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Stochastic approximation is one of the oldest approaches for solving stochastic

optimization problems. In the first part of the dissertation, we study the conver-

gence and asymptotic normality of a generalized form of stochastic approximation

algorithm with deterministic perturbation sequences. Both one-simulation and two-

simulation methods are considered. Assuming a special structure on the deter-

ministic sequence, we establish sufficient conditions on the noise sequence for a.s.

convergence of the algorithm and asymptotic normality. Finally we propose ideas for

further research in analysis and design of the deterministic perturbation sequences.

In the second part of the dissertation, we consider the application of stochastic

optimization problems to American option pricing, a challenging task particularly

for high-dimensional underlying securities. For options where there are a finite

number of exercise dates, we present a weighted stochastic mesh method that only



requires some easy-to-verify assumptions and a method to simulate the behavior

of underlying securities. The algorithm provides point estimates and confidence

intervals for both price and value-at-risk. The estimators converge to the true values

as the computational effort increases.

In the third part, we deal with an optimization problem in the field of ranking

and selection. We generalize the discussion in the literature to a non-Gaussian

correlated distribution setting. We propose a procedure to locate an approximate

solution, which can be shown to converge to the true solution asymptotically. The

convergence rate is also provided for the Gaussian setting.
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Chapter 1

Introduction

Many realistic problems can be formulated as a stochastic optimization problem or

be solved via algorithms involving stochastic optimization techniques. In this disser-

tation, we consider stochastic optimization in three different contexts: convergence

analysis for a class of existing stochastic approximation algorithms; application to

the pricing of American-style options; and application to the optimal allocation of

a simulation computing budget. In the latter two cases, new provably convergent

algorithms are proposed.

Stochastic approximation can be dated back to Robbins and Monro (1951).

The authors put forward a new zero-location problem where a real-valued function

defined on a continuous domain M(x) is monotone and can only be estimated via

noisy observations of some random variable ξ(x). A new algorithm (RM) is pro-

posed, which starts from an arbitrary constant x1 and changes value recursively via

xn+1 = xn − anξn, where ξn has the distribution of ξ(x) given x = xn, and {an} is
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a fixed sequence of positive constants such that 0 <
∞∑
1

a2
n < ∞. With appropri-

ate assumptions on function M and sequence {an}, xn is shown to converge to the

true zero in L2 sense. This work spawned hundreds of papers in the following fifty

years. Roughly speaking, almost all the work that has been done since then follows

one of two main directions. One direction is to adapt the algorithm to solve more

general problems or to solve problems more efficiently. The other involves theoretic

analysis of the algorithms. Following these two directions, we will briefly review the

development of stochastic approximation (SA) algorithms.

A natural extension of the original zero-location problem is to consider con-

tinuous stochastic optimization problems. Obviously a zero-location problem turns

into a optimization problem if M(x) can be expressed as derivative of a convex

function L(x). However, a pure RM algorithm is not applicable if we assume only

L(x), instead of M(x), can be estimated via noisy observations given x. To solve

this stochastic optimization problem, a new algorithm (KW) is proposed in Kiefer

and Wolfowitz (1952). KW replaces ξn in RM’s recursive formula with a finite-

difference estimator y+
n−y−n

cn
, where y+

n and y−n are noisy observations of L(xn + cn)

and L(xn − cn), respectively. Another step size {cn} is introduced because of finite

difference approximation. To guarantee L2 convergence of the algorithm, the two

positive step sizes are assumed to satisfy an, cn → 0,
∑

an = ∞,
∑

ancn < ∞ and

∑
a2

nc−2
n < ∞.

Both algorithms are extended to the multidimensional case in Blum (1954).

Extension of the RM algorithm is relatively straightforward, whereas that of KW
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needs more work. The KW finite-difference y+
n − y−n is replaced by a vector Yn ≡

[(y1
n−yn), · · · , (yp

n−yn)], where yn, y
1
n, · · · , yp

n, are p+1 independent observations of

L(xn), ÃL(xn + cnu1), · · · , L(xn + cnup), respectively, and {u1, · · · , up} represents the

orthonormal set spanning Rp. However, since Blum’s extension of KW requires p+1

independent observations for each iteration, the computational burden could become

prohibitive when the dimension of the problem is high, so various approaches have

been proposed to circumvent the problem. One algorithm (random directions KW)

estimates the directional derivatives along a sequence of randomized directions; see,

for example, [23], [44] and [55]. Spall (1992) presents a simultaneous perturbation

stochastic approximation (SPSA) algorithm using a simultaneous perturbation for

gradient estimation. Both RDKW and SPSA require only two observations at each

iteration. According to comparisons in Chen (1997), RDKW and SPSA give satis-

factory approaches, both theoretically and practically, to the problem of searching

optimizer via stochastic approximation.

Efforts to justify the algorithms are taken to establish two types of results:

theoretical convergence of the algorithm, and asymptotic normality or convergence

rate. In terms of theoretical convergence, much work has been done since the original

papers on RM and KW algorithms; see, for example, Benveniste (1990), Kushner

and Clark (1978), Ljung et al. (1992), and further references contained therein.

Worth special mention is work in Wang et al. (1996, 1997) and Kulkarni (1996).

They for the first time propose equivalent necessary and sufficient conditions on

noise sequences for SA algorithms. Work on asymptotic normality begins with

Chung (1954), who first gives results on the asymptotic distribution of RM and KW
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algorithms. Further work can be found in Burkholder (1956), Derman (1956) and

Sacks (1958). Fabian (1968) gives a simple proof of asymptotic normality, and most

of the current discussion is based on that result.

Both RDKW and SPSA algorithms randomly perturb all parameter compo-

nents in two parallel simulations at each iteration for any p− dimensional problem.

An SPSA requiring only one simulation at each iteration has also been proposed

in Spall (1997). These algorithms all rely on proper randomization to avoid the

large number simulations required at each iteration, and at the same time move

along the gradient descent direction on average. Similar in spirit to the use of

low-discrepancy sequences in quasi-Monte Carlo integration (Niederreiter 1992),

applications of deterministic sequences in randomized direction SA have been in-

vestigated recently with some success, including Sandilya and Kulkarni (1997) for

a two-simulation RDKW algorithms and Bhatnagar et al. (2002) for two-timescale

SPSA algorithms. The numerical simulations results reported in Bhatnagar et al.

(2002) are particularly encouraging in that significant performance advantages over

the random Bernoulli perturbation sequences were consistently observed. In Chap-

ter 2, we present a generalized form of the stochastic approximation algorithm, of

which SPSA and RDKW are just special cases. We then provide an asymptotic

analysis, almost sure convergence and convergence rate of the generalized form with

deterministic sequences, assuming a specified structure. Finally we discuss how to

construct such a specified deterministic perturbation sequence.

The second field where we apply the stochastic optimization techniques is

American options pricing. An option is a contract, or a provision of a contract, that
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Payoff of Put Option
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S

Figure 1.1: Payoff of Options with Strike K

gives one party (the option holder) the right, but not the obligation, to perform a

specified transaction with another party (the option issuer or option writer). Option

contracts take many forms. The two most common are call options, which provide

the holder the right to purchase an underlier at a specified price, and put options,

which provide the holder the right to sell an underlier at a specified price. The

specified prices for call (put) options here are strike prices. Let S and K represent

the underlier’s price and the strike price at exercise day, respectively. Obviously

the payoff on the exercise date will be max(S −K, 0) for the holder of a call option

and max(K − S, 0) for the holder of a put option. Figure 1.1 illustrates the payoff

functions. The last date on which an option can be exercised is called the expiration

date. Options may allow for one of two main forms of exercise: with American

exercise, the option can be exercised at any time up to the expiration date; with

European exercise, the option can be exercised only on the expiration date.
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Option pricing theory–also called Black-Scholes theory or derivatives pricing

theory–traces its roots to Bachelier (1900), where Brownian motion is used to model

options on French government bonds. Research picks up in the 1960s. Typical

of efforts during this period is Samuelson (1965), who considers long-term equity

options, and uses geometric Brownian motion to model the random behavior of

the underlying stock. Based upon this, he models the random value of the option

at exercise. Then Black and Scholes (1973) propose a completely new approach.

They derive a partial differential equation for valuing claims contingent on a traded

underlier. They obtain the famous option pricing formula by applying the boundary

conditions for a European call option on a non-dividend-paying stock. Then the

rigorous results for general options pricing theory are established in Harrison and

Kreps (1979) and Harrison and Pliska (1981).

Today, the Black-Scholes and risk-neutral approaches are both widely used

for pricing options and other derivative instruments. Although a closed-form pric-

ing formula can often be obtained for European options by using these approaches,

it is not the case for American options. Approximation methods are developed to

price options when closed-form formulas are not available for some European options

and all American options. Numerical methods have good computation performance

when the state variables involved are in low-dimensional space. However, in deriva-

tive pricing we are often confronted with problems involving several state variables,

such as an option written on several underlying assets or a pricing problem in which

we allow some of the model parameters to become stochastic. In this case, pric-

ing options with grid-based numerical methods becomes inefficient because of the
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curse of dimensionality– exponential growth in computation with the number of

dimensions.

An alternative to grid-based methods is Monte Carlo simulation of the corre-

sponding stochastic differential equation, first proposed for finance applications by

Boyle (1977). Other research on analyzing option market via Monte Carlo simula-

tion include Hull and White (1987), Johnson and Shanno (1987) and Scott (1987).

Boyle et al. (1997) gives an overview of pricing using Monte Carlo simulation. Even

if the European pricing problem can be solved in a high dimensional setting using

this technique, pricing American options via Monte Carlo simulation still remains a

very challenging problem, particularly in the high-dimensional case.

In general, most of the algorithms developed so far for American option pricing

can be divided into two classes. The first class explores the structure of the optimal

early exercise boundary by parameterizing the boundary and optimizing with respect

to the parameters (e.g., Fu and Hu 1995, Wu and Fu 2000, Fu et al. 2000, Fu et al.

2001) or defining an estimator under an approximation of the boundary (e.g., Grant

et al. 1996, 1997, Ben-Ameur et al. 2002). The other class estimates the price

directly by a backward induction algorithm without assuming any knowledge on the

structure of the exercise boundary (e.g., Longstaff and Schwartz, 2001, Broadie and

Glasserman 1997, 2004).

In Chapter 3, we follow the route of the second approach and introduce a

weighted stochastic mesh algorithm (WSM) for pricing high-dimensional American

options that allow its holder to exercise at a fixed set of time points up to expiration.

The algorithm extends the stochastic mesh (SM) algorithm introduced by Broadie
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and Glasserman (2004). SM has a simple structure, does not assume any knowledge

of the exercise boundary, and requires computation effort that is only polynomial

in the problem dimension as well as the number of exercise opportunity. All these

features make SM an efficient algorithm compared to others. Retaining all of these

desirable features, WSM requires milder assumptions that are also easier to verify

than what is required by SM. The major advantage of WSM is that it does not

require a closed-form expression for the transition density, and in fact the density

function could be degenerate, in which case SM is not applicable. This generalization

enables WSM to price, for example, American-style Asian options, which SM cannot

handle.

Another important measure in the financial industry is Value at Risk (VaR).

The early exercise feature of American options complicates the calculation of its

VaR compared to its European counterpart. We also provide an estimator of VaR

for American options. The convergence result is provided as well.

The last part of the dissertation deals with problems falling under a branch

of statistics called ranking and selection and/or multiple comparison procedures.

Suppose we will locate the best design among a finite number of choices, where the

performance of each design can be only observed with uncertainty. The ranking and

selection algorithms specify a level of correct selection first and then calculate the

number of simulation replications required for each design to guarantee that level,

whereas multiple comparison procedures provide confidence intervals on estimated

performance differences between designs. Slightly different from these problems, our

focus is on optimal allocation of given simulation budget. In particular, we maximize
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the probability of correct selection subject to the simulation budget constraints. We

refer the readers to Chen et al. (1997, 2000), Chen and Kelton (2000), and Chick and

Inoue (2001ab). In Chen (cf. Chen et al. 1997, 2000), this problem is called optimal

computing budget allocation (OCBA) and discussed in the framework where all

samples for different designs are independent and follow Gaussian distributions. In

Fu et al. (2004), the discussion is generalized to correlated Gaussian distributions.

In Chapter 4 we further generalize the work to correlated non-Gaussian distri-

butions. We derive optimal allocations for the setting of maximizing the probability

of correct selection subject to a budget constraint on the total number of samples,

when there is correlated sampling of the estimated design performances and the

samples do not necessarily follow Gaussian distribution. We replace the original

problem with an approximate problem and propose a solution procedure to the lat-

ter. Then we show the approximate solution converges to the true solution and

establish the convergence rate as well.

In sum, the main contribution of the dissertation is two-fold:

• On the theoretical side, we discuss convergence in two different fields:

– In the field of stochastic approximation, we study the convergence and

asymptotic normality of a generalized form of stochastic approximation

algorithm with deterministic perturbation sequences. Both one-simulation

and two-simulation methods are considered. Assuming a special struc-

ture on the deterministic sequence, we establish sufficient conditions on

the noise sequence for a.s. convergence of the algorithm. Construction
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of such deterministic sequences follows the discussion of asymptotic nor-

mality.

– In the field of ranking and selection and/or multiple comparison pro-

cedures, we propose an approximate solution to the so-called OCBA

problem within a general framework where all simulation samples can

be correlated non-Gaussian. The convergence rate of the approximate

solution to the true solution is discussed and an exact order for the case

of Gaussian distribution is obtained.

• On the practical side, we also present new methods in two different fields:

– we present a weighted stochastic mesh method that only requires some

easy-to-verify assumptions and a method to simulate the behavior of

underlying securities. Our algorithm provides point estimates and confi-

dence intervals for both options price and value-at-risk. The estimators

converge to the true values as the computational effort increases.

– In the field of ranking and selection and/or multiple comparison proce-

dures, we propose a better way to allocate simulation budget when the

simulation samples are drawn from correlated non-Gaussian distributions.

The layout of the dissertation is as follows. Chapter 2 (published in Xiong,

Wang, and Fu 2002) discusses the asymptotic property of stochastic approximation

algorithm with deterministic perturbation sequences. In Chapter 3, we present the

weighted stochastic mesh algorithm for American option pricing. In Chapter 4,
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we propose a solution to the OCBA problem in correlated non-Gaussian setting

and discuss the convergence issue as well. Some directions of future research are

presented in Chapter 5.
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Chapter 2

Stochastic Approximation with Deterministic

Perturbation Sequences

2.1. Problem Setting

Throughout this chapter, we will consider the problem of locating minimum of a

function L : Rp → R. We assumes that L satisfies the following conditions.

(A1) The gradient of L, denoted by g = ∇L, exists and is uniformly continuous.

(A2) There exist θ∗ ∈ Rp such that

• f(θ∗) = 0; and

• for all δ > 0, there exists hδ > 0 such that ‖θ − θ∗‖ ≥ δ implies

f(θ)T (θ − θ∗) ≥ hδ‖θ − θ∗‖2.

Before we advance to the asymptotic analysis, we present a generalized form of

the stochastic approximation algorithm, of which SPSA and RDKW are just special
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cases. Let {dn} and {rn} are sequences on Rp and we denote the ith component of

dn and rn as dni and rni, respectively. The recursive formulae of one-simulation and

two-simulation forms are:

(1D)

θn+1 = θn − an
y+

n

cn

rn, (2.1)

(2D)

θn+1 = θn − an
y+

n − y+
n

2cn

rn, (2.2)

where y+
n and y−n are noisy samples obtained from simulations of the function L at

perturbed points, defined by

y+
n = L(θn + cndn) + e+

n ,

y−n = L(θn − cndn) + e−n ,

with additive noise e+
n and e−n , respectively.

Obviously if {dn} and {rn} coincide, the two-simulation algorithm defined by

(2.2) would reduce to the RDKW algorithm. SPSA is defined when {dn} and {rn}

are related by

dn = [
1

rn1

, · · · ,
1

rnp

]T .

Our goal is to find out an appropriate structure of {dn} and {rn} with which

some desired asymptotic property can be obtained. The rest of the chapter is orga-

nized as follows. In section 2.2, with the deterministic sequence assuming a specified
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structure, we give sufficient conditions for a.s. convergence of both 1D and 2D. Also

in section 2.2, asymptotic normality of both algorithms are discussed where the

structure of deterministic is a little more specified. In section 2.3, we discuss how

to construct such a specified deterministic perturbation sequence and the princi-

ple of defining parameters for practical simulation. Finally, section 2.4 offers some

concluding remarks.

2.2. Almost Sure Convergence and Asymptotic

Normality

Because our proofs of almost sure convergence rely mainly on a convergence theorem

from Wang et al. (1996), Wang et al. (1997), and a lemma, we will introduce them

first.

Theorem 2.1: Consider the stochastic approximation algorithm

θn+1 = θn − ang(θn) + anen + anbn, (2.3)

where {θn}, {en}, and {bn} are sequences on Rp, g : Rp → Rp satisfies Assump-

tion (A2), {an} is a sequence of positive real numbers satisfying limn→∞ an = 0,

∞∑
n=1

an = ∞, and limn→∞ bn = 0. Suppose that the sequence {g(θn)} is bounded.

Then, for any θ1 in Rp, {θn} converges to θ∗ if and only if {en} satisfies any of the

following conditions:

(B1)

lim
n→∞

(
sup

n≤k≤m(n,T )

∥∥∥∥∥
k∑

i=n

aiei

∥∥∥∥∥

)
= 0
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for some T > 0, where m(n, T ) , max{k : an + · · ·+ ak ≤ T}.

(B2)

lim
T→0

1

T
lim sup

n→∞

(
sup

n≤k≤m(n,T )

∥∥∥∥∥
k∑

i=n

aiei

∥∥∥∥∥

)
= 0.

(B3) For any α, β > 0, and any infinite sequence of non-overlapping intervals {Ik}

on N there exists K ∈ N such that for all k ≥ K,

∥∥∥∥∥
∑
n∈Ik

anen

∥∥∥∥∥ < α
∑
n∈Ik

an + β.

(B4) There exist sequences {fn} and {gn} with en = fn + gn for all n such that

n∑

k=1

akfk converges, and lim
n→∞

gn = 0.

(B5) The weighted average {ēn} of the sequence {en} defined by

ēn =
1

βn

n∑

k=1

γkek,

converges to 0, where

βn =





1 n = 1,

∏n
k=2

1
1−ak

otherwise,

γn = anβn.

Proof. See (Wang et al. 1996) for a proof for conditions (B1–4) and (Wang et al.

1997) for a proof for condition (B5).

Lemma 2.2: Let {an}, {bn} and {en} be sequences in R and {rn} in Rp such that:

(C1) lim
n→∞

an = 0, lim
n→∞

an

cn
= 0,

∞∑
n=1

an = ∞;
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(C2) S0 = sup
n,m

∥∥∥∥
m∑

i=n

ri

∥∥∥∥ < ∞, E0 = sup
n
||en|| < ∞;

(C3)
∞∑

n=1

|an

cn
− an+1

cn+1
| < ∞ or lim

n→∞
1
cn
− an+1

ancn+1
= 0;

(C4) { ||en−en+1||
cn

} satisfies condition (B1-5).

Then { rnen

cn
} satisfies condition (B1).

Remarks: Lemma 2.2 still holds if {rn} and {en} are in Rp×p and Rp, respectively.

