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With the increasing usage of smartphones not only as communication devices

but also as the port of entry for a wide variety of user accounts at different in-

formation sensitivity levels, the need for hassle-free authentication is on the rise.

Going beyond the traditional one-time authentication concept, active authentica-

tion (AA) schemes are emerging which authenticates users periodically in the back-

ground without the need for any user interaction. The purpose of this research is to

explore different aspects of the AA problem and develop viable solutions by extract-

ing unique biometric traits of the user from the wide variety of usage data obtained

from Smartphone sensors. The key aspects of our research are the development of

different components of user verification algorithms based on (a) face images from

the front camera and (b) data from modalities other than the face.

Since generic face detection algorithms do not perform very well in the mobile

domain due to a significant presence of occluded and partially visible faces, we



propose facial segment-based face detection technique to handle the challenge of

partial faces in the mobile domain. We have developed three increasingly accurate

proposal-based face detection methods, namely Facial Segment-based Face Detector

(FSFD), SegFace and DeepSegFace, respectively, which perform binary classification

on the results of a novel proposal generator that utilizes facial segments to obtain

face-proposals. We also propose the Deep Regression-based User Image Detector

(DRUID) network which shifts from the classification to the regression paradigm to

avoid the need for proposal generation and thereby, achieves better processing speed

and accuracy. DeepSegFace and DRUID have unique network architectures with

customized loss functions and utilize a novel data augmentation scheme to train on

a relatively small amount of data. The proposed methods, especially DRUID show

superior performance over other state-of-the-art face detectors in terms of precision-

recall and ROC curve on two mobile face datasets.

We extended the concept of facial-segments to facial attribute detection for

partially visible faces, a topic rarely addressed in the literature. We developed

a deep convolutional neural network-based method named Segment-wise, Partial,

Localized Inference in Training Facial Attribute Classification Ensembles (SPLIT-

FACE) to detect attributes reliably from partially occluded faces. Taking several

facial segments and the full face as input, SPLITFACE takes a data-driven approach

to determine which attributes are localized in which facial segments. The unique ar-

chitecture of the network allows each attribute to be predicted by multiple segments,

which permits the implementation of committee machine techniques for combining

local and global decisions to boost performance. Our evaluations on the full CelebA



and LFWA datasets and their modified partial-visibility versions show that SPLIT-

FACE significantly outperforms other recent attribute detection methods, especially

for partial faces and for cross-domain experiments.

We also explored the potentials of two less popular modalities namely, location

history and application-usage, for active authentication. Aiming to discover the

pattern of life of a user, we processed the location traces into separate state space

models for each user and developed the Marginally Smoothed Hidden Markov Model

(MSHMM) algorithm to authenticate the current user based on the most recent

sequence of observations. The method takes into consideration the sparsity of the

available data, the transition phases between states, the timing information and also

the unforeseen states. We looked deeper into the impact of unforeseen and unknown

states in another research work where we evaluated the feasibility of application

usage behavior of the users as a potential solution to the active authentication

problem. Our experiments show that it is essential to take unforeseen states into

account when designing an authentication system with sparse data and marginal-

smoothing techniques are very useful in this regard.

We conclude this dissertation with the description of some ongoing efforts and

future directions of research related the topics discussed in addition to a summary

of all the contributions and impacts of this research work.
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Chapter 1: Introduction

The recent proliferation of mobile devices like smartphones and tablets has

given rise to security concerns about personal information stored in them. Studies

show that users are more concerned about the security of their cell phones over

laptops [6]. Though over 40% of users in major U.S. cities have lost their phones

or have been victims of phone theft [7], industry surveys estimate that 34% of

smartphone users in the U.S. do not lock their phones with passwords [8]. This

contradictory behavior is due to the time-consuming, cumbersome and error-prone

hassles of entering passwords on virtual keyboards or due to users’ beliefs that

extra passwords are not needed [7]. 76% attacks on smart phones exploit weak

passwords [9], but users still prefer those over stronger passwords, as the stronger

passwords are difficult to remember and type, especially since the average cell phone

user checks their smartphone device 150 times per day [10].

Going beyond traditional passwords and fingerprint-based one-time authenti-

cation, the concept of Active Authentication (AA) has emerged recently [11], where

the enrolled user is authenticated continuously in the background based on the user’s

biometrics such as front camera face capture [12], [13], touch screen gesture [14], [15],

typing pattern [16] etc. Conceptually, in an AA system users do not password-lock
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Figure 1.1: Association of smartphone sensors with behavioral and biometric infor-
mation.

the phone at all. When a user uses the phone, the AA system compares the usage

pattern with the enrolled user’s pattern of use. If the system deems that the usage

patterns are sufficiently similar, the phone’s full functionality (including sensitive

applications and data) is made available, else it blocks the current user. At present,

most of the AA systems are based on face, touch and typing pattern biometrics. Note

that the terms active authentication [17], [11], continuous authentication [18], [19],

implicit authentication [20], [21], and transparent authentication [22] have been used

interchangeably in the literature.

In this introductory chapter we provide an overview of the contributions of

this dissertation and, and a guide to its organization by chapters.

1.1 Major Contributions of the Dissertation

The main contributions of this dissertation can be categorized into three broad

topics, which are
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1. active authentication dataset collection, defining problems and benchmark

evaluation,

2. introducing the concept of facial-segment for face-based authentication re-

search, and,

3. exploring the usability of non-face modalities, especially, location history data

and application-usage behavior, for active authentication.

The aforementioned contributions are discussed in the following subsections.

1.1.1 Active Authentication Dataset Collection and Benchmarking

As shown in Fig. 1.1, modern smartphones provide multiple sensors associ-

ated with a variety of behavioral and physiological biometric information, however

research on multi-modal authentication using multi-sensor data has been lagging

behind, because of paucity of datasets. One of the biggest contribution of our re-

search on active authentication is the collection of the first non-commercial dataset

on unconstrained smartphone usage, namely, the University of Maryland Active Au-

thentication Dataset 02 (UMDAA-02), which contains a wide range of sensor data

and is made available for the research community. Unlike task-based data collection

schemes, the data collection for UMDAA-02 was passive and hence is representative

of the natural, regular smartphone usage by the volunteers. The data collection

application ran on the Nexus-5 device, completely in the background, saving sensor

data and periodically uploading the data to a secure online location.
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Our initial research work included producing benchmark results for the UMDAA-

02 dataset on four different experiments, which are, face detection, face-based veri-

fication, swipe-based user identification and next location prediction using the tem-

poral geolocation data. The poor benchmark results obtained for state-of-the-art

algorithms justified the need for developing more sophisticated algorithms for reli-

able active authentication.

1.1.2 Face-based Authentication using Facial Segments

1.1.2.1 Facial Segments for Face Detection

The remarkable progress in convolutional neural network (CNN) architectures

and the availability of large amount of face data have accelerated the development of

efficient and robust face detection techniques in recent years [23] [24] [25]. State-of-

the-art face detectors are mostly developed for detecting faces in unconstrained envi-

ronments with large variations in pose and illumination [26] [27] [28] [29]. However,

development of face detectors optimized for detecting occluded and partially visible

faces are becoming very essential because of the rapidly increasing usages of cameras

mounted on mobile devices [4] [30]. Reliable and fast detection of faces from the

front-camera captures of a mobile device is a fundamental step for applications such

as active/continuous authentication of the user of a mobile device [11] [31] [15] [32].

Although, face-based authentication systems on mobile devices rely heavily on

accurate detection of faces prior to verification, most state-of-the-art techniques are

ineffective for mobile devices because of the following reasons:
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1. The user’s face captured by the front camera of the phone is, in many cases,

only partially visible [31]. While most modern face detectors such as Viola-

Jones’s [33], DPM [26], Hyperface [23], yahoo multiview [25], CUHK [24] etc.

work well on detecting multiple frontal or profile faces of various resolutions,

they frequently fail to detect single partially visible faces as they do not ex-

plicitly model partial faces.

2. For active authentication the recall rate needs to be high at very high precision.

Many of the available face detectors have a low recall rate even though the

precision is high. When operated at high recall, their precision drops rapidly

because of excessive false positive detection [31].

3. The algorithm needs to be simple, fast and customizable to operate in real-

time on a cellular device. While in [30] and [34] the authors deploy CNNs on

mobile GPUs for face detection and verification, most CNN-based detectors,

such as [23] and some generic methods like [26] are too complex to run on the

mobile platform.

On the other hand, images captured for active authentication offer certain

advantages for the face detection problem because of its semi-constrained nature [4].

Usually there is a single user in the frame, hence there is no need to handle multiple

face detection. The face is in close proximity of the camera and of high resolution,

thus eliminating the need for detecting at multiple scales or resolution.

In our preliminary research work, we have extensively exploited the idea of

facial segment-based face detection. Fig. 1.2 shows a sample decomposition of a
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Figure 1.2: Decomposition of a full face into 14 facial segments [4].

full face into facial segments, detection of one or more of which might offer powerful

clues about the location of the full face. Partial faces such as the ones present in

images captured by the front camera of mobile devices can be handled if the al-

gorithm is able to effectively combine detection of different facial segments into a

full face. To address this requirement, we have developed three algorithms, namely,

Facial Segment-based Face Detection (FSFD), SegFace and DeepSegFace. These

algorithms detect faces from proposals made of face segments by utilizing a fast

proposal generation scheme that provides bounding boxes for faces and facial seg-

ments. FSFD and SegFace methods use traditional feature extraction techniques

and support vector machine (SVM) classifier whereas DeepSegFace is a DCNN-based

classifier for differentiating between proposals with and without faces.

The proposal-based approaches, however, suffer from several limitations such
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as slow speed, upper bound on recall because of the proposal generation step etc.

Hence, we developed a regression-based end-to-end trainable face detector for de-

tecting a single user face that does not require any proposal generation at all. This

method, named, Deep Regression-based User Image Detector (DRUID), is a deep

CNN-based face detector that returns not only the face bounding box, but also the

bounding boxes of all the facial segments that are present along with the confidence

scores for each segment in a single forward pass. DRUID utilizes a principled data

augmentation technique to train using a relatively small number of image and it’s

throughput is very fast given its architecture and independence from the proposal

generation stage. Moreover, training of DRUID is not done on a mobile face dataset

similar to the proposal-based approaches, yet, it performs significantly better than

other methods mostly due to its unique architecture and data augmentation scheme.

The augmentation also makes it robust against scaling of faces and enables to find

the bounding boxes for faces of different sizes through regression during training.

1.1.2.2 Facial Segments for Facial Attribute Detection

We also evaluate the suitability of a facial segment-based approach for facial

attribute detection, especially when partially visible faces are present. The problem

of attribute detection from face images has received much attention from the com-

puter vision community in recent years [35] [36] [37] [2]. Successful detection of facial

attributes has numerous practical applications, such as user-verification [38] and im-

age search [39], video surveillance [40], age and gender estimation to assist salutation

7



for HCI [37], and facial expression estimation for mood analysis [37]. Most attribute

detection algorithms assume the availability of a full, near frontal and aligned face,

and we find that their performance degrades significantly in domains where partially

visible faces are frequent. One such domain is front-camera images of smartphones,

which are used for continuous active authentication of users [11] [5]. To develop a

method that detects attributes from full as well as partial faces, we consider the

following key observations:

• Some attributes can be inferred correctly even if the face is partially occluded.

For example, it is possible for humans to infer the gender from only the left

half or upper half of the face.

• Some attributes are strongly localized in certain part of the face. For example,

beard or mustache can only be inferred from the lower half of the face.

Given these observations, it is desirable that a technique for attribute detection be

designed, whose performance degrades gracefully with increasing occlusion, rather

than suffering catastrophic failures.

In this regard, we present a two-step deep convolutional neural network-based

method for facial attribute detection that takes into account the relative strength

of different facial segments in detecting different facial attributes. We analyze the

detection results obtained in the first step where all facial segments were tasked to

decide the attributes. We then present a method to automatically assign selective

sets of attributes to different facial regions, resulting in a performance boost in the

second step. We also determine appropriate thresholds for deciding on each attribute
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at each segment based on the detection results obtained from the validation set.

Finally, we combine the predictions from different facial segments and produce the

final result. Some special features of the proposed algorithm are:

• We have implemented a local to global attribute detection approach that har-

nesses the strength of different facial segments into determining different at-

tributes. For example, the bottom-half of a face has information about the

beard, while the upper-half has information about the hair. Our divide and

conquer approach extracts intermediate results from each segment and com-

bines them in the end to boost the overall performance.

• Not all facial segments have to be present for the proposed method to work.

The method relies on the whole face and one or more facial segments to es-

timate all the attributes. The individual facial segments are self-sufficient for

estimating the attributes they are assigned to. Hence, the method demon-

strates superior performance when the full face is not visible due to partial

occlusion or pose variation.

• We analyze the local aspects of facial attributes by associating them with facial

segments and develop an automated method to utilized the local information.

• It is a well known fact that an ensemble of networks generally outperform a

single network. However training an ensemble is very time-consuming. Our

proposed architecture provides us with 16 predictors with only one round of

training. We show that a significant increase in the final result is achieved by

combining scores from these predictors.
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Our proposed network namely, Segmentwise, Partial, Localized Inference in

Training Facial Attribute Classification Ensembles (SPLITFACE), is presented in

details in this dissertation along with extensive experimentation results.

1.1.3 Usability of Non-Face Modalities for Active Authentication

This work aims at user verification using soft biometric such as touch or swipe

dynamics along with acceleration and rotation components of the phone in three

dimensional space, application usage, location and connectivity information etc.

1.1.3.1 Location History-based User Authentication

Combining the usability of location traces to model a user’s pattern of life

with the concept of active authentication, we addressed the Person Authentication

using Trace Histories (PATH) problem. The PATH problem assumes that every

individual has a pattern of life which heavily regulates the time and sequence of a

person’s visit to different key places/locations. In PATH, the goal is to perform user

verification from historical location data of a user in a continuous manner so that a

verification score based on the location information is obtained continuously. This

score can be fused with scores returned by other modalities such as touch or face to

improve the performance of the overall authentication system. Being motivated by

the wide availability of individual GPS data through smartphones, wearable devices

etc. and by the discriminating life patterns of different individuals, we developed

a unique method for user data clustering for trace state generation and a modified
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Hidden Markov Model(HMM)-based user verification method, namely, Marginally

Smoothed HMM (MSHMM) which is capable of handling unforeseen and sparse

location traces.

1.1.3.2 Application Usage-based User Authentication

With the rapid increase of smartphone users worldwide, the mobile applica-

tions are growing both in number and popularity [41]. The number of apps in

Google Play store is around 8 million, while in Apple App Store, Windows Store

and Amazon Appstore there around 2.2 million, 669 thousand, and 600 thousand

applications, respectively1. It has been estimated that a total of 197 billion mobile

application were downloaded in 20172. A retrospective study in 2016 showed that

on average a smartphone user uses over 30 different mobile applications per month

and ∼ 10 different applications per day [42]. As for usage duration in 2016, in the

USA, the smartphone users spend on a daily basis over two hours on mobile applica-

tions, i.e., over a month usage of applications in a year [42]. With growing concerns

of smartphone security, monitoring the application usage coupled with the diverse

pool of applications can help to make a difference in user authentication systems.

Smartphone application usage data can provide several interesting insights

on the device users leading to different use cases of such data. There are several

research works on user profiling and predicting behavioral patterns using applica-

tion usage data [43] [41] [44] [45]. Predicting application usage pattern can also

1https://www.statista.com/statistics/276623/number-of-apps-available-in-

leading-app-stores/
2https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-

app-store-downloads/
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help optimizing smartphone resources and help simulating realistic usage data for

automated smartphone testing [46] [47] [48] [49] [50] [51]. The open foreground

application can also work as a context for active authentication using other modal-

ities [52] [53] [54] [55]. For example, when verifying with touch and accelerometer

data, the application running in the background can provide useful context for ro-

bust authentication. Intuitively, the way a user handles and swipes in a phone for a

banking application is very different from that used for a gaming application. The

foreground application context can be even more useful for active authentication if

some more insightful information about the applications are available as metadata.

For example, one key idea of active/continuous authentication is gradually blocking

a probable intruder starting from the most sensitive applications, such as banking

and social media accounts [56] [31]. If the sensitivity level or the type of application

is known as metadata, it would be possible to attain enhanced security. Also, some

applications, if permitted, can access the location data and store click information

for targeted advertisement and similar applications [57]. A more active use case of

application-usage data could be verifying the users solely from the pattern of usage.

The different use cases of app-usage data are shown in Fig. 1.3.

In this dissertation, the suitability of application-usage data as a modality for

smartphone user verification is thoroughly investigated. Our main contributions in

this regard are:

• An innovative formulation of the user verifiaction problem utilizing application

usage data pattern as a biometric. The formulation tackles key challenges
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Figure 1.3: Use cases for smartphone app-usage data.

such as data sparsity and accounting for unforeseen test observations. Unlike

traditional approaches of using top N-applications for authentication purposes

[58], in the proposed formulation the full list of applications is considered for

verification models in order to ensure low-latency which is essential for active

authentication systems.

• Insight into the application usage similarity among different users and statis-

tics on unforeseen applications.

• A thorough investigation of the impact of unknown applications and unfore-

seen observations on the verification task.

• A Modified Edit-Distance (M-ED) algorithm and experiments to demonstrate

the advantage of including unforeseen events during sequence matching.

• Modeling the Person Authentication using Trace Histories (PATH) problem

as a variation of the person authentication using location histories [3].

13



1.2 Dissertation Outline

The material presented in this dissertation is reasonably self contained. It is

organized by chapters as follows.

Chapter 2 : Backgound and related works on the main topics of the dissertation

are presented.

Chapter 3 : We introduce the UMDAA-02 dataset, discuss the data collection proto-

col, provide detailed information on the modalities, define several authentica-

tion related problems and provide benchmark evaluation using state-of-the-art

methods.

Chapter 4 : The concept of facial-segments for detecting partially visible and oc-

cluded faces is explained in detail in this chapter. We propose four increasingly

accurate face detectors and compare the performances of those methods with

some of the best generic face detectors.

Chapter 5 : The concept of facial segments is applied to the task of facial attribute

detection for partially visible faces. We present a method to combine local

and global features to achieve more robust attribute estimation. Also, we

show the usefulness of facial segment-based approach in improving the cross-

domain detection performance.

Chapter 6 : We formulate the active authentication problem as a pattern-of-life ver-

ification task using location history data of smartphone users. The marginally-
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smoothed hidden Markov model (MS-HMM) approach is introduced here to

handle the problems originating from the sparsity of data.

Chapter 7 : The usability of application-usage behavior information for active au-

thentication is evaluated in this chapter. We present the results of insightful

experiments performed to analyze the impact of unforeseen observations, un-

known applications and authentication latency when using app-usage data.

Chapter 8 : We present several future research opportunities that are closely related

to the research works presented in this dissertation.

Chapter 9 : Concluding remarks, summarizing the contributions of this dissertation

are presented.
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Chapter 2: Related Works

Among the AA techniques, the most explored are based on faces [13], [12],

touch/swipe signature [59], multi-modal fusion [15], gait [60] and device movement-

patterns/accelerometer [61], [18]. Face-based authentication is accurate but it re-

quires heavy computational power and can cause faster battery drain if done continu-

ously. On the other hand, swipe and accelerometer data alone are not discriminative

enough. Among the other AA approaches, in [58], the authors fused stylometry with

application usage, web browsing data and location information.

2.1 Face-based Authentication

Similar to other face-based authentication systems, in AA, face-based ap-

proaches try to tackle two challenge - detection and verification. Face detection

is difficult in active authentication because of the high prevalence of partially vis-

ible and occluded faces, wide variation in lighting and pose, etc. For face-based

verification the hurdle is to verify partially visible faces.
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2.1.1 Face Detection

The detection problem in computer vision consists of predicting a bounding

box for objects of interest in an image. Broadly, there are two approaches, one based

on classification, the other on regression. In classification-based approaches, one

generates proposals or considers bounding boxes of multiple sizes at each location

exhaustively and then classifies each proposal by deciding if an object is present or

not. Popular methods in this category include [62] and [63]. In regression-based

approaches, the deep network predicts the bounding box’s location and dimensions

through regression, without having to go though a proposal generation stage, thus,

making them faster than classification-based approaches. Prime examples include

YOLO [64] and SSD [65]. Both YOLO and SSD use a single pass, regress the

bounding box location and classifies its category. YOLO uses a single activation

map, while SSD takes care of varying scales by using multiple activation maps. Note,

that in the case of face detection using regression-based methods, the classification

of the bounding box is not required, since only one type of ‘object’, the face, is to

be detected.

Face detection, being one of the earliest applications of computer vision dat-

ing back several decades [66] [67], was not applicable in real-world settings until

2004 because of poor performance in unconstrained conditions [68]. The first al-

gorithm that made face detection feasible in real-world applications was Viola and

Jones’s seminal work on boosted cascaded classification-based face detection [33],

which is still used widely in digital cameras, smartphones and photo organization
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software. However, researchers found that the method works reasonably well only

for near-frontal faces under normal illumination without occlusion [69] and proposed

extensions of the boosted architecture for multi-view face detection, such as [70] [71].

Even these extensions had their shortcomings - they were difficult to train, and did

not perform well because of inaccuracies introduced by viewpoint estimation and

quantization [69]. A more robust face detector is introduced in [26] that uses fa-

cial components or parts to construct a deformable part model (DPM) of a face.

Similar geometrical modeling approaches are found in [72] [73]. As support vector

machines (SVMs) became effective for classification and robust image features like

SURF, local binary pattern (LBP) histogram of oriented gradient (HoG) and their

variants were designed, researchers proposed different combinations of features with

SVM for robust face detection [68]. In recent year, the performance of the original

DPM-based method is greatly improved by researcher in [74] which they denote as

DPM Baseline. In the same paper, the authors introduced Headhunter, a new face

detector that uses Integral Channel Features (ICF) with boosting to achieve state-

of-the-art performance in face detection in the wild. In [75], the authors proposed

a fast face detector that uses the scale invariant and bounded Normalized Pixel

Difference (NPD) features along with a single soft-cascade classifier to handle un-

constrained face detection. The NPD method is claimed to achieve state-of-the-art

performance on FDDB, GENKI, and CMU-MIT datasets.

The performance break-through observed after the introduction of Deep Con-

volutional Neural Networks (DCNN) can be attributed to the availability of large la-

beled datasets, advancements in GPUs, the hierarchical nature of the deep networks
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and regularization techniques such as dropout [68]. In [25], the authors introduce

a multi-task deep CNN architecture for multiview face detection which achieved

state-of-the-art result on the FDDB dataset. Among other recent works, Hyper-

Face [23] is a deep multi-task framework for face detection, landmark localization,

pose estimation, and gender recognition. HyperFace exploits the synergy among

related tasks by fusing the intermediate layers of a deep CNN using a separate CNN

and thereby boosting their individual performances. Another multi-task learning

approach is proposed in [76] for simultaneous face detection, face alignment, pose

estimation, gender recognition, smile detection, age estimation and face recogni-

tion using a single deep CNN. Unlike HyperFace [23], the method in [76] utilizes

domain-based regularization by training on multiple datasets in addition to AFLW

and employs a robust, domain specific initialization.

Continuous authentication of mobile devices requires detection and verification

of the user’s face, even if it is partially visible, to operate reliably [31]. [30] and [77]

are two known methods that explicitly address the partial face detection problem.

Specifically, in [77] the authors achieve state-of-the-arts performance on the FDDB,

PASCAL and AFW datasets by generating face parts responses from an attribute-

aware deep network and refining the face hypothesis for partial faces.

2.2 Facial Attribute Detection

There has been significant amount of research on attribute extraction starting

from learning separate models for each attribute [78] [79] to jointly learning multiple
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attributes in a multi-task learning fashion [80] [36] [37] [35] [2]. Multi-task optimiza-

tion is found to improve performance in comparison to training independent models

for each attribute detection task [37] [36].

In recent times, the research on attribute detection mostly revolves around

two challenging, publicly available datasets namely, CelebA and LFWA [81]. Both

datasets have annotations for forty different attributes along with identity informa-

tion. The CelebA dataset contains 162, 770 images for training, 19, 867 image for

validation and 19, 962 more for testing. It is a challenging dataset with wide varia-

tions in pose, illumination and image quality. The LFWA dataset is a much smaller

dataset with 6263 training and 6880 test images. The datasets are introduced in [81]

where the authors proposed a cascaded system of two DCNNs to jointly perform

face localization and attribute detection. In [36], the authors addressed the multi-

label imbalance problem of the CelebA dataset and proposed a mixed objective

optimization network (MOON) that utilizes a unique loss function comprised of a

mixed multitask objective with domain adaptive re-weighting.

Some authors, such as in [37] [2], categorized the attributes into different

groups to take advantage of their mutual relationships. The authors in [37] sug-

gested an auxiliary network on top of the multi-task DCNN to further exploit the

relationships among the attributes. On the other hand, the authors in [2] defined a

modified AlexNet with both shared and category-specific feature learning to assist

attribute extraction.

