
ABSTRACT

Title of dissertation: A STRUCTURAL THEORY OF DERIVATIONS

Zachary Stone
Doctor of Philosophy, 2018

Dissertation directed by: Professor Howard Lasnik
Department of Linguistics

Operations which take in tuples of syntactic objects and assign them output

syntactic objects are used to formalize the generative component of most formal

grammars in the minimalist tradition. However, these models do not usually in-

clude information which relates the structure of the input and output objects ex-

plicitly. We develop a very general formal model of grammars which includes this

structural change data, and also allows for richer dependency structures such as

feature geometry and feature-sharing. Importantly, syntactic operations involving

phrasal attachment selection, agreement, licensing, head-adjunction, etc. can all

be captured as special kinds of structural changes, and hence we can analyze them

using a uniform technique.

Using this data, we give a rich theory of isomorphisms, equivalences, and

substructures of syntactic objects, structural changes, derivations, rules, grammars,

and languages. We show that many of these notions, while useful, are technically

difficult or impossible to state in prior models. It is immediately possible to define

grammatical notions like projection, agreement, selection, etc. structurally in a

manner preserved under equivalences of various sorts. We use the richer structure

of syntactic objects to give a novel characterization of c-command naturally arising

from this structure. We use the richer structure of rules to give a general theory

of structural analyses and generating structural changes. Our theory of structural

analyses makes it possible to extract from productions what structure is targeted

by a rule and what conditions a rule can apply in, regardless of the underlying

structure of syntactic objects or the kinds of phrasal and featural manipulations

performed, where other formal models have difficulty incorporating such structure-

sensitive rules. This knowledge of structural changes also makes it possible to extend

rules to new objects straightforwardly. Our theory of structural changes allows us to

deconstruct them into component parts and show relationships between operations

which are missed by models lacking this data.

Finally, we extend the model to a copying theory of movement. We imple-

ment a traditional model of copying ‘online’, where copies and chains are formed

throughout the course of the derivation (while still admitting a feature calculus in

the objects themselves). Part of what allows for this is having a robust theory of

substructures of derived objects and how they are related throughout a derivation.

We show consequences for checking features in chains and feature-sharing.

A STRUCTURAL THEORY OF DERIVATIONS

by

Zachary Stone

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Dr. Howard Lasnik, Chair/Advisor
Dr. Tim Hunter
Dr. Paul Pietroski
Dr. Georges Rey
Dr. Juan Uriagereka

c© Copyright by
Zachary Stone

2018

Dedication

To Joe B. and my parents.

ii

Acknowledgments

I want to thank Howard Lasnik, my advisor, who is not only the greatest

educator I have ever met, but manages to effortlessly integrate highly technical

aspects of the field, its history, and the empirical wonder of Natural Language,

and is a willing copyeditor nonpareil. I am greatly indebted to Paul Pietroski,

with his amazing ability to pierce through the dense mathematics of my proposals

and extract the interesting and practical aspects of it. To linguistic researchers

like Ed Keenan, Ed Stabler, Tim Hunter, Greg Kobele, Sylvain Salvati, and Chris

Collins, and mathematicians like Alexander Grothendieck, Saunders Mac Lane, and

Hermann Weyl, who not only laid the groundwork for the research presented here

and showed me what was possible through formal study and gave me hope for its

place in scientific history, but saw a marriage of mathematics and science not only for

the sake of formalization, but for mathematics as a tool to transmute our intuitions

into alchemical theoretical gold. To Mark Baltin, who turned me onto linguistics

as a näıve art student. And to my undergraduate advisor Ray Dougherty, who I

see as one of the great philosophers of linguistics, biolinguistics, and semiotics. To

Chris Neufeld and Jon Beardsley, who managed to encourage me and smile through

hours of me explaining half-baked ideas. And finally, my parents Deborah Baron

and Winston Stone, who I love very much and have always supported me, despite

not knowing what I’m on about 95% of the time.

iii

Table of Contents

Dedication ii

Acknowledgements iii

List of Figures vii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Organization of This Thesis . 5
1.3 Overview of the Theory . 8

2 Derived Syntactic Objects 19
2.1 Overview . 19
2.2 Categories of DSOs . 20
2.3 Representably Concrete Categories of DSOs 26

2.3.1 Representability . 34
2.4 Categorifications of Existing Models 37
2.5 Constituency and C-Command . 43

2.5.1 Forests and trees in FPos . 44
2.5.2 C-command . 46

2.6 Summary . 51

3 Structural Changes, Grammatical Relations, and Derivations 52
3.1 Overview . 52
3.2 Structural Changes and Grammatical Relations 53

3.2.1 Grammatical Relations . 58
3.3 Derivations . 66

3.3.1 Sums . 71
3.3.2 Yields . 74
3.3.3 Grammars, Languages, and Equivalences 81

3.3.3.1 Extensions . 83
3.3.3.2 Languages from Grammars 88
3.3.3.3 Equivalences of Languages 90

iv

3.4 Aside: Adjunctions and (Co)limits 94
3.5 Representably Concrete Derivations 104

3.5.1 D(A) Need Not Be a Representable Construct 104
3.5.2 Representably Concrete Derivations of Finite Partial Orders . 106
3.5.3 Concrete Properties of Der 109
3.5.4 Constituency in Der . 117
3.5.5 Extensions, Grammars, and Equivalences for Der 127
3.5.6 Adding Structure to Der . 132

3.6 Summary . 135

4 Rules 137
4.1 Overview . 137
4.2 Maximal Condition Categories (Structural Analysis) 138
4.3 Generating Structural Changes . 152

4.3.1 Inclusiveness and Weak Extension 158
4.3.2 Example Grammar: Boston et al. 2010 160

4.4 Compilations of Structural Changes 172
4.4.1 Categories of Sequences . 173
4.4.2 Sequences of Operations and Compilations 175
4.4.3 The Rule Generated by a Sequence of Rules 177
4.4.4 A Note on Sequences . 179
4.4.5 Examples . 179
4.4.6 Local and Long-Distance Agreement 181

4.5 Summary . 187

5 Movement 189
5.1 Overview and Background . 189

5.1.1 Non-Copying Models of Movement 189
5.1.2 True Copying: Kobele 2006 192
5.1.3 Copying In a Structured Model 197

5.2 Algebras and Chains . 198
5.2.1 Universal Constructions On Algebras of Derivations 203
5.2.2 Grammars with Copying . 214
5.2.3 Adding Structure to Grammars with Copying 215

5.3 Example: Greek Case Concord . 217
5.4 Summary . 221

6 Comparisons to Other Models, and Conclusions 223
6.1 Comparison to Minimalist Grammars and Bare Grammars 223
6.2 Comparison to Bare Phrase Structure 230

6.2.1 Method one: removal of the feature 233
6.2.2 Method two: changing (the value of) a feature 235
6.2.3 Agree . 237
6.2.4 Graph structure . 239

6.3 Conclusions . 239

v

6.3.1 Generality . 244

A Proofs 246

Bibliography 252

vi

List of Figures

1.1 Mathematical structures used to model dependencies 9
1.2 An example DSO described by dominance, precedence, and syntactic

typing data. 10
1.3 Two isomorphic DSOs . 11
1.4 An example substructure embedding. 11
1.5 SCs mapping two DSOs into a new DSO. 12
1.6 Iterative applications of agreement, leading to a feature-sharing struc-

ture . 14
1.7 Selection as identification of features 15
1.8 A derivation isomorphic to that in Fig. 1.5. 18

2.1 Homomorphisms between objects . 21
2.2 Two isomorphic DSOs . 25
2.3 An example of two morphisms whose underlying function is a subset

inclusion. However, only j is an embedding. 33
2.4 A disconnected partial ordering on the set {a, b, c, d, e}. It has two

connected components: the subspaces corresponding to {a, b} and
{c, d, e}. X is a forest, and each connected component of X is a tree. 46

2.5 The open subset K = {j,m} is a constituent. Its negation ¬K is the
largest open subset disjoint fromK, and is circled. Being an open sub-
set of a tree (i.e. being a forest), implies that this space decomposes
uniquely into connected components (each a constituent), the corre-
sponding to {b, d, e, h, i}, {f} and {k}. These three constituents con-
sisting of these elements are exactly the constituents c-commanding
K. 49

2.6 A constituent-preserving map loosely preserves c-command up to im-
ages in Y . For example, since I c-commands him in Y , the preimage
I c-commands the preimage your friend in X. 51

3.1 A pair of order-preserving functions attaching the root of the first
operand to the root of the other. 54

vii

3.2 A pair of order-preserving functions attaching the root of the first
operand to the root of the other, while also attaching the gender
feature of the head noun to the gender feature of the adjunct. 55

3.3 A pair of order-preserving functions attaching the root of the first
operand to the root of the other, while also identifying a selector
feature and category feature. 56