It is trivial to show that the first alternative of (C3) can be achieved by assuming

an

cn
↓ 0.

Proof. Let Si ≡
i∑

j=n

rj, ∀i < n− 1 and Sn−1 = 0. Then for all n ≤ k ≤ m(n, T ),

∥∥∥∥∥
k∑

i=n

ai

ci

riei

∥∥∥∥∥ =

∥∥∥∥∥
k∑

i=n

ai

ci

(Si − Si−1)ei

∥∥∥∥∥ =

∥∥∥∥∥
ak

ck

Skek +
k−1∑
i=n

Si(
ai

ci

ei − ai+1

ci+1

ei+1)

∥∥∥∥∥

≤
∥∥∥∥
ak

ck

Skek

∥∥∥∥ +
k−1∑
i=n

∥∥∥∥Si
ai

ci

(ei − ei+1)

∥∥∥∥ +
k−1∑
i=n

∥∥∥∥(
ai

ci

− ai+1

ci+1

)Siei+1

∥∥∥∥

≤ S0E0|ak

ck

|+ S0

k−1∑
i=n

ai||ei − ei+1||
ci

+ S0E0

k−1∑
i=n

|ai

ci

− ai+1

ci+1

| (2.4)

1. The first term converges to 0 by assumption (C1).

2. Since { ||en−en+1||
cn

} satisfies condition (B4), we have {fn} and {gn} such that

||en−en+1||
cn

= fn + gn,
k−1∑
i=n

anfn < ∞ and lim
n→∞

gn = 0, then we have

k−1∑
i=n

ai||ei − ei+1||
ci

=
k−1∑
i=n

aifi +
k−1∑
i=n

aigi ≤
k−1∑
i=n

aifi + sup
i≥n

||gi||
k−1∑
i=n

ai

≤
k−1∑
i=n

aifi + T sup
i≥n

||gi|| → 0

.
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3.
∞∑

n=1

|an

cn
− an+1

cn+1
| implies

k−1∑
i=n

|ai

ci
− ai+1

ci+1
| → 0; while lim

n→∞
1
cn
− an+1

ancn+1
= 0 yields

k−1∑
i=n

|ai

ci

− ai+1

ci+1

| ≤ sup
i≥n

| 1
ci

− ai+1

aici+1

|
k−1∑
i=n

ai ≤ T sup
i≥n

| 1
ci

− ai+1

aici+1

| → 0

We are done since each term on RHS of (2.4) converges to zero when n →∞.

Now we are in a position to present our main results. Propositions 2.3 and

2.4 discuss a.s. convergence of {θn} defined by (2.1) and (2.2), respectively, and

Propositions 2.5 and 2.6 give asymptotic normality of {θn} for both cases. Note we

always assume lim
n→∞

an = 0, lim
n→∞

cn = 0, lim
n→∞

an

cn
= 0 and

∑
n an = ∞.

Proposition 2.3 (convergence of one-simulation algorithm): Suppose that

the Assumptions (A1–2) hold, and

(D1)
∞∑

n=1

|an − an+1| < ∞ or lim
n→∞

an

an+1
= 1

(D2)
∞∑

n=1

|an

cn
− an+1

cn+1
| < ∞ or lim

n→∞
1
cn
− an+1

ancn+1
= 0

(D3) {L(θn)} and {g(θn)} are bounded

(D4) both {dn} and {rn} are periodical with period M ,
M∑

n=1

rn = 0 and 1
M

M∑
n=1

rndT
n =

ρI, where ρ > 0

(D5) {an

c2n
} satisfies condition (B1–5), both { e+

n rn

cn
} and {an|en|

c2n
} satisfy condition (B1–

5) a.s.

Then, {θn} defined by (2.1) converges to θ∗ a.s.
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Remarks: The boundedness condition on L and g are not very strong. Practically

we often restrict {θn} to a compact set by doing projection. The uniform continu-

ity and boundedness are implied by continuity. The assumption 1
M

M∑
n=1

rndT
n = ρI

implies that p = Rank(
M∑

n=1

rnd
T
n ) ≤

M∑
n=1

Rank(rnd
T
n ) = M . Actually we can see from

proof that {rn} and {dn} are not necessarily periodical, all we need is that

• The partial sum of {rn} is bounded;

• There exists a positive constant ρ such that the partial sum of {rndT
n − ρI} is

bounded.

Proof. By the mean value theorem, we can rewrite (2.1)as

θn+1 = θn − ρang(θn)− anrndT
n [g(θn + λncndn)− g(θn)]

−an[rnd
T
n − ρI]g(θn)− an

cn

L(θn)rn − an
e+

n

cn

rn, (2.5)

where 0 ≤ λ ≤ 1.

1. Since lim
n→∞

g(θn + λncndn) − g(θn) = 0 by the uniform continuity of g and

lim
n→∞

cn = 0, {rnd
T
n [g(θn + λncndn)− g(θn)]} satisfies condition (B4). Also, we

know {g(θn + λncndn)} is bounded.

2. Combining boundedness of both {g(θn + λncndn)} and {L(θn)} with assump-

tion (D5), we can check (2.5) and show

lim
n→∞

θn − θn+1 = 0 a.s.

Hence lim
n→∞

g(θn)− g(θn+1) = 0 by uniform continuity of g. {rndT
n − ρI]g(θn)}

satisfies condition (B1) by letting {cn}, {rn} and {en} in Lemma 2.2 be {1},

{rnd
T
n − ρI} and {g(θn)}, respectively.
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3. Applying mean value theorem to L, we have

|L(θn)− L(θn+1)| = |gT [θn + µn(θn − θn+1)](θn − θn+1)|,

where 0 ≤ µn ≤ 1. lim
n→∞

g[θn +µn(θn− θn+1)]− g(θn) = 0 implies boundedness

of ||g[θn + µn(θn − θn+1)]. Hence,

|L(θn)− L(θn+1|
cn

≤ M0
||θn − θn+1||

cn

≤ M0(M1
an

c2
n

+ M2
an

c2
n

|e+
n |),

where the second inequality is obtained by applying (2.5) to θn − θn+1 and

using some boundedness conditions; M ’s are positive constants. Since, by

assumption (D5), the RHS of above formula satisfies condition (B1), it is

trivial to prove the LHS also satisfies condition (B1). Hence we can let {en}

in Lemma 2.2 be {L(θn} and conclude {L(θn)rn

cn
} satisfies condition (B1).

4. { e+
n

cn
rn} satisfies condition (B1) by assumption (D5).

The proof completes by combining above arguments with Theorem 2.1.

Proposition 2.4 (convergence of two-simulation algorithm): Suppose that

the assumptions (A1–2, D1) hold, and

• {g(θn)} is bounded, lim
n→∞

cn = 0;

• {dn} is periodical with period M , and 1
M

M∑
n=1

rnd
T
n = ρI, where ρ > 0.

Then, {θn} defined by (2.2) converges to θ∗ a.s. if and only if e+
n rn

cn
satisfies (B1–5)

a.s.

Proof. The sufficiency proof completes by following the same arguments in the proof

of Proposition 2.3, and the necessity proof is trivial.
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We denote the Hessian matrix and sth derivative of L(θ) as H(θ) and L(3)(θ)

respectively.

Proposition 2.5 (asymptotic normality of one-simulation algorithm): Sup-

pose that the Assumptions (A1–2) hold and {θn} is defined by (2.1), and

(E1) an = a/nα and cn = c/nγ where a, c, α, γ > 0;

(E2) α ≤ 1, β = α− 2γ > 0, 3γ − α/2 ≥ 0, 1 + 2γ < 2α;

(E3) both {dn} and {rn} are periodical with period M ,
M∑

n=1

rn = 0,
M∑

n=1

rn⊗dn⊗dn =

0, 1
M

M∑
n=1

rndT
n = ρI, where ρ > 0;

(E4) Q ≡ M−1
M∑

n=1

rnr
T
n and orthogonal matrix P satisfies P T H(θ∗)P = (aρ)−1

diag(λ1, · · · , λp);

(E5) L, g, H and L(3) are all continuous and bounded;

(E6) lim
n→∞

n−βe+
n = 0, E(e+

n |Fn) = 0 a.s. and E((e+
n )2|Fn) → σ2 a.s., ∀n, where

Fn ≡ σ(θ0, θ1, · · · , θn);

(E7) There exists δ > 0 such that supn E|e+
n |2+2δ < ∞.

Then

nβ/2(θn − θ∗) dist→ N(µ, PXP T ), n →∞

where Xij = a2c−2σ2[P T QP ]ij(λi +λj −β+)−1 with β+ = β < 2 mini λi if α = 1 and

β+ = 0 if α < 1,and

µ =





0 if 3γ − α/2 > 0,

(aρH(θ∗)− 1
2
β+I)−1T if 3γ − α/2 = 0,
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where the lth element of T is

− ac2

6M
[L

(3)
lll (θ∗)

M∑
n=1

d3
nlrnl + 3

M∑

i=1,i 6=l

L
(3)
lii (θ∗)

M∑
n=1

d2
nidnlrnl

+6
M∑

i,j=1;i 6=j 6=l

L
(3)
lij (θ∗)

M∑
n=1

dnldnidnjrnl].

Proof. It is easy to show both
n∑

i=1

an

cn
e+

n rn and
∑n

i=1
a2

n

c2n
(|e+

n | − EFn |e+
n |)are martin-

gales with finite L2 norm. Hence
∞∑

n=1

an

cn
e+

n rn < ∞ and
∑n

i=1
a2

n

c2n
|e+

n | < ∞ a.s. by L2

convergence theorem for martingale. Then Proposition 2.3 guarantees the a.s. con-

vergence of θn to θ∗. To show the asymptotic normality, we will check if conditions

(2.2.1–3) of Fabian (1968) hold. We will use notation of Fabian (1968) as well. Let

0 ≤ λn, ηn ≤ 1. Use the mean value theorem and rewrite (2.1):

θn+1 = θn − anrndT
ng(θn)− an

cn

L(θn)rn − an
e+

n

cn

rn − 1

2
ancnrnd

T
nH(θn)dn

−1

6
anc

2
nrnL

(3)(θn + λncndn)dn ⊗ dn ⊗ dn (2.6)

Use this formula M times, we have

θnM+M − θ∗ = (I − n−αΓn)(θnM − θ∗) + n−(α+β)/2ΦnVn +

n−α−β/2(T (1)
n + T (2)

n + T (3)
n + T (4)

n ),

where

Γn = aM−α

nM+M−1∑
i=nM

(
i

nM
)−αrid

T
i H(θnM + ηn(θnM − θ∗)) a.s.→ aM1−αρH(θ∗),

Φn = I , Vn =
a

c
M−α+γ

nM+M−1∑
i=nM

(
i

nM
)−α+γe+

i ri,

T (1)
n = −anα/2−γM−α

nM+M−1∑
i=nM

(
i

nM
)−αrid

T
i [g(θi)− g(θnM)],

T (2)
n = −a

c
nα/2M−α+γ

nM+M−1∑
i=nM

(
i

nM
)−α+γL(θi)ri,
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T (3)
n = −1

2
acnα/2−2γM−α−γ

nM+M−1∑
i=nM

(
i

nM
)−α−γrid

T
i H(θi)di,

T (4)
n = −1

6
ac2nα/2−3γM−α−2γ

nM+M−1∑
i=nM

(
i

nM
)−α−2γriL

(3)(θi + λicidi)di ⊗ di ⊗ di.

To prove T
(2)
n

L2→ 0, we have

T (2)
n = K0n

α/2

nM+M−1∑
i=nM

((
i

nM
)−α+γ − 1)L(θi)ri + K0n

α/2

nM+M−1∑
i=nM

L(θi)ri

= O(n−α/2+γ) + K0n
α/2

nM+M−1∑
i=nM

(L(θi)− L(θnM))ri

= o(1) + K0n
α/2

nM+M−1∑
i=nM

(θi − θnM)T g(θ′nM)

= o(1) + nα/2O(n−α+γ)

= o(1).

The second equality is by (1 + A
n
)−α+γ − 1 = O(1/n) and

nM+M−1∑
i=nM

ri = 0; the third

is by taking a Taylor series expansion and using the fact that θ′nM is on the line

segment between θi and θnM ; the fourth is by applying (2.6) to θi − θnM . Of course

boundedness of functions are required when necessary. Also, o(·) and O(·) are in

terms of L2 norm and K0 is a constant.

We have shown that T
(2)
n

L2→ 0. Actually similar argument can be used to show

that T
(1)
n

L2→ 0 and T
(3)
n

L2→ 0. If 3γ − α/2 > 0, we can also show T
(4)
n

L2→ 0. If

3γ − α/2 = 0, it is easy to show that T
(4)
n

a.s.→ M1−α−β/2T .

Obviously EFnVn = 0 and EFnVnV T
n

L2→ a2σ2

c2
M1−2α+2γQ. To show

lim
k→∞

E(χ‖Vn‖2≥rnα ‖Vn‖2) = 0, ∀r > 0,
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we have

E(χ‖Vn‖2≥rnα ‖Vn‖2) ≤ P (‖Vn‖2 ≥ rnα)δ′/(1+δ′)(E ‖Vn‖2+2δ′)1/(1+δ′)

≤ K1(
E ‖Vn‖2

rnα
)δ′/(1+δ′) ≤ K2n

−αδ′/(1+δ′) → 0,

where K1 and K2 are constants and 0 < δ′ < δ.

Since all the conditions (2.1.1–3) in Fabian (1968) are verified, we have

nβ/2(θnM − θ∗)
dist→ N(M−β/2µ, M−βPXP ).

That is,

(nM)β/2(θnM − θ∗)
dist→ N(µ, PXP ).

For all 0 < i < M , we can similarly prove

(nM + i)β/2(θnM+i − θ∗)
dist→ N(µ, PXP ).

Proposition 2.6 (asymptotic normality of two-simulation algorithm): Sup-

pose that the Assumptions (A1–2, E1–3) hold and {θn} is defined by (2.2), and

• both {dn} and {rn} are periodical with period M, let 1
M

M∑
n=1

rnd
T
n = ρI, where

ρ > 0, and let orthogonal matrix P such that P T H(θ∗)P = (aρ)−1 diag(λ1, · · · , λp);

• g and H bounded, L(3) is continuous at θ∗;

• E(e+
n − e−n |Fn) = 0 a.s. and E((e+

n − e−n )2|Fn) → 4σ2 a.s., ∀n, where Fn ≡

σ(θ0, θ1, · · · , θn);
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• There exists δ > 0 such that supn E|e(±)
n |2+2δ < ∞.

Then we have the same conclusion as Proposition 2.5.

Remark: If we let each component of rn and dn assume ±1, then we get exactly

the same result as Proposition 2 in (Spall 1992).

Proof. Proof completes by following the same arguments in the proof of Proposition

2.5.

The four propositions above show that deterministic perturbation can do at

least as well as randomized perturbation asymptotically. Following two propositions

will show that the former might have higher convergence rate than the latter.

Let s be an even integer, m = s/2, 0 < u1 < · · · < um ≤ 1, U =
∥∥u2i−1

j

∥∥m

i,j=1
,

and v is the first column of 1
2
U−1, and vi is ith component of v, we define a s−

simulation form as in (Fabian 1967):

(SD)

θn+1 = θn − anrn

cn

m∑
i=1

vi(y
+
n,i − y−n,i), (2.7)

where y+
n and y−n are noisy samples of the function L at perturbed points, defined

by

y+
n,i = L(θn + cnuidn) + e+

n,i,

y−n,i = L(θn − cnuidn) + e−n,i,

with additive noise e+
n,i and e−n,i, respectively.

Proposition 2.7 (convergence rate of s-simulation algorithm): Suppose {θn}

is defined by (2.7), and
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• g(θ∗) = 0, for all θ ∈ Rp, we have g(θ)T (θ − θ∗) ≥ C ‖θ − θ∗‖2;

• an = a/nα and cn = c/nγ where a > 0, c > 0, 0 < α ≤ 1, 0 < γ < α/2;

• both {dn} and {rn} are periodical with period M, let 1
M

M∑
n=1

rnd
T
n = ρI, where

ρ > 0;

• β = min{2sγ, α− 2γ} and β < 2aMρC, if α = 1;

• g, H and L(s+1) are bounded;

• EFn(e+
n,i− e−n,i) = 0 a.s., EFn(e+

n,i− e−n,i)(e
+
n,j − e−n,j) = 0 and EFn(e+

n,i− e−n,i)
2 ≤

σ2a.s. , ∀n, i, j 6= i, where Fn ≡ σ(θ0, θ1, · · · , θn).

Then

E ‖θn − θ∗‖2 = O(n−β).

Remark: A similar conclusion for randomized perturbations has been obtained in

Gerencser (1999).

Proof. Almost sure convergence can be shown by using similar argument in the

proof of Proposition 2.3. Then it suffices to show lim sup nβE ‖θn − θ∗‖2 < ∞. By

a Taylor series expansion and the definition of {ui} and {vi}, we can rewrite (2.7):

θn+1 − θ∗ = θn − θ∗ − anrndT
ng(θn)− ancs

nrnξn − anrnen

cn

, (2.8)

where ξn is some bounded r.v. depending on L(s+1)(·) and en =
m∑

i=1

vi(e
+
n,i − e−n,i).

bn+1 ≡ E ‖θnM+M − θ∗‖2

= E

∥∥∥∥∥θnM − θ∗ −
nM+M−1∑

i=nM

[ai−αrid
T
i g(θi) + K1i

−α−sγriξi + K2i
−α+γriei]

∥∥∥∥∥

2

≤ bn + O(n−2α) + O(n−2α−2sγ) + K3n
−2α+2γ − Un − Vn −Wn, (2.9)
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where we use (a + b + c)2 ≤ 9(a2 + b2 + c2) and

Un = 2E(θnM − θ∗)T

nM+M−1∑
i=nM

K2i
−α+γriei

= 2E[(θnM − θ∗)T EFnM

nM+M−1∑
i=nM

K2i
−α+γriei]

= 0, (2.10)

Vn = 2E(θnM − θ∗)T

nM+M−1∑
i=nM

K1i
−α−sγriξi

≥ −K4(nM)−α−sγE ‖θnM − θ∗‖

≥ −η(nM)−αbn − K2
4

4η
(nM)−α−2sγ, (2.11)

Wn = 2aE(θnM − θ∗)T

nM+M−1∑
i=nM

i−αrid
T
i g(θi)

≥ −K5n
−α−1E ‖θnM − θ∗‖+ 2aMρ(nM)−αE(θnM − θ∗)T g(θnM)

+2a(nM)−αE(θnM − θ∗)T

nM+M−1∑
i=nM

rid
T
i [g(θi)− g(θnM)]

≥ −K5n
−α−1(bn + 1)−K6n

−2α(bn + 1) + 2aMρC(nM)−αbn, (2.12)

where η = aMρC if α < 1 and 0 < η < 2aMρC − β if α = 1. The first inequality

of Wn is by (1 + A
n
)−α− 1 = O(1/n), the second is by applying mean value theorem

to g(θi)− g(θnM) and then applying (2.8) to θi − θnM .

By (2.9), (2.10), (2.11) and (2.12), we have

bn+1 ≤ bn(1− An(nM)−α) + K7n
−α−β,

where lim An = 2aC. Hence, we can show lim sup nβE ‖θnM − θ∗‖2 < ∞ by Lemma

4.2 in (Fabian 1967). Similarly, we can show for all 0 < i < M, lim sup nβE ‖θnM+i − θ∗‖2 <

∞, which completes the proof.

