%)

College 
graduate 
(11%)

All

62.0 19% $471.60 $525.50 $543.50 $517.64

($5.20) ($7.10) ($5.70) ($6.48)

62.6 11% $491.30 $546.40 $566.10 $539.22

($7.70) ($12.60) ($14.10) ($11.52)

63.6 12% $530.60 $591.20 $611.40 $582.37

($27.50) ($28.60) ($44.70) ($30.35)

64.6 28% $569.90 $635.00 $656.70 $625.51

($53.00) ($47.20) ($79.20) ($52.82)

65.0 30% $589.50 $656.80 $679.30 $647.00

($70.20) ($62.30) ($102.20) ($69.52)

Total $596.79

($41.49)

We would like to examine the impact of the Notch on Social Security incomes 

in a regression context with micro data but most data sets do not identify month and 

year of birth. Had the 1990 census asked for quarter of birth we could have used that 

data. The 1980 Census PUMS does identify quarter of birth but the earnings data 
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from the Census related to 1979 when the 1916:4 and 1917:1 cohorts turned 63 and 

62 respectively. We can however obtain an estimate of the Notch effect on Social 

Security payments using data from the Annual Demographic File of the March CPS.  

The March CPS contains information about income received in the previous year and 

one category is Social Security payments.  The main drawback to the CPS is the poor 

identification of birth year. The questionnaire asks for age at the time of the survey 

(mid-March) and for earnings and employment in the previous calendar year. Year of 

birth can therefore only be defined as (survey year) - age - 1.  This will place about 80 

percent of respondents with the appropriate calendar year of birth, but the other 20 

percent (those born January through mid March) will be grouped with those born in 

the previous year. Since it is calendar year that changes the applicable benefit 

formula, this will bias any estimate of a Notch effect on Social Security payments 

downward.

To conduct the test, we first extract a sample of males who report their age as 

68 in 1985, 69 in 1986, or 70 in 1987.  These males are roughly from the 1916 birth 

cohort and in these surveys, this cohort reports Social Security payments received 

when they were 67–69 years of age.  We then draw a companion sample of those 

aged 67 in 1985 through 69 in 1987.  Most of these men were born in 1917 and these 

respondents report Social Security earnings at ages 66–68.8  Next, we regress real 

annual Social Security earnings in 1987 dollars on a complete set of fixed effects for 

                                               

8It is important to only include earnings starting in 1984 for the 1917 cohort because 
including data for 1983 would add Social Security payment data for this group in a 
year when these men turn 65 and as a result, many will not have a full year’s worth of 
earnings data.
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race, education, marital status, and reporting year, plus a dummy variable 

representing the older (1916) birth cohort.  The results from this exercise are reported 

in Table 3.  This sample has a large number of observations (3059) and real mean 

annual Social Security earnings over these four years is slightly under $5,900.  

During this period, the 1916 birth cohort received $496 more per year than their 

nearest younger cohort, about 8.4 percent of than the sample mean.  Since only 80 

percent of the people we put into the 1917 birth cohort are actually from that group, 

with 20 percent coming from the 1916 group, we would expect this number is low by 

about 20 percent.  Inflating the parameter estimate by 20 percent and dividing by 12, 

we find that the Notch increased payments to the 1916 birth cohort by about $50 a 

month, similar to the estimate we produced through our simulation exercise in Table 

2.9

                                               

9Respondents in the CPS are in the sample for the same four months over a two year 
period (for example, January through April in both1985 and 1986).  As a result, our 
sample will sometimes include two observations from the same household but in 
different years.  Restricting our attention to people who were in the sample for the 
first year, we cut the sample in half, but the coefficient on the “Notch” dummy 
variable is essentially unchanged dropping to $487.51 with a standard error of 
$155.76.
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Table 3
Impact of Notch on Annual OASI Payments, in Real 1987 Dollars, 

March CPS

1916 cohort: earnings 
during ages 67-69

1917 cohort: earnings 
during ages 66-68

1915 cohort: earnings 
during ages 67-69

1916 cohort: earnings 
during ages 66-68

Males Females Males
Mean of dependent variable $5,879 $4,171 $5,950
“Notch” effect—dummy 
variable that equals 1 for the 
oldest cohort (standard error)

495.74
(109.74)

8.47
(69.54)

8.00
(109.78)

Number of Obs. 3,059 3,786 3,189

All models include fixed effects for education, marital status, race and year of the 
survey.  The Notch effect is for the “oldest” cohort.

To establish that this difference is not found in the other populations we will 

compare to the “Notch” cohort, we report comparable results for two other groups, 

women born in 1916/1917 and men born 1915/1916. During this time period, most 

women who receive OASI payments are qualifying for payments based on their 

husband’s earnings (Reno and Ycas, 1982; Iams and Ycas, 1988).  Consequently, for 

women there should be no Notch effect when we compare the 1916 and 1917 cohorts.  

In the next column of the table, we redo the same exercise with women from the same 

years and age ranges, we see that women from the 1916 birth cohort earn only $9 

more per year than their nearest younger cohort.  These results are presented in 

column (2) of Table 3.  If we take men who were 67 in 1984, 68 in 1985, and 69 in 

1986, we generate a sample of Social Security earnings from the 1916 cohort when 

these men were 67 through 69.  If we match this group to men who were 68 in 1984, 

69 in 1985, and 70 in 1986, we produce a sample of earnings for men aged 67–69 

from the 1915 cohort.  Defining the “Notch” dummy variable for the “older” cohort 
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(those born in 1915), we see in the final column of the table that men from the 1915 

cohort only earn $8 more per year from Social Security than their next younger 

cohort.  These last two results are important because later on, we will use mortality 

differences for women from the 1917 and 1916 cohorts and men from the 1916 and 

1915 cohorts as comparison groups for our primary comparison – the mortality 

difference between the 1917 and 1916 cohorts.  Therefore, after retirement, there are 

large differences in Social Security earnings in our primary groups of interest (1916 

versus 1917) but no such differences in our comparison groups.

Although the benefits Notch was a windfall for some cohorts, there is little 

evidence that the differences in OASI payments for cohorts born in the 1911–1921 

time period altered retirement behavior.  For those born prior to 1917, we might 

expect the increase in retirement income to induce an earlier exit from the labor force. 

However, because Congress continued to allow over-indexation for older cohorts and 

these workers reached age 62 at a time when inflation was high, the longer an 

individual stayed in the labor force the greater the impact of over-indexation. In 

effect, Congress created a substitution effect to offset any wealth effect. The cost of 

retiring young was high, which would tend to delay retirement.  Krueger and Pischke  

(1992) find no difference in the retirement profiles for those born before and after 

January 1, 1917.

Another explanation for the apparent non-impact of the 1977 amendments was 

that the changes in the benefits generated by the new law were not widely understood. 

The true impact of the benefit changes was produced through the interaction of 

legislation and the inflation experienced after the legislation passed. The perceived 
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unfairness of the Notch only became a political issue after the 1917–1921 cohorts 

began to retire.  The Commission’s account of public awareness of the Notch is 

instructive:

“After comparing their benefit checks against the larger checks of 
their pre-“Notch” colleagues, neighbors, and friends with similar 
employment records, they began expressing their dissatisfaction to 
public officials—and the “Notch” issue was born.” (Commission on 
the Social Security “Notch” Issue 1996) (Our italics)

Some may find it puzzling that there was not more foresight among the general public 

regarding the change in benefits.  In 2001, new retirees are accustomed to thinking of 

a given real benefit level as an entitlement. Until the late 1970s, however, Social 

Security benefit levels had always been subject to arbitrary adjustments. No one 

could predict their benefit, even if they could predict their wages.  Survey data 

suggests that today still, workers have poor understanding of their future OASI 

benefits (Gustman and Steinmeier, 2001). The Reader’s Guide to Periodical 

Literature, an index of popular magazines, contains fewer than 20 references to the 

over-indexation of Social Security benefits in the crucial 1974-1976 time period.

4. Econometric Model

As mentioned above, the 1977 amendments to Social Security changed the 

way initial OASI benefits are calculated, which in turn produced sharply lower 

payments for recipients born after January 1, 1917.  We examine the 

income/mortality hypothesis in an elderly population by examining whether the 

higher payments received by older cohorts lead to lower mortality rates.  The 
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econometric model we propose is a “difference-in-difference” estimator where the 

structure of the test is driven by the available data and the need for large samples.

Within a group of pregnant women, it is essentially a random process that 

generates who gives birth today and who gives birth tomorrow.  We would therefore 

expect to find very little difference in the social, economic and behavioral 

characteristics of people born just before and after January 1, 1917.  However, these 

two groups face different streams of OASI payments once they retire. Therefore, any 

difference in post-retirement mortality between these groups can reasonably be 

attributed to the difference in OASI payments. 

This simple analysis is complicated by two facts.  First, the difference in 

income generated by the Notch is not huge and as we demonstrate below, we will 

need a large data set to have any hope of detecting a meaningful difference in 

mortality across the two groups.  This makes it impossible to compare cohorts born in 

the days right before and after January 1, 1917.  Expanding the size of the cohorts 

does come at a price.  There are a number of secular trends in the economic, health 

and social characteristics of cohorts.  On average, younger cohorts have more 

education and live longer than older groups.  If we compare outcomes for full year 

cohorts born in 1916 and 1917, these groups contain people that vary in age anywhere 

from 1 day to almost 2 years.  If mortality itself or the determinants of mortality (such 

as education or income) are changing rapidly, comparing two groups that span so 

many months may introduce a difference in mortality that is produced by secular 

trends rather than OASI payments. Consequently we cannot rely on a simple 

difference estimator as the basis of our analysis.  
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The difference-in-difference estimator is generated by finding a control group 

that can accurately measure the difference in mortality after age 65 between the 

1917:1 and 1916:4 groups that would have existed in the absence of the treatment (the

Notch).  In this case, we have two potential control groups.  Each helps control for a 

different type of secular variation in mortality. The first includes men born one year 

earlier.  The second control group is women born during the same months as our male 

cohort.  Each provides a control for a different alternative cause of differences in 

mortality.

There can also be variation across cohorts in mortality rates based on a 

number of factors that may confound a simple difference analysis.  For example, we 

know that age-adjusted mortality rates are lower for younger cohorts.  Although the 

1917:1 cohort is only born one quarter later than the 1916:4 cohort, one might be 

suspicious that a higher mortality rate after age 65 for the 1916:4 group is a secular 

difference rather than a shock produced by the impact of the Notch.  Therefore, we 

will use mortality differences for males between the 1916:1 and 1915:4 cohorts as 

one control group.

There is growing evidence that conditions present before and right after birth 

have a lasting impact on health. Barker (1998) for example argues that when the fetus 

is faced with a poor environment, changes in the supply of nutrients received by vital 

organs can hard wire these organs for later susceptibility to disease.  Using a variety 

of models, Almond (2003) finds that the 1918 birth cohort, which was born during a 

major influenza epidemic, has substantially worse labor market outcomes than 

adjacent cohorts. We discuss this subject in detail in the next chapter. If there is 
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something that adversely impacted either the 1917:1 or 1916:4 birth cohorts, we 

might find differences in mortality across these groups that is unrelated to the Notch.  

To control for this possibility, we use women born in the 1917:1 and 1916:4 periods 

as a control.  Women born in 1916/1917 face the same perinatal infant environment 

as males.  As we note above, most women born in this generation receive Social 

Security benefits based on their husband’s earnings, and, since most women marry 

men older than themselves, there should be little impact of the Notch on Social 

Security income across these narrow birth cohorts.  This is in fact verified in Table 3.  

Women at age 65 do however have substantially lower mortality rates than men the 

same age, so in this model we use difference in log mortality rates as the key 

outcome.

4.1 A Note on Sample Sizes

We showed using two different procedures that the Social Security Notch 

generated about 4 percent higher incomes among those born in the 1916 compared to 

those born in the next year.  In Table 1, we showed that for people aged 65 and 66, 

the coefficient on log income is about -0.05 in a linear probability model where the 

outcome is 5-year mortality.  Therefore, if this relationship represents the “true” 

impact of income on total mortality, we would expect those born before 1917 to have 

two-tenths of one percentage point lower five-year mortality rate than those born in 

1917 ( 0.04*(-0.05) = -0.002).  In this section, we calculate an estimate for the sample 

sizes necessary to produce a statistically significant estimate of -0.002.  This 

calculation is necessary because we have to expand our samples around January 1, 
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1917 and we want to expand them enough to have a fair test of detecting a 

statistically precise relationship.  

Suppose we have two equally size cohorts—one born after January 1, 1917 

and one born just before.  The reduced-form equation of interest can be written as a 

simple bivariate regression: 

(1) yi = α + βRF zi + εi.

Where yi is an indicator that equals 1 if the respondent died within 5 years of their 

65th birthday and zi is an indicator for whether the respondent is a pre-Notch baby, 

i.e., someone born in 1916. Let p̂1= ( ȳ|zi=1) and p̂0 = ( ȳ|zi=0).  Because both z and y 

are discrete, the estimate for βRF in equation (1) can be shown to equal:

(2) β̂RF = (ȳ̄|zi=1) - (ȳ|zi=0) = p ̂1- p ̂0  

This reduced-form estimate will only be statistically significant if:

(3) β̂RF ∕ σ ̂
RF   ≥ 1.96

where σ ̂
RF

 is the standard error of β̂RF.  Under the assumptions we have made, we can 

solve this expression for the minimum number of observations necessary to generate 

a statistically significant coefficient of β̂RF  = -0.002.  Because y is discrete and both 

samples are assumed to have the same number of observations, σ2
RF approximately 

equals [p̃1 (1- p̃1 ) +  p̃0 (1-  p̃0)]/n. For equation (3) to be true, it must be the case that 

n >  [1.96/ β̂RF  ]2[p ̂1 (1- p ̂1 ) + p̂0 (1- p ̂0)].  Using the means from Table 1, we can set 

p̂0 = 0.13 and notice that p ̂1 = p ̂0 + β ̂RF.  It is then easy to show that n, the size of the 

treatment and control groups, must be approximately 214,000 observations.  This is 
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roughly the size of the number of people born in the 1st quarter of 1917 who are alive 

at the time of the 1980 Census.  At the start, we then want to compare the post-

retirement mortality for people born in the 4th quarter of 1916 and the 1st quarter of 

1917.

4.2 Pre-retirement Characteristics of the 1916:4 and 1917:1 Male Cohorts

Going into retirement, there is little difference along any demographic 

characteristic between these two cohorts.  This is easily demonstrated with data using 

the 1970 Census Public Use Micro Samples (PUMS).  The PUMS samples are drawn 

from the one-sixth of the households who received the Census long form.  In 1970, 

Public use data is available from six different samples.  The samples differ in 

geographic information available and in the questionnaires they received, but the core 

demographic information we need is common to all samples.  By aggregating data 

from all of these samples, we obtain a 6-percent nationally representative sample.  