Some researchers also implemented the attribute detection task as an auxiliary

task of another task. For example, in [35], the authors proposed a DCNN architec-
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ture similar to Faster RCNN [82] with additional losses for joint detection of face

and associated facial attributes without requiring explicit face alignment. However,

the method does not address partial face detection, which is a challenging prob-

lem in itself [83]. Other notable attribute detectors for unaligned face are proposed

in [84] and [1]. In [84], the authors proposed a cascade network to concurrently lo-

calize face regions to different attributes and perform attribute classification. While

this method might be suitable for attribute extraction from partially visible faces

if trained properly, the authors presented no such extension or analysis. Also, the

original network is huge, consisting of separate DCNN branches for each of the 40

attributes and therefore not easily scalable. In [1], the authors introduced a data

augmentation technique to assist attribute detection from unaligned faces. They im-

proved the detection performance by augmenting the test data and combining the

results. Even though their reported accuracy using an ensemble network of three

ResNets is very good on unaligned faces, the architecture does not incorporate any

mechanism for partially visible faces and also require combining scores from 162

transformations of the test image to achieve the best performance.

2.2.1 Face Verification

The objective of face verification is to determine whether two face images

belong to the same person or not. Being one of the core problems in computer

vision, it has been actively researched for over two decades [85]. The first step

for a face verification system is to learn invariant and discriminative feature rep-
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resentation [86]. Features can be hand crafted, such as LBP features [87], Gabor

wavelets-based encoding [88] etc., or learned from data, such as dictionary-based

approaches [89], deep CNN-based approaches [90], [91] etc. The DCNN-based ap-

proaches, are tremendously popular now a days because of the superior performances

of CNN-based methods and the wide availability of GPUs. For example, in [91], the

researchers achieved results that surpass human performance for face verification on

the LFW dataset. They used an ensemble of 25 simple DCNN with fewer layers

trained on weakly aligned face images. The network is trained on fewer images

than other DCNN approaches. Face verification networks proposed in [86] and [92]

considered a more realistic scenario of unconstrained face verification on two very

challenging datasets. In [93], the authors proposed a similarity model for cross do-

main face verification and evaluated it for challenging cross-domain matching tasks

such as person re-identification under different views and verification of faces from

still images and videos, older and younger faces, and sketch and photo portraits etc.

2.3 Authentication using Non-Face Modalities

2.3.1 Touch Gesture-based Authentication

In [19] and [94], the authors extracted behavioral feature vectors from the

screen touch data and trained discriminative classifiers for authentication. On the

other hand, in [15], the authors proposed kernel sparse representation and ker-

nel dictionary learning-based methods for touch gesture-based active user authen-

tication. These works have demonstrated the feasibility of using touch gestures
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as a biometric for active user authentication. Apart from touch gesture-based

method, other sensors such as the acclerometer, gyroscope, speech, location traces

etc. have been used to extract biometric features. For example, in [60] the au-

thors proposed an authentication scheme for AA that recognizes user by gait pat-

tern, whereas, in [61], [95], and [18] the authors train classifiers based on device

movement-patterns/accelerometer information along with or without touch gesture.

Authentication models that utilizes voice information are proposed in Voice-Based

Authentication, [96].

2.3.2 Authentication based on Location History

We have performed some priliminary research on user verification based on

location traces. Most location-based research reports are focused on data mining to

obtain information about an individual’s pattern of life. For example, in [97] the

authors predict the users movement among the location points and infer user-specific

activity at each location. In [98], the authors focus on detecting significant locations

of a user and predicting the user’s next location or infering the daily movements.

In [99], [100] and [101], the authors infer the high-level behavior of the user, such as,

the transportation modes on the way to the point locations. Other research efforts on

GPS location data include driving behavior mining, finding mode of transportation

and the most likely route, learing a Bayesian model of travel through an urban

environment etc. [97].

When mining individual life patterns from geo-location data, the problem can
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be considered as a sequential pattern mining problem, widely used in health-care

data processing, web usage analysis, text mining for natural language processing,

speech processing, sequential image processing, bioinformatics and in many other

domains [102]. In [97], sequential pattern mining has been employed for individual

life pattern modeling. Since the geo-location trajectory data are spatio-temporal

in nature, the fuzziness of space (usually no two point in the trajectory data are

exactly the same) prevents the direct use of traditional frequent pattern mining al-

gorithms. The usual practice is to cluster the geo-location points onto finite number

of observation states and then perform sequential pattern mining on the state tran-

sition trajectories. In natural language processing, template matching approaches

have been employed for matching features from a text sequence with pre-calculated

feature vectors using edit distance or some other distance metric. String matching

algorithms are also found to be effective in this regard. A different type of approach

is based on building state-space models like a Markov Chain or a hidden markov

model, from temporal data. Several research works on next place prediction from

location history, such as in [98], [103], [104], are based on state-space models like

Mobility Markov Chains (MMC), Mixed Markov Chain (MMM) and Hidden Markov

Models (HMM).

2.3.3 Application Usage-based Authentication

In recent years, there has been a lot of focus on predicting individual and

community-wise application usage patterns [105]. For example, in [41], the authors
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investigate the ratio of local and global applications in the top usage list, the traf-

fic pattern for different application categories, likelihood of co-occurrence of two

different applications and such other patterns in usage. In this work, the authors

identify traffic from distinct applications using HTTP signatures. On the other

hand, in [106] the authors use mobile in-app advertisements to identify the appli-

cations in network traces. Using the ad flow data, the authors tried to analyze the

usage behavior of different types of applications. In [43], the authors analyzed the

application-usage logs of over 4, 000 smartphone users worldwide to develop an app-

usage prediction model that leverages user preferences, historical usage patterns,

activities and shared aggregate patterns of application behavior.

From the authentication front, in [53], the authors proposed an application

centric decision approach for active or implicit authentication in which applications

are used as context to decide what modalities to use to authenticate a user and

when to do it. Application usage data has also been used to generate scores for user

authentication in [58]. The authors only considered the frequency of occurrence of

an application in the training set to determine the likelihood of being a particular

user, missing the temporal variation in the the usage pattern.

An interesting use-case of application-usage data is presented in [107]. The

authors used a large-scale annotated application-usage dataset to build a predictor

that can estimate where a person is (e.g., at home or office) and if he/she is with a

close friend or a family member. In [46], the authors used application usage traces

along with system status and sensor indicators to predict the battery life of the

phones using machine learning techniques.
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2.4 Multi-modal Fusion

Various protocols for AA with and without multi-modal fusion have been sug-

gested over the years. In [56], the authors explored the idea of progressive or risk-

based authentication by combining multiple verification signals to determine the

users level of authenticity. The AA system surfaces only when this level is too low

for the content being requested. In [108], the authors proposed context aware proto-

cols for more flexible yet robust authentication. In [109], the authors discuss three

possible levels of fusion (a) fusion at feature level, (b) fusion at score level, and (c)

fusion at decision level. Different fusion algorithms based on k-Nearest Neighbour

classifiers, Support Vector Machines, decision trees, Bayesian methods, Gaussian

Mixture Models (GMM) have been employed. [109], [110].

2.5 Active Authentication Datasets

Given the sensitive nature of smartphone usage data, there has been a scarcity

of large dataset of front camera images in natural settings. However, the following

datasets have been published in recent years that provided a platform to evaluate

partial face detection methods in real-life scenarios.

2.5.1 Constrained mobile datasets

The MOBIO dataset [32] is a well-known dataset for face-based AA research.

It contains 61 hours of audio-visual data from a NOKIA N93i phone (and a 2008
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Mac-book laptop) with 12 distinct sessions of 150 participants spread over several

weeks. However, since users were required to position their head inside an elliptical

region within the scene while capturing the data, the face images of this dataset are

constrained and do not represent real-life acquisition scenarios.

2.5.2 Private datasets

The largest known dataset on smartphone usage is the Google’s Project Aba-

cus data set consisting of 27.62 TB of smartphone sensor signals collected from ap-

proximately 1500 users for six months on Nexus5 phones [111]. Data was collected

for the front-facing camera, touchscreen and keyboard, gyroscope, accelerometer,

magnetometer, ambient light sensor, GPS, Bluetooth, WiFi, cell antennae, app us-

age and on time statistics. Google also collected the 114GB Project Move dataset,

which consists of smartphone inertial signals collected from 80 volunteers over two

months on LG3, Nexus5, and Nexus6 phones. The data collection was passive for

both projects. However, neither of these two datasets are available for the research

community.

2.5.3 Publicly available unconstrained mobile datasets

The AA-01 dataset [15] is a challenging dataset for front-camera face detection

task which contains the front-facing camera face videos for 43 male and 7 female

IPhone users under three different ambient lighting conditions. In each session, the

users performed five different tasks. To evaluate the face detector, face bounding
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boxes were annotated in a total of 8036 frames of the 50 users. This dataset,

denoted as AA-01-FD, contains 1607 frames without faces and 6429 frames with

faces [4], [30]. The images in this are semi-constrained as the subjects perform a set

task during the data collection period. However they are not required or encouraged

to maintain a certain posture, hence the dataset is sufficiently challenging due to

pose variations, occlusions and partial faces.

2.5.3.1 Other AA Datasets

The MIT Reality Dataset [112] consists of call logs, Bluetooth devices in

proximity, cell tower IDs, application usage, and phone status (such as charging and

idle) information from 100 Nokia-6600 smart phones users collected over 450, 000

hours. Since it focused on analyzing social behavior of the subjects, it does not con-

tain vital biometrics such as face and touch. The Rice Livelab dataset [113] consists

of information on application usage, wifi networks, cell towers, GPS readings, bat-

tery usage and accelerometer output of 35 users, collected from iPhone 3GS devices

over durations ranging from a few days to less than a year.

The Geolife GPS trajectory dataset was collected in Microsoft Research

Asia by 182 users over four years (from April 2007 to October 2011). The GPS

trajectories of this dataset are represented by sequences of time-stamped points,

each containing latitude, longitude and altitude information. The dataset contains

17, 621 trajectories with a total distance of 1, 251, 654 kilometers and a total duration

of 48, 203 hours. These trajectories were recorded by different GPS loggers and
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GPS-phones, and have a variety of sampling rates. 91 percent of the trajectories are

logged in a dense representation, e.g. every 1 ∼ 5 seconds or every 5 ∼ 10 meters per

point [114], [115]. Apart from the GPS trajectories, the dataset contains information

about a broad range of users’ outdoor movements, including not only life routines

like going to work or home, shopping, hiking etc. but also some entertainments and

sports activities, such as shopping, sightseeing, dining, hiking, and cycling. This

trajectory dataset has been used in many research fields, such as mobility pattern

mining, user activity recognition, location-based social networks, location privacy,

and location recommendation [99], [101], [97]

Figure 2.1: Similarity matrix depicting top 20 application-usage rate among users
in the training set of the Securacy dataset.

The Securacy dataset1 [116] from the Center of Ubiquitous Computing,

University of Oulu was originally created within the context of exploring the pri-

vacy and security concerns of a smartphone user by analyzing the location of servers

that different applications use and whether secure network connections are used. For

1Available at http://ubicomp.oulu.fi/securacy-understanding-mobile-privacy-and-

security-concerns/
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Table 2.1: General information on application-usage data available in the Securacy
dataset.

No. of Subjects with ≥ 500 training samples
and ≥ 200 test samples for sampling rate of
1/30s−1 (Train/Test)

201/99

Avg. No. of Sessions/User with App-Usage
Data of the 99 selected subjects (train/test)

∼ 119/ ∼ 96

Train/Test split for the experiment 70%/30%
Total Number of Unique Applications Used
by the 99 selected subjects (train/test)

1340/554

Average Number of Samples Per User for the
99 selected subjects (train/test)

∼ 2235/ ∼ 1745

a period of approximately six months, the data was collected from 218 anonymous

participants who installed the data collection application from the Google Play store.

The collected data, 679.90 GB, includes the currently running foreground applica-

tion, installed, removed or updated applications, application server connections and

device location, etc. Out of the 218 users of the original Securacy dataset, 99 are

used for experiment who has more than 500 training samples and more than 200

test samples for any sampling rate between 1/5s−1 and 1/30s−1. The usage rate

for the top 20 applications for each of the 99 subjects are show in fig. 2.1. The

application usage data for the 99 subjects in the Securacy dataset are summarized

in Table 2.1 and the corresponding usage statistics for the top 20 applications are

presented in Table 2.2. Note that the top applications ranked 1st, 2nd and 4th in

Table 2.2 are actually the same application written in Spanish, English and Finnish,

respectively. Similarly, rank 12, ‘Horloge’ is ’Clock’ in French, and therefore is the

same application as rank 19. However, these applications are shown separately here

because, for the active authentication problem, even the preferred language of the

user is a type of biometric metadata and can be used to discriminate between users.
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Also, similar to UMDAA-02 dataset usage statistics, there are several applications in

the top 20 rank that were actually used by only a few users very frequently (ranked

1, 4, 9, 12, 16). For this dataset, this phenomenon can be attributed to language

difference as well because if the language difference were nullified, then rank 1, 2,

4 will collapse at rank 1 and rank 12 and 19 will collapse at 12 - thereby removing

three applications from the list (rank 1, 4 and 12) that has very few users. For the

user verification research presented here, the language variation is kept unaltered

in order to retain the naturalness of the dataset and the algorithms are expected

to learn to discriminate between users based on the language as well as on usage

pattern.
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Table 2.2: App-usage statistics for the top 20 apps for the 99 selected users of the
Securacy Dataset.

Rank App Name No. of
Users

Per User
Usage

Overall
Usage

1 Sistema Android 4 9972.25 402.92
2 Android System 80 480.44 388.23
3 com.android.keyguard 34 802.79 275.71
4 Android-jrjestelm 5 4820.8 243.47
5 System UI 80 242 195.56
6 Nova Launcher 19 794.79 152.54
7 Maps 38 363.08 139.36
8 Google Search 53 214.3 114.73
9 Launcher 12 650 78.79
10 Chrome 60 128.2 77.7
11 Facebook 49 154.53 76.48
12 Horloge 1 7328 74.02
13 YouTube 49 144.94 71.74
14 TouchWiz home 20 348.3 70.36
15 Securacy 84 75.39 63.97
16 Internet 16 371.25 60
17 WhatsApp 37 154.62 57.79
18 Google Play Store 72 71.83 52.24
19 Clock 44 113.89 50.62
20 Package installer 36 138.69 50.43
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Chapter 3: Active Authentication Benchmark Experiments on the

UMDAA-02 Dataset

3.1 Description of the UMDAA-02 Dataset

The UMDAA-02 data set 1 consists of 141.14 GB of smartphone sensor signals

collected from 48 volunteers on Nexus 5 phones over a period of 2 months (15 Oct.

2015 to 20 Dec. 2015). The data collection sensors include the front-facing camera,

touchscreen, gyroscope, accelerometer, magnetometer, light sensor, GPS, Bluetooth,

WiFi, proximity sensor, temperature sensor and pressure sensor. The data collection

application also stored the timing of screen lock and unlock events, start and end

time stamps of calls, currently running foreground application etc. The volunteers

used the research phone as their primary device for a week and were given the option

to stop data collection at will and review the stored data prior to sharing.

In Table 3.1, the most significant information for each modality associated

with the sensor data is presented. Data for most of the modalities are stored when

there is significant change in that modality. For example, the GPS data is stored at

a rate proportional to the movement speed of the phone. The front camera images

are captured only for the first 60 seconds for each session at a rate of 3 fps.

1Available at https://umdaa02.github.io/
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Table 3.1: Significant Information for Each Modality Per Session
Modality Information

Accelerometer Event Time, X, Y, Z

Gyroscope Event Time, X, Y, Z

Image Shutter Time, Filename

Bluetooth Developer, Paired/Unpaired Flag

Location Event Time, Lat., Long., Accuracy

Usage Event Time, % CPU, % Memory

Magnetic Field Event Time, X, Y, Z

Gravity Event Time, X, Y, Z

Connectivity Capture Time, Flag (Bluetooth, Gps, Wifi, Cell
Network), Network Name and Code

Foreground App Info Start Time, Duration, End Time, App Name,
Launched From Home Flag

WiFi SSID, BSSID, Authentication Type, IP Address,
RSSI

Ambient Light Event Time, Value

Ambient Cells MCC, CI, MNC, Sig. Strength, TAC

Screen Event Time, Key

Motion/Touch Event Time, Type, Pressure, Major-Minor Axis,
Position

Call Event Time, Key

Key Event Time, Pressure, Type, Key Code

Screen Res Event Time, X, Y

Table 3.2: Information on UMDAA-02 and UMDAA-02-FD Dataset
Description UMDAA-02 UMDAA-02-FD

No. of Subjects 36M, 12F 34M, 10F

Age Range (years) 22− 31 22− 31

Avg. Days/User (days) v 10 v 10

Avg. Sessions/User v 248 v 200

Total Number of Images 600712 33209

No. of Images without Faces − 9060

Avg. Images/User v 12515 v 755

Avg. Images/Session v 51 v 4

Min. no. of Image for a User 1038 64

Max. no. of Image for a User 49023 2787
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Figure 3.1: (a) Histogram of number of images per user, and (b) histogram of
number of sessions per user.

Some general information on the dataset is provided in Table 3.2. The usage

information is arranged in ‘Sessions’ which starts when the user unlocks the phone

and ends when the phone goes to the locked state. The data is stored in nested

folders with the year, month, day and start time of the session embedded in the

folder names.

3.2 Face Detection and User Verification

In this section, we describe face detection and verification tasks from faces

captured by the front-facing camera. Fig. 3.1 shows histograms of number of images

per user and the number of sessions per user. The number of images varies between

2000 to 50, 000 per user and the number of sessions varies between 25 and 750, thus

providing a large number of images for each user and session.

UMDAA-02-FD Face Detection Dataset: State-of-the-art face detection al-

gorithms that perform satisfactorily on datasets like faces-in-the-wild [28], [29] are
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Figure 3.2: Sample images from one of the users showing a wide variety of pose,
illumination, occlusion and expression variations.

not suitable for detecting partially visible faces that are typically present in the

UMDAA-02 dataset. Moreover, for practical implementation purposes, the algo-

rithm must be very fast and have a high recall rate to ensure continuous authenti-

cation [4]. A few sample images are shown in Fig. 3.2 which shows that the faces

suffer from partial visibility, illumination changes, occlusion and wide variation in

poses and facial expressions.

Excluding the data of 5 users from a phone whose front camera malfunctioned

during data collection phases, a set of 33209 images was selected from all sessions

of the remaining 43 users at an interval of 7 seconds. The images were manually

annotated for ground truth face bounding box, face orientation and five landmarks -

left eye, right eye, nose, left and right corners of the mouth to create the UMDAA-02

face detection dataset (UMDAA-02-FD). Some information on the UMDAA-02-FD

is provided in Table 3.2. The chronology and session information of all the images

are also available. The histogram of face height and width distribution shown in Fig.

3.3 indicates that face widths vary approximately from 400 to 650 pixels, while face

heights vary approximately from 300 to 700 pixels. The database contains many
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Figure 3.3: Distribution of bounding box width and heights

Table 3.3: Comparison between FD methods at 50% overlap
Method Accuracy F1-Score Time/Image(s)

VJ [33] 60.24 64.50 0.16
DPM [26] 62.62 65.50 5.51
LAEO [73] 19.40 32.49 4.57
FSFD(Cbest) [4] 73.48 79.11 0.68
DP2MFD [117] 76.15 82.83 15.0(CPU), 0.8(GPU)

partial faces as can be seen from the extremities of the distribution, information

from which can help tune the hyper-parameters of face detectors.

Evaluation of Face Detection Performances: Accuracy and F1-score measures

are adopted as evaluation metrics for face detection to ensure that both precision

and recall performances are taken into consideration. The processing time per image

is also measured to analyze the suitability for real-time operations. Prior to face

detection, the images are down sampled by 4 to ensure reasonable processing time

for all algorithms. 50% intersection-over-union overlap between the detection results

and the ground truth bounding box is considered to be the threshold for correct

detection.

The performances of four face detection algorithms on the UMDAA-02-FD
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dataset are presented in Table 3.3. The recently proposed Facial Segment-Based

Face Detector (FSFD) algorithm [4] (with number of random subset ζ = 20 and min-

imum number of segments c = 2), which is specifically designed for detecting partial

faces, performs better than other popular non-commercial detectors like Viola-Jones

(VJ) [33] and Deformable Part-based Model (DPM) [26] and in reasonable process-

ing time. Another recent FD technique, the Deep Pyramid Deformable Part Model

(DP2MFD) [117] utilizes normalized convolutional neural network (CNN) features.

It outperforms all the other methods in terms of Accuracy and F1-Score but the

processing time is quite long (almost 100 times more than VJ) thus making it

unattractive for realtime implementation on smartphones. However, the best scores

are far from satisfactory and better face detectors for AA are needed.

Face-based User Verification: Face verification is performed on the UMDAA-

02-FD dataset. For each annotated face, 68 fiducial landmarks are extracted using

the Local Deep Descriptor Regression (LDDR) method trained on Imagenet and

FDDB datasets [118]. Feature extraction is performed after alignment, centering

and cropping.

Feature Extraction from Faces: Given a face image, pixel intensity, LBP [119]

and CNN features using the pre-trained Alexnet network [120] and the DCNN net-

work [121] are extracted. In total, 6 different features are extracted for each face as

shown in fig. 3.4.

• F1: Pre-processed faces are converted to grayscale, rescaled (32 × 32) and
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Figure 3.4: Flow diagram for features extraction for face verification.

vectorized (1024 dimensional vector).

• F2: From the 64× 64 rescaled grayscale image, LBP features of size 8× 8× 58

(3712 dimensional vector) are extracted for a cell size of 8× 8 pixels.

• F3: Bounding boxes of the eyes, nose and mouth are computed from the

landmarks with a 5 pixel margin for each face part from the pre-processed

grayscale image. The eyes, nose and mouth bounding boxes are resized to

14 × 18, 21 × 13 and 11 × 23 pixels respectively, then vectorized to a 1030

dimensional MEEN feature [13].

• F4: LBP features (2842 dimensional) are obtained from each of the resized

bounding boxes of MEEN parts (F3) with a cell size of 4× 4 pixels.
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Figure 3.5: Block diagram depicting the face verification protocol.

• F5: The first five convolutional layers of Alexnet are used to extract features of

size 6×6×256 (9216 dimensional) from resized color images of faces (227×227)

• F6: Landmarks are input to the DCNN based face verification system [121]

trained on the CASIA-WebFace dataset [122], which resizes the face to (125×

125× 3) and then outputs a 320 dimensional feature vector.

Evaluation Protocol: Six types of feature vectors are considered in this experi-

ment. In the absence of any particular enrollment data, to simulate a practical AA

scenario, the faces are sorted chronologically for each user and the first N faces are

considered for enrollment while the rest are used for verification. The mean of the

features of the enrollment set of a user followed by L2 normalization of the mean

vector is stored as his/her template u.

Fig. 3.5 shows a block diagram of the verification process. A reasonable, prac-

tical assumption for robust AA is that the user is verified by the last M faces instead

40



Figure 3.6: EER (%) vs. M for varying N using DCNN features (F6) and four
different metrics.

of a single one. Therefore features vi (i = 1, 2, . . . ,M) are extracted from each of the

M faces for each location of the moving window, then averaged and L2-normalized

to form the test vector v. The distances between v and u are calculated using four

distance measures, namely, Euclidean Distance (EU), Cosine Distance (CosD), Man-

hattan Distance (MD) and Correlation Distance (CorrD). For the distance measure

δk of type k the score is Ψk = 1
δk

[12].

Experimental Results: In Fig. 3.6, the equal error rate (EER) (%) produced

by using F6 features are plotted for varying M and N values for the four distance

measures. It is evident from the plots that the EER decreases with increasing N

and M for all the cases. The lowest EER of 18.44% is achieved for N = 20, M = 30

using either CorrD or CosD measure.

Fig. 3.7 shows the EER corresponding to different features and distance mea-
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Figure 3.7: EER(%) for 6 feature vectors using four metrics.

sures considering N = 20, M = 30. The DCNN features (F6) are found to be the

most effective (EER of 18.44% for CosD). Since, for a reliable system the EER is

expected to be at least less than 5%, this value is not satisfactory at all. The poor

performance may be due to the fact that many faces in the dataset are partially

visible and therefore alignment using facial landmarks fails badly for these cases.

Also, matching the features from a partial face to the features of the same user’s full

face may result in a large distance measure. Among the other methods, the Alexnet

network does not perform much better than the non-CNN features in this scenario

as it is not trained particularly for faces. The LBP of MEEN face (EER of 28.83%

for MD) gives the best result among non-CNN features. Note that in practice, the

CNN feature extraction step is generally much slower than the non-CNN feature ex-

traction methods without the use of a GPU. Thus, more robust yet fast verification

methods are needed to produce satisfactory performance on this dataset.
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Figure 3.8: Histogram of the number of data points per swipe.

3.3 User Identification Using Swipe Dynamics

In this experiment, single finger touch sequences (swipes) on the screen are

studied by considering three types of events - finger down, in-touch and finger up.

