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Nowadays a vast amount of data is generated in Extensible Mdwup Language (XML).
However, it is necessary for applications in some domains tetore and manipulate uncertain infor-
mation, e.g. when the sensor inputs are noisy, or we want to sire data that is uncertain. Another
big change we can see in applications and web data is the inasing use of ontologies to describe
the semantics of data, i.e., the semantic relationships beteen the terms in the databases.

As such information is usually absent from traditional databases, there is tremendous op-
portunity to ask new kinds of queries that could not be handled in the past. This provides new
challenges on how to manipulate and maintain such new kinds fodatabase systems.

In this dissertation, we will see how we can (i) incorporate ad manipulate uncertainty in
databases, and (ii) e ciently compute aggregates and maintin views on ontology databases.

First, | explain applications that require manipulating un certain information in XML data-
bases and maintaining web ontology databases written in Remurce Description Framework (RDF).
| then introduce the probabilistic semistructured PXML data model with two formal semantics.
| describe a set of algebraic operations and its e cient implementation. Aggregations of PXML
instances are studied with two semantics proposed: possilworlds semantics and expectation
semantics. E cient algorithms with pruning are given and ev aluated to show their feasibility. |
introduce PIXML, an interval probability version of PXML, and develop a formal semantics for it.
A query language and its operational semantics are given angroved to be sound and complete.
Based on XML, RDF is a language used to describe web ontologiesRDQL, an RDF query lan-

guage, is extended to support view de nition and aggregatims. Two sets of algorithms are given



to maintain non-aggregate and aggregate views. Experimeal results show that they are e cient

compared with standard relational view maintenance algorihms.
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Chapter 1
Introduction

1.1 New Challenges in XML Databases

Over the last few years, there has been considerable intereis Extensible Markup Language (XML)
databases. A proliferation of semistructured data models hve been proposed [64, 58, 76, 7], along
with associated query languages [3, 18] and algebras [6, 42XKML is a simple but very exible
markup language derived from SGML, which is now mainly used dr exchange, transmission and
manipulation of data on the web [11]. XML tags are not prede ned, which means that it gives
users exibility to de ne their own tags according to their d omains and applications.

Nowadays, while data is more often generated in XML for easiedata transmission and
manipulation over the web, it is necessary for applicationdn some domains to store and manipulate
uncertain information. For example, this occurs when the seasor inputs are noisy. Another big
change we can see in applications and web data is the increasi use of ontologies to describe the
semantics of data, i.e., the semantic relationships betweethe terms stored in the databases. As
such information is usually absent from traditional databases, there is tremendous opportunity to
ask new kinds of queries that could not be handled in the past.This provides new challenges on
how to manipulate and maintain such new kinds of database sygms. In this dissertation, | will
describe how we can (i) incorporate and manipulate uncertai information in databases, and (ii)
e ciently compute aggregates and maintain views on ontology databases.

In the following sections, | will brie y introduce the motiv ations underlying the above two

problems, my contributions and the organization of this dissertation.



1.2 Uncertainty in XML

The semistructured data model has the advantage of not plagig hard constraints on the structure
of the data. However, a particular semistructured instance speci es deterministic relationships
between objects. In cases where we would also like to avoid fdh constraints on the object-
level structure, it is desirable to have a model that allows s to represent uncertainty over the
relationships between objects in the semistructured model This uncertainty is necessary when
relationships between objects and values for attributes ofobjects are not known with absolute
certainty.

There are numerous applications (including nancial, image processing, manufacturing and
bioinformatics) for which a probabilistic XML data model is quite natural and for which a query
language that supports probabilistic inference provides mportant functionality. Probabilistic in-
ference supports capabilities for predictive and “what-if types of analysis. For example, consider
the use of a variety of predictive programs[10] for the stockmarket. Such programs usually return
probabilistic information. If a company wanted to export th is data into an XML format, they
would need methods to store probabilistic data in XML. The n ancial marketplace is a hotbed
of both predictive and XML activity (e.g. the FIX standard fo r nancial data is XML based).
There is the same need to store probabilistic data in XML for pograms that predict expected
energy usage and cost, expected failure rates for machine gg, and in general, for any predictive
program. Another useful class of applications where theresi a need for probabilistic XML data is
image processing programs that process images (automatitg) using image identi cation methods
and store the results in an XML database. Such image processj algorithms often use statistical
classi ers[44] and often yield uncertain data as output. If such information is to be stored in
an XML database, then it would be very useful to have the abilty to automatically query this
uncertain information. Another important application is i n automated manufacturing monitoring
and diagnosis. A corporate manufacturing oor may use sense to track what happens on the
manufacturing oor. The results of the sensor readings may le automatically piped to a fault di-

agnosis program that may identify zero, one, or many possild faults with a variety of probabilities



on the space of faults. When such analysis is stored in a datase, there is a natural need for
probabilities. In addition to these types of applications, information extraction using probabilistic
parsing of input sources may also result in a semistructurednstance in which there is uncertainty.
For example, the NSIR system for searching documents at the biversity of Michigan[70] returns
documents based along with probabilities. Likewise, Nierman and Jagadish. point out the use of
probabilistic semistructured databases in protein chemigy[61].

While there has been a great deal of work on supporting uncedinty in relational models
[12, 54, 56, 50, 19, 24, 33, 30], to date, there has been littlwork on supporting uncertainty
in semistructured models. There are a few exceptions includg [16] and [61]. Dekhtyar et al.[16]
proposed a model that allows probabilistic information to be stored using semistructured databases.
My proposal does the opposite: | extend the semistructured dta model so that paths in such a
model can include probabilistic information. More closely related to my work is the work of
Nierman and Jagadish[61], in which a tree-structured probdilistic database is proposed. | will

show that their model is a special case of my probabilistic smistructured PXML model.

1.3 Ontologies in XML

The World Wide Web Consortium (W3C) has recently designatedResource Description Framework
(RDF) as a web recommendation endorsed by approximately 300 conapies, bringing it close to
the status of being a de facto standard for web semanticsRDF data is basically XML data written

in a specic structure with some specic tags de ned to desciibe the ontology (relationships)
between resources. ThougfRDFhas many complex features, the basic idea is to describe \resirce,
property, value" triples specifying that a given resource tas a given value for the described property.
RDF databases are expected to store such triples about vast nundss of web pages and other
information resources so that users can query the web using sophisticated, database style query
language rather than using simple keyword search supportetly most current web search engines.
This has caused a growing interest in maintainingdatabasesof RDF data [71] for the purpose of

discovering web resources using a richer query language thahat o ered by current web search



engines. An indication of current interest in RDF is the RDQL query language from Hewlett
Packard[41], and its impressive (prototype) Jena RDFdatabase system[43]. OtherRDF query
languages includeRQL47] and SeRQL[62]. Methods to expres®DF views with RQL were rst
described in [79]. However, to date, the problem of incremental maintenance ofaterialized RDF
views has not been studied

In this dissertation, | study the problem of e ciently maint aining views overRDF databases.
There is currently no industry-wide consensus on the besRDF query language. | have chosen to
build view maintenance algorithms on top of HP's RDQL language asRDQL is one of the leading
industry contenders to become a standardRDF query language. The problem of maintainingRDF
views is di erent from that of maintaining views in XML datab ases, graph-structured databases
(GSDBs)[87], object-oriented databases and relational d@abases for several reasons. (i) GSDB
data such as XML assume a rooted graph model, whereadRDF databases assume a general graph
model. (ii) Materialized GSDB views contain a set of nodes, mereasRDF views are rich enough to
return not only nodes, but also graphs and other combinatiors. (iii) The method used to specify
views are quite di erent. These di erences persist when cosidering object-oriented and relational

databases as well which in many ways are even less expressthan GSDBs.

1.4 Contributions

The rst contribution of this dissertation is a exible prob abilistic representation for semistructured
data that supports arbitrary distributions over the relati onships between an object and its children
and arbitrary distributions over the object's value. As we will see, my model does not require
the semistructured instance to be tree structured; howeverit does require that the probabilistic
dependencies are acyclic.

The second major contribution is a formal characterizationof the probabilistic semantics of
the model. This connection is missing in previous approacheto represent probabilistic semistruc-
tured data. In particular, | propose two semantics - the rst semantics (or \global" semantics) is

a possible-worlds-based approach that hypothesizes thathe world is always certain, but it is us



who are uncertain about what is true. According to this semariics, a probabilistic XML database
instance is shorthand for a set of (ordinary) semistructurel database instances. | show how the
de nition of a PXML instance formally de nes a set of \compatible" semistructured instances, and
how the PXML instance can induce a probability distribution over the set of compatible instances.
The second semantics (\local semantics") exploits a factaration of the probability distribution.

| show several important results: (i) the local semantics ca be embedded in the global semantics,
(i) the converse is not always true - | identify conditions under which it is true, and (iii) | provide

a nontrivial construction for a Bayesian network that encodes the local semantics. This means
that for some simple queries, Bayesian inference can be used reason with the local semantics
(but not the global).

The third major contribution is an algebra that supports que rying probabilistic semistruc-
tured data, including selection, projection, and cartesian product (join can be handled as a com-
bination of cartesian product and selection). One of the imprtant features of my PXML algebra
is that all operations occur directly on PXML instances.

The fourth major contribution is the introduction of aggreg ate operations on PXML in-
stances. | provide two semantics forPXML aggregate operators. The possible-worlds semantics
returns a set of possible answerso aggregate queries (together with associated probabilies). In-
tuitively, these possible answers correspond to the evalu@gn of the aggregate query in di erent
possible worlds. The second semantics is an expected valuensantics. | then show howPXML
instances can bedirectly manipulated so that the need to explicitly compute compatible instances
is avoided. Pruning methods are also proposed.

The fth contribution is a prototype implementation of PXML. | have conducted a suite
of experiments, which show thatPXML can be e ectively implemented. Experiments with PXML
aggregates show the performance of algorithms for both seméics with the clear outcome that the
expected value semantics is more practical to compute. On th other hand, pruning techniques
used in the possible-worlds semantics also produce good apgimate answers in acceptable running

time.



The sixth contribution is that | extend PXML to use interval probabilities rather than point
probabilities to represent uncertainty. The result is the PIXML probabilistic interval data model.
| then provide two alternative formal semantics for PIXML. The rst semantics is a declarative
(model-theoretic) semantics. The second semantics is an epational semantics that can be used
for computation. In the formal W3C speci cation of XML, an in stance is considered as an ordered
rooted tree in which cycles can possibly appear[80]. | assuarthat an instance is an acyclic graph -
this assumption will be needed to provide a coherent semants to PIXML databases. However | do
not restrict attention to tree-structures. | also provide an operational semantics that is provably
correct for a class of queries over a large class of probalsiic instances called tree-structured
instances.

The seventh contribution is that | describe how to extend a canmercial RDF language called
RDQL (proposed by Hewlett Packard) to support views and aggregabns. | provide algorithms
called IMA, DMA, TMA, RMA to incrementally maintain views when insertions, deletiors, triple
modifcations and resource modi cations are made to anRDF database instance. | implement a
prototype of these algorithms and experimentally show thatthe my new algorithms are signi cantly
better than the use of standard view maintenance algorithmson relational representations ofRDF
databases.

The eighth contribution is that | extend the problem of maint aining non-aggregateRDF
views to maintaining aggregateRDF views. | propose theCAA (Compute Aggregates Algorithm)
algorithm to e ciently compute aggregateoperations such asCOUNT,SUM,AVG,MIN,MAX and
so on. CAA can also handleGROUPBY queries. | subsequently de ne algorithms to maintain
aggregate views. These are views involving aggregate quesi. | split aggregate functions into two
categories -distributive and non-distributive aggregates. | provide algorithms (calledAMI and
AMD) to maintain aggregate views when insertions and deletionsre made. In addition, | provide
methods to maintain aggregate views when triples are modi € (called AMT) and when resources
(called AMR) are modi ed. | also note that RDF databases can be easily stored in relational form.

As a consequence, standard algorithms to maintain aggregatrelational views can be implemented



to maintain RDF views. | have implemented this strategy and compared it to myimplementation
of AMI, AMD, AMR and AMT { my algorithms are much faster than performing view maintenance
on the relational version. The results show that, when the ddabase is updated, my incremental
maintenance algorithms work much faster than a complete reomputation by an order of 10 to

1000 and about 1.8 to 1109 times faster than the relational irplementation.

1.5 Organization

Chapter 2 describes thePXML model, algebra and aggregation. | rst start with a motivati ng
example and propose the Probabilistic XML (PXML) model of probabilistic semistructured data-
bases. | de ne the semantics for probabilistic semistructued databases and propose an extension
of the relational algebra operators to apply to probabilistic semistructured databases. Then, |
describe a formal model of probabilistic aggregates with gjorithms to compute them e ciently. |
then present experimental results to evaluate the e ciency of algorithms.

In Chapter 3, | show how to extend the PXML model to the PIXML probabilistic interval
data model which uses interval probabilities rather than pant probabilities. | then provide two
alternative formal semantics for PIXML with an operational semantics for queries.

In Chapter 4, | rst introduce the reader to the basics of RDF and RDF aggregates and
describe how to extend a commerciaRDF language calledRDQL (proposed by Hewlett Packard)
to support aggregations. | propose algorithms to compute agregates, maintain non-aggregate
views and aggregate views oRDF databases. | then present experimental results which showhat,
when the database is updated, my incremental maintenance gbrithms work much faster than a
complete recomputation and the relational implementation.

| discuss related work in Chapter 5. Chapter 6 concludes thiglissertation.



Chapter 2

Probabilistic XML Model, Algebra and Aggregation

In this chapter, | describe the PXML model, algebra and aggregation. | rst start with a motivati ng
example in Section 2.1. In Section 2.2, | propose the Probaklstic XML ( PXML) model of prob-
abilistic semistructured databases. Then in Section 2.3, Ide ne two semantics for probabilistic
semistructured databases. The rst is aglobal semantics (in a sense to be made precise) while the
second is alocal semantics. | show that the two semantics are equivalent. In 8ction 2.4, | pro-
poseprobabilistic point queries that return the probabilities that particular objects exi st satisfying
some constraints. Then, in Section 2.5, | propose an extensn of the relational algebra operators
to apply to probabilistic semistructured databases. | de ne the operations of select, project and
Cartesian product. | also give algorithms that exploit the local semantics, and result in e cient
computation of the results of these algebraic operations. Ten, in Section 2.6, | describe a formal
model of probabilistic aggregates. Section 2.7 contains gbrithms to compute probabilistic aggre-
gates e ciently. Section 2.8 contains experimental results that evaluate the e ciency of algorithms

implementing the PXML algebra and aggregation.

2.1 Motivating Examples

In this section, | provide two applications as our motivating examples used throughout this chapter

to illustrate my proposed PXML model, semantics, algebra, query and aggregate operators.

2.1.1 A Bibliographical Application

As our rst running example, | will use a bibliographic domain. This example is rather simple,
but | assume it will be accessible to all readers. In this casd assume that the uncertainty arises

from the information extraction techniques used to construct the bibliography. Consider a citation



T=title-type
value="PXML”

T=institution-type
value=UMD

T=institution-type
value=Stanford

t=title-type
value="Probabilistic Relational Models”

Figure 2.1: A semistructured instance for a bibliographic dmain.

index such as Citeseet or DBLP 2. In Citeseer, the indexes are created by crawling the web, ah
operations include parsing postscript and PDF documents. Gten, there will be uncertainty over
the existence of a reference (have we correctly identi ed a ibliographic reference?), the type of
the reference (is the reference a conference paper, a joutnarticle or a book?), the existence of
sub elds of the reference such as author, title and year, thaédentity of the author (does Hung refer
to Edward Hung or Sheung-lun Hung or many other tens of authos with \Hung" as their last
names or rst names?). In such environments, uncertainty alounds.

Semistructured data is a natural way to store such data becase for an application of this
kind, we have some idea of what the structure of data looks lik (e.g. the general hierarchical
structure alluded to above). However, semistructured datamodels do not provide support for
uncertainty over the relationships in an instance. In this paper, | extend this model to naturally
store the uncertainty that we have about the structure of the instance as well. Furthermore, we will

see how my algebraic operations and query mechanisms can figm the following manipulations:

1. Find a list of authors (without titles, institutions, etc .) and return an object which allows

further querying.

Lhttp://citeseer.nj.nec.com/cs/
2http://www.informatik.uni-trier.de/~ley/db/



2. Merge two databases together.

3. Find the probability that a particular individual is the a uthor of some book.

2.1.2 A Surveillance Application

Another example is a surveillance application where a battk eld is being monitored. Image
processing methods are used to classify objects appearing images. Some objects are classi-
ed as vehicle convoys or refugee groups. Vehicle convoys mae further classi ed into individual
vehicles, which may be further classi ed into categories soh as tanks, cars, armored personnel
carriers. However, there may be uncertainty over the numberof vehicles in a convoy as well as the
categorization of a vehicle. For example, image processingethods often use statistical models to
capture uncertainty in their identi cation of image object s. Further uncertainty may arise because
image processing methods may not explicitly extract the idetity of the objects. Semistructured
data is a natural way to store such data because for a survedince application of this kind, we have
some idea of what the structure of data looks like (e.g. the gaeral structure described above).
However, the above example demonstrates the need for a serrnisctured model to store uncertain
information in uncertain environments.

Aggregate queries are natural queries for users to ask in shi@pplications. To date, we are
aware of no formal model of aggregate computations in probahbstic XML databases. Examples
of queries that users may wish to ask include:How many convoys are there (in some collection
of images)? How many tanks are there in total? On the averagdyjow many tanks are there in a
convoy? What is the ratio of the total number of tanks to the ttal number of trucks? In more
complex examples, there are many other important queries. flconvoys include an estimate of the
number of soldiers per vehicle, we may be interested in the tal number (sum) of soldiers. We
may also be interested in the average number of soldiers pepavoy, the average number of soldiers

per tank, and so on.
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2.2 Probabilistic Semistructured Data Model

In this section, | introduce the PXML model. | rst review the de nition of a semistructured data

model. | then introduce the syntax of PXML followed by the semantics ofPXML.

2.2.1 Semistructured Data Model

| start by recalling some simple graph concepts.

Denition 2.2.1  Let V be a nite set of vertices, E V V be a set of edges and: E ! L
be a mapping from edges to a sdt of strings called labels The triple G = (V;E;") is an edge

labeled directed graph

As usual, a graph isrooted i there is a distinguished node called the root such that for
every node in the graph, there is a path in the graph from the rat to that node. Unless otherwise

noted, we will assume thatG is rooted.

De nition 2.2.2  SupposeG = (V;E;") is any rooted, edge-labeled directed graph. For 8@ V:

The children of o, denotedC(0), is the setfo®j (0;0% 2 Eg.
The parents of o, parentg0), is the setfo?j (0%0) 2 Eg.

The descendants of o is the setdego) = fo%j there is a directed path from o to @ in Gg,

i.e., 0's descendants include o's children as well as the ddren of o's descendants.

The non-descendants of o is the setnon-dego) = f0%0°2 V ~ 0°2 dego) [f ogg, i.e., all

vertices except o's descendants are o0's non-descendants.

We uselch(o;1) to denote theset of children of o with label |. More formally,
Ich(o;1) = f0°%j (0;0% 2 E ~ “(0;0% = Ig:
A vertex o is called aleaf i C(0) = ;.

| also introduce a setT oftypes, eachtypeT 2 T has an associated nitedomain , denoted
dom(T). For each object, (0) returns the type of the object and | have a function val which maps

an object o to a value in the domain of (object).
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It is important to note that my graphs are not restricted to tr ees| in fact, the above
de nition allows graphs. As we will see later, while | allow ssmistructured data instances to be
graph-structured, | require the probabilistic dependences among the nodes to be acyclic.

As | plan to build upon existing models of semistructured databases, | start by recapitulating
the de nition of a semistructured instance from [1]. | start by assuming the existence of some
arbitrary but xed set O of strings called object-ids (oids for short), and a setT of types. Each

type T 2T has an associated nite domain,dom(T).

De nition 2.2.3 A semistructured instance S over a set of objectsO, a set of labelsL, and

a set of typesT, is a 5-tuple S =(V;E;"; ; val) where:

1. G=(V;E;") is a rooted, directed graph where¥ O ,E V Vand :E!'L ;
2. associates a type inT with each leaf object o inG.

3. val associates a value in the domairdom( (0)) with each leaf object o.

| illustrate the above de nition through an example from the bibliographic domain.

Example 2.2.1 Figure 2.1 shows a graph representing a part of the bibliogphic domain. The in-
stance is de ned over the set of object® = fR;B1;B2;B3;T1;T2;Al; A2; A3;I1;129. The set
of labels isL = f book; title ; author; institution g. There are two types, title-type and institution-type,
with domains given by:dom(title-type) = f PXML ; Probabilistic Relational Modelsg and
dom(institution-type ) = f Stanford; UMDg. The graph shows that the relationships between the

objects in the domain and the types and values of the leaves.

2.2.2 The PXML Probabilistic Data Model

In this section, | develop the basic syntax of thePXML probabilistic data model. Before de ning

the important concept of a probabilistic instance, | need tointroduce some intermediate concepts.

De nition 2.2.4 (probability distribution) A probability distribution w.r.t. S is a mapping

P:S! [0;1]where s sP(s)=1.

12



A central notion that allows us to provide coherent probabilistic semantics is that of a weak
instance. A weak instance describes the objects that can oac in a semistructured instance, the
labels that can occur on the edges in an instance and constnatis on the number of children an
object might have. | will later de ne a probabilistic instan ce to be a weak instance annotated with
probabilistic information that will provide us with a distr ibution over semistructured instances

consistent with the weak instance.

De nition 2.2.5 A weak instance W with respecttoO, L and T is a 5-tuple W = (V;lch; ; val,

card) where:

1.V O.

2. For each object 02 V and each label 12 L, Ich(o;1) species the objects thatmay be
children of o with label I. 1 assume that for each object o andistinct labels I;; |, Ich(o;11) \
Ich(o; 1) = ;. 8

3. associates a type inT with each leaf object.

4. val associates a value indom( (0)) with each leaf object o.

5. card is a mapping that constrains the number of children with a gign label |. card asso-
ciates with each object 02 V and each label 12 L, an integer-valued interval cardo;1) =
[min; max ], where min 0, and max min. | use cardo;l):min and cardo;l):max to

refer to the lower and upper bounds respectively.

A weak instance implicitly de nes, for each object and each &bel, a set of potential sets of children.

Consider the following example.

Example 2.2.2 Consider a weak instance withv = fR;B1;B2;B3;T1;T2;Al, A2, A3;I11;I2g.
We may havelch(R;book) = fB1;B2;B3g indicating that B1, B2 and B3 are possible book-
children of R. Likewise, we may havelch(B1;author) = fAl;A2g. If cardB1;author) =[1;2],

then B1 can have between one and two authors. The set of podsilauthor-children of B1 is thus

3This condition says that two edges with di erent labels cann ot lead to the same child; this condition can be

relaxed, | make it here to simplify exposition.
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ff Alg;fA2g;fAl1;A2gg. Likewise, if card Al, institution ) = [1;1] then A1 must have exactly

one (primary) institution.
| formalize the reasoning in the above example below.

De nition 2.2.6  SupposeW = (V;lIch; ; val, card is a weak instance ando2 V and | is a label.

A set c of objects inV is a potential |-child set of o w.r.t. the above weak instance i :

1. If o°2 ¢ then o2 Ich(o;1) and

2. The cardinality of c lies in the closed intervalcardo; ).

| use the notation PL(0;1) to denote the set of all potentiall-child sets ofo.

As PL(0;1) denotes the set of all potential child sets ofo with labels I, | de ne the set of all

potential child sets of o with any label as the following:

De nition 2.2.7  SupposeW = ( V;lch; ; val, card) is a weak instance ando2 V. Let H, be a set

of all the sets of potential I-child sets of objecb,

Ho = [ PL(0;1):

12f PL(0;1) j (9090092 Ich(o;l)g

(Note that H, is a multiset.) The potential child set of o, denoted PC(0), is a hitting set* of

Ho.

Once a weak instance is xed,PC(0) is well de ned for each o. | will use this to de ne the

weak instance graphbelow. We will need this in the de nition of a probabilistic i nstance.

De nition 2.2.8  Given a weak instanceW = (V;Ich; ; val, card), the weak instance graph ,
Gy = (V;E), is a graph over the same set of node¥, and for each pair of nodeso and o° there

is an edge fromo to o®i 9c 2 PC(0) such thata®2 c.

Figure 2.2 shows a weak instance graph for the bibliographiclomain. An important re-
guirement when de ning a probabilistic semantics is that the probabilities of all potential child

sets sum to 1.

4Suppose S = fSy;:::;Sng where each S; is a set. A hitting set for S is a set H such that (i) for all 1 i n,

H\ S; 6 ; and (ii) thereisno H® H satisfying condition (i).
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Figure 2.2: A weak instance graph for the bibliographic doman.

De nition 2.2.9  SupposeW = (V;lch; ; val,card) is a weak instance. Let 02 V be a non-
leaf object. An object probability function (OPF for short) for o w.r.t. W is a mapping

I :PC(o) ! [0;1] such that OPF is a legal probability distribution, i.e., ¢ pc(o)! (€) =1:

De nition 2.2.10  SupposeW = (V;lch; ; val, card) is a weak instance. Let 02 V be a leaf object.
A value probability function (VPF for short) for o w.rt. W is a mapping! : dom( (0)) !

[0; 1] such that VPF is a legal probability distribution, i.e., vz dom( (0! (V) = 1:

An object probability function provides the model theory needed to study a single non-leaf
object (and its children) in a probabilistic instance to be de ned later. It de nes the probability
of a set of children of an object existinggiven that the parent object exists. Thus it is the
conditional probability for a set of children to exist, under the condition that their parent exists in
the semistructured instance. As we will see later, it is akinto the conditional probabilities speci ed
in graphical models or Bayesian networks [66], however a kedi erence is that it describes the
local structure of the network. Similarly, the value probability function p rovides the model theory

needed to study a leaf object, and de nes a distribution overvalues for the object.
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De nition 2.2.11  SupposeW = (V;lch; ; val card) is a weak instance. Alocal interpretation
is a mapping} from the set of objects 02 V to local probability functions. For non-leaf objects,

} (0) returns an OPF, and for leaf objects,} (o) returns a VPF.

Intuitively, a local interpretation speci es, for each obj ect in the weak instance, a local probability

function.

De nition 2.2.12 A probabilistic instance | is a 6-tuple | = (V;lch; ; val,card }) where:

1. W =(V;lch; ; val; card) is a weak instance and

2. } is a local interpretation.

A probabilistic instance consists of a weak instance, togdter with a probability associated with

each potential child set of each object in the weak instance.

Example 2.2.3 Figure 2.3 shows a very simple probabilistic instance. Theet O of objects is
the same as in our earlierPXML example. The gure shows the potentialch of each object; for
example,lch(B1;author) = fAl;A2g. The cardinality constraints are also shown in the gure; for
example, object B1 can have 1 to 2 authors and 0 to 1 title. Theables on the right of Figure 2.3
show the local probability models for each of the objects. €htables show the probability of each
potential child of an object. For example, if B2 exists, the mbability Al is one of its authors is

0:8.

The componentsO;L; T of a probabilistic instance are identical to those in a semiguctured

instance. However, in a probabilistic instance, there is ugertainty over:

The number of sub-objects of an objecto;

The identity of the sub-objects.

The values of the leaf objects.

This uncertainty is captured through the function } (0). } (0) may be de ned extensionally, de n-

ing a probability for each potential child of every object, as we have done here. Or we made ne
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o | Ich(o; 1)

R book fB1, B2, B3g
B1 title fTlg

B1 author fAl, A2g
B2 author f Al, A2, A3 g
B3 title fT2g

B3 author fA3g
Al institution fllg
A2 institution fl1, 12g
A3 institution fl2g

o] | card(o; 1)

R book [23]

B1 author [1,2]

B1 title [0,1]

B2 author [2,2]

B3 author [1,1]

B3 title [1,1]

Al institution [0,1]

A2 institution [1,1]

A3 institution [1,1]

} (0) more compactly if there are some symmetries or independeecconstraints that can be ex-
ploited in the representation. For example, if the occurrerce of each category of labeled objects
is independent, then we can simply specify a probability foreach subset of objects with the same
label and compute the joint probability as the product of the individual probabilities. For in-
stance, if the existence of author and title objects is indepndent, then we only need to specify
a distribution over authors and a distribution over titles.
be the case that some objects are indistiguishable. For exaphte in an object recognition system,

we may not be able to distinguish between vehicles. Then if wéave two vehicles, vehiclel and

c2 PC(R) } (R)(©)
fB1, B2g 0.2
fB1, B3g 0.2
fB2, B3g 0.2
fB1, B2, B3g 0.4
c2 PC(B1) } (B1)(c)
fAlg 0.3
fAl, Tlg 0.35
fA2g 0.1
fA2, Tlg 0.15
fAl, A2g 0.05
fAl, A2, Tl g 0.05
c2 PC(B2) | }(B2)(c)
fAL, A2g 0.4
fAl, A3g 0.4
fA2, A3g 0.2
c2 PC(B3) | }(B3)(c)
fA3, T2 g 1.0
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c2 PC(A1) | }(Al)(c)
fg 0.2
fllg 0.8

c2 PC(A2) | }(A2)(c)
fllg 0.5
f12g 0.5

c2 PC(A3) | }(A3)(c)
f12g 1.0

Figure 2.3: A probabilistic instance for the bibliographic domain.

Furthermore, in some domains it may




vehicle2, and a bridge bridgel in a scene S1, we may not be altie distinguish between a scene
that has a bridgel and vehiclel in it from a scene that has brigel and vehicle2 in it. In this case,
} (S1)(f bridgel; vehiclelg) = } (S1)(f bridgel;vehicle2g). The semantics of the model we have
proposed is fully general, in that we can have arbitrary distibutions over the sets of children of

an object.

2.3 Semantics

In this section, | develop a semantics for probabilistic seristructured databases. We can use a
PXML model to represent our uncertainty about the world as a distibution over possible semi-
structured instances. A probabilistic instance implicitly is shorthand for a set of (possible) semi-
structured instances|these are the only instances that are compatible with the information we do
have about the actual world state that is de ned by our weak instance. | begin by de ning the

notion of the set of semistructured instances that are comptble with a weak instance.

De nition 2.3.1 Let S=(Vs;E;"; s;vals) be a semistructured instance over a set of objec,
a set of labelsL and a set of typesT and let W = (\Vy ;Ichy; w;valy;card be a weak instance.

S is compatible with W if the root of S is in W and for each o inVs:

0 is also in Wy .
If o is a leaf in S and also a leaf inW, then s(0) = w (0) and vals(0) 2 dom( s(0)).

If o is not a leaf in S then

{ For each edge(o; 0% with label | in S, 0°2 Ichy (0;1),
{ For each label 12 L, let k = jfoY(0;0% 2 E ~ “(E) = Igj, then card(o;1):min  k

card(o; l):max:

| use Domain (W) to denote the set of all semistructured instances that are ompatible with a weak
instance W. Similarly, for a probabilistic instance | = (V;lch, ; | ;val ;card}), | use Domain(l)
to denote the set of all semistructured instances that are cmpatible with |'s associated weak

instanceW = (V;lIch, ; | ;val ;card).
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| now de ne a global interpretation based on the set of a compatible instances of a weak

instance.

De nition 2.3.2  Consider a weak instanceW = (V;lch; ; val;card). A global interpretation

P is a mapping from Domain(W) to [0; 1] such that s pomain (w)P(S) =1.

Intuitively, a global interpretation is a distribution ove r the set of semistructured instances com-
patible with a weak instance. In contrast, a local interpretation (Def. 2.2.11) de nes semantics at
a node by node level, rather than considering the space of atlompatible semi-structured instances.

First | must impose an acyclicity requirement on the weak ingance graph. This is required

to ensure that my probabilistic model is coherent.