3.4 Specifier-merge with precedence and syntactic type data. Assume
that all λX(x) = false unless indicated otherwise. 57

3.5 The SC induced by identifying the labels of two heads. 58
3.6 A pullback diagram. (A×C B, πA, πB) is a pullback of f and g. . . . 60
3.7 The 2-by-2 pullback comparison of the head-level and phrasal-level

constituents associated to points x and y at a DSO C containing
them, considered as pullback diagrams in FPos. 62

3.8 The 6 upsets of the ‘lattice of impliciation of nonemptiness of the
2-by-2 pullback diagram of the head and phrasal projections of two
points’. We give each element of the lattice a name corresponding to
its meaning in the case of one being in the minimal domain of the
other. 64

3.9 Moving multiple NPs - {Obj,m, g} and {Subj, n, k} - to the same wh
feature. This leads to a -Spec relation between the Obj and Subj,
since their phrases overlap on a wh element, but this element did not
arise from the heads projecting either phrase. 66

3.10 A coproduct diagram. 72
3.11 A pushout diagram. 77
3.12 Informal picture of the derivation constructed by extending a family

of rooted derivations with yields Ai along a SC (fi : Ai → Z : 1 ≤
i ≤ n). 82

3.13 A morphism of operations on derivations. 84
3.14 (n, ν) : (P, F) + Z → (Q,G) takes µ-images to SCs if the above

diagram commutes for each p ∈ P . 85
3.15 The composite of extν ≡ (b, β) and the sum (κ(Q,G)◦(f, φ))+(κY ◦k) ≡

(g, γ) is a map which takes µ-images to SCs. 86
3.16 Two nonisomorphic equivalent languages. 94
3.17 A derivation with no subderivation on {the′, the, dog}. 106
3.18 Partial order underlying a derivation and its DSOs and structural

changes . 119
3.19 A constituent-preserving map between trees. 121
3.20 Informal picture of a derivation representing a DP. 124
3.21 We give three examples of subderivations whose associated inclusions

into the derivation in Fig. 3.20 are substructure embeddings in Der. . 125
3.22 The subderivation structure on {the′, the, dog} is incoherent. 126

4.1 An n-ary pushout of a SC along a condition-preserving morphism . . 141
4.4 Pasting pushouts . 142

viii

4.2 An example pushout of AL objects. Here, k1 is the obvious isomor-
phism, and k2 is the only possible morphism between those objects.
The induced map j maps drank 7→ pet, the 7→ her, detective 7→
parents, some 7→ the, and coffee 7→ dog 143

4.3 A sum u of a tuple of maps . 144
4.5 The pushout lemma applied to a structural change translated along

two condition-preserving maps. 144
4.6 A basic SC generating specifier-merge. There is only one EG mor-

phism sending the basic generating pair to any other EG object. Here,
it maps a 7→ the, l 7→ detective, b 7→ drank, and i 7→ drank. Intu-
itively, the basic SC adds a dominance relation b ≤ a between the
roots, and precedence relation l � i, while leaving syntactic type
alone. (fA, fB) and (kA, kB) determine the output DSO as well as
(f1, f2). 154

4.7 Merge rules on dependency trees [16] 162
4.8 A BHK lexical item as an A-object. 164
4.9 SA of A objects which we will apply merge1 to. 166
4.10 A more restrictive SA for merge1. 168
4.11 Generating SC for simplified merge1. 169
4.12 The pushout of a generating BHK rule along a condition-preserving

morphism (u1, u2) . 170
4.13 Compilation of adjunction and selection. The b phrase is an argument

of the a phrase, since it is in its minimal domain, and the selection
feature c and selectee d have identified. 180

4.14 Compilation of adjunction and licensing/agreement. The b phrase is
an agreeing adjunct/unselected argument of the a phrase, since b is
in the minimal domain of a, and a licensing feature of the head a has
attached to a feature of b (or more loosely, gone into the domain of b). 181

4.15 Long-distance agreement. tense selects the want phrase, indicated by
the v features identifying. tense also undergoes long-distance agree-
ment with the φ-feature. 184

4.16 A generating SC for phrasal attachment where ψ gets valued by φ. . . 185
4.17 A generating SC for selection of xP by y, identifying selection features

c and s, while φ also targets ψ in a zP for LDA. 186
4.18 A sequence of rules which compiles to a select-and-LDA generating SC.186

5.1 Move rules on dependency trees [16] 190
5.2 A move1DG-style mapping [16] . 191
5.3 An array of 3 copies of every, corresponding to the features d, -k,

-q. [11] . 193
5.4 Triplicating lexical items to be merged into a phrase which will be

copied 3 times. [11] . 194
5.5 An array for a derived DP which will be in a 3-part chain. [11] 194
5.6 The result of merging arrive with the DP. The bottom coordinate of

the DP array is removed and linearized. [11] 195

ix

5.7 A case feature driving movement from the bottom coordinate of the
second component. [11] . 195

5.8 A vP which will be part of a 2-part chain which has components
which will also move. [11] . 196

5.9 The result of merging the vP into a complement position which had
a moving DP in it. The moving subexpression is deleted. [11] 196

5.10 Two copies of John are re-merged in a higher position. [11] 197
5.11 vP movement to a topic position. [11] 197
5.12 Chain-data can be given as a map from a DSO to itself. Copies are

taken to elements they were copied from, while all elements where
the mapping is not drawn are fixed. 199

5.13 A feature-sharing structure representing concord, where the case of
the participle being and adjective just depend on the case of which. . 218

5.14 A ‘pushout’ of an SC without change-data to a copying construction.
Here, the wh-phrase is K ⊂ T , and k maps a 7→ which′, b 7→ case′w,
c 7→ Assigner, d 7→ dat. The base copy of casew becomes dependent
on dat, since the chain-data function on Z must be order-preserving. 220

5.15 If the element x = y is inactive, then j must carry it to an inactive
feature, so g1 and g2 must deactiveate n and =n. 221

6.1 Language 1 is a sublanguage of Language 2. While the two lexical
items in Language 1 are ‘isomorphic’ using the definitions in K&S,
they are not in the larger language, using the same definition. 225

x

Chapter 1: Introduction

1.1 Background and Motivation

The transformational machinery of classical generative grammar relied on two

core notions: (1) a structural analysis (SA), and (2) a structural change (SC) [1]. In

that theory, grammatical ‘structure’ was given in terms of (sets of) strings. The SA

described - in terms of precedence - the relative positions of terminal and nonterminal

symbols which must hold in order to perform a transformation. For example, the

passive transformation applied to a phrase marker when one could find a string in

that phrase marker of the form NP - Aux - V - NP. A SC was given as a rewrite rule,

which could refer to symbols in the SA, which usually permuted, deleted, inserted,

or adjoined symbols. Indexing the four symbols, the SC associated to the passive

transformation replaced NP1 − Aux2 − V3 − NP4 with NP4 − Aux2 + be + en −

V3 − by +NP1. Qualitatively, this rule rearranges the NPs, while inserting symbols

corresponding to passive morphology and the by-phrase.

Modern syntactic theory manipulates hierarchical structure directly. In for-

mal Minimalist Grammars (MGs) [2], these objects are ordered trees together with

feature data associated to the nodes, while Bare Phrase Structure (BPS) encodes

hierarchical information using the ∈ relation of set theory.

1

In this thesis, we sketch a formal model of SAs and SCs for hierarchically struc-

tured objects. This model is developed in great generality, to accommodate more

nuanced morphosyntactic objects and SCs, such as those with feature geometry and

those with feature relations like feature sharing. With this more nuanced structure,

we can give theories of rules in terms of the SCs they induce and what grammat-

ical relations they lead to. The mathematical formalism is situated in a category

theoretic framework which admits ‘good’ notions of embeddings, equivalences, and

isomorphisms at various levels, such as derived syntactic objects (DSOs), derivations

of them, rules manipulating them, as well as entire languages. The model avoids

many technical limitations and undesirable formal properties of MGs and BPS while

also generalizing over them.

Like many instances of formalizing scientific theory, the purpose of this model

is to make more precise many folkloric notions in linguistics in a general setting

which is amenable to incorporating many proposals about syntactic structure and

syntactic operations. Most importantly, these notions can often be unified under a

single theory, and we can prove that general reasoning techniques are always possible

under certain simple assumptions. We describe some specific applications below.

Common sense notions of when two derived objects are ‘structurally identi-

cal’, or, at a higher level, when SCs, rules, derivations, or languages are, can be

unified. Once a model (category) of DSOs has been fixed, the theory given here

will return the relevant notions of isomorphisms and substructures of those DSOs,

as well as SCs between DSOs, and hence derivations, isomorphisms and substruc-

tures of derivations, finally trickling up to strong extensional equivalences between

2

languages. This extends the research program outlined by Stabler and Keenan [3,4].