The length of swipes vary between 1 to 3637 touch data points (Fig. 3.8). For

reliable authentication using swipes, longer ones are preferable [19]. Hence, swipes

with more than four data points are considered for feature extraction. Table 3.4

summarizes the swipe dataset, shows that it contains a large number of touch and

swipe data per user and therefore can serve as a data set for practical experiments

on swipe-based authentication. Since the users were not given any particular task

to perform, the touch data in AA-02 is representative of how users interact with the

phone through touch.

Feature Extraction: Every swipe s is encoded as a sequence of 4-tuples si =

(xi, yi, pi, ti) for i ∈ 1, . . . , Nc where xi, yi is the location coordinates and pi is the

pressure applied at time ti. Nc is the number of data points captured during the

swipe. From each swipe-action data with Nc ≥ 5, a 24-dimensional feature vector,
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Table 3.4: General Information on Swipe Data
No. of subjects 48

Avg. Session/User with swipe data v 196

Total taps (finger down-finger up) 177417

Total swipes (including taps) 489723

Maximum data points in a swipe 3637

No. of Swipes/User v 10203

No. of Swipes/Session v 52

No. of Swipes (> 4 data points) v 167126

No. of Swipes/User (> 4 data points) v 3482

No. of Swipes/Session (> 4 data points) v 18

Table 3.5: Features Extracted From Each Swipe Event
Features Description

1-2 inter-stroke time, stroke duration

3-6 start x, start y, stop x, stop y

7-8 direct end-to-end distance, mean resultant length

9 up/down/left/right flag

10-12 20%, 50%, 80% -perc. pairwise velocity

13-15 20%, 50%, 80%-perc. pairwise acc

16 median velocity at last 3 pts

17 largest deviation from end-to-end (e-e) line

18-20 20%, 50%, 80%-perc. dev. from e-e line

21 average direction

22 ratio of end-to-end dist and trajectory length

23 median acceleration at first 5 points

24 mid-stroke pressure

listed in Table 3.5, is extracted using the method described in [19] and [15]. Note,

in the UMDAA-02 dataset, the measure of area covered by the finger is not present.

Experimental Setup and Evaluation: The swipe data for each user (with

Nc ≥ 5) are sorted chronologically and the first 70% swipes are considered for

training-validation while the rest for testing. After extracting the 24-dimensional

feature vector from each swipe, the training feature matrix is normalized to zero

mean and unit variance. Then individual binary classifiers are trained for each

user following the one-vs-all protocol. The classification methods considered for

this experiment are k-nearest neighbor (KNN) [19], Gaussian kernel Support Vec-
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Figure 3.9: EER vs. Wswipe.

tor Machine (RBF-SVM) [19], Naive Bayes (NB) [59], Linear Regression (LR) [59],

Random Tree estimation followed by Linear Regression (RT+LR), Random Forest

estimator (RF) [123], [14], [59] and Gradient Boosting Model (GBM) [124]. The

methods are compared based on EER (%).

As proposed in [19], instead of using a single swipe for authentication, the

scores of multiple, consecutive Wswipes number of swipes are averaged together for

robustness. Since all of the methods return confidence probabilities/scores or dis-

tance from separating hyper-plane representing confidence, the score fusion is a

simple average of individual scores. For the nearest neighbor-based methods, nine

neighbors are considered. The parameters of RBF-SVM are tuned by 10 fold cross

validation on smaller subsets of the original training data. Since the training data

is very large, the SVM is trained on a reduced subset, followed by retraining on the

hard negative mined error cases. For the ensemble-based methods, the number of

estimators is set to 200 and the maximum tree depth is set to 10. The EER values
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Table 3.6: General Information on Geo-location Data
No. of Subjects 45

Avg. No. of Sessions/User with Location Data v 186

Total Number of Location Traces 8303813

Number of Location Traces Per User v 184529

Number of Location Traces Per Session v 993

obtained using different methods for differnet Wswipe values are show in Fig. 3.9.

The random forest (RF ) estimation method outperforms all the other methods and

can reach an EER of 22.1%. However, for practical usage, this EER is not satisfac-

tory and therefore achieving a better performance for this dataset is a new research

challenge.

3.4 Geo-location Data and Next Place Prediction

The location service of smartphones return geographical location of the user

based on GPS and WiFi network. Excluding the users who kept their location

service off, geolocation data, stored only if there is significant change in the location,

is obtained from 45 users (summarized in Table 3.6). It is possible to reasonably

predict the next location that a person might visit based on prior knowledge on the

pattern on one’s life. In this section, the next place prediction problem is approached

using the geolocation data available in the UMDAA-02 dataset.

State Definition for Mobility Markov Chains: Location histories are first

clustered into Ni clusters, namely C1
i . . . C

N
i , for the i-th user using the DBSCAN

algorithm [125] based on distances between data points. The maximum distance

between a point from the center of the cluster in which that point belongs is set
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Figure 3.10: Example of Geo-location Data Clustering - Analysis of the clusters
reveal states of the user such as ’Home’ or ’Work’.

to be below a certain value R meters. Such clustering for a student (shown in

Fig. 3.10) reveals the expected dominant regions that the user would visit - home,

university, a certain shop and a restaurant. Two additional clusters, Transit (Tr)

and Unknown (Unk), are also assigned for each user. If the user is traveling, causing

location information to change rapidly (≥ 2ms−1), then he/she is assigned to Tr.

The remaining data points are denoted as Unk.

Data points at each cluster are assigned to six different observations based

on the day and time information. Weekdays and weekend data points are flagged

with WD and WE. Also, the whole day is divided into three time zones (TZs) -

TZ1 (8:00 am to 4:00 pm), TZ2 (4:00 pm to 10:00 pm) and TZ3 (10:00 pm to 8:00

am). Thus, for the i-th user, there are (Ni + 2)× 2× 3 possible observation states.

However, since the location service only collects data when the phone is unlocked,

there are many gaps in the data and it is possible that many of these observation
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states are absent in the training phase but present in the test data or vice-versa.

The location service data is utilized for development and evaluation of Mobility

Markov Chains (MMC) [98], [103] which is a discrete stochastic process model of

the mobility behavior of an individual in which the probability of moving to a state

depends only on the last visited state and the transition matrix for all probable

states. Thus an MMC is composed of a set of k-states S = s1, s2, . . . , sk, prior

probability of entering a state p1, p2, . . . , pk and a set of transitions ti,j where ti,j =

Prob(Xn = sj|Xn−1 = si).

Experimental Setup and Evaluation: From the chronological organization of a

user’s mobility traces, the first 70% are used for training while the rest for testing.

Each trace of the training set is tagged with a unique tag identifying the state it

belongs to. The prior and transition probabilities of each state are calculated from

the chronological traces. Since, the number of states for a subject depends upon

the maximum radius parameter R for the clusters, nearby small clusters get merged

into bigger ones with increasing R causing a reduction in the number of states. In

the training set, the average number of states per user drops to 35 from 144 if the

maximum radius is increased to 500 m from 20 m.

MMC-based next location prediction results in terms ofAccuracy andAccuracy3

(percentage of times the correct next location was among the top 3 most probable

locations) metrics are presented in Fig. 3.11. The horizontal axis represents the

number of previous observations. Considering n previous observations, the MMC

algorithm returns probabilities of each state to be the next. Since the day and time

zone of the next location are known, states that do not belong to that day and
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Figure 3.11: Next location prediction Accuracy (left) and Accuracy3 (right) mea-
sures for increasing number of previous observations for MMC at different R.

Table 3.7: General information on application-usage data available in the UMDAA-
02 dataset.

No. of Subjects with ≥ 500 training samples and
≥ 200 test samples for sampling rate of 1/30s−1

(Train/Test)

32/26

Avg. No. of Sessions/User with App-Usage Data
of the 26 selected subjects (train/test)

∼ 582/ ∼ 197

Train/Test split for the experiment 70%/30%
Total Number of Unique Applications Used by the
26 selected subjects (train/test)

119/67

Average Number of Samples Per User for the 26
selected subjects (train/test)

∼ 4307/ ∼ 1399

time zone are dropped. The most probable state among the rest of the states is

picked as the next predicted location. Fig. 3.11 indicates that knowing more prior

states increases the accuracy. The accuracy also increases with increasing maximum

radius R (from 20 meters to 500 meters) at the cost of localization capability. Be-

tween the two measures, Accuracy3 is can go much higher (Accuracy = 65.3% and

Accuracy3 = 96.6% for R = 500 meters, n = 8) indicating the feasibility of location

prediction.
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3.5 Application-Usage Data in UMDAA-02 Dataset

The UMDAA-02 dataset is specifically designed for evaluating active authen-

tication systems in the wild. The dataset consists of 141.14 GB of smartphone

sensor data collected from 45 volunteers who were using Nexus 5 phones in their

regular daily activities over a period of two months. The data collection application

ran completely in the background and the collected data includes the front-facing

camera, touchscreen, gyroscope, accelerometer, magnetometer, light sensor, GPS,

Bluetooth, WiFi, proximity sensor, temperature sensor and pressure sensor among

with the timing of screen unlock and lock events, start and end timestamps of calls

and currently running foreground application, etc. The application usage data from

45 users is summarized in Table 3.7. However, not all the users have adequate

amount of usage data. For all the experiments in this dissertation, a total of 26

users are used who has more that 500 training samples and more than 200 test

samples for any sampling rate between 1/5s−1 to 1/30s−1. The usage statistics for

the top 20 applications for the selected 26 subjects is presented in Table 3.8. The

usage rate for the top 20 applications for each user is shown in fig. 3.12(a). From

the table and the figure, it is readily seen that the applications ranked 6th, 8th, 12th

and 20th are in the top list because of excessive usage by very few users, where as,

the remaining applications are genuinely popular among the users.
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Table 3.8: App-usage statistics for the top 20 apps for the 26 selected users of the
UMDAA-02 dataset.

Rank App Name No. of
Users

Per
User
Usage

Overall
Usage

1 com.google.android. googlequick-
searchbox

26 283.27 283.27

2 com.android.dialer 25 255.24 245.42
3 com.whatsapp 15 303.6 175.15
4 com.android.chrome 26 141.42 141.42
5 com.facebook.katana 11 308.18 130.38
6 com.nextwave.wcc2 1 2366 91
7 com.google.android.youtube 16 144.38 88.85
8 com.ea.game.pvzfree 2 872.5 67.12
9 com.google.android.gm 24 51.04 47.12
10 com.android.mms 22 52.09 44.08
11 com.google.android.talk 18 62.28 43.12
12 com.andrewshu.android.reddit 1 842 32.38
13 com.nextbus.mobile 19 41.89 30.62
14 com.google.android.apps.docs 24 33 30.46
15 com.android.settings 24 27.71 25.58
16 com.google.android.apps.maps 14 44 23.69
17 com.android.camera2 22 20.5 17.35
18 com.google.android.gallery3d 17 24.94 16.31
19 com.android.vending 21 20.1 16.23
20 com.viber.voip 5 74.6 14.35

Figure 3.12: Similarity matrix depicting top 20 application-usage rate among users
in the training set of the UMDAA-02 dataset.
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Chapter 4: Facial Segments-based Face Detection for Active Authen-

tication

One of our research goals is to perform face-based user authentication from

the front camera images of mobile devices. The first step of such a system is to

reliably detect the user’s face from the image. As we mentioned earlier, face detec-

tion in the mobile domain is a very challenging task itself and we have proposed

a novel facial segment-based approach to face detection considering the frequent

occurrence of partially visible faces in the mobile domain face datasets. We have

developed several face detection algorithms which can be divided into two general

approaches - proposal-based classification methods and regression-based end-to-end

detection methods. The approaches and the corresponding face detection methods

are described in this chapter.

4.1 Proposal-based Methods for Face Detection in Mobile Domain

In proposal-based detection methods, bounding boxes are generated as face

proposals based on facial segments. The detectors are trained on the proposals and

corresponding facial segment information to classify each segment as face/non-face

with confidence scores. Three detectors of this type are presented along with a fast
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Figure 4.1: Block diagram showing the general architecture of a face segment to face
detector, with components such as facial segments-based proposal generator, feature
extractor, classifier and re-ranking based on prior probabilities of segments [5].

proposal generation mechanism. The detectors are

1. Facial Segment-based Face Detection (FSFD) [4]

2. SegFace [5], and

3. DeepSegFace [5].

Here, FSFD is a simple yet effective approach, SegFace has a more robust formula-

tion and DeepSegFace is a deep CNN-based approach that is even more robust and

accurate. A general pipeline for the proposal-based approach is shown in Fig. 4.1.

As can be seen from the figure, the whole pipeline can be divided into two major

parts - proposal generation and detection model training.

4.1.1 Proposal generation

The basis of our approach is dividing the task of face detection among dif-

ferent segments of the face. By segments, we mean portions of the face such as
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left half, right half, upper half, bottom half, nose segment etc. We divide a face

into 14 such facial segments (as shown in Fig. 1.2) using 21 fiducial keypoints

(as shown in Fig. 4.2) which are upper-left-half (UL12), upper-half (U12), upper-

right-half (UR12), upper-left-three-fourth (UL34), upper-three-forth (U34), upper-

right-three-fourth (UR34), left-half (L12), left-three-fourth (L34), eye-pair (EP),

nose region (NS), right-half (R12), right-three-fourth (R34), bottom-three-fourth

(B34), and bottom-half (B12). Let us denote the points shown in Fig. 4.2 with

(xk, yk) where xk and yk are the horizontal and vertical pixel distances from the

(0, 0) pixel coordinate (top-left corner) of an image image of width W and height H,

and k ∈ {TL, BR, 1, 2, . . . , 21}. TL and BR corresponds to Top-Left and Bottom-

Right coordinate of the full face bounding box. The fiducials and full face bounding

boxes are obtained from All-in-One Face [126] along with visibility scores vk where

k ∈ {TL, BR, 1, 2, . . . , 21}. Now, ∀vj|21j=1 ≥ τ where τ is a visibility threshold, the

bounding boxes of segments �L, were L ∈ {UL12, UR12, . . . ,B12}are defined as

�EP = [max(xTL,min(xi|12i=1)),max(yTL,min(yi|12i=1)−∆EP),

min(xBR,max(xi|12i=1)),min(yBR,max(yi|12i=1) + ∆EP)]

�NS = [max(xTL,min(xi|i∈{8,14,15,16,18})),max(yTL,max(0,
1

3

16∑
i=14

yi − 2∆NS)),

min(xBR,max(xi|i∈{11,14,15,16,20})),min(yBR,max(H,
1

3

16∑
i=14

yi + 2∆NS))]
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�UL12 = [xTL, yTL,max(xi|i∈{3,9,14,15,19}),max(yi|16i=14)]

�U12 = [xTL, yTL, xBR,max(yi|16i=14)]

�UR12 = [min(xi|i∈{4,10,15,16,19}), yTL, xBR,max(yi|16i=14)]

�UL34 = [xTL, yTL,max(xi|i∈{5,11,16,20}),max(yi|20i=18)]

�U34 = [xTL, yTL, xBR,max(yi|20i=18)]

�UR34 = [min(xi|i∈{2,8,14,18}), yTL, xBR,max(yi|20i=18)]

�L12 = [xTL, yTL,max(xi|i∈{3,15,19}), yBR]

�L34 = [xTL, yTL,max(xi|i∈{5,11,16,20}), yBR]

�R34 = [min(xi|i∈{2,8,14,18}), yTL, xBR, yBR]
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Figure 4.2: The 21 fiducial key points and the full face bounding box.

�R12 = [min(xi|i∈{4,10,15,16,19}), yTL, xBR, yBR]

�B12 = [xTL,min(yi|16i=14), xBR, yBR]

�B34 = [xTL,min(yi|12i=7), xBR, yBR]. (4.1)

Here, ∆EP = max(|yi − yi−6|12i=7) and ∆NS = 0.5 ∗ (max(yi|20i=18) − min(yi|16i=14)),

∀vj ≥ τ , where j ∈ {1, 2, . . . 21}.
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The set of facial segments is denoted by S = {FSk | k = 1, 2, . . .M}, where

FSk is the k-th facial segment. M weak Adaboost facial segment detectors are

trained to detect each of the segments in S.

Given an image, all the segment detectors are employed. Each detector may

return one or more facial segments for the same image. For each facial segment,

the bounding box of the full face is estimated according to the ideal position of

that segment relative to the whole face. For example, if the top left and bottom

right corners of the bounding box obtained for segment L12 are (xL121 , yL121 ) and

(xL122 , yL122 ), respectively, then those for the estimated full face are (xL121 , yL121 ) and

(min(wimg, x
L12
2 + (xL122 − xL121 )), yL122 ), where wimg is the width of the image. The

estimated face center from this segment is (xL122 , yL121 + (yL122 − yL121 )/2). For each

estimated face center j, a cluster of segments CLj that depicts the full face is formed

where, the other segments of that cluster have estimated face centers within a certain

radius r pixels from the center. Here, j = {1, 2, . . . cI} and cI is the number of

clusters formed for image I.

A bounding box for the whole face BCLj
is calculated based on the constituent

segments. For the generation of a proposal set, duplicate clusters that yield exactly

same bounding boxes are eliminated and at most ζ face proposals are generated

from each cluster by selecting random subsets of face segments constituting that

cluster. Therefore, each proposal P is composed of a set of face segments SP , where

SP ∈ P(S) − {∅} and P denotes the power set. To get better proposals, one can

impose extra requirements such as |SP | > c, where | · | denotes cardinality and c

is a threshold. Each proposal is also associated with a bounding box for the whole
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Figure 4.3: The block diagram of the overall system of FSFD [4].

face, which is the smallest bounding box that encapsulates all the segments in that

proposal.

Fig. 4.1 depicts the integration of the proposal generation block into the face

detection pipeline.

4.1.2 Facial Segment-based Face Detection (FSFD)

The system block diagram for FSFD is shown in Fig. 4.3. Segment clustering

is done at first. Then, in the SVM learning phase, the first ζ subsets of the total set
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of facial segments from each cluster are regarded as proposed faces. Consider the

k-th segment that was detected in an image. If there are m segments that are within

a certain distance from it and m+1 ≥ c, then those m+1 segments are considered to

be part of a single proposal. The value c is the threshold that decides the minimum

number of colocated segments that are required if they are to be declared to be a

face proposal.

For example, if the 4 segments U34, B12, L12 and UL12 form a cluster around

NS and c = 2, then the viable subsets are [[NS,U34], [NS,B12], . . . , , [NS,U34, B12,

L12, UR34]]. The total number of subset here is
∑4

j=1

(
4
j

)
= 15 including the complete

set. Keeping the k-th segment fixed, ζ random subsets are considered for face

proposals. In this example, ζ can vary from 1 to 14. Since for m + 1 segments,

the number of subsets is in the order of 2m+1, the number of subset is limited to

ζ << 2m+1.

The bounding box of the face proposal is the smallest bounding box that

contains all the estimated faces from all the facial segments in that proposal. In-

tuitively, the greater the number of facial segments with better detection accuracy

in a proposal, the higher the probability of that proposal being a face. Further, ex-

perimentally, it is found that some particular sets of facial segments are more likely

to return a face than others, while some sets of segments provide more accurate

bounding boxes with greater consistency than such other sets.

A linear SVM classifier is trained on the proposed faces using the following

prior probability values from the training proposal set that represents the likeliness

of certain segments and certain combinations. These are
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• Fraction of total true faces constituted by proposal P , i.e.

|P ∈ ΘF |
|ΘF |

,

where ΘF is the set of all proposals that return a true face.

• The fraction of total mistakes constituted by proposal P , i.e.

|P ∈ ΘF |
|ΘF |

,

, where, ΘF is the set of all proposals that are not faces.

• For each of the M facial segment sk ∈ S, the fraction of total true face

proposals of which sk is a part of, i.e.

|sk ∈ Sp;Sp ∈ ΘF |
|ΘF |

, where, k = 1, 2, . . . ,M.

• For each of the M facial segment sk ∈ S, the fraction of total false face

proposals of which sk is a part of, i.e.

|sk ∈ Sp;Sp ∈ ΘF |
|ΘF |

, where, k = 1, 2, . . . ,M.

Experimentally, it is found that the nose detector is the most accurate of all

the detectors, while B12 is the least accurate. For M facial segments, the size of this

feature vector is 2M+2 for each proposal. There are 2M values corresponding to the
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face and non-face probabilities of each of the M segment and the rest 2 values are

the probabilities of the cluster being and not-being a face. Among the 2M values,

only those corresponding to the segments present in the proposal are non-zero.

For each pre-processed test image, the proposed faces are obtained in a similar

manner as the training faces. Thus, there are ζ face proposals from each face and

feature vectors of size 2M + 2 for each proposal. The SVM classifier returns a

confidence score for each proposal. The proposal that has the highest confidence

score above a threshold is chosen as the detected face.

4.1.3 SegFace

SegFace is a fast and shallow face detector built from segments proposal. For

each segment in sk ∈ S, a classifier Csk is trained to accept features f(sk) from the

segment and generate a score denoting if a face is present. Output scores of Csk are

stored in an M dimensional feature vector FC , where, elements in FC corresponding

to segments that are not present in a proposal are set to 0.

Another feature vector FS of size 2M+2 is constructed using prior probability

values as features as described in section 4.1.2. FC and FS are appended together

to form the full feature vector F of length 3M + 2. Then a master classifier C

is trained on the training set of such labeled vectors {Fi, Yi}, where Yi denotes the

label (face or no-face). Thus, C learns how to assign relative importance to different

segments and likeliness of certain combinations of segments occurring in deciding

if a face is present in a proposal. Thus, SegFace extends the face detection from
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Figure 4.4: Block diagram showing DeepSegFace architecture.

segments concept in [4] using traditional methods to obtain reasonably accurate

results. In our implementation of SegFace, HoG [127] features are used as f and

Support Vector Machine (SVM) classifiers [128] are used as both Csk and C for

generating segment-wise scores, as well as the final detection score, respectively.

4.1.4 DeepSegFace

DeepSegFace is an architecture to integrate deep CNNs and segments-based

face detection from proposals. At first, proposals, consisting of subsets of the M =

9 parts as discussed earlier, are generated for each image. DeepSegFace is then

trained to calculate the probability values of the proposal being a face. Finally, a

re-ranking step adjusts the probability values from the network. The proposal with

the maximum re-ranked score is deemed as the detection for that image.

The architecture of DeepSegFace is arranged according to the classic paradigm

in pattern recognition: feature extraction, dimensionality reduction followed by a

classifier. A simple block diagram of the architecture is shown in Fig. 4.4. Different
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components of the figure are discussed here.

Convolutional Feature Extraction: There are nine convolutional network columns,

structurally similar to VGG16 [129] and initialized with its pretrained weights, for

each of the nine segments. Thus each network has thirteen convolution layers ar-

ranged in five blocks. Each segment in the proposal is resized to standard dimensions

for that segment, then the VGG mean value is subtracted from each channel. For

segments not present in the proposal, zero-input is fed into the networks correspond-

ing to those segments, as shown for the Nose segment in the figure.

Dimensionality reduction: The last convolutional feature map has 512 chan-

nels, hence naively concatenating them results in a very large feature vector. Hence,

a randomly initialized convolutional layer with filter size 1× 1 and 50 feature maps

is appended to provide a learnable dimension reduction.

Classifier : The outputs from the dimensionality reduction block for each

segment-network are vectorized and concatenated to yield a 6400 dimensional fea-

ture vector, constituents of which can be seen in Table 4.1. A fully connected layer

of 250 nodes, followed by a softmax layer of two nodes (both randomly initialized)

is added on top of the feature vector. The two outputs of the softmax layer sum to

one and correspond to the probability of the presence or absence of a face.

Re-ranking : The DeepSegFace network outputs the face detection probabilities

for each proposal in an image, which can be used to rank the proposals and then

declare the highest probability proposal as the face in that image. However there

is some prior knowledge that some segments are more effective at detecting the

presence of faces than others. This information is available from the prior probability
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Table 4.1: Structure of DeepSegFace’s Convolutional layers (feature extraction and
dimensionality reduction)

Segment Input Feature Dim. Reduce Flatten

Nose 3× 69× 81 512× 2× 2 50× 2× 2 200
Eye 3× 54× 162 512× 1× 5 50× 1× 5 250
UL34 3× 147× 147 512× 4× 4 50× 4× 4 800
UR34 3× 147× 147 512× 4× 4 50× 4× 4 800
U12 3× 99× 192 512× 3× 6 50× 3× 6 900
L34 3× 192× 147 512× 6× 4 50× 6× 4 1200
UL12 3× 99× 99 512× 3× 3 50× 3× 3 450
R12 3× 192× 99 512× 6× 3 50× 6× 3 900
L12 3× 192× 99 512× 6× 3 50× 6× 3 900

values discussed in section 4.1.3. For DeepSegFace, these values are used to re-rank

the final score by multiplying it with the mean of the statistical features.