For our purposes, one key piece of information in the PUMS is the respondents’ 

quarter of birth. Using the fact that the Census day is April 1, 1980, the first day of 

the second quarter, we can then back out the quarter and year of birth.  Respondents 

from the 1916:4 and 1917:1 cohorts would report 53 years of age in the 1970 Census.  

In Table 4, we compare the means across the 1916:4 and 1917:1 cohorts along a 

number of different demographic characteristics.  In the table, we report the sample 

average for each variable when these two cohorts are pooled together, the difference 

in means across these cohorts, and the t-statistic on this difference.  We see there is no 

statistically significant difference in earnings, years of education, the fraction with a 
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high school degree, weeks worked, hours worked per week, the fraction that worked 

full time, the fraction self employed, marital status, or the fraction disabled.  The 

small differences which exist in observed characteristics between the two cohorts are 

not unique.  We report the same type of results for different 4th quarter/1st quarter 

contrasts and the only persistent difference is that those born in the 1st quarter have 

lower education levels.  In this case, the result is statistically significant in three of 

five cases.  This result has been documented, notably by Angrist and Krueger (1991), 

who use data from the 1970 and 1980 Census PUMS data sets to show that in cohorts 

born between 1920 and 1949, men born in the 1st quarter tend to have about one tenth 

of a year fewer years of education than do those born at other times of the year.  

Angrist and Krueger interpret this as being generated by interactions between laws 

governing minimum school start age and compulsory education laws—those born in 

the 1st quarter start school at an older age and they are more likely to age out of 

compulsory education laws, making them more likely to drop out. The differences in 

education in our data are very close to those reported in Angrist and Krueger.
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Table 4
Comparison of Means, 1st and 4th Quarter Births

1970 PUMS 6% Sample

Mean for First Quarter [Difference in Mean for Fourth Quarter] (t Value of 
Difference) 

Outcome of
Interest

1914:4 
vs 

1915:1

1915:4 
vs. 

1916:1

1916:4 
vs 

1917:1

1917:4 
vs. 

1918:1

1918:4 
vs 

1919:1

Annual Labor Earnings 7386
[-21]
(-.25) 

7640
[-15]
(-.18)

7700
[46]
(.56)

7923
[185]
(2.23)

7986
[57]
(.69)

Years of Education 10.41
[.037]
(.86)

10.55
[.088]
(2.09)

10.65
[.068]
(1.63)

10.76
[.115]
(2.81)

10.77
[.147]
(3.54)

< High school diploma 53.7%
[-.15%]
(-.25)

51.8%
[-.91%]
(-1.49)

50.8%
[-.43%]
(-.71)

49.2%
[-1.69%]
(-2.85)

48.9%
[-1.11%]
(-1.88)

Weeks worked, 1969 45.4
[.11]
(.58)

45.8 
[.04]
(.21)

46.2
[-.11]
(-.63)

46.1
[.53]

(3.21)

46.3
[.41]
(2.59)

Hours worked/week, 1969 35.23
[.04]
(.16)

35.61
[.36]

(1.68)

36.22
[-.03]
(-.13)

36.27
[.40]

(1.94)

36.28
[.428]
(2.09)

Worked full time, 1969 73.3%
[-.0012]
(-.21)

74.6%
[.0046]
(.87)

75.5%
[-.0022]
(-.42)

75.7%
[.0023]
(.44)

75.6%
[.0084]
(1.65)

Self-employed, 1969 16.4%
[.4%]
(.83)

16.0%
[.5%]
(1.16)

15.6%
[.4%]
(.89)

15.4%
[-.2%]
(-.38)

15.3%
[.1%]
(.33)

Disabled (1=yes) 9.7%
[.08%]
(.21)

9.6%
[-.16%]
(-.44)

8.7%
[.49%]
(1.42)

8.3%
[-.21%]
(-.65)

8.5%
[-.20%]
(-.62)

Married (1=yes) 86.0%
[.69%]
(1.65)

86.8%
[-.24]
(-.58)

86.8%
[.13%]
(-.33)

87.0%
[.04%]
(.09)

86.6%
[-.08%]
(-.20)

Number of observations, 
both quarters

27,024 27,215 27,737 28,618 28,306
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4.3 Restricted-Use Mortality Detail Data

Although there are some retrospective data sets that identify mortality for a 

cross-section of people (such as the National Longitudinal Mortality Survey and the 

NHIS/MCOD file introduced above), the sample size calculations show these data 

sets are inappropriate for the task at hand.  The only data sets of the appropriate size 

are the Mortality Detail data sets.  Detailed micro data on births and deaths are 

available starting in 1968 from the NCHS Natality and Mortality Detail data files.  

Mortality Detail files contain a census of births in all years except in a few when a 50 

percent sample is available.  The Mortality Detail data provides information on age, 

sex, race, ethnicity, plus detailed geographic data about the place of residence and 

death.  Some states also provide education and the industry and occupation of the 

deceased.  The mortality data also identifies the month and cause of death. Public use 

tapes do not provide year or month of birth.  This data is, however, available on 

research files available to NCHS staff.  We reached a special agreement with the 

NCHS and they provided us with restricted-use Mortality Detail files that contain all 

public-use information plus the month and year of birth.  We received data for deaths 

over the 1979–1990 period.

With this data, we can count the total deaths from a birth cohort after a 

particular date.  We must, however, control for the possible differences in cohort size 

that exist.  For example, the cohort born in the 1st quarter of 1917 is slightly larger 

than the cohort born in the previous quarter, so we would expect to find some 

difference in the number deaths across these two groups.  We therefore need to 

construct death rates that condition on the number of people alive in a cohort at the 
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start of the period. To calculate the denominator in the death rate, we use population 

counts of cohort size from the 1980 Census Public Use Micro Samples (PUMS).  The 

1980 PUMS data is available from three samples: the 5-Percent, a 1-Percent 

Urban/Rural sample and a 1-Percent Metro Sample.  All three are nationally 

representative samples of the population and merged together represent a 7-percent 

random sample of the population.  Dividing the number of people in a particular birth 

quarter by .07 in these combined samples, we then have an estimate of the number of 

people from the cohort who were alive on April 1, 1980.  Counting deaths in previous 

or subsequent quarters for cohorts and subtracting or adding these numbers from 

population total from the Census, we have an estimate of the number of people alive 

at the start of any particular quarter.  For example, those born in 1916:4 turn 65 in the 

4th quarter of 1981.  Subtracting deaths for this cohort between 1980:2 and1981:3 

from the population numbers from the Census gives us the number of people alive as 

of the start of the quarter this group turns 65.

For each cohort, we want to construct death rates over a fixed period of time.  

The beginning periods for the death rates will be defined by birth dates rather than 

calendar time.  Although cohorts born before and after January 1, 1917 are roughly 

the same age, calculating death rates for say the January 1, 1982–December 31, 1986 

period will, by construction, produce differences in death rates simply because the 

1917 cohort is younger than the 1916 cohort.  We therefore must define death rates 

over the same age range.  Because the vast majority of people on Social Security have 

retired by their 65th birthday and because there is little Notch effect for those who 
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retire, we construct five-year mortality rates for people who died within 5 years of the 

quarter in which their 65th birthday occurred.

Death rates are constructed as: 

(1) DR(J)i  = D(J)i/ni

where D(J) is the number of deaths over the next J years after the quarter cohort i 

turns 65, and ni is the number of people from a cohort who lived until the quarter they 

turned 65. Standard errors on rates such as DR(J)i are typically defined by sampling 

variance.  In this case, there is no sampling variance in the numerator—we have a 

complete census of deaths for the cohort for the J years after their 65th birthday.  

Variance is introduced into the variable from two sources.  First, the numerator is the 

outcome from a random process.  Of ni people from the cohort, only a fraction will 

die.  Second, the denominator is based on a 7-percent sample.  If d(j)i is the actual 

true j-year death rate for cohort i after age 65, the variance of D(j)i is nid(j)i(1-d(j)i).  

Similarly, if there are N people in the U.S., the chance a person from cohort i is 

sampled in the Census is given by pi , and because the PUMS is a 7-percent random 

sample of the population, the number of people we estimate in the cohort is therefore 

ni = N i*0.07.  Since whether a sampled person is from cohort ni or not is the result of 

a Bernoulli process, Var[ni] = Npi(1-pi)/(0.07)2. Using a 1st-order Taylor’s Series 

expansion, the variance on DR(J)i is then defined as:

(1) Var[DR(J)i] =  d(j)i(1-d(j)i)/ni + d(j)i
2 Npi(1-pi)/(0.07)2/ni

2

A consistent estimate of this variance is obtained by using estimates of pi, ni and d(j)i.
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5. Results

In this section, we present basic difference-in-difference estimates, comparing 

the five-year mortality rates after age 65 for those born in the 1916:4 and 1917:1 

quarters.  To control for any difference in mortality for men generated by a quarter of 

birth effect, we use our first control group (men born one year preceding the year of 

the Notch) as comparison groups. In the first test, we examine the difference in 

cumulative mortality rates after age 65 for males from the 1916:4 and 1917:1 cohorts. 

There may be persistent differences in mortality between these two cohorts generated 

by their quarter of birth.  For example, we know that among the elderly, there are 

more deaths in the fourth quarter than in 1st quarter.  We also know that death rates 

increase with age.  Among the 1916:4 and 1917:1 cohorts, using mortality from age 

65:0, the older group is turning older at a worse time of year.  As the cohort ages, we 

may see above-average mortality for this group, solely due to an interaction between 

the quarter of birth and the age profile of mortality. To eliminate this type of bias, we 

can use the contrast in mortality between younger cohorts with 4th and 1st quarter 

births as a difference control group for this analysis.  Specifically, we start by using 

the difference in the five-year mortality rate between the 1915:4 and 1916:1 cohorts 

as a measure of the expected difference in mortality due to these seasonal factors.  

Because the five-year mortality rate is on roughly the same scale for the 

1915:4/1916:1 and 1916:4/1917:1 contrasts, we focus on differences in mortality.  

A graphical presentation of this estimate is presented in Figure 3.  In this 

figure, we graph the difference in cumulative mortality for the 1916:4 and 1917:1 

cohorts as well as the 1915:4 and 1916:1 groups.  Notice that this latter difference 
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tends to hover around zero for the 20 quarters after age 65.  In contrast, the difference 

in cumulative mortality for the Notch cohorts (1916:4–1917:1) grows steadily over 

time. 

Figure 3
Difference-in-Difference Estimates—Males
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The numeric results that correspond to the graphical presentation are reported 

in the top half of Table 5.  There is almost no difference in five-year mortality rates 

for the two pre-Notch cohorts and the difference-in-difference estimate again suggests 

that if anything, the 1916:4 cohort has higher mortality than the 1917:1 group.  The 

results in Table 5, although statistically imprecise, indicate that the older cohorts who 

received higher Social Security payments actually have a 0.0028 percentage point 

higher mortality rate than their younger, less wealthy cohorts. If the results in Table 1 

represent a causal relationship, the expected change in mortality should be -0.002 

percentage points – a 4 percent increase in income should produce about a -0.002 
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percentage point drop in mortality.  To increase the precision of the estimates in 

Table 5 we expand the study population so that we compare 1916:3 and 4 to 1917:1 

and 2 using the difference in mortality between 1915:3 and 4 and 1916:1 and 2 as the 

control group. We present these results in Table 6, but the difference-in-difference 

estimates in Table 6 are still not statistically significant. If we take the results in Table 

1 as our null hypothesis, we would expect the higher incomes generated by the Social 

Security notch to reduce mortality by .002. Although they have opposite signs, a 95 

percent confidence interval on the Table 1 estimate and the difference in difference 

estimate in Table 6 overlap.

Table 5
Difference in Difference Estimates, 

Impact of Notch on Five-Year Mortality Rates for Males

A: Males

4th Quarter
(1)

1st Quarter
(2)

Difference
(1) - (2)

(a) Notch (1916:4 and 1917:1) 0.1519
(0.0021)

0.1494
(0.0021)

0.0025
(0.0029)

(b) Pre-Notch (1915:4 and 1916:1) 0.1524
(0.0021)

0.1527
(0.0021)

-0.0003
(0.0029)

Difference
(a) - (b)

0.0028
(0.0042)

B: Females

4th Quarter
(1)

1st Quarter
(2)

Difference
(1) - (2)

(c) Notch (1916:4 and 1917:1) .0820
(.0012)

.0823
(.0012)

-.0003
(.0017)

(d) Pre-Notch (1915:4 and 1916:1) .0827
(.0012)

.0839
(.0012)

-0.0012
(.0017)

Difference
(c) - (d)

-0.0015
(0.0024)

Standard errors in parenthesis.
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As a check on our estimates, we can repeat the analysis from Figure 3 and the 

top halves of Tables 5 and 6 using female rather than male mortality rates.  As we 

noted previously, most women from these cohorts qualify for Social Security based 

on their husbands’ earnings.  Consequently, there should be little Notch-effect on 

Social Security income for women in the 1916:4 and 1917:1 cohorts—a result we 

verified above in Table 3.  If our difference in difference model is controlling for the 

secular differences in mortality that should be impacting the Notch cohorts, then we 

should see a small notch effect on mortality when we re-run the basic models using 

data for women.

Table 6
Difference in Difference Estimates, 

Impact of Notch on Five-Year Mortality Rates for Males

A: Males

3rd and 4th

Quarter
(1)

1st and 2nd

Quarter
(2)

Difference

(1) - (2)
(a) Notch (1916:3,4 and 1917:1,2) 0.1517

(0.0015)
0.1482

(0.0015)
0.0036

(0.0021)

(b) Pre-Notch (1915:3,4 and 1916:1,2) 0.1520
(0.0015)

0.1521
(0.0015)

-0.0001
(0.0021)

Difference
(a) - (b)

0.0037
(0.0029)

B: Females

3rd and 4th

Quarter
(1)

1st and 2nd

Quarter
(2)

Difference

 (1) - (2)
(c) Notch (1916:3,4 and 1917:1,2) 0.0820

(0.0009)
0.0819

(0.0009)
0.0001

(0.0012)
(d) Pre-Notch (1915:3,4 and 1916:1,2) 0.0820

(0.0009)
0.0835

(0.0009)
-0.0014
(0.0012)

Difference
(c) - (d)

0.0015
(0.0017)

Standard errors in parenthesis.
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In Figure 4, we present a graphical presentation of the basic difference in 

difference results using women from the 1917:1, 1916:4, 1916:1 and 1915:4 cohorts.  

In this graph, although women have lower mortality rates than men, we have kept the 

scale of the graph the same to allow a comparison with the results from Figure 3.  The 

solid line in the figure is the difference in quarterly cumulative mortality rates 

between the 1916:4 and 1917:1 cohorts.  In contrast to the results for males, for these 

cohorts, there is no systematic difference in mortality rates for these Notch cohorts –

the difference in mortality rates hovers around zero for the 20 quarter period.