Given a particular grammatical operation - assignments of SCs to tuples of

input DSOs - the theory given here can also extract from the rules the ‘context’

a rule applies in - that is, what ‘structural configurations’ the rule cares about in

terms of dominance and syntactic category (including minimality), precedence, or

whatever other structure the DSOs are framed in terms of. Additionally, in many

cases we can describe a small set of ‘generating’ SCs - canonical SCs which all other

SCs are based on, which reduces many of the constructions to those found in Graph

Grammars [5]. By analyzing these generating SCs, we can make precise notions like

the Inclusiveness Condition and the Extension Condition [6].

Generally, formal grammar models of natural language eschew structural con-

straints in the level of detail that is used by generative syntacticians, while semi-

formal models of minimalist syntax often formalize these structural conditions on

rules in idiosyncratic ways, not always stating them precisely in terms of the under-

lying formalism. We unify programs studying structural contexts a rule can apply

in and what they do to structure, dating back to Syntactic Structures [1] and con-

tinuing into minimalism where representations are hierarchical such as in Rizzi [7].

It is also often possible to deconstruct rules into component parts. For ex-

ample, argument-merge might involve phrasal-attachment and selection

while agreeing-specifier-merge might involve phrasal-attachment and agree,

showing that the operations have an attachment component in common, though

they differ in terms of how they manipulate features. This generalizes results and

observations from research like that in Hunter [8]. We will present a general theory

3

for how to deconstruct rules using the SC data.

Flipping the question of rules and SCs around, we can give a general theory

of grammatical relations in terms of the SCs induced. In simple cases, these can be

ordered by ‘connectivity’, making precise how phrasal-attachment plus selec-

tion brings a phrase closer to a head than simply phrasal-attachment. In this

way, many of the core relations between parts of a derivation and DSOs like spec-

ifier, complement, adjunct, projection, etc. can be captured relativistically, dating

back to observations in “Categories & Transformations”, [9] and Muysken [10].

Finally, we also extend these results to research on copying in a derivational

language, building on work by Kobele [11]. We will resolve some issues of for-

mally implementing chains and copies in derivations, including showing algebraic

constraints which induce simultaneous valuation of all elements in a chain. We con-

struct a formal model of copying which aligns with the more traditional view of

copying happening ‘online’ during the derivation, cf. Kobele [11].

In summary, given any proposal about what the structure of DSOs is and

what SCs the rules assign, we give a general theory for how to extract from that

proposal what the isomorphisms, substructures, grammatical relations, SAs and

SCs, derivations, etc. are, as well has how to compare languages built with them.

Many aspects of these research programs are subsumed under unifying algebraic

methods, while also generalizing to allow for structures such as feature sharing

[12,13], Mirror Theory [14], and nanosyntax [15].

4

1.2 Organization of This Thesis

We start with a general overview of most aspects of the theory in §1.3.

Chapter 2 focuses mainly on introducing category theory to the reader as

it will be used to describe derived syntactic objects and relations between them,

such as isomorphisms and embeddings. §2.4 gives example ‘categorifications’ of

models from the literature. The definitions for categories, isomorphisms, functors,

constructs and concrete categories, embeddings, natural transformations, and rep-

resentable functors occur in this chapter, along with many examples of them. The

primary original results of this chapter are in §2.5.2, which gives a novel descrip-

tion of c-command in terms of constituent-preserving maps between hierarchically

structured objects. Specifically, Claim 2.5.4 shows that there is a tight relations be-

tween constituent-preserving morphisms and a description of c-command in terms

of a negation operator.

Chapter 3 introduces the main contribution of this research - structural changes

and derivations which include SC data. §3.2 gives an overview of example SCs and

how they can be formalized, as well as the ‘dual’ notion of grammatical relations.

The characterization of grammatical relations given here is novel, and allows for a

systematic description of how certain grammatical relations are ‘closer’ than others

in terms of the dependencies formed. §3.3 introduces a näıve model of derivations,

isomorphisms of derivations, and functors relating DSOs and derivations. §3.3.3

applies properties of the model to precisely describe grammars which recursively

construct derivations, as well as ways to formalize equivalences and isomorphisms

5

of grammars and languages. Claim 3.3.7 is one of the simple but significant results

of the section. It shows that for recursively constructed languages, there is a close

relation between (a) an induced notion of equivalence between languages and (b)

isomorphisms between lexical items and structural changes in the grammars gener-

ating them. §3.4 contains a very important aside on adjoint functors in category

theory, which unifies many constructions given up to that point, and will be used

heavily in subsequent sections. §3.5 illustrates some technical mathematical issues

with the näıve model, and introduces the better-behaved model which will be used

for the remainder of the thesis. Much of that section is dedicated to proving that

this category of derivations is in fact well-behaved as a category of ‘structured sets’,

and recreates many of the basic recursive constructions necessary for recursively con-

structing languages from grammars. Claim 3.5.7 summarizes most of these ‘good’

properties.

Chapter 4 contains an in-depth study of rules and SCs. §4.2 gives a very

general method for describing what structure a given rules ‘cares about’ when de-

termining where it is to be applied; that is, it gives a way to extract a structural

analysis from the rule by looking at all of the productions associated to that rule.

It also contains a description and proof of the fundamental Pushout Lemma. §4.3

then describes when it is possible to generate a rule from a finite set of basic SCs.

Examples from our model as well as the literature are given in this section. §4.3.1

contains a brief digression into properties of rules, namely formalizations of what it

means for a rule to meet the Inclusiveness and Extension Conditions. §4.3.2 works

through an application of the theory to an existing Minimalist Grammar formal-

6

ization building dependency trees [16]. This section gives examples of extracting

a structural analysis out of a merge rule, as well as how to apply a basic SC in

context for richly structured objects. §4.4 gives a theory of how to compile many

structural changes into a single one, giving a much more general theory of decon-

struction of rules into component parts as developed in Hunter [8]. This will allow

us to analyze what properties different operations have in common in terms of the

structure they introduce. In particular, we give examples for the basic local merge

operations, as well as a comparison between local and long-distance agreement in

sections §4.4.5 and §4.4.6.

Chapter 5 is the last chapter of original theory, extending the model to in-

clude ‘true copying’ and ‘chain’ information. After giving a review of prior formal

models of movement in §5.1, we proceed to develop a model in terms of structured

derivations in §5.2. We conclude with an example from Greek which shows how the

same technology which keeps track of chains automatically induces simultaneous

valuation effects throughout a chain.

Finally, Chapter 6 compares properties of the theory developed in the thesis to

existing theories. We show certain undesirable formal properties of existing models,

as well as restrictions on developing a rich theory of language within them along the

lines of the preceding chapters. The chapter concludes with reflections on benefits

of the model developed here and how they were achieved, as well as how it admits

other models in the literature as special cases.

7

1.3 Overview of the Theory

To not lose the forest for the trees, we give a brief overview of the whole project.

Recall that we are leaving open what the basic model of the DSOs should be (though

we will eventually require that it meet some very general axioms). However, upon

fixing the DSOs, the rest of the theory can be deployed straightforwardly.

We first sketch a formal theory of derived syntactic objects (DSOs), and then

move on to a model of derivations of them. We view derived syntactic objects

as ‘structured sets’: sets of nodes together with dependency information, or other

information related to syntactic type or feature-calculus. We might encode depen-

dency information using (directed or undirected) graph structure, for example, or

an ordering relation. See Fig. 1.1.

We might want to endow these sets with additional data. For example, we

could have syntactic type information (N, V, wh, φ, . . .) about the nodes, or

precedence relations between them.1 We might also include chain data as a relation

between a node and the nodes of which it is a copy. If our dependency structures

1Models such as those in Chomsky [17] included linear order as part of the structure of syntactic

objects. Many models like Bare Phrase Structure do not include linear order as part of the syntactic

structure. Versions of Minimalist Grammars like in Stabler & Keenan [4] manipulate (tuples of)

strings directly, which can be seen as precedence orders. It is not obvious how Bare Phrase

Structure encodes syntactic type, but Minimalist Grammars encode it by having a generating

set of basic syntactic types. Most Minimalist Grammars, such as in Stabler & Keenan [4] and

Boston, et al. [16] also partition the syntactic objects into ‘components’ which are used as stacks

for movement.

8

Example Definition V = {a, b, c, d}

Graph

a

b c

d

A set V of vertices to-
gether
with a set E of 2-element
subsets of V .

E = {{a, b}, {a, c}, {c, d}}

Directed
Graph

a

b c

d

A set V of vertices to-
gether
with a subset E ⊂ V ×V
of edges (i.e. a binary
relation on V).