Facial Segment Drop-out for Regularization and Data Augmentation: As men-

tioned in the proposal generation scheme, subsets of face segments in a cluster are

used to generate new proposals. For example, if a cluster of face segments contains

n segments and each proposal must contain atleast c segments, then it is possible to

generate
n∑
k=t

(
n
k

)
proposals. Now, if all the facial segments are present, the network’s

task is easier. However, all the nine parts are redundant for detecting a face, because

of significant overlaps. Also often many segments are not detected by the weak seg-

ment detectors. Thus, one can interpret the missing segments as ‘dropped-out’, i.e.

some of the input signals are randomly missing (they are set to zero). Thus the

network must be robust to face segments ‘dropping out’ and generalize better to

be able to identify faces. Training with subsets of detected proposals also has the

additional effect of augmenting the data. It has been observed that around sixteen

proposals are generated per image. Many of these proposals are actually training
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the network to detect the same face using different combination of segments.

4.2 Face Detection for Mobile Domain by End to End Regression

While the three algorithms (FSFD, SegFace, DeepSegFace) presented here are

fast and efficient, they have a lot of scope for improvement. A primary bottleneck of

these algorithms is the proposal generation stage, which suffers from the following

problems when trading off quality and speed:

4.2.0.1 Slow Speed

The proposal generator can generate many proposals to ensure high recall,

but it makes the pipeline slow as the detector must evaluate each of them. For

example, [23] uses Selective Search [130], which generates around 2000 proposals

per image. On the other hand, a faster version of the All-In-One network [76]

uses the Single Shot Multibox Detector (SSD) [65] for generating proposals. These

methods are neither end-to-end trainable nor suitable for real-time applications.

4.2.0.2 Upper bound on Recall

If high recall rate is traded for speed, then one can use weak proposal genera-

tors which generate less number of proposals. However in this regime the detector

is bound by the performance of the proposal generator and cannot detect faces in

images where the proposal generator did not return any results. FSFD, SegFace

and DeepSegFace use fast proposal generators (around 16 proposals per image), but
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have no way of recuperating when the proposal generator fails.

4.2.0.3 Special Training

One way to generate a small number of proposals, yet have high recall, is to

train specific proposal generators that identify faces and facial segments. However

most off-the-shelf proposal generators detect generic objects, and one would have to

retrain them for detecting faces.

In this regard, we propose, a regression-based novel deep CNN method with

a customized loss function, namely, Deep Regression-based User Image Detector

(DRUID), that generates facial segments as well as the full face bounding box with

confidence scores without requiring any proposal. DRUID is completely end-to-end

trainable and utilizes a unique data augmentation technique that allows it to train

on non-mobile domain faces, and still achieve superior performance on unconstrained

mobile domain faces.

4.2.1 DRUID: An End-To-End Network For Facial Segment-Based

Face Detection

The DRUID is designed to detect a single face from an image along with all the

14 facial segments (Fig. 1.2) without any proposal generation. The algorithm takes

a resized image as input and returns the location of each facial segment and the full

face along with a visibility/confidence value. The network architecture of DRUID is

shown in Fig.4.5. The network is made of Resnet units [131]. Resnet like structures
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Figure 4.5: Network Architecture for DRUID.
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are built of basic blocks that have two parallel paths, one that learns the residual

and the other is is either an identity transformation or a single convolution. For the

residual path, a ’bottleneck’ architecture is chosen, which consists of three sets of

convolutional transformations (convolution, batch normalization, ReLU activation)

of sizes 1× 1, 3× 3 and 1× 1. These basic blocks are stacked into groups. Within a

group, there is no downsampling. Let convi x denote the xth block of the ith group.

Each group starts with an block that downsamples by strided convolution (in both

paths of the block), followed by other blocks with identity connections.

DRUID’s architecture is shown in Fig. 4.5. It has a common network trunk

consisting of 3 Resnet groups, containing 3, 4 and 6 blocks respectively. Then the

network is expanded to M = 14 auxiliary branches, each containing the conv5 x

unit of Resnet-50. Each of these auxiliary branches has 7 × 7 average pooling on

top followed by a fully connected network (fc 1− fc M) with linear activation that

gives a 10-dimensional output.

As for the full face detection output, an additional auxiliary branch is created

without the fully connected layer (the convolution unit is denoted as conv6 x for this)

and the flattened output of its average pooling block is merged with the intermediate

flattened outputs of all the conv5 i x units (where i = {1, 2, . . . ,M}). The output

of this merge block goes into another fully connected network fc F with linear

activation that outputs a 5-dimensional vector. A comparison of the three proposal-

based methods and DRUID is provided in Table 4.2.

68



Table 4.2: Comparison of the proposed methods
Component FSFD SegFace DeepSegFace DRUID

Proposal
Generation

Clustering
detections
from cascade
classifiers
for facial
segments

Clustering
detections
from cascade
classifiers for
facial segments

Clustering
detections
from cascade
classifiers for
facial segments

Not required

Low level
features

Prior proba-
bilities

HoG and Pri-
ors

Deep CNN fea-
tures (VGG)

Deep CNN fea-
tures (Resnet)

Intermediate
stage

none SVM for seg-
ment i outputs
a score on HoG
features of seg-
ment i

Dimension
reduction and
concatena-
tion to single
6400D vector

Facial segment
bounding box
regression.

Final Stage Classification:
SVM trained
on priors

Classification:
SVM trained
on scores from
part SVMs
and priors

Classification:
Fully con-
nected layer,
followed by a
softmax layer

Regression:
Full face
bounding box.

Using priors Used as fea-
tures in the
final SVM

Used as fea-
tures in the fi-
nal SVM

Used for re-
ranking of
face probabil-
ities in post
processing

Not used

Trade-offs Very fast but
less accurate

Fast but less
accurate

Slower but
more accurate

Faster and
more accu-
rate than
DeepSegFace

4.2.1.1 Loss Function for Training

For the i-th facial segment, denote the estimated bounding box as b̂i =

{x̂1i, ŷ1i, x̂2i, ŷ2i} and predicted visibility as v̂i. Here, {x̂1i, ŷ1i} denotes the top-

left and {x̂2i, ŷ2i} denotes the bottom right coordinates of the i-th facial segment.

The ground truth bounding box for the i-th facial segment is bi = {x1i, y1i, x2i, y2i}

and the ground-truth visibility is vi. Also, the ground truth for the full face bound-

ing box is bF = {xF1 , yF1 , xF2 , yF2 }. Now, the 5-dimensional vector that each of the

fully connected layers predict by regression is {x̂1i, ŷ1i, x̂2i, ŷ2i, v̂i}.
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The loss terms defined for this regression are

Lb(i) = ‖ b̂i − bi ‖22 (4.2)

Lv(i) = (v̂i − vi)2 (4.3)

Lx(i) = (vi1[x̂1i − x̂2i > 0])2 (4.4)

Ly(i) = (vi1[ŷ1i − ŷ2i > 0])22 (4.5)

Lx1(i) = (vi(x
F
1 − x̂1i)1[xF1 − x̂1i > 0])2 (4.6)

Lx2(i) = (vi(x̂2i − xF2 )1[x̂2i − xF2 > 0])2 (4.7)

Ly1(i) = (vi(y
F
1 − ŷ1i)1[yF1 − ŷ1i > 0])2 (4.8)

Ly2(i) = (vi(ŷ2i − yF2 )1[ŷ2i − yF2 > 0])2 (4.9)

LO(i) = ‖ (1− IOU(b̂i,bi)1[IOU(bi, b̂i) ≤ 0])×

1[vi 6= 0])2 (4.10)

where, 1 denotes an indicator function. The total loss for each of the auxiliary

network corresponding to facial segments and the loss for the full face detection

network on top is defined as

Li =
∑
k

λkLk (4.11)

where, k ∈ {v, x, y, x1, x2, y1, y2, O} and i ∈ S ∪ {F}. Here, F denotes the full face

and corresponds to the topmost network. The components Lb and Lv are the `2

losses for the predicted bounding box and visibility/confidence, respectively. Losses
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Lx and Ly imply that the coordinates of the bottom-right points are larger than

those of the top-left points. Lx1 , Lx2 , Ly1 and Ly2 dictate that the coordinates of

a facial segments are contained within the coordinates of the full face. Finally, LO

implies that the overlap between the predicted bounding box and the ground truth

bounding box for each segment should be as high as possible. Note that the ground

truth visibility vi is a binary value for all i ∈ S based on the visibility/non-visibility

of corresponding segments in the image. However, vF is a floating point number

which is calculated as vF =
∑

i∈S vi
|S| , i.e. the fraction of total facial segments that

is visible. Thus, a smaller value of vF will mean that only a few parts can be seen

and indicate a partially visible face. vF is zero when no facial segments are visible,

i.e. when there is no face. The 10-dimensional output for each auxiliary branch

indicates that each of the i facial segments tries not only to predict the bounding

box and visibility for that block itself, but also the bounding box and visibility of

the full face in a manner that the corresponding loss is minimized.

4.2.1.2 Data Augmentation

In order to ensure that the network is trained robustly for detecting facial

segments, a novel data augmentation technique is adopted. Apart from flipping

the input image and the corresponding bounding box coordinates, the images are

cropped according to a pre-defined mechanism to ensure partial visibility in the

training set. Some examples of such augmented data are shown in Fig. 4.6. For

the first row, since both the left, right and top portion are visible, there can be
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Figure 4.6: Image processing for generating training data for DRUID ensuring par-
tial visibility of faces.

a maximum of six more augmented versions generated by cropping the image in a

manner that only upto the L12 or L34 or R12 or R34 or U12 or U34 segment of the face

is visible. Since, only left half and right half faces are visible in the original image in

the second and third rows of Fig. 4.6, respectively, they can produce less number of

augmented images. The proposed data augmentation technique enables the network

to train robustly for detecting partially visible faces with a few training images even

if the original samples do not have many partially visible faces. In addition, the

presence of certain segments dictate the presence of some other segments (e.g. if

L34 is visible then L12 and UL12 must be visible) and training with more partially

visible faces enables the network to learn these interrelations as well.

Apart from the augmentation, Gaussian blur is also applied on the original

images with a probability of 0.7 and a random radius between 0 and 5 pixels in order

to improve the capability of the network to detect blurry faces. Moreover, a gamma

correction in the form of Io(x, y) = AIi(x, y)γ was applied to each pixel Ii(x, y) of
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the normalized image, where, A = 1 and γ = 2s was set. For an image, the value of

s was obtained from a zero mean, unit variance Gaussian distribution. Thus, when

s is near the 0, the transformed image is similar to the original, whereas, a positive

value of s would make the image darker and a negative value will make it brighter.

Since there are frequent very dark and very bright faces in the mobile face datasets,

it is expected that this sort of transformation would make DRUID robust against

extreme illumination variations.

4.2.1.3 Salient points of DRUID

DRUID’s architecture provides certain innate advantages which are discussed

below:

Training Data: DRUID is trained with images from AFLW, but for the task

of mobile image detection. Therefore DRUID is able to handle the domain shift

gracefully, without the need of specialized data from the mobile domain for training

or fine-tuning unlike the other methods like FSFD, SegFace and DeepSegFace.

Robustness : DRUID is robust to occlusion due to its ability to detect partial

faces which is ingrained in its architecture. DRUID is also very robust to variations

in scale, if multi-scale data is present during training. DRUID does not need to

scan the image at multiple scales to ensure it finds faces at all scales, since it does

direct regression for the face location. Thus, as it has seen multi-scale faces during

training, it became scale invariant to some degree. Also, because of the application of

random gamma transformation and Gaussian blur during training, DRUID achieved
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better capabilities of detecting blurry and dark/bright faces, which are very frequent

in mobile face domain, compared to other methods. It has the added advantage

of multiple facial segment-based detection, which allows it to estimate the face

bounding box with the help of on or more of the segments even when all the other

segment detectors fail. Hence, it is very robust against occlusion, illumination and

pose variation.

4.3 Experimental Results

In this section, the experimental results of the facial segment-based detectors

on the AA-01-FD and UMDAA-02-FD datasets are compared with a) Normalized

Pixel Difference (NPD)-based detector [75], b) Hyperface detector [23], c) Deep

Pyramid Deformable Part Model detector [117], and d) DPM baseline detector [74].

4.3.1 Experimental Setup

FSFD, SegFace and DeepSegFace are trained on 3964 images from AA-01-FD

and trained models are validated using 1238 images. The data augmentation process

produces 57, 756 proposals from the training set, that is around 14.5 proposals per

image. The remaining 2835 images of AA-01-FD are used for testing. For UMDAA-

02-FD, 32, 642 images are used for testing. In all experiments with FSFD, SegFace

and DeepSegFace, c = 2 and ζ = 10 are considered.

DRUID is trained using the Annotated Facial Landmarks in the Wild (AFLW)

[29] dataset which provides a large-scale collection of annotated face images gathered
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from Flickr, exhibiting a large variety in appearance (e.g., pose, expression, ethnicity,

age, gender) as well as general imaging and environmental conditions. From a

total of 21123 faces that are manually annotated up to 21 landmarks per image,

18958 images contain single faces, which are considered for training DRUID. The

total number of training samples is 233029 after data augmentation and negative

sample extraction of which 100000 are randomly chosen at the start of each epoch

for training. Data is augmented by flipping (18958 images), cropping everything

beyond L12 (15619 images), L34 (13583 images), R12 (16228 images), R34 (13493

images), U12 (15362 images) and U34 (15237 images). 105591 Negative samples are

generated from the backgrounds of the training images with sizes equal to the size

of the face in the corresponding image.

The results are evaluated by comparing the ROC curve and precision-recall

curves of these detectors since all of them return a confidence score for detection.

The goal is to achieve high True Acceptance Rate (TAR) at a very low False Accep-

tance Rate (FAR) and also a high recall at a very high precision. Hence, numerically,

the value of TAR at 1% FPR and recall achieved by a detector at 99% precision are

the two metrics that are used to compare different methods.

4.3.2 Selection of Parameter Values

In our proposal generation scheme, M = 9 is used. The nine parts under con-

sideration are nose (Nose), eye-pair (Eye), upper-left three-fourth (UL34), upper-

right three-fourth (UR34), upper-half (U12), left three-fourth (L34), upper-left-half
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Figure 4.7: TAR vs. FAR ROC plots for different segment prediction results ob-
tained for DRUID on 18958 images of the AFLW dataset.

(UL12), right-half (R12) and left-half (L12. These nine parts, constituting the best

combination Cbest [4] according to the analysis of effectiveness of each part in de-

tecting faces, are considered in this experiment since the same adaboost classifiers

are adapted in this work for proposal generation. The threshold c is set to 2. A

small value is chosen to get high recall, at the cost of low precision. This lets one

generate a large number of proposals, so that any face is not missed in this stage. ζ

is set to 10.

For DRUID, all the 14 segments are considered. The parameters for training

DRUID are set as follows: optimizer - adam, learning rate 0.0001, β1 = 0.9, β2 =

0.999, ε = 1e− 08, decay=0.0, total epoch 25 and batch size 32.
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Figure 4.8: Precision vs. Recall curves for different segment prediction results ob-
tained for DRUID on 18958 images of the AFLW dataset.

Table 4.3: Comparison at 50% overlap on AA-01-FD and UMDAA-02-FD datasets

Methods
AA-01 UMDAA-02

TAR at Recall at TAR at Recall at
1% FAR 99% Prec. 1% FAR 99% Prec.

NPD [75] 29.51 38.53 33.47 26.80
SSD [132] 62.68 58.77 51.90 46.41

DPMBaseline [74] 85.08 83.25 78.44 72.92
DeepPyramid [117] 66.17 41.19 71.11 66.16

HyperFace [23] 90.52 90.32 73.19 71.17
All-In-One [76] 90.94 89.73 81.71 78.84
FSFD Cbest [4] 59.06 56.23 55.72 26.87

SegFace [5] 67.00 62.88 66.39 61.48
DeepSegFace [5] 86.87 86.49 82.19 76.36
DRUID No Aug 84.46 82.42 85.86 84.08

DRUID 91.98 91.52 88.47 86.90

4.3.3 Quantitative Analysis

4.3.3.1 Performance

In Table 4.3, the performance of DRUID is compared with other facial segment-

based and state-of-the-arts methods for both datasets in terms of TAR at 1% FAR

and recall at 99% precision. From the measures on the AA-01-FD and UMDAA-
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02-FD datasets, it can be seen that DRUID outperforms all the other detectors on

both metrics. In fact, on UMDAA-02-FD datset, DRUID improves the TAR by al-

most 6% and recall by 10% compared to the second best DeepSegFace. Among the

proposal-based methods, SegFace, in spite of being a traditional feature based algo-

rithm, outperforms DCNN-based algorithms such as NPD, SSD and DeepPyramid

on the AA-01-FD dataset and NPD and SSD on the UMDAA-02 dataset. Note that

the SSD-based face detector evaluated here is adopted from [132] uses a MobileNet

architecture. The table also shows comparative results for DRUID with and without

the proposed augmentation method. It can be seen that DRUID without augmen-

tation (DRUID No Aug) performs poorly compared to the proposed DRUID with

augmentation. The improvement in TAR values and precision is approximately 3%

for using the proposed augmentation on the UMDAA-02 dataset. Note that, even

without augmentation, DRUID achieves competitive performance on both datasets,

specially on UMDAA-02, in comparison to other state-of-the-art methods.

The TAR-FAR and precision-recall curve for UMDAA-02-FD dataset is shown

in Fig. 4.12 and 4.11. The TAR-FAR and Precision-Recall curves for the AA-01-FD

dataset are shown in Figs. 4.13 and 4.14, respectively. DRUID outperforms all the

other methods in terms of TAR at 1% FAR and recall at 99% precision.

From fig. 4.11, the ROC for UMDAA-02-FD dataset, it can be seen that

DeepSegFace gives the second best performance even with the bottleneck of proposal

generation (the curve flattens around 87.5%). This is because all the traditional

methods suffer so much more when detecting mobile faces in truly unconstrained

settings that a true acceptance rate of even 87% is hard to achieve. The DRUID
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Figure 4.9: Images without even one good proposal returned by the proposal gen-
eration mechanism. This bottleneck can be removed by using better proposal gen-
eration schemes.

Figure 4.10: (a) for 57756 Train Proposals from AA-01-FD Dataset, (b) 39168 Test
Proposals from AA-01-FD Dataset, and (c) 410138 Test Proposals from UMDAA-
02-FD dataset. In all cases c = 2 and ζ = 10.

network, being free from proposals, achieves 87.45% TAR at 1% FAR.

4.3.3.2 Performance bottleneck in proposal-based techniques

In Fig. 4.9, some images are shown for which the proposal generator did not

return any proposals or returned proposals without sufficient overlap, even though

there are somewhat good, visible faces or facial segments in them. The percentage

of true faces that are represented by at least one proposal in the list of proposals

for the training and test sets are counted. The result of this analysis is shown in

Fig. 4.10. The bar graphs denote the percentage of positive samples and negative

samples present in the proposal list generated for a certain overlap ratio. For exam-
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ple, out of the 55, 756 proposals generated for training, there are approximately 62%

positive samples and 35% negative samples at an overlap ratio of 50%. Considering

the overlap ratio fixed to 50% for this experiment, it can be seen from the line plot in

Fig. 4.10(b), corresponding to the AA-01-FD test set, that the proposal generator

actually represent 89.18% of the true faces successfully and fails to generate a single

good proposal for the rest of the images. Hence, the performance of the proposed de-

tectors are upper-bounded by this number on this dataset, a constraint that can be

mitigated by using advanced proposal schemes like selective search which generates

around 2000 proposals per image for Hyperface, compared to just around sixteen

proposals that are generated by the fast proposal generator employed by DeepSeg-

Face. Another walk-around to these bottleneck imposed by the proposal generation

is modeling the task as a regression problem which is done in the DRUID network.

When considering the UMDAA-02-FD test set, which is completely unconstrained

and has almost ten times more images than AA-01-FD test set, this upper bound

might not be so bad. From Fig. 4.10(c) it can be seen that the upper bound for

UMDAA-02-FD is 87.57% true positive value for the proposal generator and from

Table 4.3, it can be seen that DeepSegFace was able to achieve 82.26% TAR. How-

ever, this proves the argument about proposal generation being the bottleneck for

this sort of methods, while DRUID, being free from such constraints, was able to

demonstrate much better performance in terms of both evaluation measures.
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Figure 4.11: ROC curve for comparison of different face detection methods on the
UMDAA-02-FD dataset

Figure 4.12: Precision-Recall curve for comparison of different face detection meth-
ods on the UMDAA-02-FD dataset.
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Figure 4.13: ROC curve for comparison of different face detection methods on the
AA-01-FD dataset

Figure 4.14: Precision-Recall curve for comparison of different face detection meth-
ods on the AA-01-FD dataset.
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4.3.3.3 Performance of auxiliary networks in DRUID

To investigate the training of the auxiliary networks that predict different

facial segments, the TAR-FAR and Precision-Recall curves for each facial segment

are plotted in Figs. 4.7 and 4.8, respectively, for the AFLW dataset. Interestingly,

it can be seen from these figures that for DRUID the ranking of segments is not

similar to the proposal-based methods. The plots reveal that the facial segments

that represents a bigger portion of the face are trained better. In fact, the nose

segment NS which represents the smallest facial segment, performs the poorest,

while all the big segments such as L34, R34, B34 etc. are much better trained.

Figure 4.15: TAR at 1% FAR for different IOU for different methods.

4.3.3.4 Timing information

The processing time per image for FSFD on an Intel Xeon(R) CPU E5506 op-

erating at 2.13GHz with 5.8GB memory is 0.52 seconds without any multi-threading
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Figure 4.16: Recall at 99% Precision for different IOU for different methods.

or special optimization. SegFace takes around 0.49 seconds when running on an In-

tel Xeon CPU E-2623 v4 (2.604 GHz) machine with 32GB Memory without multi-

threading, hence it is possible to optimize it to run on mobile devices in reasonable

time without requiring a specialized hardware. When forwarding proposals in batch

sizes of 256, DeepSegFace takes around 0.02 seconds per proposal on a GTX Titan-X

GPU. The end to end throughput for DRUID on a Titan-X GPU is 0.008 seconds

(batch size 32), which is architecturally faster that DeepSegFace since it does not

require time for proposal generation. For DeepSegFace, the proposals are analyzed

to reveal that on an average only three segments per proposal are present for both

datasets. Thus, while there are nine convolutional networks in the architecture, only

three of them need to fire on an average for generating scores from the proposals.

Our experiments show that the CPU throughput for DRUID is 0.99 sec-

onds/image when batch size is 32. The latency on CPU for DRUID (batch size

set to 1) is 2.19 seconds. In comparison, the CPU running time for hyperface is 15
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seconds per image. Hence, DRUID runs quite fast on a CPU. On a single Titan-X

GPU, the latency of DRUID is 0.0816 seconds, which low in comparison to other

state-of-the-art methods. For example, on the same GPU, we found that the la-

tency of All-In-One face detector is 0.2 seconds (including proposal generation time

of 0.05 seconds) and for mobilenet-SSD it is 0.996 seconds. In addition, DRUID has

the additional option to become faster by pruning less important branches. Hence,

DRUID could be customized and compressed to develop a high-end face detector

for active authentication on smartphones.

4.3.3.5 Sample detection results

Some sample face detection results of the DRUID network along with DPM

Baseline, HyperFace, FSFD, SegFace and DeepSegFace are shown in Fig. 4.17. It

can be seen that, the proposed network performs much better than the others for

extreme illumination and pose variation and partial visibility of faces. More sample

images depicting the detection performance of DRUID at various illumination, pose

and occlusion are provided in Figs. 4.18 and 4.19 for the UMDAA-02-FD and AA-

01-FD datasets, respectively. Fig. 4.20 shows the bounding boxes of facial segments

in some images from AFLW. DRUID returned correct bounding boxes with high

visibility scores located spatially in appropriate positions. It can be seen that if a

face is in profile, then parts that are not visible have very low scores. For example

in Fig. 4.20 the top left face’s left half is not visible hence left segments like L12,

UL34 and UL12 have zero scores.
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DPM Baseline HyperFace FSFD SegFace DeepSegFace DRUID

Figure 4.17: Face detection performance comparison of the four facial segment-based
detectors with DPM Baseline and HyperFace.
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Figure 4.18: Sample face detection outcome of the proposed DRUID method on the
UMDAA-02-FD dataset. The five rows (top to bottom) show detection at different
illumination, occlusion. pose variation, partial visible side faces and partially visible
upper portion of faces, respectively.
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Figure 4.19: Sample face detection outcome of the proposed DRUID method on the
AA-01-FD dataset. The four rows (top to bottom) show detection performance at
various illumination, occlusion, pose and partial visibility.
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Figure 4.20: Some images from AFLW showing face detections from DRUID. The
facial segments bounding boxes and their scores are shown too.

Figure 4.21: Some failure cases of the DRUID network for the UMDAA-02-FD
dataset. The first row fails as the images are very blurry, low contrast and difficult
in general. The second row shows failures due to very stringent ground-truth anno-
tations that mark near invisible faces or due to cases when the detector detects a
partial face that is unannotated in the groundtruth. The third row shows failures
due to extreme poses.
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Figure 4.22: Some failure cases of the DRUID network for the AA-01-FD dataset.
Most failures can be attributed to extreme poses

Some failure cases are accumulated in Figs. 4.21 and 4.22. It can be seen

from these figures, that the network failed mostly in extremely difficult scenarios.