Note: The K ′s in the proof are positive constants.
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Combining Lemma 4.2 and 4.3 in (Fabian 1967) yields the following Lemma.

Lemma 2.8: Let bn, A, B, Dn, α, β be real numbers, and

bn+1 ≤ bn(1− An−α) + Bn−α−β + Dnn
−β

, where 0 < α ≤ 1, β > 0, B > 0,
∞∑

n=1

< ∞, A > β if α = 1.

Then lim sup nβbn < ∞.

Using Lemma 2.8, we can prove a higher rate of a.s. convergence holds. A quick

corollary for two-simulation setting is the method with deterministic perturbation

can achieve a convergence rate arbitrarily close to 1
3
, which is an upper limit given

by Proposition 2.7.

Proposition 2.9: Suppose that Assumptions (A1–2) hold and {θn} is defined by

(2.7), and

• an = a/nα and cn = c/nγ where a > 0, c > 0, 0 < α ≤ 1, 0 < γ < α/2,

α− γ > 1
2
;

• both {dn} and {rn} are periodical with period M, let
M∑

n=1

rndT
n = ρI, where

ρ > 0;

• g, H and L(s+1) are bounded, H is positive definite and continuous at θ∗, let

λ be the smallest characteristic value of H(θ∗);

• β0 = min{2sγ, 2α− 2γ − 1} and β0 < 2aρλ if α = 1;

• E(e+
n,i − e−n,i|Fn) = 0 a.s., E((e+

n,i − e−n,i)(e
+
n,j − e−n,j)|Fn) = 0 and E((e+

n,i −

e−n,i)
2|Fn) ≤ σ2a.s. , ∀n, i, j 6= i, where Fn ≡ σ(θ0, θ1, · · · , θn);
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• supn,i E(e+
n,i − e−n,i)

2+2δ < ∞ where δ > 0.

Then nβ/2(θn − θ∗) → 0 a.s. for every β < β0.

Remark: The optimal γ for s−simulation is 2α−1
2+2s

and thus β = s(2α−1)
s+1

. When

α = 1, we achieve the upper limit of convergence rate given by Proposition 2.7.

Proof. Since θn → θ∗ a.s. using (2.8), θn are a.s. bounded. By mean value theorem

and continuity of H at θ, we have θT
n g(θn) > (1− η)λ ‖θn‖2 for sufficiently large n.

Then

‖θnM+M − θ∗‖2 =

∥∥∥∥∥θnM − θ∗ −
nM+M−1∑

i=nM

[ai−αrid
T
i g(θi) + K1i

−α−sγriξi + K2i
−α+γriei]

∥∥∥∥∥

2

≤ ‖θnM − θ∗‖2 + O(n−2α) + O(n−2α−2sγ) + K3n
−2α+2γ

nM+M−1∑
i=nM

e2
i

−Un − Vn −Wn, (2.13)

where

Un = 2a(θnM − θ∗)T

nM+M−1∑
i=nM

i−αrid
T
i g(θi)

≥ −K4n
−α−1 ‖θnM − θ∗‖+ 2aρ(nM)−αE(θnM − θ∗)T g(θnM)

+2a(nM)−α(θnM − θ∗)T

nM+M−1∑
i=nM

rid
T
i [g(θi)− g(θnM)]

≥ O(n−2α)−K5n
−2α+γ

nM+M−1∑
i=nM

e2
i + 2aρλ(nM)−αbn, (2.14)

Vn = 2E(θnM − θ∗)T

nM+M−1∑
i=nM

K1i
−α−sγriξi

≥ −η(nM)−α ‖θnM − θ∗‖2 −K6(nM)−α−2sγ, (2.15)

Wn = 2(θnM − θ∗)T

nM+M−1∑
i=nM

K2i
−α+γriei

≥ −K7n
−α+γ ‖θnM − θ∗‖

nM+M−1∑
i=nM

|ei|. (2.16)
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Hence, by (2.13), (2.14), (2.15) and (2.16), we have for almost all ω ∈ Ω

bn+1 ≡ ‖θnM+M − θ∗‖2 (ω)

≤ bn(1− (2aρλ− η)(nM)−α) + K8n
−α−β0 + K3n

−2α+2γ

nM+M−1∑
i=nM

(e2
i − φ2)

K7n
−α+γ ‖θnM − θ∗‖

nM+M−1∑
i=nM

|ei|,

where φ2 =
∑m

i=1 u2
i σ

2. By the L1+δ convergence theorem for martingale, we can

show
∞∑

n=0

n−2α+2γ+β
nM+M−1∑

i=nM

(e2
i − φ2) converges, thus is bounded a.s. when 0 < β <

β0. When 0 < β < α− γ − 1
2
, we have

∞∑
n=0

EFn(n−α+γ+β ‖θnM − θ∗‖
nM+M−1∑

i=nM

|ei|)2 < ∞ (2.17)

By the sharper form of the Borel-Cantelli lemma in Dubins (1965), we have, with

probability one,

∞∑
n=0

n−α+γ+β ‖θnM − θ∗‖
nM+M−1∑

i=nM

|ei| < ∞ (2.18)

Then the condition of Lemma 2.8 holds for β < α− γ− 1
2
. Hence, lim sup nβ/2(θn−

θ∗) → 0 a.s. when β < α − γ − 1
2
. Apply this to (2.17) and (2.18) recursively, we

can get β
α−γ−1/2

< 1/2, 3/4, 7/8, · · · , which completes the proof.

2.3. Construction of Deterministic Sequences

In this section, we present a general mechanism for construction of deterministic

sequences {rn} and {dn} that satisfies conditions required for convergence of algo-

rithms. Since stronger conditions required for convergence of one-simulation algo-

rithms, we focus on constructions of sequences that satisfy the conditions stated
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in Proposition 2.3. The constructed sequences can be applied to two-simulation

algorithms as well. We focus on sequences for RDKW and SPSA algorithms and

consider the case where components of rn and dn take value from {±1}. Note that

in this case, the two classes of algorithms are identical. It is also clear that we only

need to construct either {rn} or {dn}, since they are identical as well.

Our constructions are based on the notion of orthogonal arrays (Hedayat et

al. 1999). We claim that a desirable deterministic sequence in dimension p can be

constructed from any binary (two-level) N × k orthogonal array with k ≥ p. We

first give the definition of orthogonal arrays:

Definition (Hedayat et al. 1999) An N × k array A with entries from S =

{0, 1, · · · , s} is said to be an orthogonal array with s levels, strength t and in-

dex λ if every N × t subarray of A contains each t-tuple based on S exactly λ times

as a row. We use the notation OA(N, k, s, t) to denote such an array. For example,

an OA(8, 4, 2, 3) is given below




0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1




T

. (2.19)

To construct a desired sequence {rn} in Rp from an OA(N, k, 2, t) with k ≥ p, we

take the following simple steps:

1. Take any p columns from the orthogonal array to form a N × p array H.

2. Change all the zero entries in H into −1.
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3. Use all the row vectors of H as one period for {rn}.

For example, we can construct a sequence {rn} in R4 from (2.19) as

r1 = [−1,−1,−1,−1]T , r2 = [−1,−1, 1, 1]T ,

r3 = [−1, 1,−1, 1]T , r4 = [−1, 1, 1,−1]T ,

r5 = [1,−1,−1, 1]T , r6 = [1,−1, 1,−1]T ,

r7 = [1, 1,−1,−1]T , r8 = [1, 1, 1, 1]T .

Orthogonal arrays have been applied in many areas including experiment designs,

coding theory, and cryptography. A large body of literature exists on construction

of orthogonal arrays. Hence the proposed construction provides a large set of deter-

ministic sequences for use in stochastic approximation algorithms for optimization.

A particular construction based on Hadamard matrices (Seberry and Yamada 1992)

is presented in Bhatnagar et al. (2002).

2.4. Conclusion

In this chapter, we present a generalized form of the stochastic approximation al-

gorithm of which SPSA and RDKW are special cases. We establish sufficient con-

ditions on deterministic sequences for convergence of these algorithms. Asymptotic

normality is established to show that deterministic sequences can at least achieve the

same asymptotic performance with the random sequences. It remains to be shown

theoretically that appropriately designed deterministic sequences can lead to faster

convergence than the random sequences, which has been observed in experiments.
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Chapter 3

A Weighted Stochastic Mesh Method for Pricing

High-Dimensional American Options

3.1. Problem Setting

Let St = (S1
t , . . . , S

n
t ) denote a vector of m securities underlying the option, modeled

as a Markov process on Rn
+ ≡ (0,∞)n, with fixed initial state S0 and discrete time

parameter t = 0, 1, . . . , T . The problem is to compute

Q = max
τ

E[h(τ, Sτ )], (3.1)

where τ is a stopping time taking values in the finite set {0, 1, . . . , T}, and h(t, x) ≥ 0

gives the payoff from exercise at time t in state x, discounted to time 0, with the

possibly stochastic discount factor recorded in St. We can express the value starting
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at time t in state x recursively as

Q(t, x) =





max(h(t, x), E[Q(t + 1, St+1)|St = x]) t < T ;

h(T, x) t = T ;

(3.2)

where the conditional expectation is with respect to the risk-neutral measure.

The rest of the chapter is organized as follows. Section 3.2 gives a description

and theoretical analysis of the basic WSM algorithm for pricing American-style

option. Section 3.3 applies the algorithm to the pricing of American-style Asian

options. The estimators of value-at-risk are presented in Section 3.4. Section 3.5

contains concluding remarks.

3.2. The Weighted Stochastic Mesh Method (WSM)

From (3.2), we can see the major difficulty lies in the calculation of conditional

expectation E[Q(t + 1, St+1)|St = x] when we go backward from t + 1 to t. The

stochastic mesh method (SM) proposed by Broadie and Glasserman (2004) estimates

this conditional expectation via a weighted sum of Q values at t + 1. The idea can

be illustrated via figure 3.1. For simplification, we let St be a two-dimensional

vector and assume the option can be only exercised at t0, t1 and t2, where t2 is the

maturity. We also assume only three nodes are generated for each time point after

the starting time. In other words, the path of St starts from node α0 at t0 and may

go through nodes {α1, β1, γ1} at t1 and {α2, β2, γ2} at maturity. It is easy to get

exact Q values for each node at maturity. Then the conditional expectation given

St1 = α1 will be estimated by W (α1α2)Q(α2) + W (α1β2)Q(β2) + W (α1γ2)Q(γ2),
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Figure 3.1: Stochastic Mesh Method

where W (αβ) represents the weight assigned to nodes pair (α, β). The SM method

uses an idea similar to importance sampling to define the weight W (αβ), whereas

the WSM method uses a different weight definition.

We use figure 3.2 to illustrate the idea behind the weight definition. First

we define distance, d(α, β), between any two points of the state space at maturity.

Then we split the entire space into three disjoint subsets A(α2), A(β2) and A(γ2),

such that each set collects all points to which the corresponding node is the closest

node among all three nodes in terms of the distance we defined. In other words, we

have A(α2) = {ρ ∈ (0,∞)2
∣∣d(α2, ρ) <= d(β2, ρ), d(α2, ρ) <= d(γ2, ρ)}. So we can

see that the entire space can be split with the two dashed lines in figure 3.2. Now

we define W (α1ρ) ≡ Prob(St2 ∈ A(ρ)|St1 = α1), where ρ = α2, β2, γ2. In general,

Monte Carlo simulation is required to estimate these probabilities. Therefore, WSM

method requires the generation of two mutually independent random sequences:
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Figure 3.2: Weight Definition of Weighted Stochastic Mesh Method

• Node sequence of state vector {St,i; i = 1, · · · , b, t = 0, · · · , T}

b is the number of nodes at each epoch. S0,i ≡ S0 for i = 1, · · · , b. For any

fixed t ∈ {1, · · · , T}, {St,i; i = 1, · · · , b} are generated as i.i.d. samples from a

node generation density function, gt.

For the case where the risk-neutral probability measure of St given S0 is ab-

solutely continuous, we restrict gt > 0 on Gt ⊂ Rn
+, the open set of points

where the risk-neutral density is positive. Now we consider the case where

the measure is not absolutely continuous. We first split the state vector into

S
(1)
t and S

(2)
t , where S

(1)
t = (S1

t , · · · , Sn1
t ) and S

(2)
t = (Sn1+1

t , · · · , Sn
t ) for some

1 ≤ n1 < n. Then we assume (i) S
(2)
t = ft(S

(1)
t , S0), where ft is some known

deterministic and continuous function; and (ii) the probability measure of S
(1)
t

given S0 is absolutely continuous. Under the assumptions, we can generate

S
(1)
t,i via density g′t, which is positive on G′

t ⊂ Rn1
+ , the open set of points where
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the risk-neutral density of S
(1)
t given S0 is positive. S

(2)
t,i is obtained by letting

S
(2)
t,i = ft(S

(1)
t,i , S0). Hence, gt does not exist for this case. We define Gt as

{St : S
(1)
t ∈ G′

t, S
(2)
t = ft(S

(1)
t , S0)}.

• Transition sequence of state vector {Xt,i,m; t = 0, · · · , T − 1, i = 1, · · · , b, m =

1, · · · ,M}

M is the number of transitions for each node at epochs prior to T . For any fixed

t ∈ {0, · · · , T−1} and i ∈ {1, · · · , b}, {Xt,i,m; m = 1, · · · , M} are generated as

i.i.d. samples from the risk-neutral density of St+1 given St = St,i. (Note that

a closed-form expression for the density function is not necessarily known, e.g.,

the jump diffusion model proposed by Kou and Wang (2001). It suffices to

know how to generate random variate with the density function.) Moreover,

X is independent across t, but common random numbers shall be used to

generate X across i for fixed t and m.

Then the estimator of the option value is defined recursively as follows:

Q̂(t, St,i) =





max(h(t, St,i),
∑
j∈B

ŵ(t, St,i, St+1,j)Q̂(t + 1, St+1,j)) t < T

h(T, St,i) t = T

(3.3)

where

ŵ(t, St,i, St+1,j) =
1

M

M∑
m=1

1(dt(Xt,i,m, St+1,j) = min
k∈B

dt(Xt,i,m, St+1,k)) (3.4)

and 1(·) is the indicator function and dt(x, y) is a metric defined on Rn
+. If there are

more than one j ∈ B, say j1 < j2, such that dt(Xt,i,m, St+1,j) = min
k∈B

dt(Xt,i,m, St+1,k),

we will let the indicator function take one only for j1.
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Now we give some additional notation. For any t = 0, · · · , T , Dt(f) repre-

sents the set of discontinuity of function f(t, x) in x and Dt,r(f) = {x ∈ Rn
+ :

dt(x,Dt(f)) ≤ r} for some r > 0. (If Dt(f) = φ, Dt,r(f) ≡ φ for any r > 0.) For

any t = 0, · · · , T and x ∈ Rn
+, we define the holding value of the option as

V (t, x) =





E[Q(t + 1, St+1)|St = x] t < T

0 t = T

(3.5)

To establish the convergence of the estimator, we first present a Lemma that requires

the following three assumptions. We now write A as the closure of any set A, and

write V b U when V and U are both open sets and the closure of V is compact and

contained in U .

(A1) For any t = 1, · · · , T , there exists a one − to − one continuous map Φt that

maps Gt onto (−∞,∞)n and the boundary of Gt onto that of (−∞,∞)n.

(A2) K ≡ sup{h(t, x); t = 0, · · · , T, x ∈ Rn
+} < ∞, and P (St+1 ∈ Dt(h)|St = x) = 0

for any x ∈ Rn
+ and t = 0, · · · , T − 1.

(A3) Lλ(x) ≡ E[e−λSt+1|St = x] is continuous in x ∈ Rn
+ for any λ ∈ [0,∞)n and

t = 0, · · · , T .

Lemma 3.1: Under assumptions (A1)-(A3), we have

(i) V (t, x) is continuous in x ∈ Gt for all t = 0, · · · , T ;

(ii) For any ε ∈ (0, 1) and any At b Gt, where t = 1, · · · , T − 1, there exist

At+1 b Gt+1 and rt+1 > 0 such that sup
x∈At

P (St+1 /∈ At+1|St = x) < ε and

sup
x∈At

P (St+1 ∈ Dt+1,rt+1(h)|St = x) < ε, respectively.
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Proof. We first prove the continuity of V (t, x) in x by induction. Obviously there is

nothing to prove for t = T . The induction hypothesis that V (t + 1, x) is continuous

implies Dt+1(Q) ⊂ Dt+1(h). Let {xn} be any sequence in Gt which converges to

x. Let µn and µ be the probability measures of St+1 when St = xn and St = x,

respectively. Then assumption (A3) implies the weak convergence of µn to µ and

(A2) implies µ(Dt+1(Q)) = 0. Now Theorem 5.2(iii) in Billingsley (1968) gives

∫
Qdµn →

∫
Qdµ, i.e., V (t, xn) → V (t, x), which implies V (t, x) is continuous in x.

Now we will prove the first part of (ii), i.e., the existence of At+1 given At. Let

x be arbitrary point in At and µx be the probability measure of St+1 when St = x.

We associate Gt with a metric ρ that is defined as ρ(x, y) = |Φt(x)−Φt(y)| for any

x, y ∈ Gt, where Assumption (A1) guarantees the existence of Φt. Then 〈Gt, ρ〉 is

a polish space the closure of any sphere in this space is compact. If we go through

the proof of Prohorov’s Theorem, e.g., in Billingsley (1968), it suffices to show the

family of measures {µx : x ∈ At} is relatively compact. Let {xn} be any sequence in

At, then there exists a subsequence, {x′n}, that converges to some x ∈ Gt. Namely,

for the sequence {µxn}, we can find a subsequence {µx′n} that weakly converges to

µx. Hence we prove the relative compactness.

Suppose the second part of (ii) does not hold. Then for rn ↓ 0, there exists

xn ∈ At such that µxn(Dt,rn(h)) ≥ ε. Without loss of generality, we assume xn

converges to x ∈ At. Then µxn converges to µx weakly. Since Dt,rn(h) is a closed

set, for any n we have

µx(Dt,rn(h)) ≥ limmµxm(Dt,rn(h)) ≥ ε.
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However, Dt,rn(h) ↓ Dt(h) implies µx(Dt,rn(h)) ↓ µx(Dt(h)) = 0. The contradiction

gives the second part of (ii).

Now we make the dependence of Q̂(t, x) on b and M explicit by denoting the

estimator as Q̂b,M(t, x). The convergence of the estimator can be stated as:

Theorem 3.2: Under assumptions (A1)-(A3), for all x ∈ Rn
+ and t = 0, · · · , T ,

lim
b,M→∞

∥∥∥Q̂b,M(t, x)−Q(t, x)
∥∥∥ = 0, (3.6)

where ‖·‖ denotes the L1 norm E| · |.

Remarks:

• b,M →∞ is equivalent to saying b2 + M2 →∞. Indeed the proof guarantees

the convergence of V̂b,M(t, x) to V (t, x) as well.

• Assumption (A1) holds for many cases. For example, Gt = Rn
+, Φt may map

x ∈ Rn
+ onto y ∈ Rn with yi = log xi.