De nition 2.3.3 Let W = (Vw;lchy; w;valy;card be a weak instance. W is acyclic if its

associated weak instance graplksy is acyclic.

Note that | do not restrict a probabilistic instance to be tre es; | allow graphs, | just do not
allow cycles in the dependency structure. For example, the mbabilistic instance in Figure 2.3
whose weak instance graph shown in Figure 2.1 is an acyclic gph.

Given a probabilistic instance | over an acyclic weak instanceW, the probability of any
particular instance can be computed from the OPF and VPF entries corresponding to each object
in the instance and its children.

For any probabilistic instance under the local semantics we can construct an associated
Bayesian network that encodes thestructure of the semistructured instance. This Bayesian network
allows us to construct a global interpretation from a local cne. As we will see later, the Bayes nets
only allows us to go the other wayin some cases This relationship with Bayesian network can be
leveraged to some extent for query processing.

The Bayesian network is constructed as follows. For each oleft o, in the PXML instance,
there are two corresponding nodes in the Bayesian network e noden; and its child node ¢;. Node
n; is a boolean random variable that istrue if object o occurs in the semistructured instance,

and false otherwise. For non-leaf objectso;, node ¢ is a discrete random variable whose values
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correspond to the set of children of object o that occurs in the semistructured instance. For leaf
objectso;, nodec; is a discrete random variable whose values correspond to ttomain dom( (g;)).
The conditional probability distribution for each n; is deterministic: n; is true with probability 1
if o is the member of any child set that occurs; otherwise, it isfalse with probability 1. The value
of the noden; corresponding to the root istrue with probability 1 because the root always exists.
The conditional probability distribution for each ¢ corresponds to the local probability models in
the PXML instance (the OPF or VPF for o, as appropriate) if n; is true; if n; is false then ¢ has
a special value; with probability 1. Because of the acyclicity requirement for the weak instance
graph, we will always be able to nd an ordering of the random \ariables such that we have any
¢ that potentially contains o beforen;.

Let | =(V;lch; | ;val ;card}), be a probabilistic instance. LetjVj = m. The associated

Bayesian network de nes the following distribution:

encoded by thec;;:::;¢ 1. For any complete assignment consistent with structure enoded by
the ¢i's and n;'s, the probability is simply the product of the P (gjn;).
With this construction in mind, | am now going to de ne the rel ationship between the local

interpretation and the global interpretation for PXML.

De nition 2.3.4  Let } be local interpretation for a weak instanceW = (V;lch; ; val, card. We
de ne the function Py as follows: for any instanceS 2 Domain (W), Py (S) = Qozs} (0)(cs(0));
where if 0 is not a leaf in W, then cs(0) = fo%(0;0% 2 Eg, i.e., the set of children of o in instance

S; otherwise, cs(0) = vals(0), i.e., the value of o in instance S.

In order to use this de nition of P, for the semantics of our model, | must rst show that

the above function is in fact a legal global interpretation.

Theorem 2.1 Suppose} is a local interpretation for a weak instance W = (V;lch; ; val, card).

Then Py is a global interpretation for W.
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Proof: The Bayesian network construction above de nes a legal prohbility distribution denoted

Pen . | show the correspondence betweeRgy and Py .

0i2S 0; 2S

For eachqg 2 S, n; = False and ¢ = ;, and by the BN construction:

because the rst term is 1, and the second term corresponds tthe OPF or VPF for o. Thus, for

the assignment of then; and ¢ associated with S,

Y
Pen (N1;:1:;Nm;C1;iii5Cm) = } (0)(cs(0)) = Py (S);
02S

and P, (S) de nes a global interpretation for W. |

Example 2.3.1 Consider S; in Figure 2.4 and the probabilistic semistructured instane from Fig-

ure 2.3.
P(S1) = P(B1;B2jR)P(A1;T1 jB1)P(A1;A2 jB2) P(I1 jAl) P(I1 jA2)

= 0:2 0:35 0:4 0:8 0:5=0:00448

An important question is whether we can go the other way: froma global interpretation, can
we nd a local interpretation for a weak instance W (V;lch; ; val, card? It turns out that we can

if the global interpretation can be factored in a manner consitent with the structure constraints
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P(S4)=0.0016
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s5:(R)) @2
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P(S5) =0.0096

Figure 2.4: Some of the semistructured instances compatibl with the probabilistic instance in

Figure 2.3.

imposed by W (V;Ich; ; val,card. One way to ensure this is to impose a set of independence
constraints on the distribution P.

Given P is a global interpretation and W = (V;lch; ; val, card) is a weak instance, we can
compute the probability of any object o's children, C(0) given o exists, which we will denote

P (C(0) = c¢), directly from the global interpretation as follows:

P
Sgbomain (W)" 028" C(0)=c¢ P(S) i

P(C(0) = ¢) =
S2Domain (W)"o02S P(S)

Similarly, we can compute the probability of a set of objects The objects that we will be inter-
ested in are the non-descendants o6 in the weak instance graph forW, which we will denote
non-deg, (0). The probability we will be interested in is the probabilit y of the nondescendents

given the object exists, P (non-degy (0)), and this is simply:

P

P(non-dew (O)) - S2 Eggmain (W )" 02 S” non-desy (0) P(S) .

S2Domain (W)"02S P(S)
We can compute the probability of the children and the descedents, P(C(0) = c;non-degy (0)),

analogously.
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De nition 2.3.5  SupposeP is a global interpretation and W = (V;lch; ; val,card is a weak
instance. P satises W i for every non-leaf object 0 2 V and eachc 2 PC(0) (and for every leaf

object 02 V and eachc 2 dom( (0))), it is the case that
P (C(0) = c;non-deg, (0)) = P(C(0) = ¢):

In other words, given that o occurs in the instance, the probability of any potential children
c of 0 is independent of the nondescendants 0b in the instance. Under this assumption it is
possible to use the Bayesian net to construct a local interpetation from a global one. Future
sections of this chapter, however, willnot make this assumption unless explicitly stated.

Furthermore, given a global interpretation that satis es a weak instance, we can nd a local

interpretation associated with it in the following manner:

De nition 2.3.6 (D operator) Supposec 2 PC(0) for some non-leaf object 8 and supposeP

is a global interpretation. ! .o, is de ned as follows.

S2Domain (W)”"02S” cs(0)= CP(S) .

I'po(0) =
° S2 Domain (W)~ 02sP(S)

Then, D(P) returns a function de ned as follows: for any non-leaf objet o, D(P)(0) = ! p.o.

Intuitively, we construct ! p.o(c) as follows. Find all semistructured instancesS that are
compatible with W and eliminate those for which o's set of children is notc. The sum of the
(normalized) probabilities assigned to the remaining senstructured instances by P is assigned to
c by the OPF® ! p.,(c). By doing this for each object o and each of its potential child sets, we get

a local interpretation.

Theorem 2.2 SupposeP is a global interpretation for a weak instanceW = (V;lch; , val, card)

and P satises W. Then D(P) is a local interpretation for W.

Proof: From De nition 2.3.6, D(P)(0) = ! p., is an OPF (or VPF) for o because ! p.o(C) = 1.

By De nition 2.2.11, D(P) is a local interpretation because for every non-leaf objeico, D'(P)(0)

5For leaf objects, ¢ 2 dom( (0)) and cs(0) = val(o) in the formula.
6VPF for leaf objects; note that for the rest of this section, w hen | mention OPF, it is also true for the case of

VPF.
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returns an OPF for o and for every leaf objecto, D(P)(0) returns a VPF for o. |

2.4 Probabilistic Point Queries

In the next section, we turn to more complex algebraic operaibns over PXML that do not map
directly to simple Bayesian network queries. But rst, now t hat we have the semantics forlPXML,
there are a number of simple queries that are straightforwad to compute and in the case where
the local semantics hold, some of these can be computed dithc using the Bayesian network
construction from the previous section.

To begin, the simplest probability that we may wish to compute is the probability of an
object g existing, which | will denote simply P(g;). For a given probabilistic instance W with
global interpretation P,

X
P(o)= P(S)
S2Domain (W)"o02S

In the case where we can represenP (S) using the local representation, this is equivalent to

computing the query Pgy (nj =1). By de nition, this is equal to:

We can compute this query e ciently using any of a number of Bayesian network inference tech-
niques [66, 53, 15]. In general, if the network is tree struaired, the inference will be linear in
the number of nodes in the network. If the network is not a treg the complexity depends on
the connectivity of the graph and the induced tree width of the graph. In practice, if the graph
is not highly connected, as in our example, the inference is ujte e cient. And, regardless of
the structure, the inference algorithms are signi cantly more e cient than naively computing the
probability by marginalizing over all of the compatible instances.

It is also straight-forward to compute the probability of th e existence of some collection of

objects, simply by computing the marginal probability of th eir associatedn;'s.
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2.5 Probabilistic Semistructured Algebra

This section describes several more complex manipulatiorsf PXML using algebraic operations on
probabilistic instances. For convenience, | use the terninstance to refer to a probabilistic instance
when there is no ambiguity.

Relational algebra is based on relation names and attributenames while my algebra is
based on probabilistic instance names angbath expressions The de nition of path expressions is

a variation of the standard de nition [3].

De nition 2.5.1  An edge sequence is a sequencd;:::::l,, where thel;'s are labels of edges. A
path expression p= rili:::::l, is an object (oid) r, followed by a (possibly empty) edge sequence
l1:::::1h; p denotes the set of objects that can be reached fromvia the sequence of edges with

labelslq:::::l,.

A path expression is used to locate objects in an instance. Weay o 2 p i there is a path
p to reach 0. For example, in the instance in Figure 2.1,A2 2 R:bookauthor because there is a
path from R to reach A2 through a path that is labeled bookauthor.

In this section | will de ne the following operators: projection, selection, and cross product
(join can be de ned in terms of these operations in the standad way). For each operator, | will
rst describe how it works on an ordinary semistructured instance, then | will describe how it

works on a probabilistic instance.

2.5.1 Projection

| propose several projection operators including ancestoprojection, descendant projection and
single projection as follows. Theancestor projection operation extracts subgraphs composed of
objects located by a path expression and those objects' anstors up to the root. Note that only
those ancestors and edges on the paths to those objects aretected. The descendant projection
operation extracts subgraphs composed of objects locatedyba given set of path expressions and

those objects' descendants. The objects located by path expssions are connected to the root.
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Figure 2.5: The result of the ancestor projection on the senstructured instance in Figure 2.1 with

the path expressions Rbookauthor.

Finally, the single projection operation extracts all objects by a given path expression ad then
connects them to the root. | only discuss ancestor projectio - the other two notions of projection

can be similarly constructed.

Example 2.5.1 Consider the semistructured instance shown earlier in Figte 2.1. Suppose we
have a path expressiorR:bookauthor. Ancestor projection will rst locate the set Vo= fA1;A2,
A3 g of objects that satisfy the path expression. V' is expandedybadding objects on the path from
the root to the objects inV° (the added objects are B1, B2 and B3), as well as the root of the
instance (R). V0 is the set of the objects in our new instance. If there was an gé between two
nodesni;n, in the semistructured instance of Figure 2.1 andni;n, 2 V°then we draw an edge

from n; to n, with the same label. The resulting instance is shown in Figer 2.5.

De nition 2.5.2  [ancestor projection ( )] SupposeG = (V;E;") is an instance, r is the root of
G and p is a path expression. Theancestor-projectionof G on p, denoted ,(G) = (V%EY), is

de ned as follows:
VO=fojo2V~(02p_90°2 V; edge sequences;s’ (p= rs:s® 02 rs*o®2 0:s9)g[f rg

E%= f(0;09 j (0;09) 2 E " 0;0°2 V°~9 edge sequences; s’ a labell and an object d°2

VO(p=rsi:s® 02 rs” 022 ol » 0992 0%s9g
8(a;b 2 E°(Yash) = “(a;b)
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(@) (b)

Figure 2.6: Given the two instances S1 and S2 on the left, theracestor projection of Rbookauthor
gives the same resulting semistructured instance shown as3%n the right. Because these are the
only two compatible instances that produce this result, the probability of the result is simply the

sum of the two probabilities, P (S3) = P(S1) + P(S2).
For any newly created leafo®, val(o® = NULL .

We have seen how ancestor projection works on a semistructad instance. Now, we are
going to see what it means for a probabilistic instance. For rample, recall the rst question
we wanted to answer in Section 2.1.1. We can use an ancestorgjection with a path expression
R:book:author on the probabilistic instance. The result keeps the authorsand their ancestors,
which can be used to deduce the global probabilities of compible instances or the probability
of a particular author in the future. Recall that from a proba bilistic instance, we can obtain
a set of compatible instances and a distribution over the prdability of each of the compatible
instances. We can perform the ancestor projection on each dfe compatible instances to obtain a
resulting set of semistructured instances. We then combinghe probabilities of identical instances
by summing them up.

For example, after the ancestor projection with a path expressionR:book:author on the set

of instances S1 and S2 in Figure 2.6(a), we will hav&3 as the result, shown in Figure 2.6(b).
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We can combine the probabilities ofS1, S2, i.e., P(S1) + P(S2), which is the probability of the

resulting instance.

De nition 2.5.3  Supposel = (V;lch; ; val;card }) is a probabilistic instance, P = W (}) and
p is a path expression. The probabilities of the result of the recestor projection with path ex-

pression p on | are de ned as follows: for everyS 2 Domain( ,(l)), the probability of S is

P
S%% pomain (1) S.t.  ,(S9=s P(SO()-

| give an e cient algorithm when all compatible instances are tree-structured. Note that
this is not a requirement, but it does simplify the algorithm.

Ancestor projection on a probabilistic instance results ina new probabilistic instance, with
the probability of an instance S°in the projection computed as the sum of the probabilities of
the instances that map to S°in the original probabilistic instance. We can treat the probabilistic
instance as an ordinary semistructured instance and perfan ancestor projection on it and update
cardand } . We begin at the leaves. The value of a newly created leaf is NLL, with probability
1. The update of} and card is done starting from the immediate parents of leaves. The ugate
is bottom up; it will be performed on an object only if the updates have been done on all of its
children.

Let o denote the non-leaf object whosé (0;) and card are to be updated. | denote the
original set of children before projection asC(o;), the new set of children after projection asCY;),
and Cqg = C(0)) CYo). Similarly, we use} °and card to denote the new local interpretation and

cardinality.

First, consider the immediate parent of a leaf.

{ Marginalization. Intuitively, for each &® C%o0;), we project all the children in the
original, ¢ C(g;), where ® is the result of projection of ¢ (after removing the deleted
children), to c%

0 X 0
}Ao)(c) = }(o)(c’[ d:

d Cq S.l. c=(c9 d)2PC(o;)
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{ Normalization.
A non-leaf object (except the root) in the result of ancestorprojection should not exist
in a compatible instance if none of its children exists in thecompatible instance (by
the de nition of ancestor projection). We will compute o, , the probability that o has
some child still existing in the result of the ancestor projection:

X
o = } (o)(c):

c92 PCO(0; )" c% ;

We then renormalize the probabilities so that } 4o;)(c) will represent the conditional
probability of o having children c given the condition that some of the children exist.

We set} %0))(fg) = 0 and do the normalization as follows: 8c  CY0,),

Yoo = 109

0j

For other non-leaf object (except the root), for eachc® 2 CYq;), we project all the children
in the original ¢ 2 C(0;), where c®is a subset ofc, to c® and multiply by the probability that
each exists:

0 X Y Y
}o)(c) = }(a)(0) o T )

c2PC(0;)"cO ¢ 0j2¢c0 0j2(c c9”o; 2PCo;)

As, above, we will record the probability o , set} Yo)(fg) = 0 and renormalize the proba-
bilities by dividing them by o, .

For the root r, we marginalize as above. However, we do not need to s¢t)(r)(fg) to 0
and do normalization. In essence} {r)(fg) is the probability that a compatible instance in
the original has no object satisfying the path expression ofthe ancestor projection and, as a

result, only the root object is returned.

The process of update ofcard is the same for all non-leaf objects: for an objectby and an

edge labell;,

card(og; lj):min = min (number of objects in C that have edge labell;)
C C%o0p) S.t. }9%o0g)(C)>0
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card(op; lj):max = max (number of objects in C that have edge labell;)
C C%op) S.t. }%0g)(C)>0

Probabilistic Path Queries

Now let us consider computing the probability of a simple obgct chain. To compute the probability
of a simple object chainc = r.0;:0,:::::0;, we consider all possible ways that the chain can be
achieved:

X X X
P = p) p(c1) p(c2) p(ci)

c12PC(r)*012¢1 c22PC(c1)"022¢y ci2PC(ci 1) 0i2¢;

Next we considerprobabilistic path queries which allow us to compute the probability that
an object satis es a path expression. This kind of query can ke used to answer the last situation

in Section 2.1.1: we want to know the probability that a parti cular author exists.

De nition 2.5.4  Given a path expressionp and an objecto in a probabilistic instance, a proba-

bilistic path query returns the probability thato 2 p in a compatible instance.

Here | assume thato 2 p in the probabilistic instance, otherwise it is obvious that the
probability must be zero. First, | de ne the path ancestorsof o as all 0's ancestors such that for
every such ancestoro,, there exists a path identical to the path expressionp from the root to o,
and then to o. Note that if | extract only the object o and its path ancestors from the probabilistic
instance, and use the same method described in the previougdion to calculate |, then  will
be the answer to this problem. The reason is that the root of the result of the ancestor projection
on a compatible instance will have a child if and only if thereis some object in that compatible
instance satisfying the path expression. Here, because | nkeep o and its path ancestors, the
root of the result of the ancestor projection on a compatibleinstance will have a child if and only
if o in that compatible instance satis es the path expressionp. Recall the meaning of  is that,
given that r exists in a compatible instance (which is true always),r still has a child that should
exist after the ancestor projection on that compatible instance, so ; also gives the probability

that o satis es p.
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An extension to this problemis to nd the probability thatth ere exists some object satisfying
a given path expression. We can solve it by keeping all objestsatisfying the path expression in

the probabilistic instance and their path ancestors and catulate , as the answer.

2.5.2 Selection

In this section | will describe the selection operation. | dene two types of selection conditions, an

object selection conditionand a value selection condition

De nition 2.5.5 (object selection condition) An object selection condition is of the form

p2 oor pZowherepis a path expression starting from the root ando is an object id.

De nition 2.5.6 (value selection condition) A value selection conditionis of the form val(p)
v wherep is a path expression starting from the root to some leaf, is a binary predicate from

f=;6; ; ;<;>gandvis a value.

It is straightforward to add other kinds of selection conditions (e.g. those based on cardinality or
OPFs/VPFs) - space constraints preclude us from doing so.

With a given selection condition sc and a probabilistic instance |, the global approach
will give a set of semistructured instances (with normalizel probabilities) compatible with the
result of selection operation. The global approach works agollows: among the set of instances
compatible with the probabilistic instance | , only those instances satisfying the selection condition
sc will be selected; then their resulting probabilities will be obtained by normalizing their original

probabilities using the formula in the following de nition .

De nition 2.5.7 (selection ( )) Supposel = (V;lIch; ; val card}) is a probabilistic instance,
sc is a selection condition. Let Domain( (1)) = fS 2 Domain(l) j S satises scg be the set

of compatible instances satisfying the selection conditin Then, 8S 2 Domain( s (I)), PYS) =

P P(S)

s 02 pomain ( sc(l)

P(S9

Example 2.5.2 Suppose we have a (simpli ed) probabilistic instance withhe P shown in Fig-

ure 2.7(a). Recall the second situation in Section 2.1.1 whe the bookB1 surely exists. So,

31



S1: book P(S1)=0.4

o e
Q%'@b

S1: book P(S1)=0.5

s2: book P(S2) = 0.2 "%z%
A
%’lb
ok
o S3: ng P(S3) = 0.25
S3: C<:g P(S3)=0.2 RN,
o
g
S4:

ey,
s4: book P(S4) = 0.25
book _ L
S P(S4)=0.2 %,%
QQ’%
(a) (b)

Figure 2.7: (a) The set of compatible instances of a probabitic instance along with their proba-

bilities. (b) The result of the selection R.book= B1.

how will the probabilities be aected?  The result of the setgion R:book = B1 is shown in
Figure 2.7(b). The set of compatible instances are shown, ahg with their updated probabilitites.
Among the four compatible instances shown in Figure 2.7(a)pnly S1; S3; S4 satisfy the selection

condition. Then we normalize the probabilities of the selded instances as follows. For example,

: . _ P (S1) — 0:4 —-nN-
consider S1: PS1) = P (ST P(S9)¥ P(S4) — 04025073 = 02

Here we are not making any assumptions about the factorizatin of the global interpretation.

2.5.3 Cartesian Product

In Section 2.1.1, | mentioned a situation where we want to corbine two probabilistic instances
into one. As in the case of Cartesian product in the relationd algebra, | assume that the object

ids are unique (after renaming, if necessary).

De nition 2.5.8 (Cartesian product ( )) Supposd = (V:lch; ; valcard});1 %= (V%Iich® ©

vaPl, card} 9 are two probabilistic instances,r;r © are the roots of| ;1% The Cartesian product of
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| ;19 denoted! | © results in a new probabilistic instancel %= (V% |ch®® % ya?card?} 99, | 0

is rooted at r®and is de ned as follows:
V= (V[ VO[fro) frg fr% %= [ ©va= val[ val

Ich®= Ich[ Ich® and card®= card[ card’ with the modi cation such that the two old roots are

merged into r®with all children of r;r ° become the children ofr @
for every labell, 8b2 Ich™{a; 1)

{ if a=r%thenif b2 V, then "Ra;b) = “(r;b); otherwise, "Na;b) = “(r%b);

{ if ag r% thenif b2 V, then "Ra;b) = “(a;b); otherwise, (Ra;b) Ya;b).

} %is de ned such that802 V, } o) = }(0); 802 VO } Qo) = } Y0). The root r®requires
a special treatment: 8¢%° 2 PC(r% such that c® = c[ c® wherec 2 PC(r);c® 2 PC(r9),

FROYCY =3 () FAND.

Note that the last item in the above de nition uses an independence assumption to multiply
probabilities. Lakshmanan et. al. [50] introduced the conept of a conjunction strategy to compute
the probability of a conjunction of events from the probabilities of the individual events. The
multiplication in the last step of the above de nition can be replaced by any of their conjunctive
strategies if the person posing the query believes that striggy to be appropriate (e.g. if he knows
that the events in question are positively correlated).

The standard condition join operator is de ned in the usual way as a cartesian product

followed by a selection.

2.6 Probabilistic Aggregate Operators

In this section, | consider another useful class of PXML opeations, operations that use aggregates.
I will use as a running example the surveillance applicationintroduced earlier. Consider the
probabilistic instance and its associated weak instance @ph shown in Figure 2.8. The primary
goal of this section is to de ne the declarative semantics ohggregate queries. Answering aggregate

queries in PXML raises three important issues:
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o] I Ich(o; 1)
11 convoy | f convoyl, convoy2g
convoyl  tank f tankl, tank2 g
¢ 2 PC(convoyl) | } (convoyl)(c)
convoy2  truck f truckl g
f tanklg 0.4
0 (0) val(o) f tank2g 0.6
tankl | tank-type T-80
¢ 2 PC(convoy?2) | } (convoy2)(c)
tank2 | tank-type T-72
f trucklg 1
truckl | truck-type | rover
value="T-80"
o I card(o; 1)
value="T-72"
11 convoy [1,2]
convoyl tank [11] value="rover’
convoy2  truck [1,1]
c2 PC(l1) } (1 1)(c)
f convoylg 0.3
f convoy2g 0.2
f convoyl, convoy2gy 0.5

Figure 2.8: A probabilistic instance for the surveillance cdomain.

Possible-worlds

answer:  Consider a query that wishes to count the number of objects

in all convoys in probabilistic instance | 1. This probabilistic instance has ve compatible

between 1 and

2 objects - we could return the sef 1; 2g indicating that the answer to the

count query is not known precisely, but is either 1 or 2 (each th probability O :5 in this

example).

Expected answer: Alternatively, we could use the statistical notion of expected value In

this case, we always return one count for any count query. We miltiply the number of objects
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in S1 (i.e. 2) by the probability of S1 (i,e. 05 0:4 1 =0:2) and add this to the number
of objects in S2 (i.e. 2) by the probability of S2 (i.,ee. 5 0:6 1=0:3) and so on. In the

above example, we would return 15 as the expected value.

Form of the answer: Instead of just giving a \direct" answer to an aggregate quey
such as 1.5, we may want to return a probabilistic instance. The advantage of returning a

probabilistic instance as output is that this can be the subject of further querying.

In the rest of this section, | proceed as follows. As the answs in both semantics above depend
upon nding the answer to an aggregate query in a semistructued instance, | rst give a formal
de nition of aggregates for semistructured instances (Seton 2.6.1), and then extend it to the
case of the possible world aggregates (Section 2.6.2) andeh to the case of expected aggregates

(Section 2.6.3).

2.6.1 Aggregates on semistructured instances

The standard aggregate functions such asum, count, avg, min, maxake a set of values and return
a single value. In addition, as we will see shortly, we can dene a more general notion of aggregate
function that takes a multiset of values and returns a set of \alues.

In classical relational databases, we may count all the tupds that satisfy a given selection
condition (e.g. nd the number of people making over 100K in an employee database) or sum
up values in a given attribute (e.g. nd the sum of monthly salaries of employees in the Sales
department). Such aggregates have two parts: (i) a conditia such as the 100K condition or the
Sales department condition mentioned above, and (ii) an aggegate function to be applied. In
PXML, the analog of (i) is a path condition (or path expression), while (ii) is unchanged. In
addition, PXML supports a higher level of aggregates (e.g. eturn the average number of tanks
per convoy). To achieve this, we need to specify a path expraeson (I:convoy) specifying that we
are interested in each convoy and:convoy:tank. In this case aset of path expressions must be

speci ed.
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value="T-80"

value="T-72”

value="rover” value="rover”

value="T-80”

value="T-72"

value="rover”

Figure 2.9: The set of semistructured instances compatiblewith the probabilistic instance in

Figure 2.8.

De nition 2.6.1  SupposeS is a semistructured instance,f is an aggregate function and is a
set of paths. LetA be the multiset of values of objects irS that are selected by a path in . The

aggregate operatorf® returns the semistructured instanceS%= (V% E® % ©vaf) where

VO= fr%agg a)g wherer?is the root of S° and agg (a) is a new object with valuef (A),

E = f(r%agg (a))g with a labelf .

In this context, the simple aggregates mentioned earliergum, count, avg, min, ma)select a multiset
of objects using the path conditions. These values are then apped to another value byf. The

resulting semistructured instance is a graph with an arti cial root node r% The root has a child
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S2
S1
e @ value="3"

S4’
S3’ (1)
@ count @ value="1" e @ value="0"

Figure 2.10: Consider the probabilistic instancel 1l and its ve compatible instances in Fig-
ure 2.9. S1° = count’(S;;) where S = S1;S2. S2° = count’(S;;) where S = S3;S4;S5.
11° = counf’(11;;). S3° = count(S;fl l:.convoy:tankg) where S = S1;S2;S3;S4. S4° =

count®(S5; f I 1:convoy:tankg). | 2°= count’(l 1;f | 1:convoy:tankg).

node labeledagg (ao. The edge is labeled with the name of the functionf .

Example 2.6.1 Consider the semistructured instanceS1 in Figure 2.9 and consider the aggregate
function count The aggregate quencount’(S1;;) may be used to determine the number of objects
in S1. This query returns a semistructured instance with the rootconnected to an objectcounts
with the value5 (shown asS1°in Figure 2.10). The aggregate querycount(S1;f | 1:convoy:tankg)
can be used to determine the total number of tanks i81. This returns the answer with object

count; with the value 1 (shown asS3°in Figure 2.10).
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2.6.2 Possible-worlds aggregates on probabilistic instares

Given a probabilistic instance | , the set of semi-structured instances that are compatible vith |

represents \possible worlds." An aggregate operator has aigen value in each such compatible

and suppose the probability of each compatible instancew; is p;. Then the probability of the
aggregate value beingv is given by ,=ypj. In other words, given v, we nd all compatible
instancesw; wherev; = v and add up the probabilities of all such compatible instancs.

At this point, we are still left with the problem of how to pres ent the answer - we want the

answer to be a probabilistic instance. The following de nition describes how to accomplish this.

De nition 2.6.2  Supposef® is an aggregate operator. Theprobabilistic aggregate operatorf®(l ,
) based onf° takes a probabilistic semistructured instancd = (V;lch; ; val;card}) and a set
of paths as input, and returns as output, a probabilistic ingance | = (V%Ich® © vaP card} 9

where:

[N

. Vo= VvOrf r% wherer®is the root of 1 ©and V%= [ s, pomain (1)(S%f) where S°= f°(S; ).

N

. Ich’is given bylchd(r%f) = v

3. 802 VY (o) is the type returned byf°.

B

cardP(r®f) =[1;1].
5. It follows immediately from the above that Domair{l 9 fS °j 9S 2 Domain(l )(S° =

fo(S; ))g. | de ne the local interpretation as follows:

P
802 VO }Ar9(fog) = s, pomain (1A val(s%:1 )= val(o) P} (S)

P
— S2Domain (1) 02fo(S: ) P} (S), where S0= fO(S, )

P
Equivalently, 85°2 Domain(1 9, P(S9) = s;pomain (1)n1o(s: )= s0 Py (S). Obviously, 802
VO 1%r9(fog) P ;(SY whereS°2 Domain(l 9 and 02 S° Similarly, 8S°2 Domain(l 9),

Py (S%  }Ar9(fog) wherer®is the root of | ®as well asS® and o is the child of r®in S°.

The following proposition provides an important commutativity result. Suppose | is a
probabilistic instance and | °is the probabilistic instance that results by computing a probabilistic

aggregate. If we were to perform the same aggregate on the set compatible instances ofl , then
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we would get the set of compatible instances of °. This very neat result is a kind of \correctness"

theorem that says that | © succinctly represents the answer.

Proposition 1  Supposef® is an aggregate operator] is a probabilistic semistructured instance,
is a set of path expressions, and °= fP(I; ). Then, Domain(1 9 fS °j 9S 2 Domain(l )(S°=

fo(S; ))a.
Proof: Immediately follows from the construction in De nition 2.6 .2. |

Example 2.6.2 Consider the two aggregate operators de ned in Example 2.6, the probabilistic
instance |11 in Figure 2.8 and the compatible instances shown in Figure 8. The corresponding
probabilistic aggregate operators work as followscount’(11;;) returns 11°in Figure 2.10 where
} %1 1)(f countsg) = Py (S1) + Py (S2) =0:2+0:3 = 0:5and } Y1 1)(f countzg) = Py (S3)+ P} (S4)+
P; (S5) = 0:12+0:18+0:2 = 0:5 (because objectounts results from S1; S2 and objectcounts results
from S3;S4;S5). Note that Domain (119 = £S1%S2%. Similarly, count’(l 1;f1 1:convoy:tankg)
returns 12° in Figure 2.10 where } (1 1)(fcount;g) = P} (S1) + P} (S2) + P3 (S3) + P (S4) =
0:2+0:3+0:12+0:18 = 0:8 and } 1 1)(f countog) = P; (S5) = 0:2 (because objectount; results

from S1;S2; S3; S4 and object count, results from S5). Note that Domain (129 = fS3% S4%,.

2.6.3 Expected aggregates on probabilistic instances

| now move on to the next kind of aggregate: expected value agggates. Such an aggregate has
no uncertainty. It just returns a single value.

Supposel is a probabilistic instance, and suppose the valued/ of a given aggregatef

instance w; is p;. Then, following the classical statistical notion of expeted value, the answer

returned by our \expected value" aggregate semantics is
E(V)= fip i

Formally, | de ne this as follows.
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De nition 2.6.3  Supposef® is an aggregate operator The expected aggregate functioh®(l ; )
takes a probabilistic semistructured instancd = (V;lch; ; val;card } ) and a path input set , and

P
returns the expected value of the aggregate: g, poman (1) Py (S) V.