E = {(a, b), (a, c), (c, d)}

Preorder

a

b c

d

A set V of vertices to-
gether
with a binary relation ≤
such that:

1. For all a ∈ V , a ≤
a

2. For all a, b, c ∈ V ,
a ≤ b and b ≤ c im-
ply a ≤ c

a ≤ a, a ≤ b, a ≤ c,
a ≤ d, b ≤ b, c ≤ c,
c ≤ d, d ≤ d

Figure 1.1: Mathematical structures used to model dependencies

9

pet

the

dog

furry

pet � the � furry � dog
V (pet) = D(the) = N(dog) = Adj(furry) = true

Figure 1.2: An example DSO described by dominance, precedence, and syntactic
typing data.

include features, we might have information which tells us if the features are still

active, or the order that they must be checked in. In all of these cases, the DSOs

are ‘sets of nodes with extra structure’. For example, we give in Fig. 1.2 a DSO

representing ‘pet the furry dog’ given with dominance, precedence, and syntactic

type information.2

Given a model of DSOs, we will have induced notions of isomorphisms (special

bijections) and substructure embeddings (special subset inclusions). The basic idea

behind isomorphisms is that they are mutually inverse bijections which preserve the

relevant structure in both directions; the basic idea behind a substructure embedding

is that it is a subset inclusion such that the subset has ‘as much structure as possible’

such that the inclusion preserves structure. Examples of these are given in Fig. 1.3

and Fig. 1.4, respectively.

Structural changes (SCs) can be represented as tuples of functions (defined

on the sets of nodes) from a tuple of DSOs into a new DSO. These functions must

preserve certain structure, like dominance and precedence, and such functions are

2Here, the dominance relation could be modeled by any of the structures in Fig 1.1. We write

a precedence relation using a preordering �, and we consider syntactic types as unary predicates

on the set of nodes. Assume that the determinations are false unless indicated otherwise.

10

the

dog

furry

the � furry � dog
D(the) = N(dog) = Adj(furry) = true

the

cat

hairless

the � hairless � cat
D(the) = N(cat) = Adj(hairless) = true

Figure 1.3: Two isomorphic DSOs

dog

furry

furry � dog
N(dog) = Adj(furry) = true

the

dog

furry

the � furry � dog
D(the) = N(dog) = Adj(furry) = true

i

Figure 1.4: An example substructure embedding.

referred to as morphisms. In Fig. 1.5, we have a pair of DSOs (‘her parents’, ‘pet

the furry dog’) mapping into the DSO ‘her parents pet the furry dog’. However,

it is not simply the case that we have assigned this output DSO to this pair: the

pair of functions f and g between sets of nodes explicitly map nodes of the input

trees to nodes of the output tree, e.g. the node for ‘dog’ in the input DSO is

mapped to a corresponding node for ‘dog’ in the output DSO by g. Moreover, f

and g ‘preserve the structure’ of the input DSOs: e.g., since we have the precedence

relation ‘her � parents’ in the input DSO, so do we have the precedence relation

‘f(her) � f(parents)’ in the output DSO; since the node ‘pet’ in the input DSO is

of syntactic type V , so is g(pet) in the output DSO; since we have the dominance

relation ‘pet ≤ the’ in the input DSO, we also have the dominance relation ‘g(pet) ≤

g(the)’ in the output DSO; and so on for each precedence and dominance relation

and syntactic type determination.

11

pet

her

parents

the

dog

furry
her � parents � pet � the � furry � dog
D(her) = N(parents) = V (pet) =
D(the) = N(dog) = Adj(furry) = true

her

parents
her � parents
D(her) = N(parents) =
true

pet

the

dog

furry
pet � the � furry � dog
V (pet) = D(the) = N(dog) =
Adj(furry) = true

f

g

Figure 1.5: SCs mapping two DSOs into a new DSO.

12

In this way, by representing DSOs as ‘structured sets of nodes’, SCs between

DSOs are simply ‘functions between sets of nodes which preserve that structure’. A

derivation is essentially a diagram of sequences of DSOs linked by SCs. This has

many technical advantages. Such a model of derivations includes in it the ‘obvious’

but useful information that associates prior DSOs with subobjects of later DSOs.

For example, we can tell just by looking at the set-theoretic image that ‘her parents’

corresponds to a specific subpart of the DSO ‘her parents pet the furry dog’. It is in

fact the part of the tree which became a dependent of the element that ‘pet’ mapped

to. Projection can be read off of this structure: we can tell that it is the head of the

DSO ‘pet the furry dog’ (and not ‘her parents’) which projects, simply by noting

that it is the root of this DSO which maps to the root of the output DSO. This gives

a primitive theory of projection and ‘derivational’ dependency/argument structure.

Our theory of grammatical relations (§3.2.1) will essentially be a measurement of

how much heads and features of them come to be dependent on each other in later

DSOs ‘over’ the SCs which link them.

If our DSOs are more rich and include features, we can get subtler relations

between DSOs and their parts, leading to a proportionally richer theory of grammat-

ical relations. For example, if we have gender features φ and ψ, we may represent

φ getting its value from ψ by becoming dependent on it - i.e. by introducing the

relation φ ≤ ψ.

In Fig. 1.6, we iteratively attach adjuncts and add a dependency relation

from each adjunct’s φ-feature to that of the head noun. This actually leads to

an (asymmetric) feature-sharing structure [12, 13, 18], and we can again read the

13

tree

big old

φb φo

φt

big

φb

tree

old

φo

φt

old

φo

tree

φt

Figure 1.6: Iterative applications of agreement, leading to a feature-sharing structure

14

the

d dog

n φ

the

d =n

dog

n φ

Figure 1.7: Selection as identification of features

agreement relation off of the derivation just by looking at images of φ-features and

the dependencies introduced. We could construct a similar derivation involving case

features. For that derivation, we would have the correct result that, by transitivity

of domination/dependence, if the case feature of the head noun gets valued via

dependence, all of the adjuncts’ case features would also be dependent on this valuing

feature. Feature-sharing is a straightforward model of concord and such ‘delayed-

valuation’ effects involving concord. Such an example is worked out in §5.3.

We could similarly add features for syntactic selection. In this case, we could

use a different relationship - such as identification of features - to indicate a different

degree of ‘derivational connectivity’ between DSOs to distinguish selection from

agreement or licensing. An example of this is given in Fig. 1.7.

We view a grammatical rule as an assignment of tuples of SCs mapping to

a common target DSO to tuples of input DSOs. Since rules will be embellished

with this SC-data, we can then give a theory of rules in terms of the structure

they introduce. For example, f and g of Fig. 1.5 intuitively add a dominance

relation from ‘pet’ to ‘her’, add precedence relations from ‘her’ and ‘parents’ to ‘pet’,

15

‘the’, ‘furry’, and ‘dog’, plus all of the relations induced by these relations under

transitivity, while leaving all other structure alone. Each instance of the ‘adjoin-

and-agree’ SCs of Fig. 1.6 intuitively adds a dependency from the head noun to the

adjunct, while also adding a dependency from the φ-feature of the adjunct to the φ-

feature of that same head noun. Using the SC data associated to rules, we can give a

theory of when a rule is ‘generated’ by some primitive SC applied in some restricted

context in general. These contexts are like the SAs of classical transformational

grammar, abstracted to more richly structured DSOs. The process of going from a

rule (the collection of all ‘productions’ associated to that rule) to a set of primitive

generators is the ‘structured’ version of going from a set of productions to a set

of generating replacement rules in string-based grammars. This method is closely

related to the single-pushout method of Algebraic Graph Grammars [5]. In this

form, we can study the conditions under which a rule can apply and what structure

it targets (roots, nearest feature of type x up to relativized minimality, etc.). We

can then deconstruct a rule in terms of each piece of structure it changes (adding

dominance or precedence relations, deactivation of features, etc.). For example, the

SC in Fig. 1.7 can be deconstructed into (1) attaching the roots, and (2) identifying

the selection features.

Since all of our theory is stated in terms of structured sets, we may take

advantage of all of the mathematical methodology for handling such objects. In

particular, we showed how it becomes easy to describe substructure embeddings

and isomorphisms between DSOs and derived objects using standard mathematical

definitions, and these trickle up to good notions of subderivations and equivalences

16

of languages in terms of the structure of DSOs and SCs a grammar may build. We

extend isomorphisms of DSOs to isomorphisms of SCs. An isomorphism between

two SCs is simply an isomorphism between each DSO involved, such that those

isomorphisms ‘commute’ with the SCs. More generally, take a derivation to be a

diagram of DSOs linked by morphisms. Maps between derivations are essentially

collections of morphisms between DSOs which are compatible with SCs. In par-

ticular, two derivations ∆ and Γ are isomorphic if and only if there is an exact

correspondence between the DSOs occurring in them, and we are given an isomor-

phism f : D
 G : g between each pair of DSOs (D,G) in correspondence which

preserves the SCs. This last condition means that for any SC k : D → D′ in ∆

with j : G → G′ the SC between the corresponding DSOs in Γ, the isomorphisms

f : D → G and f ′ : D′ → G′ carry k to j isomorphically. In other words, f ′k = jf ,

where f and f ′ are isomorphisms. For example, there is an isomorphism between the

(fragments of) derivations in Fig. 1.5 and Fig. 1.8. For more general morphisms

of derivations, we drop the requirement that the component morphisms f, f ′, . . .

are isomorphisms. We will similarly be able to recover a notion of embeddings of

subderivations as morphisms of derivations which are special subset inclusions.