Figure 4
Difference-in-Difference Estimates—Females
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In the bottom half of Table 5, we report the basic difference in difference 

estimates for 20-quarter mortality for females that corresponds to the graph in Figure 

4.  Notice that the difference in the 20-quarter mortality rate between the 1916:4 and 
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1917:1 cohorts is only four-tenths of a percent of the mortality rate for the 1916:4 

group.  The difference in difference estimate generated by using the pre-Notch 

difference of 1915:4 minus 1916:1 produces a small, negative and statistically 

insignificant Notch effect.  In Table 6, when we expand the cohorts to include half-

year samples, we find a statistically insignificant difference in difference estimate for 

women only 40 percent of the size of the result for males. 

As we mentioned above in Section 4, comparing the difference in mortality in 

the 1916:4 and 1917:1 cohorts with the difference in the 1915:4 and 1916:1 groups 

controls differences in mortality that are associated with quarter of birth but are 

persistent across birth cohorts.  There could however be differences in mortality 

between the 1916:4 and 1917:1 birth cohorts that are cohort specific.  To control for 

permanent differences in mortality associated with these quarters, we can use women 

from the 1916:4 and 1917:1 as a second comparison group.  In this case, because the 

mortality rates are larger for males than females, we compare differences in log 

mortality rates.

In Figure 5, we graphically illustrate this contrast.  The dashed line is the 

difference in cumulative log mortality rates, 1916:4 minus 1917:4, for females.  After 

the first quarter, there is a very small difference in cumulative log mortality rates for 

these women, with the difference bouncing around zero for the first 20 quarters past 

age 65.  The solid line represents the difference in cumulative log mortality for males 

over the same period and for the same cohorts.  We see a pronounced positive 

difference in log mortality with the 1916:4 cohort having higher mortality throughout 
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the entire period, suggesting once again that in contrast to the conventional wisdom, 

the higher income 1916:4 group, has higher mortality rates.

Figure 5
Difference in Ln of Cumulative Mortality Rates, 1916:4 minus 1917:1
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A numeric version of this analysis is contained in Table 7.  The top row of the 

table reports the 20 month (five-year) mortality rates starting from the quarter when 

the cohort turns 65.  If the higher incomes received by the 1916:4 cohorts lead to 

lower mortality, we should see a lower mortality rate for this group.  This is not the 

case.  The difference in log mortality rates is actually a positive 0.0164. The second 

row of the table reports results for women over the same time period. If our results 

were driven by some time-specific variation in mortality rates we would expect the 

data for women to show a similar pattern. It does not.  There is a slightly lower 

mortality rate in the fourth quarter and a difference-in-difference estimate suggests 

that the 1916:4 male cohort has a 2-percent higher mortality rate after age 65 than the 

1917:1 cohort.  However, recall that the elasticity of five-year with respect to income 
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in a single-equation model is about -0.388 and we estimate that the Notch elevated 

incomes of the 1916:1 cohort by about 4 percent over the 1917:1 group, so if the 

single-equation estimates are true, we would expect a coefficient of about -0.01552 

and the 95-percent confidence interval on this estimate would be (-0.0093,-0.0217).  

Given the standard error of 0.0096 on the difference-in-difference estimate of 0.0200, 

we can reject the hypothesis that the results in Tables 1 and 7 are statistically 

identical. 

Table 7
Difference in Difference Estimates, 
Impact of Notch on Mortality Rates

5 Year Mortality from Age 65, Women as Control Group

Before Notch After Notch

Born in 4th Q.
(1)

Born in 1st Q.
(2)

Log Difference
log(1) - log(2)

(a) Men born 
1916:4 or 1917:1

0.1519
(0.0021)

0.1494
(0.0021)

0.0164
(0.0076)

(b) Women born 
1916:4 or 1917:1

0.0820
(0.0021)

0.0823
(0.0012)

-0.0036
(0.0060)

Difference
(a) - (b)

0.0200
(0.0096)

Standard errors in parenthesis.

Mortality Rates are computed from the quarter each quarter-of-birth cohort turns 65 
and proceeding forward for 20 quarters. The cohort born in 1916:4 turns 65 in 1981:4. 
Their mortality rate is based upon the population as of January 1, 1982 and the count 
of deaths between January 1, 1982 and December 31, 1986. The 1917:1 cohort’s 
mortality rate is based upon the population on April 1, 1982 and mortality between 
April 1, 1982 and March 31, 1987. 

To increase the power of the test, we expand the cohorts by one quarter and 

compare mortality rates for 1916:3 and 1916:4 with 1917:1 and 1917:2.  This doubles 

the sample size and will decrease the standard errors by square root of 2.  The results 
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for these expanded samples, reported in Table 8, are nearly identical but more precise 

than the estimates in Table 7. 

Table 8
Difference in Difference Estimates, 
Impact of Notch on Mortality Rates

5 Year Mortality from Age 65, Women as Control Group

Before Notch After Notch

Born in Q. 3,4
(1)

Born in Q. 1,2
(2)

Log Difference
log(1) - log(2)

(a) Men born 
1916:3,4 or 1917:1,2

0.1517
(0.0012)

0.1482
(0.0012)

0.0239
(0.0053)

(b) Women born 
1916:3,4 or 1917:1,2

0.0820
(0.0009)

0.0819
(0.0009)

0.0012
(0.0042)

Difference
(a) - (b)

0.0227
(0.0067)

Standard errors in parenthesis. Rates calculated as in Table 6, referenced from older 
quarter-of-birth (16.3 and 17.1) for each column

6. Why Are Mortality Rates Higher for Pre-Notch Group?

The results in the previous section are rather striking—although the 1916 birth 

cohort receives larger Social Security payments than the 1917 group, the point 

estimate of five-year mortality for the older group, adjusted for the slight difference in 

age, is larger.  This result is in stark contrast to the conventional wisdom.  In 

particular, our results differ from those in Case (2001) who finds improved health 

from higher pension in South Africa, although that experiment provided a much 

larger income change to a much poorer population than the one we consider here.

Our results are, however, not alone in the literature.  Eibner and Evans (2001) 

find that much of the impact of high income on mortality is actually driven by a 
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person’s relative position in their reference group’s income distribution.  Ruhm 

(2000) finds that state-specific total mortality and eight of the ten cause-specific 

mortality rates are pro-cyclic.  The lone death category that has a statistically 

significant counter-cyclic relationship is suicides. In this work, the level of economic 

activity is measured as the unemployment rate and even though a small fraction of 

elderly work, Ruhm also claims a pro-cyclic relationship for those aged 65 and over.  

Ruhm finds some evidence that poor health habits such as smoking rise but health 

investments such as routine exams decline when the economy improves. 

Our first thought was that changes in some health habit such as smoking rates 

could explain our counter-intuitive result.  Smoking rates are negatively related to 

incomes (Evans, Ringel and Stech, 1999), but in this population, as we demonstrate 

below, smoking quit rates are negatively related to income.  Smoking cessation, even 

at advanced ages, has tremendous health benefits.  According to the 1990 Surgeon 

General’s Report on smoking, male smokers aged 65–69 have mortality rates that are 

three times higher than those who have never smoked.  In this age group, former 

smokers who have been off cigarettes six to nine years have a mortality rate that is 40 

percent lower than current smokers (Table 7, page 95).  In the end however, we found 

that the impact of higher incomes on smoking rates was not large enough to explain 

the difference in mortality across the birth cohorts.  To demonstrate this point, we 

examined data on complete smoking histories that is available as part of the Tobacco 

Use Supplements (CPS/TUS) to the regular September 1992, January 1993 and May 

1993 monthly CPS surveys.  These three samples are designed to be pooled together 

to form one large data set on smoking histories.  Limiting the sample to 948 males 
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aged 65 who smoked five-year prior to the CPS/TUS, we find that 25 percent quit 

over the next five years.  In a linear probability model, we regressed this outcome on 

controls for marital status, race, ethnicity, education, the month of the survey and log 

income.  The coefficient on log income was -0.055 with a t-statistic of -2.5, 

suggesting that an eight percent increase in income will reduce five-year smoking quit 

rates by .44 percentage points. Given this modest change in the smoking rate, our 

back of the envelope calculation suggests that a lower smoking quit rate induced by 

higher Social Security payment can explain about 5 percent of the higher mortality 

rate among the 1916 birth cohort.

One area that we thought could possibly explain the results noted above is 

changing social networks.  In recent years a growing literature has demonstrated a 

link between social networks and mortality with those less connected to their 

community, friends, relatives or coworkers experiencing a higher mortality rate.  This 

literature is reviewed in Putnam (2000).  The first empirical evidence for this 

relationship was generated from mortality follow-up surveys from small geographic 

areas like Alameda County, California and Tecumseh, Michigan.  These surveys 

tracked a random sample of people over time, collecting important demographic data 

at baseline, plus measures of the social network such as church and group 

membership and contact with friends and relatives (Berkman and Syme, 1979; 

Blazer, 1982; House et al., 1982; Berkman, 1995 and 2000; Cohen et al., 1997; 

Colantonio et al., 1993; Zuckerman et al., 1984).  Berkman and Syme (1979) for 

example found that the age-adjusted death rates for those most isolated were 2.3 to 

2.8 times that of others.  This relationship was found to be independent of self-
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reported health status, socioeconomic status and health practices.  The mortality 

impacts for the elderly are particularly important.  Seeman et al. (1987) found that 

social ties remain a significant predictor of mortality risk even for those aged 70 and 

older.  Their results suggest that for the elderly, contacts with friends and/or relatives 

are the most important ties. The study by Blazer (1982) of 30-month mortality in a 

sample of persons aged 65 years or older at baseline found that both a general lack of 

social ties with children and siblings as well as low perceived support from one’s 

social network were each independently associated with increased mortality risk.  

Given this literature, we looked for ways in which more income may reduce 

social networks.  For example, many seniors move from their lifelong homes after the 

age of 65.  If this is positively correlated with income, the 1916 cohorts may be more 

likely to move than younger groups.  Migration may have many benefits, but the 

movement away from a known social network may negatively impact health.  We 

could, however, find no evidence that the Notch impacted mobility.  In the 1990 

Census, because the census is conducted on the first day of the second quarter, three-

quarters of the people 72 were born in 1917 and three-quarters of those aged 73 were 

born in 1916.  In these age groups, nearly all who will receive Social Security have 

begun to claim benefits, so we can safely assume that the roughly 10 percent of the 

population without Social Security income in the Census are people not eligible.  

Looking at the difference in 5-year migration rates between 73- and 72-year-olds with 

Social Security and comparing this to the difference for those outside of the system, 

we find no “Notch” impact on migration rates. 
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In a related paper, Englehardt, Gruber and Perry (2002) use the Notch as an 

instrument for OASI payments in models that related whether seniors live 

independently.  The authors find that living independently is a normal good and the 

elasticity of living independently given a change in OASI payments is -0.40.  In this 

case, if living independently detracts from health, then the higher rates of living 

independently we would expect to find among the older yet higher-income cohorts 

could explain part of our results.  

Another area where we might find some explanation for our results is in the 

post-retirement careers of the Notch generation.  Research by others suggests that the 

Notch did not alter the pre-retirement age behavior of affected populations, but a 

change in retirement income might be expected to alter post-retirement behavior. In 

particular, because of lower Social Security benefits, we might expect the Notch 

cohorts (those born after 1917) to work more than older groups.  As Lumsdaine and 

Mitchell (1999) suggest in their survey of the literature on retirement, the behavior of 

older Americans is increasingly complex. Older workers may leave the full-time labor 

force, but return as part-time workers, often working in different industries, and 

generally at a reduced wage from their primary career employment. This less intense 

form of labor force participation is aptly characterized as post-career employment.  

This work could have positive health benefits if the work keeps the seniors connected 

to the community and reduces social isolation.

We would expect to only find an impact of the Notch on part-time work.  

During the period for which we present mortality data individuals at or above age 65 

could claim Social Security benefits and earn up to a specified amount without 
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incurring any reduction in the OASI benefits. Once the earnings threshold was 

crossed, however, the reduction in benefits was severe. Benefits were reduced by $1 

for every $2 earned. These penalties were in effect until age 70 (72 before 1982, the 

penalty was reduced to $1 for every $3 earned in 1990). The penalty threshold 

increased in both nominal and real terms during the relevant time period, from $5,000 

in 1980 to $9,720 in 1991, but even this higher level is less than half average full time 

earnings. The Social Security system discouraged full-time employment for OASI 

recipients, but not part-time employment, if the compensation was low enough. One 

possible response to the Notch is to increase part-time employment while receiving 

retirement benefits. 

To investigate the possibility of a post-retirement labor force response to the 

Notch, we began by constructing a balanced data set of labor force information for 

those born between 1909 and 1920. Our source was the March CPS for years when 

the year-to-year cohorts were between the ages of 56 and 70.  Only the CPS offers a 

large sample of the appropriate ages with earning and labor force status reported in a 

consistent manner. As discussed above, the main drawback to the use of the CPS is 

the poor identification of birth year. Since it is calendar year that changes the 

applicable benefit formula, this is a serious problem. We therefore define the Notch to 

equal 1 for people born in 1917 after they reach age 65.  Since retirement prior to age 

65 has little impact on Social Security payments, there should be little labor supply 

effects of the Notch.  To control for the noisy identification of birth cohorts, we let 

the value equal 0.2 for the 1916 birth cohort.
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With this data, we can construct an indicator that equals 1 if a person worked 

in a particular age/year cell.  However, hours worked last week is only available 

starting in 1976 so to preserve the balance in the panel, we are forced to restrict our 

attention to people from the 1913–1920 birth cohorts when they were 62–70 years of 

age.  We then construct two outcomes: an indicator for “worked” and hours worked 

per year.  We regress this on year of birth and age effects, controls for education, 

race, and marital status, plus an indicator for cohorts impacted by the Notch.  This 

model is similar in spirit and specification to that of Krueger and Pischke, with the 

primary difference being our use of balanced cohort samples and the definition of the 

treatment effect.

The results of this exercise are reported in Table 9.  In the first column, 

workers have a 3 percentage point higher labor force participation rate than those 

from earlier birth after age 65.  Breaking the treatment effect up into different age 

groups, we find in the next column that all of the difference is produced by a large 

increase in work after age 67.  In the final two columns of the table, we continue the 

analysis using hours worked as the dependent variable. The same pattern is apparent.  

The Notch has increased work after age 65 for those born 1917 and later and all of 

this increase is concentrated in the post 67 age range. Can this higher level of work at 

ages 68–70 explain the relative fall in mortality for the 1917 cohort relative to 1916?  

The timing is consistent with Figure 3. Notice that the cumulative difference in 

mortality between the 1916 and 1917 cohorts does not start to appear until after age 

68. Table 9 provides empirical support for the hypothesis that the size of Social 
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Security benefits do alter labor supply among the elderly. They also offer an 

explanation for the counter-intuitive results in Tables 5–7.