2.7 Probabilistic Aggregate Algorithms

In the previous section, | gave very general de nitions of agregate operators, probabilistic ag-
gregate operators and expected aggregate functions. Thedatwo operations examine the entire
set of compatible instances. However, this is very expensévin practice as the set of compatible
instances may be huge. This section shows that for a large dettion of aggregates that have the

properties of idempotenceand distributivity , we can avoid this.

Denition 2.7.1  Let X be any set. A mappingf : M(X) ! M (X) is idempotent-distributive

(ID for short) i

8 multiset A 2 M (X), f (f(A))  f(A).
8 multisets A:B 2 M (X), f (A[ B) f(f(A)[ f(b).

Examples of ID aggregates includesunt count, avg, max, min.”

Examples of operators that are not ID include medians and moés.

2.7.1 SP Algorithm

We now describe the SP algorithm that can be used to compute agregates e ciently as long as
the aggregate function has the ID property. Figure 2.11 show the details of the algorithm.

The basic algorithm can be summarized as follows.

agd’(l; )

1. select setY of objects and their ancestors froml according to the de nition of P and

input ;

“strictly speaking, count is not ID. However, count can be computed easily by a trick in which we proceed as

though we are computing sum, but replace the values being summed by 1.
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probabilistic aggregate operator:
[input: |; ; output: | 0%
1) locate a setY of objects from | according to the de nition of f P and input ;
2) K all elements inY and their ancestors;
3 T bottom-up (r) wherer is the root;

P

4) iffP = count®, then add a tuple (f Og;u) into T whereu =1 oare P

5) else, add a tuple(unde ned;u) into T whereu =1 porp P
6) construct a probabilistic instance | ° from T as follows:
for every a 2 T:A, connect the root r° to a new object with object id f, and valuea
with an edge with label f; } (rO(ffag) = (A =a)T:P;

7)  return 19

function bottom-up
/* input: object o; output: relational table T =( A;P ) */

1) if ois a leaf, then

2) if (o) is compatible with f then T f (fval(o)g; 1)g;

3) elseT unde ned;

4) return T;

5) letC f o01;:::;0n9 denote the children of o such that T; bottom-up (0; ) is not unde ned;

6) let D C(o) C;

7) for every non-empty subsetE = f0e,;:::;0ey g oOf C,

8 p e o YOEL F);

9) if p> 0, then

10 for each combination of valuesae, ;:::;a e, where ae; 2 Tej'A,
11) a  f([{% ag);

12) ifo2 Y,thena f(a[ adefaut);

13) PP (TeA=ae)(TeP);

14) T update(T;a;p);

15) return T;

function update

/* input: relational table T, value seta, probability p; output: relational table T */
1) ifa2TAthenT TI[f (ap)g;
2) else replace(a;p® 2 T by (a;p + p9;

3) return T;

Figure 2.11: Algorithm SP for ID probabilistic aggregate operators
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2. probability table T bottom-up(r) wherer is the root;
P
3. add a tuple (unde ned;u) into T whereu =1 p21:p P

4. construct the resulting probabilistic instance | ° from T;

bottom-up

1. if ois a leaf, then
(@ if o2 Y,thena f valo)g;
(b) T f (a;1)g, return T;
2. let C f o01;:::;009 denote the children of o such that T; bottom-up( ;) is not
unde ned;
3. for every non-empty subsetc; of of C,
(a) calculate the marginal probability of existence ofc¢; given o;
(b) for each combination of values, each from an element irc;, we aggregate them,
multiple their probabilities p from the tables T;, which is nally multiplied by the
marginal probability above; T is updated with the aggregate result and probability;

4. return T;

Consider the probabilistic instancel 1 in Figure 2.8 and a probabilistic aggregate operator
count’(1 1;1 1:convoy: ) which returns the number of vehicles in a convoy. SP starts lg locating
the setY = ftank1; tank 2; truck 1g of objects. Ascountis not ID, we set the values of objects in
Y to f1g and use the aggregate functiorsuminstead.

After obtaining Y, we know K (K consists of theY's and their ancestors) contains all
objects. SP calls the functionbottom-up recursively. At the leaves ¢ank 1; tank 2; truck 1), bottom-
up passes up the stored value (1) with probability 1. For exampég, at convoyl, it obtains
T1 = f(f1g;1)g from tank 1 where the rst attribute store the aggregate value of objeds under
(and including) tank 1 which belong to Y. The second attribute is the corresponding conditional
probability (given tank1 exists). It then considers each subset of children afonvoyl. For f tank 1g,
the only possible combination of the values fromtank 1 is f (f 1g; 1)g. The results of aggregate of

the rst attribute is: sum(f1g) = f1g with probability p = } (convoyl)(ftank1lg) 1 = 0:4. We
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then update the table of convoyl by adding a tuple (f 1g; 0:4). Similarly, the remaining subsets
of children ftank2g, fg and ftank1;tank2g are considered and the table atconvoyl becomes
T1 = f(f1g; 1)g, which means that convoyl must have exactly one vehicle. SP works similarly on
the branch of convoy? and obtains the table T, = f (f 1g; 1)g.

At the root, we consider subset of children ofl 1. For example, forf convoyl; convoy2g, the
only possible combination of the values fromtank 1; tank 2 is f (f 1g; 1); (f 1g, 1)g. The results of ag-
gregating the rstattribute is: sum(f 1; 1g) = f 2g with probability p =} (I 1)(f convoyl; convoy2g)

1 1 =0:5. We then update the table T of | 1 by adding a tuple (f 2g; 0:5). Similarly, we update
the table with the tuple (f1g;0:3) for fconvoylg and (f 1g; 0:2) for fconvoy2g. The table now
becomesT = f(f 1g; 0:5); (f 2g; 0:5)g, which means that there are one to two vehicles, each with the

equal probability. SP nally creates a probabilistic insta nce with this result.

2.7.2 Complexity of SP Algorithm

As the data in each object is required at most once in SP, only ne disk scan is needed.
Space complexity:  The worst case space complexity iO(21¥]), where Y is the set of objects
whose values we want to aggregate. The worst case upper boumdn be reduced, depending offi .
For example, the worst case upper bound of space required bgount” is just jYj.
Time complexity: ~ Consider a non-leaf objecto. The time complexity of bottom-up is bounded
by the product of the size of each child's probability table and 2" wheren is the number of children
of oin line 5. Since the size of each childy's probability table is bounded by 2/ wherej; is the
number of selected objects under it, the product is bounded jZ)ZP Ii = 21 wherej is the number of
selected objects unden. Thus, the complexity now becomesO(2"*1). However, if j} (0)j < 2", we
can modify the algorithm slightly so that, instead of trying all possible subsets of children (inE),
we try all the entries (with elements in E) of o's OPF. In this way, we can reduce the complexity
to O(j} (0)j2).

It follows that the total time complexity is O(jlj 2Y}). For most aggregates (such as

count’; sunf’; avg’, and evenmax’; min®) where the table size is non-decreasing while going from
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the leaves to the root, we can use the following upper bound wibh is more precise:O(jlj j Troot J)
where | is the size of the probabilistic instance including the sizeof all OPF entries, and T;got IS

the probability table at the root.

2.7.3 Pruning

Time complexity increases with the actual size of the nal probability table passed up from the
root, i.e., the total number of possible aggregate values. flthis size is not unreasonably large,
we can e ectively prune our computation. For example, when aprobability table T is passed
up, all values with a probability below a preset threshold can be eliminated. Another method is
to keep the h most probable values in the probability table. In addition, a hybrid of the above
two and other pruning methods can be used. Since the e ects opruning techniques depends
on the application domain, the instance, the aggregate opetor used and the thresholds used,
users are advised to ne tune their pruning methods accordig to the desired performance of their
applications. In Section 2.8.3, | will investigate the e ectiveness of pruning by keeping the size
of probability table of every non-root object ( nalized at t he end of the function bottom-up) not

exceeding a threshold ranging from 50 to 300 probability entes.

2.7.4 SE Algorithm

The SE algorithm (shown in Figure 2.12) modi es SP for the expected aggregate computations.
Unlike SP, instead of keeping the whole probability table, & only keeps the expected aggregate
value and propagates it up.

To see how SE works, consider the probabilistic instance 1 in Figure 2.8. Consider the
probabilistic aggregate operatorcount(l 1;f1 1:convoy:g) which returns the total number of ve-
hicles. SE rst locatesY = ftank1;tank2;truck 1g. The aggregate function to be applied on them
is count However, ascountis not ID, we will set the values of selected objects (inY) to be f1g
and use the aggregate functiorsuminstead. After computing Y, we know that K contains all ob-
jects. SE calls the functionbottom-up recursively. At the leaves tank 1; tank 2; truck 1), bottom-up

passes up the stored value with probability 1. For example, & convoyl, it obtains T, = f(f 1g; 1)g
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expected aggregate function: ¥ /* input: 1 ; ; output: real numbere */

1) locate setY of objects from| according to the de nition of agdF and input ;

2) K all elements inY and their ancestors;T  bottom-up(r) wherer is the root;
3) feg T:A;p T:P;

4)  return e=g

function bottom-up /* input: object o; output: relational table T = (A;P) */

1) if ois a leaf, then

2) if (o) is compatible with agg thenT f (fval(o)g;1)g; elseT  unde ned;
3) return T;
4) letC f o01;:::;0n9g denote the children ofo which are also inK

such that T; bottom-up(o;) is not unde ned;

5) for every OPF entry} (0)(F),

6) let E = fOe,;:::;0e,9= F\ C;

7) if JEj > 0, then

8) a agd[ l; as ) Whereag, 2 Te :A,

9) ifo2Y,thena agyal agerau);

10) p  }(o)(F) Qi"ll (Te;:P); T update(T; a; p);

11) returnT;

function update
/* input: relational table T, value seta = feg, probability p; output: relational table T */
1) ifjTj60thenT TI[f (fe pg;p)g; else replacgfe’y;p?) 2 T by (fe+ e pg;p+ p%;

2) returnT;

Figure 2.12: Algorithm SE for ID expected aggregate functims

from tank1 and T, = f(f1g;1)g from tank?2. It then considers each OPF entry. Forftank1g,
the only possible combination of the values fromtank 1 is f (f 1g; 1)g. The result of the aggregate

computation is: sum(f 1g) = f1g with probability p = } (convoyl)(ftank1lg) 1 = 0:4. We then
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update the table of convoyl by adding a tuple (f1 0:4g;0:4). Similarly, the remaining OPF
entry ftank 2g is considered and the table atconvoyl becomesT; = f (f 1g; 1)g, which means that
convoyl must have exactly one vehicle. SE works similarly on the brach of convoy2 and obtain
a table T, = f(f1g; 1)g.

At the root, we consider the OPF entries of | 1. For example, for the subsetf convoyi,;
convoy?2g, the only possible combination of the values fromtank 1;tank 2 is f (f 1g; 1); (f 1g, 1)g.
The result is sum(f 1; 1g) = f2g, with probability p = } (I 1)(f convoyl;convoy2g) 1 1 = 0:5.
We then update the table T of convoyl by adding a tuple (f2 0:5g;0:5). Similarly, we update
the table with the tuple (f1 0:3g;0:3) for f convoylg and (f1 0:2g; 0:2) for f convoy2g. The nal

table becomesT = f(f 1:5g; 1)g, which means that the expected number of vehicles is:5.

2.7.5 Complexity of SE Algorithm

As the table only contains a single value, SE's space compléay is O(jYj) where Y is the set of
objects selected. SE's time complexity isO(hjlj ) where b is the branch factor (the number of
children), and | is the size of the probabilistic instance including the sizeof all OPF entries. SE

is therefore much faster (and more space e cient) than SP.

2.8 PXML Experiments

2.8.1 Experimental Design

| have implemented a prototype system in C on a Dell PowerEdgevith 1.13 Ghz PIIl processors,
4GB RAM running Linux. | generated probabilistic instances as balanced trees with the depth
(of the tree) ranging from 3 to 9 and with every non-leaf objed¢ having b children (bis the branch
factor, from 2 to 14) and every leaf object having a value in [Qr 1] (r is the range of the value,
from 2 to 32). | assume that there is no cardinality constrairt, so the total number of OPF
entries in a local interpretation for each non-leaf object 8 2. There are two kinds of distributions
of OPF entries within a given object. In the uniform distribu tion, all potential child sets have

the same probability. In the exponential distribution, exp onentially decreasing probabilities are
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assigned randomly to the potential child sets. There are twokinds of random edge labelings. In
the same label(or SL) labeling, all children of the same parent have the sare labels (shown as
SL in the gures). The fully random (or FR) labeling assigns random labels to all children of the
same parent. | evaluated the performance of ancestor projéion, selection, Cartesian product and

aggregate operations.

2.8.2 Performance results of algebra experiments

In this set of results, | include graphs of total query time and the time required to update the
local interpretation (}). The total query time is the sum of the time to make a copy of the input
instance, the time to locate objects satisfying a path exprssion (and the object id of the object
to be selected in the case of selection operation), the timeot update the structure of the instance
(for ancestor projection only), the time to update the local interpretation, and the time to write
the resulting instance onto a disk. For each depth, each braching factor and each operation, |
generated 10 instances. For each instance, | kept track of kels used by edges of objects in each
depth and generated 10 random queries that returned resultgonsisting of the root and at least
one more object. For example, in an instance of depth 2 wherehe edges connecting objects of
depth 1 to their parents have labels from the setf a; by and the edges connecting objects of depth
2 to their parents have labels from the setf c;dg, the path expression of an ancestor projection
qguery generated has the fornr:x 1:x, wherer is the root id, x; 2 f a;bgand x, 2 f ¢; dg. | accepted
this query in the performance measurement in our experimenbnly if there were objects satisfying
the path expression of this query. For each selection query, generated a path expressiorp (in the
same way) and similarly found a setSelObj of objects satisfying the path expression. The selection
gueries used have the formp = o where o is an object id selected randomly fromSelObj. For
each Cartesian product query, | generated two instances oftte same depth and the same branch
factor. In my experiments, | only consider single path expresions as de ned in De nition 2.5.1.
In addition, | set the length of the query (the length of the path expression) equal to the depth of

the instance because, according to the de nition of ancestoprojection and selection, the objects
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whose depth exceeds the length of the query will not be consated and will not a ect the query
results and the local interpretation of such objects does nbneed updating. For each combination

of depth and branching factor, | took the average of 100 such ggries.
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Figure 2.13: (a) Total query time of ancestor projection, (b) update local interpretation time of
ancestor projection, (c) total query time of selection and @) total query time of Cartesian product
for instances of sizes ranging from 10 to 1000000, branchirfgctors ranging from 2 to 8 and two
di erent labeling schemes (SL = same labels for children of he same parent; otherswise, all random

labels).

Figures 2.13 (a) and (b) show the total query processing timeand the time of updating
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} in an ancestor projection. By comparing the two graphs, we se that the time to update }
dominates the total query processing time. Figure 2.13 (b) bows that the time to update } is
linear in the number of objects, which can be explained by theact that } (0) is updated only once
for each objecto. Recall that the time to propagate probabilities from children of an objecto to
0 is quadratic in the size of} (0). When we x the number of objects, we see from Figure 2.13
(b) that the time increases by a multiple less than 16 when thebranching factor increases by 2,
i.e. the number of entries in} (o) is multiplied by 4. In addition, under the setting of having the
same labels for all children of the same parent, the time is loger than the other setting. One
possible reason is that in the former setting, there is a highr chance that more objects are located
by the path expression, and so there are more objects to be képvhose local interpretations are
to be updated. The nal note is that the updating time for 2995 93 objects and branch factor 8
SL (the top rightmost point) is 10 :4s, which seems to be long. However, it is reasonable when we
consider the fact that about 700 - 5000 objects are kept and adut 28000 - 20000@¢ (o) entries are
processed.

Figures 2.13 (c) and (d) show the total query processing timefor selection and Cartesian
product. Their results are di erent from that of ancestor pr ojection as the time to write the result
onto the disk dominates the total query processing time (thetime of updating } in selection only
involves less than 0.001 second; the time of updating the rdalata in Cartesian product only takes
less than 0.01 second). The reason is that the remaining staiure of the resulting instance does
not change after selection. Hence, the amount of data to be vitten is much larger than the number
of objects whose} (o) needs to be updated (the number is the same as the depth) in $ction, or
the data of the root in Cartesian product. The total time is li near in the number of objects and
linear in the number of entries in } (0) of each objecto. The quantity of data to be written is

independent of whether SL or FR labelings are used.
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2.8.3 Performance results of aggregate experiments

In this section, | only evaluate the performance of the core prt of aggregate operations, so |
assume that the probabilistic instances generated are theesults after selecting objects of interest
and their ancestors. Thus, the instances used here can be t&ed as just small subsets of a much
larger instance.

| evaluated two aggregate operators which are typical and usful. One is avgsunt(l,
fp1; p2g) which selects object setsY;; Y, satisfying path expressionsp;; p, from probabilistic in-
stancel , and then nds all the possible answers (with probabilities) of the quotient from dividing
the sum of values of objects inY> by the number of objects inY;. | use an extended version of SP
program to handle this operator. This extended SP works sinlarly to SP, but it keeps aggregate
results and probabilities for both Y; and Y, and processes an extra calculation on them in the nal
stage, which is division foravgsunf to get the average. The other operator issunf(l ; f pg).

The experimental results show that the second operator's awesponding expected proba-
bilistic function sunf can be computed by the SE algorithm within 0:5 second even when there are
10° selected objects. | also implemented the pruning techniquéy keeping the size of probability
table of every non-root object ( nalized at the end of the function bottom-up) not exceeding a
threshold ranging from 50 to 300.

I now show results (averaged over 10 to 100 runs for each satty) of the SP algorithm about
(1) the relationship of the number of selected objects and tle size of table at the root, (2) the
running time of SP (without pruning), and (3) the performanc e (running time and relative error)

of SP with pruning.

Root Table Size and Running Time of SP

Figure 2.14(a) shows that the size of the probability table T,y at the root (in SP program
for sunf(l ;fpg)) is approximately linear in the number of selected objectsbecause the slope is
approximately 1. The table size (T.q0t j) increases with the value range () to the power of about

1.4, i.e.,jTrootj/ r1:4.
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Figure 2.14: (a) In SP for sunf, the linear relationship between the size of the tableT at the root
(number of distinct values) and the number of objects seleatd (in log scale), (b) running time of

extended SP foravgsun? against the size of the root table (in log scale).

Figure 2.14(b) shows that the running time of extended SP to ompute avgsun? (including
the time for dividing the sum in Y, by jYij) is sub-cubic relative to the root table size because the
slope is between 2 and 3 The time complexity of this extended Bis O( bjlj j Troot j3). When the
branch factor increases by 2, the number of OPF entries incrases by a factor of four. We see from
the graph that after counting the e ect of b on the complexity, the time increases approximately
linearly with the probabilistic instance size (the total nu mber of OPF entries). Note that the
curves of branch factor 4 6; 8 are close to each other. A possible reason is the common oheiad

which dominates over the e ect of branch factor when the brarch factor is small.

Performance of Pruning

Here | generate instances with depth 4 and branch factor 4 (e., 256 selected objects) and evaluate
the operator sunf’. When the range of values is 816; 32, the mean root probability table size is
918 1872 4043, and the running time is 884; 55:84; 5665 seconds respectively.

Figure 2.15(a) shows that the relative error of the result wih pruning compared with the

case where there is no pruning decreases with the increasetime range of values and the maximum
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Figure 2.15: (a) Error of SP with pruning (relative to withou t pruning) for sunf against the
maximum table size allowed, (b) Running time of SP with pruning for sunf’ against the maximum

table size allowed.

probability table size allowed at non-root objects. Instances with an exponential distribution give
less error than those with uniform distribution because theformer produces aggregate values with a
larger di erence in probabilities, and hence the pruning ofaggregate values with lower probabilities
gives less e ect to the nal answer.

Figure 2.15(b) shows that the running time of SP with pruning increases with the range
values and maximum table size, but the time are all much lesshan the time without pruning
(except the curve of range 8 which attens when the maximum téble size allowed is even larger

than the original non-root table size).

2.9 Summary

In this chapter, | have introduced the probabilistic semistructured data model (PXML). | have

given two semantics of this model, namely the local semantigand the global semantics. The global
semantics gives an intuition of possible-worlds interpreaition of the semantics of the data model
while the local semantics allows e cient direct manipulati on to avoid the expensive handling

of exponentially large number of compatible instances (pasible worlds). | have presented an
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algebra to manipulate PXML data instances and showed how to evaluate such queries e cily.
Furthermore, | introduced two semantics (possible-worldsand expectation) for aggregations on
PXML instances. The second semantics can be computed e ciently Wile the rst semantics can
be computed with acceptable performance with pruning. Expeimental results have veri ed the
feasiblity of PXML algebra and aggregations.

The PXML model presented uses point probability to model uncertainy of information. We

will see how this can be extended to use interval probabilityin the next chapter.

53



Chapter 3

Probabilistic Interval XML Model

In this chapter, | extend the PXML model developed in the previous chapter so that interval
probabilities are used instead of point probabilities to rgpresent uncertainty. In Section 3.1, | will
rst provide some necessary de nitions on which the PIXML model will be built. In Section 3.2, |
then develop the PIXML probabilistic interval data model. | then provide two alter native formal
semantics for the PIXML model. Section 3.3 presents the rst semantics which is a ddarative
(model-theoretic) semantics. The remaining sections presnt the second semantics which is an
operational semantics that can be used for computation. In he W3C formal speci cation of XML,
an instance is considered as an ordered rooted tree in whichycles can possibly appear[80]. In
this chapter, | will assume that an instance is an acyclic grgh - this assumption will be needed
to provide a coherent semantics toPIXML databases. However | do not restrict attention to tree-
structures. | also provide an operational semantics that isprovably correct for a queries over a

large class of probabilistic instances called tree-struetred instances.

3.1 Interval Probabilities

An extension to handle interval probabilities is useful be@ause almost all statistical evidence in-
volves margins of error. For instance, when a statistical etimate says that something is true with
probability 95% with a 2% margin of error, then this really corresponds to saying tle event's
probability lies in the interval [0 :93;0:97]. Likewise, using intervals is valuable when one does
not know the relationship between di erent events. For exanple, if we know the probabilities of
eventse;; e; and want to know the probability of both of them holding, then we can, in general,
only infer an interval for the conjunction of e;; e, ([9, 26]) unlesswe know something more about
the dependencies or lack thereof between the events. Furthenore, it is also natural for a human

judgement to be expressed as an interval probability ratherthan an exact point probability. For
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example, a human expert may say that the vehicle in a picture § likely a tank. If he or she is
asked to indicate a probability, he or she may feel di culty t o give a point probability (say, 60%),
but he or she may feel more natural to give an interval probabiity (say, 40% to 70%), which also
re ects the nature of uncertainty. An extreme case is [Q1] (i.e., \0% to 100%") which indicates
that we have no information about the probability or likelin ess of an event.

Below | quickly review de nitions and give some important th eorems for interval probabili-

ties. Given an interval | =[x;y] | will often use the notation 1:Ib to denote x and l:ub to denote
y.

An interval function w.rt. a set S associates, with eachs 2 S, a closed subinter-
val [Ib(s);ub(s)] [0;1]. is called aninterval probability function if P oslb(s) 1 and

P
g ub(s) 1. A probability distribution w.r.t. a set S over an interval probability function

is a mappingP : S! [0; 1] where
1. 852 S;Ib(s) P (s) ub(s), and
2. stP(S) =1.

Lemma 1 For any setS and any interval probability function w.r.t. S, there exists a probability

distribution P(S) which is compatible with .

Proof: There are potentially many possible distributions that are compatible with . One solution
is the distribution that is as close to \the middle" of each interval as possible. LetP w2slb(s)=L
and P <2 ub(s) = U. By the de nition of interval probability function, we know that L 1
and U 1. A probability function that is consistent with the interv al constraints is: p(sj) =
Ib(si)+(ub(s;) Ib(s;)) %: It is easy to check thatP i p(si) =landthat Ib(s;) p(si) ub(s).

It may be noted that among the possible distributions, there has been work such as [34] to
nd the one with maximum entropy. An interval probability fu nction w.r.t. S is tight i for
any interval probability function °w.r.t. S such that every probability distribution P over is

also a probability distribution over ©, (s)ilb  Ys):band (s):ub  Us):ubwheres2 S. If every
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probability distribution P over °is also a probability distribution over , then we say that is
the tight equivalent  of ° A tightening operator , tight, is a mapping from interval probability
functions to interval probability functions such that tight( ) produces a tight equivalent of . The
following result (Theorem 2 of [16]) tells us that we can alwgs tighten an interval probability

function.

Theorem 3.1 [16, Theorem 2] Suppose; °are interval probability functions over S and tight ( 9 =

. Let s2 S. Then:
2 0 1 0 13

X X
(s) = 4max @ qs):Ib; 1 %sY:ubA ; min @ Ys):ub;1 %sY:IbAS :

s02S7s% s s02S7s% s
For example, we can use the above formula to check that the imrval probability functions in

Figure 2.3 are tight. Throughout the rest of this chapter, unless explicitly speci ed otherwise, |

will assume that all interval probability functions are tig ht.

3.2 ThePIXML Data Model

In probabilistic XML, we have uncertainty because we do not know which of various possible
semistructured instances is \correct." Rather than de nin g a point probability for each instance,
we will use interval probabilities to give bounds on the prokabilities for structure. In this section, |
will rst de ne a probabilistic interval semistructured instance. The following section will descibe
its model theoretic semantics.

Recall the de nitions of a weak instance (De nition 2.2.5), a potential I-child set (De n-
ition 2.2.6), a potential child set (De nition 2.2.7), a weak instance graph (De nition 2.2.8), an
object probability function (OPF) (De nition 2.2.9) and a | ocal interpretation (De nition 2.2.11).
A probabilistic semistructured instance de ned in Section 2.2 uses a local interpretation to map a
set of OPFs to non-leaf objects for thepoint probabilities of children sets. Here, a probabilistic in-
terval semistructured instance usespf for a similar purpose; however, instead of point probabiliies,

interval probabilities are used inipf.

De nition 3.2.1 A probabilistic instance | is a 6-tuple | = (V;lch; ; val, card ipf) where:

56



o] | Ich(o;1)
11 convo f convoyl, convoy2
Y Y ve o c2 PC(11) ipf(l1;c)
convoyl tank f tankl, tank2 g
f convoylg [0.2,04]
convoy2 truck f truckl g
f convoy2g [0.1,04]
o] (0) val(o) f convoyl, convoy2g | [ 0.4, 0.7 ]

tankl tank-type T-80 ]
¢ 2 PC(convoyl) | ipf(convoyl;c)

tank2 tank-type T-72

f tanklg [0.2,0.7]
truckl | truck-type rover
f tank2g [0.3,0.8]
o] | card(o; 1)
¢ 2 PC(convoy?2) | ipf(convoy2;c)
11 convoy [1,2]
f truckl g [1,1]
convoyl tank [1,1]
convoy2 truck [1,1]

Figure 3.1: A probabilistic instance for the surveillance cdomain.
1. W =(V;lch; ; val, card) is a weak instance and

2. ipf is a mapping which associates with each non-leaf object ® V, an interval probability

function ipf w.r.t. PC(0), where c 2 PC(0) and ipf(o;c) =[ Ib; ub).

Intuitively, a probabilistic instance consists of a weak instance, together with probability intervals
associated with each potential child set of each object in tB weak instance. Similarly, given a

probabilistic instance, we can obtain its weak instance grah from its corresponding weak instance.

Example 3.2.1 Figure 2.3 shows a very simple probabilistic instancé. The set O of objects is
f11; convoyl; convoy?2; tankl, tank2;trucklg. The rst table shows the legal children of each of the
objects, along with their labels. The cardinality constraints are shown in the third table; for example
object 11 can have from one to two convoy-children. The tab&on the right of Figure 2.3 shows the
ipf of each potential child of 11, convoyl and convoy2. Intuitiely, ipf(l 1;fconvoylg) = [0:2; 0:4]

says that the probability of having only convoyl is betwee®i2 and 0:4.

1Here we only show objects with non-empty set of children.
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tank1(T-80)

tank2(T-72)

convo truck
C\-o truck1(rover)

(a) convoy?2

tank1(T-80) convoyl

convo convo tank2(T-72)

convo truck
(b) Sl COI'?W’Q truckl(l’over) 82 Convoy2 trUCkl(rover)
tan tank1(T-80)
convo convoyl

convo convo
tank2(T-72
s3 11 S4|1@/y/oman (T-72)

11
‘%\ truck
cor?W'O truckl(rover)

S5

Figure 3.2: (a) The graph structure of the probabilistic instance in Figure 2.3. (b) The set of

semistructured instances compatible with the probabilistc instance in Figure 2.3.

In the rest of this chapter, | will omit the term interval in \probabilistic interval semistruc-
tured instance" and write it as \probabilistic semistructu red instance" or simply \probabilistic

instance".

3.3 PIXML : Declarative Semantics

I am now ready to describe the declarative semantics of a pradbilistic instance. Recall De ni-
tion 2.3.1 of an ordinary semistructured instance to be comptible with a weak instance. Intuitively,
this means that the graph structure of the semistructured instance is consistent with the graph
structure and cardinality constraints of the weak instance. If a given object o occurs in the weak
instance W and o occurs also in a compatible semistructured instancé, then the children of o in
S must be a set of potential children ofoin W.

| use Domain(W) to denote the set of all semistructured instances that are ompatible
with a weak instance W. Similarly, for a probabilistic instance | = (V;lch,; | ;val ;card ipf),

| use Domain(l ) to denote the set of all semistructured instances that are ompatible with 1's
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associated weak instanc&V = (V;lch, ; | ;val ;card.

Figure 3.2 shows the set of all semistructured instances copatible with the weak instance
corresponding to the probabilistic instance de ned in Exanmple 3.2.1.

I will now de ne global interpretations that associate probability distributions over the set

of all semistructured instances that are compatible with a pobabilistic instance.

Denition 3.3.1  Suppose we have a weak instand® = (V;Ich; ; val, card ipf). A global inter-

pretation P is a mapping from Domain(W) to [0; 1] such that s> pomain (w)P(S)=1.

Intuitively, a global interpretation is a distribution ove r the semistructured instances com-
patible with a weak instance. On the other hand, local interpretations assign semantics on an
object by object basis. To de ne local interpretations, | will use the de nition of OPFs in De ni-

tion 2.2.9.

De nition 3.3.2  SupposeW = (V;lIch; ; val;card) is a weak instance. Alocal interpretation
is a mapping} from the set of non-leaf objects 02 V to object probability functions, i.e. } (o)

returns an OPF for o w.r.t. W.

Intuitively, a local interpretation speci es, for each non-leaf object in the weak instance, an object

probability function.

3.3.1 Connections between Local and Global Semantics

In this section, | show that there is a transformation to congruct a global interpretation from a

local one, and vice versa, and that these transformations éxbit various nice properties.

De nition 3.3.3 (W operator) Let} be a local interpretation for a weak instancew = (V;lch,
, val,card). Then W (}) is a function which takes as input, anyS 2 Domain(W) and is de ned

Q

as follows: W (} )(S) = ~ ,,51} (0)(Cs(0)) where Cs(0) are the actual children of o inS.

The following theorem says thatW (} ) is a valid global interpretation for W with an acyclic weak

instance graph.
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Theorem 3.2 Suppose} is a local interpretation for a weak instance W = (V;lch; ; val, card)

with an acyclic weak instance graph. ThenW (} ) is a global interpretation for W.