Finally, these isomorphisms between SCs, DSOs, and derivations give rise to a

notion of strong extensional equivalence of languages. A language can be viewed as

a collection of derivations. Two languages L and M can be said to be equivalent

if whenever there is a derivation ∆ in one, there is an isomorphic derivation Γ in

the other, and conversely. This is weaker than requiring a bijection between the

languages, and hence allows a characterization of equivalence between languages of

17

hug

her

children

the

cat

hairless
her � children � hug � the � hairless �
cat
D(her) = N(children) = V (hug) =
D(the) = N(cat) = Adj(hairless) = true

her

children
her � children
D(her) = N(children) =
true

hug

the

cat

hairless
hug � the � hairless � cat
V (hug) = D(the) = N(cat) =
Adj(hairless) = true

m

n

Figure 1.8: A derivation isomorphic to that in Fig. 1.5.

different sizes with lexicons of different cardinality, so long as for every DSO in one,

there is some isomorphic DSO in the other, and similarly for the SCs.

18

Chapter 2: Derived Syntactic Objects

2.1 Overview

The main function of this chapter is to introduce basic category theory as we

will use it to model derived syntactic objects (DSOs). Intuitively, DSOs are hi-

erarchically structured objects, possibly with other data like precedence, syntactic

typing, or other information related to the feature calculus such as feature activity.1

We will characterize the example DSO models in Fig. 1.1 in terms of categories, and

then introduce the notion of isomorphisms in categories. We then introduce (repre-

sentably) concrete categories, which are roughly categories of ‘sets with structure’.

Given this set-structure, it becomes possible to talk about structure restricted to a

1Throughout, we make no commitment to whether precedence information is in the syntax or

not. Early models like Chomsky [17] and Barker & Pullum [19] included precedence order as part

of the structure of a DSO. Models like Kayne [20] included precedence order, though it was totally

determined by hierarchical structure. Modern Bare Phrase Structure [21] has no linear order in the

syntax, and recovers it for PF from hierarchy, while many formal minimalist grammars still include

linear order information (and in some cases, there is no hierarchical structure in the DSOs) [22].

Similar observations can be made about many other structural assumptions about the DSOs, such

as syntactic type, information about whether a feature is active or not, etc. We will develop a

theory in generality where it works both for objects with, e.g., precedence data and without.

19

subset, commonly called a substructure embedding. We then give examples from the

literature and show how they can be reinterpreted as categories of DSOs. Finally,

we conclude with some specialized results for order-theoretic models of DSOs, and

show that there is a deep connection between c-command and constituency. This

last section contains the only ‘new results’ presented in this chapter, with the pre-

ceding material mostly intended as an introduction to category theory as it can be

applied to the analysis of syntactic objects.

2.2 Categories of DSOs

We start with some examples of mathematical structures (graphs, directed

graphs (digraphs), preorders) which could be used to model DSOs in Fig 1.1. In

each case, we can define morphisms between objects of the same kind, which we

think of as preserving certain properties of the structure, given in Fig. 2.1. These

morphisms are often called graph homomorphisms, directed graph homo-

morphisms , and order-preserving maps , respectively. In each case, the class

of objects (graphs, digraphs, preorders), together with for each pair of objects A and

B, a set Hom(A,B) of homomorphisms, together with for each triple A, B, and C

a composition function ◦ : Hom(A,B)×Hom(B,C) → Hom(A,C) constitutes a

category.

Definition 2.2.1. A category is a class of objects C, together with a set C(A,B)

of morphisms for each pair of objects (A,B) with A,B ∈ C, together with a com-

position function ◦ : C(A,B) × C(B,C) → C(A,C) for each triple (A,B,C) with

20

Morphism Composite

Graph

Given two graphs (VG, EG) and
(VH , EH), a morphism f is given
by a function fV : VG → VH such
that for each {a, b} ∈ EG, we have
{fV (a), fV (b)} ∈ EH

Given graphs (VG, EG), (VH , EH),
and (VI , EI), and morphisms
fV : VG → VH and gV : VH → VI ,
then the composite
gV ◦ fV : VG → VI gives a mor-
phism, taking a node a ∈ VG to
gV (fV (a)).

Directed
Graph

Given two digraphs (VG, EG) and
(VH , EH), a morphism f is given
by a function fV : VG → VH such
that for each (a, b) ∈ EG, we have
(fV (a), fV (b)) ∈ EH

Given digraphs (VG, EG),
(VH , EH), and (VI , EI), and
morphisms fV : VG → VH and
gV : VH → VI , then the composite
gV ◦ fV : VG → VI gives a mor-
phism, taking a node a ∈ VG to
gV (fV (a)).

Preorder

Given two preorders (P,≤P) and
(Q,≤Q), a morphism f is given by
a function f : P → Q such that if
a ≤P b in P , then f(a) ≤Q f(b)

Given partial orders (P,≤P) and
(Q,≤Q), and (R,≤R) and mor-
phisms f : P → Q and g : Q →
R, then the composite g◦f : P →
R gives a morphism.

Figure 2.1: Homomorphisms between objects

21

A,B,C ∈ C. These data are subject to the following axioms:

1. For every object A, there is a morphism 1A ∈ C(A,A), called the identity on

A, such that given any morphisms f ∈ C(A,B), g ∈ C(B,A) the following

equalities hold: f ◦ 1A = f, 1A ◦ g = g

2. Given morphisms f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D) the following equality

holds: h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Borceux [23] 1.2.1

It is important to note that in defining a category, both the objects and mor-

phisms must be given. There is a motto in category theory that it is the morphisms

which are actually important, while the objects don’t matter that much.2 That is,

where in set theory we might define a structure by building up a set and defin-

ing certain operations or relations on it, in category theory it is the arrows which

determine the relevant structure. The ‘structure’ of an object is essentially what

remains unchanged by the arrows, and most important properties of an object (its

elements, substructures, isomorphisms between structures) and constructions on ob-

jects (Cartesian products, disjoint unions, intersections, quotients) can all be stated

entirely in terms of properties of morphisms, without making any assumptions about

the objects. In this way, it is useful to think of giving a class of morphisms as roughly

the same as giving an axiomatic description of the relevant properties which deter-

mine a DSO.

2“The knowledge of the maps is equivalent to the knowledge of the interior structure of an

object.” Pareigis [24], p. 3

22

Many basic facts about morphisms can be proven in any category. We give a

simple example.

Claim 2.2.1. If x, y ∈ C(A,A) are identities on A, then x = y

Proof. x ◦ y = x since y is an identity, and x ◦ y = y since x is an identity. We

denote the identity on A by 1A.

We denote the above categories as Grph, DGrph, and Proset. We prefix

each of these categories with F for the subcategory of objects with underlying sets

of nodes which are finite. In each case, we could add various kinds of data to the

objects and construct an associated notion of morphism and composite to get a

category.

1. We could put a ‘PF ordering’ (precedence relation) on the vertices. Concretely,

we define a precedence relation on a graph G, digraph γ, or finite partial order

P as a preorder � on its underlying set of nodes, such additionally (1) � is

antisymmetric - a � b and b � a imply a = b, and (2) � is total - for any a, b,

either a � b or b � a.3 We can construct morphisms as graph, digraph, or

order-preserving morphisms φ, where additionally for any vertices a � b, we

have φa � φb. In each case, using the obvious function compositions gives a

category.

3However, we will later want to allow � to be an arbitrary preorder. Part of the reason is so

that we can describe ‘disjoint unions’ of structures with precedence relations, where we do not

want to have to introduce ordering relations between the summands. Similarly, the reason we

characterize precedence as reflexive is to allow gluings/identification of elements in a structure.

23

2. For any set L, we can construct categories of (directed) graphs or preorders

(partially) labeled by L. Concretely, we add (partial) labelling data to a

structure with set of nodes V with a (partial) function f : V → L from the

underlying set of nodes. A morphism φ of (partially) labeled (directed) graphs

or preorders is a (directed) graph homomorphism or order-preserving map such

that if a is a vertex with label f(a), then the label of φ(a) is f(a).