Table 9
OLS Estimates, the Impact of the Notch on Post-65 Labor Supply

Men Born 1913-1920, Aged 62-70,
March CPS

Independent Variables Worked 
last year

Worked 
last year

Hours 
last year

Hours 
last year

Notch effects

1917-20 Cohorts,
aged 65+

0.0286
(0.0099)

69.50
(19.66)

1917-20 Cohorts,
aged 65-67

0.0072
(0.0109)

35.42
(21.62)

1917-20 Cohorts,
aged 68-70

0.0518
(0.0113)

109.13
(22.53)

R2 0.120 0.120 0.163 0.163

Mean of dependent variable 0.456 0.456 738 738

Mean of dependent variable, age 
68-70 (N=12,135)

0.287 0.287 355 355

Both models control for education, race, marital status, year of birth and age.

7. Conclusion

Heading into retirement, men born in the last part of 1916 looked similar in 

many respects to those born in the first half of 1917.  They had similar incomes, labor 

force participation rates and intensity of work.  Once they reached retirement age 

however, one group was rewarded with substantially higher Social Security payments 

than the other.  We use this variation to examine the potential impact of income on 

mortality in an elderly population.  To be clear, our research design answers a very 

narrow question: will mortality be impacted by transferring more income to an elderly 

population?  Our results are somewhat counterintuitive: the 1916 birth cohort which 
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received more income in Social Security benefits ends up to have higher mortality 

than the lower earning 1917 birth cohort.  We suggest that these results could be 

driven by changes in labor supply by the older cohort.  The lower incomes received 

by the Notch babies encouraged them to have more post-retirement part-time work.  

In fact, our results suggest that this cohort is five percentage points more likely to 

work during ages 68–70 than older cohorts.  A number of researchers have suggested 

that among the elderly, social isolation is an important cofactor in mortality.  If part-

time work keeps the elderly engaged and helps prevent social isolation, then the 

increased part-time work may have reduced mortality. 

Do higher incomes reduce mortality?  These results suggest that in this 

particular case, the source of the income is probably as important as the amount of 

income.  Here, the lower incomes for the 1917 cohort seem to have encouraged an 

activity that is in the end healthy.  We might then expect very different results from 

an “income effect” generated by a wage change for example.  This type of income 

change is particular to a specific population so the results cannot be readily applied to 

other groups.  But as we note in the introduction, this is not an uninteresting group or 

policy consideration.  The Federal government routinely proposes changes to social 

insurance programs that resemble the Notch experiment in magnitude of dollars.  
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CHAPTER TWO

THE 1918 INFLUENZA EPIDEMIC AND LATER-LIFE MORTALITY

1. Introduction

Inter-generational transfers of socioeconomic status are a topic of continuing 

interest in the social sciences.  Researchers from a variety of disciplines have 

demonstrated that a variety of economic outcomes such as earnings, income, wealth, 

education, and occupations are correlated across generations.  As health economists 

developed the idea of health capital it became apparent that inter-generational 

transfers of health are also plausible through genetic endowment or through 

expenditure on children’s health through immunization, nutrition, good health habits, 

and public health expenditure (Grossman, 1972; Smith, 2000).  In the last 20 years, 

medical researchers have begun to consider another possible channel for the 

intergenerational transfer of health. (Barker and Osmond 1986; Ben-Shlomo et al., 

1991; Barker et al., 2001).  This is neither genetic, nor a parent purchasing improved 

health for their children; it is the mother’s health status directly affecting the child’s 

health status.  The theory suggests that the mother’s health changes the child’s in 

utero development in ways that may be difficult or impossible to alter later in life. 

This theory is most closely associated with the work of D.J.P. Barker, and is referred 

to as (by other researchers) the Barker hypothesis.

Evidence in support of this theory falls into four broad groups.  First, there are 

epidemiologic studies showing that birth in geographic areas with poor health 

indicators predict high incidences of cardiovascular and other chronic diseases late in 
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life. These same studies do not show similar elevated susceptibility to other major 

disease groups, such as cancer.  Second, perinatal and neonatal studies that show 

maternal deprivation is associated with underdevelopment of the vascular, pulmonary 

and endocrine systems of infants.  Third, studies of older adults which document 

higher rates of abnormal vascular, pulmonary and endocrine conditions in individuals 

born in regions with low maternal health indicators.  Fourth, animal studies which 

follow offspring from fetus through youth to adulthood, directly relating in utero

conditions to the development of chronic disease in old age.

There are at present no longitudinal human medical studies that replicate the 

animal studies; that is, no researcher has conclusively demonstrated that degenerative 

diseases in later life occur in individuals with underdeveloped systems as infants.  

This is not surprising given the recent vintage of the line of research; the babies in the 

first infant studies are barely twenty, but it has meant that the Barker hypothesis is 

still controversial within the medical profession. Critics contend the relationship 

between infant development and chronic disease is an association, but not a causal 

relationship. The confounding variable is poverty. Poor regions have poor health 

indicators and parents pass on poor health habits and poverty to their children, so 

epidemiology cannot prove the hypothesis. Fetal and neonatal underdevelopment may 

not be persistent, so perinatology cannot furnish definitive studies. Animal models are 

not persuasive since human behavior is adaptive in ways animal behavior is not. The 

Barker hypothesis remains controversial; there is substantial evidence for it, but no 

definitive proof. (The Lancet, 2001)
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It is hard to imagine an ethical means of testing the hypothesis using the tools 

of medical research. We cannot randomly assign women to deprived and enriched 

environments during pregnancy and track their children’s mortality without 

intervention. This has led to interest in other possible tests of the hypothesis, a field 

experiment which would constitute a definitive test, as the British Medical Journal 

has put it, “an ordeal”10 (Susser, 1999).  Similarly, health economists have begun to 

consider how health shocks might enable us to devise econometric tests of the Barker 

hypothesis. The endogeneity of health status is a problem similar to many in 

empirical microeconomics, trying to isolate the impact of one variable in a complex 

social and economic environment. 

Establishing Barker’s theory has important implications for economists 

interested in development and intergenerational transfers. Under the Barker 

hypothesis, there can be no clear distinction between one generation’s welfare and 

that of the next. An investment in the current adult generation becomes an investment 

in their children. A Barker effect of sufficient magnitude could mean that the cheapest 

means of investing in children becomes investing in their parents. 

Recently, an economist (Almond, 2003) has used the 1918 influenza epidemic 

as a quasi-experiment to identify the relationship between maternal health and various 

social and health outcomes among birth cohorts from 1915–1920. Health indicators in 

previous research have been chronic, so it is not possible to separate the effects of the 

health environment from other persistent regional differences. (Barker, 1994) The flu 

                                               

10 The phrase refers to a statement of Galileo who was arguing against scientists use 
of accumulated suggestive results as proof.
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epidemic was a very specific event that raised mortality rates over a 6 to 9 month 

period (Frost, 1920). The rate of influenza mortality also differed substantially from 

place to place (Mortality Statistics, 1918). Do cohorts born in areas that suffered more 

from the flu show worse outcomes than do those from states that suffered less?  

Almond concludes that both time series and cross-sectional evidence is consistent 

with the Barker hypothesis. This appears to lend strong support to the theory, and to 

extend it by estimating the impact of a particular acute health shock on the next 

generation’s health outcomes.  If his conclusions are correct, Almond has made an 

important contribution, not only to health economics, but also to establishing the 

value of health economics for medical research.

The influenza epidemic of 1918 was unlike any other before or since. For both 

the world and the United States influenza was a minor infectious disease problem 

before 1918. Cases of influenza were not tabulated separately by the Public Health 

Service (Beveridge, 1977). In 1918, it suddenly, and for reasons which are still not 

completely clear, became a severe, life-threatening illness for all ages and classes 

(Reid and Taubenberger, 2003; Beveridge, 1977; Kolata, 1999; Niall, 2002). Because 

it came as a shock, the epidemic had no effect on the decision to begin a pregnancy 

for couples who conceived before the fourth quarter of 1918, and because most 

pregnant women survived and delivered viable offspring, a comparison with 

preceding cohorts approximates random assignment between treatment (influenza 

exposed in utero) and control (born before the epidemic). We discuss the influenza 

epidemic in more detail in Section 3. 
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The other health shock that has been proposed as an ‘ordeal’ or a quasi-

experiment to identify a Barker effect is the Dutch famine winter of 1944–1945 (Stein 

et al., 1975). This was a much more severe and long lasting shock to health, but the 

population sizes are much smaller, and the exposed cohort has not yet begun to 

experience substantial mortality from chronic diseases. (Stein et al., 1975; Roseboom, 

2000, 2001).

The current chapter extends Almond’s analysis using a census of deaths from 

a restricted-use version of the National Mortality Detail Files (NMDF) of the United 

States Center for Vital Statistics. Almond’s conclusions about a Barker effect on 

mortality are limited by his reliance on census data. By combining census data with 

the NMDF, we are able to calculate mortality rates with considerable precision, and 

test the extent to which the ‘flu-baby’ cohort experienced elevated mortality rates due 

to maternal exposure to influenza. 

Through the generous co-operation of the National Center for Health Statistics 

we have had access to the NMDF between 1979 and 1990. Observations in the 

NMDF include state of birth, month and year of birth, and month and year of death. 

To calculate mortality rates we must relate the death counts to population size at some 

reference date. This is accomplished by using the 1980 Integrated Public Use Micro-

Samples, a 7% sample of the United States’ 1980 Census. The 1980 Census includes 

age, quarter of birth, and state of birth, allowing us to merge these two data sets to 

construct mortality rates for state of birth by quarterly cohort.  The precision this 

gives in observing the ‘flu babies’ and their adjacent cohorts’ mortality is the 

principal contribution of this paper. 
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The 1980s’ mortality rates are combined with mortality rates from the 1919 

Mortality Statistics of the United States (Census Bureau, 1920) which summarized 

the data published in the first 5 years of regular publication, 1915–1919. In this way 

we can potentially investigate time series and cross sectional variation in the 

likelihood of exposure to influenza. 

2. The Barker Hypothesis 

Until the 1980s there had been little consideration of the role in utero

experience might play in the rates of heart disease and other chronic degenerative 

diseases in the developed world. That this is no longer the case is principally due to 

the work of David J. P. Barker and his collaborators. Barker’s own account of his 

work (Barker, 1998) is that insults to health in utero result in poor development of 

important physiological systems, notably the vascular. These systems are far less 

plastic in the child than they are in the fetus, and still less plastic in the adult. Thus, 

early life “programming” (his term) can have consequences late in life when these 

systems become less robust. No person’s vascular system works as well at age 65 as it 

did at age 25; those who have poor vascular (or lung, or endocrine) development fall 

below the threshold necessary for proper physiologic function and become ill or die. 

The theory fits nicely into the health capital framework developed by Grossman 

(1972); some individuals start with a lower endowment of health capital due to their 

mother’s health status. However, while Grossman stresses that individuals can invest 

in their health, Barker believes that poor programming is difficult to offset after the 

developmental window has closed.
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The biological basis for a Barker effect is centered in the importance of 

programming. The programming effect that Barker outlines suggest that when, due to 

under-nutrition or placental abnormality the fetus cannot fully develop at the 

appropriate time, then the organ will be mal-formed and will remain so throughout 

life. Under-nutrition of the fetus may be the result of restricted maternal nutrient 

intake (Godfrey 2001), or it may result from illness interfering with nutrients 

available to the fetus (Gewold 1983). Barker cites evidence that undernourished 

babies show differences in liver metabolism, endocrine development, and changes in 

the structure of the heart, blood vessels and kidneys. Irving et al. (2000) find 

serological evidence of influenza exposure in pregnant women’s blood samples is 

associated with an increased rate of complications in pregnancy, thus connecting the 

Barker hypothesis with exposure to influenza. Barker (1998) shows that in the early 

20th century, young women in London had unusually low rates of infectious diseases, 

and that their children have unusually low rates of cardiovascular disease in the 

1980’s (pp. 172-175). The effects are summarized by Barker (1998 p. 145):

“A mother’s ablility to nourish her baby ... has little effect on 

the baby’s size at birth, but nevertheless programs the baby. The fetus 

adapts to undernutrition by changing its metabolism, altering its 

production of hormones and the sensitivity of tissues to them, 

redistributing its blood flow and slowing its growth rate....Adaptations 

to undernutrition that occur during development can permanently alter 

the structure and function of the body.”

Evolutionary biologists find Barker’s ideas plausible. Since it is the first 40–

50 years of life when humans reproduce and raise offspring to adulthood, survival of 

individuals beyond that point is not of great significance for survival of a line of 
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descent (Diamond, 1997).  It would confer an evolutionary advantage if, during 

periods of scarcity, mothers can protect their welfare by stinting on development of 

the fetus in a way that does not reduce the offspring’s fitness during its own period of 

reproductive importance. What happens late in life is less important for transmitting 

genetic material to subsequent generations. There are now numerous animal studies 

which confirm that deprivation during pregnancy affects the offspring’s health in later 

life.  Robinson et al. (2001) summarize these results. Langley-Evans et al. (1994A, 

1994B, 1995, 1997) and Gardner et al. (1997, 1998) have published a number of 

studies showing higher blood pressure and increased dyslipidemia in rats whose 

mothers faced restricted protein intake. Similar findings exist for sheep (Hoet and 

Hanson, 1999). The debate continues over whether this effect is quantitatively 

important in humans.

Barker believes that the effect is very large. He asserts (Barker, 1998, 2001) 

that early life programming accounts for the rising and then falling rates of heart 

disease in the developed world. Studies such as the Framingham study that attribute 

the falling incidence of heart disease to lifestyle changes11 overestimate lifestyle 

effects, because they omit the influence of rising levels of maternal health on the next 

generation (Barker, 1998, 2001; Azambuja, 2002). As living standards rose and more 

people lived to old age, the rate of chronic disease rose because maternal health was 

poor, and then began to fall because the next generation was in a better position to 

nourish their babies.(Barker, 2001; Azambuja, 2002)

                                               

11 Generally, age-specific rates of heart disease are estimated to have declined 
approximately 40% over the last 30 years. Barker believes this may be largely due to 
the effects of fetal programming. (See Barker, 1998, Chapter 4.)
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Because statistical data on maternal well being in the early 20th century is in 

short supply, Barker’s original research associated late in life death rates with infant 

mortality rates (Barker, 1986).  Barker asserts that infant mortality is a proxy for 

maternal health, not simply a proxy for social conditions. This is a controversial point

in itself and critics of Barker’s work feel this is an unproven assertion (The Lancet, 

2001; Susser, 1999). Even if infant mortality rates measure maternal health to some 

extent, that is clearly not all they measure, and disease vectors such as crowding, 

unsanitary water supplies, environmental toxins, restricted or low quality food 

supplies, rather than maternal health, might explain the association between infant 

and adult mortality.  Barker considers this possibility, but rejects it on the grounds 

that later life mortality effects are concentrated in diseases which represent the 

breakdown of physiologic systems. Other diseases of mature adulthood, such as 

cancer, are linked to lifestyle and environmental factors, but are not associated with 

early life conditions (Barker, 1998).  The possibility remains that it is neonatal rather 

than perinatal environment that provides the link, but at that point we are more than 

half-way to accepting Barker’s larger point about the connection between health in 

later life and early life programming.