Proof:
The proof is by induction.
The length of the path from the root r of a rooted directed acyclic graphG to an object o is

the depth of oin G. The largest depth of any object inG is the height of G. | will call the root of a

graph of heightk asox. Now, | de ne k sets, namelyOg ; Ock 1;:::;Og:0, Which contain objects

of depth 0;1;:::;k.> A set Ogy is de ned to contain o, only. Og; 1 is de ned as the union of the
. . . . . S

sets of children of objects inOg; , minus Og;j [ :::[ Ogx,i.€.,0g;j 1= 0204 C(0) 'r‘n:j Ogm :

Intuitively, the depth of objects in Og;; isk j. Suppose} (0) returns an OPF ! 4 for o w.r.t. W.
Consider the case that the height of W is 1. The root 0; is the only object in any S 2

Domain (W) that can have children. Thus,

Y
W(3S)= }(0)(Cs(0) = }(01)(Cs(01)) = ! 0, (Cs(01))

02S

In order for W(}) to be a global interpretation for W, the sum of W(} )(S) over all S
compatible with W should be equal to one. In this case, each distinc6 has the objecto; to

contain a distinct potential child set. By De nition 2.2.9, the sum always gives one.

X
W3 )(S) = Loy (Co)=1:
S2Domain (W) co2 PC(01)

Consider the case that the height ofW is 2. The root is denoted aso,.

W(G(S) = } (0)(Cs(0)
02S %
= }(02)(Cs(02)) } (01)(Cs(01))
OVZCS(OZ)
!'0,(Cs(02)) l'o,(Cs(01))
012 Cs (02)

Since Domain (W) contains all possible compatible instances and the set of lapotential

child sets of an object is independent of other objectsPomain (W) will then contains all possible

2] intentionally make the subscript of O as opposite to the depth it is corresponding so that the remai ning parts

of the proof is simpler and easier to understand when | am usin g induction.
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combinations of every potential child set of every object.

X Y X
W(})(S) Lo, (c1) !o, (Co)

S2 Domain (W) c12>I2C(02) 01Y2 C1 o2 PC(01)

= | 02 (Cl) 1

C1 2)?(:(02) 012C

= Lo, (1)
c12 PC(Oz)
1:

us consider the case that the height ofV is k + 2.

W (3 )(S) } (0)(Cs(0))

028

2oy

= }(0)(Cs(9))
j=1 0j20g;
2oy

= Lo (Cs(9)))

j=1 0j20g;j
While summing up over all compatible instances, | can use thassumption that the subgraph

(height k + 1) of W without the root ox.» has the product of sum equal to one?

0 0 11
X X AL Y X
W (})(S) D ogsr (Cs1) @ @ Lo (g 1)AA

S2 Domain (W) ck+1 2PC(0k42 ) j=1 0j 20w ¢ 12PC(0j)

= ! Ok +2 (Ck+1) 1
Ck+1 2PC(0k+2 )

= 1:

Example 3.3.1 Consider the probabilistic instance in Example 3.2.1. Suppse we are given a lo-
cal interpretation } such that} (11) = !4, } (convoyl) = ! convoy 1, } (CONVOY2) = ! convoy 2, Where

I'11(fconvoylg) = 0:3. ! 1(fconvoy2g) = 0:2, ! | 1(f convoyl; convoy2g) = 0:5, ! convoy 1(f tank 1g) =

3 Although now the subgraph may have more than one root, it can b e proved in a similar way that the product

of sum equal to one.
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0:4, ! convoy 1(ftank2g) = 0:6, ! convoy 2( ftruck1g) = 1. Then the probability of a compatible in-
stance S1 shown in Figure 3.2 will be:
W (})(S1) = } (1 1)(f convoyl; convoy2g) } (convoyl)(ftank1lg) } (convoy2)(ftruckl1g)=0:5

04 1=0:2.

An important question is whether we can go the other way: froma global interpretation,
can we nd a local interpretation for a weak instance W? It turns out that we can if the global
interpretation can be factored in a manner consistent with the structure constraints imposed by
W. One way to ensure this is to impose a set of independence cdreaints relating every non-leaf
object and its non-descendants in the weak instance grapksy . The independence constraints are

de ned below.

De nition 3.3.4  SupposeP is a global interpretation and W = (V;lch; ; val,card is a weak
instance. P satises W i for every non-leaf object o 2 V and eachc 2 PC(0), it is the case

that*: P(cjo;non-de$o)) = P(cjo). Here, non-dego) are the non-descendants ob in Gy .

In other words, given that o occurs in the instance, the probability of any potential children c
of o is independent of anypossible set of nondescendants. From now on, given a weak instance
W, | will only consider P that satis es W. The de nition below tells us how to associate a local

interpretation with any global interpretation.

De nition 3.3.5 ( D operator) Supposec 2 PC(0) for some non-leaf object o and supposP

is a global interpretation. ! p.,, is de ned as follows.

S2Domain (W)”"02S”" Cs(0)= CP(S) .

I'pio(c) =
° S2 Domain (W)~ 02sP(S)

Then, D(P) returns a function de ned as follows: for any non-leaf objet o, D(P)(0) = ! p.o.

Intuitively, | construct ! p.4(cC) as follows. Find all semistructured instancesS that are compatible

with W and given that o occurs, nd the proportion for which o's set of children isc. The sum of

4Here, P (cjo) is the probability of ¢ being children of o given that o exists. The notation of P (cjo;A) means the

probability of c being children of o given that o and A exists, where A is a set of objects.
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the (normalized) probabilities assigned to the remaining €mistructured instances byP is assigned
to ¢ by the OPF ! p.4(c). By doing this for each non-leaf objecto and each of its potential child

sets, we get a local interpretation. The following theorem stablishes this claim formally.

Proposition 2 SupposeP is a global interpretation for a weak instanceW = ( V;lch; ; val, card).

Then D(P) is a local interpretation for W.

Proof:
From De nition 2.3.6, D(P)(0) = ! p., is an OPF for o because ! p.o(C) = 1. By De ni-
tion 2.2.11,D(P) is a local interpretation because for every non-leaf objeico, D(P)(0) returns an

OPF for o. |

Example 3.3.2 Consider the probabilistic instance in Example 3.3.1 and th set of compatible
instances in Figure 3.2. Suppose we are given a global integiation P such that P(S1) = 0:2,
P(S2)=10:3, P(S3)=0:12 P(S4)=0:18, P(S5) = 0:2. Then a local probability can be obtained
by calculating the probability of each potential child of esry non-leaf object. For example, when we
calculate the probability off tank 1g as the actual child ofconvoyl, we notice thatS1; S2; S3; S4 con-

tain convoyl, but only the child ofconvoyl in S1;S3is ftank1g. Hence, D(P)(convoyl)(f tank 1g)

= P(SL+ P(S3) - 0:2+0 :12 = 032 _gy
P(SI)+ P(S2)+ P(S3)+ P(S4) ~ 0:2+0:3+0:12+0:18 — 0:8 :

N

The following theorems tell us that applying the two operators D and W one after the other

(on appropriate arguments) yields no change.

Theorem 3.3 Suppose} is a local interpretation for a weak instance W = (V;lch; ; val card).

Then, D(W ()= }.

Proof:

Given a graph G and a subsetA of objects in G, G A is a subgraph ofG after removing
the set A of objects and all edges connected tA. Dene Gpgeso) = G (fog [ dess(0)) for
any acyclic directed graphG, where des; (0) is the set of descendants ob in G, i.e., Gpges (o) iS @

subgraph of G without an object o and its descendants. De neGges() = G (fog[ non-desg; (0))
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for any acyclic directed graph G, where non-deg (o) is the set of non-descendants 0b in G, i.e.,
Gyes(o) is @ subgraph of G containing descendants of an objecb only. In this proof, | will treat
instancesS and weak instancesW as graphs and the above notations will be used on them.

De ne Domain nges (o) as function of W which returns a set of \compatible" subgraphs of W
only containing nondescendants of an objecp, i.e., Domainpges (o) (W) = fS 0 desy (0)jS 2
Domain(W)g where desy (0) are the descendants ofo in W. Similarly, de ne Domainges(o) as
function of W which returns a set of \compatible" subgraphs of W only containing an object o and
its descendants, i.e.,Domainges(o) (W) = fS  non-desy (0)jS 2 Domain (W )g where non-desy (0)
are the nondescendants ob in W.

| need to prove that for any non-leaf objecto and any of its potential child sets c,

D(W (}))(0)(c) = } (0)(c). The formula in De nition 3.3.3 can be rewritten as the foll owing:

W(3XS)= s }(0)(Cs(9) s

where

Y Y
s = } (0(Cs (0%); s = } (0(Cs (0%):

002 SA OOZW ndes (o) 002 SA 002\/\/ ndes (o)
Intuitively, s is the product of the probabilities of children of all objects excluding o and

its descendants. s is the product of the probabilities of children of all objects including only
descendants ofo. Here, descendants and nondescendants are those of the ottj@ in W.
It is obvious that for any two instances S;S° 2 Domain(W), if Sndes(o) = Spges(o)+ then
s = so. Similarly, if Sges(o) = Sges(o), then s = so. Forany X 2 Domainpges(o)(W), | de ne
new term (x) = s if X = Syges(o)- Similarly, for any Y 2 Domainges(o)(W), | de ne a new
term (yy = s if Y = Sges(o)-
The formula in De nition 2.3.6 to compute ! W );O(C) can be rewritten as:

a

DTN = )0l = oo

where

X
a = s }(0)(GCs(0) s

S2Domain (W)”"02S”" Cs(0)=c
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X X
= x) }(0)(c) )
X 2Domain ges (o) (W) Y 2Domain  ges(o) (W)
(the reasoning in this step is similar to Theorem 3.2)
X

= x) 19 1
X 2Domain nges (o) (W)

(the last term can be proved similarly to Theorem 3.2)

X
b = s }(0)(Cs(0) s
S2D i W)"r02S " C &
omalrs(( )"o s(0)&c X
= (X) } (0)(c) (Y)
X 2Domain  nges (o) (W) ¢ 2PC(o) Wherecsc Y 2Domain ges(o) (W)

(more precisely, for the last term, | require 9S 2 Domain (W)

such that Snon-deso) = X and Sgego) = Y.)

X X
= x) }(0)(Cs(0)) 1

X2 Domai)n( ndes (0) (W) ¢ 2PC(o) Wherecsc

= x) @ }(o)(c):

X 2Domain nges (o) (W)

Thus,

B } (0)(©)
'w)0(©) = }()(c)+1 }(0)(0)

=} (0)(o):
|

The following theorem tells us that if we rst apply the D operator and then apply the W

operator to a global interpretation, then we get the global interpretation back.

Theorem 3.4 SupposeP is a global interpretation for a weak instanceW = (V;Ich; ; val, card)

and P satises W. Then, W(D(P)) = P.

Proof:

As P satises W and as the probability of a child set of a given object is indegndent of
other objects, so we can factorizeé® (S) to the product of the conditional probabilities of child sets
of all non-leaf objects and there exists an OPF , for every non-leaf objecto such that for every
S 2 Domain(W), P(S) = Qozs! o(C(0)).

If I can prove that for any non-leaf object o and its any potential child set ¢, D(P)(0)(c) =

I o(c), then | can show that for every S, W (D (P))(S) = Qozs D(P)(0)(C(0)) = Qozs! o(C(0))
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= P(S):
Now | must show that D'(P)(0)(c) = ! o(c). | can de ne a local interpretation } such that

} (0) = !, for any non-leaf objecto. Then, from De nition 3.3.3, W(} )(S) = Qozs} (0)(Cs(0)) =

Qozs I o(C(0)) = P(S): Thus, W (}) = P. As aresult, | can substitute P by W(} ) in D(P)(0)(c) =
I o(c), then what | now need to prove has become: for any non-leaf gbct o and its any potential

child setc, D(W (} ))(0)(c) = } (0)(c). This is exactly the same as that in the proof of Theorem 3.3.

3.3.2 Satisfaction

| am now ready to address the important question of when a loch(resp. global) interpretation
satis es a probabilistic instance.
A probabilistic instance imposes constraints on the proballity speci cations for objects. |

associate a set of object constraints with each non-leaf obgt as follows.

De nition 3.3.6 (object constraints) Supposel = (V;lch; ; val, card ipf) is a probabilistic in-
stance, 0 2 V is a non-leaf object. We associate with 0, a set of constraist called object
constraints , denoted OC(0), as follows. For eachc 2 PC(0), OC(0) contains the constraint
ipf(o;c):lb  p(c) ipf(o;c):ubwherep(c) is a real-valued variable denoting the probability that

is the actual set of children of 0.0C(0) also includes the following constraint ¢, pc(o)P(C) =1:

Example 3.3.3 Consider the probabilistic instance de ned in Example 3.21. OC(I1) is de ned
as follows: 0:2 p(fconvoylg) 0:4, 0:1 p(fconvoy2g) 0:4, 0:4 p(f convoyl; convoy2g)

0:7, and p(f convoylg) + p(f convoy2g) + p(f convoyl, convoydj) = 1.

Intuitively, an OPF satis es a non-leaf object i the assign ment made to the potential
children by the OPF is a solution to the constraints associaed with that object. Obviously, a

probability distribution w.r.t. PC(0) over ipf is a solution to OC(0).

De nition 3.3.7 (object satisfaction) Supposel = (V;lch; ; val, card ipf) is a probabilistic in-
stance, 02 V is a non-leaf object,! is an OPF for 0, and } is a local interpretation. ! satis es

oi ! is a probability distribution w.r.t. PC(0) over ipf. } satises oi } (0) satises o.
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Example 3.3.4 Consider the probabilistic instance de ned in Example 3.21, the probability inter-
pretation de ned in Example 3.3.1 and theOC(I1) de ned in Example 3.3.3. Since the assignment
made to the potential children of 11 by the OPF} (11) = ! | is a solution to the constraints OC(11)
associated with 11,! 1 is a probability distribution w.r.t. PC(I1) over ipf. Thus, ! satises I1

and the local interpretation } satis es convoy. Similarly, convoyl and convoy?2 are satis ed.

I am now ready to extend the above de nition to the case of satsfaction of a probabilistic

instance by a local interpretation.

De nition 3.3.8 (local satisfaction of a prob. inst.) Supposel = (V;lch; ; val card ipf) is
a probabilistic instance, and} is a local interpretation. } satises | i for every non-leaf object

02V, }(o) satises o.

Example 3.3.5 Consider the probabilistic instance de ned in Example 3.21, the local interpreta-
tion } de ned in Example 3.3.1. In view of the fact that} satis es all three non-leaf objects, 11,

convoyl and convoy?, it follows that } satis es the example probabilistic instance.

Similarly, a global interpretation P satis es a probabilistic instance if the OPF computed

by using P can satisfy the object constraints of each non-leaf object.

De nition 3.3.9 (global satisfaction of a prob. inst.) Supposel = (V;lch; ; val card ipf)
is a probabilistic instance, and P is a global interpretation. P satises | i for every non-leaf

object 02 V, D(P)(0) satises o, i.e., D(P) satises | .

Corollary 1 (equivalence of local and global sat.) Supposel = (V;lch; ; val card ipf) is a
probabilistic instance, and} is a local interpretation. Then } satises | i W(}) satises |.
Proof:

By De nition 3.3.9, W(} ) satises| i D(W(})) satises | . By Theorem 3.3,D(W (})) =
} . Thus, it is trivial that the corollary is true. |
We say a probabilistic instance isglobally (resp. locally) consistent i there is at least

one global (resp. local) interpretation that satis es it. U sing Lemma 1, | can prove the following
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theorem saying that according to my de nitions, all probabilistic instances are guaranteed to be

globally (and locally) consistent.
Theorem 3.5 Every probabilistic instance is both globally and locally ansistent.

Proof:

By De nition 3.3.9 and Corollary 1, a probabilistic instanc e is globally consistent i it is
locally consistent. Thus, | only need to prove that every prdoabilistic instance is locally consistent.
Supposel = (V;lch; ; val; card ipf) is a probabilistic instance. For every non-leaf objecto 2 V,
OC(0) are exactly the same constraints of the de nition of a probability distribution w.r.t. PC(0)
over ipf(o, c). By Lemma 1, there exists such a probability distribution P, so | can de ne an OPF
I, for o such that 8¢ 2 PC(0), ! ,(c) = P(c). ! , is a probability distribution w.r.t. PC(0) over ipf
w.r.t. PC(0), so it satis es 0. Thus, for each non-leaf objecto 2 V, | can de ne an OPF ! 4 that
satises 0. Then | can de ne a local interpretation } such that for every non-leaf objecto 2 V,

} (0) = I',. Therefore, for every non-leaf objecto 2 V, } (0) satis es 0, so} satises | . |

3.4 PIXML Queries: Syntax

In this section, | de ne the formal syntax of a PIXML query. The important concept of a path
expressionde ned below (a bit di erent from De nition 2.5.1) plays the role of an attribute name

in the relational algebra.

De nition 3.4.1 (path expression) Supposel is a probabilistic instance, g, is an object id,

When | is clear from context, | will often just write op, and oy :l1::: 5.

| write 02 p whenever objecto can be located by pathp. A path expression isinstance-speci ¢
i the path expression is speci ed with an instance name of the form | : p wherel is an instance
name andp is a path expression. When a path expression is not instancspecic, it refers to a

default instance.
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3.4.1 Single-Instance Queries

A single instance query is one that only accesses one probdibtic instance.
Given an attribute name A in the relational algebra, we can write queries such a®A =

Vv;A v, etc. We can do the same with path expressions.

De nition 3.4.2 (atomic query) An atomic query has one of the following forms:

1. p o, wherep is a path expression, is a binary predicate from f=;6 g and o is an oid.

2. val(p) v, wherepis a path expression, is a binary predicate fromf=;6; ; ;<;>gand
v is a value.

3. cardp;x) | , wherep is a path expression,x is either | 2 L or ? (a wildcard matches any
label), is a binary predicate fromf=;6; ; ;<;> ; ; ; ;gandl isaninterval. I; | ;

has the intended interpretation. For example,l1 > 1, meansl:lb > 1 ,:1b” 11:ub > 1,:ub.

4. ipf(p;x) | , where p is a path expression,x is either ¢ 2 PC(p) or the wildcard ? (which
means that it matches any potential child), is a binary predicate fromf=;6; ; ;<;>;

;3 5 ;gandl is aninterval  [0; 1].

5. operand; operand ,, where bothoperand; and operand, should be of the same form among
p;val(p); cardp; x) and ipf(p;x) de ned above; is a corresponding binary predicate de ned

above.

| assume that an order is de ned on the elements in the domain foa type, but some types such
as strings only allow operations inf=;6 g. An atomic selection expression of the formval(p) v
or val(py) val(p.) is satis ed only if both sides of the binary predicate are typ-compatible and

compatible with (i.e., is de ned on their types).

A compound query is a boolean combination of atomic queries.

Denition 3.4.3 (oqu ™ ) and (cn _ ) are compound queries ifqp; @ are atomic queries or

compound queries.
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The simplest kind of query is one where all the conditions in he query can be satis ed (I
will formally de ne satisfaction later) by one object in one instance. This kind of query can be
either an atomic query with just one path expression (like a fee variable for only one object as
the answer) or a compound query with all path expressions refrring to the same object (this can
be done by using an object variable, e.g.yal(w = p;) > v » val(w) < v, wherew is an object

variable, p; is a path expressionyv;; v, are values).

De nition 3.4.4 A single-instance-single-object (SISO) query is either (i) an atomic query
(form (1){(4) in De nition 3.4.2), or (ii) a compound query a s a result of a boolean combination
of atomic queries (form (1){(4) in De nition 3.4.2) where al | the path expressions in the query

refer to the same object by using an object variable.

In contrast, the following de nes a query that can be satis ed by more than one object in

one instance.

De nition 3.4.5 A single-instance-multiple-object (SIMO) query is either (i) an atomic

qguery (form (5) in De nition 3.4.2), or (ii) a compound query .

3.4.2 Multiple-Instance Queries

In the previous section, only one probabilistic instance isqueried at a time. It is straight forward
to extend the above syntax to handle multiple probabilistic instances.
When the path expressions are speci ed with instance namesywe can query multiple in-

stances in a way similar to SIMO queries.

De nition 3.4.6 A multiple-instance-multiple-object (MIMO) query is either (i) an atomic
query (form (5) in De nition 3.4.2), or (ii) a compound query where all the path expressions are
instance-speci ¢ and involve more than one instance. Furtlermore, it is called an independent
MIMO (IMIMO) if and only if every atomic query in an MIMO query invo Ives only one instance

AND the atomic queries can be rearranged into the form(ch.1 Q1.2 ' g 1n,) (1 Q22
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d2n,) 0 (Gn1 9m2 0 O mn.) Where ®iseither® or _, and g; are atomic

queries involving only instancel ;. Otherwise, it is called adependent MIMO  (DMIMO).

Supposel 1; 1 > are instance namesp;; pz; P3; P4 are path expressions. Thenyal(l ; : p1) >
val(l 1 : p2)_val(l 1 : p1) < 100 val(l 2 : p3) = val(l 2 : pg) is IMIMO while val(l1:p1) >val(l2:
p2) is DMIMO and (val(l 1 :p1) >val (11 :p2) _val(l2:p3)= val(l2:ps)) " val(l1:p1) < 100 is
also DMIMO

A query is reduced to SISO or SIMO if only one instance is involed. For example,val(l ; :
p1) = val(l 1 : p2) is reduced to SIMO queryval(p1) = val(pz) on | ;.

Note that it is possible to rearrange the atomic queries in a IMIMO query to become a
boolean combination of groups of atomic queries. Each grouf a boolean combination of atomic
gueries and the instances involved in this group are not invtved in any other groups. In this case,
we can solve each group by algorithms for IMIMO or DMIMO (depending on whether the group
is IMIMO or DMIMO) and then combine the result by the strategi es described in the algorithm
for IMIMO. In this way, the complexity and actual running tim e can be reduced signi cantly.
The algorithms and strategies for IMIMO and DMIMO queries will be described in later sections

(Section 3.6.3 and Section 3.6.4).

3.5 PIXML Queries: r-Answers

3.5.1 r-Answers to SISO queries

First, let us consider the answer to an SISO query.
In order to de ne the answer to an SISO query w.r.t. a probabilistic instance, | proceed n
two steps. | rst de ne what it means for an object to satisfy an SISO query. | then de ne what

the answer to an SISO query is w.r.t. a probabilistic instane.

De nition 3.5.1 (satisfaction of an SISO query by an object) An object o, satises an

atomic SISO queryQ via substitution (p=0) (denotedo; F Q) if and only if 0; 2 p wherep is

5Here, | assume that the operator has a speci ed order of precedence, so | do not put parenthese s to specify

the order of computation of the query.
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the path expression inQ.
An object o; satis es a compound SISO query if and only ifo; 2 p; for every path expression

pi in Q and Q is true under substitution = fp;=0;;p2=01;:::Q.

In order to de ne the answerto a query, | must account for the fact that a given probabilistic
instance is compatible with many semistructured instances The probability that an object is
an answer to the query is determined by the probabilities of d the compatible semistructured

instances that it occurs in.

De nition 3.5.2 (satisfaction of an SISO query by an object w ith prob r) Supposel is
a probabilistic instance, Q is an SISO query, andS 2 Domain(l ). | say that objecto of | satis es

query Q with probability r or more , denotedo " Q i

rINFf s2pomain (1)~ 025~ oj=QP(S)ij: Ig:

Intuitively, any global interpretation ® P assigns a probability to each semistructured in-
stance S compatible with a probabilistic instance | . By summing up the probabilities of the
semistructured instances in which objecto occurs, we obtain anoccurrence probability  for o
in I w.r.t. global interpretation P. However, di erent global interpretations may assign di e rent
probabilities to compatible semistructured instances. Hace, if we examine all global interpreta-
tions that satisfy |1 and take the INF (in mum) of the occurrence probability of o w.r.t. each
such satisfying global interpretation, then we are guaranted that for all global interpretations, the
probability of o's occurrence is at least thelNF obtained in this way. This provides the rationale
for the above de nition. The answer to a query may be de ned in many ways. My standard norm
will be to assume that the user sets a real number & r 1 as a threshold and that only objects

satisfying a query with probability r or more will be returned.

De nition 3.5.3 ( r-answer) Suppose0<r 1. The r-answer to SISO queryQ is the set of

all objectso such thato " Q.

SNote that given a probabilistic instance |, | will only consider global interpretations that satis es the weak

instance corresponding to | (by De nition 3.3.4).
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Example 3.5.1 Consider the probabilistic instance in Example 2.2.3 and awery Q which is val(
| 1:convoy:tank ) = T80. Suppose we want to nd a0:4-answer to Q. Obviously, the only possible
object to satisfy Q is tank1. However, there exists a global interpretation (for examm, the one
in Example 3.3.2) such that the sum of the probability of comatible instances containing tank 1

satisfying Q is less than0:4. Thus, the 0:4-answer to Q is empty.

3.5.2 r-Answers to SIMO/MIMO queries

For multiple-object queries (including SIMO and MIMO queri es), it is possible for an atomic query
to have form (5) of De nition 3.4.2, i.e., two objects are neessary to satisfy it. For example, in
val(p1) = val(p,) where p1;p2 are path expressions, only a pair of objects satisfying eacpath

expression and having the same value can satisfy this query.

De nition 3.5.4  Objects g and o, satisfy an atomic query (p1 p2) via substitution =
fpr=0; p2=cg if and only if (0p 2 pr™ 02 2 p2 ™ 01 02) holds. Similarly for other forms of

the two operands.

Instead of talking about an object satisfying an SISO query, | will need to de ne whena set

query with a substitution 1 = fpy=01;:::;pn=a,g if all the path expressions are satis ed and the
result of the boolean combination of the atomic queries retans true. For example, we are given a
query Q de ned asval(w = p;) > val (p2) * val(w) <val (p3) (where p1; p2; ps are path expressions
and w is an object variable) that is used to nd object sets such tha an object satisfying p; has
a value lying between the values of some object satisfying, and some object satisfyingps. Here
| say that a set of objects T = fo;; 0;; 039 satis es Q by a substitution 1 = fp;=01; P2=0; P3=039

if and only if 01 2 p1, 02 2 P2, 03 2 p3 and ((val(oy) > val (02)) ~ (val(oy) <val (03))) is true.

De nition 3.5.5 (satisfaction of an SIMO/MIMO query by a set of objects) AsetT =
for;:::;0ng Of Objects satises an SIMO/MIMO query Q (denoted T F Q) via substitution

T = fpi=a;:::;pn=0ng if and only if any one of the following conditions is satis ed
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Q is an atomic query (form (5) in De nition 3.4.2), T = fo;;0.0, 0; and o, satisfy Q via

T,

Q is a compound query in the form ofqy * @ (where ¢p; @ are atomic queries or compound

queries), and T satises ¢g and ¢p via 7;

Q is a compound query in the form ofey _ @ (where ¢p; @ are atomic queries or compound

queries), and (i) T satises ¢q via 1 or (i) T satises ¢p via 7.

The de nitions of satisfaction with probability r and r-answer for SIMO/MIMO queries are

similar to those for SISO queries.

De nition 3.5.6 (satisfaction of an SIMO query by a set with p rob r) Supposel is a

of objects in | satises query Q with probability r or more under substitution T =

fpi=01;:::;pn=0ng, denotedT F" Q; i

rINFf sopomain (1)~7 s~ TEQP(S)jPj=1g:

The major di erence of MIMO queries from SIMO queries is that we have multiple proba-

bilistic instances | 1;:::;1m. SupposeT is the set of objects satisfying a given MIMO query over
probabilistic instances| 1;:::;1 n, and supposeT; consists of all objects inT that are in 1. The
occurrence probability for T w.rt. 13;:::;1m and a sequenceP;:::; Py of global interpreta-

tions (where P; satis es |;) is the combination of the probabilities assigned by theP;'s to the
Ti's. Hence, | need to examine all combinations of global intepretations and take the INF of T's
occurrence probabilities w.r.t. each such combination.

[50] proposed the concept of a conjunctive strategy used foctonjunction of interval prob-
abilities. Intuitively, a conjunction strategy is a functi on satisfying several axioms (shown in
Figure 3.3) related to conjunction which takes probability intervals associated with the conjuncts
in a conjunction and nds a probability for the conjunction. Based on the user's knowledge of

the dependencies between the conjunctions, an appropriateonjunction strategy can be chosen {
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[50] suggest several (cf. Figure 3.4). The strategies for farval probabilities will be used again
when we discuss how to solve MIMO queries in later sections. ¢te in the de nition for r-answer
of MIMO queries, as | need to obtain theINF of the conjunction of point probabilities only, | can

transform each point probability p to an interval probability [ p; p] and take the lower bound of a

speci ¢ conjunctive strategy as the value of the conjunctian.

Generic Postulates (?2f ;g)

1. Commutativity ([M1;ug] ?2[l2;u2]) = ([ 12; u2] ?[l1; ua])

2. Associativity (M5 ug] 2 [125u2]) 2135 us]) = ([ 11;ua] ? ([12; uz] ?[13; us)))

3. Monotonicity ([Ig;ua] ?2[02;u2])  ([11;ua] ?[1s;us]) if [12;uz] [l us]

Probabilistic Conjunction Postulates

4. Bottomline ([l;ua]  [25u2])  [min(lg;12); min (ug; uz)]

5. Identity (My;u1]  [2]) =[11;uq]

6. Annihilator ([l2;us]  [0;0]) =[0;0Q]

7. Ignorance ([l1;us] [2uz])  [max(0;ly + 1o 1);min (ug;uy)]

Figure 3.3: Postulates of a probabilistic conjunctive straegy

Probabilistic Conjunctive Strategies

Ignorance (l1;u1] g M2 uz2]) =[max(0;1y + 12 1);min (ug; uz)]

Positive Correlation ([1;ue]  pe l2;u2]) = [ min (1;12); min (ug; u2)]

Negative Correlation | ([I1;u1] ne [l2;u2]) = [ max(0;11 + 1, 1);max(0;uy + up  1)]

Independence (MM;u1] i D2suz) =[1 l2;ur ug]

Figure 3.4: Examples of probabilistic conjunctive strateges

De nition 3.5.7 (satisfaction of an MIMO query by a set with p rob r) Supposd 1;:::lm
are probabilistic instances, Q is a MIMO query, and S; 2 Domain(l;). | say that the object set

T="Ffo;:::;00g | 2 :::[] m satises query Q with probability r or more under sub-
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stitution 1 = fpy=01;:::;pr=0ng, denoted T ' Q; i

De nition 3.5.8 ( r-answer) Supposed<r 1. The r-answer to SIMO/MIMO query Q is the

such thatT " Q.

3.6 PIXML Queries: Operational Semantics

3.6.1 Algorithm to solve SISO queries

In this section, | study the problem: Given a probabilistic instance I, a real number 0<
r 1, and an SISO query Q, how do we nd all objects o in the probabilistic instance
that satisfy query Q with probability r or more?

Clearly, we do not wish to solve this problem by explicitly n ding all global interpretations
that satisfy | and explicitly computing the sum on the right side of the inequality in De nition 3.5.2.
This approach is problematic for many reasons, the rst of wtich is that there may be in nitely
many global interpretations that satisfy | . | present a more practical solution.

Recall that the weak instance graphGy describes all the potential children of an object. A
probabilistic instance is said to betree-structured i its corresponding weak instance graph is a
tree (i.e. the vertices and edges oGy (1 ) constitute a tree). Throughout the rest of this section,
| assume that we are only dealing with tree structured probalilistic instances.

My algorithm to solve this problem involves two core steps.

Step 1: The rst step is to identify all objects o in the weak instance graphGy of | that

"Here, for each probabilistic instance |, S;2Domain (17)~ (TW )25~ Tj=0 Pi(S) gives the probability that 1
contains the objects in T intersecting |;, for a particular global interpretation P;. Because | am considering a
combination (hitting set) (of a possible global interpreta  tion of each probabilistic instance), | need a conjunction o f

the above probabilities from all probabilistic instances (  details in Section 3.6.3).
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satisfy the query Q. This can be done using any available implementation of serstructured

databases[59], hence | do not present the details here.

Step 2: The second step is to check (using the original probabilist instance | rather
than its weak instance graph) which of the objects returned n the preceding step have an
occurrence probability that exceeds the threshold w.r.t. dl global interpretations that satisfy

the original probabilistic instance.

In this section, | focus on Step 2 as Step 1 can be readily soldeusing existing techniques for pure,
non-probabilistic semistructured databases. To solve ste 2, we must have the ability to nd the
minimal occurrence probability of the type described earler for o (given an o that passes the test
of step 1 above).