In some cases, the ground truth (green) is questionable, for example, in Fig. 4.21,

image 2 and 4 of row 2. The first one does not have a proper ground truth while in

the second one, the face is not visible at all but a ground truth is marked.
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Chapter 5: Facial Segments for Attribute Detection

In this chapter, we introduce a unique deep neural network architecture that

utilizes facial segments to estimate the facial attributes in a robust manner. The

proposed network showed excellent performance in cross domain settings and also

outperformed state-of-the-art attribute detectors both for fully visible and partially

occluded faces. Experimental results for the proposed methods and comparisons

with state-of-the-art methods along with an analysis of the results and discussions

are provided in this chapter.

5.1 Proposed Method

Intuitively, certain facial segments are more effective at predicting a subset of

attributes than others. For example, we can expect that segments related to the

upper part of the face (e.g. U12, U34 etc.) would contain information about the

person being bald or having certain types and color of hair. Therefore, even if some

other part of the face is occluded (e.g. B12, EP , or NS being not visible), by

looking at the upper portion of the face, one can still predict attributes related to

hair. Thus detecting attributes from parts as opposed to the whole face, has the

advantage of allowing graceful degradation of performance rather than catastrophic
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failures with increasing occlusion.

While some attributes can be easily predicted from facial segments, some at-

tributes reflect more global characteristics. For example, one can get hints if a

person is young or not from multiple parts of the face, but youth is a global at-

tribute. Therefore it is important to combine the segment predictions into a global

prediction, so that multiple parts can contribute to the final prediction. Naturally,

the following questions arise:

• Global vs local attributes: How does one decide if an attribute is better pre-

dicted by facial segments or by a global predictor?

• Optimal segment selection: How does one decide which facial segment is more

suitable for predicting a particular attribute?

• Combining results multiple networks: Given that each attribute is predicted by

multiple segments of the proposed network, how does one combine the results

optimally?

• Handling occlusion: If a certain facial segment responsible for predicting a

certain attribute is not visible, how does one get a reasonable prediction?

We can summarize the solutions to these problems as follows.

• Network architecture: The first problem is solved by choosing an architecture

of a DCNN that is not only able to predict attributes from facial segments,

but also performs feature-level fusion of intermediate features through a global

prediction network to produce accurate global predictions. Also, the sub-
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modules of the network have a Global Average Pooling which endows the

networks with localization ability [133].

• Output pruning: The second question is answered by the two-stage training

approach that is adopted in this work, where the first stage primarily is used

to prune the outputs of the segment networks by deciding which segments are

good at predicting which attributes.

• Committee Machines: For the third problem, we use two-committee machines

to perform score level fusion of the multiple predictors to significantly improve

the performance of any single constituent network.

• Hierarchy of best predictors and Segment Dropout: Finally, to address the

fourth problem, we keep track of a hierarchy of segments, which are good at

predicting that attribute. Therefore, even if the best segment for an attribute

is not present, one can fall back on other segments that are known to do

somewhat well for that attribute. We also train our network with ‘Segment

Dropout’ [134] to make it more robust to partial faces.

These ideas are core to our proposed method: Segmentwise, Partial, Localized

Inference in Training Facial Attribute Classification Ensembles (SPLITFACE).

The algorithm looks at facial segments and learns to infer the local attributes, to

better handle partial faces. The next four subsections expand on these ideas.
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Figure 5.1: SPLITFACE network architecture showing the Facial Segment Networks
and the Full Face Network, which are culminate in the Global Prediction Network.

5.1.1 Local to Global Network Architecture

The three constituents of the proposed network namely, the Full Face Network,

the Facial Segment Networks and the Global Predictor Network, and their training

losses are described in this subsection:

Facial Segment Networks : Let I1, I2, . . . , IM denote the face regions for the

aforementioned M = 14 facial segments. Each segment has some predictive power

which is unknown initially. In the next section, we describe our data-driven approach

to find which attributes are predicted more accurately by each segment. For now,

let us say that segment i predicts a set of attributes Ni, where the number of

attributes predicted by each segment |Ni| ≤ K, where i ∈ {1, 2, . . . ,M}. Initially,

all segments predict all K = 40 attributes, but later each segment is allowed to

specialize, as described in the next section. We denote these Segment Networks

Si, where i ∈ {1, 2, . . . ,M}. When the facial segment Ii is passed through its

corresponding segment network Si, it yields attribute scores si for each attribute in
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Ni and a feature for that segment Ci, i.e.

si, Ci = Si(Ii) (5.1)

where Ci is tapped from the last convolutional layer of Si. The architectures of

all the segment networks Si are same, as described in Table 5.1, and each of these

segment networks is independent of one another.

Full Face Network : Let I0 represent the full-face region, which is passed

through a DCNN S0. We have adopted a seven layer deep convolutional network

as S0. Details on the network architecture are provided in Table 5.1. The full face

region is expected to always predict all the K attributes (|N0| = K). Hence, it

outputs a vector s0 of length K, and also a compact feature representation F0 after

global pooling the last convolutional feature, i.e.

s0, F0 = S0(I0) (5.2)

Global Prediction Network for local feature fusion: In the Global Prediction

Network, we combine the results from the local segment networks and the full face

network to produce predictions for all the K attributes. To do so, we first concate-

nate the convolutional features Ci from the M segment networks, convolve them,

then apply global pooling to get a flattened feature from the segments, Fs. This

is concatenated with F0, the flattened features from the Full Face Network, and

passed through a few fully connected layers, to finally yield predictions for all the
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K = 40 attributes. The Global Prediction Network can be thought of as performing

a feature level fusion of the different segments, as opposed to the score level fusion

of committee machines described in the next section. The output of the Global

Predictor is

sM+1 = SM+1(F0, C1, . . . , CM). (5.3)

The color-coded network architecture for the SPLITFACE network is shown

in Fig. 5.1. It shows the above mentioned architectural choices, namely predictions

from segments, predictions from the full face and fusion of segment and full face

features to provide a global prediction. In what follows, we shall use the word

‘predictor’ to mean any of the M+2 sub-networks Si, i ∈ {0, 1, . . . ,M+1} described

above, that is, any of the M Facial Segment Networks, the Full Face Network or the

Global Prediction Network.

Localization using Global Average Pooling : It has been shown in [133] that

Global Average Pooling (GAP) introduced in [135] has remarkable localization prop-

erties. Since we are aiming to predict localized attributes well from partial segments,

we use a GAP layer in the architecture to transition from convolutional to fully con-

nected layers. Using Class Activation Maps (CAM) in section 5.2.3 we observe that

this provides the network with the desired property of being able to focus on regions

of interest, thus making the process more interpretable.

Loss : We use binary crossentropy loss for all the predictor outputs si, i ∈

{0, 1, . . . ,M + 1} described in 5.1, 5.2, 5.3, weighted by the inverse of priors. Then
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Table 5.1: Detailed network architecture.
Si, i ∈ {1, 2, . . . ,M} S0 SM+1

conv3-32 → BN → ReLU conv3-32 → BN → ReLU conv3-512 → BN → ReLU
2D MaxPool 3× 3, Stride 2 2D MaxPool 3× 3, Stride 2 global average pooling
conv3-64 → BN → ReLU conv3-64 → BN → ReLU merge(F0, Fs)
conv3-64 → BN → ReLU 2D MaxPool 3× 3, Stride 2 dense-256D→ ReLU

2D MaxPool 3× 3, Stride 2 conv3-64 → BN → ReLU dropout(0.2)
conv3-128 → BN → ReLU 2D MaxPool 3× 3, Stride 2
2D MaxPool 3× 3, Stride 2 conv3-128 → BN → ReLU
conv3-128 → BN → ReLU 2D MaxPool 3× 3, Stride 2
conv3-256 → BN → ReLU conv3-128 → BN → ReLU

conv3-256 → BN → ReLU
2D MaxPool 3× 3, Stride 2
conv3-256 → BN → ReLU

the loss L incurred on image I is

L(I) =
M+1∑
i=0

K−1∑
j=0

wI,j log(si(j)). (5.4)

In 5.4, wI,j is a weight based on the ground truth Ij and the prior probability pj of

attribute j being present, which is precomputed on the training set. The weight wI,j

defined in 5.5 helps to mitigate the challenges due to unbalanced class distributions

which are prevalent in datasets like CelebA [36]. wI,j can be expressed as

wI,j =


pj, if Ij = 0

1− pj if Ij = 1.

(5.5)
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5.1.2 Optimal segment selection for output pruning

Intuitively, not all segments predict all attributes well. Therefore it is coun-

terproductive to train the network to produce all K predictions from all M segment

networks. Instead, we follow a data-driven approach to prune the segment networks.

Stage 1 : Initially, we predict all K = 40 attributes from all M segment net-

works, the full face network and the global prediction network. Hence each attribute

is predicted by M + 2 networks. After training for several epochs, we evaluate the

detection accuracy of each of the M segment networks, Si. For each attribute, we

sort the M + 2 networks according to accuracy on validation set, and pick the top

d networks for each attribute. The global predictor (GP) and the full face network

can be expected to be among the best predictors most of the time, since they have

a top view of the sum of parts. The rest of the d − 2 predictors of each attribute

are segment networks and therefore the most associated Ni attributes for segment i

where i ∈ {1, 2, . . . ,M} and Ni ≤ K is determined this way.

In Fig.5.2 a table for d = 7 and M = 14 is shown where for the segment

networks (row three and below) the non-zero numbers for different attribute columns

denote the attributes assigned to the segment after pruning. The total number of

attributes assigned to the segment networks after pruning are shown in the last

column.

Stage 2: After the association of attributes with segments as described above,

a second round of training is performed. The pruning process in stage 1 allows the

segment networks to focus on attributes that they perform best on, without having
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Figure 5.2: The top ranked segments (including GP and Full face, row-wise) for each
attribute (in the columns). The blue cells indicate that that particular segment was
not used to predict that attribute in the stage 2 of training. The segments predict
attributes that are localized in that region. For example, the bottom half segment
predicts attributes related to facial hair.

to worry about attributes they are just not capable of predicting. Hence, in Fig. 5.1

the output of the FC layers are denoted as sK0 , s
N1
1 , . . . , sNM

M , sKM+1, where Ni ≤ K

denotes the dimension of the outputs, i.e. the number of attributes being predicted

by the branch. We have intentionally assigned all the attributes to GP and FULL

networks (as shown in Fig. 5.2), since the receptive field for these two networks

encompasses the entire face. So, we make the inherent assumption that these two

networks are capable of successfully predicting all the attributes and set the output

to sK0 and sKM+1, respectively for FULL and GP, with dimensions K for these two

networks.

5.1.3 Committee Machines for Score-Level Fusion

While the global predictor or the full face networks has good predictive power,

using only those two predictors does not harness the full potential of the proposed

network architecture. To utilize all the segment networks along with the global and
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full face predictors, we describe two committee machines here namely, the Highest

Ranked Predictor (HRP) and the Normalized Score Aggregation (NSA) methods,

that perform score-level fusion. For both methods, using the validation set V , we

first compute the optimal thresholds, ta,ia for each attribute a ∈ {1, 2, . . . , K} and

for each predictor ia ⊂ {0, 1, . . . ,M + 1} which are responsible for predicting a.

For CelebA, the table in Fig. 5.2 shows information about ia, which is an ordered

set or tuple, ordered in descending order of validation accuracy. For example, if

we consider the attribute ‘goatee’, then a = 16 and ia=16 = (14, 0, 13, 12, 15, 11, 9),

which correspond to B12, FULL, B34, R12, GP, R34 and L34. Denoting Ia as the

ground truth of attribute a for sample I and 1 as the indicator function, the optimal

thresholds that maximize validation accuracy are computed as

ta,i = arg min
t∈[0,1]

∑
I∈V

1Ia=1Si(I)<t
. (5.6)

We denote the visibility of a segment j for image I by VI,j ∈ {0, 1}. Clearly

VI,0 = VI,15 = 1, since both the Full Face Predictor and Global Predictor Network

can predict attributes no matter what the occlusion is. Finally, we define an ordered

set iva which contains the top usable predictors for attribute a (ones that have visible

segments) as

iva = (x : x ∈ ia, VI,x = 1). (5.7)

Hence, iva for a given test image is computed by selecting only the visible

segments from ia. During test phase, the segment visibility is determined from the
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fiducial landmark detector results. Then, iva simply selects the branches that are

visible and are capable of predicting a particular attribute well, based on evaluation

on training data ia.

5.1.3.1 Highest Ranked Predictor (HRP) Committee Machine

After the completion of the two training stages, we evaluate the performance

of each of the predictors (segment, full face and global networks) on the validation

set to find a hierarchy of best performing predictors for each attribute. The results

are shown in Fig. 5.2. For example, we can see that the best predictors for ‘goatee’

are B12, FULL, B34, R12, GP, R34 and L34, in descending order of validation

accuracy.

When making a prediction for an attribute, we find the topmost usable predic-

tor j = iva(1) that is usable/visible for that image. This score from predictor Sj(Ij)

is then thresholded with the optimal threshold of that segment for that attribute,

which was precomputed from the validation set following 5.6. The prediction out-

come based on the optimal threshold would be

Pa(I) = 1Sj(Ij)<ta,j . (5.8)

In the example on ‘goatee’, we use the prediction of B12 (= ia(0)), and if that

segment is not visible, we use FULL (= ia(1)).
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5.1.3.2 Normalized Score Aggregation (NSA) Committee Machine

In general, different predictors trying to predict the same attribute might

have different optimal thresholds. Once they are aggregated (say, by taking their

mean or product or median), one needs to calculate the optimal threshold for the

aggregate score. Instead, we could normalize the scores of the predictors so that

after aggregation, the optimal threshold for the aggregate score is 0.5. [136] sug-

gests a double sigmoid score normalization function for fusing scores from multiple

predictors. However, it involves 2 hyper-parameters, which need to be found by

cross-validation. Instead we propose a simpler normalization function below, which

does not require any hyper-parameters.

Linear Threshold Normalization: Consider a binary classification problem,

where we have to decide the class C ∈ {0, 1}, given a score X ∈ [0, 1]. We assume

that the optimal threshold t that maximizes separation between the 2 classes is

known, and therefore, P (C = 1|X = t) = 0.5. Considering a transformation Y =

T (X), we wish to identify the function T , such that, P (C = 1|Y = 0.5) = 0.5.

Hence,

P (C = 1|Y = 0.5) = P (C = 1|T (X) = 0.5)

= P (C = 1|X = T−1(0.5)). (5.9)

If we choose an invertible function T , such that T (t) = 0.5, then above equation

yields P (C = 1|Y = 0.5) = 0.5. Thus, given multiple scores Xi, and their optimal
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thresholds ti, we can transform the scores to Yi = T (Xi), so that after aggregating

Yi, say by averaging, the optimal threshold is 0.5.

For our algorithm, we use a piecewise linear transformation as follows that

satisfies the T (t) = 0.5 criterion discussed above.

Tt(x) =


(0.5/t)× x, if 0 ≤ x ≤ t

(0.5x+ 0.5− t)/(1− t) if t < x ≤ 1.

(5.10)

We transform the scores of at least p = 5 top predictors out of the visible ones,

iva, using (5.10) to yield Z in (5.11).

Z = {Tta,iva(k)
(Siva(k)(Iiva(k))) : k ∈ {1, 2, . . . ,min(|iva|, p)}} (5.11)

Finally, we use an aggregation function A on Z for the prediction. The decision

rule using the aggregator function is

Pa(I) = 1A(Z)≥A({1−z:z∈Z}). (5.12)

Possible choices of aggregator functions are:

• Bayes’ Rule or Product Rule: As discussed in the score fusion literature [137]

we can use a product rule to combine the decisions of N binary classifiers

according to the following decision rule

N∏
P (C = 1|x) ≶

N∏
(1− P (C = 1|x)). (5.13)
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Thus the product aggregator function is A(Z) =
∏

z∈Z z for all z ∈ Z.

• Median Rule: As proposed in [138], the median aggregator function is A(Z) =

med(Z).

5.1.4 Segment Dropout and Hierarchy of Best Predictors for Han-

dling Occlusion

Segment Dropout: When training the network with image I, only a subset of

the M = 14 segments might be present. The visible segments are randomly dropped

with probability 30% when training. This is called Segment Dropout, which was

introduced in [134] to augment the dataset for handling occlusion. When a certain

segment is not present in a face the input to corresponding segment branch is zero.

In order to make SPLITFACE robust against such cases and generalize better to

detect attributes from available segments, random segment dropout is performed.

Hierarchy of Best Predictors: As described in the earlier section, we compute

a hierarchy of predictors iva that are visible. Thus even if a face is partially oc-

cluded and the best segment is not available, the other segments provide reasonable

predictive power to the committee machine.

The unique architecture of SPLITFACE allows the use of predictor hierarchy

and thereby improving the detection accuracy. In addition, it ensures that even

if some part of the input face is not visible due to occlusion or failure of the face

detector, the attribute detection network would rely on the visible segments to still

make a good prediction. Note that the input to GP are the features from all the
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segment networks and the full face network, and our partial face augmentation

approach during training enables it to handle missing segments while predicting

attributes.

5.2 Experimental Setup, Evaluation and Discussion

5.2.1 Datasets

We use the CelebA [81] and LFWA [81] datasets for both training and evalu-

ation. Also, to evaluate the SPLITFACE’s capability for handling partially visible

faces when estimating facial attributes, we created several variations of these two

datasets and evaluate the performance of SPLITFACE on those variations. We fol-

low the data augmentation scheme described in [83] for generating partially visible

faces by cropping the images keeping only L12 or L34 or R12 or R34 or U12 or

U34 portion. We replace the rest of the pixels with white pixels. Hence, we create

six variations of both datasets and named them C−P and L−P , respectively for

CelebA and LFWA, where P ∈ {L12, L34, R12, R34, U12, U34} 1. Some sample

images for C−P dataset are shown in Fig. 5.3.

5.2.2 Implementation Details

The proposed network has 26, 090, 334 trainable parameters, which are tuned

using the adaptive moment estimation (ADAM) optimizer [139]. The initial learning

rate was set to 0.001. For CelebA, we train the network for 10 epochs for both stages,

1Bounding boxes for the partial CelebA and partial LFWA datasets are available at https:

//drive.google.com/open?id=16hL7g3d6dfvbdvwarYfT6zNcNNXcRLlr
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Figure 5.3: Modified CelebA dataset samples for partial faces.

while for LFWA, we train it for 180 epochs in the first stage and 270 epochs in the

second stage. The full face region is resized to 196× 196× 3 and given as input to

the full face branch, which the inputs to the facial segment branches are all resized

to 64× 64× 3. The experiments were performed on NVIDIA Quadro P6000 GPUs,

with training batch size of 200, and the code was written using the KERAS python

library [140] with tensorflow [141] backend. Apart from segment dropout, horizontal

flipping was applied for data augmentation. Among state-of-the-art methods, the

authors of AFFACT [1] have provided the source code in their paper, which we
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Figure 5.4: Visualization of Class Activation Maps for four different facial segments
(UR12, EP, NS and B12 in the four quarters from left to right) and some attributes
estimated by the corresponding block.

used for performance comparison on partial face datasets. However, the accuracy

obtained from this implementation is slightly less than the accuracy reported in [1],

perhaps because we have not applied test time data augmentation. For all the other

methods, we directly report the results in corresponding publications.

5.2.3 Visualizing Network Response using Class Activation Maps

The class activation map was proposed in [133] to visualize the localization

properties of the network. Given a network which terminates in a Global Average

Pooling (GAP) layer followed by a dense layer, we can compute the CAM Ci of

a particular class i as a weighted average of the activation maps of the layer just

before the GAP layer as

Ci =
N∑
j

wi,jMj, (5.14)

where Mj is the jth feature map in a feature tensor of depth N just before the GAP

layer and wi,j is the corresponding weight of the dense layer after the GAP layer.

In Fig. 5.4, we show the CAM superimposed on some facial segments from CelebA.
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Clearly, the activation maps are localized in interpretably meaningful regions. It

can be seen from Fig. 5.4 that for all the three attributes shown for UR12 (‘bald’,

‘receding hairline’ and ‘wearing hat’) and B12 (‘5 o clock shadow’, ‘goatee’ and

‘sideburns’), the network focuses on the same region: the top corner of the head for

UR12 and the chin and cheeks for B12. On the other hand, for segments EP and

NS, the attention shifted to different regions for different attributes. For example,

for segment EP, the attribute ‘bags under eyes’ is predicted when the network has

high response near the eyes, ‘bangs’ are predicted when the response is high near

the forehead and ‘eyeglasses’ are predicted by looking at the bridge of the nose.

Similarly the NS segment network shifted its attention to the nose, eyes or lips to

predict ‘big nose’, ‘narrow eyes’ and ‘wearing lipstick’, respectively.

5.2.4 Performance Comparison on Original CelebA and LFWA datasets

The performance of the proposed method is compared with state-of-the-art

methods in Tables 5.2 and 5.3 on the original CelebA and LFWA datasets, respec-

tively. Among state-of-the-art methods, the result of AFFACT is directly reported

from [1], while the column AFFACT Unaligned contains results that we found by

evaluating the full faces we use in our experiment. Since the source codes were not

available for any of the other state-of-the-art methods, we report the results directly

from corresponding publications. The column titled ‘Prior’ shows the accuracies ob-

tainable by only applying the knowledge from the prior probabilities of the presence

or absence of an attribute in the datasets. It can be seen that a staggering mean
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accuracy of 80.57% in CelebA and 71.27% in LFWA is achievable by only using the

prior probabilities in decision making. Even though state-of-the-art methods and

the proposed method increases this number by more than 10%, for certain attributes

such as Big Lips and Narrow Eyes in Table 5.2, the prior is higher than the trained

methods for most of the approaches. We put the prior column in the table as a

baseline for evaluation.

The last five columns in Tables 5.2 and 5.3 show the attribute-wise accuracy

and the mean accuracy for Full, GP, HRP, NSA Product rule and NSA Median rule,

respectively, in both tables. It can be seen from these tables that the committee

machine approaches boost the results obtained from Full and GP for most of the at-

tributes. The mean accuracy of 90.42% for CelebA and 85.85% for LFWA obtained

from the NSA Product Rule closely matches state-of-the-art results presented in the

table. Note that we adopted a very simple six layer convolutional network for the

Full face branch that achieves 90.72% accuracy on CelebA and 84.02% accuracy on

LFWA. The result for CelebA is boosted for HRP but degrades slightly for NSA

methods. On the other hand, for LFWA, the committee machine approaches im-

prove the overall performance. Since LFWA is a much smaller dataset and hence the

trained network over-fitted greatly on the training set, this boost in result shows that

the proposed committee machine approaches, especially NSA, generalizes well due

to their ensemble aggregation mechanism. In later sections, we will present results

for partially visible faces, where the committee machine approaches consistently

improves over Full and GP branches and hence the adaptation of such methods is

justified for practical purposes even with a slight loss in accuracy for the original
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dataset.

Table 5.2: Attribute detection performance comparison on the CelebA dataset in
terms of individual and mean detection accuracy for the attributes.