Almond’s claim of a strong association between the influenza epidemic and 

chronic disease in later life would, if confirmed, be a major contribution. Because the 

influenza epidemic was an acute shock distributed across the socioeconomic 

spectrum, establishing such a connection would imply that not only was maternal 

health an important variable for predicting later life mortality; short term alterations 

in maternal health have quantitatively important effects.
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As noted above, the Barker hypothesis is largely consistent with the models 

developed by health economists. In the health capital model originally proposed by 

Grossman (1972) and recently restated in Smith (2000), an individual survives until 

their stock of health falls below a critical level. Some individuals are born with a 

greater stock of health than others, some individuals receive greater health investment 

by their parents during childhood, and all individuals try as adults to achieve an 

optimal combination of health, wealth and consumption. Ceteris paribus those with 

higher levels of health endowment will tend to live longer. Barker adds another path 

by which parents can influence their children’s health. Previously, the endowment 

was either fixed (genetic) or immediately observable (smoking while pregnant, taking 

a child for immunization). Barker adds a pathway that is latent for fifty or sixty years, 

but that, unlike the genetic component, is alterable both by giving individuals better 

information and by social policies that affect the health status of pregnant women. 

3. The Great Influenza Epidemic

There is a consensus on the epidemiology of the great influenza epidemic in 

the United States (Kolata, 1999).  It begins in Boston at the very end of August 1918 

with a handful of cases among some recently arrived sailors. It spread through Boston 

and to a nearby army camp by early September.  After that, there is little variation in 

the time at which the illness strikes different parts of the country (Kolata, 1999). 

October 1918 is the peak month for deaths in 21 of the 30 states reporting data from 

1918.12  November is the peak month for the remaining states. In reporting states the 

                                               

12 Six states’ peak month was November, three states’ peak month was December. Of 
the states with peaks after October, two had high mortality rates, three had low 
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epidemic was responsible for over 500,000 deaths in an eight-month period, 21 

percent of all deaths recorded during these months. Perhaps the most unusual feature 

of the epidemic is the large number of healthy young and middle-aged adults who 

died. Mortality rates were as high for those aged 20–29 as those under 1 or over 70 

(Jordan, 1927).  The disease seemed to particularly single out the healthiest, most 

robust young people, this according to four of the most prominent physicians in 

America, who had been dispatched by the surgeon general to investigate the outbreak 

in Boston. This included W.H. Welch, a founding faculty member of Johns Hopkins 

Medical School and the pre-eminent pathologist of his time. When Welch began his 

first autopsy he was stunned by the appearance of the cadaver’s lungs and remarked, 

“This must be some new kind of infection or plague.” (quoted in Kolata, 1999). A 

disease that shocked Welch must be considered an unforeseen shock to the general 

public.

There is no other documented case of an influenza epidemic with a similar 

mortality pattern (Kolata, 1999). While the onset was sudden, and the peak realized in 

October (see Figure 6), deaths from influenza did not fall back to their pre-1918 

levels for several years, and another smaller epidemic occurred in 1920 (PHR, 3-12-

1920). This is one reason we compare the ‘flu-babies’ to preceding, not succeeding 

cohorts. Also, in most epidemics the poor and those in urban areas suffer higher death 

rates than the general population during an epidemic caused by a contagious virus, 

but this was not true of the 1918 influenza epidemic. Mortality rates were higher in 

                                                                                                                                     

mortality rates, and four were on neither the high nor low list. Eight are west of the 
Mississippi River. (Mortality Statistics, 1918, 1919)
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rural areas than in cities, and African Americans suffered less mortality from the 

disease than Caucasians (MS 1919; Frost 1920). 

Figure 6 
'Excess Mortality' from Influenza—Fall 1918 by Week
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A puzzling aspect of the pandemic is that it followed closely upon a mild 

influenza epidemic which occurred in the spring of 1918, but which did not involve 

substantial mortality (Niall 2002; Patterson 1991). Recent research suggests that the 

two epidemics may be related, but that between the spring and fall of 1918 the virus 

underwent a genetic shift, possibly by exchanging DNA with an avian influenza 

(Reid and Taubenberger, 2003). However, exposure to the spring virus does not 

appear to have conferred immunity, and the cause of the virulence, especially among 

young adults, remains an enigma.

Unfortunately, there is little direct evidence on the neonatal health of 

survivors in the birth cohort exposed to influenza in utero. There is also some 



67

controversy over whether birth weight and Barker effects are closely related (Barker 

1998) and, the circumstances under which birth weight is properly used as an index of 

fetal health (Wilcox 2001). Nevertheless, it is the only measure of the fetal health of 

survivors we are likely to develop for this cohort. Mortality rates are high for this 

group (BS 1918), and Englund (2003) documents maternal and infant morbidity from 

modern influenza, but the epidemic predated any systematic data collection on 

newborn health indicators. Steckel (1999) cites series on birth weights for 6 European 

and American cities, but none of the American cities’ data include the 1915-1920 

period. Data for the European cities (Dublin, Edinburgh, Vienna) shows a local 

minimum at about the right time period, but since World War I was also affecting 

European food supplies, it is hard to draw conclusions about the impact of influenza. 

Birth weight data gathered from hospital records at this period also suffers from 

changing selection bias. Wealthier families tended to prefer home deliveries, but the 

fraction doing so was shrinking with the spread of scientific medicine. There is no 

good source of evidence on the direct effects of the epidemic upon birth weights. 

As a general rule episodic illnesses are not believed to have much effect on 

newborn health in the developed world (Hartert 2003). They have, however, been 

shown to have an influence in the contemporary developing world, which may be a 

more relevant comparison for the 1918-1919 time period in the United 

States.(Spencer 2003) Also, the 1918 influenza epidemic was far more virulent than 

other episodic illnesses, and it is well known that children suffer from low birth 

weight when exposed to chronic disease. Malaria has been shown to reduce birth 

weight in a number of studies (Spencer 2003), and children born in the wet season in 
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Gambia have been shown to be stunted compared to those born during the dry season. 

The wet season is known as the high-disease portion of the year (Moore 1997).The 

best documented developmental disorder associated with influenza is neurological 

impairment, especially Schizophrenia (Wright 1995). This is associated not only with 

the 1918 pandemic, but later, less severe outbreaks as well (Wright 1995). It is also 

associated with low birth weight (Kunugi 2001).While the evidence we have is 

fragmentary and only indirectly relevant it points toward a relatively unhealthy group 

of newborns in the 1918.4-191.3 time period.

While it is clear that the epidemic did not affect the whole country equally, 

how to measure the severity of the epidemic for the purpose of testing the Barker 

hypothesis is much less clear. The only reliable data for most of the country is found 

in “Mortality Statistics of the United States.” Thirty states report mortality statistics 

for 1918, twenty-five report for the all five years 1915–1919. We want to measure the 

effect of the influenza epidemic upon fetal health, or at least, infant health, but it was 

not deceased women who bore children, nor is it deceased infants who die of heart 

disease seventy years later. When we use mortality rates to draw conclusions about 

the impact of a particular health event upon the living we must exercise caution to 

avoid making serious errors of interpretation. For acute conditions such as influenza, 

epidemiologists decompose mortality rates into two components; an incidence rate 

and a case fatality rate which when multiplied together produce the mortality rate 

(Frost, 1920). Whether infant, adult or general mortality is used as a measure of 

influenza’s intensity, it is only variation in the incidence rate which measures the 

likelihood of a survivor’s exposure. In the extreme case where incidence rates are 
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constant but case fatality rates are high and variable, survivors from high mortality 

states may have a lower rate of exposure than those from low mortality states.

Consider the following example for an arbitrary disease: incidence rates 

across two areas for all age groups are constant at 40%, case fatality rates for the 

target population are either 25% (in area X) or 50% (in area Y). Thus, the mortality 

rate in X is 10%, in Y, 20%. How many of the survivors were exposed? In area X, it 

is (.4-.1)/(1-.1) = .33. In area Y, it is (.4-.2)/(1-.2) = .25. If area Y experiences higher 

later-life mortality, it is not because its inhabitants were more likely to be exposed. 

The relevance of this example to the case of influenza is this: while incidence may 

not be correlated with chronic health conditions or socioeconomic status, case fatality 

is more likely to exhibit such correlation. Those in poor health are more vulnerable to 

health shocks. (Grossman, 1972) Empirical evidence for this includes the relatively 

low incidence, but higher case fatality of African-Americans (Frost, 1920).

4. Methods

Using the influenza epidemic to test for a Barker effect will require a dataset 

with health variables from the time of the epidemic, mortality experience at a point 

where chronic disease mortality is substantial, and information on sufficient 

covariates to control for potential confounders. No single data source contains all 

three types of information. Accordingly, we combine data from several sources to 

create our analytic data set. As the design of the data set determined the econometric 

specification, we begin by describing the data sources. Next we develop our 

estimation strategy, and then discuss interpretation of the chosen variables.
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4.1 Data Sources

As outlined in the previous chapter, merging restricted use data from the 

National Mortality Detail Files (NMDF) with the 1980 Census Public Use Micro-

Samples allows us to construct mortality rates by state for quarterly birth cohorts. An 

advantage of this approach is that it is based upon a census of deaths occurring in the 

United States between 1979 and 1989, not the experience of a sample population. 

One disadvantage is the absence of individual-level variation; we cannot match a 

death back to a particular individual in the census. When compared to available 

micro-level data sets, however, the cohort-based analysis is superior for two reasons 

beyond the size of the population covered and the completeness of the coverage. Most 

importantly, death and birth are precisely observed; we have the birth month and 

death month for each individual. We also have state of birth provided from physician 

records, or by next of kin. Second, because the NMDF is drawn from the information 

on death certificates we avoid issues of attrition. There is a high degree of confidence 

that the information is complete and accurately recorded. The NDMF is restricted to 

those who die in the United States. Since our interest is those born in the United 

States and emigration has been minimal, the NDMF is nearly ideal as a source of 

death information.

Use of the NDMF forces us to take a cohort-based approach. The NDMF is a 

census of deaths. It does not provide information on the population in which the 

deaths occurred. To develop mortality rates we need a census of the U.S. population 

at a point in time. The 1980 Census is preferred because it is the census when the 
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relevant birth cohorts attained the age of sixty and the last to identify respondents’ 

quarter of birth.  Because we do not need geographic identification beyond the state 

of birth, we can use the 5 percent PUMS sample and two additional 1 percent PUMS 

samples that differ only in their level of geographic identification. Thus, our cohort 

sizes are based upon a 7 percent sample of the U.S. population. By merging the death 

counts from the NMDF with the population estimates from the 1980 PUMS we 

construct mortality rates for each state and quarter of birth cohort in every quarter 

between January 1, 1980 and December 31, 1989.

The third type of information we desire is data on exposure to the influenza 

epidemic. The ideal data source would provide the number of live births in each state 

whose mothers had contracted influenza. However, at this time the vital statistics of 

the United States consisted of birth and death statistics for only a portion of the states. 

There was no ongoing collection of incidence data of any kind, and certainly none 

focused on perinatal health experience. In studies of the Barker hypothesis, mortality 

data is typically used as a proxy for incidence, which we have already noted 

introduces a possible source of bias, a subject to which we return in more detail 

below. The alternative is to simply use birth during or shortly after the influenza 

epidemic as the proxy variable. In this case, the lack of mortality data is not a 

limitation. We will present results based upon both approaches. Were we to develop 

negative results using only the time series approach, the natural question would be 

whether a combination of cross-sectional and time series variation would produce a 

different conclusion. Our data on mortality is drawn from the Mortality Statistics for 

the Death Registration Area of the United States for 1919. In that year the Census 
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Bureau summarized and restated death rates by cause of death and state for the period 

1915–1919. In so doing, they added additional years to the results for some states, 

because results that met the Bureau’s standards had been generated too late for the 

original report.13

Combining the three sources of data produces an analytic file that combines 

mortality rates in the 1915–1919 period, mortality rates in the 1980s, and 

demographic characteristics for each quarterly birth cohort in each of the 25 states.

4.2 Mortality as a Proxy for Incidence, with a Note on Available Incidence 

Data

How good a proxy for exposure to influenza in utero are mortality rates?  For

an acute condition such as influenza the mortality rate is the product of the incidence 

rate and the case fatality rate. Barker and other researchers of the Barker hypothesis 

typically use mortality rates as health measures, but our interest is not in how many 

died from influenza in 1918, it is how many pregnant women contracted influenza. 

When we examine mortality rates there is certainly the possibility that the variation 

observed comes not from variations in incidence, but variations in case fatality. 

Variations in incidence might be uncorrelated with existing health status.  Even very 

healthy people get influenza, and accounts of the 1918 epidemic describe the young 

and healthy as particularly susceptible.  Case fatality—the risk of death given that an 

individual has contracted influenza—is another matter.  It is likely that variations in 

                                               

13 We know there was substantial concern over the quality of the data, because in a 
few instances in the published report data is omitted for a state with a note that the 
data did not meet the department’s quality standards.



73

case fatality are correlated with health status. If this is so and substantial variation 

comes from case fatality, the mortality rates for influenza will be correlated with pre-

existing health status, and we will only be demonstrating the sort of association 

between community health status at the time of birth and later-life mortality that has 

already been demonstrated many times before.

Incidence data for any epidemic occurring before WWII is very unusual. 

However, because of the dramatic impact of the influenza epidemic, the United States 

Public Health Service undertook a survey of incidence in ten cities and one rural 

area14 where USPHS field offices were located. This in not a nationally representative 

sample, and only the report, not the field data, is available, but W.H. Frost, a very 

eminent epidemiologist, issued the report.  His main subject is the relative impact of 

incidence and case fatality upon mortality rates.  Given the rarity of incidence data, 

and the importance of the source of mortality variation for establishing Barker’s 

hypothesis, his opinion is of some interest.

Frost’s report was published in the 12 March 1920 issue of Public Health 

Reports.  In each community canvassers went door-to-door in 10 or more 

enumeration districts (i.e., neighborhoods) until the greater of 5% or 5,000 persons 

could be surveyed.  Inspectors conducted the canvasses between December 1918 and 

March 1919.  They recorded the race, sex and age of each individual and whether the 

individual had been sick since September 1, 1918, with “influenza, pneumonia or an 

                                               

14 Localities were: San Francisco, CA; San Antonio, TX; Little Rock, AR; Des 
Moines, IA; Louisville, KY; Macon, GA; Augusta, GA; Spartanburg, SC; Baltimore, 
MD; minor Maryland communities; and New London, CT.
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indefinite illness which might have been influenza” (Frost, 1920).  It is not clear how 

individuals were selected from households, but Frost asserts that the inspectors 

recorded “date of death if death resulted” (Frost, 1920, p.586).  This implies some 

procedure to detect deceased residents and thus avoid survivor bias.