• Assumption (A2) covers ordinary put options. Call options can be also con-

sidered by applying truncation. Obviously, options with discontinuous payoff

function such as digital options are also covered. Indeed, this enables us to

handle barrier options with some adjustment applied to the algorithm.

• Assumption (A3) holds if St+1 can be expressed as f(St, ξ), where f is a con-

tinuous in St and ξ represents the randomness. Hence multiplicative process,

a process where log(St+1/St) is independent of St, is covered in this case. Also,
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if St can be characterized with an SDE, Lλ(x) will be the solution of a corre-

sponding PDE and assumption (A2) will hold given some regularity condition

on the drift and diffusion terms of the SDE.

• The computational effort in generating the mesh is proportional to n× b× d.

The effort in the recursive pricing is proportional to n×M × b× d. Hence the

overall effort is polynomial in the problem dimension (n), the mesh parameter

(b), the sample size of weight estimating (M), and the number of exercise

opportunities (d + 1)

Proof. Given ε > 0, there exists A′
1 b G1 and r1 > 0 such that P [S1 /∈ A′

1|S0] < ε

and P [S1 ∈ D1,r1(h)|S0] < ε. There exists A1 such that A′
1 b A1 b G1. Suppose

we have defined A′
t and At for t = 1, · · · , T − 1, Lemma 3.1 guarantees there exists

A′
t+1 b Gt+1 and rt+1 such that sup

x∈At

P (St+1 /∈ A′
t+1|St = x) < ε and sup

x∈At

P (St+1 ∈

Dt+1,rt+1(h)|St = x) < ε. Also, there exists At+1 such that A′
t+1 b At+1 b Gt+1.

Following this route, we can construct {A′
t, rt, At; t = 1, · · · , T} recursively. Further-

more, we construct sequence {εt, δt, αt; t = 1, · · · , T}. Let εt = dt(A′
t, A

c
t), where

we write Ac
t as {x : x ∈ Gt, x /∈ At}. Obviously, At ∩ Dc

t,rt/2(h) is a compact

set on which Q(t, x) is continuous thus uniform continuous in x. Hence, there ex-

ists δt ∈ (0, εt ∧ rt

2
] such that |Q(t, x) − Q(t, y)| < ε whenever dt(x, y) ≤ δt and

x, y ∈ At ∩Dc
t,rt/2(h). Then let αt = sup

y∈A′t

Pgt [dt(St,1, y) ≥ δt], where Pgt is probabil-

ity measure with density gt. It is trivial to show that εt > 0 for any t. At last, we

define α = max{αt; 1 ≤ t ≤ T}. Note α < 1 is guaranteed by the property of gt, or

g′t for the degenerate case.
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Defining A0 as the singleton {S0}, now we will prove for any ε > 0, x ∈ At,

b > 1, M > 1 and t = 0, · · · , T ,

∆b,M(t, x) ≡
∥∥∥Q̂b,M(t, x)−Q(t, x)

∥∥∥ ≤ (T − t)
[
2K

(
3ε + bαb + αb +

1√
M

)
+ ε

]
,(3.7)

where K is defined in assumption (A2).

By induction, we proceed backwards from the terminal time. At T there

is nothing to prove because Q̂b,M(T, ·) ≡ h(T, ·) ≡ Q(T, ·). Take as induction

hypothesis that

∆b,M(t + 1, z) ≤ (T − t− 1)
[
2K

(
3ε + bαb + αb +

1√
M

)
+ ε

]
,∀z ∈ At+1

Now we fix x in At and denote Px as the probability measure given St = x. Using

|max(a, b)−max(a, c)| ≤ |b− c|, we have

∆b,M(t, x) ≤
∥∥∥∥∥
∑
j∈B

ŵ(t, x, St+1,j)Q̂b,M(t + 1, St+1,j)− V (t, x)

∥∥∥∥∥

≤
∥∥∥∥∥
∑
j∈B

[ŵ(t, x, St+1,j)− w(t, x, St+1,j)]Q̂b,M(t + 1, St+1,j)

∥∥∥∥∥ +

∥∥∥∥∥
∑
j∈B

w(t, x, St+1,j)[Q̂b,M(t + 1, St+1,j)−Q(t + 1, St+1,j)]

∥∥∥∥∥ +

∥∥∥∥∥
∑
j∈B

w(t, x, St+1,j)Q(t + 1, St+1,j)− V (t, x)

∥∥∥∥∥
= I1 + I2 + I3 (3.8)

where w(t, x, St+1,j) = Px[dt+1(St+1, St+1,j) = min
k∈B

dt+1(St+1, St+1,k)|St+1,j; j ∈ B].

We now bound I1, I2, and I3 one by one.

We will first define {ηi
b; i = 1, · · · ,M} as ηi

b = arg miny∈{St+1,j ; j∈B} dt+1(y, ξi),

where {ξi; i = 1, · · · ,M} are i.i.d. sequence with the distribution of St+1 given
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St = x and independent of {St+1,j; j ∈ B}. Let R be the σ−algebra generated by

Q̂b,M and {St+1,j; j ∈ B}. Then we have

∑
j∈B

ŵ(t, x, St+1,j)Q̂b,M(t + 1, St+1,j) =
1

M

M∑
i=1

Q̂b,M(t + 1, ηi
b)

∑
j∈B

ŵ(t, x, St+1,j)Q̂b,M(t + 1, St+1,j) = E[Q̂b,M(t + 1, η1
b )|R].

Hence,

I1 =

∥∥∥∥∥E[| 1

M

M∑
i=1

Q̂b,M(t + 1, ηi
b)− EQ̂b,M(t + 1, η1

b )||R]

∥∥∥∥∥

≤
∥∥∥∥∥E[

√
1

M
E|Q̂b,M(t + 1, η1

b )− EQ̂b,M(t + 1, η1
b )|2|R]

∥∥∥∥∥

≤ 2K√
M

, (3.9)

where the first step is by conditional expectation, the second by Cauchy-Schwartz

inequality and the third by the boundedness in assumption (A2).

I2 ≤
∥∥∥∥∥
∑
j∈B

w(t, x, St+1,j)E|Q̂b,M(t + 1, St+1,j)−Q(t + 1, St+1,j)|
∥∥∥∥∥

=

∥∥∥∥∥
∑
j∈B

w(t, x, St+1,j)∆b,M(t + 1, St+1,j)

∥∥∥∥∥
=

∥∥∆b,M(t + 1, η1
b )[1(η1

b /∈ At+1) + 1(η1
b ∈ At+1)]

∥∥

≤ 2KPx(η
1
b /∈ At+1) + (T − t− 1)[2K(3ε + bαb + αb +

1√
M

) + ε] (3.10)

where the first step is by conditional expectation, the second by the definition of

∆b,M and the third by the definition of η1
b and conditional expectation. The last is
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by the induction hypothesis. Now we have to bound Px(η
1
b /∈ At+1).

Px(η
1
b /∈ At+1) ≤ Px(ξ1 /∈ A′

t+1) + Px(η
1
b /∈ At+1, ξ1 ∈ A′

t+1)

≤ ε + bPx(St+1,1 /∈ At+1, St+1,1 = η1
b , ξ1 ∈ A′

t+1)

≤ ε + bE[Pgt+1(dt+1(St+1,j, ξ1) ≥ εt+1; j ∈ B)|ξ1 = y ∈ A′
t+1]

≤ ε + bαb
t+1 ≤ ε + bαb (3.11)

where the third inequality is by the definition of εt+1 and the last by the indepen-

dence of St+1,j and the definition of αt+1.

Since V (t, x) does not depend on {St+1,j; j ∈ B}, we can write

V (t, x) = EQ(t + 1, ξ1) = E[Q(t + 1, ξ1)|St+1,j, j ∈ B].

Substitute in I3,

I3 =
∥∥E{[Q(t + 1, η1

b )−Q(t + 1, ξ1)]|St+1,j, j ∈ B}
∥∥

≤ ∥∥Q(t + 1, η1
b )−Q(t + 1, ξ1)

∥∥

=
∥∥[Q(t + 1, η1

b )−Q(t + 1, ξ1)][1(ξ1 /∈ A′
t+1 ∩Dc

t+1,rt+1
(h)) + 1(ξ1 ∈ A′

t+1 ∩Dc
t+1,rt+1

(h))]
∥∥

≤ 4Kε +
∥∥[Q(t + 1, η1

b )−Q(t + 1, ξ1)]1(ξ1 ∈ A′
t+1 ∩Dc

t+1,rt+1
(h), dt+1(η

1
b , ξ1) ≤ δt+1)

∥∥

+
∥∥[Q(t + 1, η1

b )−Q(t + 1, ξ1)]1(ξ1 ∈ A′
t+1 ∩Dc

t+1,rt+1
(h), dt+1(η

1
b , ξ1) > δt+1)

∥∥

≤ (4K + 1)ε + 2KE[Pgt+1(dt+1(St+1,j, ξ1) > δt+1; j ∈ B)|ξ1 = y ∈ A′
t+1]

≤ (4K + 1)ε + 2Kαb, (3.12)

where the first step is by the definition of η1
b , the second by conditional expectation,

the last three are by the definitions of A′
t+1, rt+1, δt+1 and α, respectively.
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Then (3.7) is immediate from (3.8-3.12). For any given x0 ∈ Rn
+, we could

find sufficiently small ε0 such that x0 ∈ At,∀t whenever ε < ε0. Hence, (3.7) implies

lim
b,M→∞

∆b,M(t, x0) ≤ (4K + 1)Tε. Since ε can be arbitrarily small, we complete our

proof.

Theorem 3.2 guarantees the asymptotic convergence of the weighted stochastic

mesh estimator when the behavior of underlying securities can be simulated exactly.

However, we usually do not know the solutions to the SDE characterizing the se-

curities. For this case, we have to apply approximation techniques to generating

the transition sequence required by WSM. A result similar to Theorem 3.2 will be

introduced after we introduce some additional notations and definitions.

We consider the n−dimensional case with the process X satisfying the SDE

dXt = a(Xt)dt + b(Xt)dWt.

Let {At, t ≥ 0} be an increasing family of σ−algebras associated with X. We call

(τ)∆ = {τn : n = 0, 1, · · · , T−t0
∆
}, a time discretization of a bounded interval [t0, T ]

with τn = t0 + n∆. We call a process Y = {Y (t), t ≥ 0}, which is right continuous

with left hand limits, a time discrete approximation with step size ∆, if it is based on

a time discretization (τ)∆ such that Y (τn) is Aτn−measurable and Y (τn+1) can be

expressed as a function of both Y (τ0), · · · , Y (τn), τ0, · · · , τn+1 and a finite number

of Aτn+1−measurable random variables.

We shall say that a general time discrete approximation Y ∆ with step size ∆

converges strongly with order γ > 0 at time T if there exists a positive constant
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C, which does not depend on ∆, and a ∆0 > 0 such that for each ∆ ∈ (0, ∆0)

E|XT − Y ∆(T )| ≤ C∆γ

We need one additional assumption.

(A4) Given St = x and x ∈ Rn
+, there exists a strongly convergent time discrete

approximation S∆
t+1 of order γ such that the constant C only depends on r for

any x ∈ [e−r, er]n.

Now we can use such approximation to generate {X∆
t,i,m; m = 1, · · · ,M}, the second

sequence required by WSM. Denoting the new estimator as Q̂b,M,∆(0, S0), we have

Theorem 3.3: Under assumption (A1-4), for all x ∈ Rn
+ and t = 0, · · · , T ,

lim
b,M, 1

∆
→∞

∥∥∥Q̂b,M,∆(t, x)−Q(t, x)
∥∥∥ = 0 (3.13)

Remark: We will use the strong convergent approximations in Kloeden and Platen

(1992), which can be shown to satisfy Assumption (A4).

Proof. In the proof, we will write |A1 − A2| as ≡ min{|x − y|; x ∈ A1, y ∈ A2} for

any two sets A1 and A2. Obviously, the continuity of V (t, x) in x can be similarly

shown.

We will construct sequence {A′
t, rt, At; t = 1, · · · , T} as in the proof of Theorem

3.2. Furthermore, we construct sequence {A′′
t , εt, δt, αt; t = 1, · · · , T}. Let A′′

t be

such that A′
t b A′′

t b At and εt = min( rt

4
, |A′

t−A′′c
t |, |Dt,rt/2(h)−Dc

t,rt
(h)|, dt(A′′

t , A
c
t)).

Obviously, At∩Dc
t,rt/4(h) is a compact set on which Q(t, x) is continuous thus uniform

continuous in x. Hence, there exists δt ∈ (0, εt] such that |Q(t, x) − Q(t, y)| < ε
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whenever dt(x, y) ≤ δt and x, y ∈ At∩Dc
t,rt/4(h). Then let αt = sup

y∈A′′t

Pgt [dt(St,1, y) ≥

δt], where Pgt is probability measure with density gt. Plus, we define {Ct; t =

0, · · · , T−1} as the constant which only depends on rt in assumption (A4). Note we

still can show that εt > 0 and αt < 1 for any t. At last, let δ = min{δt; t = 1, · · · , T},

α = max{αt; 1 ≤ t ≤ T} and C = max{Ct; t = 0, · · · , T − 1}.

Also defining A0 as the singleton {S0}, now we will prove for any ε > 0, x ∈ At,

b > 1, M > 1 and t = 0, · · · , T ,

∆b,M,∆(t, x) ≡
∥∥∥Q̂b,M,∆(t, x)−Q(t, x)

∥∥∥

≤ (T − t)[2K(5ε +
4C

δ
∆γ + bαb + αb +

1√
M

) + 2ε]. (3.14)

By induction, we proceed backwards from the terminal time. At T there

is nothing to prove because Q̂b,M,∆(T, ·) ≡ h(T, ·) ≡ Q(T, ·). Take as induction

hypothesis that

∆b,M,∆(t + 1, z) ≤ (T − t− 1)[2K(5ε +
4C

δ
∆γ + bαb + αb +

1√
M

) + 2ε], ∀z ∈ At+1

Now we fix x in At. Using |max(a, b)−max(a, c)| ≤ |b− c|, we have

∆b,M,∆(t, x) ≤
∥∥∥∥∥
∑
j∈B

ŵ(t, x, St+1,j)Q̂b,M,∆(t + 1, St+1,j)− V (t, x)

∥∥∥∥∥

≤
∥∥∥∥∥
∑
j∈B

[ŵ(t, x, St+1,j)− w∆(t, x, St+1,j)]Q̂b,M,∆(t + 1, St+1,j)

∥∥∥∥∥ +

∥∥∥∥∥
∑
j∈B

w∆(t, x, St+1,j)[Q̂b,M,∆(t + 1, St+1,j)−Q(t + 1, St+1,j)]

∥∥∥∥∥ +

∥∥∥∥∥
∑
j∈B

w∆(t, x, St+1,j)Q(t + 1, St+1,j)− V (t, x)

∥∥∥∥∥
= I1 + I2 + I3 (3.15)
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where w∆(t, x, St+1,j) = Px[dt+1(S
∆
t+1, St+1,j) = min

k∈B
dt+1(St+1, St+1,k)|St+1,j; j ∈ B].

Note S∆
t+1 has the approximate distribution assumed in Assumption (A4). Now we

will also bound I1, I2 and I3 one by one.

We will first define {ηi
b,∆; i = 1, · · · ,M} as ηi

b,∆ = arg miny∈{St+1,j ; j∈B} dt+1(y, ξ∆
i ),

where {ξ∆
i ; i = 1, · · · ,M} are i.i.d. sequence with the distribution of S∆

t+1 given

St = x and independent of {St+1,j; j ∈ B}. Then we still have

I1 ≤ 2K√
M

. (3.16)

To bound I2, we have

I2 ≤
∥∥∆b,M,∆(t + 1, η1

b,∆)[1(η1
b,∆ /∈ At+1) + 1(η1

b,∆ ∈ At+1)]
∥∥

≤ 2KPx(η
1
b,∆ /∈ At+1) + (T − t− 1)[2K(5ε +

4C

δ
∆γ + bαb + αb +

1√
M

) + 2ε](3.17)

where the last step is by the induction hypothesis. To bound Px(η
1
b,∆ /∈ At+1), we

have

Px(η
1
b,∆ /∈ At+1) ≤ Px(ξ

∆
1 /∈ A′′

t+1) + Px(η
1
b,∆ /∈ At+1, ξ

∆
1 ∈ A′′

t+1)

≤ Px(ξ
∆
1 /∈ A′′

t+1) + bPx(St+1,1 /∈ At+1, St+1,1 = η1
b,∆, ξ∆

1 ∈ A′′
t+1)

≤ Px(ξ1 /∈ A′
t+1) + Px(ξ

∆
1 /∈ A′′

t+1, ξ1 ∈ A′
t+1)

+bE[Pgt+1(dt+1(St+1,j, ξ
∆
1 ) ≥ δt+1; j ∈ B)|ξ∆

1 = y ∈ A′′
t+1]

≤ ε + Px(|ξ∆
1 − ξ| ≥ εt+1) + bαb

t+1

≤ ε + bαb +
Ct+1

δt+1

∆γ ≤ ε + bαb +
C

δ
∆γ (3.18)

where the forth inequality is by the definition of A′
t+1 and αt+1, and the last by

Chebychev inequality and Assumption (A4).
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To bound I3, we have

I3 =
∥∥E{[Q(t + 1, η1

b,∆)−Q(t + 1, ξ1)]|St+1,j, j ∈ B}
∥∥

≤
∥∥Q(t + 1, η1

b,∆)−Q(t + 1, ξ1)
∥∥

≤
∥∥Q(t + 1, η1

b,∆)−Q(t + 1, ξ∆
1 )

∥∥ +
∥∥Q(t + 1, ξ∆

1 )−Q(t + 1, ξ1)
∥∥

= I4 + I5. (3.19)

Furthermore,

I4 ≤ ∥∥[Q(t + 1, η1
b,∆)−Q(t + 1, ξ∆

1 )]1(ξ∆
1 /∈ A′′

t+1 ∩Dc
t+1,rt+1/2(h))

∥∥

+
∥∥[Q(t + 1, η1

b,∆)−Q(t + 1, ξ∆
1 )]1(ξ∆

1 ∈ A′′
t+1 ∩Dc

t+1,rt+1/2(h))
∥∥

≤ 2KPx(ξ
∆
1 /∈ A′′

t+1 ∩Dc
t+1,rt+1/2(h)) +

∥∥[Q(t + 1, η1
b,∆)−Q(t + 1, ξ∆

1 )]1(ξ∆
1 ∈ A′′

t+1 ∩Dc
t+1,rt+1/2(h))

∥∥

≤ 2KPx(ξ
∆
1 /∈ A′′

t+1) + 2KPx(ξ
∆
1 ∈ Dt+1,rt+1/2(h))

∥∥[Q(t + 1, η1
b,∆)−Q(t + 1, ξ∆

1 )]1(ξ∆
1 ∈ A′′

t+1 ∩Dc
t+1,rt+1/2(h), dt+1(η

1
b,∆, ξ∆

1 ) ≤ δt+1)
∥∥ +

∥∥[Q(t + 1, η1
b,∆)−Q(t + 1, ξ∆

1 )]1(ξ∆
1 ∈ A′′

t+1 ∩Dc
t+1,rt+1/2(h), dt+1(η

1
b,∆, ξ∆

1 ) > δt+1)
∥∥

≤ 2K(ε +
C

δ
∆γ) + 2KPx(ξ1 ∈ Dt+1,rt+1(h)) +

2KPx(ξ
∆
1 ∈ Dt+1,rt+1/2(h), ξ1 ∈ Dc

t+1,rt+1
(h)) + ε +

2KE[Pgt+1(dt+1(St+1,j, ξ
∆
1 ) > δt+1; j ∈ B)|ξ∆

1 = y ∈ A′′
t+1]

≤ 2K(2ε +
C

δ
∆γ + αb) + ε + 2KPx(|ξ∆

1 − ξ1| > εt+1)

≤ 2K(2ε +
2C

δ
∆γ + αb) + ε, (3.20)

where the fourth step is by the argument used in (3.18) as well as uniform continuity,

the fifth by the definition of rt+1 and α, the last by Chebychev inequality and
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assumption (A4).