Attributes

Proposed Proposed Proposed Committee Machine

Prior LENet+ MOON [36] MCNN+ DMTL [2] AFFACT [1] AFFACT PaW [84] FULL GP HRP NSA

Anet [81] AUX [37] Unaligned [1] Prod. Rule Med. Rule

5 o Clock Shadow 88.83 91.00 94.03 94.51 95.00 94.21 94.09 94.64 93.96 90.00 93.96 93.01 93.13

Arched Eyebrows 73.41 79.00 82.26 83.42 86.00 82.12 81.27 83.01 83.39 83.44 83.39 82.44 82.56

Attractive 51.36 81.00 81.67 83.06 85.00 82.83 80.36 82.86 82.71 82.86 82.86 83.13 82.76

Bags Under Eyes 79.55 79.00 84.92 84.92 85.00 83.75 84.89 84.58 85.12 79.72 85.12 84.63 84.86

Bald 97.72 98.00 98.77 98.90 99.00 99.06 97.82 98.93 98.46 97.88 98.46 97.98 98.03

Bangs 84.83 95.00 95.80 96.05 99.00 96.05 95.49 95.93 95.65 95.72 95.72 95.73 95.71

Big Lips 75.91 68.00 71.48 71.47 96.00 70.88 71.42 71.46 67.29 67.29 67.29 69.78 69.28

Big Nose 76.44 78.00 84.00 84.53 85.00 83.82 81.83 83.63 83.91 81.85 83.36 81.31 83.81

Black Hair 76.10 88.00 89.40 89.78 91.00 90.32 85.88 89.84 88.88 72.85 88.88 88.82 89.03

Blond Hair 85.09 95.00 95.86 96.01 96.00 96.07 95.17 95.85 95.70 95.68 95.70 95.04 95.76

Blurry 94.86 84.00 95.67 96.17 96.00 95.50 94.52 96.11 95.87 94.95 95.87 95.04 95.96

Brown Hair 79.61 80.00 89.38 89.15 88.00 89.16 87.72 88.50 88.42 87.64 88.42 85.59 88.25

Bushy Eyebrows 85.63 90.00 92.62 92.84 92.00 92.41 90.59 92.62 92.41 92.20 92.41 91.82 92.66

Chubby 94.23 91.00 95.44 95.67 96.00 94.98 95.10 95.46 94.69 94.69 94.69 93.90 94.94

Double Chin 95.35 92.00 96.32 96.32 97.00 96.18 95.94 96.26 95.43 95.43 95.68 95.23 95.80

Eyeglasses 93.54 99.00 99.47 99.63 99.00 99.61 99.38 99.59 99.43 99.48 99.30 99.58 99.51

Goatee 93.65 95.00 97.04 97.24 99.00 97.31 97.21 97.38 96.51 95.41 96.70 95.88 96.68

Gray Hair 95.76 97.00 98.10 98.20 98.00 98.28 97.89 98.21 97.57 95.99 97.57 95.80 97.45

Heavy Makeup 61.57 90.00 90.99 91.55 92.00 91.10 90.82 91.53 91.18 91.51 91.51 91.55 91.59

High Cheekbones 54.76 87.00 87.01 87.58 88.00 86.88 86.11 87.44 87.08 87.54 87.54 87.62 87.61

Male 58.06 98.00 98.10 98.17 98.00 98.26 97.29 98.39 97.58 98.14 98.14 98.09 97.95

Mouth Slightly Open 51.78 92.00 93.54 93.74 94.00 92.60 92.82 94.05 93.62 93.91 93.91 93.90 93.78

Mustache 95.92 95.00 96.82 96.88 97.00 96.89 96.89 96.90 96.12 96.12 96.12 96.16 95.86

Narrow Eyes 88.41 81.00 86.52 87.23 90.00 87.23 87.15 87.56 86.79 85.13 86.84 87.31 86.88

No Beard 83.42 95.00 95.58 96.05 97.00 95.99 95.33 96.22 95.77 96.17 96.17 95.57 96.17

Oval Face 71.68 66.00 75.73 75.84 78.00 75.79 74.87 75.03 75.40 70.45 75.40 75.75 74.93

Pale Skin 95.70 91.00 97.00 97.05 97.00 97.04 96.97 97.08 96.90 95.80 96.90 96.72 97.00

Pointy Nose 72.45 72.00 76.46 77.47 78.00 74.83 76.24 77.35 76.13 71.45 76.13 76.46 76.47

Receding Hairline 91.99 89.00 93.56 93.81 94.00 93.29 91.74 93.44 92.55 91.52 92.55 92.40 92.25

Rosy Cheeks 93.53 90.00 94.82 95.16 96.00 94.45 94.54 95.07 94.59 92.83 94.59 94.51 94.79

Sideburns 94.37 96.00 97.59 97.85 98.00 97.83 97.46 97.64 96.83 96.09 96.83 96.01 97.17

Smiling 52.03 92.00 92.60 92.73 94.00 91.77 90.45 92.73 92.42 92.74 92.74 92.89 92.70

Straight Hair 79.14 73.00 82.26 83.58 85.00 84.10 82.17 83.52 83.11 79.04 83.11 82.36 80.41

Wavy Hair 68.06 80.00 82.47 83.91 87.00 85.65 83.37 84.07 83.28 63.58 83.28 83.10 81.70

Wearing Earrings 81.35 82.00 89.60 90.43 91.00 90.20 90.33 89.93 90.41 90.48 90.41 89.72 89.44

Wearing Hat 95.06 99.00 98.95 99.05 99.00 99.02 98.66 99.02 98.71 95.79 98.71 98.42 98.74

Wearing Lipstick 53.04 93.00 93.93 94.11 93.00 91.69 92.99 94.24 92.66 93.23 93.23 94.00 93.21

Wearing Necklace 87.86 71.00 87.04 86.63 89.00 87.85 87.55 87.70 87.54 86.22 87.54 87.50 85.61

Wearing Necktie 92.70 93.00 96.63 96.51 97.00 96.90 96.43 96.85 96.66 95.61 96.66 95.24 96.05

Young 77.89 87.00 88.08 88.48 90.00 88.66 86.21 88.59 87.95 88.45 88.45 86.93 88.01

Mean Accuracy 80.57 87.30 90.94 91.29 92.60 91.01 90.32 91.23 90.72 88.87 90.80 90.42 90.61

5.2.5 Cross-Dataset Testing Accuracies

In table 5.4, we present the cross-dataset testing performances of AFFACT,

DMTL and SPLITFACE (NSA product rule). For AFFACT and the proposed

method, we present two accuracies separated by /, the first one is for using the

optimal threshold obtained from the validation set to find detection results (for AF-

FACT) or to normalize scores before applying product rule (for proposed). And, the
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Table 5.3: Attribute detection performance comparison on the LFWA dataset in
terms of individual and mean detection accuracy for the attributes.

Attributes

Proposed Proposed Proposed Committee Machine

Prior LENet+ MCNN+ DMTL [2] FULL GP HRP NSA

Anet [81] AUX [37] Prod. Rule Med. Rule

5 o Clock Shadow 59.76 84 77.06 80 74.72 74.72 74.72 77.47 77.59

Arched Eyebrows 72.35 82 81.78 86 78.78 78.78 78.78 81.82 81.72

Attractive 62.09 83 80.31 82 77.44 77.44 77.44 80.25 80.16

Bags Under Eyes 59.52 83 83.48 84 79.11 79.11 79.11 82.98 82.62

Bald 88.94 88 91.94 92 91.69 91.51 91.51 90.97 91.88

Bangs 83.57 88 90.08 93 89.72 89.72 89.72 90.89 90.71

Big Lips 64.07 75 79.24 77 75.47 77.54 77.54 79.10 78.97

Big Nose 69.62 81 84.98 83 80.23 80.23 80.23 82.95 83.13

Black Hair 85.53 90 92.63 92 91.63 92.22 92.22 92.34 92.49

Blond Hair 95.75 97 97.41 97 97.31 97.31 97.31 97.47 97.47

Blurry 84.66 74 85.23 89 85.41 85.41 85.41 86.41 86.42

Brown Hair 62.02 77 80.85 81 79.22 79.22 79.22 81.12 80.93

Bushy Eyebrows 53.58 82 84.97 80 80.73 82.41 82.41 84.42 84.26

Chubby 64.31 73 76.86 75 74.13 75.19 75.19 76.13 76.06

Double Chin 65.58 78 81.52 78 77.82 79.19 79.19 80.76 80.49

Eyeglasses 80.23 95 91.30 92 89.69 90.76 90.76 91.72 91.50

Goatee 77.41 78 82.97 86 81.72 81.72 81.72 83.30 83.01

Gray Hair 83.94 84 88.93 88 87.94 87.94 87.94 88.37 88.46

Heavy Makeup 87.21 95 95.85 95 94.80 94.80 94.80 95.38 95.39

High Cheekbones 63.34 88 88.38 89 86.53 86.53 86.53 88.34 88.34

Male 76.02 94 94.02 93 92.17 92.17 92.17 92.81 92.60

Mouth Slightly Open 57.02 82 83.51 86 79.03 79.03 79.03 82.70 82.50

Mustache 89.03 92 93.43 95 91.92 91.92 91.92 93.27 92.97

Narrow Eyes 63.45 81 82.86 82 78.94 80.07 80.07 82.86 82.75

No Beard 73.08 79 82.15 81 79.27 79.27 79.27 80.65 80.77

Oval Face 52.37 74 77.39 75 74.19 74.19 74.19 76.51 76.80

Pale Skin 50.82 84 93.32 91 88.36 90.16 90.16 91.00 90.97

Pointy Nose 68.4 80 84.14 84 81.50 82.92 82.92 83.63 84.20

Receding Hairline 56.36 85 86.25 85 83.91 83.91 83.91 85.09 84.90

Rosy Cheeks 81.46 78 87.92 86 85.55 85.55 85.55 87.19 87.08

Sideburns 69.38 77 83.13 80 79.42 79.42 79.42 81.89 81.76

Smiling 56.65 91 91.83 92 88.65 88.65 88.65 90.77 90.80

Straight Hair 60.1 76 78.53 79 77.09 78.10 78.10 79.27 78.91

Wavy Hair 57.94 76 81.61 80 77.02 77.02 77.02 78.55 78.28

Wearing Earrings 85.1 94 94.95 94 94.20 94.20 94.20 94.59 94.75

Wearing Hat 86.57 88 90.07 92 89.81 90.23 90.23 90.25 90.23

Wearing Lipstick 83.22 95 95.04 93 93.71 93.71 93.71 94.07 94.07

Wearing Necklace 78.54 88 89.94 91 88.71 88.71 88.71 89.45 89.59

Wearing Necktie 63.13 79 80.66 81 79.55 79.55 79.55 81.70 81.40

Young 78.59 86 85.84 87 83.90 83.90 83.90 85.55 85.68

Mean Accuracy 71.27 83.85 86.31 86.15 84.02 84.36 84.36 85.85 85.82
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Table 5.4: Cross dataset results. The three numbers for each Train-Test pair are for
AFFACT [1], DMTL [2] and the Proposed method, respectively, from left to right.

Train/Test CelebA LFWA

CelebA 89.07/90.32 92.6 90.39/87.14 79.5/73.84 73 79.32/74.56

LFWA -/- 70.2 78.15/77.88 -/- 86 85.99/85.28

second accuracy is obtained by using the mid value of the score range (0 for AFFACT

which gives scores between −1 and +1, and 0.5 for proposed method for which score

is between 0 and 1) as the threshold. Higher accuracies are obtained by using opti-

mal thresholds for the proposed method, while for AFFACT the accuracies dropped

slightly. It can be seen from this table that, for cross-dataset testing (trained on

CelebA and tested on LFWA or vice versa), the proposed method outperforms both

AFFACT and DMTL with a relatively large margin. This again proves the gen-

eralization capability of SPLITFACE, which is achieved by the combination of its

unique architecture with the committee machine.

Next, we evaluated the performances SPLITFACE on the modified CelebA

and LFWA partial face datasets. The results for evaluation on same and cross-

dataset are presented in tables 5.5 and 5.6. In table 5.5, results are presented form

AFFACT and SPLITFACE network, both trained on the original CelebA training

set and tested on the original and modified CelebA and LFWA datasets. The re-

sults for both using and not using optimal threshold (using 0 for AFFACT and

0.5 for SPLITFACE as threshold instead) are shown in the table. It can be seen

that SPLITFACE, especially NSA with product rule and optimal threshold outper-

forms AFFACT in terms of accuracy for full face dataset, and both cross-domain

and partial datasets. The differences are more prominent when using the optimal
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Table 5.5: Networks trained on CelebA and tested on both full and partial CelebA
and LFWA datasets.

Method CelebA C-U12 C-U34 C-L12 C-L34 C-R12 C-R34 LFWA L-U12 L-U34 L-L12 L-L34 L-R12 L-R34

AFFACT 90.32 77.98 81.86 80.56 84.93 80.18 85.07 73.84 68.83 71.12 69.01 73 69.21 73.44
Witout Full 86.76 80.99 84.34 83.86 85.39 83.45 85.71 73.52 67.28 70.25 69.94 72.69 70.01 72.67

Optiamal HRP 86.93 81.46 84.51 84.23 85.97 84.3 86.29 73.54 67.51 70.51 70.08 72.13 70.38 72.64
Threshold NSA Prod rule 87.14 83.24 85.53 84.6 86.79 84.84 86.5 74.56 68.61 71.45 70.34 73.2 70.35 73.32

NSA Med rule 87.07 83.22 85.47 84.51 86.75 84.76 86.44 74.3 68.49 71.59 70.36 73.24 70.27 73.1

AFFACT 89.07 83.05 85.60 84.98 87.47 85.33 87.69 79.5 74.77 77.55 74.97 78.34 74.85 78.19
With Full 90.72 83.99 87.14 87.19 89.33 87.46 89.63 72.32 66.96 69.37 68.22 71.1 68.72 71.25

Optimal HRP 90.8 84.27 87.59 87.11 89.31 87.82 89.71 72.67 67.28 69.94 67.94 70.91 68.42 71.35
Threshold NSA Prod rule 90.39 85.3 88.08 88.12 89.87 88.42 90.02 79.32 75.76 77.81 76.7 78.77 76.51 78.57

NSA Med rule 90.61 85.47 88.16 87.59 89.76 88.1 90.01 79.86 75.28 78.34 76.1 78.73 75.74 78.49

Table 5.6: Networks trained on LFWA and tested on both full and partial CelebA
and LFWA datasets.

Method CelebA C-U12 C-U34 C-L12 C-L34 C-R12 C-R34 LFWA L-U12 L-U34 L-L12 L-L34 L-R12 L-R34

Without Full 75.87 64.84 71.67 70.93 73.67 70.77 74 83.52 67.11 74.76 75.08 79.74 75.8 80.24
Optimal HRP 75.94 65.03 71.94 70.78 73.64 70.58 74.02 83.84 67.59 75.36 74.93 79.81 75.7 80.45

Threshold NSA Prod rule 77.88 67.85 75.63 71.39 75.95 71.23 75.82 85.28 70.47 79.78 75.74 81.62 76.35 82.52
NSA Med rule 78.22 67.72 75.55 71.3 75.84 71.16 75.72 85.18 70.3 79.64 75.62 81.51 76.25 82.43

With Full 76.37 65.46 71.74 70.97 74 70.83 74.35 84.02 69.38 76.05 76.09 80.51 76.74 80.86
Optimal HRP 76.58 66 72.18 71.22 74.21 71.16 74.61 84.36 70.13 76.66 76.42 80.85 77.06 81.28

Threshold NSA Prod rule 78.15 69.54 76.14 72.3 76.68 72.22 76.63 85.99 73.26 81.4 77.4 82.84 78.32 83.46
NSA Med rule 78.13 68.13 75.61 71.75 75.92 71.79 76.03 85.82 72.12 80.79 76.75 82.22 77.41 83.06

thresholds, which show that threshold normalization step with a piece-wise linear

function can boost the overall performance. Similar scenario is found in table 5.6,

where SPLITFACE is trained on the original LFWA training set and tested on both

original and partial CelebA and LFWA datasets. Since no pre-trained version of

AFFACT on LFWA is publicly available, the results for AFFACT could not be pro-

vided in this table. Note that in both tables 5.5 and 5.6, the committee machine

approaches improves over the full face branches, especially for partial face datasets.

This improvement can be attributed to the unique architecture of SPLITFACE that

harnesses local information from unoccluded facial segments and to the ensemble

aggregation approach by using the committee machine.
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Figure 5.5: Attribute-wise comparison of performance changes (w.r.to the perfor-
mance on the unoccluded faces in CelebA) on the C-U12, C-L12 and C-L34 modified
datasets. The vector of differences are denoted as delta-U12, delta-L12 and delta-
L34 respectively.

5.2.6 Analysis of Performance Degradation with Occlusion

One obvious observation from tables 5.5 and 5.6 is that the attribute detec-

tion accuracies decrease with increasing occlusion. For example, all the methods

achieve higher accuracies for upper three-fourth faces present in C-U34 and L-U34

in comparison to C-U12 and L-U12, respectively. In this section, we explore the

effect of occlusion on the accuracy of each attribute using Fig 5.5 which plots the

decrease in accuracy of SPLITFACE (after stage 1 before output pruning) for the

partial CelebA datasets, C−P, P ∈ {U12, L12, L34} described in section 5.2.1 with

respect to full face accuracy. The differences are denoted as delta-U12, delta-L12

and delta-L34, respectively. We observe that SPLITFACE fails in C-L12 and C-L34

for the same attributes such as wavy hair, high cheekbones and wearing lipstick,

since part of the right side of the faces are occluded in both cases. On the other
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hand, C-U12 has reduced performance for attributes like ‘mouth slightly open’, ‘no

beard’ and ‘smiling’, which are attributes localized in the lower part of the face,

which is not visible in C-U12. So, SPLITFACE avoids catastrophic failures during

occlusion, since the prediction accuracy of other attributes remain near constant and

only invisible localized attributes’ performance degrade. The output pruning step

of SPLITFACE removes the attributes for which a segment performs badly in the

first stage. When trained, SPLITFACE utilizes information from different segments

to bolster its decision about an attribute as well as fill up the gaps in attributes in

one segment by using information from other segments which predict those missing

attributes.

5.2.7 Performance for Partial Face Augmentation

We also trained SPLITFACE with training samples from the modified partial

face datasets. When training, samples from the modified datasets were picked with

a 0.3 probability in each batch while the rest of the samples came from the original

datasets. The performances of the networks trained in this manner are presented

in tables 5.7 and 5.8. In comparison to tables 5.5 and 5.6, we can see that for both

partially modified CelebA and LFWA datasets, the performances improved greatly

when the partial faces are augment the training samples in addition to segment

dropout.

In this chapter, we introduced SPLITFACE, an algorithm for facial attribute

extraction utilizing multiple facial segments, a unique deep convolutional network,
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Table 5.7: Performance of SPLITFACE trained on original and modified CelebA
(70-30 ratio).

Methods CelebA C-U12 C-U34 C-L12 C-L34 C-R12 C-R34

Full 90.42 88.01 89.7 89.56 90.02 89.54 90.07
HRP 90.18 87.94 89.55 89.23 89.77 89.21 89.71

NSA Prod rule 90.39 88.43 89.77 89.76 90.02 89.86 90.11
NSA Med rule 90.52 88.46 90.05 89.85 90.16 89.85 90.21

Table 5.8: Performance of SPLITFACE trained on original and modified LFWA
(70-30 ratio).

Methods LFWA L-U12 L-U34 L-L12 L-L34 L-R12 L-R34

Full 83.93 80.31 83.01 81.6 83 81.93 83.37
HRP 85.46 82.39 84.45 83.36 84.59 83.56 84.79

NSA Prod rule 86.04 82.06 84.87 83.07 84.97 83.43 85.14
NSA Med rule 85.97 82.17 84.88 83.06 84.87 83.4 85.23

and a committee machine approach for ensemble aggregation. Through extensive

experimentation, we have shown that the proposed method outperforms state-of-

the-art facial attribute extraction methods for partially visible faces. Also, utilizing

a committee machine approach, SPLITFACE achieved better generalization and

superior performance across domains. Moreover, when trained with both segment

dropout and partial face data, the network achieved even higher attribute detection

accuracy for partially visible faces. As for future research, since the segments are

heavily overlapping and therefore can assist each other greatly, similar performance

might be achievable with smaller input images. Finally, it would be interesting to

see if a cross-stitch network [142] can improve performance when connected to the

segment network branches at certain intervals, by allowing the segment networks to

share data.
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Chapter 6: User Authentication Using Location Trace History

6.1 Person Authentication using Trace Histories (PATH)

The location service of smartphones returns geographical location of the user

based on GPS and WiFi network. In addition to the latitude and longitude informa-

tion, the exact day, time and duration of being in a proximity can be extracted from

the location service data (Fig. 6.1) which are very useful for modeling the pattern

of a user’s location trace. We define the problem of location-based authentication as

Person Authentication using Trace Histories (PATH). In general, the PATH problem

has three challenges:

1. Clustering of Geo-location points to form observation states taking into ac-

count the temporal information.

2. Handling unforeseen observation states and learning a model for each user

using sequential patterns inferred from the observation states.

3. Generating verification score from a test sequence using the trained model.

In Fig. 6.2, a schematic of the proposed verification system is shown. Basically,

there are three steps. First, from the training geo-location data of user x, location

clusters are formed and the cluster centers and radius are extracted. Then, from
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Figure 6.1: Useful information obtained from the location service of the smartphone.

the sequence of geo-location data with time-stamps and session information, the

sequence of training observations is obtained which is used to train the verification

model for user x. Finally, from every n observations in the test data, scores are

generated to verify user x using the previously trained model.

6.1.1 Geo-location Points to Observation States

Since, this is a verification problem as opposed to recognition, only the in-

formation about the legitimate user is available during training. For a user, the

data collected by the location service is a sequence of geo-location points P =

{p1, p2, . . . , pn}, where, each point pi ∈ P contains the longitude (pLongi ), latitude

(pLati ) and time stamp (pTi ). These points are sampled at variable rates based on the

speed of movement and therefore the points might not be equally spaced in time.

A location trace can be formed by connecting the Geo-location points according to

their time series as shown with the red points connected with arrows in Fig. 6.3.
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Figure 6.2: System overview for handling the PATH problem.

In order to take into account the duration of stay in a certain locality, the

geo-location traces are sampled once every three minutes. Thus, if a user is in the

same location for a while, the location logger will log the same location at three

minute interval. The historical Geo-location points of the user obtained this way

are clustered into η = 1, . . . , N clusters, namely C1 . . . CN , using the DBSCAN

algorithm [125] based on geographical distances (GeoDist) between data points.

The maximum distance between a point from the center of the cluster in which

that point belongs is set to be below a certain value Rmax meters. A cluster Cj

is completely defined by {Cj, Rj}, where Cj : {cjLat, c
j
Long}, j ∈ η, consists of the

latitude and longitude of the cluster center, respectively, and Rj is the radius of the

cluster where Rj ≤ Rmax. An example of such clustering is shown in Fig. 6.3, where

the cluster C1
i represents presence in a residential area and C2

i in an office building

in an university suggesting plausible regions like home, university etc. that the user

i would visit.
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Figure 6.3: Geo-location Points and Clusters.

Two types of additional clusters, Transit (Tr) and Unknown (Unk), are as-

signed for each user. If the user is traveling, causing location information to change

rapidly (≥ 2ms−1), then those geo-locations points are assigned to Tr. For each

of the other data points pm that are not inside any location cluster and also not

in the Transit cluster, the nearest known location cluster to each of those points

within a radius of M = 10000 meters is determined by calculating GeoDist(j,m),

the geological distance between pm and all Cjs. Then those data points are assigned

to the cluster Unk`, where,

` =


arg minj GeoDist(j,m), if GeoDist(j,m) ≤M

∞, otherwise

(6.1)

for m = 1, . . . , n, pm /∈ Cj, j ∈ η, pm /∈ Tr.

So, to summarize, there would be N location clusters Cj and N corresponding

nearby unknown clusters Unkj for j ∈ η, one more cluster denoted as Unkinf and

the transit cluster Tr totaling the number of cluster to be 2N + 2. Data points
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at each cluster are assigned to six different observations based on day and time

information. Weekdays and weekend data points are flagged with WD and WE.

Also, the whole day is divided into three time zones (TZs) - TZ1 (12:01 am to

8:00 am), TZ2 (8:01 am to 4:00 pm) and TZ3 (4:01 pm to 12:00 pm). Thus, there

are (2N + 2) × 2 × 3 possible observation states for the locations, transition and

unknowns. One additional observation state, namely, Null, is considered in order to

take the sparsity of the data into account. The Null is inserted at the end of each

day. It signifies the unavailability of location, time zone, number of observation

samples and observation states in between consecutive sessions occurring in two

different days.

Now, it is possible that many of the observation states are not present in the

training data and yet, they may appear in the test data because of the following

reasons

1. The location service of the phone might only collect data when the phone is

turned on and in use. Also, some user prefer to turn off the location service

when the battery is low.

2. Some unknown states near known locations might not occur during the train-

ing phase.

3. Data for all time zones and days might not be present for all locations.
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6.1.2 Handling Unforeseen Observations to Learn User Models

In order to verify the user, it is imperative to take the unforeseen observations

into account rather them assigning zero emission probability to them. Fortunately,

the probability distribution of the occurrence of all the states can be smoothed out

using the estimated values from the training data. Laplace smoothing is one easy

choice to make sure that the probability does not go to zero at all, however, it does

not take into account the prior information about available states. For example,

assume that the observation C1 − TZ1−WE is not present in the training set, i.e.

the historical location log of the user does not contain any information of the user

being at C1 during timezone 1 on weekends. The prior probability of its occurrence

P (C1 − TZ1−WE) can be still be approximated from the probability of the user

being in C1 during TZ1 and the probability of the user being in C1 during weekends

by assuming that the two events are independent. In the next section, the integration

of this assumption into the proposed HMM training model is elaborated.

From the temporally sorted training observation sequence, three different ap-

proaches are presented for user verification. The approaches are:

1. Simple time-sequence matching

2. Markov Chain Models

3. MSHMM models - a Hidden Markov Model with the proposed marginal smooth-

ing

These approaches are discussed in details in the next section.
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6.1.3 User Verification Methods

Three different user verification methods are discussed here. After the pre-

processing step, the observations are available as a time series for each user and

user-wise models are generated using this data.

6.1.3.1 Sequence Matching (SM) Method

The sequence matching algorithm is presented in 1. The algorithm computes

match ratio between the training sequence vector of user i with the last n sequence

values of a user j. The bigger the match ratio, the more likely it is that the users are

same. While computing the sequence matches, the temporal order of the sequences

are taken into account.