Supposel = (V;lch; ; val card ipf) and supposeo 2 V. | de ne a quantity cex o) as follows.
Intuitively, cexXo) nds the conditional probability of occurrence ofo, given that o's parent in

the tree is known to occur.

1. If ois the root of Gy, then cexo) = 1.

2. Otherwise,0 2 Ich(c% I) for someo®and somel. Recall the object constraints OC(a% de ned
in De nition 3.3.6. Set cexX0) to be the result of solving the linear programming problem:
minimize 2 pc(o9) » 02cP(C)
subject to  OC(d),
wherep(c) is a real-valued variable denoting the probability that cis the actual set of children

of 0°. As usual | assume that all the variablesp(c) 0.

Intuitively, the quantity cex0) speci es the smallest occurrence probability of objecto given that
its parent is already known to occur in a semistructured insince.

Note: though OC(c% appears to contain exponentially many variables, this is i reality linear in

the number of potential children of the object o® and hence linear in the size ofipf (and hence

linear in the size of the probabilistic instance).

77



Proposition 3 For any probabilistic instance | and any objecto, cex0) can be computed in time

polynomial in the size ofl .

Suppose the path expression to objecb in | is of the form r:l;:::1, wherer is the root,

the parent of o where 1 i n. Then the computed occurrence probability, cop(o) of oin
| is given by ceXog) ceXo,):

Note: it is not necessary for us to always compute alcexo;) before nding that cop(n) is
less than the threshold. Sincecop(n) is computed by multiplying all cexo;), when we are computing
ceX0;) one by one, we can stop as soon as their product is already Eshan the threshold. This
pruning technique applies to all algorithms in this chapter.

The following theorem says that the occurrence probability of o (which is de ned declara-
tively in De nition 3.5.2) corresponds exactly to the computed occurrence probability of o according

to the above procedure.

Theorem 3.6 (correctness theorem) Supposel = (V;lch; ; val card ipf) is a tree structured

probabilistic instance ando 2 V. Then, cop(o) = INF f 55 pomain (1) 02s P(S)jP j= 1g:

Proof

| provide the proof of this theorem. Suppose the path expresen to object oin | is of the

0, to denote o, and object id g 1 to denote the parent ofo; where 1 i n. The proof proceeds
by induction on n.

If n = 0 then o is the root of I . Hence, cop(o) = 1 by de nition. As every compatible
semistructured instance contains the root, it follows by the de nition of probabilistic interpretation
that every probabilistic interpretation assigns 1 t0 sz pomain (1)~ o2s P(S). This completes the
base case.

Supposen = m + 1 for some integer m. Consider the path o1:l2:::Imlm+1. Clearly,

this is a path of length m from o; to on+1 = 0. Let | © be the probabilistic instance which is
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just like the subtree (of 1) rooted at 0;. By the induction hypothesis, | know that cop o(0) =
INF f 502 pomain (1 9)» 025 0np =1 0PYS9)g where PCis de ned as follows. If S°is compatible with
| 9then PYSY is the sum of P(S) for all S compatible with | such that S°is the subtree of S
rooted at o;.

Note that cop (0) = ceXop) cop o(01) by de nition of cop. From the above, | may infer

that cop(0) = cexap) INF f  so2pomain (19 o2s 0ap o= 1 0P Y{S%g. | therefore need to show that

ceX0p) INF f so2pomain (194 02s0np o1 PASYG= INF f s2p0main (1)7 02s7pj =1 P(S)0:

But ceXx0p) = 1 by de nition, so | need to show that

INF f 502 pomain (1 9~ 025 02p o=1 0PASYG = INF f 55 pomain (1) 025~pj =1 P(S)0:

The reason this equality holds is because of the constructio of P% Consider each compatible
instance S 2 Domain(l ) that contains o. The interpretation P° looks at eachS° obtained by
restricting S to the subtree rooted at 0;. A single S generates only oneS° in this way, but the
sameS® may be obtained from di erent semistructured instancesS compatible with | . The sum of
all such P9S9 clearly equals the sum of all suchP (S) containing o by construction. Furthermore,
P satises | i its corresponding P" satises | % Since both sums are equal to each other for
every P satisfying | , the in mum of one sum is also equal to the in mum of the other sum. This
completes the proof. |
It is important to note that the above condition is very simil ar to the condition on the right
side of the inequality of De nition 3.5.2 (it is exactly the same if we only consider objects that
satisfy the query). An immediate consequence of the above theorem is that the two -step
procedure outlined in this section is correct, as step 2 is on ly applied to objects that

satisfy the SISO query condition Q.

Example 3.6.1 Consider the probabilistic instance in Example 3.2.1 and aampound SISO query
Q which is (vall w = I 1:convoy:tank ) = T80 _vall w) = T72). This query indicates that we
want only one object whose value is eithef 80 or T72. Suppose we want to nd a0:1-answer to

Q.
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Step 1: The rst step is to identify all objects that satisfy Q. The two possibilities are objects

tank 1 and tank 2.

Step 2: The second step is to compute the occurrence probability obfect tank 1 and tank 2
respectively. First we identify that the ancestors oftank 1 consists of convoyl and the root
I 1. On the other hand, the ancestors ofank 2 also consists ofconvoyl and the rootl 1. Then
we compute the (minimum) conditional probability of occurence ofl 1, convoyl, tank 1 and
tank2. cexl1) = 1 becausel 1 is the root. As |1 is the parent of convoyl, we can obtain
cexconvoyl) by solving the following linear programming problem:

minimize c2PC(1 1) ~ convoy 12 ¢P(C)

subject to OC(l 1),
where p(c) 0 is a real-valued variable denoting the probability thatc is the actual set of
children of | 1. The object constraints OC(l 1) consist of the following equations:

0:2 p(fconvoylg) 0:4,

0:1 p(fconvoy2g) 0:4,

0:4 p(fconvoyl;convoy?2g) 0:7 and

p(f convoylg) + p(f convoy2g) + p(f convoyl; convoy2g) = 1.
The result is: ceXconvoyl) = 0:6. Similarly, as convoyl is the parent of tank 1, we can
obtain cextank 1) by solving the following linear programming problem:

minimize c2 PC(convoy 1) A tank 12 cP(C)

subject to OC(convoyl),
where p(c) 0 is a real-valued variable denoting the probability thatc is the actual set of
children of convoyl. The object constraints OC(convoyl) consist of the following equations:

0:2 p(ftanklg) 0:7,

0:3 p(ftank2g) 0:8,

p(ftank 1g) + p(ftank2g) =1.
The result is: ceXtank1) = 0:2. Finally, as convoyl is the parent of tank2, we can obtain

cextank 2) by solving the following linear programming problem:
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minimize c2 PC(convoy 1)  tank 22 cp(c)

subject to OC(convoyl),
where p(c) 0 is a real-valued variable denoting the probability thatc is the actual set of
children of convoyl. The result is: cextank?2) = 0:3. Therefore, the (minimum) computed
occurrence probability oftank 1 is cop(tank 1) = cex| 1) ceXconvoyl) cexXtankl)=1 0:6
0:2 = 0:12 which exceeds the threshold. The (minimum) computed occugnce probability of
tank 2 is cop(tank 2) = cexl 1) cexconvoyl) ceXtank2)=1 0:6 0:3 =0:18 which exceeds

the threshold. As a result, the0:1-answer to Q is ftank 1; tank 2g.

3.6.2 Algorithm to solve SIMO queries

The preceding section provides a sound and complete algohitn to answer SISO queries. In this
section, | extend the algorithm to solve SIMO queries. Unlike SISO queries, to answer a SIMO
query, | need to nd a set of objects that satisfy the query. As a consequence, am-answer to an
SIMO query is de ned as a set ofsets of objects(De nition 3.5.6, De nition 3.5.8). | extend the
previous algorithm in Section 3.6.1 as follows.

The extended algorithm to solve this problem also involves Wwo core steps:

T = fp1=a;:::; prn=0ng) in the weak instance graphGy of | that satisfy the SIMO query Q.
As in the SISO case, this can be done using any available impigentation of semistructured

databases. Hence | do not present the details here.

Step 2: The second step is to check (using the original probabilistt instancel rather than
its weak instance graph) which of the sets of objects returné in the preceding step have an
occurrence probability that exceeds the threshold w.r.t. dl global interpretations that satisfy

the original probabilistic instance.

To solve step 2, | can modify the procedure used to nd the minmal occurrence probability

of T (given a T that passes the test of step 1 above).
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Furthermore, de ne set A to contain objects in T and all their ancestors (in the weak instance
graph Gy ). The subgraph of Gy consisting of objects inA and edges among them is denoted by
Gy . For every non-leaf objecto in Gjy, | de ne a quantity ccpa(0) as follows. Intuitively, ccpa(0)
nds the conditional probability of occurrence of the setA, of all o's children (that are also in
A, i.e., in Gy), given that o is known to occur. For those leaf objectso in Gj, , ccpa(0) is set to 1

by default.

1. If ois a leaf in Gfy , then ccpa(0) = 1.

2. Otherwise, letA, be the set ofo's children in Gj, . Recall the object constraintsOC(0) de ned
in De nition 3.3.6. Set ccpa(0) to be the result of solving the linear programming problem:
minimize ¢ pcioy)~ A, cP(C)
subject to OC(0),

wherep(c) is a real-valued variable denoting the probability that cis the actual set of children

of 0. As usual | assume that all the variablesp(c) 0.

Intuitively, the quantity ccpa(0) speci es the smallest occurrence probability of objecto's children

A, given that o is already known to occur in a semistructured instance.

Proposition 4  For any tree structured probabilistic instance| and any objecto, ccpa(0) can be

computed in time polynomial in the size ofl .

Then the computed occurrence probability, cop(T) of T in | isgiven byQoZA ccpa(0):
The following theorem says that the occurrence probabilityof T (which is de ned declar-
atively in De nition 3.5.6) corresponds exactly to the computed occurrence probability of T ac-

cording to the above procedure.

Theorem 3.7 (correctness theorem) Supposel = (V;lch; ; val, card ipf) is a tree structured

cop(T) = INF f szpomain 1)~7s P(S)jPj=1g
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Proof

Supposed is the depth of G, (the maximum length of the shortest paths from leaf nodes
to the root).

If d=0, then T only contains o, that is the root of | . Hence,cop(T) = 1 by de nition. As
every compatible semistructured instance contains the rot it follows by the de nition of proba-
bilistic interpretation that every probabilistic interpr etation assigns 1 t0 s pomain (1) o, 2s P(S).
This completes the base case.

If d = 1, then supposeo; is the root (which always exists in Gfy ), and A,, is the root's
children that are also in G}, . Since for every leaf objecto, ccpa(0) = 1, so cop(T) = ccpa(or) = 1.
ccpa(or) is obtained from the result of solving the linear programming problem:

minimize o pc(o, ) A, cP(C)

subject to OC(o;),
where p(c) is a real-valued variable denoting the probability that c is the actual set of chil-
dren of o. As usual | assume that all the variablesp(c) 0. By Proposition 2 and Theo-

rem 3.4, for every global interpretation that satis es the probabilistic instance, it can be con-

S2 Domain (1) " or25* Ao 28 P(S) _

verted to an equivalent local interpretation. Recall De ni tion 2.3.6, ,
S2 Domain (1)~ or 2S P(S)

22 oomen (- TS P(S) actually returns the conditional probability that A,, is a subset of children

of o, i.e., c2pc(o)n A, cP(C). Thus, the local interpretation corresponding to the solution of
the above linear programming problem also corresponds to th global interpretation that gives the
value of INF f 52 pomain (1)~ T s P(S)jP j= lg: This completes the case ofl = 1.

Supposed = m + 1 for some integer m. SupposeGy, has the root o, having the set Ao,

m, T; is the subset of T that appears in Bj. Let |; be the probabilistic instance which is
just like the subtree (of 1) rooted at 0. By the induction hypothesis, | know that cop  (T;) =
INF f s 2pomain (1)~ B;s i ~p=1;Pi(Si)g whereP; is de ned as follows. If S; is compatible with

I; then P;(S) is the sum of P(S) for all S compatible with | such that S is the subtree of S
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rooted at o;.

Note that cop (T) = ccpa(or) Q cop, (T;) by de nition of cop. However, sinceP satis es
W corresponding tol, so by De nition 3.3.4, every object is conditionally independent of any
possible set of its non-descendants given that its parent asts. As cop, (T;) represents the minimal
conditional probability of the existence of B; given that ¢; exists, and every subtree is independent
of each other given its parent exists, soQ cop, (Ti) returns the minimal probability that all those
subtrees B;) exist given that all ¢;'s exist. ccpa(o;) returns the minimal probability that all o's
exist given that the root o, exists. As the root always exists, saop (T) = ccpa(or) Q cop, (Ti)
returns the minimal probability that all those subtrees ( B;) exist, i.e., T2 S, which is equal to
INF f s2pomain (1)~ To2s P(S) P j= Ig: This completes the proof. |

It is important to note that the above condition is very simil ar to the condition on the
right side of the inequality of De nition 3.5.6 (it is exactl y the same if we only consider set§ of
objects that satisfy the query). An immediate consequence of the above theorem is that
the two-step procedure outlined in this section is correct, as step 2 is only applied to

sets of objects that satisfy the SIMO query condition Q.

Example 3.6.2 Consider the probabilistic instance in Figure 3.5 and a SIMOquery Q which is
(val(l 2:convoy:tank) = T80 val(l 2:convoy:truck) = mac).

Suppose we want to nd a0:1-answer to Q.

Step 1. The rst step is to identify all sets of objects (and substitdions) that satisfy Q. The
result is ff tank 3, truck 4gg with substitution 1 = fl2:convoy:tank=tank3; | 2:convoy:truck

=truck 4g.

Step 2: The second step is to compute the occurrence probability ohé set returned in Step
1. I dene set T = ftank3;truck4g. Then | de ne set A = fl 2;convoy3; convoy;tank 3,
truck 4g to contain T and its ancestors. Then | compute the (minimum) conditional proba-
bility of occurrence (ccpa) of A2, Aconvoy 3 @nd Aconvoy 4 Where A is the set of children ofo
that are also in A. By default, | de ne ccpa(tank3) = ccpa(truck 4) = 1 becausetank 3 and

truck 4 are leaves inGj, . Let us rst compute ccpa(l 2), where A, = fconvoy3; convoylg.
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o] I Ich(o; 1)
12 convoy | f convoy3, convoy4g
c2 PC(12) ipf(12;c)
convoy3  tank f tank3 g
f convoy3y [0.1,0.1]
convoy3  truck f truck2 g
f convoy4g [0.1,0.2]
convoy4  truck f truck3, truck4 g
f convoy3, convoy4 | [ 0.7, 0.8 ]
0 (0) val(o)
¢ 2 PC(convoy3) | ipf(convoy3;c)
tank3 | tank-type | T-80
fg [0,0]
truck2 | truck-type | rover
f tank3g [0.3,0.8]
truck3 | truck-type | rover
f truck2g [0.2,0.7]
truck4 | truck-type | mac
f tank3, truck2g [0,0]
o] I cardo;l)
¢ 2 PC(convoyl) | ipf(convow; c)
12 convoy [1,2]
f truck3g [0.1,0.2]
convoy3  tank [0,1]
f truckdg [0.8,0.9]
convoy3  truck [0,1]
convoy4  truck [1,1]

Figure 3.5: Another probabilistic instance for the surveillance domain.

We can obtain ccpa(l 2) by solving the following linear programming problem:

where p(c)

minimize c2 PC(1 2) ~f convoy 3;convoy 492 cp(C)
subject to OC(l 2),

0 is a real-valued variable denoting the probability thatc is the actual set of

children of | 2. The object constraints OC(l 2) consist of the following equations:

0:1 p(fconvoy3dg) 0:1,
0:1 p(fconvoyg) 0:2,
0:7 p(fconvoy3; convoydg) 0:8 and

p(f convoy3g) + p(f convoydg) + p(f convoy3; convoydg) = 1.
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The result is: ccpa(l12) = 0:7. Next, let us compute ccpa(convoy3), where Aconvoy3 =
ftank 3g. We can obtain ccpa(convoy3) by solving the following linear programming problem:

minimize c2 PC(convoy 3) A tank 3g2 cP(C)

subject to OC(convoy3),
where p(c) 0 is a real-valued variable denoting the probability thatc is the actual set of
children of convoy3. The object constraints OC(convoy3) consist of the following equations:

0:3 p(ftank3g) 0:2,

0:8 p(ftruck2g) 0:7,

p(ftank 3g) + p(ftruck2g) =1.
The resultis: ccpa(convoyB) = 0:3. Finally, let us compute ccpa(convoyd), where Aconvoy 4 =
ftruck 4g. We can obtain ccpa(convoyd) by solving the following linear programming prob-
lem:

minimize c2 PC(convoy 4) A truck 4g2 cP(C)

subject to OC(convow),
where p(c) 0 is a real-valued variable denoting the probability thatc is the actual set of
children of convoy4. The object constraints OC(convoy4) consist of the following equations:

0:1  p(ftruck3g) 0:2,

0:8 p(ftruck4g) 0:9,

p(ftruck 3g) + p(ftruck4g) =1.
The result is: ccpa(convoy?) = 0:8. Therefore, the (minimum) computed occurrence proba-
bility of ftank 3;truck 4g is cop(f tank 3;truck 4g) = ccpa(l 2) ccpa(convoy3) ccpa(convoyd)
ccpa(tank 3) cepa(truck4) =0:7 0:3 0:8 1 1 = 0:168which exceeds the threshold. As a result,
the O:1-answer to Q is ff tank 3; truck 4gg with substitution 1 = fl2:convoy:tank=tank3,

| 2:convoy:truck=truck4g.
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3.6.3 Algorithm to solve IMIMO queries

Recall (cf. De nition 3.4.6) that an IMIMO query Q is a boolean combination of groups (omquery
groups). Each query group is a boolean combination of atomic querig involving one instance and
each instance is involved in only one group. Thus, each quergroup is equivalently an SISO or
SIMO query (depending on whether one object or more are needeo satisfy it) and can be solved
by the algorithms described in previous sections.

After solving the query groups, we have computed the minimalprobability of each possible
answer (an object for SISO query group or a set of objects withts substitution for SIMO query
group) in each query group.

If the probability that a given object or set of objects is an answer to a particular group is
independent from the probability that some other object or set of objects is an answer to another
group, then the minimal probability that a given set of objects obtained by combining each answer
from each query group satis es the whole original IMIMO query Q is simply the product of the
minimal probability of each component answer from each grop (for the conjunctive case).

If the boolean combination of the query groups also involveslisjunction, then it is enough
to have only one operand of the disjunction operator to be trie in order to make the disjunc-
tion expression true. Thus, instead of returning a combinaton of the answers (object sets) from
each operand (query group) in the conjunction case, we havehe following three outputs in the
disjunction case: (1) the answer of the left operand with itsoriginal minimal probability, (2) the
answer of the right operand with its original minimal probability, and (3) the combination of the
answers of the left and right operands with its new minimal probability which may depend on the
relationship (independent? mutually exclusive? correlaed somehow, etc.) between the disjuncts.
For the answer (3), it actually means that we have the answer fom the left AND the answer from
the right together, so in fact we want to have the conjunction of the two's minimal probabilities.

Thus, for each set of answers from all query groups, we checké combination to see whether
the query is satis ed. As a result, we generate one or more \cadidate" answers, each of which

will be kept as the nal answer if its resulting minimal proba bility exceeds the speci ed threshold.
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The whole algorithm to solve this problem involves the follaving three core steps (Figure 3.6

shows its pseudo code).

Step 1: The rst step is to rewrite the IMIMO query as a boolean combination of query
groups where each query group involves one instance and eadafstance is involved in one

query group only.

Step 2: The second step is to use algorithms for SISO and SIMO querigs solve each query
group (returned in the preceding step) and obtain a set of angers to each query group (an
answer is an object or a set of objects with its substitution) with the corresponding minimal

probabilities.

Step 3: The nal step is to nd the \candidate" answers (constructed from the answer
returned in preceding step) that satisfy the query and compue their minimal probabilities
using the conjunctive strategy speci ed by the user (or a dehult strategy provided by the
system). As we want to nd the minimal occurrence probability of the object set, we can
transform each point probability proby (of each object subset existing in each ;) to an
interval probability [ proly ; prol ] and take the lower bound of a speci ¢ conjunctive strategy

as the value of the conjunction.

For each query group, we select none or any one of the answertwened in step 2. As a result,
we obtain a set of objects from one or more probabilistic insinces (with the corresponding
substitution). We then check to see whether the query returrs true by this substitution. If
so, this is a candidate answer and we compute the conjunctionf the minimal probabilities of
those answers from their query groups. Finally, only the cadidates whose results exceeding

the threshold will be returned.

Theorem 3.8 (correctness theorem) Supposel 1;::: 1w are tree structured probabilistic in-

stances, the object sef C = foy;:::;0,9 | 1[ :::[l m. Then,

probrc = INF fConji( s 2p0main (1)~ (Tv 2s, Pi(S)) JPi F lig:
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Input: IMIMO query Q, threshold r

Output: r-answer

1. Rewrite Q into the foom G; G2 ::: G n where G; is a query group in the form
(1 9i2 it Oin,;) Iiseither »~ or _, and g; are atomic queries involving only in-
stancel ;.

2. For each Gj, we execute SIMO (G;) where SIMO () is the algorithm to solve SIMO queries
and returns a set T; of answers (object sets Tix ) with substitutions x and the minimal

probabilities probi .
3. For each combination TC (any Tix or none from each T;) of object sets,

{ if Q returns true by ¢ (the corresponding substitutions), then compute the minim al
probability probrc of TC by using the conjunctive strategies specied. If probrc r,

then TC by tc is included in the r-answer.

Figure 3.6: Pseudo code to solve IMIMO queries

Proof

Each query groupG; involves only probabilistic instancel ;. By Theorem 3.7, the probability
probk returned by SIMO (Gj) equals INF f s 2pomain (1)~ (T V1 1)2s; Pi(S) jPi F 1ig. My
algorithm then computes conjunction of INF . | show below that \the conjunction of INF " and

\INF of conjunction" are equivalent.

elements and then | transform each resulting point valuep; into an interval [p;; pi]- A conjunctive

strategy is applied and the lower bound of the result is takenas the nal result. In the other

strategy is applied and the lower bound of the result is takenas the result. Among all these

resulting values, | apply INF and get the nal result. In the other words, | am computing
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First, note that fINF fS;qg;:::;INF fSngg is also a hitting set of Sy;:::;Sn. Second,
from Figure 3.3, | know that all conjunctive strategies are non-decreasing functions w.r.t. its

inputs. Therefore, if the input is INF , then the result will be also INF . As a result, the value of

Because both the conjunction ofINF and INF of conjunction actually considers all possible
cases and return the minimal value, their results are equal ad this completes the proof. |

Recall that the algorithms for SISO and SIMO queries computethe minimal probability of
an answer to a query group, i.e., the lower bound of the probaitity interval of that answers w.r.t
all possible global interpretations satisfying the instarce. For example, suppose two query groups
G;; G2 are combined by conjunction and the conjunctive strategy ugd is the one of independence.
If the minimal probability of the answer fo;; 0,9 to G; is x; and the minimal probability of the
answer f 03; 04; 059 to G3 is X2, then the minimal probability of the answer fo;;0,;03; 04; 059 tO
G1" Gy isxy Xz. If the two query groups G;; G, are combined by disjunction and the disjunctive
strategy used is the one of negative correlation, then besi&bs the original answersf o;;0,g and
fosz;04; 059 (With the minimal probability of x; and x, respectively), another possible answer is
fo1;02; 03; 04; 059 With the minimal probability of min (1;x; + X32).

If a user speci es some conjunctive strategies that requirg the value of upper bound of a
probability interval, then it is straightforward to modify the algorithms for SISO and SIMO to
nd the maximal occurrence probability of a given answer and obtain the minmal probability of

the combination of answers to the original IMIMO query in a similar manner.

Example 3.6.3 Consider the two probabilistic instances in Figure 3.1 and kgure 3.5, and an
IMIMO query Q which is(vallw = | 1:convoy:tank) = T80 _((val(w) = T72_val(l 2:convoy:tank) =
T80)" (vallw) = T72_ val(l 2:.convoy:truck) = mac))). It is IMIMO because it can be rewritten
as follows: ((vallw = 11:convoy:tank) = T80 _ vallw) = T72)_ (val(l 2.convoy:tank) = T80"

val(l 2:convoy:truck) = mac)), which consists of two query group$s; = (val(w = | 1:convoy:tank)

90



= T80_ vallw) = T72) and G, = (val(l 2zconvoy:tank) = T80" val(l 2:convoy:truck) = mac)
connected by a disjunction. This query indicates that we warnonly one object (tank) from instance

I 1 whose value is eitherT 80 or T72 or a set of two objects (a tank and a truck) from instancel 2
whose values arel 80 and mac. Suppose we want to nd a0:17-answer to Q and the disjunctive
strategy used is the one of positive-correlation.G; is the same as the compound SISO query in
Example 3.6.1 andG; is the same as the SIMO query in Example 3.6.2. From Example 8.1, we
know that the objectstank 1 and tank 2 in | 1 satisfy G; and have computed occurrence probabilities
of 0.12 and 0.18 respectively. From Example 3.6.2, we know &lh the object setf tank 3; truck 4g in

| 2 satisfy G, and has a computed occurrence probability of 0.168. Sindg; and G, are connected
by a disjunction, so the0:17-answer includes the objectank?2 in | 1 as its (minimum) probability
exceeds the threshol®:17. Furthermore, the candidates of the answer also include théollowing:
ftank 1;tank 3; truck 4g and ftank 2; tank 3; truck 4g. The (minimum) probability of the former is
max(0:12; 0:168) = 0:168 while that of the latter is max(0:18;0:168) = 0:18. As a result, the

0:17-answer consists of the objectank2 in | 1 and the object seff tank 2;tank 3; truck4g in | 1;12.

3.6.4 Algorithm to solve DMIMO queries

In the previous section, | have described how to solve IMIMO geries. An atomic IMIMO query
Q involves only one instance and furthermore, it can be expresed as a boolean combination of
groups (or query groups such that each query group is a boolean combination of atona queries
involving one instance and each instance is involved in onlyone group. DMIMO queries do not
satisfy these conditions.

For IMIMO queries, we can consider each instance individudy to see which object (or set
of objects) can satisfy a query group or not and then considethe di erent combinations of the
results of the query groups.

It is obvious that the rst condition is necessary to handle one instance each time. In
order to understand why the second condition is necessaryet us consider the following illustrative

example. Suppose we are given an IMIMO quer@Q; = (o;1 * th;2) _ Gp;1 Whereg;; is an atomic
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query involving the ith instance. It is obvious that Qi consists of two query groupsGi = ( th:1" th:2)
and G, = o1, connected by the operator_. Hence, we can consider which sets of objects from
the rst instance satisfy G; (this is the rst set of answers to Q1) and which sets of objects in
the second instance satisfyG, (the second set of answers t@1), and then can use a disjunctive
strategy to nd the minimal probability of the combination o fthe above two sets of answers. Now,
consider a DMIMO query Q2 = (th:1 ™ 1) _ th:2. The answersT; satisfying gi.2 alone can satisfy
Q2, but answersT, satisfying ;-1 alone cannot satisfyQ, without combining with the answers T3
which satisfy op.;. This means that we need to keep the minimal probabilities ofall three cases
of object sets in the rst instances: T1;T, and Ty [ T,. One approach is to keep all necessary
information for each instance's object set candidates (e.g which atomic queries they satisfy) and
then use them as a basis to select for the combination with othr candidates of other instances.

Nevertheless, the previous approach cannot work for a DMIMOquery with some atomic
queries involving two or more instances, e.gval(l 1 : p1) > val (I 2 : p2).

To address this problem, we must consider multiple instance concurrently. We must exam-
ine all the path expressions in the atomic queries and seleall candidate objects in each instance
satisfying those path expressions. Thus, for each path exgssion, we have a set of object candi-
dates. We must then try all combinations of object candidates (as well as either or both side of
a disjunction) to check whether the whole query is satis ed o not. If it is satis ed, then we can
compute the minimal probability of the selected object canddates of each instance, and get the
resulting minimal probability by a probabilistic conjunct ive strategy (it is a conjunction since we
are considering all possible combinations of candidates,ra in each combination, we requireall
those selected candidates to exist).

Figure 3.7 shows the pseudo code.

Theorem 3.9 (correctness theorem) Supposel ;;:::1, are tree structured probabilistic in-

stances, the object sef C = foy;:::;0,9 | 1[ :::[l m. Then,
probrc  INF fConji( s 2p0main (1)~ (Tv 2s, Pi(S)) jPi F lig:
Proof
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Input: DMIMO query Q, threshold r

Output: r-answer

1. For each path expressionp; in Q, identify the set T of objects located by p;.

2. For each combination TC (any one or none from each T;) of objects (and the corresponding
substitution  t¢),
{ if Q returns true by this substitution, then for each probabilis tic instance 1;,

compute the minimal occurrence probability prob; of the set of objects from TC that
exist in I; in the way similar to step 2 of the algorithm to solve SIMO quer ies. If no

such object exists, then proby = 1.

Then, compute the minimal occurrence probability probrc of TC using a specied con-

junctive strategy (Figure 3.4). If probrc  r,then TC by tc isincluded in the r-answer.

Figure 3.7: Pseudo code to solve DMIMO queries

The internal iteration of step 2 in the algorithm is identical to step 3 of IMIMO algorithm

(Figure 3.6). Thus, it can be proved in a manner similar to the proof of Theorem 3.8. |

Example 3.6.4 Consider the two probabilistic instances in Figure 3.1 and kgure 3.5, and a
DMIMO query Q which is ((val(l 1:convoy:tank) = val(l 2:convoy:tank)) _ (val(l 1:convoy:truck) 6
val(l 2:convoy:truck))). It is DMIMO because every atomic query involves two instanes: |1
and 12. In order to solve this query, we will rst identify the set of objects satisfying each
path expression. The objects in the seD; = ftank1;tank2g satisfy the rst path expression
P1 = I1l:.convoy:tank. The object in the setO, = ftank3g satis es the second path expression
P, = l2:convoy:itank. The object in the set O3 = ftruck 1g satis es the third path expres-
sion P3 = |1:convoy:truck. The objects in the setO, = ftruck 2;truck 3;truck 4g satisfy the
fourth path expressionP, = |2:convoy:truck. For the rst atomic query (val(l 1l:convoy:tank) =
val(l 2:convoy:tank)), we consider the following two object setsf tank 1; tank 3g and f tank 2; tank 3g.
We can see that only the rst object set satis es the rst atomic query. For the second atomic

query (val(l 1:convoy:truck) 6 val(l 2:convoy:truck)), we consider the following three object sets:

93



ftruck 1;truck 2g, ftruck 1;truck 3g and ftruck 1; truck 4g We can see that only the third object set
satis es the second atomic query. Since the two atomic ques are connected by a disjunction, so
the object setsf tank 1; tank 3g in | 1 (satisfying the rst atomic query) and ftruck 1;truck4gin |2
(satisfying the second atomic query) as well as the combinian of them, i.e., ftank 1;tank 3;truck 1,
truck 4g in 11;12 can satisfy the whole query respectively. The minimal prolfdlities of the rst
two candidates can be obtained by SIMO algorithm and that ohe last candidate can be obtained
by using a speci c disjunctive strategy. Finally, only tho® candidates with probabilities exceeding

the thresholdr will be returned as ther-answer to Q.

3.7 Summary

In this chapter, | described the interval-probability version of PXML model, which is calledPIXML
model. | have developed its formal theory with proofs. | alsoproposed a query language to query
such single or multiple instances. | then provided an operabnal semantics that is proven to be
sound and complete.

We have seen how we can incorporate and manipulate uncertaiy information in XML
databases. In the next chapter, | will examine the next chalenge: how to manipulate ontologies

in XML databases.