3. We can equip a (directed) graph or preorder with set of nodes V with a

predicate α : V → {true, false} on the underlying nodes. For example, we

could say that if α(a) = true, then a is ‘inactive’. If (A,α) and (B, β) are

(directed) graphs or preorders with predicates, we can define a morphism

to be a morphism φ of the relevant type, such that if α(a) = true, then

β(φ(a)) = true. We could also use a set of such predicates for syntactic typing

instead of labels, i.e. use a set of predicates V, N, wh, . . . such that V(x) is

true if x is verbal, etc.

Adding any combination of the structures above to (directed) graphs or pre-

orders has an associated notion of morphism which gives a category.

In any category, we have a notion of isomorphism (iso).

Definition 2.2.2. A morphism f : X → Y in a category is called an isomorphism

(iso) if there exists a morphism g : Y → X, called its inverse , such that f ◦ g = 1Y

and g ◦ f = 1X .

We give examples of isos.

24

the

dog

furry

the � furry � dog
fX(the) = D, fX(dog) = N ,

fX(furry) = Adj
ξ(the) = false, ξ(dog) = ξ(furry) = true

the

cat

hairless

the � hairless � cat
fY (the) = D, fY (cat) = N ,

fY (hairless) = Adj
ι(the) = false, ι(cat) = ι(hairless) = true

Figure 2.2: Two isomorphic DSOs

1. An iso between graphs G and H is a bijection between the underlying sets of

nodes f : VG → VH such that there is an edge {a, b} in G iff {fa, fb} is an

edge in H.

2. An iso of digraphs G and H is a bijection f : VG → VH such that there is an

edge (a, b) in G iff (fa, fb) is an edge in H.

3. An iso of preorders P and Q is a bijection between their underlying sets, such

that p ≤P p′ iff fp ≤Q fp′.

4. An iso between preorders with precedence relation, partially labeled by L, with

a unary predicate (P,≤P ,�P , fP : P → L, π) and (Q,≤Q,�Q, fQ : Q→ L, κ)

is a bijection φ : P → Q such that (1) a ≤P b iff φa ≤Q φb; (2) a �P b

iff φa �Q φb; (3) a has label fP (a) iff φ(a) has label fQ(φa) = fP (a); (4)

π(a) = true iff κ(φ(a)) = true.

We give an explicit example of an isomorphism from the last category in Fig.

2.2. The bijection associating the with the, dog with cat, and furry with hairless is

an isomorphism.

We can similarly prove the following in any category.

25

Claim 2.2.2. Two objects A and B in some category C are isomorphic if there

exists some isomorphism f : A → B between them. We write this relation A ≈ B.

This relation is an equivalence relation, in that A ≈ A for any A, A ≈ B if and only

if B ≈ A, and A ≈ B and B ≈ C imply A ≈ C.

Proof. For any object A, the identity 1A : A→ A gives an isomorphism which is its

own inverse. If we have an isomorphism f : A → B, then by definition there is an

inverse g : B → A which is also an isomorphism. Given isomorphisms f : A → B

and g : B → C with inverses f ′ : B → A and g′ : C → B, g ◦ f : A → C is an

isomorphism with inverse f ′ ◦ g′ since (f ′ ◦ g′) ◦ (g ◦ f) = f ′ ◦ 1B ◦ f = f ′ ◦ f = 1A,

and conversely (g ◦ f) ◦ (f ′ ◦ g′) = 1C .

Claim 2.2.3. In any category C, if f : A → B is an isomorphism, it has exactly

one inverse g : B → A.

Proof. By the definition of an isomorphism, f must have some inverse. Let x : B → A

and y : B → A both be inverses to f . Then, x ◦ f = y ◦ f = 1A, so x = x ◦ 1B =

x ◦ (f ◦ x) = y ◦ (f ◦ x) = y ◦ 1B = y.

2.3 Representably Concrete Categories of DSOs

In all of the categories discussed so far, the objects seem to be ‘sets with extra

structure’. To formalize this, we want to say that each of the categories bears a

special relationship to Set, the category of sets and set functions given below.

26

The class of sets together with the set Set(A,B) of functions from A to B for any

sets A and B forms a category Set. Composition is given by standard set-function

composition: given functions f : A → B and g : B → C, for any a ∈ A, we have

(g ◦ f)(a) = g(f(a)). The identity morphisms must be the identity functions, e.g.

1X : X → X is the function such that 1X(x) = x for any x ∈ X.

Relationships between categories are given by functors. A functor F : C → D

is intuitively a mapping from the objects of C to the objects of D together with

a mapping from the morphisms of C to the morphisms of D in a manner which is

compatible with composition.

Definition 2.3.1. A functor F from a category A to a category B consists of the

following:

(1) a mapping |A| → |B| between the classes of objects of A and B; the image of

A ∈ A is written F (A) or just FA;

(2) for every pair of objects A,A′ of A, a mapping A(A,A′) → B(FA, FA′); the

image of f ∈ A(A,A′) is written F (f) or just Ff .

These data are subject to the following axioms:

(1) for every pair of morphisms f ∈ A(A,A′), g ∈ A(A′, A′′): F (g ◦ f) = F (g) ◦

F (f)

(2) for every object A ∈ A: F (1A) = 1FA

Borceux [23] 1.2.2

27

It can be checked that the ‘obvious’ definition for the compositionG ◦ F : A → C

of functors F : A → B and G : B → C, taking an object A to G(F (A)) and mor-

phism f to G(F (f)), is in fact a functor. For any category A, there is an identity

functor 1A : A → A, fixing every object and morphism of A. It then makes sense

to define an isomorphism of categories.

Definition 2.3.2. A functor F : C → D is an isomorphism of categories if

there is a functor G : D → C such that G ◦ F = 1C and F ◦G = 1D.

We can describe these relations between the categories above precisely as func-

tors between them. We have the following examples of functors:

1. i : FProset→ DGrph. It sends a preorder (P,≤P) to the graph with vertices

P and edge relation ≤P⊂ P × P . It sends an order-preserving map φ to the

graph homomorphism acting the same way on underlying sets of vertices.

{a, b, c, d}
a ≤ a, a ≤ b, a ≤
c, a ≤ d, b ≤ b,
c ≤ c, c ≤ d, d ≤
d

i

a

b c

d

2. j : Grph → DGrph. It sends a graph G to the digraph with vertices VG,

such that for each edge {a, b} ∈ EG, we have (a, b) and (b, a) in EjG. j takes

a graph homomorphism f : G → H to a digraph homomorphism since {a, b}

implies {fa, fb} and hence (fa, fb) and (fb, fa).

28

a

b c

d

j

a

b c

d

3. ρ : DGrph → Proset. To each digraph G, we can associate a preorder with

underlying set of nodes VG, and we take the smallest preorder ≤G⊂ VG × VG

containing EG, sometimes called the reachability relation generated by EG. If

f : G → H is a morphism of digraphs, then ρ(f) is order-preserving. That

is, if a ≤G b is in the reachability relation generated by EG, then ρ(f)(a) =

f(a) ≤H f(b) = ρ(f)(b) is in the in the reachability relation generated by EH ,

so ρ(f) is order-preserving from ρ(G) to ρ(H).

a

b c

d

ρ

{a, b, c, d}
a ≤ a, a ≤ b, a ≤
c, a ≤ d, b ≤ b,
c ≤ c, c ≤ d, d ≤
d

Functors can be classified by their behavior on morphism-sets. A functor

F : C → D is faithful if morphisms in C can be essentially seen as ‘special

D-morphisms’. F is full if every D-morphism corresponds to some C-morphism.

Definition 2.3.3. A functor F : C → D is faithful if every induced set-function

C(C,C ′) → D(FC, FC ′), taking C
f−→ C ′ to FC

F (f)−−→ FC ′, is injective - i.e. if

F (f) = F (g) iff f = g.

Definition 2.3.4. A functor F : C → D is full if every induced set-function

C(C,C ′) → D(FC, FC ′), taking C
f−→ C ′ to FC

F (f)−−→ FC ′, is surjective, - i.e. if

29

FC
h−→ FC ′ is any morphism in D(FC, FC ′), then there is some morphism C

f−→ C ′

in C(C,C ′) such that F (f) = h.

We can now make precise what we mean by C being a category of ‘sets with

extra structure’.

Definition 2.3.5. A category C together with a functor U : C → D is said to be

concrete over D if U is faithful. A category U : C → Set concrete over Set is

called a construct.

Adámek, et al. [25], Ch. 5.