Algorithm 1 Sequence Matching Algorithm

procedure SeqMatching(Sitr, S
j
te) . Training Sequence Vector of user i (Sitr),

n-last Test Sequence Vector of user j (Sjte)
Sc ← 0 . Sequence Counter
St ← 1 . Sequence Track Variable
for vtr ∈ Sitr do

if vtr == Sjte[St] then
St ← Sc + 1 . Element Matched
if St == |Sjte| then

St ← 0
Sc ← Sc + 1

end if
end if

end for
r ← (Sc + 1.0)|Sjte|+ St

|Si
tr|+|S

j
te|)

return r . The match ratio is r
end procedure
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6.1.3.2 Markov Chain (MC)-Based Verification

For Markov Chain-based verification, the probability of moving to a state

depends only on the last visited state and the transition matrix for all probable

states. The model Xn is a Markov chain for observation sequences of length n

which is composed of a set of k-observation states S = s1, s2, . . . , sk, prior probability

ρi = Prob{X0 = i} of entering state i, and a set of transitions ti,j where

ti,j = Prob(Xn = sj|Xn−1 = si). (6.2)

Given the prior and transition probabilities of the training data, the total probability

of traversing any sequence of n consecutive observations i0, . . . , in ∈ S is calculated

as

Prob(X0 = i0, . . . , Xn = in) = ρi0ti0,i1 . . . tin−1,in (6.3)

For unforeseen states, Laplace smoothing is enforced by setting the prior probabili-

ties of and transition probabilities from those states to a tiny value δ.

6.1.3.3 MSHMM Model for PATH

The proposed Marginally Smoothed Hidden Markov Models (MSHMMs) are

specifically trained to handle unforeseen observations. HMM models are assumed

to be generated by a Markov process with unobserved hidden states and are very

effective for analyzing sequential data. The HMM model can be expressed as λ =

(π,A,B) where the parameters can be learned from the observed locations of the
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training set O given the vocabulary of possible observations V . Here, π is the

initial hidden-state distribution, A is a time-dependent stochastic transition matrix

between the hidden states, and B is a stochastic matrix with the probability of

emitting a particular observation at a given state.

Algorithm 2 Modified Forward-Backward HMM Algorithm for training MSHMM
model for PATH

procedure BaumWelchForPATH(training observations O = {o1, o2, . . . , oT}
of length T , vocabulary of observations V = {v1, v2, . . . , vM} where M ≥ T )

initialization
random initialization of π, A and B. δ.
while until convergence do

αi(1) = πibi(o1)
αi(t+ 1) = bi(ot+1)

∑N
j=1 αj(t)aji∀t, i

βi(T ) = 1
βi(t) =

∑N
j=1 βj(t+ 1)aijbj(ot+1)∀t, i

E-step
γi(t) = αi(t)βi(t)∑N

j=1 αj(t)βj(t)
∀t, i

ξi,j(t) =
αi(t)aijbj(ot+1)βj(t+1)∑N

i=1

∑N
j=1 αi(t)aijbj(ot+1)βj(t+1)

∀t, i, j
Modified M-step
π̂i = γi(1)∀i
âij =

∑T−1
t=1 ξi,j(t)∑T−1
t=1 γi(t)

∀t, i, j
if
∑T

t=1 1(Ot = vk) 6= 0 then

b̂i(vk) =
∑T

t=1 1(Ot=vk)γi(t)+δ∑T
t=1 γi(t)+Tδ

∀t, i, j
else

b̂i(vk) =
∑T

t=1 1(O
L,TZ
t =vL,TZ

k )γt(j)+δ∑T
t=1 γt(j)+Tδ

×∑T
t=1 1(O

L,W
t =vL,W

k )γt(j)+δ∑T
t=1 γt(j)+Tδ

∀t, i, j
end if
Normalize and Update
update π = normalize(π̂)

update A = normalize(Â)

update B = normalize(B̂)
end while
return π,A, B

end procedure

To learn the model, the HMMs are trained using the three-step Baum-Welch
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algorithm [143] shown in Algorithm 2. The initialization step sets λ = (π,A,B)

with random initial conditions. The parameters are then updated iteratively until

convergence. In Algorithm 2, αi(t) = Prob(y(1) = o1, . . . , y(t) = ot, X(t) = i|λ) is

the probability of seeing the partial observable sequence o1, . . . , ot and ending up in

state i at time t and it is calculated recursively. N is the number of hidden states,

aij refers to the j-th element of the i-row of the A and bj(o) refers to the emission

probabilities of the j-th state in B for observation o.

The update equation of b̂i in the M-step is modified from the original Baum-

Welch algorithm to assign non-zero emission probabilities to those observations of

the vocabulary V that are not present in the training set O. As mentioned in the

formulation of the PATH problem, an observation consists of the location, timezone

and weekday/weekend information, i.e. oi = {oL,TZ,WE
i }∀i ∈ {1, . . . , T}. Originally

the summation in the nominator of b̂i is only made over observed symbols equal

to ok, i.e. the indicator function 1(Ot = vk) = 1 if ot = ok, and zero otherwise.

But, this equation assigns zero emission probabilities for unforeseen observations,

and will eventually pull the overall probability of observing a sequence to zero even

if only one such unforeseen yet probable observation is present in the test sequence.

One simple work-around is to use a smoothing technique such as Laplace Smoothing

where b̂i is assigned a very small constant probability. However, the performance of

Laplace smoothing is found to be very poor experimentally because of its empirical

nature. A marginal smoothing method is proposed here which utilizes the loca-

tion, timezone and weekend/weekday information of the observations to assign the

emission probabilities. The method is based on the assumption that the probability
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of a user being in a location cluster at a certain timezone P (vLk , v
TZ
k ) is indepen-

dent of the probability of the individual being in a location on weekdays/weekends

P (vLk , v
W
k ). Then, b̂i(vk) can be expressed as

b̂i(vk) = P (Ot = vk | Xt = i)

= P (OL
t = vLk , O

TZ
t = vTZk , OW

t = vWk | Xt = i)

≈ P (OL
t = vLk , O

TZ
t = vTZk | Xt = i)

×P (OL
t = vLk , O

W
t = vWk | Xt = i) (6.4)

≈
∑T

t=1 1(OL,TZ
t = vL,TZk )γt(j)∑T
t=1 γt(j)

×∑T
t=1 1(OL,W

t = vL,Wk )γt(j)∑T
t=1 γt(j)

(6.5)

where, the indicator function 1(OL,TZ
t = vL,TZk ) = 1 if the location and time-

zone of ot and vk are the same irrespective of the day and zero otherwise, and

1(OL,W
t = vL,Wk ) = 1 only if the location and day are the same irrespective of the

timezone and zero otherwise.

If Laplace-smoothing is used instead of the marginal smoothing proposed here,

then, when
∑T

t=1 1(Ot = vk) == 0, the update equation of b̂i(vk) would be

b̂i(vk) =
δ∑T

t=1 γi(t) + Tδ
(6.6)

for all t, i. Here, δ is a very small number, and therefore, a even smaller emission

probability is being assigned to an unforeseen observation instead of 0.
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Figure 6.4: For UMDAA02 dataset: (Top) Histogram of duration of sessions and
(Bottom) Histogram of time gap between consecutive sessions.

6.1.4 Experimental Setup and Evaluation

Experiments are performed on two datasets: (1) the UMDAA02 geo-location

dataset [31], and (2) the Geolife GPS tarjectory dataset [114]. The histogram of

duration of geo-data collection sessions along with the histogram of time gap between

consecutive sessions for the two datasets are shown in Figs. 6.4 and 6.5. It can be

seen from these figures that for the UMDAA02 geo-location dataset, geo-location

data is collected for at most 60 seconds after the user logs into the phone. On the

other hand, for the Geolife dataset the data is seamlessly collected for long period

of times. In fact, the session with the maximum duration is almost 11 days long.

The reason behind this difference is that the UMDAA02 dataset is collected for

authentication research using smartphones when the phone is being used, whereas,

the GeoLife dataset is collected using GPS-phones and GPS loggers for individual

and social behavioral research. Since the event of logging into a phone varies widely,
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Figure 6.5: For Geo-Life data set: (Top) Histogram of duration of sessions and
(Bottom) Histogram of time gap between consecutive sessions.

the session gap for the UMDAA02 dataset is spread more widely then the GeoLife

dataset.

Considering the nature of the data collection process, experiments for the two

methods are designed differently. Since the UMDAA02 dataset is small, sparse and

contains user data for a little over a week for each user, the first 70% of chronologi-

cally sorted data of each user is used for training the model for that user and the rest

are used for evaluation. On the other hand, for the GeoLife dataset, experiments are

done on a total of 63 users who has geo-location data for 6 weeks or more. Location

data for the 6-th week is used for evaluation, while those from the previous weeks

are used for training user-wise models.

In Fig. 6.6(a) the distinguishability of location information of the users is
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(a) (b) (c) (d)

Figure 6.6: Similarity matrix depicting (a) location overlap for UMDAA02 dataset,
(b) observations overlap for UMDAA02 dataset, (c) location overlap for the GeoLife
dataset, and, (d) observations overlap for the GeoLife dataset.

depicted as similarity matrices for the UMDAA02 dataset. For a user, after deter-

mining the location clusters (considering Rmax = 20 meters), the location traces are

obtained for the training period of that user and all the other users considering those

clusters. In figure 6.6(a), the percentage of common location clusters that any two

users share is shown as a similarity matrix. It can be seen that in many cases two

different user can have significant amount of overlaps. However, when time and day

information are incorporated with the location data to generate the observations,

the number of overlaps gets reduced, as can be seen from Fig. 6.6(b). Intuitively,

considering the sequence information would minimize the similarity between two

different users even more. Similar depictions for the GeoLife trajectory dataset are

shown in Fig. 6.6(c) and 6.6(d), respectively.

The number of past observations n that is considered when evaluating the

verification score has a direct impact on the EER. It can be seen from Fig. 6.7, that

the EER decreases with increasing n, which is understandable since having greater

number of past observations improves the predictability of the next observation. On

the other hand, the EER gets larger if the value of R is too small or too big. The
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Figure 6.7: EER(%) heatmap for length of sequence (n) vs. the cluster maximum
radius (R).

optimum value of R for the UMDAA02 dataset is found to be around 20 meters, as

can be seen in the figure. This is a reasonable value since clusters of this diameter

are neither too small to be rooms nor too big to be communities. Rather, they

are most likely to be representative of buildings and for the PATH problem and

other location-based prediction tasks, generally buildings like home, shopping mall,

work-place, gym etc. are considered to translate the geo-location observation.

In Fig. 6.8, the performance of the four methods - SM, MSHMM, MC and

HMM-lap are shown in terms of EER for varying n on the UMDAA02 dataset

for Rmax = 20. Given the unconstrained nature of the dataset, verification is a

daunting task even with more robust modalities such as face [31]. Yet, the proposed

MSHMM method achieved an EER of 20.73% for n = 16 outperforming all the other

methods. In fact, for any value of n, the MSHMM models trained with 10 hidden
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Figure 6.8: Comparison of SM, MC, MSHMM and HMM-lap methods in terms
of EER (%) for the UMDAA02 dataset. For HMM-based methods the number of
hidden states is 10.

states performs better then other methods.

Figure 6.9: Comparison of SM, MC, MSHMM and HMM-lap mehthods in terms of
EER (%) for varying n and varying number of weeks of training data. For HMM-
based methods the number of hidden states is 10.

Finally, in Fig. 6.9, the performances of the four methods are compared for

different n. while the number of past weeks for training is increased from 1 to 4.

Understandably, the EER is showing a decreasing trend in general for increasing

training data. The overall performance of the proposed MSHMM method (trained
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with 10 hidden states) is better than the other three methods across different training

size and sequence length. The MC method also found to achieve better accuracy

on this dataset. This is probably due to the fact that this dataset is less sparse and

therefore there are fewer unforeseen observations which led to better estimation of

the prior and transition probability matrix for MC.
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Chapter 7: User Authentication Using Application-usage Informa-

tion

In this chapter, the problem of application usage-based user authentication

is presented in detail along with associated challenges and possible solutions. The

impact of unknown application and unforeseen events on the authentication task

is investigated and several methods for handling the active authentication problem

effectively are described. Finally, a detailed analysis on the application usage data,

experimental results and discussions are presented.

7.0.1 Active/Continuous Authentication of Smartphones

Active, continuous or implicit authentication are different terminologies for the

same authentication approach in which the rightful user of mobile devices is authen-

ticated throughout the entire session of usage [144] [11] [31]. In recent years, active

authentication research has gained a lot of attention because of the increased secu-

rity risks and complexity of password, token-based, multi-factor and other explicit

authentication systems [11]. In active authentication, the wide range of sensor data

available on the mobile devices are utilized to learn one or more templates for the le-

gitimate user during a training session. The templates are used in the background to
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continuously authenticate the user during regular usage and based on the amount of

deviation from the templates the device itself starts restricting access to phone appli-

cations and utilities starting from the most sensitive ones [31]. Most popular modal-

ities for active authentication are front camera face images [145] [146] [13], touch

screen gesture data [19] [14] [147], accelerometer and gyroscope data [103] [61] [148],

location data [3] etc. Suitability of different behavioral biometric such as touch

and keystroke dynamics, phone pick-up patterns, gait dynamic, and patterns from

location trace history have been explored for active authentication [149] [150] [3].

Combinations of multiple biometric have been demonstrated to produce robust au-

thentication on real-life data1.

7.1 Problem Formulation

The application usage data from smartphones coupled with the timing infor-

mation can be used to determine the exact day time and duration of using any

application. It is assumed here that there might be certain pattern in the usage of

different applications at different time of the day or during weekdays and weekends.

Hence, a state-space model can be intuitively considered for modeling the pattern

of application usage for a particular user. Models for different users are assumed to

be different because of the differences in lifestyle of each individual. Therefore, the

state-space model of a user can effectively be considered as a model for the pattern

of life of that user and can be used to differentiate the user from others. There

1http://www.biometricupdate.com/201506/atap-division-head-previews-behavioral-

biometrics-system-at-google-io
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are however several challenges to this approach when applied to the authentication

problem using application usage:

• Forming observation states from the application data and corresponding tim-

ing information.

• Training a state-space model in a way that it can handle unforeseen observa-

tions during testing.

• Generating verification scores from sequential observation data.

Each of these challenges and the proposed solutions are discussed here.

7.1.1 Application Names to Observation States

Incorporating the temporal information with the application name is a chal-

lenge because the user can use an application at any time, and therefore the power

set of all applications and all probable time is intractable even if we sample at a

relatively high frequency. For example, if there are N number of applications and

if we sample every 5 minutes, then there would be 480 unique time stamps in a day

and 3360 timestamps in a week. This would mean a total of 3360×N observation

states for the applications in a week. However, for a single application, most of

these observation states will either not occur or occur very infrequently in the train-

ing set. Hence, training a reliable state-space models with this sparsely occurring

observation states will be difficult.

In this regard, the time-zone and weekday/weekend flag idea are adopted

from [3]. By dividing the day into three distinct time zones (TZs), namely, TZ1
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(12:01 am to 8:00 am), TZ2 (8:01 am to 4:00 pm) and TZ3 (4:01 pm to 12:00

pm), and denoting weekday/weekend with a flag W (t) ∈ WD,WE∀t, respectively,

the total number of possible observation states is kept limited to 6N . The func-

tions TZ(t) and W (t) maps any time t into one of the corresponding timezone and

weekday/weekend, respectively. The impact of converting application tags into ob-

servations on verifying the users of the UMDAA-02 app-usage data and the Securacy

datasets can be visualized from Figs. 7.1(a)-(b) and 7.1(c)-(d), respectively. The

similarity matrix in Figs. 7.1(a) depicts the percentage of common applications be-

tween two users in UMDAA-02 training dataset, whereas, the similarity matrix in

Fig. 7.1(b) depicts the percentage of common observations between any two users

on the same dataset. It is clear that the similarity of observations between two

different users is less than the similarity of applications. The effect is less visible

on the Securacy dataset (Figs. 7.1(c)-(d))because the subjects came from a diverse

population than the subjects of the UMDAA-02 dataset. Hence, the similarity of

applications is less pronounced, yet, the differences between application similarity

and observation similarity are still present.

7.1.2 Taking Unknown Applications into Account

Now, in order to handle unknown applications that might be present in the

test set, an additional application name U is considered. The U application adds 6

observation states when combined with TZs and W . Note that in the training set the

probability of having any U application is very low or zero, and all the observations
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(a) (b)

(c) (d)

Figure 7.1: Similarity matrix depicting (a) application name overlap, and (b) ob-
servations overlap for the training set of the UMDAA-02 dataset. Similarly, (c) and
(d) depicts the application overlap and observations overlap for the training set of
the Securacy dataset

with U are assigned a very small prior probability (10e − 20) when state-space

models are trained. Also, it is ensured for state-space models that the emission

probability for the states with U application does not go to zero, in order to prevent

zero probability score during testing when unknown applications are encountered.

If the total number of unique applications used by user X in the training set is

Ax, then any application αy of the test user Y in the test set Āy will be denoted

as U if αy /∈ Ax. In [3], the authors addressed similar issues for geo-location data
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by considering even more additional states such as nearby unknowns. However,

proximity is a vague concept for application data and therefore only U is considered

here. Note that, any observation with an unknown application is unforeseen by

default, but an unforeseen observation with some other application name is not

unknown.

Note that, apart from U , unforeseen observations might be present in the test

set. For example, in the training set an application αx might only occur in weekdays

at timezones TZ1 and TZ2 while the same application might be used in the test set

at time zone TZ3 on a weekday. In that case, the test observation (αx, TZ3,WD)

would be unforeseen in the training set. For state space models, this problem is

handled by generating all possible combinations applications, time zone and day

flag and use them to construct the model. If one such observation is not present in

the training set, it is assigned non-zero prior and emission probabilities to ensure

that they do not bring down the probability of a test sequence to zero.

7.1.3 Handling Uncertainty

Now that unknown applications and unforeseen observation states are ad-

dressed, we tackle the creation of observation states via binning of time-stamped

data. In most cases, the data collection is done in sessions, where a session starts

with unlocking the phone and stops when the phone is locked again. Even if this is

not the case, there can be very long idle times between consecutive usage of a phone,

during which, authentication is a redundant operation and no application is running
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in the foreground [151]. Hence, there can be a big gap between the start-time for

an application and the stop time of the previous application in the data log. This

time gap might be as small as several seconds to as big as several days even for a

user who owns a smartphone for regular use [152]. The sparsity introduced by this

time gap is handled in two ways. At the beginning of each session (unlocking of

the phone) a dummy observation state Ψ is introduced. The state-space model is

expected to learn that Ψ is a time gap which might or might not cause a change

in the time zone. For example, the last used application might be in TZ1 before

the closing of a session. Then the next session may occur in either TZ1 or TZ2 or

TZ3 of the same day. If the next session is in the next day or if the day changes

within a running session, then an additional flag ∆ is introduced which denotes the

transition into next day. The time zone and weekday/weekend flags are ignored for

observations Ψ and ∆.

So, taking the six probable observations for U and Ψ and ∆ observations into

consideration, the total number of possible observation states for user X would be

6N + 6U + Ψ + ∆.

7.1.4 System Overview

A diagram depicting an application-usage-based user verification system is

shown in Fig. 7.2. Once the observation sequence is extracted, a verification model

can be trained based on the patterns in the sequence. The verification model can

be a state space model, a string matching approach or even a recurrent neural
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Figure 7.2: Overview of an application-usage-based user verification system for mo-
bile devices.

network, depending on data availability and need. For state-space models, once

training for a user is done, the model can be used to generate scores for the last

n test observation sequences created using the same protocol that was used during

the training phase. The score can be thresholded to obtain the verification decision.

For more simpler methods such as sequence matching, unknown applications and

unforeseen observations are difficult to handle. For the authentication problem, the

unknown and unforeseen play key roles, described in the next section.

7.2 The Role of Unknown application and Unforeseen Observations

in User Verification

7.2.1 Statistics of unknown applications in the test data

If an application is present in the test set but not encountered in the training

set, the application is denoted with U as unknown application in the proposed

141



(a)

(b)

Figure 7.3: Boxplots depicting the percentage of unknown application in test data
for (a) UMDAA-02 dataset, and (b) Securacy dataset, for different sampling rates.
Note that the average percentage of unknown applications used by the the different
user is much bigger than that for same user on both datasets.

formulation. Intuitively, the prevalence of U will be much higher if the test set

comes from a different user or from an intruder of the phone, while for the legitimate

user the test set will have fewer unknown applications. This intuition is verified on

the application usage data from both UMDAA-02 and Securacy datasets, as can be

seen from the box plots in Fig. 7.3.

Note that the gap between the whisker plots for same user and different users

is larger for the Securacy dataset in comparison to UMDAA-02 dataset. Securacy
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is a larger dataset with more users, more data per user and more variation in user

demographies compared to UMDAA-02 in which the subjects were from a narrow age

range and were all affiliated with the same institution. Hence, it shows that among

the general population, even the selection of applications varies widely between

users.

7.2.2 Impacts of binary decision based on unforeseen events

Two simple experiments with unknown applications U and unforeseen obser-

vations are performed on the UMDAA-02 and Securacy datasets to evaluate their

role in user verification. The observations for each user are chronologically sorted

and the earliest 70% observations are considered for training and the rest for testing.

Now, for any user i in the training set, a sequence of training observations Stri is

obtained along with the set of unique applications Ai. Now, each test sequence of

a user is compared with the training sequence and application lists of the training

subjects and different binary hard decision rules are applied in two experiments. In

the first experiment, the binary decision rule is based on occurrence of an applica-

tion in the test set that is not present in the training set. In the second experiment,

the decision is taken based on the occurrence of an unforeseen observation in the

test set. In both cases, if there is even a single occurrence of an unknown applica-

tion or an unforeseen observation, then the match score is set to 0.0, otherwise it

is set to 1.0. The matching algorithms for the two experiments are shown in (3)

and (4), respectively. The data sampling rates for both these experiments were set

143



to 1/30 per second, which resulted in ∼ 16863 training-test sequence pairs for the

UMDAA-02 application-usage dataset and ∼ 846331 training-test sequence pairs for

the Securacy dataset. The number of users with adequate training and test data is

26 in UMDAA-02 and 99 in Securacy, leading to an average of ∼ 647 and ∼ 8549

pairs per user, respectively.

Algorithm 3 Binary Decision Rule based on Unknown Applications

procedure BinUnk(Ai, S
te
j ) . List of unique applications of user i (Ai), n-last

Test Sequence Vector of user j (Stej )
for vte ∈ Stej do . Loop through all test observations

ate ← vte[0] . Get the application name from the test observation
if ate /∈ Ai then

return 0.0 . Return score 0.0 if any unknown application is
encountered

end if
end for
return 1.0 . Return score 1.0 if no unknown application in test sequence

end procedure

Algorithm 4 Binary Decision Rule based on Unforeseen Observations

procedure BinUnfore(Stri , Stej ) . Sequence of training observations for user i
(Stri ), n-last Test Sequence Vector of user j (Stej )

for vte ∈ Stej do . Loop through all test observations
if vte /∈ Stri then

return 0.0 . Return score 0.0 if any unforeseen observation is
encountered

end if
end for
return 1.0 . Return score 1.0 if no unforeseen observation in test sequence

end procedure

Results for several evaluation metrics namely, sensitivity, specificity, F1-score

and accuracy - all in percentage, obtained through the two experiments on the two
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Figure 7.4: (a) Sensitivity, (b) Specificity, (c) F1-Score, and (d) Accuracy (in %)
obtained by varying sequence length n for Securacy and UMDAA-02 application-
usage data for using the Binary Hard Decision rule based on unknown applications
and unforeseen observations.

datasets are shown in Fig. 7.4(a)-(d). The definition of these metrics are as follows:

Sensitivity =
TP

TP + FN
× 100% (7.1)

Specificity =
TN

TN + FP
× 100% (7.2)

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (7.3)

F1− Score =
2TP

2TP + FP + FN
× 100% (7.4)

where, TP , FP and FN are the numbers of true positive, false positive and false

negative detections, respectively. High Sensitivity implies smaller number of false-

negatives, while high Specificity implies less false-positives. Accuracy over 50% de-

notes that the true values outweighs the false predictions. Finally, F1-Score implies

better overall precision and recall.

Fig. 7.4 gives the following interesting insights about the impact of the un-
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known applications and unforeseen observations on the performance metrics for the

two datasets.

• With increasing sequence length n, the specificity is increasing gradually for

all the cases, while sensitivity is decreasing. The decrease in sensitivity is

probably due to the fact that the probability of having an unknown application

in the sequence increases with increasing sequence size, thereby increasing

the chances for false negatives. On the other hand, with increasing n more

sequences are denoted as negatives, which in effect reduces the number of false

positives and therefore increases specificity.

• The sensitivity drops drastically when unforeseen observations are used instead

of unknown applications as decision criteria. This is understandable, since the

number of false negatives increases rapidly when all sequences with at least

on unforeseen observations are marked as data from a different user.