94



Chapter 4

Maintaining RDF Databases

In the previous two chapters, we have seen how we can incorpate and manipulate uncertainty
information in XML databases. In this chapter, | rst introd uce to the reader the basics oRDF
and RDQL in Section 4.1. RDQL is a commercialRDF language proposed by Hewlett Packard.

A large part of RDF focuses on storingresource, property, value triples For example, if we
wish to say that John is Ed's boss, we can describe this via theesource, property, valuetriple
(Ed, boss, John) which says that the resource (Ed) has a propty called \boss" with value John.
Usually in RDF, rather than explicitly say Ed or John, we would use a URL-like syntax called a
URI to describe a location that talks about Ed or John, respedively. It is clear that such triples can
be stored in a relational database in many di erent ways (e.g store them all in one relation called
triples with schema (Resource, Property, Value) or we can store oneetation for each attribute
such as \boss" with schema (Resource, Value)). Once such adnslation of RDF data is made into
the relational representation, then any number of standardrelational view maintenance algorithms
can be used for maintainingRDF views. This chapter shows that this is abad idea RDFinstances
are usually represented via labeled graphs. In Section 4.2 present the IMA algorithm to maintain
views when insertions are made to arRDFinstance. Likewise, | present theDMA algorithm to
maintain views when deletions are made. | also present algaghms TMA and RMA to maintain
views when di erent kinds of modi cations are made to an RDFinstance.

In Section 4.3, | describe how to extendRDQL to support aggregations. | also propose the
CAA algorithm to compute aggregates. Section 4.4 proposes thaMIl, AMD, AMT and AMR algo-
rithms to maintain aggregate views. Section 4.5 shows how hthese views can also be maintained
by converting an RDF database to a relational database and then using a standardelational view
maintenance engine.

Section 4.6 describes my prototype implementation of thesalgorithms. | conducted exhaus-
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tive experiments measuring how my graph-based view maintegince algorithms compare with two
of the best known view maintenance algorithms[39] on the prblem of maintaining RDFinstances.
The results show that, when the database is updated, my incrsmental maintenance algorithms work
much faster than a complete recomputation and are signi canly better than the use of standard
view maintenance algorithms on relational representatios of RDF databases. | am certainly not
implying that classical view maintenance algorithms are ba. They apply to arbitrary relations,
whereas my algorithms only apply to the types of relations geerated by translating RDFinstances
into a relational form. Classical view maintenance algorihms are clearly e ective and should be
used for nonRDF approaches.

| describe how to extend this problem to RDF containers, collections and rei cation in

Section 4.7.

4.1 Overview of RDF and RDQL

4.1.1 RDF Model

RDFs main goal is to express information about the values of properties of resources As a
consequenceRDF statements express what we caltesource, property, valuetriples. The resource,
property and value are also often referred to assubject, predicate and object respectively. Each
resource is expressed via Bniform Resource Indicator (URI) which looks very similar to a URL.
Note that the value of a property of a given resource can be ati@r resource.

RDF also has the concept of arRDF schemawhich is used to express class-subclass as well
as property-subproperty relationships. Figure 4.1(a) shavs an exampleRDFschema. This gure
shows that \Painter" (the class type of http:/iwww.culture.net#picasso132 ) is a subclass of \Artist."
It is important to note that in RDF schema, properties are de nedndependently of classes, rather
than inside classes as is common in object-oriented languag. Figure 4.1(a) states thatfname s
a property that applies to the \Artist" class. Thus, the \Pai nter" class (which is a subclass of
\Artist") inherits this property.

Figure 4.1(b) shows a sampleRDF instance. It states that there is a resource at
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http:/Amww.culture.net#picasso132 , for example, which has a property calledfname whose value is
\Pablo".

RDFschemas can be viewed as labeled graphs whose vertices atkex classes or data types.
There is an edge from vertexv to vertex v° labeled with property p if the domain of p is v and the
range of p is V2.

RDFinstances can also be viewed as graphs whose vertices aréher resources or values.
There is an edge from vertexv to vertex v° labeled with property p if the value of the property p
of vertex v is v0. Figure 4.2's top half and bottom half show example graphs fo an RDFschema
and an RDFinstance, parts of which are shown in Figure 4.1(a) and (b). The example schema
graph shows one-to-one connections between nodes, but this not necessary in general because
the domain and/or range of a property can be de ned to be one ormore classes (or datatypes, in
the case of the range). To be more precise, the \property" in @ RDF schema graph should be a
node rather than an edge. The property node is connected to & domain and range nodes by the

\domain" edges and \range" nodes. Figure 4.1(a) is a simpli ed version.

4.1.2 RDQL, Views and Graph Patterns

There are currently just a few query languages forRDF databases such as RDQL[72], RQL[47],
SeRQL[62] and RAL[28] (RAL is an algebra rather than a declaative query language). My view
maintenance algorithms assume that views are de ned in Hevdtt Packard's RDQL language - my
choice was based on the fact thatRDQL seems to have the most industry support though the
eventual winner in the \best RDF query language" sweepstakes is far from determined.

RDQL queries follow the usualSELECT-FROM-WHERKEtructure to locate RDF statements
satisfying particular triple patterns. An (optional) AND clause can be used to specify conjunctive
conditions, while an optional USINGclause may be used to specify that only URIs having a certain
pre x should be considered.

To nd all (sculpture, museum) pairs where the sculpture wascreated by Rodin, the museum

houses the given sculpture, and the museum web site was not rdoed since Jan 1, 2001, we can
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<?xml version="1.0"?>
<IDOCTYPE rdf:RDF [<!IENTITY xsd "http://www.w3.0rg/2001 /XMLSchema#">]>
<rdf:RDF xmlIns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xml:base="http://www.icom.com/schemal#">
<rdfs:Class rdf:ID="Artist"/>
<rdfs:Class rdf:ID="Painter"><rdfs:subClassOf rdf:res ource="#Artist"/></rdfs:Class>
<rdfs:Datatype rdf:about="&xsd;string"/>
<rdf:Property rdf:ID="fname">
<rdfs:domain rdf:resource="#Artist"/><rdfs:range rdf: resource="&xsd;string"/>
</rdf:Property>

</rdf:RDF>

(b)

<?xml version="1.0"?>
<IDOCTYPE rdf:RDF [<!IENTITY xsd "http://www.w3.0rg/2001 /XMLSchema#">]>
<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:ns1="http://www.icom.com/schemal#">
<rdf:Description rdf:about="http://www.culture.net#p icassol132">
<rdf:type rdf:resource="nsl:Painter"/>
<nsl:fname rdf.datatype="&xsd;string">Pablo </nsl:fna me>
</rdf:Description>

</rdf:RDF>

Figure 4.1: (a) Part of example RDF schema in XML (b) Part of example RDF instance in XML
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ns1:http://www.icom.com/schemal#
P title

creates exhibited

/\ﬁ\@

Museun

A Iast_modifie

Schema

w Iname:\: % techrique
f
creates ibi
hibited last_modified
.@ = .@

Instance

|
name M
rl : http://www.culture.net#picasso132
r2 : http://www.museum.es/guernica.jpg : http://www.culture.net#rodin424 > rdftype
r3 : http:/www.museum.es/woman.qtiré : http://www.artchive.com/crucifixion.jpgd ——== |4s:subClassOf
r4 : http://www.museum.es 17 : http:/www.rodin.fr —..== rdfs:subPropertyOf

Figure 4.2: An RDF example for a Museum Artifact Catalog descibing artifact resources.

ask the following RDQL query.

Example 4.1.1 SELECT ?sculpture, ?museum
WHERE (?sculptor, <nsl:iname>, "Rodin"),
(?sculptor, <nsl:creates, ?sculpture),
(?sculpture, < nsl:exhibited>, ?museum),
(?museum, <nsl:lastmodi ed >, ?date)
AND ?date < 2001-01-01

USING nsl FOR < http://www.icom.com/schemal# >

The result of this query containsf (&r6; &r7)g.

Note that the WHERECclause is just shorthand for a logical statement. For exam, in the above
query, the WHERE clause isRDFnotation for the logical query:

in (S; http : ==www:icom:com=schemal# Iname; \ Rodin %) »
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in (S; http : ==www:icom:com=schemal# creates; S% »

in (S% http : ==www:icom:com=schemal# exhibited; M ) *

(M; http : ==www:icom:com=schemal# last _modified; D ):
The variables S; S% M; D in the above logical statement correspond exactly to the vaiables
?sculptor, ?sculpture, ?museum and date respectively in the precedingRDQL-query. As in logic,
we want to nd all bindings of variables in the RDFinstance (hence the predicaten above) that
satisfy the query.

Formally, a WHEREtriple is an expression of the form R; P; V) whereR is either a resource
or a variable ranging over resourcesP is either a property or a variable ranging over properties,
and V is either a value or a variable ranging over values. INRDQL, variables are strings that start
with the \?" symbol.

Likewise, an AND-constraint is an expression of the form R op ?y where %; ?y are both
variables or an expression of the form 2 op v where X is a variable andv is a value. In either case,
op2f = 6, <, ,>, ,eq,neq The rstkind of constraint is often called a join constraint,
while the second is often called avalue constraint.

Formally, an RDQL-query has the syntax:

SELECTV

AND aj;:::;am
USINGu
whereV is a sequence of variablesy;:::;w, are WHEREtriples, a;;:::;am are AND-constraints

and u denotes a URI-pre x.

As is common in databases, a view merely consists of aRDQL query together with a
request to create the view. This is expressed by: CREATEVIEWview_name AS rdql_query". The
materialized view is atable whose columns are the items in theSELECTclause of theRDQL query
in the view de nition, and rows are sets of values satisfyingthe query. | do not restrict views (like

[79]) to be de ned only on a subset of queries that return resits (i) containing class instances
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nsl:lname

nsl:.creates o
nsl:exhibited

nsl:last_modifie
>(?date

Figure 4.3: An example graph pattern

(i.e., a subject or object variable), or (ii) in the pattern o f RDF statement (i.e., a triple containing
subject, predicate and object).

BecauseRDQL is a graph matching language, eactRDQL query has an associated graph
pattern[72]. A graph pattern (GP) for a given RDQL view Q is a graph whose nodes are labeled

by a set of constraints such that:

1. for each triple (r; p;v) in the WHERECclause ofQ, r and v are nodes in the graph, and there

is an edge fromr to v in the graph;

2. if two triples share a variable or resource or literal, thetwo nodes for the same variable or

resource or literal will be collapsed into one while presenng their edges.

3. if C is a value constraint in the AND clause of the form % op v then C is in the set of value

constraints associated with the node R.

Figure 4.3 shows the corresponding graph pattern for the qug shown in Example 4.1.1. Notice
that the constraint ?date < 2001-01-01 associated with the nodedate is not shown in the gure.
Although a root at ?sculptor exists in Figure 4.3, roots may not always exist as the readecan

see from the following example.

Example 4.1.2 Suppose we want to nd some painter who painted a portrait of@meone such that
that someone was a student of that painter. This can be answext by the followingRDQL-query:
SELECT ?painter
WHERE (?painter, <nsl:paints>, ?painting),

(?painting, <nsl:portrait_of>, ?model),
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(?model, < nsl:student, ?painter)
USING nsl1 FOR < http://www.icom.com/schemal# >

The above query forms a cyclic graph pattern without a root.

A graph pattern may include more than one connected componem My algorithms work
well when one connected component is present. They may be g cient when multiple connected

components are present.

4.2 Maintenance Algorithms

4.2.1 Insertion Maintenance Algorithms

I am now ready to consider the problem of maintaining views oer RDFinstances when a triple is
added to the RDFinstance. As there is a one to one correspondence betwe&DFinstances and
their corresponding graphs, | will often use these terms syoanymously.

All insertions to RDF graphs can be represented via triples. For example, suppose we
wish to insert the \Painter" resource ( http://www.culture.net#matisse ) associated with Matisse. This
may be accomplished by inserting the following triple \(http://imww.culture.net#matisse  , < rdf:type>,
<nsl:Painter>)". When a new triple is inserted, the algorithm will detect t he new delegate
objects' to be inserted into the materialized view. If the inserted triple involves a new resource
and/or value, it means that a new node is inserted with a new ede into the RDF graph.

My IMA algorithm uses the important notion of triple uni cation, g raph uni cation and
pattern matching between the graph pattern of query and anRDF instance graph which is some-
what di erent from the classical notion of uni cation in log ic [57]. Traditionally, a substitution is
a mapping from the set of variables to a set of terms, where a ten is a variable or a constant; a

substitution is a uni er of two terms t, to i t; =ty 2.

De nition 4.2.1 (triple-uni cation) Suppose(R1; Py, V1) is a WHEREtriple and (R2; P2; V2)

1The original database has some objects with IDs. A delegate o bject is a version of the original object and

preserves a link to the original object. Due to space limitat ion, we do not go into details of delegate objects here.
2ty is the expression obtained by applying  to t;.
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is an instance triple (i.e., a triple in an instance). We say that (Ri;P1;Vh) triple-matches

(R2; P2; Vo) i there exists a substitution  such that:

1. Ry = R, or Ry is asubclass ofR;

2. Py = P, or P, is a subproperty ofP;

3. Vi =V, orV, is a subclass ofv;

It is important to note that the triple-matches relationship is not symmetric (because of the

subclass/subproperty condition in the above de nition). T he following example illustrates this.

Example 4.2.1 Consider the following WHEREtriple t;= (?painter, <nsl:creates, ?painting)
and the following instance triplet,= (http://www.culture.net#picasso132, <nsl:paints>,
http://mwww.museum.es/guernica.jpg). t; triple-matches t, because there exists a substitution

= f(?painter) ! http : ==www:culture:net# picassal32,
?painting ! http : ==www:museum:es=guernica:jpgy and <nsl:paints> is a subproperty of

<nsl.creates . However, t; does not triple-matcht,.

The reason for this asymmetry is that given aWHEREtriple in a query (or a graph pattern),
we want to nd instances of it in the RDFinstance that satisfy the conditions of the query (rather
than the other way around). The RDFinstance of course has no variables in it, while the query
might have zero or more variables in it.

Similarly, | de ne a uni er of two labeled graphs as follows. Given a labeled graphG(V; E)
(e.g., anRDF graph), | de ne I(v1;Vv>) to be the label (e.g., a property) associated with §; v,) for

all (v1;v2) 2 E.

De nition 4.2.2 (Graph Uni er) A substitution uni es a labeled graphG; = (V1;E;) with
another labeled graphG, = (V; E»), i.e. G1 = G, , i there exists a bijection  betweenV; and

V> such that

1. vy is uni able with  (vi1) using substitution for all v; 2 Vi and

2. if (v1;v2) 2 Eq, then ( (v1); (v2)) 2 E,, and vice versa, and
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3. I(v1;Vv2) is uniable with I( (v1); (v2)) using substitution for all (vi;vz2) 2 E;.

Based on this de nition, | can de ne a matching between a gragh pattern GP of query Q and a

subgraph |1 qV%E9 of an RDF graph | (V;E) ( IqV%ED) itself is a graph andV® V,E® E).

De nition 4.2.3 (Pattern Matching) SupposeQ is a query, GP (V1; E1) is the graph pattern of
Q, and | (V,; E;) is an RDF graph. A substitution matchesGP (Vi; E1) with a subgraphl (V.2 ES)

of | i

1. GP =19 and?3

2. satis es the constraints in Q.

Example 4.2.2 Consider the view de ned in Example 4.1.1. There is one subgph of the RDF
instance in Figure 4.2 which uni es with the graph pattern ofthe view via the following substitution:

f 2sculptor !  &r5; ?sculpture | &r6;2museum! &r7;2date! \2000 02 01°%,.

My IMA algorithm uses the following subroutines.

BuildGP(Q) constructs a graph pattern GP from view de nition Q.

TMatch(GP, t) returns \true" for a triple t and a graph pattern GP if a WHERE -triple w
in GP triple-matches t, i.e., if there exists a subsitution such thatt uni es with a triple in

GP.

Given GP, Q, a triple t and the updated RDF graph (I [ t),* the subroutine MSearch(GP,
Q, t, I [ t) returns the setf | there exists aWHEREtriple t%in GP and a triple set T in
(I [ t) such that, via substitution , (i) t° triple-matches t and (ii) 8ty 2 GP, 9t, 2 T, t;
triple-matches t,, and (iii)  satis es the WHEREand AND clauses inGPg, i.e., it nds all

substitutions  that match GP with some subgraph ofl that contains t.

SFor a value (i.e., non-variable) to unify with another value (non variable), instead of the original requirement

that both values must be identical, we allow a value v; in a triple in GP to unify with another value vf in a triple
in 19if and only if (1) v is the same asv?; or (2) vY is vi's subclass if both of them are classes; or (3) V¥ is vi's

subproperty if both of them are properties.
4For simplicity, we use | [ t instead of | [f tg, and | t instead of | f tg.
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Given a substitution , and output variables (specied in a SELECTclause) X = (?x1;:::,

from MSearch(GP; Q;t;1 [ 1).

Figure 4.4 presents thelMA algorithm (short for Insertion Maintenance Algorithm ) to

nd new delegate objects when an insertion occurs.

algorithm  IMA(1;Q; M (Q;1);1)

/* Input: RDF graph |, view speci cation Q, materialized view M (Q; 1), inserted triple t */
[* Output: M (Q;1 [ t)*/

1) GP BuildGP(Q); X output variables of Q;

2) if TMatch( GP, t) == TRUE, then

3) M f VRetrieve( ;GP;X )| 2 MSearch(GP;Q;t;I [ t)g;

4) retun M(Q;I[t) M(@QI)[ M;

Figure 4.4: Insertion Maintenance Algorithm IMA

Example 4.2.3 Consider the RDF graph | of Figure 4.2 and the viewQ in Example 4.1.1. The
materialized view M(Q,l) is f(&r6; &r7)g. Suppose we insert = (& r5;<nsl.creates; &r2). IMA
rst builds a graph pattern GP (Figure 4.3). The output variables are X = (? sculptor; 2museum).
TMatch (GP;t) returns true via the substitution f t=(?sculptor; < nsl:creates; ?sculpture)gin GP.
MSearch(GP; Q;t;1 [ t) returns the substitution: ?sculptor ! &r5, ?sculpture ! &r2, ?museum
I &r4, 2date! \2000-06-09". For this substitution, VRetrieve ( ; GP; X ) returns (&r2; &r4). As

aresult, M(Q;1 [ t)= M(Q;1) [ (&r2;&r4)g.

Complexity Analysis of IMA. The time taken to execute BuildGP(Q) in line 1 is linear in the
number of triples in the WHERE clause and the number of constraints in theAND clause. If we
materialize or cache graph patterns, we can retrieve the st@d copy instead of calling BuildGP(Q).
In lines 2 and 3, both TMatch(GP, t) and VRetrieve( ; GP; X ) take linear time w.r.t. jGPj, the

number of edges in the graph pattern.
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algorithm MSearch(GP;Q;t;1)

/* Input: graph pattern GP, view speci cation Q, triple t, RDF graph | */
/*Output: = f | is a substitutiong */

1) .

2) foreacht®2 GP s.t. 9 %t 0= 00

3) for each 2 bSearcht;t% GP;l),

4) if satis es the constraints in Q, then [

5) return ;

Figure 4.5: Algorithm for MSearch

In line 3, | can modify a breadth- rst search for MSearch starting with triple t. Basically,
by substituting t for some WHEREtriple t°in GP, we can search for a substitution ofGP to a
subgraph of | [ t containing t by a breath- rst search starting at t% There may be more than one
possible way of assigning triples inGP to t in GP (say, fromt to a triple t°in GP). This means
that each time, we may have to search starting att for a substitution ( ) to | [ t from the graph
pattern GP rooted at each possible®. Figure 4.5 presents the algorithm forM Search(GP; Q;t; 1)
to nd all such substitutions . bSearcht;t% GP; 1) denotes the breadth- rst search starting with
somet®2 GP to nd the subgraphs of | (containing t) that GP substitutes to.

In addition, checking whether substitution  satis es the rst type of AND-constraint can
be done in linear time w.r.t. the number of AND-constraints in the AND clause. Thus, the time
complexity of M Search is O(jGPjbP (5P )) where bis the average branching factor ofl (considering
both in and out degrees) andD (GP) indicates the depth of graph pattern as an undirected graph
Therefore, the worst-case time complexity of thelIMA algorithm is O(jGPj bP(CP)). As graph
patterns are usually not too deep (3 or 4 perhaps), this is notunreasonable.

Speeding up IMA. IMA's performance can be improved by improvingbSearchin MSearch in
two ways. (i) First, the value constraints associated with the nodes in p&ern GP should be used

as quick lters when testing whether GP triples can triple-match a set of triples in graph I [ t. If
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we start from a possible substitution fort and nd that a particular triple in  GP can triple-match
no triple in | [ t, we can immediately stop searching this path. If this happes for all possible
substitutions, we can conclude that the update ofl does not aect M (Q;1). (i) Second, in the
graph | [ t, the properties of a node can be classi ed via a namespace. Fa triple t°in GP, we
need only search the triples inl [ t whose property has the same namespace as the property of
t% For example, the node &5 in Figure 4.2 has properties in namespace nsl and rdf. Suppe
a triple in the graph pattern is (?sculptor, <nsl:creates, ?sculpture). For &r5, we only need to
consider the properties in namespace nsl. This is useful whehe branching factor b is large and
there are several namespaces ih.

Figure 4.6 presents the pseudocode for this enhancdsBearch(t; t® GP; 1), modi ed from a
standard breadth- rst search algorithm. Here | treat tripl es as vertices in a graph. Two vertices
(triples) are connected if one triple's resource is the othes value. Just like the standard breadth-
rst search, bSearchcolors each vertex inGP to keep track of the search progress. A vertex is
initially white, but becomes gray or black after it is discovered (encountered in the search). Black
vertices have all neighbors non-white (discovered) while gy vertices may have some white (non-
discovered) neighbors. The following additional data strictures are used.Adj is an adjacency list
where Adj [u] returns the neighbors of vertexu. color[u] and [u] store the color (white, gray or
black) and predecessor of vertexu. d[u] denotes the distance (the smallest number of edges) from
the starting vertex t° | use a rst-in- rst-out queue Q to store gray vertices.

The following theorem says that IMA is correct.

Theorem 4.1 Given an RDF graph |, view speci cation Q, an inserted RDF triple t, the result
M(Q;1)[ M of the algorithm IMA(I; Q; M (Q;1);t) is equivalent to the complete recomputation

of the viewM (Q;I [ t) from I [ t.

Proof
For every row r of values inM (Q; 1), there exists at least one substitution from GP to |
satisfying Q that outputs r. As (GP) is a subset ofl , after adding any nodes or edges intd , all

original rows in M (Q; 1) will still existin M (Q;1 [ t).
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algorithm

/* Input: instance triple

/* Output:

1)
2)
3)
4)
5)
6)
7
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)

20)

21)
22)
23)
24)

25)

bSearch(t;t% GP; 1)

t0=f

t, WHERE-triple t% graph pattern GP, RDF graph | */

is a substitution g */

for each vertex u2 GP f t7,

color[u]

du] 1

[u]  NIL;

color [t

d[t9
[t
Q0 f

0;
NIL;

t%;

WHITE;

GRAY;

create a mapping M s.t. M (t9 = t;

while

u®

Q% ;,

head[QY;

for each v02 Ad [u9,

if color[v% = WHITE, then

color[v9  GRAY;

dv9
%

du? +1;

u®

Enqueue(Q% v9);

for each mapping M,

for each pair (v%v) where v 2 Ad [M (u9],

if ) v®and v are in the same namespace, (i) v° triple-matches v and

(iii) if v contains a value, v satis es all value constraints associated with v, then

create a new mapping M% M ;M99 v;

delete M ;
if no M exists, return o= ;;
Dequeue(Q9);
color[uq  BLACK;
return ;0= f | is a substitution corresponding to some mapping M g;

Figure 4.6: Algorithm for enhanced bSearch
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Suppose M%= M(Q;1 [ t) M(Q;l). To prove the theorem is equivalent to prove that
MO%= M M(Q;l), i.e. the additional rows in M (Q; | [ t) but notin M (Q;1) are equivalent
to the rowsin M but notin M (Q;l).

M © consists of all rowsr® of values such that for everyr?, there exists at least one sub-
stitution  °from GP to | [ t satisfying Q that outputs r° Note that t 2 YGP). If this were
not true, there would be a substitution that outputs a row r 2 M (Q;1) such that = © Since
IMA nd all substitutions from GP to | [ t such that t is included and Q is satis ed, IMA nd
all the possible substitutions that contribute to M C On the other hand, IMA does not return
substitutions that do not include t, so it does not return substitutions that output rows of valu es
not existing in M(Q;1)[ MO i.e,, M(Q;l [ t). The reason is that the output rows of values
of the substitutions that include t must be captured by M © unless they are already included in
M (Q;1).

Therefore, M%= M M (Q;l). |

4.2.2 Deletion Maintenance Algorithm

| consider triple deletion in this section. When we delete a mde from anRDF graph, | assume that
all edges connected to it are deleted automatically. | will dscuss resource deletion in Section 4.2.4.
Figure 4.7 presents theDMA algorithm (DMA stands for Deletion Maintenance Al-
gorithm ). DMA uses the same functions used byMA. In addition, it uses a new function
MSearch2(GP; Q;r;1  t; X ) which is just like MSearch except for one di erence: MSearch2
returns true if there exists at least one substitution such that (1) r == V Retrieve( ; GP; X ); (2)
satis es the value constraints in GP; (3) satis es the join constraints in Q. Thus, MSearch2
returns true if there exists some substitution such that (i) every triple in GP triple-matches some
triplein I t, (i) Q is satis ed and (iii) the same row r in M (Q; | ) can be returned. The algorithm

MSearch2 is shown in Figure 4.8.

Example 4.2.4 Consider the RDF graph | of Figure 4.2 and the viewQ in Example 4.1.1.

The materialized view M (Q;1) is f(&r6;&r7)g. Suppose the triplet = (& r5;<nsl:creates ,
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algorithm DMA(I;Q; M (Q;1);t)
/* Input: RDF graph |, view speci cation Q, materialized view M (Q; 1), deleted triple t */
[* Output: M (Q;1  t)*/
1) ifM(Q;l)=;,thenreturn M(Q;l t) ; ;
2) GP BuldGP(Q); M ; ;
3) X output variables of Q ;
4) if TMatch( GP, t) == TRUE, then
5) M f VRetrieve(;GP;X )j 2 MSearch(GP;Q;t;1)g;
6) 8r2 M,
if MSearch2(GP;Q;r;1  t;X) == TRUE, then M M T

7) return M(Q;1 t)  M(Q;l) M;

Figure 4.7: Deletion Maintenance Algorithm DMA

algorithm MSearch2(GP;Q;r;1; X )
/* Input: graph pattern GP, view speci cation Q, row r, RDF graph |, output variables X */
/* Output: TRUE or FALSE */
1) foreacht®2 GP,t21 s.t. 9 %t 0=100
2) for each 2 bSearcht;t% GP;l),
3) if satis es the constraints in Q AND
r == V Retrieve( ; GP; X ), then return TRUE;

4)  return FALSE;

Figure 4.8: Algorithm for MSearch2
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&r6) is deleted. DMA rst builds a graph pattern GP (Figure 4.3). The output variables are
X = (?sculptor; ?7museum). TMatch (GP;t) returns true because we can havé to unify
(?sculptor; < nsl:.creates, ?sculpture) in GP. MSearch(GP;Q;t;1) returns the substitution:
?sculptor ! &r5, ?sculpture ! &r6, ?museum ! &r7, ?date! \2000-02-01". For this substitu-
tion, VRetrieve( , GP, X) returns (&r6;&r7). Thus, M = f(&6;&7)g. MSearch?2 then tries to
nd a substitution from GP to | t such thatQ is satis ed with (&6;&7) as output. Because there
does not exist such a substitution, we will deleté6; &7) from M (Q;1). The resulting M (Q;1 t)

is empty.

Complexity Analysis of DMA. The main di erence between MSearch2 and MSearch is that
the starting point of the breadth- rst search can be any node (subject/objectin a triple) speci ed in

r. During the search, the values of nodes and edges (correspding to those output variables) must
match those inGP speci ed by r. Similarly, the constraints and non-variable nodes/edgesare quick

Iters and reduce the actual search space even though the deges of nodes are large. If contains

= j. l usejlmin j to denote jljj. We can then start our breadth- rst search from each edge (wih
label Ij) in turn. We can stop as soon as a substitution is found that ouputs r, satises Q
and returns TRUE, or until all edges with label |; are tried. The worst-case time complexity of
MSearch2 is O(jlmin jb° (6P)) where jlmin j = 1 when r also contains some nodeb is the average
branching factor of | (considering both in and out degrees) andD (GP) is the depth of graph
pattern as an undirected graph. Therefore, the worst-caseitne complexity of the DMA algorithm

is O((JGPj + | Mijlmin j)BP(6P)).

Theorem 4.2 Given an RDF graph |, view speci cation Q, a deleted RDF triple t, the result
M (Q; 1) M of the algorithm DMA(I; Q; M (Q;1);t) is equivalent to the complete recomputation

of the viewM (Q;I t) from | t.

Proof
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Suppose M%= M (Q;1) M(Q;l t). To prove the theorem is equivalent to prove that
MO= M, i.e. the original rows in M (Q; 1) but notin M (Q;! t) are equivalent to the rows
in M.
M 9 consists of all rowsr° of values such that for everyr®, there exists at a substitution ©°
from GP to | satisfying Q that outputs r° but there exists no substitution °from GP to | 't
satisfying Q that outputs r% All ©above must containt (i.e.,t 2 Y(GP)) because if one such®
does not containt, then we can substitute by °from GP to | t satisfying Q that outputs r°.
M of line 5 consists of all rowsr such that for every r, there exists a substitution from
GP to | satisfying Q that contains t and outputs r. After line 6, M excludes those rows which
has at least one substitution from GP to | t satisfying Q that does not contain t but outputs
r. In the other words, M consists of all rowsr such that for everyr, (1) there exists at least one
substitution  from GP to | satisfying Q that outputs r; (2) all such must contain t; (3) there
exists no substitution °from GP to | t satisfying Q that outputs r.

Therefore, M%= M. 1
4.2.3 Triple Modi cation Algorithm
An atomic modi cation update to a set of RDF statements falls into one of ve categories:
1. atriple's resource changes;
2. a triple's property changes;
3. atriple's value which is a resource changes;
4. a triple's value which is not a resource changes;

5. aresource itself (the change of rdf:about) fronR to R which will cause all edges connecting

to or from R to change to connectto or from R°.

| consider these cases one by one.
One straightforward way to handle cases (1) to (4), is to proess the modication as a

deletion of the old triple tgey and an insertion of a new ftriple tis (with the updated subject,
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algorithm TMA(I;Q; M (Q;1);tgel; tins )

/* Input: RDF graph |, view speci cation Q, materialized view M (Q; 1),

deleted triple tge, inserted triple tins */

/¥ Output: M (Q; (I tge) [ tins) */

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)

12)

13)

GP  BuildGP(Q); My
X output variables of Q; F =0;
if TMatch( GP, tge;) == TRUE, then F F+1;
if TMatch( GP, tj,s ) == TRUE, then F F +2;
if F ==0, thenreturn M (Q;(I tgel)[ tins) M(Q;l);
if F ==1, thenreturn M(Q;(I tee)[ tins) DMA (I [ tins ;Q;M (Q;1);tgel);
if F ==2,thenreturn M(Q;(I tael)[ tins) IMA (I tger; Q;M (Q;1);tins );
M; f VRetrieve( ;GP;X )j 2 MSearch(GP;Q;tins; (I  tge) [ tins)G;
if M (Q;1) 6 ;;then
My f VRetrieve( 1;GP;X)j 12 MSearch(GP; Q;tge;1)g;
Mg Mg Mi;
8r2 My,
if MSearch2(GP;Q;r;l1  tgel [ tins ; X) == TRUE, then Mg Mg 13

return M(Q; (I tael) [ tins) (M (Q;1) Ma) [ Mi;

Figure 4.9: Triple Modi cation Maintenance Algorithm TMA
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predicate or object). Fortunately, | can do better by rst n ding the rows to be inserted into
M (Q;1) as a result of addingtins using IMA before executing line 5 ofDMA. The rows to be
both deleted (potentially) and inserted should be kept in the nal answer. Figure 4.9 presents the
TMA algorithm (short for Triple Modi cation Maintenance Algorithm ) to make necessary

updates to a materialized view when a modi cation occurs in atriple.