Frost presents incidence rates for each area, but groups fatality rates into three 

groups as he considers the number of deaths in some areas too small to be statistically 

useful.  Frost then graphs incidence, case fatality and mortality rates.  While 

incidence shows a consistent age/sex pattern across localities, case fatalities show 

different pattern between regions, and it is this pattern that is reproduced in the 

mortality rates.  His analysis of variation in mortality rates by age and sex concludes:

“It is evident, however, that the relative mortality in these various 
groups is determined more largely by case fatality, which varies within 
wider limits than case incidence, and so without a full and exact 
knowledge of the variations in case fatality, statistics of mortality are 
by no means translatable to terms of relative morbidity.” (Frost, 1920)

The use of mortality as a proxy for incidence is problematic, but no other 

measure is available. Use of age-and sex-specific mortality rates appears to make 

mortality worse as a proxy for incidence, not better, since influenza is transmitted 

across ages and genders, but case fatality may vary locally due to health status. 

Frost’s data presents a substantial problem, not only for the present study, but 

for the use of mortality rates generally as a proxy for incidence.  His examination of 

race shows that while African-Americans were less likely to contract influenza than 

whites, their case fatality was generally higher.  We cannot draw firm conclusions 

from such limited data, but it appears that case fatality is likely to be correlated with 

unobserved health status, and thus mortality rates from the flu may be biased by pre-
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existing health status.  Our strategy to control for this problem is to include a state-

level measure of persistent mortality as a potential explanatory variable.  We prefer 

this strategy to state fixed effects because the parameter estimates generated can be 

compared to those for influenza mortality.  State effects do not lend themselves to 

testing an alternate hypothesis; however, we use state effects as an alternate 

specification to test our results.

4.3 Selection of Time Period and Variables

The decision to make the oldest cohort in the analysis those born in the first 

quarter of 1915 is a simple one.  Mortality statistics are only available for 1915 and 

after.  The reasons for choosing the fourth quarter of 1919 as the younger cohort are 

subtler.  All the cohorts chosen have a family structure defined before the onset of the 

epidemic, those born in 1920 or later have a family structure defined after the 

epidemic, that is, by survivors of the epidemic.  Because we are testing a hypothesis 

about physiologic development in utero, it is desirable to use a cohort that did not 

include those whose parents were widows or widowers as a result of the epidemic.  

Given the ‘W’-shaped mortality that characterized the 1918 epidemic, it is possible 

that four or five percent of households with young children were in the widow or 

widower category in some high-mortality states.  Children conceived after the 

epidemic differ from those born before or during the epidemic in a non-random way.  

Their parents survived, and (in the case of widows and widowers) attracted new 

spouses.  This could potentially cause different mortality experience due to selection 

rather than fetal development.
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The next task is to define the treatment population, or more precisely, since 

we do not observe incidence, the intention-to-treat population.  The basic facts are not 

in dispute, the influenza epidemic in the United States began in September 1918 in a 

few localities, became a national epidemic very quickly, and after the initial peak 

continued at a lower level for some months.  Over 80% of all influenza mortality 

occurred in four months, from October 1918 through January 1919.  Figure 6 

demonstrates how sharp the peak was.  From a level near zero in mid-September, the 

mortality rate rose to an annualized rate of almost 5,000 per 100,000 during late 

October15 (Mortality Statistics 1918).  The national mortality rate then falls below 

1,000 by December, but stays above the background level for some months.  The 

timing of the epidemic varied comparatively little across states.  Of the 30 registration 

states in 1918, 21 had their peak mortality rate during October, six during November, 

and three during December.  Table 10 shows that the influenza mortality rates before 

1918 were less than 10% of 1918’s level, and this understates the difference, as the 

1918 mortality occurs almost entirely in the fourth quarter.  The natural candidate for 

the treatment population is those babies born or conceived during the fourth quarter 

of 1918, quarterly cohorts 1918:4 through 1919:3.  The evidence of relative cohort 

size in the 1980 Census supports this.  Figure 7 shows that those four cohorts are 

unusually small given their age, and form a distinct group.  The usual pattern of large 

first and third quarter cohorts, and small second and fourth quarter cohorts is 

suppressed.  The 1918:4–1919:3 cohort is the natural choice for the treatment 

                                               

15 Technically this is excess mortality, but the background mortality was very low.
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population.  Figure 8 displays the same data as a separate series for each quarter of 

the year and emphasizes the singularity of the 1918:4-1919:3 time period.  One 

explanatory variable will be a dummy denoting membership in this cohort.

Table 10
Influenza Mortality Rates by Year: 1915-1919

Deaths per 1,000 Population—Death Registration States

Year Influenza 
Mortality

All Cause 
Mortality

1915 0.2 13.3
1916 0.3 13.9
1917 0.2 14.1
1918 3.0 18.0
1919 1.0 12.8

There are several possible approaches to defining the relevant influenza 

mortality rate.  One would be to use the mortality rate in the state and quarter of birth.  

However, it is the mortality shock that is relevant, not mortality in the quarter of birth.  

Figure 6 shows that the shock is highly concentrated in late 1918, so the fourth 

quarter1918 mortality rate is the preferred variable.  Here the limitations of the 

Mortality Statistics become a binding constraint.  National figures for mortality rates 

by cause are available by quarter, even by month, but state-specific estimates are only 

available annually.  Given the low background level of mortality, the 1918 state-

specific influenza mortality rate does not introduce a confounding variation.  This 

mortality rate applied to the treatment cohort will be a second explanatory variable.  It 

is the best available proxy for capturing the cross-sectional variation in the incidence 

of the influenza epidemic.
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Figure 7
QOB Cohort Size - 1980 IPUMS
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Figure 8
Cohort Size by Quarter and Birth Year - 1980 PUMS
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There are several possible approaches to defining the relevant influenza 

mortality rate.  One would be to use the mortality rate in the state and quarter of birth.  

However, it is the mortality shock that is relevant, not mortality in the quarter of birth.  

Figure 6 shows that the shock is highly concentrated in late 1918, so the fourth 

quarter1918 mortality rate is the preferred variable.  Here the limitations of the 

Mortality Statistics become a binding constraint.  National figures for mortality rates 

by cause are available by quarter, even by month, but state-specific estimates are only 

available annually.  Given the low background level of mortality, the 1918 state-

specific influenza mortality rate does not introduce a confounding variation.  This 

mortality rate applied to the treatment cohort will be a second explanatory variable.  It 

is the best available proxy for capturing the cross-sectional variation in the incidence 

of the influenza epidemic.

A potential problem with the influenza mortality rate is that there may be 

state-to-state variations in assigning cause of death.  Many patients develop 

pneumonia as a result of contracting influenza, and pneumonia was itself a significant 

cause of death in the 1915–1919 period.  It is possible that some states were more 

likely to assign co-morbid cases to one disease or the other; in that case, high 

mortality could potentially represent high reporting rather than high fatality.  To test 

for this possibility we computed the correlation coefficient for 1918 influenza and 

1918 pneumonia deaths.  If there is variation in reporting we might expect to find a 

negative correlation between the two causes of death, since a single death is assigned 

a single cause.  Instead, we find a positive correlation coefficient, 0.435.  High 
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influenza mortality rates are associated with high pneumonia mortality; there is no 

evidence of a state-specific selective reporting problem.  

The alternative hypothesis we propose to test is that any observed relationship 

between influenza mortality and later-life mortality is not due to the shock of the 

influenza epidemic, but to correlation between influenza mortality and the 

background level of mortality in a community.  Mortality rates here stand in their 

usual role in this literature, as proxies for health levels in a community.  Given the 

variety of epidemiologic evidence for the Barker hypothesis, it would be surprising if 

there were no relation between mortality at time of birth and later-life mortality.  In 

this case, the alternative hypothesis is a negative one, that the evidence from the 

influenza epidemic is really no different from that in the existing literature, and does 

not provide a stringent test of Barker’s theory.

To this end, we take as our measure of persistent mortality the mean all cause 

mortality rate within each state for the years 1915–1917.  We do not attempt to limit 

this measure to the mortality of young women or any other target population.  As was 

pointed out in the discussion of incidence and mortality above, we desire a proxy for 

exposure to influenza, not maternal mortality.  Taken together, the three variables, 

birth in the influenza cohort, cohort birth interacted with influenza mortality, and 

persistent mortality, should allow us to test the Barker hypothesis using the 1918 

influenza epidemic as a shock to maternal health.
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4.4 Estimation

The three data sources are combined into two analytic files, one measuring 

mortality as 5-year mortality from age 65, the other measuring mortality from the 

reference date of January 1, 1980, through the last quarter of 1989.  We use the 

natural log of the mortality rate as our dependent variable, and can use generalized 

least squared to regress the explanatory variables and covariates upon the logged 

mortality rate.  For either dependent variable, our basic estimating equation is one of 

the following:

(1) Yij =  + 1 FLUi + 2 FLUi*FluMortj + 3 P-Mortj + Zij  + YEARi  + ij

(2) Yij =  + 1 FLUi + 2 FLUi*FluMortj + Zij  + YEARi  + j + ij

where ‘i’ indexes the quarterly birth cohort and ‘j’ indexes the state of birth.  ‘FLU’ is 

a dummy variable for membership in the 1918:4–1919:3 cohorts.  ‘FluMortj’ and ‘P-

Mortj’ represent the 1918 influenza mortality and 1915–1917 mean all cause 

mortality respectively in the jth state.  ‘Z’ represents an array of covariates—age, 

percent male, percent African-American and their interaction terms.  ‘YEAR’ is an 

array of dummy variables for the calendar year of birth, so ‘’ is a vector of the 4-

year effects (1915 is the reference year).  ‘j’ represents a vector of state effects.  

Since we have only state-level variation in persistent mortality, we cannot include 

both persistent mortality and state fixed effects in the regression.  Equation (1) omits 

state effects, the second equation omits the P-Mort variable.

The resulting parameter estimates for both FLU and FLU*FluMort represent 

the effect of being in a population exposed to the influenza epidemic, not the effect of 

actually having a mother contract influenza.  If we take the consensus estimate of 25 
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percent for the national incidence of the influenza epidemic, and put the estimation in 

an instrumental variable context, the effect of actually receiving the ‘influenza 

treatment’ is:

βiv = βrf/β1st = βrf/.25 = 4*βrf

If micro-level incidence data were available, we would regress membership in the 

cohort upon ‘contracted influenza,’ in the first stage.  In the reduced form, we regress 

membership in the cohort upon later-life mortality.  Unfortunately, the first stage is 

not feasible; we do not know who actually received in utero exposure.  Since the 

dependent variable is logged, the parameter estimate represents the percentage change 

in the outcome for a one-unit change in the explanatory variable.  A β̂1
 = 0.05, for 

example, would imply that actually being exposed to influenza as a fetus raises later 

life mortality rates by 20 percent.

The two analytic files provide complementary ways of controlling for the age 

differences across cohorts.  The fixed-age file measures mortality over the same 

ages—65 to 70—so, ceteris paribus, we expect mortality rates to be the same.  

However, there is a secular trend toward declining mortality and the age variable is a 

means to parameterize this change.  This approach requires that we use a subset of the 

data we have; the 1919 cohorts do not turn 65 until 1984, the 1915 cohorts turn 70 in 

1985.  It also introduces a potential confounding variable, changes in health 

environment during the 1980s.  Changes in health technology, for example the 

diffusion of bypass surgery, might decrease the later cohorts’ mortality, and since 

these include the influenza-exposed cohorts, it could potentially attenuate the 

relationship between exposure in utero and later mortality.
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The second analytic file avoids these problems by using the full 10 years 

mortality observations.  This means that each cohort is traversing a different segment 

of its mortality curve, so the expected mortality in each cohort should be different 

even before considering secular changes in mortality.  The limitation of this approach 

is that mortality is a function of age and that to misspecify the functional form could 

bias our results.  Fortunately, demographers have determined that a log-linear 

specification closely approximates end-of-life mortality when chronic diseases are the 

predominant cause of death.  This principle dates back to the work of Benjamin 

Gompertz in the early 19th century, and is known as Gompertz’ Law16 (Tropp 1972; 

Olshansky 1997). As both the necessary conditions apply to mature populations in 

late 20th century America, we have a natural choice for our specification.  In the 

second set of regressions age controls for both the secular changes in mortality and 

the differences in cohorts’ mean ages.  

In all regression results we use only data from those states with mortality rates 

available for the 1915–1919 period.  In figures we additionally present, when 

feasible, data on the full 48 contiguous states plus the District of Columbia.  

5. Results

Figure 9 displays cohort mortality rates for the ten years from 1980 to 1989 

for those born in the United States from 1915 to 1919.  Both annual and quarterly 

                                               

16 Gompertz published his work in 1825 and in slightly modified form it is still 
widely used in demography and gerontology. It states, “... the average exhaustion of a 
man’s power to avoid death to be such that at the end of equal infinitely small 
intervals of time he lost equal portions of his remaining power to oppose destruction 
which he had at the commencement of these intervals.” (Gompertz 1825; Tropp 
1972)
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cohorts are displayed.  As expected, younger cohorts exhibit generally lower 

mortality rates, though there are exceptions in the quarter of birth cohorts.  Among 

those in utero during the influenza epidemic, the 1919:1 cohort has higher mortality 

than 1918:4, but the rise is not large, and other cohorts not exposed to the epidemic in 

utero exhibit similar patterns, notably 1918:2 and 1918:1, and 1916:1 and 1915:4.  In 

this simple time series analysis there is certainly no dramatic difference associated 

with the influenza-exposed cohorts as defined in the methods section (1918:4–

1919:3), neither do we observe any other obvious breaks in the mortality pattern from 

cohort to cohort.  