The intuition behind a construct is that U maps each object C of C to its

underlying set UC. Since the behavior on morphism-sets is injective, the collection

of morphisms C(C,C ′) can be put in correspondence with a subset of all possible

functions from UC to UC ′ - the designated ‘special’ set-functions which preserve

the C-structure. Each of the categories above is a construct using the functor U :

C → Set taking a graph, digraph, or preorder to its underlying set of nodes. That

C(C,C ′) ↪→ Set(C,C ′) is an injection for each pair of objects (C,C ′) says that each

morphism is totally determined by a function ‘which meets certain conditions’, but

we need not keep track of any data other than the function Uf to know which

morphism we are referring to.

Claim 2.3.1. Let U : C → Set be any construct, and let f : A → B be any

isomorphism in C. Then U(f) is a bijection.

Proof. This is a special case of a more general claim: any functor preserves iso-

morphisms, in that if f is an isomorphism, then U(f) is an isomorphism. To

30

see this, simply note that if f : A → B is an isomorphism with inverse f ′, then

F (f ′)◦F (f) = F (f ′◦f) = F (1A) = 1FA and F (f)◦F (f ′) = F (f◦f ′) = F (1B) = 1FB

by the definition of a functor. It then just remains to show that the isomorphisms

of Set are exactly the bijections, but this follows straightforwardly from invertabil-

ity.

We can then view isomorphisms in a construct as bijections f , such that f

and its inverse function are both morphisms. In a construct, it also makes sense to

define substructure embeddings. Intuitively, given an object A and subset S ⊂ UA,

the substructure on S, if it exists, is an object S such that US = S such that the

inclusion S ↪→ UA underlies a morphism i : S → A such that S has ‘as much

structure as possible’ such that the inclusion underlies a morphism.

Definition 2.3.6. A morphism f : A→ B in a category C is called a monomor-

phism when, for every object C ∈ C and every pair of morphisms g, h : C ⇒ A,

the following property holds: (f ◦ g = f ◦ h)⇒ (g = h). Borceux [23] 1.7.1

Such morphisms are often called left-cancellable. We have the following exam-

ples:

1. A function f : A→ B in Set is a monomorphism iff it is injective.

2. An order-preserving function f : P → Q in Proset is a monomorphism iff it

is injective on the underlying sets.

We can now describe embeddings in any concrete category.

Definition 2.3.7. Let U : A→ X be a faithful functor.

31

1. An A-morphism f : A→ B is called initial provided that for any A-object C,

an X-morphism g : UC → UA is an A-morphism whenever (Uf) ◦ g : UC → UB

is an A-morphism.

2. An initial morphism f : A→ B that has monomorphic underlying X-morphism

Uf : UA→ UB is called an embedding.

Adámek, et al. [25], 8.6

When X = Set, that is, when (A, U) is a construct, this simplifies to the

following definition.

Definition 2.3.8. Let U : A→ Set be a construct. An A-morphism f : A→ B is

called an embedding provided that Uf : UA → UB is an injective function with

the following property: for any A-morphism g : C → B such that the set-theoretic

image of g is contained in f(UA) ⊂ UB, then the unique function gA : UC → UA

such that Uf ◦ gA = Ug underlies an A-morphism.

We give an example. Let A be the category whose objects are sets of nodes

X, together with a domination preorder ≤, precedence preorder �, and partial

labeling function fX : X → L = {D,N,Adj}. Let the morphisms of this category

be functions φ : (X,≤X ,�X , fX) → (Y,≤Y ,�Y , fY) from X to Y such that if

a ≤X b, then φ(a) ≤Y φ(b), if a � b then φ(a) � φ(b), and fY (φ(a)) = fX(a)

whenever fX(a) is defined. This category forms a construct using the functor U

taking (X,≤X ,�X , fX) to the set X, and taking each morphism to the underlying

set function. We give an example of an embedding, as well as a monomorphism

32

dog furry

fY (dog) = N , fY (furry) = Adj

the

dog

furry

the � furry � dog
fX(the) = D, fX(dog) = N ,

fX(furry) = Adj

dog

furry

furry � dog
fZ(dog) = N , fZ(furry) = Adj

i

j

\j

Figure 2.3: An example of two morphisms whose underlying function is a subset
inclusion. However, only j is an embedding.

which is not an embedding, in Fig. 2.3. Only j is an embedding. That i is not an

embedding can be seen since the image of j factors uniquely through the object in

the upper left corner via the function j, but j is not a morphism, since it does not

preserve precedence and dominance relations from the object in the lower left corner.

To see that j is an embedding, note that if k : A→ X is any morphism into X whose

image is contained in the subset {dog, furry}, there will be a unique factorization of

k through j, call it k : A→ Z. k acts exactly as k does on the elements of A. k will

be a morphism since k preserves labels, dominance, and precedence.

We give more examples of embeddings below.

1. In (D)Grph, a (directed) graph homomorphism i : G→ H is an embedding if

and only if it is an injective function, such that a, b ∈ VG have an edge between

them (there is an edge (a, b)) iff ia and ib do (iff (ia, ib) is an edge in H).

33

2. In FProset, an order-preserving function i : P → Q is an embedding iff it is

an injective function, such that p ≤P p′ iff ip ≤Q ip′.

3. Let A be the category of finite preorders with a precedence order, partially

labeled by L with a single unary predicate on the vertices. The functor U :

A→ Set taking (P,≤P ,�P , fP : P → L, π) to P turns A into a construct. A

morphism i : (P,≤P ,�P , fP : P → L, π) → (Q,≤Q,�Q, fQ : Q → L, κ) is an

embedding iff (1) i : P → Q is an injective function; (2) a ≤P b iff ia ≤Q ib;

(3) a �P b iff ia �Q ib; (4) fP (a) is defined iff fQ(ia) is defined and has value

fQ(ia) = fP (a); (5) π(a) = true iff κ(ia) = true.

2.3.1 Representability

We say that a category C is concretizable if there is some functor U : C → Set

which is faithful. However, it turns out that this is not a very strong requirement.

Whenever the collection of all morphisms in C form a set, C will be concretizable

using a method which forms sets indexed over the whole category. We will now look

at a more restrictive notion of concretizability which corresponds with an intuitive

notion of returning a ‘set of elements’.

We first note that the elements of any set X are in a canonical correspondence

with the functions from any fixed one-point set {∗} into X. We simply associate

to each element x ∈ X the function x : {∗} → X taking ∗ to x. Conversely,

each function f : {∗} → X can be associated to the element f(∗) ∈ X. We then

have a bijection X ≈ Set({∗}, X) for any set X. For any category C and fixed

34

object � of C, we will have an associated functor C(�,−) : C → Set. At each

object C of C, this functor will have the value C(�, C), which is by definition a

set. Moreover, given a morphism f : C → C ′ of C, there is a naturally induced

function f ◦ − : C(�, C) → C(�, C ′) taking any element k : � → C ∈ C(�, C)

to f ◦ k : � → C ′ ∈ C(�, C ′). For example, let � be the directed graph with

one node and no edges. These is a canonical correspondence between elements of

DGrph(�, G) and the nodes of G: each morphism k : � → G can be associated

with the node k(�); conversely, each node g of G can be associated with the graph

homomorphism k : � → G sending � to g. In other words, for each graph G, we

have a canonical bijection UG ≈ DGrph(�, G). Similarly, let AL be the category

of finite sets of nodes X together with domination preorder ≤, precedence preorder

�, and partial labeling function f : X → L. Let � be the object of AL consisting

of one node, with the only possible dominance and precedence preorderings, such

that the labeling partial function is undefined everywhere. Morphisms k : � → A

will again be in correspondence with nodes of A, since for any element a ∈ A, we

may send � to a, and this must be a morphism since a ≤ a, a � a, and we do not

have any labeling data to preserve.

We now want to make precise what we mean by there being canonical bijections

between UA and A(�, A) for any object A of A. This is stated in category theory

by saying that we have a natural isomorphism between the functors U and A(�,−).

Definition 2.3.9. Given functors F,G : C ⇒ D, a natural transformation

η : F → G from F to G is a collection of D-morphisms ηC : FC → GC, one for

35

each object of C, which meet the condition: for any C-morphism f : C → C ′, we

have ηC′ ◦ Ff = Gf ◦ ηC . Composition of natural transformations η : F → G and

β : G→ H is given componentwise, in that (β ◦ η)C = βC ◦ ηC .

based on Mac Lane [26], I.4., Borceux [23], 1.3.1

A natural transformation η then compares what F and G do at each object C

inside the image category D. For any functor F : C → D, there is a natural trans-

formation 1F : F → F whose component at each object X of C is just the identity

1FX : FX → FX. This is clearly an identity in the sense that for any natural

transformation η : F → G we have η = η ◦ 1F , and for any natural transformation

β : H → F we have β = 1F ◦β. It then makes sense to define a natural isomorphism

between functors. Two functors F,G : C ⇒ D are naturally isomorphic if there

are natural transformations η : F → G and β : G → F such that β ◦ η = 1F and

η ◦ β = 1G. We say that a functor F : C → Set is representable if it is naturally

isomorphic to one of the form C(�,−) for some object � of C. In this case, we say

that F is represented by �. If F is representable, its representer is determined up

to isomorphism, in that if � and • both represent F , then � ≈ •.