Example 4.2.5 Consider the RDF graph| of Figure 4.2, the view Q in Example 4.1.1. The
materialized view M (Q;1) is f(&r6;&r7)g. Suppose the tripletge = (& r5;<nsl.creates; &r6)
is modi ed to become tijns = (& r5;<nsl:paints>; &r6). TMA rst builds a graph pattern GP
(Figure 4.3). The output variables are X = (?sculptor; ?museum). Both TMatch (GP, tge)
and TMatch(GP, tj,s) return true. The insertion of tj,s leads to an inserted row M; =
f(&r6;&r7)g. MSearch(GP;Q;tge; 1) returns a substitution ; as follows (only variables are
shown): ?sculptor !  &r5, ?sculpture ! &r6, 2museum! &r7, 2date! \2000-02-01". For this
substitution, VRetrieve( 1;GP;X) returns rq = (& r6;&r7). Asrq 2 Mj, sorq 2 My. As

M((Q;1)= f(&r6;&r7)g, Mgq=;, M;="1f(&r6;&r7)g, M(Q;(I tgel)[ tins)= M(Q;l).

Complexity Analysis of TMA. The time complexity is the sum of those of IMA and DMA,
ie. O(JGPJP(®P) + (jGPj + | Maj jlmin j) BP(®P)) = O((iGPj + j Mudiilmn ))BP(®")) (same as

DMA).

Theorem 4.3 Given an RDF graph |, view speci cation Q, an RDF triple updated from tge to
tins , the result (M (Q; 1) Mq4)[ M; of the algorithm TMA(I; Q; M (Q;1);tgel; tins ) IS equivalent

to the complete recomputation of the viewM (Q; (I tge!) [ tins) from (I tge) [ tins -

Proof

Basically, TMA usesIMA to nd the set M, of rows to add into the view and then uses
DMA to nd the set Mgy of rows to remove from the view. The additional things are fran lines
6-7 and 11. Lines 6-7 simply callDMA if it is impossible to have new rows to add, or callsIMA
if it is impossible to have old rows to remove. Line 11 simply emoves from Mg those common

rowsin Mgand M;. Itis correct because in line 12, those common rows removedilvbe added

114



back. As DMA and IMA are proved correct, TMA is also correct. |

4.2.4 Resource Modi cation Algorithm

In this section, | consider the fth kind of modi cation to an RDFinstance. This is the case where
a resource is changed fronRy to R;. In this case, we need to delete rows from the original view
associated withRy4 and insert rows associated withR;.

SupposeTy is the set of edges connected t&Ry. One straightforward approach is to call
IMA and DMA (for inserting and deleting the edges one by onejTyj times.

Fortunately, we can instead consider the deletion and insdfon of all those edges simulta-
neously. In this second approach, we consider the substititns of the deleted/inserted resource to
the resource/value of a triple in GP instead of the substitutions of the deleted/inserted edgego a
triple in GP. In this case, the worst case time complexity will not dependon jTyj.

Figure 4.10 presents theRMA algorithm (short for Resource Modi cation Maintenance
Algorithm ) to make necessary updates to a materialized view when a modation occurs in a re-
source. lusd r,1 R, to denote the updated RDF graph after replacingRq by Ri andM (Q; Ir,1 Rr;)
as the updated view.

My RMA algorithm uses the following new subroutines.

TMatchR(GP, R) returns \true" for a resource R and a graph pattern GP if R uni es with
a GP triple's subject or object.

Given GP, Q, a resourceR and an RDF graph I, | de ne MSearchR(GP, Q, R, I) to nd
all substitutions , such that (1) for every triple t (or node) in GP, there exists a triple t° (or
node) in | such that t triple-matches somet® whose resource or value iR and (2) satis es
value constraints in GP; (3) satis es join constraints in Q; (4) there is at least one variable

in GP that is mapped onto R by
In Figure 4.11, | present an algorithm to implement M SearchR.

Example 4.2.6 Consider the RDF graph| of Figure 4.2, the view Q of Example 4.1.1. The

materialized viewM (Q; 1) is f(&r6;&r7)g. SupposeRy = & r6 and R; = & r8 where &r 8 refers to
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algorithm  RMA(I;Q; M (Q;1); Rdel; Rins )
/* Input: RDF graph |, view speci cation Q, materialized view, M (Q; 1),
deleted resourceRy, inserted resourceR; */
/* Output: M (Q;lryr r,) */
1) GP BuildGP(Q); My ; ; M; ;
2) X output variables of Q; F =0;
3) if TMatchR( GP, Ry) == TRUE, then F F +1;
4) if TMatchR( GP, Rj) == TRUE, then F F +2;
5) if F==0, thenreturn M(Q;lry r,) M(Q;l);
6) ifF>1,then M; f VRetrieve(;GP;X )] 2 MSearchR(GP;Q;R;i;lr, r)G;
7) if(F==10R F==3)AND M(Q;l) 86 ;, then
8) Mg f VRetrieve( 1;GP;X)j 12 MSearchR(GP;Q;Rq;1)g;
9) My Mgy Mi;
10) 8r2 My,
if MSearch2(GP; Q;r; 1 r,1 r;;X) == TRUE, then My Mg T;

11) return M(Q;lryr 7))  (M(Q;l) Ma)[  Mi;

Figure 4.10: Resource Modi cation Maintenance Algorithm RMA

http:/mww.museum.es/man.jpg . RMA rst builds a graph pattern GP (Figure 4.3). The output vari-
ables areX = (? sculptor, ?museum). Both TMatchR (GP; Rq) and TMatchR(GP; R;) return true.
The insertion of R; leads to an inserted row M; = f(&r8;&r7)g. MSearchR(GP; Q;Ry;l) re-
turns a substitution 1 which gives output My = f(&r6;&r7)g. MSearch2 then cannot nd
another substitution to Ir,1 g, to output f(&r6; &r7)g, so we need to remove that from the view.

As aresult, M (Q; g, r;) = f(&r8;&r7)g.

Complexity Analysis of RMA. TMatchR( GP, R) can be executed in linear time w.r.t. GPj.
MSearchR is similar to M Search except that instead of starting with a substitution of the tr iple t

in | to some triple in GP, we substitute the resourceR for the subject/object of some triple in GP.
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algorithm MSearchR(GP;Q;R;I)

/* Input: graph pattern GP, view speci cation Q, resourceR, RDF graph | */
/*Output: = f | is a substitutiong */

1) .

2) foreacht’2 GP s.t. 9 andt 2 | whereR is a resource or value ot andt %= t° 9,
3) for each 2 bSearcht;t% GP;l),

4) if satis es the constraints in Q, then [

5) return ;

Figure 4.11: Algorithm for M SearchR

The breadth- rst search works similarly as MSearch. Since there may be at most §GPj di erent
substitutions of R, the time complexity of MSearchR is same asMSearch, i.e. O(jGPjbP(GP)),
Therefore, the worst-case time complexity of theRMA algorithm is same asTMA i.e., O((jGPj +

j Mdjjlmin j)bD(GP ))-

Theorem 4.4 Given an RDF graph |, view speci cation Q, a resource updated fromRy to R;,
the result (M (Q; 1) Mg)[ M; of the algorithm RMA(I; Q; M (Q;1);Rg; Ri) is equivalent to

the complete recomputation of the viewM (Q; g, r;) from I, g, -

Proof

Basically, TMA is a variation of RMA where TMatch and M Search in TMA are replaced by
TMatchR and M SearchR which work with a resource instead of a triple. Instead of cding DMA
or IMA which deal with deletion or insertion of a single triple, RMA mandatorily uses M SearchR
to nd Mgyand M; caused by deletion ofTq and insertion of T;. As TMA is proved correct, so

is RMA. |
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4.3 RDF Aggregates

| illustrate the need for RDF aggregate operators with some motivating examples inspii by data
from Christies' auction house. Figure 4.12's bottom half slows an exampleRDFinstance describing
the auction data while the top half shows its RDFschema. The following examples are based on

this RDFinstance. | assume that unit conversions are already condered.

ns1:http://www.auctionschema.com/schemal#

\

-
Iname
Sculpto

creates
|
sculptsj |

OW

AN
T paints ij.A ech"‘nique “

o title =1 +The Model] ."M‘ del
i > DFES 0

Schema

"500000"Mns1:USD
igh
"300000"""n51:US§

"60000""*ns1:GBHF
"40000""ns1:GB

"15000""ns1:USD
"10000""ns1:USD

Instance

low

estimated
tith

- 2004-04-23
|
rl : http://www.artist.net#guyrose
r2 : http://www.christies.com/beverly/model.jpg7 : http://www.christies.com/kingst/river.jpg - > rdf:itype
r3 : http://www.christies.com/beverly/rockies.jp® : http://www.artist.net#odotabacchi ——= rdfs:subClassOf
r6 : http://www.artist.net#christberghe r10 : http://www.christies.com/ny/tuffolina.jp@.... ==  rdfs:subPropertyOf

Figure 4.12: An RDF example describing artifact auctions in Christie's auction house

Example 4.3.1 (min) Suppose Jack, a bidder, is going to buy an artifact but has anlited budget.
He may want to know the minimum estimated price of the artifats for auction in April, 2004. By
comparing the values of thdow property of the estimated prices for all artifacts in Figure 4.12,

Jack will know that the minimum price is 10,000 USD.
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Example 4.3.2 (max) Suppose Jack is interested in Impressionism. He may want torlow the
maximum estimated price of paintings by Guy Rose, a pure Imm@ssionist. By comparing the values
of the high property of the estimated prices for Guy Rose's works in Figure 4.12, he will know

that the maximum estimated price is 800,000 USD.

Example 4.3.3 (count) As a fan of Guy Rose, Jack may want to know how many of his paintgs
will be presented for auction in April, 2004. By counting Guy Rose's works for auction in April,

2004, Jack will know that two of them are going to be sold.

Example 4.3.4 (sum) Suppose Smith is a manager of the auction house. He may want kmow
the prospective revenue by maximizing estimation for all t auctions in April, 2004. By summing
up the values of thehigh property of the estimated prices of all the artifacts, Smith will know that

the revenue is 1,425,244 USD approximately.

Example 4.3.5 (average)Suppose the auction house publishes price information on ¢hweb, in-
cluding the average of the estimatedhigh prices of the artifacts for each artist. By grouping the
high prices and computing the average w.r.t. each artist respeitely, the auction house can publish

this information as follows:

artist average of high prices
Guy Rose 650,000 USD
Christo el Van den Berghe 60,000 GBP
Odoardo Tabacchi 15,000 USD

| give the formal de nition of an aggregate query below whichis su ciently generalized to

include all kinds of aggregate queries .

01;02;:::;0m be aggregate operators, whem 2 f min; max; count; sum; averageg, for i =1;:::;m.
An RDF aggregate quenyQ involving those variables and operators as well as an optiah GROUP

BY clause takesl as input and outputs a tableT® containing a set of tuples.

5The result of an aggregate query can be represented as an RDF instance or a table. The advantage of producing
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Notice that the columns of the table T are the items in the SELECT clause of the queryQ. If
there is no GROUP BY clause and with the speci c aggregate operators consideredmin, max,
count, sum, average T normally contains only one tuple. The query Q, of Example 4.3.2 can be

expressed inRDQL as follows:

Example 4.3.6 SELECT max(?highprice)
WHERE (?artist, <nsl:lname>, "Rose"),
(?artist, <nsl:fname>, "Guy"),

(?artist, <nsl:creates>, ?artifact),
(?artifact, <nsl:estimated>, ?price),
(?price, <nsl:high>, ?highprice),

(?artifact, <nsl:presented>, ?date)

AND 2004-04-01 <= ?date <= 2004-04-30

USING nsl1 FOR <http://www.auctionschema.com/schemal#>

Here a string with the pre x \?" (e.g. ?artist ) represents a variable . Figure 4.13 illustrates the
graph pattern of Q,. The result of Q, is [(\800000"™" ns1:USD)]. The symbol™ in a typed literal

connects a value (such as \800000") and the literal's data tpe (such as the URI for USD)[71].

wme nsl:creates Med

stlistimated "
nsl:fname P nsl.hlgh

Figure 4.13: An example graph pattern

An RDF graph can be created as an answer returned by an aggregate gqyeusing an ap-

propriate SELECTclaus€. For example, Q, can return a valid RDF statement:

the result as an RDF instance is that it allows us to further query the result usin g the existing RDF query languages.

However, | choose the tabular representation here for the sa ke of simplicity.
6] am expanding the syntax of RDQL so that it allows constants i n SELECT clauses which equivalently creates

new resources and properties using the constants.
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(< nsl:worksby_guyrose>, < nsl:maxprice>,\800000""" ns1:USD) if its SELECTclause iSSELECT

< nsl:works_by_guyrose>, <nsl:maxprice>, max(?highprice).

Example 4.3.7 Consider query Q. in Example 4.3.6. There are two subgraphs of thdRDF
instance in Figure 4.12 whose graph pattern uni es with thatof Q. via the following two sub-
stitutions: f?artist | &r1;?artifact | &r2;?price ! &r4;?highprice ! \800000""" ns1:USD;
?date! 200404-28g and f 7artist | &r1;?artifact ! &r3;?price! &r5;?highprice !
\500000"™" ns1:USD;?date! 200404-28g. The maximum value of ?highprice is 800,000 USD.

As a result, Q, returns f (\800000" ™" ns1:USD)g.

4.3.1 Algorithm to Compute Aggregates

Figure 4.14 presents an abstract algorithmCAA (short for Compute Aggregates Algorithm )
to compute the result for aggregate queries. This algorithmis applicable to all aggregate queries

including those with a GROUP BY clause.

algorithm CAA(1;Q)

/* Input: RDF graph |, query Q */

/* Output: table T(Q;l1) */

1) GP BuildGP(Q); X aggregate variables of Q;

2) Y GROUP BY variables of Q;

3) S [VRetrieve(;GP;X [ Y) j 2 MSearchAll(GP;Q;1)];

4) return T(Q;1) TCompute(S;Q);

Figure 4.14: Compute Aggregates AlgorithmCAA

The new subroutines introduced in CAA algorithm are as follows:

Given GP, Q and the RDF graph |, MSearchAll(GP, Q, 1) returns all most general substi-

tutions that match GP with some subgraph ofl .”

Given a bad® S of values for variablesX [ Y, TCompute(S, Q) computes the aggregates as

70Only one substitution is returned for each matching in order  to avoid double counting.
8please note that | adapt the bag semantics for aggregation, i .e., we allow duplicates. | use [] to denote a bag.
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speci ed by SELECT clause (and GROUP BY clause if any) specied in Q. As S can be
regarded as a relational table, we can use existing relatical DBMS algorithms to compute

the result T in TCompute(S, Q).

Although MSearchAll returns a set of substitutions (with no duplicate), VRetrieve may produce
duplicate tuples from the set of substitutions. Thus, S is de ned as a bag and assigned with a bag

of tuples which may contain duplicates.

Example 4.3.8 Consider the RDF graph | of Figure 4.12 and the queryQ in Example 4.3.2.
CAA rst builds the graph pattern shown in Figure 4.13. X is set to (?highprice). Y is set to;.
MSearchAll(GP, Q, 1) returns two substitutions as describel in Example 4.3.7. The bag S contains
two tuples f (\800000"™" ns1:USD), (\500000"™" ns1:USD)g returned by VRetrieve( , GP, X [

nAA

Y) for those two substitutions. Thus, T contains one tuplef (\800000"" ns1:USD)g returned by

TCompute(S, Q) which is the maximum of the two values.

4.4 Aggregation Maintenance Algorithms

Before presenting algorithms to maintain aggregate views| rst describe properties of distributive
and non-distributive aggregates, which a ects the design & my algorithms.

An aggregate functionf is distributive  w.r.t a source update operation if and only if after
such an operation, the updated value of the function can be acmputed based on its old value and
the value(s) of the source update without reference to the sarce. More formally, f is distributive
w.r.t. an update operation U if and only if there exists a function g such that f (19 = g(f (1);Vv)
wheref (1) is the aggregate value,l ° is the updated instance after the update operationU(l;v),
and v is the value(s) used in the update (e.g., the new value to addthe old value to remove, etc).

Examples of distributive aggregate functions includecount, sum, averagev.r.t. insertion,
deletion and update. For average | will need an additional attribute size which stores the size of
S (in line 4 of CAA) in order to compute the correct updated value (or, | can usesum, countto
calculate it). max and minare distributive wr.t. insertion, but not deletion and upda te (which

also involves deletion). Auxiliary data computed from the source (such asS) can help to maintain
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non-distributive aggregate functions to avoid the need to efer to the source. Note that | do
allow more than one aggregate function to be used in a query. df example, | allow \SELECT
max(?highprice), min(?lowprice)". However, by examining the view (query) speci cation, di erent

aggregate functions will be processed di erently and di erent auxiliary data may be required.

4.4.1 Insertion

algorithm  AMI (1;Q; A (Q;1);T(Q;1);t)

/* Input:RDF graph |, query Q, auxiliary data A(Q;!), query result T(Q;I), inserted triple t */
/* Output: table T(Q;I [ t), auxiliary data A(Q;1 [ t) */

1) GP BuildGP(Q);

2) X aggregate variables of Q;

3) Y GROUP BY variables of Q;

4) if TMatch( GP, t) == TRUE, then

5) S [VRetrieve(;GP;X [ Y) | 2 MSearchGP;Q;t;I [ t)];

6) return (T(Q;1 [ t);A(Q;1 [ 1))  TMaintain | (T(Q;1); S;A(Q:1);Q);

7) else, return (T(Q;1 [ t);A(Q;1 [ 1) (T(Q;1);A(Q;1));

Figure 4.15: Aggregate Maintenance Algorithm for Insertion AMI

Figure 4.15 presents theAMI algorithm (short for Aggregate Maintenance Algorithm
for Insertion ) to nd new objects to include in the answer when an insertion occurs. My AMI

algorithm uses the following new subroutine.

T(Q;1) is the original view storing the answer of Q on I. S contains the portion of S
caused byt. A is the auxiliary data that depends on the original view and the speci cation
of Q which will be covered by later sections.T Maintain | (T(Q;!1); S;A(Q;1); Q) takes the

above, computes the updated viewT (Q; | [ t) and updates the auxiliary data.

Handling GROUP BY: When a GROUP BY clause exists, we require one more step in adtion
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to the above procedure. By examining the GROUP BY clause and S, we know which group each
tuple in S belongs to. ThusTMaintain | should only maintain each a ected group by using the
a ecting tuples. It will delete any empty groups and create new groups if necessary. Each group
will also have its auxiliary data (if any). The cases for delgion, modi cation, etc, in later sections
are handled similarly.

TMaintain |: Below shows howT Maintain | works for some common aggregate functions in
this insertion case.

Handling sum, count, min, maxWe require no auxiliary data. Suppose we are considering an

aggregate functionf (x) on an attribute x and F is the original aggregate value. The updated

aggregate valueF ° can be computed as:

FO=F+ p ,( sVviff =sum
FO=F+j Sjiff = count
FO= min((F1[ «( S))if f = min

Fo= max(F][ «( S))if f = max

where «( S) projects a bag of values of attributex from S and[ above is a bag union operation.
If a GROUP BY clause exists, the projection should be done foeach group of values separately
instead of altogether.

Note that min, maxDO need auxiliary data for the deletion case. Thus, we must uplate the
auxiliary during insertion. We must store ,(S) in A(Q; 1) where (S) contains a bag of values
of attribute x used to produce aggregate value. When adding the values stad in x( S), we
should update x(S)to x(S+ S)= 4x(S)[ x( S)andstoreitin A(Q;I [ t).

Handling average

For averagethe additional information we need is the size of S in the original view, which
can be stored inA(Q;1). We can get the updated aggregate valug-° and new size® as follows:

size®= size+j §j
F size+ 2 ( )V
sized

Fo=
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Example 4.4.1 Suppose we want to know, for each artist, the smallest estineafor an artifact
(with the title), and the largest estimate for an artifact (with title). This can be answered by the

following query.

SELECT ?Iname, min(?lowprice), sum(?highprice)

WHERE (?artist, <nsl:lname>, ?lname),

(?artist, <nsl:creates>, ?artifact),

(?artifact, <nsi:title>, ?title),

(?artifact, <nsl:estimated>, ?price),

(?price, <nsl:low>, ?lowprice),

(?price, <nsl:high>, ?highprice),

USING nsl FOR <http://www.auctionschema.com/schemal#>

GROUP BY ?Iname

The result is [(\Rose", \600000""" ns1:USD, \800000""" ns1:USD); (\Tabacchi",

\10000"™ ns1:USD, \15000""" ns1:USD)]. Suppose we insert the following triple to the source:
t = (& r3;<nsl:title>, \In the High Canadian Rockies"). AMI will rst compute S =[(\Rose",
\300000"™" ns1:USD, \500000""" ns1:USD)]. TMaintain | nds that the only tuple in S is in
the group of \Rose", which is the only a ected group.

For min (?lowprice), we can update it by: min (60000Q 300000) = 300000 We also need to
update the auxiliary data for \Rose" group which is siewprice (S) = [\600000" ** ns1:USD) origi-
nally. Now it can be updated as: siowprice (S[ t) =[\600000" " ns1:USD, \300000"™"* ns1:USD].

For sum(?highprice), we can update it by: 800000 + 500000 = 1300000

The resulting updated answer is:[(\Rose", \300000"™" ns1:USD, \1300000"™" ns1:USD);

(\Tabacchi", \10000""" ns1:USD, \15000""" ns1:USD)].

Complexity Analysis of AMI.
For TMaintain |, the worst case time complexity isO(jSj) where|Sj is the number of records

in S (the worst case refers to the update of auxiliary data, e.g. &r min, max without indexing).
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Thus, MSearch dominates the time complexity of AMI algorithm. The worst case time
complexity of AMI is O(jGPjbP(GP)). The similar analysis can be applied to other maintenance

algorithms in later sections.

4.4.2 Deletion

Deletion is a harder problem for min, max because we cannot compute the new aggregate value

based on the old value and the update only. They are non-disibutive w.r.t. deletion.

algorithm  AMD (1;Q; A (Q;1); T(Q;1);t)

/* Input: RDF graph |, query Q, auxiliary data A(Q;1), query result T(Q; 1), deleted triple t */
/* Output: table T(Q;l t), auxiliary data A(Q;l t)*/

1) GP BuildGP(Q);

2) X aggregate variables of Q;

3) Y GROUP BY variables of Q;

4) if TMatch( GP, t) == TRUE, then

5) S [VRetrieve(;GP;X [ Y) ] 2 MSearch(GP;Q;t;1)];

6) return (T(Q;1 t);A(Q;I t)) TMaintain p(T(Q;1); S;A(Q;!);Q);

7) else, return (T(Q; 1 t);A(Q;1 1)) (T(Q;1);A(Q;1));

Figure 4.16: Aggregate Maintenance Algorithm for Deletion AMD

Figure 4.16 presents theAMD algorithm (short for Aggregate Maintenance Algorithm
for Deletion ) to maintain views when a deletion occurs.
The following shows howT Maintain p works for di erent aggregate functions.

Handling sum, countWe do not require any auxiliary data. Suppose we are consid@rg an aggre-

gate function f (x) on an attribute x and F is the original aggregate value. The updated aggregate

value F° can be computed as:
Fo=F v2 +( S)V if f = sum
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FO=F j Sjiff = count

where «( S) projects a bag of values of attribute x from S.

Handling averageFor averagethe additional information we need is the size of S in the original

view, which can be stored inA(Q; ). We can get the updated aggregated valud=° and new size®
by the following:

size®=size j §j
F size v2 4 ( S)V

Fo= .
sized

Note: if size?= 0, we should return F°as unde ned.

Handling min, max min, max are not distributive w.r.t. deletion. We need to store «(S) in

A(Q;1) where (S) contains a bag of values of attribute x used to produce aggregate value.
When removing the values stated in x( S), we should update (S) to become (S S) =
x(S) x( S)andstoreitin A(Q;l t). Notethat Sis a sub-bag ofS, sothe above expression
is always true.
The updated aggregate valueF ° will be computed as:

FO= min( «(S S)) if f = min

FO= max( (S S)) if f = max

Example 4.4.2 Consider the aggregate query in Example 4.4.1 and the sourdata that is updated
as described. Suppose we delete the tripte= (& r2;<nsl:iitle>, \The Model"). AMD will rst
compute S =[(\Rose", \600000"™" ns1:USD,\800000"™" ns1:USD)]. T Maintain ; nds that the
only tuple in S is in the group of \Rose", which is the only a ected group.

For min (?lowprice), we need to update and use the auxiliary data for \Rose" groupvhich
IS slowprice (S) = [\600000" ** ns1:USD, \300000""" ns1:USD| originally. Now it can be updated
as:  lowprice (S S) = [\300000" ™ ns1:USD]. Then, we can update the aggregate value as:
min (300000) = 300000

For sum(?highprice), we can update it by: 1300000 800000 = 500000

The resulting updated answer is:[(\Rose", \300000"™" ns1:USD, \500000""" ns1:USD);

(\Tabacchi", \10000""" ns1:USD, \15000""" ns1:USD)].
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4.4.3 Triple Modi cation

An atomic modi cation update to a set of RDF statements can be classi ed as the modi cation of
(1) a triple's resource (i.e., the starting point of an edge h the RDF graph changes); (2) a triple's
property (the edge label changes); (3) a triple's value whib is a resource (i.e., the ending point of
an edge changes); (4) a triple's value which is a literal (i.e the value stored at the ending point
of an edge changes); (5) a resource itself (the change of rdbout) from R to R° which will cause
all edges connectingo or from R to change to connectto or from RC.

| will consider cases (1) to (4) in this section and (5) in the rext section. For cases (1) to
(4), we can simply process the modi cation as a deletion of tle old triple ty and an insertion of
a new triple t; (with the updated subject, predicate or object). When we modfy a triple, some
new subgraphs ofl may be matched (producing S;, portion of new S to be inserted), but some
subgraphs that matched before the update may no longer matct{producing Sgq, portion of old
S to be removed). However, if there are any common tuples betwen S; and Sy, (portions of
S caused by insertion and deletion), we can simply ignore thenas the e ect of their insertion will
balance out the e ect of their deletion.

Figure 4.17 presents theAMT algorithm (short for Aggregate Maintenance Algorithm
for Triple Modi cation ) to maintain a materialized view when a modi cation occurs in a triple.
We now show howT Maintain t works for di erent aggregate functions.

Handling sum, countWe do not require any auxiliary data. Suppose we are consid@rg an aggre-

gate function f (x) on an attribute x and F is the original aggregate value. Forf 2 f sum count,

the updated aggregate valueF ° can be computed as:

FO=F+ o ,(s)V v2 ( syVif f = sum

FO=F+j Sjj Sqjiff = count

where «( S) projects a bag of values of attribute x from S.

Handling averageFor averagethe additional information we need to know is the size of S in the

original view, which can be stored inA(Q;l). We can get the updated aggregated valueF° and

new size® by the following:
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algorithm  AMT (1;Q; A (Q;1); T(Q;1);ti;tq)

/* Input: RDF graph |, query Q, auxiliary data A(Q;1),

query result T(Q; 1), inserted triple t;, deleted triple tgq */

[* Output: table T(Q;19, auxiliary data A(Q;19(1°=(1 tg)[ t;) */

1)
2)
3)
4)
5)
6)
7
8)
9)
10)
11)

12)

GP  BuildGP(Q);
X aggregate variables of Q;
Y GROUP BY variables of Q;
S [0 S« [
if TMatch( GP, ty) == TRUE, then
S¢ [VRetrieve( ;GP;X [ Y)j 2 MSearch@GP;Q;tg;1)];
if TMatch( GP, t;j) == TRUE, then
Si  [VRetrieve(;GP;X [ Y)j 2 MSearchGP;Q;t;;I1 [ ti)];
S\ Si\ Sy
Si S S Sq Sa S
ifj Sij+] Saj==0, thenreturn ( T(Q;19;A(Q:19)  (T(Q;1);AQ:1));

else, return (T(Q;19;A(Q;19)  TMaintain 1(T(Q;1); Si; Sa;iA(Q;1);Q);

Figure 4.17: Aggregate Maintenance Algorithm for Triple Modi cation AMT
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size®= size+j Sjjj Sy
F size+ o ( sHV  v2 ( sq)V

FO= .
sized

Note: if size®= 0, we should return F°as unde ned.

Handling min, max min, max are not distributive w.r.t. deletion. We need to store «(S) in

A(Q; 1) where ,(S) contains a bag of values of attribute x used to produce aggregate value. We
useS°to denote (S Sq)[ Si. We should update ,(S)to become (SO =( x(S) «x( Su)l
«(Si)) and store it in A(Q;19).

The updated aggregate valueF ° will be computed as:

FO= min( «(S9)if f = min

FO= max( x(S9) if f = max

Example 4.4.3 Consider the aggregate query in Example 4.4.1 and the sourckata that is up-
dated as described. Suppose we modify the following tripleofm the source: t = (& r5; <nsl:low>
:\300000"™" ns1:USD) to t = (& r5;<nsl:low>; \200000"™" ns1:USD)

AMT will rst compute Sq = [(\Rose", \300000"™" ns1:USD,\500000"™" ns1:USD)]. S

= [(\Rose", \200000"™" ns1:USD, \500000"™" ns1:USD)].

TMaintain 1 nds that the only tuple in  S; and S4 is in the group of \Rose", which is

the only a ected group.

For min (?lowprice), we need to update and use the auxiliary data for \Rose" groumvhich is
sowprice (S) = [\600000" ** ns1:USD, \300000""* ns1:USD] originally. It can now be updated as:
slowprice (S Sa)[ Si)=[\600000""" ns1:USD, \200000""" ns1:USD]. We may then update

the aggregate value tomin (60000Q 200000) = 200000
For sum(?highprice), we can update it by: 1300000 500000 + 500000 = 1300000
The resulting updated answer is:[(\Rose", \200000"™" ns1:USD, \1300000"™" ns1:USD);

(\Tabacchi", \10000""" ns1:USD, \15000""" ns1:USD)].
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4.4.4 Resource Modi cation

In case (5) where a resource is changed froly to R;, we need to consider the new values caused
by the insertion of a new resourceR; and the new edges connected to it AND we need to remove
old values caused by the deletion of resourcRy and the edges connected to it.

SupposeEy is the set of edges connected t&Ry. One approach is to callAMI and AMD
jEq4j times (for inserting and deleting the edges one by one). Altmatively we can instead consider
the deletion and insertion of all those edges together. In tis second approach, we consider the
substitutions of the deleted/inserted resource to the resarce/value of a triple in GP instead of
the substitutions of the deleted/inserted edges to a triplein GP.

Figure 4.18 presents theAMR algorithm (short for Aggregate Maintenance Algorithm
for Resource Modication ) to make necessary updates to a materialized view when a mod-
i cation occurs to a resource. We denotel © as the updated RDF graph after replacingRqy by
R;.

Our AMR algorithm uses the following new subroutines.

TMatchR(GP, R) returns \true" for a resource R and a graph pattern GP if R uni es with

a GP triple's subject or object.

Given GP, Q, resourceR and the updated RDF graph (I [ t), we de ne MSearchR(GP, Q,
R, I) to nd all substitutions ° that match GP with some subgraph ofl that contains R.

MSearchR is a variant of MSearch whereR rather than t gives a xed starting point.

AMR uses the same functionT Maintain 1 of AMT.