For I5, we have

I5 ≤
∥∥[Q(t + 1, ξ∆

1 )−Q(t + 1, ξ1)]1(ξ1 /∈ A′
t+1 ∩Dc

t+1,rt+1
(h))

∥∥ +

∥∥[Q(t + 1, ξ∆
1 )−Q(t + 1, ξ1)][1(ξ1 ∈ A′

t+1 ∩Dc
t+1,rt+1

(h), |ξ∆
1 − ξ1| ≤ δt+1)

∥∥ +

∥∥[Q(t + 1, ξ∆
1 )−Q(t + 1, ξ1)][1(ξ1 ∈ A′

t+1 ∩Dc
t+1,rt+1

(h), |ξ∆
1 − ξ1| ≥ δt+1)

∥∥

≤ 2KPx(ξ1 /∈ A′
t+1) + 2KPx(ξ1 ∈ Dt+1,rt+1(h)) + ε + 2KPx(|ξ∆

1 − ξ1| ≥ δt+1)

≤ 4Kε + ε + 2K
C

δ
∆γ, (3.21)

where the second inequality is by the uniform continuity of Q, the third by the

definition of A′
t+1 and rt+1 and the last is by Chebychev inequality and assumption

(A4).

Then (3.14) is immediate from (3.15-3.21). For any given x0 ∈ Rn
+, we could

find sufficiently small ε0 such that x0 ∈ At,∀t whenever ε < ε0. Hence, (3.14)

implies lim
b,M, 1

∆
→∞

∆b,M,∆(t, x0) ≤ (6K + 2)Tε. Since ε can be arbitrarily small, we

complete our proof.

In order to give a confidence interval for the option price Q, we generate

N independent meshes with corresponding mesh estimates Q̂(i) = Q̂
(i)
b (0, S0), i =

1, · · · , N, and then the confidence interval can be calculated via the sample mean

and sample variance.
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3.3. Extension to Asian Options

We first consider Asian-style max options of the Bermudan flavor similar to that of

Ben-Ameur et al. (2002). (We only consider max options here for simplification.

Actually the arguments can be extended to other options like geometric average

options.) Let 0 = t0 ≤ t1 ≤ · · · ≤ tl = T be a fixed sequence of observation dates,

where m∗ is an integer satisfying 1 ≤ m∗ ≤ l. The exercise opportunities are at

dates tm, for m∗ ≤ m ≤ l. If exercised at time tm, we consider two types of payoff:

• (max
1≤i≤n

S
i

tm−K)+ where S
i

tm =
Si

t1
+···+Si

tm

m
is the arithmetic average of the asset

prices at the observation dates up to time tm;

• (
max

1≤i≤n
(Si

t1
)+···+ max

1≤i≤n
(Si

tm
)

m
−K)+.

For the case of Asian options, knowing the states of the underlying securities

at one node is not sufficient to determine the exercise value or holding value at that

node. We have to make some adjustment before WSM can be applied to pricing

Asian options.

For the first type of payoff, we expand the state vector to a 2n−dimensional

vector:

S̃tm = (S1
tm , · · · , Sn

tm , S
1

tm , · · · , S
n

tm),

while for the second type of payoff, we expand to a (n + 1)−dimensional vector:

S̃tm = (S1
tm , · · · , Sn

tm ,
max
1≤i≤n

(Si
t1
) + · · ·+ max

1≤i≤n
(Si

tm)

m
).

Now the holding value or exercise value at each node can be determined by the

new state vector of that node. Obviously if we can simulate the behavior of St+1
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given St, we can also simulate S̃tm+1 given S̃tm . Thus theorem 3.2 still holds with

the state vector expansion. Suppose t1 = 0 in the first type, we will have Gtm =

{x ∈ R2n
+ : xn+i > 1

m
xi + 1

m
Si

0; i = 1, · · · , n} for m > 2 and a degenerate situation

for m = 1. Generally Gt is no longer the whole space Rn
+ as we encounter for the

ordinary American options. Similarly, for Theorem 3.3 to apply for the state vector

expansion, we give the following Lemma without proof.

Lemma 3.4: Given Stm , let S∆ be a time discretization approximation with maxi-

mum step size ∆, which converges strongly to Stm+1 with order γ > 0. Then given

S̃tm , S̃∆ will be a time discretization approximation strongly converging to S̃tm+1

with the same order, where the ith component of S̃∆ is given as follows:

S̃∆,i =





S∆,i i = 1, · · · , n;

(1− 1
m+1

)S̃i
tm + 1

m+1
S∆,i−n i > n, for first type;

(1− 1
m+1

)S̃i
tm + 1

m+1
max
1≤j≤n

S∆,j i = n + 1, for second type.

Now we turn to Asian-style max options of the continuously sampled flavor.

For an option exercised at t ∈ [0, T ], we again consider two types of payoff as follows:

• (1
t

max
0≤i≤n

t∫
0

Si
udu−K)+;

• (1
t

t∫
0

max
0≤i≤n

Si
udu−K)+.

Also, we have to expand the status vector before WSM can be applied to this

case. For the first type of payoff, the state vector is expanded to a 2n−dimensional

vector S̃t = (St, St), where St = (
t∫

0

S1
udu, · · · ,

t∫
0

Sn
udu); while the state vector for

the second type of payoff is expanded to a (n+1)−dimensional vector S̃t = (St, S
′
t),
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where S
′
t =

t∫
0

max
0≤i≤n

Si
udu. Now the expanded state vector of each node will determine

the exercise value, as well as the holding value at that node. However, we can no

longer simulate the exact behavior of S̃t+1 even when we can simulate exactly St+1.

Let us only focus on the case where St is characterized by an SDE and there exists a

time discrete approximation which converges strongly with order γ to St+1 given St.

By rewriting the SDE that characterize S̃t+1 as follows, we can find a corresponding

time discrete approximation that converges strongly with the same order to S̃t+1

given S̃t.

St+1 = St +

t+1∫

t

a(Su)du +

t+1∫

t

b(Su)dWu

St+1 = St +

t+1∫

t

Sudu

S
′
t+1 = S

′
t +

t+1∫

t

max
0≤i≤n

Si
udu

Thus, assumption (A4) applies for the state vector expansion.

3.4. Value at Risk (VaR)

The measure of Value at Risk (VaR) has become an important measure in the

financial industry. However, there are few papers that address the calculation of

VaR for American-style options. Since VaR is nothing more than a quantile of

the option’s potential profit and loss over a given time period, the problem is to

calculate the r−th quantile of Q at time s ∈ (0, T ], denoted by ξr,s and defined

by F−1(r) = inf{u : F (u) ≥ r}, where F (u) ≡ P (Q(τ ∗ ∧ s, Sτ∗∧s) ≤ u|S0) and ∧
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denotes the minimum operator, s and r are pre-specified, τ ∗ is the optimal stopping

time that solves problem in (3.1), and Q has been discounted to time 0. The major

difference between American-style and European-style options in calculating the

VaR now for some time s > 0 in the future is that an American-style option may

already have been exercised by time s. Hence, we can not just base our calculation

on the behavior of the underlying securities at s but require the entire path up to s.

The path estimator proposed in Broadie and Glasserman (2004) gives an idea

for estimating VaR. We will simulate a trajectory of the underlying securities until

the exercise region determined by the mesh or s is reached. Independent of the mesh

points, the path Sv = (Sv,0, · · · , Sv,s) will be simulated according to the risk-neutral

density of St. Along the path, we will generate a sequence {Xt,m; m = 1, · · · ,M}

under the risk neutral density of St+1 given St = Sv,t for each t ∈ {0, · · · , s∧(T−1)}.

Note this sequence has to share the random numbers with the transition sequence

generated by WSM. Then we can define an approximate stopping rule by letting

τ̂(Sv) = min{t : h(t, Sv,t) = Q̂(t, Sv,t)}, where

Q̂(t, Sv,t) =





max(h(t, Sv,t),
∑
j∈B

ŵ(t, Sv,t, St+1,j)Q̂(t + 1, St+1,j)) t < T ∧ s

h(T, Sv,t) t = T if s = T

(3.22)

ŵ(t, Sv,t, St+1,j) =
1

M

M∑
m=1

1(dt(Xt,m, St+1,j) = min
k∈B

dt(Xt,m, St+1,k)). (3.23)

We might have two cases: if an exact simulation is available for Sv, Q̂ = Q̂b,M ;

otherwise, Sv,t, Sv are replaced by S∆
v,t, S

∆
v and Q̂ = Q̂b,M,∆.

Generate nv independent paths {Si
v,t; i = 1, · · · , nv, t = 0, · · · , s} for each mesh
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and calculate Q̂i
v = Q̂b,M(τ̂ ∧ s, Si

v,τ̂∧s), where τ̂ = τ̂(Si
v). Then ξ̂r,s = F−1

nv
(r) =

inf{u : Fnv(u) ≥ r} will be the estimator of r−th VaR at time s ∈ (0, T ], where

Fnv(u) = 1
nv

nv∑
i=1

1(Q̂i
v ≤ u). (Q̂i

v is replaced with Q̂∆,i
v when only approximate

simulation exists.) For the case where we can simulate the exact behavior of the

underlying securities, we make the dependence of ξ̂r,s on b, M and nv explicit by

denoting the estimator as ξ̂r,s(b,M, nv). The convergence theorem requires two

additional assumptions.

(B1) There exists ε0 > 0 such that F (u) is strictly increasing and continuous on

(ξr,s − ε0, ξr,s + ε0).

(B2) P (h(t, St) = V (t, St)) = 0 for all t = 0, · · · , T − 1

Theorem 3.5: Suppose Assumptions (A1-2) and (B1-2) hold, then for all s ∈

(0, T − 1] and r ∈ (0, 1),

lim
b,M,nv→∞

∥∥∥ξ̂r,s(b, M, nv)− ξr,s

∥∥∥ = 0 (3.24)

Remark: The assumption (B2) implies that the exercise boundary will be thin in

terms of probability measure. Assumption (B1) and (B2) hold for many cases, but

further work seems to be required before we can verify them rigorously.

Proof. We will denote ξ̂r,s(b,M, nv) as ξ̂r,s for short. Also, we will denote the ran-

domness associated with the mesh as R. With the boundedness of ξ̂r,s, we only have

to show P [|ξ̂r,s−ξr,s| > ε] = P [ξ̂r,s−ξr,s > ε]+P [ξ̂r,s−ξr,s > −ε] → 0 for ε ∈ (0, ε0),

where ε0 is introduced in Assumption (B1). We will show P [ξ̂r,s − ξr,s > ε] → 0
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below and similar arguments could be applied to showing P [ξ̂r,s − ξr,s > −ε] → 0.

Let δ = F (ξr,s + ε
2
)−r and zR = P (Q̂1

v ≤ ξr,s +ε|R). We will denote the expectation

conditioning on R as ER.

P [ξ̂r,s > ξr,s + ε] ≤ P [r = Fnv(ξ̂r,s) ≥ Fnv(ξr,s + ε)]

≤ P (zR < r + δ) + P [|Fnv(ξr,s + ε)− zR| ≥ zR − r ≥ δ]

≤ P (zR < r + δ) +
1

δ
EER|Fnv(ξr,s + ε)− zR|

≤ P (zR < r + δ) +
1

δ

√
2

nv

, (3.25)

where the first inequality by the non-decreasing property of Fnv , the third by Cheby-

chev inequality and the last by Cauchy-Schwartz inequality and the definition of

Fnv . Now it suffices to show P (zR < r + δ) → 0 whenever b,M → ∞ because

zR does not depend on nv. Since L1 convergence implies convergence in distribu-

tion and F (ξr,s + ε) > r + δ, it suffices to show E|zR − F (ξr,s + ε)| → 0. Note

Q1
v ≡ Q(τ ∗ ∧ s, S1

v,τ∗∧s) is independent of R thus F (ξr,s + ε) = P (Q1
v ≤ ξr,s + ε) =

P (Q1
v ≤ ξr,s + ε|R). We have

E|zR − F (ξr,s + ε)| = E|ER1(Q̂1
v ≤ ξr,s + ε)− ER1(Q1

v ≤ ξr,s + ε)|

≤ E|1(Q̂1
v ≤ ξr,s + ε)− 1(Q1

v ≤ ξr,s + ε)|

≤ P (|Q1
v − ξr,s − ε| ≤ δ0) + P (|Q̂1

v −Q1
v| ≥ |Q1

v − ξr,s − ε| > δ0)

≤ P (|Q1
v − ξr,s − ε| ≤ δ0) +

1

δ0

E|Q̂1
v −Q1

v|, (3.26)

where δ0 is arbitrary positive number. Since F (u) is continuous at ξr,s + ε by

assumption (B1), the first term on the right hand side could be arbitrarily small if
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δ0 is sufficiently small. Now it suffices to show E|Q̂1
v −Q1

v| → 0.

E|Q̂1
v −Q1

v| = EE[|Q̂1
v −Q1

v||S1
v,t; t = 0, · · · , s]

≤ 2KEP (τ̂ 6= τ ∗|S1
v,t; t = 0, · · · , s) +

∥∥∥Q̂b,M(s, S1
v,s)−Q(s, S1

v,s)
∥∥∥

= 2KEP 1
v (τ̂ 6= τ ∗) +

∥∥∥Q̂b,M(s, S1
v,s)−Q(s, S1

v,s)
∥∥∥ , (3.27)

where P 1
v is the probability measure conditioning on {S1

v,t; t = 0, · · · , s}. The second

term on the right hand side converges to zero by Theorem 3.2. If we can show

P 1
v (τ̂ 6= τ ∗) → 0 a.s., dominated convergence theorem will imply EP 1

v (τ̂ 6= τ ∗) → 0.

Since Assumption (B2) guarantees the exercise boundary is hit with probability

zero, we can focus on {S1
v,t; t = 0, · · · , s} that never hits the boundary. Thus there

exists ε′ > 0 such that |h(t, S1
v,t)− V (t, S1

v,t)| > ε′ for t = 0, · · · , s. This yields

P 1
v (τ̂ 6= τ ∗) ≤

s∑
t=0

P 1
v (V̂b,M(t, S1

v,t) ≤ h(t, S1
v,t) < V (t, S1

v,t)) +

+
s∑

t=0

P 1
v (V (t, S1

v,t) ≤ h(t, S1
v,t) < V̂b,M(t, S1

v,t))

≤
s∑

t=0

P 1
v (|V̂b,M(t, S1

v,t)− V (t, S1
v,t)| > ε′) (3.28)

In Theorem 3.2, we indeed have shown E[|V̂b,M(t, St)− V (t, St)||St; t = 0, · · · , T ] →

0, a.s., t = 0, · · · , T . Since L1 convergence implies convergence in probability, we

have P 1
v (|V̂b,M(t, S1

v,t)−V (t, S1
v,t)| > ε′) → 0, which implies P 1

v (τ̂ 6= τ ∗) → 0 a.s. and

completes our proof.

For the case where there only exists a strongly convergent time discrete ap-

proximation with step size ∆, we use it to generate nv independent paths {S∆,i
v,t ; i =

1, · · · , nv, t = 0, · · · , s} for each mesh, i.e., for fixed i = 1, · · · , nv, we generate S∆,i
v,0
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given S0 and generate S∆,i
v,1 given S1 = S∆,i

v,0 , and so on. Since the simulation error

could accumulate due to the subsequent approximation, we have to further assume

(A5) The time sequence of discrete approximation {S∆
t ; t = 0, · · · , s} with step size

∆ converges strongly to {St; t = 0, · · · , s} from 0 up to s if lim
∆→0

E|S∆
t −St| = 0

for any t = 1, · · · , s.

Then we can calculate Q̂∆,i
v = Q̂b,M,∆(τ̂ ∧ s, S∆,i

v,τ̂∧s) as well as ξ̂r,s. By denoting the

estimator as ξ̂r,s(b,M, nv, ∆), we have

Theorem 3.6: Suppose (A1-5) and (B1-2) hold, then for all s ∈ (0, T − 1] and

r ∈ (0, 1),

lim
b,M,nv , 1

∆
→∞

∥∥∥ξ̂r,s(b,M, nv, ∆)− ξr,s

∥∥∥ = 0 (3.29)

Proof. By the existence of a time discrete approximation, we can treat {S∆,1
v,t ; t =

0, · · · , s} as an approximation to {S1
v,t; t = 0, · · · , s} and the latter is the path with

exact distribution of {St; t = 0, · · · , s} given S0. Let Q1
v = Q(τ ∗ ∧ s, S1

v,τ∗∧s) and

Q̂∆,1
v = Q̂b,M,∆(τ̂ ∧ s, S∆,1

v,τ̂∧s). With similar arguments in the proof of Theorem 3.5,

it only suffices to show E|Q̂∆,1
v −Q1

v| → 0 when b,M, 1
∆
→∞.

E|Q̂∆,1
v −Q1

v| ≤ E|Q̂∆,1
v −Q1

v|[1(τ̂ 6= τ ∗) + 1(τ̂ = τ ∗)]

≤ 2KP (τ̂ 6= τ ∗) +
s∑

t=0

∥∥∥h(t, S∆,1
v,t )− h(t, S1

v,t)
∥∥∥ +

∥∥∥V̂b,M,∆(s, S∆,1
v,s )− V (s, S1

v,s)
∥∥∥ . (3.30)

Let Dδ
t = {x : |h(t, x) − v(t, x)| < δ} for t = 1, · · · , s. We can see Dδ

t converges to

the exercise boundary at time t as δ ↓ 0. Given ε > 0, the property of probability
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measure and assumption (B2) imply lim
δ→0

P (St ∈ Dδ
t |S0) = 0 for t = 1, · · · , s. Hence,

there exists δ > 0 such that P (St ∈ Dδ
t |S0) < ε for all t = 1, · · · , s.