Figure 9
Mortality Rate by YOB (and qob)
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Figure 10 presents a subset of the data used to produce Figure 9 arranged so as 

to illustrate the problem in associating cross-sectional variation in influenza mortality 

rates with later-life mortality.  In this instance, we eliminate the effect of age 

differentials between the cohorts by measuring 5-year mortality from a fixed age, in 

this case the quarter of the 65th birthday of cohort members.  The six registration 

states with the highest 1918 influenza mortality and the six registration states with the 

lowest 1918 influenza mortality are displayed as two units of analysis.  The jagged 

lines represent actual mortality experience; the associated straight line represents a 

least squares fit.  While the influenza-exposed cohorts have unremarkable mortality 

experience within each group, the states with high influenza mortality have 

consistently higher later-life mortality than the low influenza mortality states.  Thus, 

any cross-sectional regression is liable to confound the effects of the influenza 

epidemic with persistent differences in mortality rates.
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Figure 10
Five Year Mortality from Age 65—Six States with the Highest 1918 Influenza 

Mortality Rates vs. Six States with the Lowest Influenza Mortality Rates
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While we do not possess microdata associating influenza exposure and later-

life mortality, we use the 1980 Census Public Use Micro-Sample to verify the extent 

to which the population receiving the influenza ‘treatment’ (1918:4–1919:3) appears 

similar to surrounding cohorts in demographic and economic characteristics.  The six 

panels of Figure 11 compare the ‘treatment’ group to surrounding cohorts.  Since 

there are clearly seasonal effects, to facilitate comparison each quarterly cohort (e.g., 

q1, q2, q3, q4) is graphed as a separate line.  Each cohort is a different age on the 

census reference date, of course, thus any comparisons between them are necessarily 

approximate, especially as the 1915–1919 age group was approaching retirement age 

in 1980.  While the influenza birth year is clearly a locus of some differences, these 

differences are not the sort likely to generate large differences in mortality of 
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themselves.  Any differences may reflect underlying health differences, but in that 

case the argument that a treatment effect would be apparent in regression results is 

strengthened.  The share of men in the 1918:4 cohort is a percentage point above 

trend, for example.  Years of schooling is depressed for the 1919:1–1919:3 cohorts, 

with a larger effect for men than women.  This agrees with Almond’s findings 

(Almond, 2003) but we do not see an associated reduction in male labor force 

participation, nor is there any notable pattern in the share of World War II-era 

veterans among the men.  The reduced labor force participation and declining 

incomes as we go from youngest to oldest is compatible with standard retirement 

behavior (Leonesio, 1996).  Years of schooling also declines from youngest to oldest, 

but this is a fairly small effect, .3 years mean level of schooling over five birth years, 

and comparable to standard accounts of the spread of high school education as a 

standard (Goldin, 2001).  The share of World War II veterans declines fairly steadily 

from cohort to cohort; the likely explanation is that the younger cohorts were of prime 

draft age when the United States went to war in 1941; the older cohorts were more 

likely to have married, established families, and found work in war-related industries.  

While the ‘flu-baby’ cohorts seem to show some differences as compared to 

surrounding cohorts, the magnitude of the differences does not suggest a large 

mortality effect.  A Barker effect of the hypothesized magnitude should be detectable.
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Figure 11 Panels A - F

Cross Cohort Comparison of Socioeconomic Variables in1980 IPUMS 
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We now turn to a regression analysis of the effects of the influenza epidemic 

on later-life mortality.  We begin with Table 11, which presents multivariate 

regressions in the fixed-age format discussed above.  The unit of analysis is a 

quarterly birth cohort for a specific state in the 1915–1919 registration area.  The 

dependent variable is 5-year mortality from age 65, attainment of age 65 as defined 

above.  Our explanatory variables are:

a) Flu cohort: membership in a quarter-of-birth cohort potentially exposed to 

the 1918 influenza epidemic in utero (i.e. 1918:4 to 1919:3),

b) Flu mortality: the interaction between flu cohort and state-specific 1918 

influenza mortality rates, and

c) Persistent mortality: the state-specific mean all cause annual mortality rate for 
1915–1917.
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Table 11
Effects of Influenza Epidemic on Later-Life Mortality: Fixed Age Regressions
Five Year Mortality from Age 65—Quarterly Birth Cohort by State of Birth

Dependent Variable: Ln (Mortality Rate), Mean = 4.6907 (10.96% mortality)

Independent
Variables

Model 1 Model 2 Model 3 Model 4 Model 5

a) Flu Cohort
(1918:4-1919:3)

0.0143
(0.0143)

----- 0.0579
(0.0350)

0.0545
(0.0304)

-----

b) a*1918
 flu mortality

----- 0.0046
(0.0130)

-0.0434
(0.0318)

-0.0419
(0.0281)

0.0117
(0.0141)

c) Persistent
 Mortality

0.2645
(0.0275)

0.2638
(0.0276)

0.2702
(0.0278)

----- -----

d) Age in 1980
 (years)

0.0212
(0.0526)

0.0260
(0.0525)

0.0155
(0.0527)

0.0047
(0.0433)

0.0580
(0.0570)

e) % Male 1.7287
(6.8583)

2.3819
(6.8331)

0.9299
(6.8772)

-1.9391
(5.6423)

.6894
(7.4255)

f) % Afram -12.6784
(16.6551)

-12.5421
(16.6700)

-12.7413
(16.6405)

-19.6063
(13.5062)

-3.8726
(18.1275)

g) d*e -0.0355
(0.1095)

-0.0457
(0.1091)

-0.0229
(0.1098)

0.0288
(0.0902)

-0.1152
(0.1186)

h) d*f 0.2087
(0.2658)

0.2064
(0.2660)

0.2095
(0.2656)

0.3128
(0.2161)

0.0714
(0.2893)

i) e*f 37.9419
(37.9606)

37.6533
(37.9934)

38.4232
(37.9287)

52.7341
(30.8419)

18.8173
(41.3217)

j) d*e*f -0.5947
(0.6065)

-0.5902
(0.6070)

-0.6022
(0.6059)

-0.8410
(0.4927)

-0.2930
(0.6602)

k) Intercept -3.3061
(3.3008)

3.0043
(3.2900)

3.6640
(3.3083)

----- 1.2801
(3.5776)

Year effects 
(ref 1915)

Y Y Y Y Y

State effects N N N Y N

N 500 500 500 500 500

R2 0.4356 0.4346 0.4377 0.6566 0.3280

Adj R2 0.4205 0.4195 0.4215 0.6291 0.3114
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Since levels of influenza mortality are lower than all cause mortality the two 

series have been normalized by dividing by the mean across states.  This facilitates 

comparison of parameter estimates associated with each variable.  Covariates include 

age, percent male, percent African-American, their interactions and an array of year 

effects.  State effects replace explanatory variable c) in one specification as discussed 

above.

Table 11 displays the results of five separate regressions using different 

combinations of the explanatory variables.  Across all regressions neither a) (the 

cohort effect), nor b) (the state-specific influenza mortality rate) is ever significant, 

while c) is significant (p value<0.0001) in the three specifications where it is 

included.  In short, we do not find evidence of a Barker effect, whether we identify 

risk of 1918 influenza exposure by a cohort dummy (Model 1), by the influenza 

mortality rate (Model 2), or use both variables simultaneously (Model 3).  In Model 3 

the parameter estimates approach significance with a p-value of 0.0989 for flu cohort 

and 0.173 for flu mortality, however the signs of the estimates are different, and the 

flu mortality effect is negative.  That is, conditional on being born between 1918:4 

and 1919:3, being in a state with high influenza mortality reduces later-life mortality.  

In Model 4 we use state-level fixed effects, and consequently must exclude persistent 

mortality, as it would be co-linear with the state effects.  The R-squared value is 

higher in this specification, but the estimates for the explanatory variables a) and b) 

change very little from the nearest equivalent, model 3.  Persistent mortality is 

excluded from Model 5 to test whether the correlation between persistent mortality 

and influenza mortality is sufficient to produce a Barker effect through omitted 
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variable bias, the omitted variable being the general health status of the community.  

While the point estimate for flu mortality doubles in this misspecification compared 

to model 2, it still does not approach significance. An analogous misspecification 

using variable a) produced a similar absence of statistically significant results.

Table 12 repeats the analysis of Table 11, but in a setting where we use the 

log-linear relationship between mortality and age.  This enables the use of the full ten 

years of mortality data, and means that cohorts are compared over the same time 

interval, but have different mean ages.  In this specification the age variable controls 

for both this difference and the small secular change in the age/mortality effect 

between cohorts, while in the fixed-age specification age controls only for the latter.  

Because there is an additional source of variation in the dependent variable that is 

largely accounted for in the regression by age and its interactions, Table 12 has higher 

R-squared values than Table 11 for each regression model.  While point estimates and 

standard errors change slightly, the results support the same conclusion: there is no 

evidence of a significant Barker effect, but there is strong evidence of a relationship 

between persistent mortality in an individual’s state of birth and later-life mortality.

 In Model 4 we do see statistically significant results for the both the flu 

cohort and the cohort* influenza mortality rate, but as in Table 11, Model 4, the 

coefficients have opposite signs and comparable magnitudes, evidence for the 

difficulty in measuring incidence, but not evidence for a Barker effect. 
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Table 12
Effects of Influenza Epidemic on Later-Life Mortality: Gompertz Regressions

Mortality 1980–1989 - Quarterly Birth Cohort by State of Birth

Dependent Variable: Ln (Mortality Rate), Mean = 5.3301 (20.88% Mortality)

Independent 
Variables

Model 1 Model 2 Model 3 Model 4 Model 5

a) Flu Cohort
(1918:4-1919:3)

0.0103
(0.0128)

----- 0.0585
(0.0314)

0.0584*
(0.0263)

-----

b) a*1918
 flu mortality

----- 0.0006
(0.0116)

-0.0480
(0.0285)

-0.0497*
(0.0243)

0.0075
(0.0129)

c) Persistent
 Mortality

0.2593
(.0247)

0.2591
(.0247)

0.2656
(.0249)

----- ------

d) Age
(years)

0.0868
(0.0472)

0.0911
(0.0471)

0.0805
(0.0473)

0.0618
(0.0373)

0.1225
(0.0520)

e) % Male 1.9579
(6.6476)

2.5878
(6.6217)

1.0050
(6.6593)

-1.8766
(5.259)

.1602
(7.3079)

f) % Afram -9.6714
(16.1426)

-9.5222
(16.1529)

-9.7390
(16.1124)

-16.6658
(12.5904)

-.3428
(17.8395)

g) d*e -0.0363
(0.0983)

-0.0455
(0.0979)

-0.0224
(0.0985)

0.0253
(0.0778)

-0.1137
(0.1081)

h) d*f 0.1451
(0.2386)

0.1429
(0.2387)

0.1460
(0.2381)

0.2433
(0.1865)

0.0103
(0.2637)

i) e*f 36.7201
(36.7954)

36.4549
(36.8184)

37.2936
(36.7279)

51.9085
(28.7487)

16.4923
(40.6683)

j) d*e*f -0.5262
(0.5444)

-0.5224
(0.5447)

-0.5345
(0.5434)

-0.7597
(0.4253)

-0.2304
(0.6017)

k) Intercept -0.5809
(3.1877)

-0.8730
(3.1989)

-0.1534
(3.2030)

----- 2.7238
(3.5204)

Year effects
(ref 1915)

Y Y Y Y Y

State effects N N N Y N

N 500 500 500 500 500
R2 0.7404 0.7400 0.7419 0.8539 0.6813
Adj R2 0.7334 0.7330 0.7343 0.8422 0.6734
1) * denotes p<.05.
2) Substituting variable (a) for (b) in Model 5 does not produce p<.05, changes R-

squared by .0001, and no covariate changes more than 10%. 
3) Year effects and state effects refer to year of birth and state of birth.
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6. Discussion

No variant of either fixed-age or log-linear specifications provide support for 

the Barker hypothesis.  Our measure of the general health of the community shows a 

strong positive association between the community’s health indicators at the time of 

birth and later-life mortality.  This is equivalent to what has been demonstrated 

previously, and suffers from the same limitations; poverty is a confounding variable.  

We cannot demonstrate a causal relationship because poverty is persistent.  Areas 

with poor health indicators, in this case high mortality rates, tend to be socio-

economically poor; poor individuals have higher mortality rates.  Is fetal 

programming the important variable, or is it poverty?  Our strategy to separate the 

two by using the shock of the 1918 influenza epidemic on maternal health has 

produced negative results.  The simplest explanation is that poverty is the important 

variable.  In the discussion which follows we explore alternative explanations for our 

results, and whether they are compatible with our data.

First, however, we want to interpret the coefficient on membership in the 

influenza cohort. While not statistically significant, is the point estimate 

demographically important? We take Table 11 Model 1 as our reference value. Since

the dependent variable is the logged mortality rate, the point estimate of 0.0143 

implies a rise in predicted mortality of 1.43%. Using a standard life table and 

assuming rates rise with age at a constant rate as Gompertz’ law predicts, when we 

calculate the equivalent change in life expectancy we find that it is 0.35 years. To put 

this number in perspective, if we look at variation in life expectancy associated with 

the statistically significant coefficient on persistent mortality, a change in 0.35 years 
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is equivalent to going from a state at the 44th percentile for mortality to a state at the 

56th percentile, considerably smaller than the difference between being born in New 

York compared to birth in Pennsylvania. If we construct a life table model 

As we discussed in the Methods section, mortality rates may not be a proxy 

for exposure as much of the literature on the Barker hypothesis assumes, at least in 

the case of a health shock such as the influenza epidemic.  The strongest negative 

result, therefore, is the absence of any significant cohort effect (explanatory variable 

a) in Model 1, Tables 11 and 12.  While mortality rates may or may not be a cross-

sectional measure of incidence, the timing of the epidemic is not in doubt.  If in utero

programming has an effect, it should be evident between October 1918 and 

September 1919, but it is not.  We have considered the possibility that a year is too 

long a time period, that the effect may be more localized, and that the inclusion of 

inappropriate birth dates in the treatment population leads to attenuation of the effect 

for which we are testing.  Table 13 shows the results of rerunning Model 1, Table 12 

using single quarters of birth as our definition of the treatment effect.  This is the 

smallest cohort which can be run using census-derived cohort sizes as no more 

specific birth information was recorded in the census.  None of the estimated 

coefficients are statistically significant; the largest estimate is for those born in 

quarter 1919:1.  Still, the p-value on this coefficient is .18, not close to conventional 

levels of statistical significance.  Because we do not use influenza mortality rates in 

this specification, it is possible to use a larger data set, the full 50 states.  By 

increasing the sample size we can reduce our standard errors, however, the results are 

less supportive of the Barker hypothesis, not more (not shown in table).  The 
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coefficient on the 1919:1 dummy variable is -0.0112 (se 0.0160), not significant and 

with a different sign from the 25 state sample.  None of our alternate specifications 

helps to substantiate the Barker hypothesis.

Table 13
Alternate in Utero Influenza Exposure Cohort Definition—Gompertz Regressions

Model 1 Model 2

Quarter 
of Birth

Variable a) 
Regression 
Coefficient

Standard 
Error

R2 Variable b) 
Regression 
Coefficient

Standard 
Error

R2

1918:4 0.0180 (0.0192) 0.7405 0.0108 (0.0182) 0.7402
1919:1 0.0258 (0.0192) 0.7410 0.0206 (0.0184) 0.7407
1919:2 0.0008 (0.0181) 0.7400 -0.0059 (0.0172) 0.7401
1919:3 0.0200 (0.0183) 0.7406 -0.0212 (0.0174) 0.7408

From Table 12:

1918:4–
1919:3

0.0103 (0.0128) 0.7404 0.0006 (0.0116) 0.7400

In a cohort analysis, one question is whether results are large compared to 

background variation due to unobserved causes.  Figure 12 shows the coefficients 

associated with each particular quarter of birth, again using the Model 1, Table 12 

specification, for each of the 12 quarters between 1917:1 and 1919:4.  While the 

1919:1 coefficient is still the highest value, we see that the coefficient on 1918:1 has 

almost the same magnitude, but the opposite sign.  The conclusion of this analysis is 

that the background variation in mortality rates is large enough to account for the 

results for quarter 1919:1.  There is no strong evidence for the singularity of any of 

the cohorts exposed to influenza in utero when mortality is the outcome of interest.
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Figure 12
Regression Coefficent on Quarter of Birth
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There is also no evidence of increased mortality when we examine mortality 

rates using one year cohorts from the 1970 and 2000 censuses (figure 13). The visible 

departure from linearity appears in year of birth 1920 (to be precise, 1920.2-1921.1). 