Example 4.4.4 We modify the aggregate query in Example 4.4.1 to the follong:

SELECT ~?artist, min(?lowprice), sum(?highprice)
WHERE (?artist, <nsl.creates>, ?artifact),
(?artifact, <nsl:title>, ?title),

(?artifact, <nsl:estimated>, ?price),

9Substitutions that are subsumed by another substitution ne  ed not be returned.
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algorithm  AMR (I;Q;A (Q;1); T(Q;1);Ri;Rq)
/* Input: RDF graph |, query Q, auxiliary data A(Q;1),
query result T(Q; 1), inserted resourceR;, deleted resourceRy */
[* Output: table T(Q;19, auxiliary data A(Q;19(1°=(1 Rq)[ Ri) *
1) GP BuildGP(Q);
2) X aggregate variables of Q;
3) Y GROUP BY variables of Q;
4) S 00 S [
5) if TMatchR( GP, Ry) == TRUE, then
6) S¢ [VRetrieve( ;GP;X [ Y) ] 2 MSearchRGP;Q;Rg;!1)];
7) if TMatchR( GP, R;) == TRUE, then
8) Si  [VRetrieve( ;GP;X [ Y)j 2 MSearchRGP;Q;R;;!19];
9) S, S\ Sq;
10) S S S Sd Sa S
11) ifj Sjj+]j Sgj==0, then
12)  return (T(Q; 1 A(Q;19)  (T(Q:1):A(Q:1)) ;

13) else, return (T(Q;19;A(Q;19)  TMaintain +(T(Q;1); Si; Sa;A(Q;1):Q);

Figure 4.18: Aggregate Maintenance Algorithm for ResourceModi cation AMR
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(?price, <nsl:low>, ?lowprice),
(?price, <nsl:high>, ?highprice),
USING nsl FOR <http://www.auctionschema.com/schemal#>

GROUP BY ~?artist

The result is [(&r1;\600000"™" ns1:USD, \800000"™" ns1:USD); (&r9;\10000"™" ns1:USD,
\15000"™" ns1:USD)].

Suppose we change the resouréer 1 to &r13 which refers tohttp:/mww.artist.net#g-rose . AMR
will rst compute  Sq = [(& r1;\600000""" ns1:USD, \800000""" ns1:USD)]. AMR then computes

Si = [(& r13;,\600000"™" ns1:USD, \800000"™" ns1:USD)].

TMaintain + nds that the &r1 group becomes empty after removing Sq, but it creates a
new &r13 group for S.

The resulting updated answer ig(&r13; \600000"™" ns1:USD, \800000""" ns1:USD); (&r9;

\10000""™" ns1:USD, \15000"™" ns1:USD)].

4.5 Relational Approach

Instead of using a graph structure, we can store and query aRDF graph using a standard relational
database system. Florescu and Kossmann[27] have suggestefew alternative approaches to store
XML data in a relational database. An RDFinstance | is a set of triples that can directly be
stored in a relational table having schema(Resource,Prop,Value) An insertion of an RDF triple
corresponds to an insertion of a tuple into this relational table. Any standard view maintenance
algorithm can be used[8, 13, 38, 39] { we uséMAr, DMAr, TMAr and RMAr to denote the use
of standard view maintenance algorithms DRed [39] in my implementation) to maintain non-
aggregate views when insertions, deletions, tuple modi ctons and resource modi cations are
made. Similarly, we useRAMI; RAMD; RAMT and RAMR to denote the use ofCounting algorithm

[39] for aggregate views.
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4.6 Implementation and Scalability Experiments

4.6.1 Maintaining Non-aggregate Views

| implemented a prototype system in Java which consists of 509 lines of code. The system consists
of three main components:XMA, XMAr and Recompwhere X is either I;D; T or R. XMA provides
functionalities of IMA, DMA, TMA and RMA. It constructs its own graph model from the data
stored in Hewlett Packard's Jena2.1 system. XMAr provides functionalities of IMAr, DMAr, TMAr
and RMAr. The Jena2.1 system uses a statement table to stor&DF statement just like what |
described the relational approach in the previous sectiorn81] Jenaalso uses various optimization
techniques including indexing to evaluateRDQL queries e ciently. Therefore | use Jenato evaluate
delta rules produced by XMAr speci ed by the well known view maintenance algorithm (DRed) in
[39]. RecompusesJenaAPIl to compute modi ed materialized views from scratch.

In all my scalability experiments, | used the data from Open Directory RDF Dump[21].

Each query we used has the following form (the graph pattern ontains at least 5 triples):

CREATE VIEW dmoz AS

SELECT ?topic,?atitle,?btitle

WHERE (?topic,<nsl:catid>,?id),
(?topic,<nsl:link>,?alink),
(?alink,<ns2:Title>,?atitle),
(?topic,<nsl:link>,?blink),
(?blink,<ns2:Title>,?btitle)

AND ?id < 472029, ?alink NE ?blink
USING nsl FOR <http://dmoz.org/rdf#>,

ns2 FOR <http://purl.org/dc/elements/1.0/>

| randomly inserted/deleted/modi ed some single triple/r esource. For each combination of
algorithm and database size, | repeated the experiment to hae at least 5 non-empty results ( M

in insertions and deletions) or intermediate results ( M;; My in modi cations). | then took the
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average running time and original view size. The experimerg were run on a PC with 1.4GHz
CPU, 524MB memory and Windows 2000 Professional platform.

The times taken in all experiments only includes the time to ( i) build graph
patterns (i) do updates to the database and (iii) compute M. However, it excludes
the time to load RDF data into the Jenamodel (for all algorithms) and construct my
graph model (for XMA) because this can be done once.

When comparing my algorithms with algorithms that operate o the relational version of the RDF

data, | compared my algorithms with the well known view mairgnance algorithms (DRed) of Gupta

et. al. [39].
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Figure 4.19: Running time of IMA, IMAr and Recompagainst (a) database size, (b) original view

size. Running time of DMA, DMAr and Recompagainst (c) database size, (d) original view size.

Figure 4.19 (a) and (b) show the running time of IMA, the relational approach IMAr, and
Recompagainst (a) the database size and (b) the original view sizelMA's running time is indepen-
dent of the database size and original view size because it @s a local search for the substitutions

of graph pattern. In contrast, the relational approach IMAr's running time increases linearly with
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the database size and original view size.
It is important to note that IMA is highly scalable - it almost hugs thex-axis in the graph
shown and can process materialized views containing over @®0 tuples in under 0.4 second, at

least 12 times faster than the relational approach.

Deletion

Figure 4.19 (c) and (d) show the running time of DMA, the relational approach DMAr and Recomp
against (c) the database size and (d) the original view sizeDMA's running time is again indepen-
dent of the database size and original view size with the sameeason inIMA. In contrast, DMAr's
running time is much longer than DMA's and even exceeds that oRecomp It may be because of
the overheads of sending a lot of delta rules. Compared witiRecomp the large number of queries
outweighs the shorter processing time of each query.

As in the case ofIMA, the reader will note that DMA also performs very well, handling views

of over 65K tuples in well under 0.6 seconds, 49 times fastehan the relational approach.

Modi cation

Figure 4.20 shows the running time ofTMA, the relational approach TMAr and Recompas we vary
(a) the database size and (b) the original view size. Figure 20 (c) and (d) shows the counterparts
for RMA. TMA and RMA both compute triples to be inserted (Ins) and triples to be potentially
deleted (Pdel). In my experiments | tested two extreme cases - (i) those whe Pdel Ins and
those where (i) Pdel \ Ins = ;. Of course, most view maintenance operations fall somewher
between these two extremes. | us& MA-A and TMA-B to denote the application of TMA in cases (i)
and (ii) above, respectively. | use the notationTMAr-A, TMAr-B, RMA-A,RMA-B, RMAr-A RMAr-
B in a similar way. The running time of TMA-A, TMA-B, RMA-A and RMA-B are again under 0.92
seconds and independent of the database size (and originalew size, whose gures are not shown
due to the limitation of space) for the same reason as fotMA. Both running times are very close.
In contrast, we can see a big di erence betweeTMAr-A and TMAr-B. Without the need to submit

a large number of delta rules, TMAr-A runs much faster than TMAr-B. TMAr-B's running time in
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Figure 4.20: Running time of TMA, TMAr and Recompagainst (a) database size, (b) original view
size. Running time of RMA, RMAr and Recompagainst (c) database size, (d) original view size.
Curves of TMA-A/B and RMA-A/B are hard to distinguish among each other because their valie

are very close to zero.

some cases can even exceed that Becompbecause of this. The above also applies tRMAr. As
in the case ofIMA and DMA, TMA and RMA also perform very well, handling views of over 65K

tuples under 0.92 second, 19 to 177 times faster than the ralanal approach.

4.6.2 Maintaining Aggregate Views

| have implemented a prototype system in Java (5701 lines ofade) that contains AMI, AMD, AMT
and AMR algorithms (collectively called AMX algorithms) as well as standard view maintenance
algorithm (the counting algorithm in [39]) applied to the relational version of an RDF instance -
these are calledRAMI, RAMD, RAMT and RAMR (collectively called RAMX algorithms) respec-
tively. AMX algorithms construct their own graph model from the data stored in Hewlett Packard's
Jena2.1 system so that | can navigate through the graph directly and reduce the overhead oflena
API calls. Jena2.1 uses a statement table to storeRDF statement as described the relational

approach in earlier sections[81]. In addition,Jenauses various optimization techniques including
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Figure 4.21: Running time of AMI, AMD, AMT and AMR, and their counterparts in the rela-
tional apporach (RAMI, RAMD, RAMT and RAMR) for queries with aggregate functions (a,brount,
(c,d)sum, (e,flavg (g,h)max, (i,j) min. GROUP BY clauses are used in the experiments in the left
column but not in the right column. Curves of AMI, AMD, AMT and AMR are hard to distinguish

among each other because their values are very close to zero.
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indexing to evaluate RDQL queries e ciently. Therefore | use Jenato evaluate delta rules produced
by RAMX.

In all my scalability experiments, | used the restaurant data from Chef Moz dining guide
(accessible at Chef Moz Project RDF Dump, http://chefmoz.org). Each query has the following

form with its graph pattern containing at least 7 triples:

SELECT ?cu,agg(?x) WHERE (?r,<nsl:AmbianceRating>,?a),
(?r,<nsl:FoodRating>,?b),(?r,<nsl:ServiceRating>,?c ),
(?r,<nsl:OverallRating>,?d),(?r,<ns1:Cuisine>, ?cu),
(?r,<nsl:Review>,?rev),(?rev, <nsl:FoodRating>, ?e)

USING nsl1 For <http://chefmoz.org/rdf/elements/1.0/#>

GROUP BY ?cu

where aggis one of the following ve aggregate functions: count, sum, avg, max, min ?x is one
of the following ve variables: ?a;?b;?c;2d; ?e. Although my system can handle multiple di erent
aggregates at the same time, | use the above query in order toxamine the performance of my
algorithms on each aggregates.

| randomly inserted/deleted/modi ed some single triple/r esource. For each combination of
algorithm, aggregates, database size, with or withoutGROUP BY/, | repeated the experiment 15
times with di erent aggregated variables and di erent updates. | then took the average running
time. The experiments were run on a PC with 1.4GHz CPU, 524MB nemory and Windows 2000
Professional platform.

Each row of graphs in Figure 4.21 shows the results of each agggate function. GROUP BY
clauses are used in the experiments in the left column but nothe right column. In all experiments,
my algorithms run much faster than their counterparts in the relational approach in three to seven
times. The curves of AMI, AMD, AMT and AMR almost hug the x-axis in the graphs shown and
can process 18 MB of source data in well under a second (in factinder 0.22 second). They are
in general at least three times to 100 times faster then the riational counterparts because they

use a local search strategy for the substitutions of the grap pattern starting from the data to be
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updated in order to nd what the new view should add into or remove from the original view.

4.7 RDF Containers, Collections and Rei cation

RDF provides basic vocabulary to describe three kinds of contaiers: bag, seq (sequence) and alt
(alternative) .

In the formal RDF semantics[71], there are no special semantic conditions oerning a
container other than its general structure and generalRDF semantic conditions like other RDF
statements. For example, it is only an intended meaning thata bag has a set of unordered and
perhaps duplicate members. Such intended meanings have naiitt-in understanding in RDF and
only depend on the implementation of applications.

There are two approaches to de ne queries inRDF databases that have containers. One
is to explicitly handle the intended meaning of containers. Queries should be written to check
explicitly, using WHERE and AND clauses, whether a resourceis a container and, if yes, to
access its members. For exampleRDQL syntax can be extended easily to handle containers by
(1) using (?a, <rdf:type>, "rdf:bag"), (?a, <rdfili>, ?b) in the WHERE clause or (2) using both
(?a, <rdf:type>, "rdf:bag"), (?a, ?p, ?b) in the WHERE clause and ?p="<rdf: *>" in the AND
clause. Here | use the abbreviations rdf:type >, rdf:bag and < rdf:li > rather than their full names.
<rdf:li> should be recognized byRDQL evaluation engine as a way to represent ?b as a member of
?a rather than a real property name directly because<rdf:li> is only provided by RDFXML as a
convenience element to aviod having to explicitly number eah membership property as<rdf;_1>,
<rdf:_2>, etc. The *in <rdf:_*> is treated as a wild card. The other approach is, with queries
written as usual, to handle containers implicitly by some mechanisms. For example, when the
engine reaches a resource which is a container, it can autorieally substitute it by each of its
members. The advantage of this method is the higtportability of queries { containers are handled
automatically without the need of checking expressed in thequeries as above. The disadvantage
is the possible ambiguity when we want to access the propemis of an object which may be a

container { should we return the properties of the containeror those of its members? Due to this
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semantic problem, | choose the rst approach in this paper, which means that my algorithms in
previous sections can also be applied to containers.

RDF collections[71] are more complicated tharRDF containers because arkRDF collection
uses a list structure, which means that every element in a cééction has a di erent path length
(number of edges to reach) from the collection resource noddn order to simplify a query, a possible
extension of RDQL can use a special property<rdf:li> to access the elements of a collection,
similar to a container as described above. With this united brm, users can write queries to access
elements of a container or a collection without worrying abait whether it is actually a container
or a collection. If RDQL is extended in this way, the methods described in this paper andle
containers and collections directly.

RDF rei cation[71] allows the use of RDF to describe properties of anRDF triple, such as its
date of composition. We can handle a rei cation triple just like other ordinary triples. The only

di erence is that the type of its resource is rdf:Statement, but it does not a ect our algorithms.

4.8 Summary

In this chapter, | proposed algorithms to maintain RDF views for various updates toRDF databases
such as insertion, deletion and modi cation. | then extended RDQL (RDF query language) to

support aggregations and proposed another set of algorithsto maintain such aggregate views.
Experimental results show that my algorithms which are base& on local search in graphs are more

e cient than by simply adapting general relational view mai ntenance algorithms.
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Chapter 5
Related Work

5.1 Probabilistic Semistructured Databases

There has been considerable work done on storing probabitis information in relational databases
[50, 19, 20, 24, 32, 33], object databases[23] and temporahtbases[17], to date, there has been
little work on supporting uncertainty in semistructured mo dels.

More recently, Nierman and Jagadish developed a frameworkatled ProTDB to extend the
XML data model to include probabilities[61]. XML DTD's are e xtended to use aProb attribute for
each element. As a query language, they use a variation of tlireearlier work on the TAX algebra
for XML[42] and use pattern trees. ProTDB proposed by Nierman and Jagadish[61] is similar
in spirit to my model { however there are a few important di er ences. In ProTDB, independent
conditional probabilities are assigned to each individualchild of an object (i.e., independent of the
other children of a node); PXML supports arbitrary distributions over sets of children. Further-
more, dependencies are required to be tree-structured in RTDB, whereas PXML allows arbitrary
acyclic dependency models. In the other words, their answerare correct under the assumption
of conditional independence and under the condition that tre underlying graph is tree-structured.
Thus the PXML data model subsumes the ProTDB data model. In addition, | prove here that the
semantics of PXML is probabilistically coherent. Another important dieren ce is in the queries
supported. There is no direct mapping among my algebra and tkir query language. For exam-
ple, in their conjunctive query, given a query pattern tree, they return a set of subtrees (with
some modi ed node probabilities) from the given instance, ach with a global probability. There
is no direct mapping between their conjunctive query and my ancestor projection because they
nd subtrees matching the pattern tree, while | use a path expression. Each of their subtrees is

restricted to match the query pattern tree and has a xed structure while my output is a proba-
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bilistic instance which implicitly includes many possible structures. In my PIXML model, | use an
interval probability model rather than a point probability model. This is useful because almost all
statistical evidence involves margins of error. So when a stistical estimate says that something is
true with 95% probability with a 2% margin of error, then this really corresponds to saying tte
event's probability lies in the interval [0:93;0:97]. Likewise, using intervals is valuable when one
does not know the relationship between di erent events. Forexample, if we know the probabilities
of eventse;; e; and we want to know the probability of both of them holding, th en we can, in gen-
eral, only infer an interval for the conjunction of e;; e, (cf.[9, 26]) unlesswe know something more
about the dependencies or lack thereof between the events.hlrd, | provide two formal declarative
semantics for probabilistic semistructured databases - neuch model theory is proposed by [61]. |
additionally prove that these model theories have a varietyof interesting relationships. Finally, |
prove that my PIXML query language is sound and complete w.r.t. the above modehtory.

The work of Dekhtyar et al.[16] was the rst to deal with proba bilities and semistructured
data. They pioneered the integration of probabilities and $mistructured data by introducing
a semistructured model to support storage and querying of pobabilistic information in exible
forms such as a simple interval probability distribution, a joint interval probability distribution,
or a simple or joint conditional interval probability distr ibution. Their model allows us to use an
object (semistructured probabilistic object or SPO) to represent the probability table of one or more
random variables, the extended context and the extended catlitionals. Intuitively, contexts provide
information about when a probability distribution is appli cable. They then go ahead and developed
an elegant algebra to query databases of such SPOs and a prégpe implementation. Their work
appears to be similar to PXML but in fact it is quite di erent. An SPO itself can be represented
in a semistructured way, but its main body is just a at table. It cannot show the semistructured
relationship among variables. Only contexts (but not random variables) are represented in a
semistructured form. Contexts are "regular relational attributes”, i.e., the context provides already
known information when the probability distribution is giv en on real "random variables". In

contrast, my model is based on the widely used model OEM[64}yvhich allows data to be represented

143



in a truly semistructured manner. | modify the syntax and semantics of the model by introducing
cardinality and object probability functions to demonstra te the uncertainty of the number and the
identity of objects existing in possible worlds. Every postble world is a semistructured instance
compatible with the probabilistic instance. The representation of a possible world (semistructured
instance) is the same as the one widely accepted nowadays. Wever, the model of Dekhtyar et
al. cannot do this. Their model also requires random variabés to have distinct variable names
(or edge labels) (in my model, they are the children connectg to their parents with the same
edge label). Consequently, their model cannot allow two or rore variables with the same variable
names (no matter their values are the same or di erent) in a shgle possible world. Their model
also cannot capture the uncertainty of cardinality. On the other hand, my model can represent
their table. For each random variable, de ne a set of children (with the possible variable values)
connected to their parent with the same edge label (set as theiariable name). The cardinality
associates with the parent object with each label is set to [11] so that each random variable can
have exactly one value in each possible world. The extendedoatext and extended conditionals
in SPO can be represented by two subtrees with correspondingdge labels and values connected
to the parent object. In [35, 85, 86], they extended their wok to handle interval probabilities.
My query language described in Chapter 3 (myPIXML model) is a very simple logical one. | also
provide a model theory (two in fact) and an operational sematics and show that my operational
semantics is correct.

The above two pieces of work are closest to mine. In additionthere has been extensive
work on probabilistic databases in general. Kiessling et als DUCK system[36, 48] provides a
logical, axiomatic theory for rule based uncertainty. Lakshmanan and Sadri[51] show how selected
probabilistic strategies can be used to extend the previougprobabilistic models. Lakshmanan
and Shiri[52] have shown how deductive databases may be pareeterized through the use of con-
junction and disjunction strategies. Barbara et al.[5] dewlop a point probabilistic data model
and propose probabilistic operators. Cavallo and Pittareli[12]'s important probabilistic relational

database model uses probabilistic projection and join opeations, but the other relational algebra
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operations are not speci ed. Also, a relation in their modelis analogous to a single tuple in the
framework of Barbara et al.[5] Dey and Sarkar[19] propose amlegant INFapproach to handling
probabilistic databases. They support(i) having uncertainty about some objects but certain infor-
mation about others, (ii) rst normal form which is easy to understand and use, (iii) hew operations
like conditionalization. The ProbView system by Lakshmanan et al.[50] extends the classical rela-
tional algebra by allowing users to specify in their query wtat probabilistic strategy (or strategies)
should be used to parameterize the query. ProbView removeshe independence assumption of
previous works. More recently, Dyreson and Snodgrass pioeeed the use of probabilities over time
in databases[22].

XPath[82] and XQuery[83] are languages that use path expresons (de ned in XPath) to
extract objects. SAL[6] and TAX[42] are two algebras for senstructured data. SAL binds objects
to variables, manipulates the bindings and then removes bidings constructing a result. The
reason that | cannot use XPath, Xquery and SAL directly is that the original parent-children
relationships and probabilities associated with objects annot be kept directly in the results since
individual objects are selected during the process. Howevemy algebra uses the well-de ned path
expressions as a tool to locate the objects we are interesteehd manipulates the graph structure
of semistructured data directly. On the other hand, TAX uses a pattern tree to extract subsets of
nodes (called witness trees), one for each embedding of thafpern tree in an input tree (instance).
Its algebraic operations are similar to mine in some aspectsThe reason that | cannot use theirs
directly is the xed structure of the result, e.g., xed numb er of children, which restricts the
representation of the uncertainty in cardinality.

Though there has been a substantial amount of work on probabistic databases, there has
been almost no work on probabilistic aggregates in even praibilistic relational databases. Below
are related work on probabilistic aggregates and on aggredes on semistructured databases.

Ross et al.[73, 74] extend probabilistic relational databaes to handle aggregate queries.
They de ne a semantics for such queries using linear programing and then develop an algorithm

to compute aggregate queries. The key di erences between th work and theirs is that | am
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building on top of XML rather than relational data sources. T he structure of XML documents
are far more complex to deal with than relational sources esgcially as the values to be aggregated
are stored in a semistructured way and | require the output ofan aggregate operator to also be an
XML instance.

Aggregate operations de ned in XQuery proposed by W3C can befound in the working
draft[83]. Besides textual languages, a graphical languaggXML-GL[14] was also proposed to handle
aggregates. A compact representation for exponentially lege number of answers to a query on XML
documents and the algorithm to compute that can be found in the work of Meuss and Schulz[60].
Some methods to collect summary statistics for selectivityestimation were introduced[29, 67, 68].
Related work on aggregates for information retrieval is desribed in XIRQL, a query language

proposed by Fuhr and GroBjohann[31].

5.2 View Maintenance of Ontology Databases

There is very little related work on RDF views. Volz et al.[79] were the rst to introduce a view
mechanism for RDF data. Their views require that (i) the results contain class instances (i.e., a
subject or object variable), or (ii) the result itself has the pattern of RDF statement (i.e., a triple
containing subject, predicate and object). My algorithms gpply to all possible RDQL queries.
Magkanaraki et al.[55] proposed RVL, a view de nition language that can also create virtual RDF
schemas and restructure class and property hierarchies shidhat new resources, property values,
classes and property types can be created. Wilkinson et aB[L] proposed a methodology to store
and query persistent RDF graphs inJena They also introduced two tools to assist in designing
application-speci ¢ RDF storage schema. None of these works addressBR®F aggregates or the
problem of maintaining aggregateRDF views.

To my best knowledge, there is no work onRDF view maintenance to date. However, there
has been a huge amount of work on maintaining views [37]. Relimnal DB view maintenance
works include [8, 13, 38, 39]. Zhuge and Garcia-Molina[87] a@elop methods to maintain graph

structured views. There are substantial variations betwea the RDF RDQL and their notion of a
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graph structured database (GSDB). In a GSDB (which must be rooted), views are de ned using a
simple language that (i) uses one path expression to locate aode n to be returned, and (ii) using
some other path expressions to identify paths starting fromnoden that satisfy various conditions.
Thus, a view is de ned to contain a set of nodes, each of whichatis es some path expression and
condition(s). In contrast, in my RDF framework, materialized views are not just sets of nodes {
they can contain edge labels as well as nodes in any form. In ddion, path expressions in GSDBs
[87] starts from a given set of nodes (e.g. the root). In contast, in an RDF database system
and in RDQL, there is no root. RDQL allows variables in subjects (i.e., a path expression can
start from arbitrary nodes in the graph). The incremental maintenance algorithm proposed in[87]
assumes that the database is tree-structured - | do not make @y such assumption. They also
proposed a self-maintainability test[88] to determine wheher access to the base data is required
to incrementally maintain a view after a database update { | do not do this.

Abiteboul et al.[4] discuss techniques to incrementally matain views for arbitrary graph-
structured databases. They used the view speci cation langage of [2]. Their views include not
only objects but edges between objects. They de ned a cost nael and provided a detailed cost
analysis with experimental results. However, they have twdkey assumptions which are inapplicable
to my setting. First, their path expression still has an entry node identi ed by a special name
label (may not be the root though). Second, in their view de nition, only objects are variables
while edges are not. However, inRDQL, even the start node of a path expression could be a
variable. Furthermore, RDQL allows variables on properties (edge labels). They do not dicuss
either aggregate computation or aggregate view maintenare

Volz et al.[78] described how to incrementally maintain matrialized views of queries on
a semantic web when changes occur. They represented a semianmtveb using Datalog rules and
proposed how to solve the maintenance problem when the ruleshange, which is new to deductive
databases.

Kang and Lim[45] described a framework for XML materialized view refreshing and ad-

dressed issues in its deferred incremental refresh using avbject-relational DBMS storing the
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XML documents and views. Kang et al.[46] then proposed algathms which outperform recom-
putation shown by experimental results. EL-Sayed et al.[2% proposed an algebraic approach for
incremental materialized XQuery view maintenance. A soure update is transformed into a set of
update primitives propagated through the XAT (their XML alg ebra) tree in a bottom-up approach.
Yi et al.[84] worked on incremental maintenance of XML strudural indexes.

In [75], Rundensteiner proposed a methodology calledAultiView for supporting multiple
view schemata in object-oriented databases by breaking vie speci cation into independent tasks:
class derivation, global schema integration, view class $ction, and view schema generation. Kuno
and Rundensteiner proposed a number of techniques in [49] fancremental maintenance of mate-
rialized views in MultiView, e.g., pruning unnecessary updte propagations, providing registration
services, and introducing notion of hierarchical registrdions. They also present a cost model and
report experimental results.

Quass [69] proposed a framework to maintain aggregate viewscluding group by attributes
and multiple aggregates. Gupta et al. [40] propose a framew& of change-tables and a refresh
operator to incrementally maintain views involving relati onal and aggregate operators. Palpanas
et al. [63] present a general and e cient solution for both the distributive and the non-distributive
aggregate functions. An important step in their work is selective recomputation. They also discuss
a series of optimizations on the query plans for the maintenace. However, all of these works are
based on relational data model. My work is based on theRDF graph model although | choose
tabular representation for the query results. Furthermore, my approach works independently of
the view de nition languages, i.e., not limited to tabular r epresentation. My experiments show a
better performance for my algorithms compared with the relaional counterparts.

Paparizos et al. [65] discussed how to specify grouping camscts in their tree algebra for
XML (TAX) and how to rewrite nested queries in XQuery to queri es with grouping in TAX.
In addition, they described the implementation and performance bene ts of grouping over the
equivalent nested join queries. They brie y mention aggregtion but do not address it in depth.

Tufte et al. [77] proposed a Merge operation and a exible melsanism, called Merge Tem-
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plate, to create aggregates over XML stream data. This opertion is designed to combine tree-based
structures and compute aggregation over values. Their workhandles value replacement (to result
documents) and insertion, but cannot handle deletion and uplate. Furthermore, they do not

consider incremental maintenance of aggregates.
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Chapter 6

Conclusion

As XML is used more widely to represent textual sources, mulimedia sources, biological and
chemical applications, Nierman and Jagadish[61] have argd eloquently for the need to represent
uncertainty and handle probabilistic reasoning in semistuuctured data of applications like informa-
tion retrieval and protein chemistry applications. There are many other applications ranging from
image surveillance applications to the management of predtive information.

In the rst part of this dissertation, | have presented two new probabilistic semistructured
data models, PXML and PIXML models and developed a formal theory for probabilistic semi
structured data. Specically, | have shown how graph modelsof semistructured data may be
augmented to include probabilistic information, where point probabilities are used in PXML while
interval probabilities in PIXML . In addition, | have provided two formal declarative semantics for
such databases. The rst is a global semantics that draws ingiration from classical probabilistic
model theory as exempli ed in the work of Fagin et al.[26] andapplies it to the probabilistic XML
model proposed here. | also propose a local semantics that kdbe manipulated much more e -
ciently to avoid the exponential blowup in handling the global semantics. | have proven that the
two semantics are probabilistically coherent. | have preseted an algebra for thePXML model. The
algebra has some interesting di erences from existing XML #gebras. | have shown how queries
can be answered e ciently in my PXML system. In the PIXML model, | have proposed a query
language to query such sources and provided an operationaémantics that is proven to be sound
and complete. To my knowledge, the declarative semantics ahthe soundness and completeness
results are the rst of their kind.

To date, there has been no work | am aware of in the area of agggate computations for
probabilistic XML sources. | have introduced two formal models for probabilistic aggregates|the

possible-worldssemantics and theexpectation semantics. Though these semantics are declaratively
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de ned over a large space of \compatible" semistructured irstances, | am able to nd a succinct
way of representing them and manipulating them. | have presated algorithms to compute these
aggregates and report on experiments | conducted showing thfeasibility of my approach.

The marriage of semistructured model with probabilistic models is a natural pairing. It
supports uncertainty not only over the schema but also over he instance. This is particularly
useful in the processing of complex, noisy data that abound# real world domains. In addition
to uncertainty information, ontology provides another kin d of information that are usually absent
in traditional database systems.

With RDFs recent approval as a web recommendation by the W3C, theresi growing indus-
trial interest in RDF databases and more and more companies endor®bDF as a web standard for
describing ontology. As a result, RDF databases are expected to grow in size and number. The
ability to search the web using more sophisticated methodshan keyword search is appealing, and
RDF provides a simple paradigm to accomplish this. Thus, it is citical to be able to build and
guery RDF databases.

Views are key to many issues in databases - relating both to performance ahsecurity. In
the second part of this dissertation, | have studied the prollem of maintaining materialized views
over an RDF databaseand | have proposed algorithms that can update materializedviews when
the base RDF instance changes in any one of the following ways: (i) triple are added to it, (ii)
triples are deleted from it, (iii) triples are modi ed, and ( iv) resources are modi ed. None of these
scenarios is theoretical - rather they occur all the time as ew resources are deployed on the web,
old resources disappear, and new relationships (e.g. linkgonnect existing resources. For each of
these problems, | have provided an algorithm which developa local search strategy starting from
the data to be updated in order to nd what the new view should add into or remove from the
original view.

Furthermore, | have extended the problem to aggregate viewsvhere aggregateoperations
such asCOUNT,SUM,AVG,MIN,MAXand so on as well asGROUPBY operations can be handled.

| have then provided algorithms to maintain such views. In adlition, | have also described how
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this problem can be transformed into a relational view maintenance problem which can use any
standard view maintenance algorithms.

I have implemented a prototype system and conducted extense scalability experiments.
The results show that my approach works well for all kinds of ditabase updates with very short
running time. Most importantly, the naive idea of just dumpi ng all the RDF data into a relational
database and using standard relational view maintenance glorithms leads to signi cantly slower
performance than if my algorithms were used directly on theRDFgraph data. Depending upon
the precise update operation being considered, my algoritms are 3 to 177 times faster than the

corresponding relational operations.
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