P (τ̂ 6= τ ∗) ≤
s∑

t=0

P [h(t, S1
v,t) ≤ V (t, S1

v,t), h(t, S∆,1
v,t ) > V̂b,M,∆(t, S∆,1

v,t )] +

s∑
t=0

P [h(t, S1
v,t) > V (t, S1

v,t), h(t, S∆,1
v,t ) ≤ V̂b,M,∆(t, S∆,1

v,t )]

≤
s∑

t=0

[P (|h(t, S1
v,t)− V (t, S1

v,t)| < δ) + P (|h(t, S∆,1
v,t − h(t, S1

v,t)| ≥
δ

2
) +

P (|V̂b,M,∆(t, S∆,1
v,t )− V (t, S1

v,t)| ≥
δ

2
)

≤ Tε +
2

δ

s∑
t=0

E[|h(t, S∆,1
v,t − h(t, S1

v,t)|+ |V̂b,M,∆(t, S∆,1
v,t )− V (t, S1

v,t)|]

≤ Tε +
2

δ

s∑
t=0

E|h(t, S∆,1
v,t )− h(t, S1

v,t)|+
2

δ

s∑
t=0

E|V (t, S∆,1
v,t )− V (t, S1

v,t)|

2

δ

s∑
t=0

E|V̂b,M,∆(t, S∆,1
v,t )− V (t, S∆,1

v,t )|

= Tε + I1 + I2 + I3, (3.31)

where the third step is by the definition of δ and Chebychev inequality. Assumption

(A5) and continuity of V imply I2 → 0 when ∆ → 0 and Theorem 3.3 implies I3 → 0

when b,M, 1
∆
→∞. So the third term on the right hand side of (3.30) also converges

to zero. Now, with (3.30) and (3.31), it is only left to show E|h(t, S∆,1
v,t )−h(t, S1

v,t)| →

0, for t = 1, · · · , s.

We only need to consider case where Dt(h) 6= φ. For given t and ε > 0, Lemma

3.1 implies there exist A′
t, At and rt > 0 such that A′

t b At b Gt, P (S1
v,t /∈ A′

t|S0) <

ε) and P (S1
v,t ∈ Dt,rt(h)|S0) < ε. Let δt ∈ (0, |A′

t ∩Dc
t,rt

(h) − Ac
t ∪Dt,rt/2(h)|) such

that h(t, x)− h(t, y) < ε whenever |x− y| ≤ δt and x, y ∈ At ∩Dc
t,rt/2(h).
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I ′1 ≡ E|h(t, S∆,1
v,t )− h(t, S1

v,t)|

≤ 2KP (S1
v,t /∈ A′

t ∩Dt,rt(h)) + 2KP (|S∆,1
v,t − S1

v,t| > δt) +

E|h(t, S∆,1
v,t )− h(t, S1

v,t)|1[S1
v,t ∈ A′

t ∩Dt,rt(h), |S∆,1
v,t − S1

v,t| ≤ δt]

≤ 4Kε + ε +
2K

δt

E|S∆,1
v,t − S1

v,t|. (3.32)

Now assumption (A5) implies the limitation of I ′1 is no greater than 4Kε + ε. We

complete our proof since ε can be arbitrarily small.

As in section 3.2, we can calculate estimators for each mesh and then the

sample mean and sample variance will give us a confidence interval for ξr,s.

3.5. Conclusion

This chapter proposes a new algorithm, weighted stochastic mesh method, for

American-style options pricing. This algorithm does not assume any knowledge

of the exercise boundary, and requires computational effort that is only polynomial

in the problem dimension as well as the number of exercise opportunities. After some

adjustment, this algorithm can be applied to pricing path-dependent options and

calculating VaR. Asymptotic convergence is guaranteed under fairly mild and easy

to verify assumptions. However, further work is necessary to make the algorithm

computationally practical.
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Chapter 4

Simulation Allocation with Correlated

Non-Gaussian Sampling

4.1. Problem Setting

Let k be the number of designs and T be the total number of simulation replications

(budget). Under the budget constraint, we will allocate Ni simulation replications to

design i so that the probability of correct selection (PCS) is maximized. Here “cor-

rect selection” is defined as picking the best design, which we will take as the design

having maximum mean. Without loss of generality, we assume design 1 is the best,

i.e., µ1 > µi ∀i > 1, where µi is mean for design i. Let J̃im,m = 1, . . . , Ni represent

the mth simulation replication for design i, and J̄i = 1
Ni

∑Ni

m=1 J̃im represent the sam-

ple average for design i. Then our goal is to maximize P (J̄1 − J̄i > 0, i = 2, . . . , k)

by determining the values of N1, N2, . . . , Nk subject to N1 + N2 + . . . + Nk = T .

We will make following assumptions on the samples:
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(A1) J̃im is independent of J̃jn when m 6= n for all 1 ≤ i, j ≤ k;

(A2) EeλJ̃im < ∞ for λ ∈ (−∞,∞);

(A3) P (J̃im > J̃1m) > 0.

Since the problem is analytically intractable, we will replace the original prob-

lem with an approximate one. To simplify notation, we introduce {ξi, 1 ≤ i ≤ k},

which have the same joint distribution as {J̃im − µi, 1 ≤ i ≤ k} ∀m.

Using Bonferroni inequality and large deviation techniques, we have

P (J̄1 − J̄i > 0, i = 2, . . . , k) ≥ 1−
k∑

i=2

P (J̄i − J̄1 > 0)

≥ 1− (k − 1) max
2≤i≤k

P (J̄i − J̄1 > 0)

= 1− (k − 1) exp{max
2≤i≤k

ln P (J̄i − J̄1 > 0)}

≥ 1− (k − 1) exp{max
2≤i≤k

inf
λ≥0

ln EeλNi(J̄i−J̄1)}.(4.1)

For all 1 < i ≤ k, we define βi as µi − µ1 and a bi-variable function hi as:

hi(λ, x) ≡





βixλ + (x− 1) ln E exp(λξi) + ln E exp(λξi − λxξ1), x ≥ 1

βixλ + (1− x) ln E exp(−λxξ1) + x ln E exp(λξi − λxξ1), x < 1

.(4.2)

If we calculate the rate function on right hand side of (4.1) for Ni ≥ N1, we have

ln EeλNi(J̄i−J̄1) = ln E exp{λ(

Ni∑
m=1

J̃im − Ni

N1

N1∑
m=1

J̃1m)}

= ln E exp{λ
N1∑

m=1

(J̃im − Ni

N1

J̃1m)}+ ln E exp{λ
Ni∑

m=N1+1

J̃im}

= N1 ln E exp{λ[ξi + µi − Ni

N1

(ξ1 + µ1)]}+ (Ni −N1) ln E exp{λ(ξi + µi)}

= Niλ(µi − µ1) + (Ni −N1) ln E exp(λξi) + N1 ln E exp(λξi − λ
Ni

N1

ξ1)

= N1hi(λ,
Ni

N1

),
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where the second step uses assumption (A1) and the third uses definition of ξi. We

can verify that ln EeλNi(J̄i−J̄1) = N1hi(λ, Ni

N1
) also holds when Ni < N1. Plugging

into (4.1), we have

P (J̄1 − J̄i > 0, i = 2, . . . , k) ≥ 1− (k − 1) exp{N1 max
2≤i≤k

inf
λ≥0

hi(λ,
Ni

N1

)}.

Now we replace the original problem with a new one by maximizing the

right hand side, not left hand side, of above inequality. Using notation Hi(x) =

infλ≥0 hi(λ, x), we write this new problem as follows:

min{N1 max
2≤i≤k

Hi(
Ni

N1

)|
k∑

i=1

Ni = T, Ni ≥ 0}. (4.3)

From now on, {N∗
i , 1 ≤ i ≤ k} and {Ñi, 1 ≤ i ≤ k} will represent the optimal

solutions to this new problem and the original problem with budget T , respectively.

For arbitrary positive solution {Ni, 1 ≤ i ≤ k}, which satisfies the budget constraint,

we can define Yi ≡ N1Hi(
Ni

N1
) for all 2 ≤ i ≤ k and Y ≡ max2≤i≤k Yi. We can also

define Y ∗
i , Y ∗, Ỹi and Ỹ , accordingly. Before we go to the following sections, we will

point out two facts:

• The solutions and Yis are functions of budget T ;

• Yis are always non-positive by noticing that Hi(x) ≤ hi(0, x) = 0 for all x > 0.
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4.2. Solution Procedure to the Approximate Prob-

lem

In this section, we provide a solution procedure for problem (4.3). Throughout,

we will always treat the variables to be optimized as continuous. For notational

convenience, we define the set containing all indices except the best:

Ω = {2, . . . , k}.

Let us denote σij as covariance between paired simulations of design i and design j.

We first consider three degenerate cases:

(i) σii = 0 for some i ∈ Ω.

Obviously we have N∗
i = 1 and thus we can eliminate that design i from the

problem and reduce the budget by 1.

(ii) σiiσ11 = σ2
i1 > 0 for some i ∈ Ω.

We know the ith design and the best design are completely correlated in this

case, we can eliminate design i by letting N∗
i = 2 and N1 > 2.

(iii) σ11 = 0.

We have N∗
1 = 1 accordingly and the problem (4.3) is reduced to

min{max
2≤i≤k

Hi(Ni)|
k∑

i=2

Ni = T − 1, Ni ≥ 0} (4.4)

We can show Hi(Ni) = NiHi(1) and rewrite (4.4) as

min
k∑

i=2
Ni=T−1

max
i∈Ω

NiHi(1)
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Since max
i∈Ω

NiHi(1) ≥ NiHi(1) for each i ∈ Ω, max
i∈Ω

NiHi(1) ≥
k∑

i=2

βiNiHi(1),

where {βi} can be any sequence of positive numbers summing to 1. Letting

βi = 1/Hi(1)
k∑

i=2
1/Hi(1)

, we have max
i∈Ω

NiHi(1) ≥ T−1
k∑

i=2
1/Hi(1)

, a lower bound that can be

achieved only if all NiHi(1) are equal. Hence, the optimal allocation will be

given by Ni = (T − 1)βi.

Henceforth, we only consider about non-degenerate cases. Before we propose

our major results, we first state a few properties of function Hi(·) in Lemma 4.1.

Lemma 4.1

(i) For any x > 0 and i ∈ Ω, Hi(x) = hi(λi(x), x), where λi(x) is the unique

solution to ∂
∂λ

hi(λ, x) = 0.

(ii) Hi(x) is decreasing on interval (0, 1) for all i ∈ Ω; Hi(x)/x is increasing on

interval (1,∞) for all i ∈ Ω.

(iii) P (J̃im > µ1) ≥ 0 ⇐⇒ Hi(0+) = 0; P (J̃1m < µi) ≥ 0 ⇐⇒ Hi(∞−) > −∞.

Proof. Letting f(λ) = ln E exp(λη), where η is any centralized non-trivial random

variable, we claim

• f(0) = 0, f ′(0) = 0, f ′′(λ) > 0, f ′(λ) has same sign with λ;

• limλ→∞ f ′(λ) = a(η) ≡ sup{a > 0|P (η ≥ a) > 0}.

The first claim is trivial. For the second one, we notice

lim
λ→∞

f ′(λ) = Eηeλη/Eeλη ≤ a(η).
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Now it suffices to show the limitation on the left hand side is above a when P (η ≥

a) > 0. Let δ be a positive number. Then there exists ε > 0 such that

P (a− ε ≤ η < a)

P (η ≥ a)
< δ.

Hence, we have

f ′(λ) =
Eηeλη

Eeλη
≥ aEeλη1(η ≥ a)

Eeλη1(η ≥ a) + eλaP (a− ε ≤ η < a) + eλ(a−ε)

= a
[
1 +

eλaP (a− ε ≤ η < a) + eλ(a−ε)

Eeλη1(η ≥ a)

]−1

≥ a

1 + δ + e−λε/P (η ≥ a)
.

Hence, limλ→∞ f ′(λ) ≥ a/(1 + δ). Since δ can be arbitrarily small, we establish the

second claim.

Now we will show part (i). For any fixed x > 0, we notice that ∂
∂λ

hi(λ, x) is

increasing by using the first claim above. Also, we have ∂
∂λ

hi(0, x) = βix < 0. So it

suffices to show limλ→∞ ∂
∂λ

hi(λ, x) > 0. Using the second claim above, we have

lim
λ→∞

∂

∂λ
hi(λ, x) =





βix + a((x− 1)ξi) + a(ξi − xξ1), x > 1

βix + xa(−(1− x)ξ1) + xa(ξi − xξ1), x ≤ 1

≥ x(βi + a(ξi − ξ1)),

where notation a(·) is introduced in the second claim above and the inequality uses

the fact that a(η1) + a(η2) ≥ a(η1 + η2) and a(cη) = ca(η) for any positive constant

c. Since assumption (A3) implies the right hand side of above formula is positive,

we establish part (i).

By the definition of Hi and λi(x), we have Hi(x) = hi(λi(x), x) and

H ′
i(x) =

∂hi(λ, x)

∂x

∣∣
λ=λi(x)

.

65



Letting x fall in interval (0, 1) and using ∂hi(λ,x)
∂λ

∣∣
λ=λi(x)

= 0, we have

H ′
i(x) = [

∂hi(λ, x)

∂x
− ∂hi(λ, x)

∂λ

λ

x
]
∣∣
λ=λi(x)

= ln Eeλi(x)ξi−λi(x)xξ1 − ln Ee−λi(x)xξ1 − λi(x)
Eξie

λi(x)ξi−λi(x)xξ1

Eeλi(x)ξi−λi(x)xξ1
. (4.5)

Now we define function G(λ) as ln Eeλξi+η, where η is any centralized non-degenerate

random variable. We can show G′′(λ) > 0 for any λ. If we fix x and let η =

−λi(x)xξ1, the right hand side of (4.5) can be rewritten as

H ′
i(x) = G(λi(x))−G(0)−G′(λi(x))λi(x)

= −λ2
i (x)

2
G′′(θλi(x)) ≤ 0,

where the second equality is by Taylor expansion of G(0) around G(λi(x)) and θ is

some positive number less than λi(x). With this we establish the first claim of part

(ii). Appplying similar arguments to x > 1, we can show xH ′
i(x) − H(x) > 0 and

complete part (ii).

Now we prove first claim of part (iii). For 0 < x < 1, λi(x) is the solution to

βi − (1− x)
Eξ1e

−λxξ1

Ee−λxξ1
+

E(ξi − xξ1)e
λξi−λxξ1

Eeλξi−λxξ1
= 0.

Suppose λi(x) is bounded when x is close to 0, it is easy to see that λi(0+) exists

and solves

βi +
Eξie

λξi

Eeλξi
= 0.

We observe that the left hand side of this equation is monotone in λ and converges

to a(ξi + βi) as λ →∞ by using the claim we proved in the beginning of this proof.

Therefore this equation has a finite solution if and only if P (J̃im > µ1) > 0. We can
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verify Hi(0+) = 0 when the condition holds. Now if we suppose λi(x) is unbounded

in vicinity of 0, it is also easy to see that λi(x)x has limit at 0 which solves

βi + a(ξi)− Eξ1e
−λξ1

Ee−λξ1
= 0.

Similarly, this equation has solution if and only if P (J̃im > µ1) ≤ 0. We can verify

Hi(0+) = 0 when P (J̃im > µ1) = 0 whereas Hi(0+) < 0 when P (J̃im > µ1) < 0.

This establishes the first claim of part (iii). We can complete part (iii) by applying

similar arguments to x →∞.

Letting xi = Ni

N1
for i ∈ Ω, we can rewrite the budget constraint as N1(1 +

∑
i∈Ω xi) = T , and problem (4.3) as:

{min
maxi∈Ω Hi(xi)

1 +
∑

i∈Ω xi

∣∣xi > 0}. (4.6)

We observe that the optimal value of xi may be zero when Hi(0+) < 0 whereas it

may be infinity when Hi(∞−) = −∞. According to Lemma 4.1(iii), we can exclude

such extreme cases by assuming

(A4) P (J̃1m < µi) > 0 and P (J̃im < µ1) > 0 for all i ∈ Ω.

Now we can derive some properties of the optimal solution {N∗
i }. First,

we notice that all Hi(
N∗

i

N∗
1
) = Hi(x

∗
i ) have to be equal. Suppose this is not true,

assumption (A4) implies x∗i > 0 for all i ∈ Ω. Therefore we can always im-

prove the objective value by reducing those x∗i whose Hi values do not equate

maxi∈Ω Hi(x
∗
i ). Second, if we let the z∗ = Hi(

N∗
i

N∗
1
), we have

N∗
i

N∗
1

= H−1
i (z∗), where

H−1
i (z) ≡ inf{x > 0|Hi(x) = z}. If this is not true, we can only have

N∗
i

N∗
1

> H−1
i (z∗).

Then the objective value can be improved by replacing
N∗

i

N∗
1

with H−1
i (z∗).
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Figure 4.1: Function Hi(x)

Theorem 4.2 For any optimal solution {N∗
i }, there exists z∗ such that

N∗
i

N∗
1

=

H−1
i (z∗), ∀i ∈ Ω.

H−1
i can be discontinuous when Hi is not monotone. In this situation, Ni/N1

only can take values in a disconnected set. For example, if we assume Hi(x) has

S shape as in figure 1, Ni/N1 can only take values on (0, 1) ∪ (3,∞). We notice

from the figure that Hi(·) is always decreasing on this disconnected set. Actually

Theorem 4.2 implies this is always true. More precisely, H ′
i(

N∗
i

N∗
1
) ≤ 0 when

N∗
i

N∗
1
6= 1.

Suppose this is not true, Hi(·) is increasing locally and there exists 0 < x̂ <
N∗

i

N∗
1

such

that Hi(x̂) < z∗ = Hi(
N∗

i

N∗
1
) < 0 = Hi(0). Continuity of Hi implies Hi(x) = z∗ has at

least one root in between 0 and x̂, a contradiction with
N∗

i

N∗
1

= H−1
i (z∗). So we can

write the following corollary, where part (ii) is straightforward using Lemma 4.1(ii):

Corollary 4.3
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(i) H ′
i(

N∗
i

N∗
1
) ≤ 0 as

N∗
i

N∗
1
6= 1, where H ′

i is the first-order derivative of Hi;

(ii) z∗ ≥ Hi(1) ⇐⇒ N∗
i ≤ N∗

1 .

Let Hb
i ≡ infx≥0 Hi(x). Obviously z∗ ≥ Hb ≡ maxi∈Ω Hb

i . Now we can rewrite

problem (4.6) as

max{F (z)| Hb ≤ z ≤ 0}, where F (z) =

1 +
k∑

i=2

H−1
i (z)

z
. (4.7)

Once we find optimizer of this problem, z∗, we can easily get {N∗
i } via:

N∗
1 =

T

1 +
∑

i∈Ω H−1
i (z∗)

, and N∗
i = N∗

1 H−1
i (z∗). (4.8)

Simple algebra yields

M(z) ≡ z2F ′(z) =
k∑

i=2

z

H ′
i(H

−1
i (z))

− 1−
k∑

i=1

H−1
i (z). (4.9)

If F (·) is smooth, we only need to locate all the roots of M(z) = 0 in interval [Hb, 0].

But F (·) is not differentiable at Hi(1) when J̃im and J̃1m are not independent. Also

we note that F (·) even may not be continuous when some Hi(·) is not monotone.

So M(z) = 0 may not be satisfied or even well defined for each optimizer, z∗, to

problem (4.7). Theorem 4.4 gives a necessary condition for z∗.

Theorem 4.4 Let S1 = {Hi(1)|i ∈ Ω} ∩ [Hb, 0) and S2 = {z ∈ (Hb, 0)|F (·) is

discontinuous at z}. If z∗ is optimizer of problem (4.7), one of the following three

conditions has to be satisfied:

(i) F ′(z∗) = 0, z∗ /∈ S1, Hb < z∗ < 0;

(ii) F ′(z∗+) ≤ 0, F ′(z∗−) ≥ 0, z∗ ∈ S1 \ S2 \ {Hb};
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(iii) F ′(z∗+) ≤ 0, z∗ ∈ S1 ∩ S2.