• The number of false positives decreases when unforeseen observations are con-

sidered for decision instead of unknowns. This leads to a jump in specificity

for a fixed n. In general, the specificity is much higher for Securacy dataset in

comparison to UMDAA-02. This proves that there are more unknown appli-

cations and unforeseen applications in Securacy when comparing a user with

others. Securacy being a more diverse and larger dataset has wider variation of

information, which leads to this phenomenon. Here, the training data for each

user is longer, meaning that they are much closer representation of real life

and therefore, an unknown application or unforeseen observation is actually a
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different user’s data in most cases.

• Higher sensitivity, however, does not mean that for real life data a simple

binary classifier based on unforeseen observations is reasonably good. The F1-

Score is very low for both datasets, which means either precision or recall or

both of therm are very low. Since in the active authentication using application

usage, the number of positive pairs is largely outweighed by the number of

negative pairs, it can be assumed that FP >> FN and TN >> TP . Since

Precision= TP
TP+FP

and Recall= TP
TP+FN

, that means, Recall>Precision. With

increasing n, FN increases, while FP decreases, leading to reduction in recall

and increase in precision. However, given the fact that the F1-Score does not

improve much with increasing n, it can be assumed that Recall reduces steeply

while Precision does not improve much.

• Irrespective of deciding with unknown or unforeseen, the accuracy is always

lower for the UMDAA-02 dataset in comparison to Securacy dataset. Even

though the application-usage information in Securacy is much larger than

UMDAA-02, probably due to the high demographical similarity among the

subjects of UMDAA-02, the binary hard measure performs poorly in com-

parison to Securacy. In practice, there could not be any assumption made

about the demographic similarity or dissimilarity of an user and an intruder

- hence, using neither unknown applications nor unforeseen observations as a

hard decision metric cannot be a practical solution to the active authentication

problem.
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• The experiment once again proves that ’accuracy’ is not a good performance

metric when the number of samples between classes is severely biased. In this

example, the average percentage of positive pairs in the dataset is ∼ 3.85% on

UMDAA-02 dataset and ∼ 1.01% in the Securacy dataset. Being an open set

problem, the task is to deal with heavily biased data towards negative samples

and better performance measures in this regard would be receiver operating

characteristic (ROC) curves and equal error rates (EER) instead of accuracy.

7.2.3 Impacts of ignoring unforeseen events

Now that the impact of unforeseen events on the authentication problem are

established, a slightly more advanced sequence matching approach based on Lev-

enshtein Distance [153] also known as the Edit-Distance (ED) [154] is performed

to study the impact of ignoring the unknown observations and unforeseen events.

When matching a sequence s1 to another sequence s2 of the same length, the orig-

inal ED calculates the number of deletions, insertions, or substitutions required to

transform s1 to s2. For the active authentication problem, let’s assume that a test

observation sequence Ste of length n is to be matched with any training observation

sequence Str of length N , where, intuitively N > n. Since each observation consists

of an application name, timezone and day flag, when a mismatch occurs, the distance

can be assumed to be different depending on the amount of match. For example, if

only the application name matches, then the timezone and day flag needs to be sub-

stituted, leading to two operations. Based on this fact, the a modified algorithm for
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Algorithm 5 Pseudocode for the modified edit-Distance algorithm.

procedure M-ED(Str, Ste) . Training observation sequence of a
user (Str) of length N , n-last Test observation Sequence of any user (Ste), where
length(Str)> n.

D ← [1, 2, . . . , n]
for j = 0 to n− 1 do

d← zeros[1 : n]
d[0]← [j + 1]
for i = 0 to length(Str − 1) do

if Ste[j] == Str[i] then
d[i+ 1]← D[i] . Exact match, no operation needed.

else
A1, T1,W1 ← Str[i] . Extract application name, timezone and day

flag from the observations.
A2, T2,W2 ← Ste[j] . Extract application name, timezone and day

flag from the observations.
NOp ← 0
if A1 == A2 and (T1 == T2 or W1 == W2) then

NOp ← 1 . One substitution needed if only timezone or day
does not match.

else if A1 == A2 then
NOp ← 2 . Two substitution needed if neither timezone nor

day are matching.
else

NOp ← 3 . Three substitution operation for no match.
end if
d[i+ 1]← NOp+ min(D[i], D[i+ 1], d[i− 1])

end if
D ← d

end for
end for
return D[n− 1]

end procedure

149



Table 7.1: Performance of the M-ED algorithm in terms of EER (%) for three types
of test sequences - all observations, all except the ones with unknown applications
and all without unforeseen observations. Experiment performed on the UMDAA-02
dataset with fixed sampling rate at 1/30s−1.

n
%EER

All Obs. No Unknown Apps. No Unforeseen Obs.

20 43.20 49.22 48.96

30 39.03 44.72 46.70

40 36.97 43.64 45.01

50 35.53 42.19 44.16

60 34.31 42.47 43.29

edit distance (M-ED) is presented in (5). Using this algorithm, three different tests

are performed on the UMDAA-02 dataset, the results for which are given in Table

7.1. In the first test, all test observations are included, while in the next two tests,

the observations with unknown applications, and the unforeseen observations are

ignored. In order to ignore the unforeseen observations, for any training sequence,

each test sequence is compared to find the unforeseen observations and removed

from the test sequence. For unknown applications, the corresponding observation is

removed. This operation reduced the number of samples per user from 891 to 458

and 245, respectively, and the number of unique application in the test data went

from 61 to 60 and 45. As can be seen from Table 7.1, the lowest EERs for any value

of n are obtained when all observations are considered. Ignoring both unknown

applications and unforeseen observations make the verification task difficult. Also,

for practical purposes, ignoring samples will cause latency in decision making, which

can greatly reduce the recall of an active authentication system.

In the next section, some suitable modeling approaches for the application
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usage-based active authentication problem are discussed.

7.3 Suitable Modeling Techniques

In light of the outcomes of the experiments presented in the previous section,

it can be asserted that the application-usage-based verification models must be ca-

pable of taking into account unknown applications and unforeseen observations. A

popular approach to model temporal data sequences is to use state-space models

such as Mobility Markov Chains or HMMs which can model time variation of the

data. However, these methods are not capable of handling unforeseen events by

default. For example, any unforeseen event will be given a zero emission probability

in these models, and therefore, the models will be somewhat like the binary decision

model that was discussed earlier. However, simple modifications to these mod-

els can improve the usability of these methods when unforeseen events are present

as discussed in chapter 6 for geo-location data. In this research work, the three

state-space models namely, the Markov Chain (MC)-based Verification, HMM with

Laplacian Smoothing (HMM-lap) and Marginally Smoothed HMM (MSHMM), de-

scribed in section 6.1.3, are employed for application-usage-based verification task

and the performances are compared.

For the MC method, the prior probability for unknown and unforeseen events

are set to a very small nonzero probability of δ = e−20 (Laplace-smoothing) when

training a model XT for observation sequences of length T . For MC, the probability

of transitioning to an observation state oj depends only on the probability of the
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last observation state oi, i.e.

τi,j = Prob(XT = oj|XT−1 = oi). (7.5)

If the prior probability of entering any state i is pi = Prob{X0 = i} with respect to

the set of observations for user-z Oz
T , then the total probability of traversing any

sequence of n consecutive observations i0, . . . , in ∈ Oz
T is calculated as

Prob(X0 = i0, . . . , Xn = in) = pi0τi0,i1 . . . τin−1,in (7.6)

Similar to the MC method, in HMM-lap method Laplacian Smoothing of the

emission probabilities is considered alogn with HMM to incorporate unforeseen ob-

servations as discussed in [3]. The number of hidden states is fixed to 20 for all the

experiments and the maximum number of iteration is set to 50.

The most suitable approach for handling unforeseen observations is the Marginally

Smoothed Hidden Markov Model (MSHMM) introduced in [3]. To adopt the ap-

proach for the active authentication problem, the marginal probabilities of the pres-

ence of an application in the training sequence of a user for each time-zone and day

flags are precomputed. Assuming that the probability of user-x using application aix

at time-zone TZ(t) at time t, P (aix, Tj) is independent of the probability of user-x us-

ing the application at location W (t), P (aix,W (t)) at time t, the emission probability

from state s to observation ot, ês(ot) is P (O
{ax,TZ(t),W (t)}
t = o

{ax,TZ(t),W (t)}
t |Xt = s) if
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ot ∈ O{a
p
x,TZ(t),W (t)}

t . Otherwise,

ês(ot) = P (O
{ax,TZ(t)}
t = o{ax,TZ(t)}|Xt = s)×

P (O
{apx,W (t)}
t = o

{ax,W (t)}
t |Xt = s), (7.7)

where P (o
{ax,TZ(t)}
t = max(δ, P (ax, TZ(t))) and, P (o

{ax,W (t)}
t = max(δ, P (ax,W (t))).

By definition, the MSHMM approach is capable of differentiating between unknown

applications and unforeseen observations with known applications, as well as, the

more frequent vs. less frequent applications occurring at different time zones and

days.

In the next section, experimental results for these three verification methods

are discussed in detail for performance comparison.

7.4 Experimental Results

The performances of M-ED, MC, HMM-lap and MSHMM algorithms for the

full test sequences of the UMDAA-02 application usage dataset are shown in Table

7.2, where, the sampling rate has been varied from one sample every 5 seconds to one

sample every 30 seconds with intervals of 5 seconds, while the number of previous

observations n is varied from 20 to 60 with intervals of 10. It can be seen from

the table that with smaller sampling rate and bigger n, the EER drops for all the

methods. The MSHMM outperforms every other method in every case, which can

be attributed to the improved modeling capability of the method due to marginal
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Table 7.2: Application-usage-based verification performance comparison for
UMDAA-02 dataset across different methods based on EER (%) for varying se-
quence length (n) and sampling rate. The number of hidden states is fixed at 20
and maximum number of iteration is 50 for HMM-based methods.

n Method
Sampling Rate

1/5 1/10 1/15 1/20 1/25 1/30

20

M-ED 42.96 42.92 44.12 43.64 43.09 43.2

MC 40.86 40.53 40.27 39.48 40.39 36.78

HMM-lap 38.49 38.35 37.82 37.39 38.83 36.77

MSHMM 37.3 37.3 36.67 35.93 35.63 34.82

30

M-ED 42.7 41.71 40.18 38.17 37.58 39.03

MC 40.29 39.18 38.21 40 39.04 36.82

HMM-lap 37.28 37.2 36.68 37.73 37.89 37.45

MSHMM 36.23 36.87 35.74 36.87 35.99 35.79

40

M-ED 41.7 38.64 38.41 38.13 37.45 36.97

MC 39.29 40.57 38.13 39.62 41.97 35.89

HMM-lap 37.37 37.88 36.75 36.07 39.11 34.62

MSHMM 35.4 35.65 34.026 34.4 36.58 32.54

50

M-ED 40.69 37.98 36.19 35.55 35.58 35.53

MC 40.34 37.92 38.67 36.96 39.57 33.56

HMM-lap 36.97 36.01 36.48 34.72 36.7 33.95

MSHMM 35.95 34.41 34.67 32.41 35.27 30

60

M-ED 38.69 35.93 35.32 35.72 34.97 34.31

MC 38.33 37.5 37.5 38.01 35.91 34.35

HMM-lap 35.31 35.48 34.18 33.15 36.05 34.35

MSHMM 34.036 34.92 32.78 33.33 34.3 31.93
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Figure 7.5: Average change in MSHMM scores in response to intrusion on the
UMDAA-02 application-usage data.

smoothing. For a practical verification system, the sampling rate and value of n

would determine the latency of decision making. In many cases, a sample every

30 second might be too late and therefore the system designer should choose these

parameters carefully.

As for n, intuitively with more historical data the performance should im-

prove all the time. In order to determine the impact of n and also to get an idea

about the latency of MSHMM when intrusion occurs, a different experiment was

performed where a different user’s data is appended with the legitimate user’s data

to simulate intrusion. To be more precise, for each user of the UMDAA-02 dataset,

200 consecutive observations from the test sequence starting from a random index

are appended with 200 consecutive observations from the test sequences of all the

other users (start index picked randomly) and the whole sequence is evaluated using
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MSHMM for different n values. The average score values across all users are plotted

in Fig. 7.5 for different n values. When the observations from a different user starts

to enter a batch (at 200-th batch), the average scores returned by MSHMM for each

batch drops vividly, as can be seen from the figure. Also, the figure clearly shows

the drop is larger for large n values - justifying the intuition that considering more

historical data is advantageous in this regard. As for latency, if the score of −200

is considered as a threshold for decision making, then for all n = 60, the intrusion

will be detected within ∼ 5 batches, i.e. withing 2.5 minutes from the inception of

intrusion.

Finally, for the Securacy dataset, the performances of MSHMM, HMM-lap,

MC and M-ED are presented in Table. 7.3. Similar to the UMDAA-02 dataset

results, MSHMM outperforms the other methods by a good margin. Note that the

EER values are much lower for this dataset for the state-space models, which is

understandable since it has already been demonstrated in Fig. 7.1(c) that the users

are quite separable in this dataset even if only application names are considered.

However, M-ED faces difficulty in exploiting the separability of the observations

since is not capable of modeling temporal variations as effectively as state-space

models.

Based on results of the experiments presented in this work, it can be asserted

that application-usage data might be useful as a soft biometric for user verification

for bolstering the decision in a multi-modal authentication scenario. Given the fact

that the application-usage data is readily available and easy to track without using

much battery or computational power, real-time score generation is possible. The
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Table 7.3: App-based verification EER(%) comparison for Securacy dataset across
different methods [3] for different n values. Number of Hidden States is set to 20
and sampling rate is 1/30s−1.

n MSHMM MC HMM-lap M-ED

20 17.23 19.286 19.66 35.09

30 16.75 18.9967 19.59 32.88

40 16.38 18.7074 19.19 31.4

50 16.26 17.9475 19.22 30.53

60 16.16 17.6443 18.38 30.58

experiments also depict that the verification scores show rapid change for intrusion

within several minutes. Hence, the latency is not too high for a soft biometric

measure. However, even though state-space models can be made to work well with

some modifications, the equal error rate for a diverse dataset is still around ∼

16%, which needs further improvement. In this regard, bigger training datasets

and keeping longer usage history might be helpful. In addition, if computational

constraints can be loosened, then more sophisticated high-performance methods

such as deep neural networks can be employed to minimize the EER.

To summarize, in this chapter, the challenging problem of active authentica-

tion using application usage data has been formulated and systematically tackled

to obtain viable solutions. Through several experiments, the impact of unknown

applications and unforeseen observations on the authentication problem has been

investigated and it is established that for this problem inclusion of the uncertain

events are necessary to obtain better performances. In this regard, a modified edit

distance algorithm has been introduced, the performance of which is compared with

three state-space models namely, Markov Chain, HMM with Laplacian Smoothing
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and Marginally-Smoothed HMM, in terms of EER. Experiments were performed on

the UMDAA-02 and the Securacy application-usage datasets. The experiments re-

vealed some very interesting insights about the differences between the two datasets.

Also, we addressed different aspects of important practical considerations such as

intrusion detection, latency, observation history and sampling rate. As for future

work, the M-ED method might be further improved by varying the distances for the

three different cases based on the marginal probabilities. Also, recurrent neural net-

work (RNN)-based models might be able to learn more discriminative properties of

application-usage patterns. However, RNNs require huge amount of data for useful

training, which the two datasets presented here lacks. Another interesting research

direction would be the joint training of application sequence and some other se-

quential data such as the location data to improve the authentication performance.

Finally, since application information are also suitable context for other modalities,

application data sequences can have duel utilization (as a separate modality and

also as context) in more advanced active authentication schemes.
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Chapter 8: Future Research Directions

In this chapter, we present directions for future research based on the works

presented in this dissertation and/or based on ideas that are closely related to au-

thentication research.

8.1 Facial Segment-based Face Verification

The concept of facial segments can have a significant impact on reliably verify-

ing partially visible and occluded faces. At present, most face verification networks

are trained in a data-driven manner where the verification of occluded faces is not

explicitly handled, rather it is expected that if the training dataset has sufficient

examples of partially visible and occluded faces then the model will learn to iden-

tify/verify them. However, in generic face verification datasets, partial visibility is

an infrequent phenomenon, whereas, in the mobile domain, it is highly prevalent.

Therefore, similar to traditional face detector networks, verification networks that

are trained in the traditional way are not expected to achieve satisfactory precision

and recall for AA tasks. Our proposal for using facial segments to extract local

information and merging them for global decision making can make a difference in

this regard. A network with architecture similar to DRUID can be trained where
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the top branches will be replaced with attention networks [155] [156] [157], one for

each of the facial segments. The approach would have similarity with the multi-

attention approach presented in [158] but instead of allowing the network to choose

the attention region, it will be enforced by a loss utilizing the ground truth mask

for each particular segment. Each branch will also have a classification task during

training in order to ensure that the network learns to identify the subject separately

based on each estimated facial segments that are visible. The features that are

used for segment-wise classification will be concatenated and passed through higher

layers and finally reduced to a more compact, global feature representation tasked

to identify the person. Once trained, the network can be used to extract local and

global deep features from any face image. For any two faces, the deep features can

be compared to measure similarity for verification task. Several key aspects of this

tentative network and the training mechanism are as follows:

• Based on our approach, there can be a total of 14 facial segments present for

a single face. Hence, it will require huge memory to fit the fully connected

layers if the number of training classes is very large. In this regard, we would

suggest using a dataset like UMDFaces that has ≈ 8000 training classes, but

a huge number of samples per class to keep the memory usage in check.

• Even if we keep the number of training classes relatively low, the architecture

of network would permit data augmentation by cropping the input images to

ensure the presence of a large number of partially visible faces (following the

augmentation mechanism presented in 4.2.1.2). The augmentation will ensure
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that the network learns to depend on the visible segments to identify a person

instead of relying only on a global representation.

• The proposed formulation will also help investigate the impact of different

facial segments on the verification task and enable to experiment on different

feature level fusion mechanisms for extracting a global face representation from

local features.

With the multi-task architecture, extensive data augmentation and local to global

feature representation mechanism, it can be expected that the proposed network will

perform well on cross-domain face verification tasks (as demonstrated for DRUID

and SPLITFACE) and definitely on verifying partially visible or occluded faces.

8.2 Enforcing Rank Constraint on Deep Feature Extraction Net-

works for Verification

There has been on-going research on low-dimensional feature representation

of faces and objects for verification tasks. Discriminative low-dimensional repre-

sentation speeds up search operations for large datasets. In traditional verification

approaches, a deep neural network is trained on a multi-class classification task using

a categorical cross-entropy or a similar loss in order to get a good feature representa-

tion in an intermediate (usually second to last) layer. The features do not have any

order or rank and are considered equally important for verification. One can enforce

a rank condition on the feature layer during training using two different approaches.

In the first approach, we can introduce a modified dropout layer in between the
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feature layer and the final fully connected classification layer. The dropout layer

will have gradually increasing dropout probability for the neurons of the feature

layer following a linear or exponential function. During training, the model will

learn to rely on the neurons will minimum or no dropout, while the dependency

will gradually decrease with increasing dropout. Hence, the feature vector will be

ranked according to the importance of the feature. The rapidness of the decay can

be controlled by changing the curvature of the decay function. Another approach

could be to apply a gradually decaying cap on the magnitude of the neurons in the

feature layer following a linear or exponentially decaying function. That way, neu-

rons with larger weights will be able to accommodate a wider variety of values and

will also have a large impact on the distance/similarity measure during verification,

while neurons with smaller weights will contribute less in the decision making for

verification. The network will learn about this variation in weights when training

for classification and will try to accommodate more discriminative information in

the neurons with larger weights. Hence, the feature vector will be ranked according

to importance.

We did some preliminary experiments on this concept and trained several

models with and without the ranking-constraint for a car-model verification task on

the Comprehensive Cars (CompCars) dataset [159]. Our results show that with the

ranking constraint, the networks achieve noticeable improvement in ROC curves at

lower dimensions in comparison to randomly picked entries from the feature vectors

for a network trained without the constraint.
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8.3 Reinforcement Learning for Conditional Detection of Facial At-

tributes

There are several facial attribute pairs that are highly correlated. For exam-

ple, in [37], the authors reported that there are strong positive correlations between

heavy makeup and wearing lipstick, chubby and double chin, mouth slightly open

and smiling etc., while there are strong negative correlations among male and wear-

ing lipstick, male and heavy makeup, goatee and no beard etc. It is also intuitive

that there are several attributes that can directly impact other attributes. For ex-

ample, if we have a prior information for a face to have a goatee, it becomes highly

likely that the person is an adult male and also asserts right away that no-beard or 5

o’clock shadow are not true and having heavy makeup is less likely. It would be in-

teresting to train a network that would detect the attributes one by one in a sequence

starting from the attribute that it can detect most reliably. The probability esti-

mate of all future attributes will be conditioned on all currently estimated attribute

probabilities. The system can be realized with a Deep-Q learning architecture for

reinforcement learning [160] [161] [162] in which the Deep-Q network will take the

image and all the previous estimates as inputs to dictate an attribute detector on

which attribute to estimate next. The attribute detector will take the full image,

the prior estimates and the information on which attribute to detect next as input

and produce an estimate for that attribute conditioned on the priors. The detector

might be pre-trained with ground truth values for randomly picked attributes. We
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can expect the Deep-Q agent to be able to produce an optimum sequence for detect-

ing the attributes in a fast and reliable manner. The agent can also be expected to

learn a stopping criterion because the detector network might converge to the best

solutions earlier. It would be interesting to analyze the sequences of attributes to be

detected that the Deep-Q agent produces. For example, it is not intuitive whether

the agent will dictate the detector to detect local attributes first and gradually move

towards the global or the other way around. Also, the network will learn to handle

conditional probabilities for the attributes and therefore hopefully will learn and

exploit the correlation among different attributes and improve the results.

8.4 Development of Multi-modal User Verification Model

So far we have evaluated the discriminative power of location traces and appli-

cation usage data for user verification. Fusing these modalities with other non-face

modalities such as the accelerometer, gyroscope, touch dynamics data battery and

memory usage, while using the foreground application as a context, can be an ef-

fective approach to obtain a robust model for user authentication. Since, different

apps require different types of handling and activities from the user’s part, com-

paring across different applications is intuitively not practical. The sensor data are

temporal and hence needs to be divided into fixed length time windows to train

recurrent neural networks. Also, features from multiple modalities need to be fused

together to strengthen the discriminative power of the feature vectors.
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Chapter 9: Conclusion

In this dissertation, we have presented our work on active user authentication

using different sensor data from smartphones. Our benchmark evaluation of state-

of-the-art algorithms on the mobile domain modalities showed that those algorithms

are not tailored to perform well in the mobile domain. We addressed the very basic

problem of shortage of realistic, unsupervised, multi-modal active authentication

dataset and collected one for this research the technical help from Google. We de-

veloped customized techniques to address the needs of active authentication, such as

facial segment-based face detection techniques like DRUID and SPLITFACE which

can reliably detect face and facial attributes, respectively, from partially visible and

MSHMM, the location-based user verification model that takes unforeseen data and

data sparsity into account while training models for the authorized users.

More specifically, we developed the facial segment-based face detector (FSFD)

and its more advanced variant SegFace for partially visible face detection. Then, we

re-defined the FSFD method in terms of neural network architecture to develop the

DeepSegFace algorithm. Furthermore, considering the requirements of AA, we de-

veloped an end-to-end trainable deep regression-based single face detector, namely,

DRUID, that does not require the proposal generator and outperforms all the previ-
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ous methods and the state-of-the-art methods with a big margin. Then we extended

the idea of facial segments to the task of facial attribute detection from partially

visible and occluded faces. In this regard, we developed the SPLITFACE network

that takes the facial segments into account, estimates the local and global attributes

separately and combines them using a committee machine approach to obtain more

robust estimates of all attributes.

In another track, we modified the traditional Hidden Markov Model to han-

dle unforeseen states and sparse temporal data by using marginal probabilities of

location traces. The method, namely, Marginally Smoothed HMM (MSHMM), pro-

duces user verification score based on several last visited locations and corresponding

timing information. We observed MSHMM to perform effectively for application-

usage-based user authentication task as well. A modified edit-distance was proposed

as a simpler approach to show the impact of unforeseen observations and unknown

applications on the authentication task. We also performed experiments on intrusion

detection latency, observation history and sampling rate for the application-usage-

based active authentication problem.

Based on the concepts and formulations presented in this dissertation, we pre-

sented several future research direction on active authentication. The idea of facial

segment can be utilized to develop a face verification model for partially visible and

occluded faces. The facial attribute detection problem can be formulated as a rein-

forcement learning problem where the reinforcement agent will guide the network to

select which attribute to estimate next based on already estimated attributes. We

also presented an approach for enforcing a rank constraint on deep neural networks
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to obtain ranked deep features that would help in searching on large datasets and in

training compressed networks. Finally, we presented an approach for fusing several

non-face modalities such as accelerometer, gyroscope, swiping pattern etc to develop

a multi-modal authentication scheme using a Siamese recurrent network. We hope

that this dissertation will be helpful for computer vision and machine learning re-

searchers in the future to determine a realistic pathway to achieve satisfactory level

of authentication from unconstrained smartphone usage data.
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