Because the mortality over the 30 year period is so high (35% – 55%) measurement 

problems which limit the usefulness of census survival figures over shorter periods 

become less important. Over this period in which half of those alive in 1970 died, 

there is no apparent spike due to the 1918 influenza epidemic. 
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 Figure 13
Ln Mortality Rate by Year of Birth IPUMS 1970-2000
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None of the models in Tables 11 and 12 includes any economic variables such 

as income, assets, occupation or migration.  Because our unit of analysis is the 

quarter-of-birth cohort, income would necessarily be a state-wide mean, which would

limit variation.  The alternative would be to construct smaller state-of-birth, state-of-

residence-1980 cells which would increase the number of observations, but at a 

substantial cost in clarity.  Many cells would be very small or empty, for example, not

many people were born in Vermont in 1917:4 and living in Wyoming in 1980.  

Instead we use an array of state dummy variables in Model 4.  This absorbs all effects 

consistently associated with differences in state of birth.  Note that results for Model 

4 do not differ substantially from Models 1–3.

from Fig. 9
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Alternative specifications confirm the basic results.  The 1918 influenza 

epidemic does not generate a statistically significant effect on mortality using 

quarterly birth cohorts as the unit of analysis.

6.1 Influenza Mortality Rates

We have discussed in Methods why the use of mortality rates as a proxy for 

incidence is problematic.  However, because this is the only national measure of the 

epidemic’s intensity that exists, we have used the 1918 influenza mortality rates as 

our measure of cross-sectional variation in intensity of the epidemic.  Other possible 

statistics were considered for the regression analysis and rejected.  The mortality rates 

are drawn from published tables; the data which produced the tables are no longer 

available.  There is no tabular breakdown of death rates by age, state and quarter of 

birth in the published tables.  If we wish to use the published death rates, annual 

mortality by state and cause of death is the most specific measure available.

An alternative strategy would be to use death counts published in Mortality 

Statistics, which are available by month and age group, and compute death rates using 

the 1920 census as the denominator.  Unfortunately, this census (reference date 

January 1) lacks reliable measures of cohort size finer than single year of age, so the 

only feasible alternative measure is calendar year age-specific influenza mortality.  

Figures 7 and 8 show that this is not a good definition of the influenza cohorts.  Also, 

the procedure necessarily involves error, as the numerator and denominator are 

counted at different points in time.  It is also likely that age specific mortality is a 

better measure of the mortality experienced by women of child-bearing age, but a 
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worse measure of incidence, as Frost (1920) observes.  This alternative strategy also 

involves reducing the number of states included in the regression analysis from 25 to 

20 as the specific death counts are found in the annual Mortality Statistics, rather than 

the 1919 summary.

There are at least two reasons to prefer the interaction of the 1918 influenza 

rate and the treatment dummy rather than each year’s influenza mortality.  First, the 

1918 epidemic was not the same virus that caused deaths in other years.  It was much 

more lethal, and appears to have had a more pronounced effect on healthy individuals 

than other strains of influenza17 (Reid and Taubenberger, 2003). Because mortality 

rates were so much higher in 1918, there is little reason to use influenza mortality 

from other years.  The second reason is that the effect of the influenza spanned 

calendar years.  Exposure and birth may take place in the same calendar year, or 

adjacent years.  Use of the interacted 1918 rate allows greater flexibility in specifying 

the treatment group and does not diminish measurement accuracy.

The limitation of our approach is that it does not account for differences in the 

age distribution of the population across states.  If differences in population age 

distribution contribute to the differences in mortality rates, it could be argued that our 

measure of influenza incidence is confounded, and this is the reason for our negative 

result.  To test for this possibility we computed the share of the population under 2 

years of age or over 65 years of age using the 1920 IPUMS sample.  Given the ‘W’-

shaped mortality pattern of the epidemic, these are the other two population groups 

                                               

17 That is, it was an influenza virus which had become more virulent due to genetic 
shift, genetic drift, or some combination.
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aside from young adults that contribute disproportionately to mortality rates.  We 

wish to develop a proxy for the influenza incidence among young adults.  The 

population share of the other two groups might plausibly confound this measure.  

Table 14 shows that while population share in the infant/old age group is positively 

correlated at 0.48, the correlation between infant/old share and persistent mortality is 

substantially higher at 0.66.  If the negative result were caused by confounding 

differences in age distribution, it would affect persistent mortality more than 

influenza mortality, but persistent mortality shows a strong positive effect.
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Table 14
States Reporting Mortality Data 1915 – 1919

Influenza Mortality Rates per 100,000 and 
Population Share Under 2 or over 65 Years

1915–1917 1918

State of Birth Persistent 
Mortality

Influenza 
Mortality

Population Share <2 
years or >65 years

California 1321 310 0.082
Colorado 1173 456 0.084
Connecticut 1538 424 0.113
Indiana 1327 198 0.096
Kansas 1130 252 0.047
Kentucky 1292 328 0.095
Maine 1574 335 0.144
Maryland 1610 362 0.099
Massachusetts 1506 342 0.103
Michigan 1324 191 0.083
Minnesota 1040 250 0.061
Missouri 1293 212 0.070
Montana 1195 522 0.120
New Hampshire 1649 457 0.135
New Jersey 1452 303 0.096
New York 1520 225 0.104
North Carolina 1461 325 0.095
Ohio 1341 259 0.119
Pennsylvania 1471 465 0.102
Rhode Island 1602 368 0.107
Utah 1053 327 0.068
Vermont 1554 396 0.143
Virginia 1420 420 0.099
Washington 935 241 0.099
Wisconsin 1127 245 0.067

Correlation with Share 
of Young and Old

0.6651 0.487

While plausible, the confounding problem is by no means certain.  Again, it is 

incidence that matters, not mortality.  The old and the young may pass their influenza 

to caregivers, frequently women of child-bearing age.  Excluding their experience 
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may lead to a better measurement for case fatality but a worse measure for incidence.  

There is no theoretical or empirical basis for preferring age-specific mortality

Table 15 further examines the issue of correlations in mortality rates relevant 

to the 1918 experience.  All mortality rates are positively correlated, but the 

correlation between 1918 influenza mortality and the 1915–1917 average mortality is 

the lowest shown, 0.344.  If we wish to compare the effects of different sources of 

mortality, co-linearity should not prevent our doing so.  Table 15 also offers further 

confirmation that there is no evidence of differential measurement of the influenza 

epidemic across states.  The potential alternative cause of death would be pneumonia

(Jordan, 1927; Niall, 2002). The pneumonia vs. persistent mortality correlation is 

quite high, 0.597, while the pneumonia vs. flu correlation is 0.435, positive, but 

somewhat lower.  States with poor health status report high pneumonia and influenza 

mortality, but the relation between influenza and pneumonia does not appear 

particularly close.  Finally, note that persistent mortality is closely related to all cause 

mortality, non-influenza mortality in 1918, and infant mortality in 1918.  Persistent 

mortality is a good measure of the 1918 experience, but avoids the measurement 

problems inherent in using two coincident mortality measures when there can be 

substantial co-morbidities between them.  As proxies for influenza incidence and 

health status, the two measures chosen are the best available.
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Table 15
Correlations of Different Measures of Mortality: 

All States Reporting Mortality 1915-1919

Infant Pre-Flu All 
1918

All 
NFlu

Flu 
1918

Pneu. 
1918

Int. 
Coeff.

States 
Reporting

20 25 30 30 30 30 25

Infant

Pre-Flu .850

All 1918 .916 .857

All non-Flu 
1918

.942 .895 .964

Flu 1918 .649 .344 .655 .431

Pneumonia 
1918

.839 .597 .820 .826 .435

Interaction 
Coefficients

.733 .541 .802 .682 .726 .714

Notes:

1) Infant Mortality Rates are taken from Census Report “Birth Statistics 1918.”

2) All other Mortality Statistics are taken from, or based upon, Census Report “Mortality 
Statistics 1919.” In that year statistics are restated for the years 1915-1918, with 
additional states added to the statistics. All rates are crude mortality rates for all ages.

3) Pre-flu is the average mortality rate from all causes for the years 1915-1917.

4) Interaction Coefficients are the result of regressions run on the 25 states reporting data for 
all years 1915-1919 with year effects, state effects and the interaction of the year 1918 
and the state effects. The coefficients for these interaction terms are used in the 
correlations.

5) Non-flu deaths + Flu deaths = All deaths. So correlations are algebraically related.

6) All correlations use the smaller of the relevant “States Reporting” counts. Each larger 
group is a superset of the smaller group. The selection problems between the different 
groups of states do not appear large. Correlation for 1918 All and 1918 Flu for the 20 
states reporting infant mortality is .731.

7) Correlation for infant mortality rates across all years is very high. For example, 1918 and 
1917 infant mortality have correlation of .972.
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6.2 Comparison with Other Results

The present paper builds on the cohort analysis used by Douglas Almond 

(2003), but Almond reports only graphical results on mortality, and they, unlike his 

regression analysis, are based upon data from the National Longitudinal Mortality 

Study, where year of birth is intentionally blanked.  Almond carefully analyses the 

education, income and disability data from the Public Use Micro-Samples of the 

1960, 1970 and 1980 and finds generally worse outcomes for the influenza 

‘treatment’ cohort.  The differences he finds, though statistically significant, are not 

nearly large enough to cause measurable mortality effects.  For example, Almond 

finds total personal income in 1980 reduced by 2.5 percent for the cohort, and a 

commensurate decline in educational attainment.  While a striking finding, the effect 

of the lower income would lead to overestimates of any Barker effect in our 

regressions.  As we find no effect, Almond’s results combined with our own tend to 

confirm the absence of a Barker effect.  

As regards interpretation, Almond follows Barker in tending to ascribe fetal 

origins to observed differences.  He carefully considers whether selective attrition is 

producing his results, but gives less attention to possible changes in family structure 

resulting from the creation of widows and widowers by the influenza epidemic.  To 

reconcile Almond’s interpretation with our own, we would need to believe that the 

influenza epidemic had long lasting health effects sufficient to reduce high school 

graduation rates, for example, but not later-life mortality effects.  Moreover, the 

consistency of Almond’s findings over the twenty years between 1960 and 1980 

suggest that differential mortality before 1980 cannot have been large.  In short, 
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Almond’s results suggest that whatever produced the poor outcomes of his 1919 

cohort, it was not something that produces large mortality effects.

Neither this paper nor Almond’s has good measures of the health of neonates 

and infants who survived the influenza epidemic. One possible explanation for our 

failure to find a measurable Barker effect is the presence of an offsetting beneficial 

shock. For example, if the influenza epidemic led to deaths among weaker infants and 

fetuses, then the average health of the surviving cohort might have improved thereby 

offsetting the negative shock of poor in utero nutition. There is no evidence for this 

type of censoring, and Almond’s labor market findings (Almond 2003) point towards 

poorer health from childhood on, not better health.  Nevertheless, in the absence of 

good data on the health of the cohort in infancy, we cannot definitively rule out some 

compositional change masking the Barker effect.

6.3 An Upper Bound for the Barker Effect

If we imagine Barker’s hypothesis as a two-dimensional graph associating the 

magnitude of a fetal shock with an increase in later-life mortality, we have shown that 

the shock associated with the influenza epidemic cannot produce a large later-life 

effect.  More intense shocks, such as the Dutch famine winter, might produce a 

measurable effect (Roseboom, 2000, 2001).

Even the influenza shock, if we had a sufficiently large longitudinal data set, 

might produce a measurable effect. How large a non-zero effect could the preceding 

cohort analysis have missed?  The six standard errors associated with a regression in 

which there is a single explanatory variable are Models 1, 2 and 5 in Tables 11 and 
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12.  The largest of these, the standard error on the cohort specification of Model 1 in 

Table 11, is 0.0143.  The smallest is the standard error on Model 2 in Table 12, 

0.0116.  If we again take the incidence of influenza as 25% and the critical t-value as 

2, a Barker effect of 9–11% could go undetected, depending on which specification 

best captures the pattern of in utero exposure.

The calculation on the cohort variable is straightforward; it is either zero or 

one.  In the calculation which uses mortality rates (Model 4, Table 13) we have 

evaluated the effect at the mean treatment effect, 0.998.  (The variable was 

parameterized to a mean which approximated one to simplify such calculations.) This 

assumes that the entire cohort is subject to the Barker effect if the mother contracts 

influenza at any point in her pregnancy.  If we define a short enough critical period 

for exposure, we can, of course, increase the size of a potential effect which goes 

undetected; this is a limitation of our methods.  If, for example, the critical period for 

development of the circulatory system is a gestational age of exactly week X, then the 

effective level of incidence may be less than 1%, so our treatment group has a very 

low percentage actually receiving the treatment.  This line of argument defends the 

Barker hypothesis by limiting its importance. That is, a Barker effect associated with 

a severe famine which persisted for several months shows there is an effect at some 

point in pregnancy if the shock is severe enough, but does not tell us when the critical 

period occurs, or what the threshold is. For the developed world prolonged famine is 

a rare event, smaller shocks are more common. The results in this paper show that 

even a relatively dramatic shock has few later-life physiological consequences.  
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To test definitively for a Barker effect using the influenza epidemic as a 

shock, a large longitudinal individual-level data set with precisely observed date of 

conception and detailed information on maternal health history is the ideal.  Such a 

data set is unlikely to appear for U.S. data at least.  Failing that, our results strongly 

suggest that the use of mortality measures is unnecessary.  The influenza epidemic is 

sufficiently localized in time that a cohort definition is sufficient if date of birth is 

well-observed.  The NMDF do have a precisely observed month of birth, the problem 

is the absence of a denominator.  But it is possible to make some assumptions about 

monthly cohort sizes and test to see if any reasonable assumptions for monthly cohort 

sizes can produce evidence for a Barker Effect. This is a possible direction for future 

work.

7. Conclusion

This chapter has subjected the Barker hypothesis to an ordeal; it has not 

emerged victorious.  We find no evidence in support of a large Barker effect.  

Because we use an exogenous shock to health to identify the effect, our results cast 

doubt on those who claim a large effect from observations where the conditions of 

birth are a function of persistent health patterns.  The possibility remains that a larger 

or more long-lived shock might produce a measurable effect.  Our findings do not 

refute the Barker hypothesis, but do limit its scope.  Given the severity of the 1918 

epidemic, it appears unlikely that small insults to health produce irreversible changes 

in life expectancies.  This chapter began by considering the implications of a strong 

Barker effect for economists.  This appears to be one problem the discipline can 

safely ignore. 
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