Proof. We first notice that F (0−) = −∞, so 0 cannot be an optimizer either. Now

we look at point Hb. If H−1
i (Hb) = ∞ for some i ∈ Ω, we have F (Hb+) = −∞ and

Hb can not be optimal. Now we assume H−1
i (Hb) is finite for all i ∈ Ω and Hb /∈ S1.

By definition, Hb has to be minimum of some Hi(·). So H ′
i(H

−1
i (Hb)) = 0 for some

i ∈ Ω. Then we have F ′(Hb+) = ∞ because z
H′

i(H
−1
i (z))

− H−1
i (z) → ∞ as z ↓ Hb.

Therefore, Hb cannot optimal as long as Hb /∈ S1.

We now assume ω ∈ S2\S1. We observe that F (·) is right continuous at ω and

H ′
i(H

−1
i (ω)) = 0 for some i ∈ Ω. So we have F ′(ω+) = ∞, which means ω can not

be a local optimizer to F (·). Now if we assume z∗ ∈ (Hb, 0) \ S1, we have z∗ /∈ S2,

i.e., F (·) is continuous and differentiable at z∗. So F ′(z∗) = 0 has to be true. This

is the first condition in the theorem. For the case z∗ ∈ S1 \S2 \{Hb}, we know F ′(·)

has both left limit and right limit at z∗, so F ′(z∗+) ≤ 0 and F ′(z∗−) ≥ 0 have to

hold. This is the second condition in the theorem. For the case z∗ ∈ S1 ∩ S2, we

know F ′(·) only has right limit, so F ′(z∗+) ≤ 0, which is the third condition in the

theorem.

However, it still can be very hard to locate the global optimizer of problem (4.7)

even with theorem 4.4. The first difficulty is to calculate F (z), or more precisely,

H−1
i (z), for any given Hb

i ≤ z < Hi(1). Obviously it is trivial to calculate H−1
i (z)

via some numerical processes, say, bisectional method, as long as we know the

monotonicity of Hi(·). Since it is hard to obtain knowledge on such monotonicity

property, we will turn to a specified process. Theorem 4.5 proposes this process
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and guarantees it will yield H−1
i (z) for any z < Hi(1). Here we implicitly extend

definition of H−1
i (z) by letting H−1

i (z) = ∞ as z < Hi(1).

Theorem 4.5 Define sequence {x1 = 1 ; xn+1 = zxn

Hi(xn)
, ∀n ≥ 1} for any i ∈ Ω and

z < Hi(1), then xn increasingly converges to H−1
i (z) as n →∞.

Proof. Note from Lemma 4.1(ii) that Hi(x)/x is increasing in x. First we show

{xn} is an increasing sequence by induction: z < Hi(1) =⇒ x2 = z
Hi(1)

> 1 = x1;

xn > xn−1 =⇒ xn+1 = zxn

Hi(xn)
> zxn−1

Hi(xn−1)
= xn. Now we consider case z ≥ Hb

i

and denote x∗ = H−1
i (z) < ∞. We can also show xn < x∗ by induction: x1 < x∗;

xn−1 < x∗ =⇒ xn = zxn−1

Hi(xn−1)
< zx∗

Hi(x∗)
= x∗. Since {xn} is a bounded monotone

sequence, it has a finite limitation, which has to be x∗. Now we handle the case

z < Hb
i by contradiction. Suppose xn is bounded then it has a limit which satisfies

equation x = zx
Hi(x)

, i.e., z = Hi(x). This contradicts with z < Hb
i .

Remark: Not knowing Hb in general means we can not tell if sequence {xn} will

converge to a finite value or diverge for arbitrary z < Hi(1). A solution is to define

a good stopping rule which stops the iterative process whenever it goes across a

bound and at the meantime does not risk stopping a slowly convergent sequence

too early. Suppose we already get a value F1 = F (z1) and we are testing if F2 =

F (z2) is a better value. Denote set I as {i ∈ Ω|Hi(1) > z2}. If I is empty, then

H−1
i (z2) ∈ (0, 1], ∀i ∈ Ω, and we can easily calculate H−1

i (z2) since we know Hi(·)

is decreasing on (0, 1]. Without loss of generality, we assume I = {2, 3, · · · , |I|+ 1}

and that we already calculate H−1
i (z2) for all 1 < i < n, where 2 ≤ n ≤ |I| + 1.

Letting the bound BND = F1z2 −
∑n−1

i=2 H−1
i (z2), we claim that z∗ > z2 given the
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iterative process crosses this bound. Obviously we only need to take care of the case

where z2 > Hb
n and H−1

i (z2) ≥ BND. Let z3 fall in (Hb
n, z2] and notice that Lemma

4.1(ii) implies H−1
i (z)/z is increasing. We have

F (z3) =
1 +

∑
i∈Ω H−1

i (z3)

z3

<
∑
i∈Ω

H−1
i (z3)

z3

≤
n∑

i=2

H−1
i (z3)

z3

≤
n∑

i=2

H−1
i (z2)

z2

≤
n−1∑
i=2

H−1
i (z2)

z2

+
BND

z2

= F1.

Now we propose a procedure to numerically solve the optimization problem

(4.3)/(4.6)/(4.7):

• Step 1. Calculate {Hi(1), i = 2, · · · , k} and define H1(1) = 0. Arrange all

the elements in descending order so that we can write H(1)(1) = 0 > H(2)(1) >

· · · > H(k)(1) > −∞.

• Step 2. Fix a large number M and calculate ∆i =
H(i)(1)−H(i+1)(1)

M
for all

1 ≤ i < k. Also define sequences {zj, j = 0, · · · ,M(k − 1)} with z0 = 0 and

zj = zj−1 − ∆dj/Me for any 1 ≤ j ≤ M(k − 1), where dj/Me is the smallest

integer no less than j/M .

• Step 3. Let j = 0, F0 = −∞, F−
0 = −∞, z∗ = 0 and F ∗ = −∞.

• Step 4. Let j = j + 1. If j <= M , go to step 6. If j > M(k − 1), let

∆ = min1≤i<k ∆i and zj = zj−1 −∆.

• Step 5. Let n = d j
M
e, BND1 = F ∗zj, and α = 1.

– Step 5.1 Let α = α + 1. Go to step 6 if α > n; otherwise go to step 5.2.
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– Step 5.2 Use process described in Theorem 2(v) to locate Vα = H−1
(α)(zj).

If Vα >= BNDα, go to the step 7; otherwise, calculate BNDα+1 =

BNDα − Vα and go to step 5.1.

• Step 6. Calculate Fj = F (zj), F+
j = F ′(zj+), and F−

j = F ′(zj−). If Fj > F ∗,

replace F ∗ and z∗ with Fj and zj. If F+
j > 0 and F−

j−1 < 0, locate z such that

zj < z < zj−1 and F ′(z) = 0, then replace F ∗ and z∗ with F (z) and z when

F ∗ < F (z). Go to step 4.

• Step 7. Calculate N∗
1 from z∗ via (4.8) and N∗

i = N∗
1 H−1

i (z∗) for all i ∈ Ω.

• Return {N∗
i }.

To explain why this procedure works, we look at the conditions in Theorem 4.4.

The case where either condition (ii) or (iii) holds is easy to solve by calculating F (z)

of all z ∈ S1 with process described in Theorem 4.5, and comparing those F values.

But when condition (i) holds, we need to solve a nonlinear equation F ′(z) = 0

of which we do not know about convexity or monotonicity. The procedure here

first calculates objective values at lattice points and then seeks zeros of F ′(z) when

F ′(·) changes sign over two adjacent points. Therefore, the solution z∗ from this

procedure will be the true solution only if any two adjacent points are sufficiently

close to each other, or M introduced at step 2 is sufficiently large.

The procedure we propose here is for general cases where we do not know about

convexity or monotonicity of Hi(·). Now we discuss some special cases where Hi is

always decreasing and convex. We recall set S1 = {Hi(1)|i ∈ Ω}∩ [Hb, 0) introduced
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in Theorem 4.4 and let sj, 1 ≤ j ≤ |S1| be jth largest element of set S1. We further

write s1 = 0 and s|S1|+1 = Hb. Then we have 0 = s1 > s2 > · · · > s|S1|+1 = Hb. For

these special cases, we can show, in Theorem 4.6, F (·) of problem (4.7) is smooth

and F ′(·) has at most one zero on interval (sj+1, sj), ∀ 0 ≤ j ≤ |S1|.

Theorem 4.6 Let us define Fi(u, v) as

Fi(u, v) ≡ Eξiξ1e
uξi−vξ1

Eeuξi−vξ1
− Eξie

uξi−vξ1

Eeuξi−vξ1

Eξ1e
uξi−vξ1

Eeuξi−vξ1
.

Then Hi is decreasing on (0,∞) and (4.9) has at most one root in interval [sj+1, sj]

for any 0 ≤ j ≤ |S1|, if either

(i) J̃im is independent of J̃1m for all i ∈ Ω, or

(ii) J̃im and J̃1m are negatively correlated for all i ∈ Ω, ∂Fi(u,v)
∂u

≤ 0 and ∂Fi(u,v)
∂v

≤ 0

for all u, v ≥ 0 and i ∈ Ω.

Remark:

1. H−1
i has no discontinuities when Hi is decreasing on (0,∞). Hence |S1| ≤ k

for this case. Especially |S1| = 1 for the independent case in (i).

2. To give sense on the assumption made in (ii) on monotonicity of Fi, we can

consider the case where the copula between the best design and any of the

other designs is linear, i.e., ξi − ρiξ1 is independent of ξ1 for some constant

ρi. Then the monotonicity assumption in (ii) is equivalent to f ′′′1 (λ) ≤ 0 when

λ ≤ 0, where f1(λ) = ln(Eeλξ1).
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Proof. When condition (i) holds, it is easy to show that Hi is always decreasing.

Now we assume condition (ii) holds. Since we already show Hi is decreasing on

(0, 1) in Lemma 4.1, we only have to look at its monotonicity on interval (1,∞).

Letting x > 1 and using ∂
∂λ

hi(λi(x), x) = 0, we have

H ′
i(x) = ∂xhi(λ, x)

∣∣
λ=λi(x)

= [∂xhi(λ, x)− λ

x
∂λhi(λ, x)]

∣∣
λ=λi(x)

=
[(

ln Eeλξi − λ
Eξie

λξi

Eeλξi

)
+

λ

x

(Eξie
λξi

Eeλξi
− Eξie

λξi−λxξ1

Eeλξi−λxξ1

)]∣∣
λ=λi(x)

≤ λ

x

(Eξie
λξi

Eeλξi
− Eξie

λξi−λxξ1

Eeλξi−λxξ1

)∣∣
λ=λi(x)

= λ2Fi(λ, λxθ1)
∣∣
λ=λi(x)

, (4.10)

where θ1 ∈ [0, 1]. The inequality uses convexity of ln Eeλξi , and the last step uses

mean value theorem. Now we notice that condition (ii) actually implies for all

u, v ≥ 0, we have Fi(u, v) ≤ Fi(0, 0) = Eξiξ1 ≤ 0. Combining this with (4.10), we

establish Hi’s monotonicity.

Now we show that (4.9) has at most one root when either of the two conditions

holds. It suffices to show M(z) is increasing, or M ′(z) > 0. Simple algebra yields

M ′(z) =
k∑

i=2

zH ′′
i (H−1

i (z))

(H ′
i(H

−1
i (z)))3

.

Since z < 0 and H ′
i(H

−1
i (z)) < 0, it suffices to show H ′′

i (x) ≥ 0 for all i ∈ Ω and

x > 0. Using ∂
∂λ

hi(λi(x), x) = 0 again, we have

H ′′
i (x) =

[
∂xxhi(λ, x)− (∂λxhi(λ, x))2

∂λλhi(λ, x)

]∣∣
λ=λi(x)

.

It only requires us to look at the sign of G(λ, x) ≡ ∂xxhi∂λλhi − (∂λxhi)
2. Now we

introduce notation 〈X〉u,v and 〈X,Y 〉u,v for u, v ≥ 0 and any random variable X
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and Y as

〈X〉u,v ≡ EXeuξi−vξ1

Eeuξi−vξ1
and 〈X, Y 〉u,v = 〈XY 〉u,v − 〈X〉u,v〈Y 〉u,v.

Then we have

∂λλhi =





(x− 1)〈ξi, ξi〉λ,0 + 〈ξi − xξ1, ξi − xξ1〉λ,λx x > 1

x2(1− x)〈ξ1, ξ1〉0,λx + x〈ξi − xξ1, ξi − xξ1〉λ,λx x < 1

;

∂xxhi =





λ2〈ξ1, ξ1〉λ,λx x > 1

2λ〈ξ1〉0,λx + λ2(1− x)〈ξ1, ξ1〉0,λx − 2λ〈ξ1〉λ,λx + xλ2〈ξ1, ξ1〉λ,λx x < 1

;

∂λxhi =





1
x
(〈ξi〉λ,0 − 〈ξi〉λ,λx)− λ〈ξi − xξ1, ξ1〉λ,λx x > 1

x〈ξ1〉0,λx + λx(1− x)〈ξ1, ξ1〉0,λx − λx〈ξi − xξ1, ξ1〉λ,λx x < 1

.

Suppose condition (i) holds, we have

G(λ, x) = xλ2〈ξ1, ξ1〉λ,λx〈ξi, ξi〉λ,0 > 0.

We now assume condition (ii) holds and check the case where x > 1. We have

G(λ, x) ≥ λ2〈ξi − xξ1, ξi − xξ1〉λ,λx〈ξ1, ξ1〉λ,λx − λ2〈ξi − xξ1, ξ1〉λ,λx

−1

x
(〈ξi〉λ,0 − 〈ξi〉λ,λx)

[1

x
(〈ξi〉λ,0 − 〈ξi〉λ,λx)− 2λ〈ξi − xξ1, ξ1〉λ,λx

]

≥ −1

x
(〈ξi〉λ,0 − 〈ξi〉λ,λx)

[1

x
(〈ξi〉λ,0 − 〈ξi〉λ,λx)− 2λ〈ξi − xξ1, ξ1〉λ,λx

]

= −λFi(λ, λxθ2)
[1

x
(〈ξi〉λ,0 − 〈ξi〉λ,λx)− 2λ〈ξi − xξ1, ξ1〉λ,λx

]
, (4.11)

where the second step uses Cauchy-Schwartz inequality and the third step uses mean

value theorem. Using a Taylor expansion, we have

〈ξi〉λ,0 = 〈ξi〉λ,λx + λx〈ξi, ξ1〉λ,λx − λ2x2

2
∂vFi(λ, λxθ3).
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Plugging into (4.11) and noticing that 〈ξi, ξ1〉λ,λx = Fi(λ, λx) ≤ 0, we can show

H ′′
i (x) > 0 when x > 1. Since the case of x < 1 can be similarly proved, we

establish part (ii).

4.3. Asymptotic Analysis

Since the procedure described in previous section gives a solution to an approximate

problem instead of our original problem, we need to know the magnitude of gap be-

tween the optimal solution to the approximate problem and to the original problem.

We recall that {N∗
i } and {Ñi} represent the optimal solutions to the approximate

problem and the original problem, respectively. In this section, we will show the

gap between the two solutions is in the order of o(T ), the budget. Furthermore, we

make the order more precise for the case of Gaussian distribution. Throughput this

section, we assume that (A1-4) hold and exclude degenerate cases described in the

beginning of previous section. The argument before Theorem 4.2 actually tells us

{N∗
i } is linear in budget T , or {N∗

i /T} are constants independent of T . Then we

can show

Lemma 4.7 Let {Ni, 1 ≤ i ≤ k} be a solution such that ai ≡ limT→∞ Ni

T
exists

for all 1 ≤ i ≤ k. Also, we assume (a1, · · · , ak) 6= (
N∗

1

T
, · · · ,

N∗
k

T
). Then if either (i)

ai > 0 for all 1 ≤ i ≤ k; or (ii) P (J̃1m < µi) > 0 and P (J̃im > µ1) > 0 for all i ∈ Ω,

we have

lim
T→∞

ln(
1− P

1− P ∗ )/T > 0, (4.12)

where P and P ∗ represent the PCS associated with {Ni} and {N∗
i }, respectively.
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Proof. First we will show limT→∞
P (J̄i−J̄1≥0)

T
= a1Hi(

ai

a1
) for all i ∈ Ω when ai > 0

and a1 > 0. Note that, with large deviation technique,

ln P (J̄i − J̄1 ≥ 0) ≤ inf
λ≥0

ln EeλNi(J̄i−J̄1) = N1Hi(
Ni

N1

).

We only need to show lim infT→∞
ln P (J̄i−J̄1≥0)

T
≥ N1

T
Hi(

Ni

N1
). Now we assume Ni ≥ N1

and the case of Ni < N1 can be similarly shown. Then we have

Ni(J̄i − J̄1) =

Ni∑
m=1

J̃im −Ni

N1∑
m=1

J̃1m

N1

=

N1∑
m=1

(J̃im − αiJ̃1m) +

Ni∑
m=N1+1

J̃im,

where αi = Ni

N1
. Since we already show, in the proof of lemma 4.1, limλ→∞ hi(λ, x) >

0 for any x > 0. So we can fix a positive number δ such that δ < limλ→∞ hi(λ, ai

a1
).

Let τ and ν represent the probability measures of Jim − αiJ1m − δ and Jim − δ,

respectively. We define two new probability measures as follows:

dτ̂

dτ
(x) = eλx/Eτe

λx, and
dν̂

dν
(x) = eλx/Eνe

λx,

where λ will be specified later on. Letting ε < δ be some positive number, we have

P (J̄i − J̄1 ≥ 0) ≥ P (|J̄i − J̄1 − δ| ≤ ε)

=

∫

|∑Ni
m=1 xm|≤Niε

τ(dx1) · · · τ(dxN1)ν(dxN1+1) · · · ν(dxNi
)

≥ e−λNiε

∫

|∑Ni
m=1 xm|≤Niε

eλ
∑Ni

m=1 xmτ(dx1) · · · τ(dxN1)ν(dxN1+1) · · · ν(dxNi
)

= e−(ε+δ)λNi+N1hi(λ, αi)

∫

|∑Ni
m=1 xm|≤Niε

τ̂(dx1) · · · τ̂(dxN1)ν̂(dxN1+1) · · · ν̂(dxNi
)

= e−(ε+δ)λNi+N1hi(λ, αi)P (
∣∣

Ni∑
m=1

Xm

∣∣ ≤ Niε), (4.13)

where {Xm, 1 ≤ m ≤ N1} are i.i.d. random variables of law τ̂ and {Xm, N1 + 1 ≤

m ≤ Ni} are i.i.d. random variables of law ν̂. Simple algebra yields

E
[∑Ni

m=1 Xm

Ni

]
=

1

αi

Eτ̂ [X] + (1− 1

αi

)Eν̂ [X] =
1

αi

(
∂hi

∂λ
(λ, αi)− δ). (4.14)

78



Using similar argument in the proof of lemma 4.1(i) and the fact that δ <

limλ→∞ hi(λ, ai

a1
), we can show there exists unique solution λδ

i to equation ∂hi

∂λ
(λ, ai

a1
) =

δ. If we specify λ = λδ
i above, E

[∑Ni
m=1 Xm

N1

] → 0 will be implied by the continuity

of ∂hi

∂λ
in both variables. It is easy to check that the variance of Xm is uniformly

bounded, which, combining with Chebychev inequality, yields

lim
T→∞

P (|
Ni∑

m=1

Xm| ≤ Niε) = 1. (4.15)

Combining (4.13) with (4.15), we have

lim inf
T→∞

ln P (J̄i − J̄1 ≥ 0)

T
≥ −(ε + δ)λδ

iai + a1hi(λ
δ
i ,

ai

a1

).

By letting ε → 0 first and δ → 0 second, we prove

lim
T→∞

ln P (J̄i − J̄1 ≥ 0)

T
=

N1

T
Hi(

Ni

N1

).

Using inequality max2≤i≤k P (J̄i − J̄1 ≥ 0) ≤ 1− P ≤ (k − 1) max2≤i≤k P (J̄i −

J̄1 ≥ 0), we have

lim
T→∞

ln(1− P )

T
=

Y

T
, and lim

T→∞
ln(1− P ∗)

T
=

Y ∗

T
.

Now we can complete part (i) by noticing that N∗
i is the minimizer of problem (4.3).

In order to prove part (ii), we only need to show (4.12) holds when ai = 0 for

some 1 ≤ i ≤ k. We now consider the case where a1 = 0. Without loss of generality,

we can further assume a2 > 0. The condition P (J̃1m < µi) > 0 actually implies
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there exists ε > 0 such that P (J̃1m ≤ µ2 − ε) > 0. Then we have

ln P (J̄2 − J̄1 ≥ 0) = ln P (

N1∑
m=1

(
J̃2m

α2

− J̃1m) +

N2∑
m=N1+1

J̃2m

α2

≥ 0)

≥ ln P
[ N2∑

m=N1+1

J̃2m

α2

≥ N1(µ2 − ε)
]
+ ln P

[ N1∑
m=1

(J̃1m − J̃2m

α2

) ≤ N1(µ2 − ε)
]

≥ ln P
[ N2∑

m=N1+1

J̃2m

N2

≥ µ2 − ε
]
+ N1 ln P

[
J̃11 − J̃21

α2

≤ µ2 − ε
]
.

Using strong law of large number, we can show the first term on the right hand side

converges to zero and

ln P
[
J̃11 − J̃21

α2

≤ µ2 − ε
] → ln P (J̃11 ≤ µ2 − ε) > −∞.

Hence, we have

lim inf
T→∞

ln P (J̄2 − J̄1 ≥ 0)

T
≥ a1 ln P (J̃11 ≤ µ2 − ε) = 0,

which then implies

lim
T→∞

ln(1− P )

T
= 0 >

Y ∗

T
= lim

T→∞
ln(1− P ∗)

T
.

So we establish part (ii) for the case where a1 = 0. Indeed the case where

ai = 0 for some i ∈ Ω and a1 6= 0 can be similarly treated by switching the roles of

Ni and N1 in the arguments above. Hence, we complete part (ii).

Roughly speaking, Lemma 4.7 tells us {N∗
i } can dominate any asymptotically

linear solution when budget T is large enough. This characterization leads to the

following convergence result:

Theorem 4.8 If P (J̃1m < µi) > 0 and P (J̃im > µ1) > 0 for all i ∈ Ω,

lim
T→∞

Ñi −N∗
i

T
= 0, ∀1 ≤ i ≤ k.
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Proof. We will denote P̃ as the PCS associated with solution Ñi. The proof is

straightforward. Suppose it does not hold. Then we can find an increasing and

divergent sequence {Tn, n = 1, · · · } such that ai = limn→∞
Ñi(Tn)

Tn
exists for all

1 ≤ i ≤ k and (a1, · · · , ak) 6= (
N∗

1

T
, · · · ,

N∗
k

T
). Then lemma 2 implies that

lim
n→∞

ln(1− P̃ (Tn))

Tn

> lim
n→∞

ln(1− P ∗(Tn))

Tn

,

which is a contradiction with the fact that P̃ is always no less than P ∗.

Theorem 4.8 tells us Ñi − N∗
i = o(T ). Actually when optimal solution to

problem (4.3) is not unique, the theorem means {Ñi} is close to one solution {N∗
i }

and gap is also in order of o(T ).

In order to give a more precise estimate of order o(T ) above, we will assume

all the samples are drawn from non-degenerate Gaussian distributions, where non-

degenerate conditions require σii > 0 for 1 ≤ i ≤ k and σ11σii > σ2
1i for i ∈ Ω. We

recall that the optimizer z∗ to problem (4.7) has to satisfy one of three conditions

in Theorem 4.4. Now we define z∗ as Zero Fit, if and only if either (1) F ′(z∗) = 0

and z∗ ∈ (Hb, 0) \ S1; or (2) F ′(z∗−)F ′(z∗+) = 0 and z∗ ∈ S1 \ S2 \ {Hb}; or (3)

F ′(z∗+) = 0 and z∗ ∈ S1 ∩ S2. It can be shown the distance is either bounded by a

constant or in the order of O(
√

T ), depending on whether the optimizer is Zero Fit

or not. More precisely, we have

Theorem 4.9 Assuming all samples J̃im are drawn from non-degenerate Gaussian

distributions,

(i) If z∗ is not Zero Fit, supT>0 |Ñi −N∗
i | < ∞ for any 1 ≤ i ≤ k;
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(ii) If z∗ is Zero Fit, supT>0 |Ñi −N∗
i |/
√

T < ∞ for any 1 ≤ i ≤ k.

Proof. Before we prove the theorem, we first establish some auxiliary results.

Claim 1: supT>0 |Ỹ − Y ∗| < ∞.

If we let P represent the PCS associated with solution {Ni} and denote as

Φ(·) the cumulative distribution function of normal distribution, we will have

P = P (J̄1 − J̄i > 0, i = 2, . . . , k)

≤ min
i∈Ω

P (J̄1 − J̄i > 0) = 1−max
i∈Ω

P (J̄1 − J̄i ≤ 0)

= 1−max
i∈Ω

Φ(−
√
−2Yi) = 1− Φ(−

√
−2Y ), (4.16)

where the last step uses assumption that all samples are drawn from normal distri-

bution. On the other side, we have

P = P (J̄1 − J̄i > 0, i = 2, . . . , k)

≥ 1−
k∑

i=2

P (J̄1 − J̄i ≤ 0)

≥ 1− (k − 1) max
i∈Ω

P (J̄1 − J̄i ≤ 0)

= 1− (k − 1) max
i∈Ω

Φ(−
√
−2Yi) = 1− (k − 1)Φ(−

√
−2Y ). (4.17)

If we apply inequalities (4.16) and (4.17) to P̃ and P ∗ and use the following

inequalities

−2

a
e−a2/2 ≥

∫ a

−∞
e−x2/2dx ≥ −a

1 + a2
e−a2/2 for a < 0,

we will have

ln(1− P̃ ) ≥ Ỹ − 1

2
ln(−Ỹ ) + ln(

−2Ỹ

1− 2Ỹ
) + C1, and

ln(1− P ∗) ≤ Y ∗ − 1

2
ln(−Y ∗) + C2,
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where C1 and C2 are constants. Obviously Theorem 4.8 holds and implies Ỹ
T
→

Y ∗
T

. Now Ỹ → −∞ implies that ln(−2Ỹ /(1 − 2Ỹ )) is bounded by some constant.

Therefore, we have

Y ∗ ≤ Ỹ ≤ Y ∗ +
1

2
ln(

Ỹ

Y ∗ ) + C3 ≤ Y ∗ + C4. (4.18)

where the last step uses boundedness of ln(Ỹ /Y ∗) which is implied by Ỹ
T
→ Y ∗

T
.

Claim 2: supT>0 |Ỹi − Y ∗
i | < ∞, ∀i ∈ Ω.

Since Ỹ ≥ Ỹi and Y ∗
i = Y ∗ for all i ∈ Ω, Ỹi − Y ∗

i is bounded from above by

(4.18). So we only need to show that Ỹi − Y ∗
i is bounded from below for any i ∈ Ω.

Now we fix i ∈ Ω and define constant C5 = maxj∈Ω Hj(
N∗

j

N∗
1
)/2 < 0. We also define a

new allocation {Nj} with budget T as follows:

Nj =





Ñj − C4

C5

Ñj

Ñ1
, j 6= i

Ñi + C4

C5

T−Ñi

Ñ1
, j = i

. (4.19)

Obviously, {Nj} satisfies the budget constraint. Theorem 4.8 implies
Ñj

Ñ1
→ N∗

j

N∗
1
. So

given sufficiently large T , {Nj} is positive and Hj(Ñj/Ñ1) < C5 for all j ∈ Ω. Now

we have

Yj = Ỹj − C4

C5

Hj(
Ñj

Ñ1

) < Ỹj − C4 ≤ Y ∗, ∀j 6= i, (4.20)

where the last step uses (4.18).

Since Y ∗ is the optimal value of problem (4.3), we have

Ỹi − Y ∗
i ≥ Ỹi − Yi = Ñi

[
Hi(

Ñi

Ñ1

)−Hi(
Ni

N1

)
]− C4

C5

T − Ñi

Ñ1

Hi(
Ni

N1

) < ∞,

where the last step uses
Ñj

Ñ1
,

Nj

N1
→ N∗

j

N∗
1

and continuity of Hi.
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Claim 3: If we denote Ỹi − Y ∗
i as ∆Yi for i ∈ Ω, we have

sup
T>0

|∆N1| < ∞ =⇒ sup
T>0

|∆Ni| < ∞, ∀i ∈ Ω. (4.21)

The mean value theorem yields

Ỹi − Y ∗
i = Hi(

Ñi

Ñ1

)(Ñ1 −N∗
1 ) + H ′

i(Vi)(
N∗

1 Ñi

Ñ1

−N∗
i )

=
[
Hi(

Ñi

Ñ1

)− Ñi

Ñ1

H ′
i(Vi)

]
∆N1 + H ′

i(Vi)∆Ni, (4.22)

where Vi = θi
Ñi

Ñ1
+ (1 − θi)

N∗
i

N∗
1

for some θi ∈ [0, 1]. Here H ′
i is right (left) derivative

if Ñi

Ñ1
is greater (less) than

N∗
i

N∗
1
. Notice the coefficients of ∆N1 and ∆Ni converge to

Hi(
N∗

i

N∗
1
)− N∗

i

N∗
1
H ′

i(
N∗

i

N∗
1
) and H ′

i(
N∗

i

N∗
1
), respectively. Also claim 2 implies that Ỹi − Y ∗

i is

bounded for i ∈ Ω.

Suppose ∆N1 is bounded, then H ′
i(Vi)∆Ni has to be bounded from (4.22). If

H ′
i(

N∗
i

N∗
1
) 6= 0, ∆Ni is also bounded. Now suppose H ′

i(
N∗

i

N∗
1
) = 0 and H ′

i(Vi) → 0 for

some i. It is easy to know this can be true only if σii = 2σi1 and Vi ≥ N∗
i

N∗
1

= 1. Thus

we only might have supT>0 ∆Ni = ∞. This leads to supT>0

∑k
i=1 ∆Ni = ∞, which

contradicts with supT>0

∑k
i=1 ∆Ni = 0 implied by the budget constraint. Hence, we

establish claim 3.

Now we will show part (i) by considering two cases:

I. H ′
i(

N∗
i

N∗
1
) = 0 for some i ∈ Ω;

II. H ′
i(

N∗
i

N∗
1
) 6= 0 for all i ∈ Ω.

By claim 3, we only have to look at the boundedness of ∆N1. As we point

out above, H ′
i(

N∗
i

N∗
1
) = 0 only if σii = 2σ1i and N∗

i = N∗
1 . In this case, Hi(x) is
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a constant when x ≥ 1. H ′
i(Vi) → 0 implies H ′

i(Vi) = 0. Hence, (4.22) implies

[
Hi(

Ñi

Ñ1
)− Ñi

Ñ1
H ′

i(Vi)
]
∆N1 is bounded. Since Hi(

Ñi

Ñ1
)− Ñi

Ñ1
H ′

i(Vi) → Y ∗i
N∗

1
6= 0, ∆N1 is

bounded. Therefore, by claim 3, all ∆Ni is bounded for case I.

For case II, we need condition that Y ∗
N∗

1
is not Zero Fit. (4.22) implies bound-

edness of

[Hi(
Ñi

Ñ1
)

H ′
i(Vi)

− Ñi

Ñ1

]
∆N1 + ∆Ni, ∀i ∈ Ω. (4.23)

Hence, also bounded is

k∑
i=2

[Hi(
Ñi

Ñ1
)

H ′
i(Vi)

− Ñi

Ñ1

]
∆N1 +

k∑
i=2

∆Ni =
( k∑

i=2

[Hi(
Ñi

Ñ1
)

H ′
i(Vi)

− Ñi

Ñ1

]− 1
)
∆N1. (4.24)

Checking the coefficient of ∆N1 above, we have

B̃ ≡
k∑

i=2

[Hi(
Ñi

Ñ1
)

H ′
i(Vi)

− Ñi

Ñ1

]− 1 →
k∑

i=2

Y ∗i
N∗

1

H ′
i(

N∗
i

N∗
1
)
− T

N∗
1

=
k∑

i=2

Y ∗
N∗

1

H ′
i(H

−1
i ( Y ∗

N∗
1
))
− T

N∗
1

=
k∑

i=2

Y ∗
N∗

1

H ′
i(H

−1
i ( Y ∗

N∗
1
))
− 1−

k∑
i=2

H−1
i (

Y ∗

N∗
1

) ≡ B∗,

where the first equality uses Y ∗
i = Y ∗ and the second uses

N∗
i

N∗
1

= H−1
i ( Y ∗

N∗
1
).

It is easy to check that B∗ = 0 if and only if Y ∗
N∗

1
is Zero Fit. So we establish

boundedness of ∆N1 and ∆Ni for case II. This completes our proof for part (i).

Now we assume Y ∗
N∗

1
is Zero Fit, i.e. B∗ = 0. Note that

H ′
i(Vi) =

(
Hi(

Ñi

Ñ1

)−Hi(
N∗

i

N∗
1

)
)
/(

Ñi

Ñ1

− N∗
i

N∗
1

). (4.25)

If we use second order Taylor expansion of Hi(
Ñi

Ñ1
) around

N∗
i

N∗
1
, we have

H ′
i(Vi)−H ′

i(
N∗

i

N∗
1

) =
1

2
(
Ñi

Ñ1

− N∗
i

N∗
1

)H ′′
i (Ui), (4.26)
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where Ui = θ′i
Ñi

Ñ1
+ (1− θ′i)

N∗
i

N∗
1

for some θ′i ∈ [0, 1]. Now we can rewrite (4.24) as

B̃∆N1 = (B̃ −B∗)∆N1

=
k∑

i=2

[Hi(
Ñi

Ñ1
)

H ′
i(Vi)

−
Hi(

N∗
i

N∗
1
)

H ′
i(

N∗
i

N∗
1
)
− (

Ñi

Ñ1

− N∗
i

N∗
1

)
]
∆N1

=
k∑

i=2

[Hi(
N∗

i

N∗
1
)

H ′
i(Vi)

−
Hi(

N∗
i

N∗
1
)

H ′
i(

N∗
i

N∗
1
)

]
∆N1

=
k∑

i=2

[
H ′

i(
N∗

i

N∗
1

)−H ′
i(Vi)

] Hi(
N∗

i

N∗
1
)

H ′
i(Vi)H ′

i(
N∗

i

N∗
1
)
∆N1

= −1

2

k∑
i=2

[ Ñi

Ñ1

− N∗
i

N∗
1

]Hi(
N∗

i

N∗
1
)H ′′

i (Ui)

H ′
i(Vi)H ′

i(
N∗

i

N∗
1
)
∆N1

= −1

2

k∑
i=2

∆N1

Ñ1

[
∆Ni − N∗

i

N∗
1

∆N1

]Hi(
N∗

i

N∗
1
)H ′′

i (Ui)

H ′
i(Vi)H ′

i(
N∗

i

N∗
1
)

= −1

2

k∑
i=2

∆N1

Ñ1

[
∆Ni + (

Hi(
Ñi

Ñ1
)

H ′
i(Vi)

− Ñi

Ñ1

)∆N1

]Hi(
N∗

i

N∗
1
)H ′′

i (Ui)

H ′
i(Vi)H ′

i(
N∗

i

N∗
1
)

+

(∆N1)
2

2N∗
1

k∑
i=2

[N∗
1

Ñ1

(
Hi(

Ñi

Ñ1
)

H ′
i(Vi)

− Ñi

Ñ1

+
N∗

i

N∗
1

)
Hi(

N∗
i

N∗
1
)H ′′

i (Ui)

H ′
i(Vi)H ′

i(
N∗

i

N∗
1
)

]
,

where the third step uses (4.25) and the fifth uses (4.26). Using boundedness of

(4.23), ∆N1

Ñ1
→ 0, and Ñi

Ñ1
→ N∗

i

N∗
1
, we notice the first term on the right hand side

converges to zero. So boundedness of B̃∆N1 implies boundedness of the second

term. Actually the summation in the second term converges to

(
Y ∗

N∗
1

)2

k∑
i=2

H ′′
i (

N∗
i

N∗
1
)

(H ′
i(

N∗
i

N∗
1
))3

=
Y ∗

N∗
1

M ′(
Y ∗

N∗
1

),

where M(·) is defined by (4.9). It can be shown M(z)/z2 is strictly increasing when

z < 0. This implies that M ′( Y ∗
N∗

1
) 6= 0 when Y ∗

N∗
1

is Zero Fit. So we can conclude that

(∆N1)2

2N∗
1

is bounded, or ∆N1 = O(
√

T ). We can also conclude that ∆Ni = O(
√

T ) by

using boundedness of (4.23). Part (ii) is established.
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4.4. Conclusion

This chapter proposes an algorithm to solve an OCBA problem under non-Gaussian

setting. The discussion here can be taken as a generalized version to the Gaussian

setting. Although the solution obtained from this algorithm is an approximate

solution, we show that this solution is better than any other linear solution when

the budget is large enough. The convergence rate is given when the setting is

simplified to Gaussian. Our further direction will be to combine Bayesian analysis

with our algorithm.
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Chapter 5

Future Research

The following are some future research directions we wish to pursue:

• For the stochastic approximation algorithm with deterministic perturbations,

we will consider more general cases and attempt to relax the assumptions re-

quired for proving convergence of the algorithm. To relax the boundedness

assumption, we will apply the framework of projection to the case of deter-

ministic perturbations and explore conditions required for convergence.

• For the American option pricing algorithm, we will apply it to estimating gra-

dients of American options. A possible direction is to combine our technique

with Malliavin Calculus.

• For the OCBA algorithm, we will attempt to relax the negative correlation as-

sumption, so that the algorithm can be applied to more general cases. Also we

wish to introduce Bayesian analysis into the algorithm, so that exact knowl-

edge of the sampling distribution is not required.
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[14] Chen, C.H., Lin, J., Yücesan, E., and Chick, S.E., “Simulation budget allo-

cation for further enhancing the efficiency of ordinal optimization,” Discrete

Event Dynamic Systems: Theory and Applications, 10, 251-270, 2000.

90



[15] Chen, D.C., “Comparative study of stochastic algorithms for system optimiza-

tion based on gradient approximations,” IEEE Trans. Syst., Man, Cybern., 27,

1997.

[16] Chen, H.C., Chen, C.H., Dai, L., and Yücesan, E., “New development of opti-
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