There are many nice properties which hold of any representable functor. For

example, if f : A → B is any monomorphism in C, then F (f) : FA → FB is

injective. This can be proven simply since each element of FA is in correspondence

with a morphism k : � → A. Then, if we have two elements of FA corresponding

to morphisms k and j, F (f)(k) = f ◦ k = f ◦ j = F (f)(j) implies k = j by

the left-cancellability of f . We say that a category is representably concrete if its

36

forgetful functor U : C → Set is representable. We give representations of each of

our ‘forgetful’ functors from categories above.

1. The forgetful functor U : DGrph→ Set is represented by 1, the digraph with

one node and no edges.

2. The forgetful functor U : Proset → Set is represented by 1, the preorder

with one node ∗ and relation ∗ ≤ ∗.

3. The forgetful functor U : A→ Set where A is the category of preorders with

precedence order, partially labeled by L, with single unary predicate, and U

returns the underlying set of the preorder, is representable. It is represented by

the object (∗,≤,�, ε, λ), where ∗ is a one-point set, ε is undefined everywhere,

and λ(∗) = false.

2.4 Categorifications of Existing Models

We conclude this section with a ‘categorifications’ of proposed models of syn-

tactic objects from the literature. Barker [19] defines a tree as follows: a tree T is

a 5-tuple T = (N,L,≥D, <P , label), where

1. N is a finite set, the nodes of T

2. L is a finite set, the labels of T

3. ≥D is a reflexive, antisymmetric relation on N , the dominance relation of T

4. <P is an irreflexive, asymmetric, transitive relation on N , the precedence

relation of T , and

37

5. label is a total function from N to L, the labeling function of T

such that for all a, b, c, and d from N and some unique r in N (the root node of

T), the following hold:

1. The Single Root Condition: r ≥D a

2. The Exclusivity Condition: (a ≥D b ∨ b ≥D a)↔ ¬(a <P b ∨ b <P a))

3. The Nontangling Condition: (a <P b ∧ a ≥D c ∧ b ≥D d)→ c <P d

There are a number of categories one could define using trees T above as objects.

We could take as morphisms pairs of functions (fN , fL) : T → S between trees such

that:

1. fN : NT → NS and fL : LT → LS are functions

2. If a ≥D b in T , then fN(a) ≥D fN(b) in S4

3. If a <P b in T , then fN(a) <P fN(b) in S

4. The following diagram commutes:

NT NS

LT LS

fN

labelT labelS

fL

That is, labelS ◦ fN = fL ◦ labelT .

Composition of morphisms is given by composite of node and label functions. Call

this category A. Labels which are not used still affect the structure of a tree. For

4We do not usually want to preserve the root, or constituent embeddings will not be morphisms.

38

example, the following two trees are nonisomorphic:

({∗}, {V }, ∗ ≥D ∗, ∅, label(∗) = V) 6≈ ({∗}, {V,C}, ∗ ≥D ∗, ∅, label(∗) = V)

Both objects seem to correspond to the tree consisting of one node ∗ labeled by V ,

but since the number of labels is different, the two trees are nonisomorphic. In fact,

the functor U : A → Set sending each object T = (NT , LT ,≥D, <P , label) to NT

and each morphism (fN , fL) to fN gives an example of a non-faithful functor. This

is because if l is a label of LT not used by any node in NT ,5 fN will not determine

where to send l - any assignment is possible.

If we restrict to the objects where label is surjective so that every label in

LT is used, the category is equivalent to the following category BP.6 Objects are

4-tuples T = (N,≥D, <P ,∼) such that ≥D and <P are subject to the axioms above,

and ∼ is an equivalence relation on N ‘has the same label’. In this case, the forgetful

functor taking each T to its set NT of nodes is represented by (∗,≥D, <P ,∼), where ∗

is a one-point set with dominance relation ∗ ≥D ∗, there are no precedence relations,

and ∗ ∼ ∗.

However, the function of labels is often to distinguish nodes as N , V , C, T ,

etc. absolutely. We fix a set of labels L and construct BPL, the category of trees

labeled by L. Its objects are trees T such that LT = L, with morphisms above such

that fL = 1L is the identity on L. For each L, BPL can be turned into a construct

using the functor N(−) : BPL → Set taking each T to NT and each (fN , 1L) to fN .

5That is, not in the image of label.
6Two categories C and D are equivalent if there exist functors F : C → D and G : D → C and

natural isomorphisms η : FG→ 1D and β : 1C → GF

39

We give another example. In Stabler [27], trees are formalized as expressions.

We simplify his definitions here. Given vocabulary items V and a set of base syn-

tactic types base, Stabler constructs a collection L of labels. The syntactic features

are partitioned as F = (base ∪ select ∪ licensors ∪ licensees), defined as follows.

select = {=x | x ∈ base}; licensees = {-x | x ∈ base}; licensors = {+x | x ∈ base}.

The set of labels are the regular expressions L = F ∗ · V ∗. Expressions over L are

defined as trees τ = (Nτ , /
∗
τ ,�∗, <∗τ , labelτ) such that

1. Nτ is a finite set of nodes

2. /∗τ is a preordering on Nτ ‘dominates’

3. �∗ is a preordering on Nτ ‘precedes’

4. <∗ is a preordering on Nτ ‘projects over’

5. labelτ : Lτ → L is a function, where Lτ are the leaves of Nτ (nodes which

only dominate themselves).

Such that

1. For any x ∈ Nτ , the set of nodes {y ∈ Nτ | y /∗τ x} is a linear order, and there

is a unique element r such that r /∗τ a for all a ∈ Nτ .

2. For any distinct nodes a, b ∈ Nτ , either one dominates the other or one pre-

cedes the other, but never both.

3. (∀w, x, y, z) : (x �∗ y ∧ x /∗ w ∧ y /∗ z)→ (w �∗ z)

40

4. (∀x) : ((∃y)(x / y)) → ((∃y)(∀z 6= y)(x / z → y < z)), where / and < are the

immediate ‘dominates’ and ‘projects over’ relations.

Morphisms f : τ → σ should be functions fN : Nτ → Nσ which at least have

the following properties: (1) a/∗τ b implies fNa/
∗
σfNb; (2) a �∗τ b implies fNa �∗σ fNb;

and (3) a <∗τ b implies fNa <
∗
σ fNb, which we call a ‘map of unlabeled trees’. If

we require that fN commute with labeling, we get a very rigid category: we cannot

alter the features at all. Instead, we should like to let the labels on heads vary in

certain ways under morphisms.

We look at the structural changes Stabler uses to determine what the relevant

morphisms are. We use the notation [<τ, σ] to indicate an expression with imme-

diate subtrees τ and σ in that precedence order, where the root of τ immediately

projects over that of σ, with all of the relevant relations added to meet the axioms.

We define a partial binary operation on expressions using Stabler’s terminology.7

merge(τ, σ) =

i. [<τ
′, σ′] if τ is a head with initial feature = x and σ has feature x. Here, τ ′ is τ ,

but where the string of features α on the head of τ has had = x removed from

the front, and similarly x is removed from the front of the string of features β

7Given a tree τ , x, y ∈ Nτ , x is a head of y iff either (1) y is a leaf and x = y; or (2)

(∃z)(y / z ∧ (∀w)(y /w → z <∗ w∧x is a head of z). Every tree τ has a root r, and r has a unique

head y, which is a leaf. This leaf is labeled by labelτ (y) ∈ L , which has as first part a string

of features α ∈ F ∗. A tree τ has feature f if the first symbol in the string α is f . A maximal

projection m in Nτ is an element minimal (with respect to /∗) amongst the nodes with head equal

to the head of m. τ is a head if it consists of one node, otherwise it is complex.

41

on the head of σ. (complement merger)

ii. [>σ
′, τ ′] if τ is complex and has feature = x, and σ has feature x. σ′ and τ ′

are as above. (base specifier merger)

We define a partial unary operation move(τ) = [>τ
′
0, τ
′], defined iff (1) τ has

feature +x; (2) τ has exactly one proper subtree τ0 with feature -x; and (3) the root

of τ0 is a maximal projection in τ . τ ′0 is like τ0 with -x removed from the head of τ0,

and τ ′ is like τ except that +x is deleted from the head of τ and the subtree τ0 is

replaced by a leaf with no features (an unindexed trace).

For merge, the inclusions of unlabeled trees m1 : τ → merge(τ, σ) and

m2 : σ → merge(τ, σ) preserve /∗, �∗, and <∗, and in fact their immediate variants,

and hence are maps of unlabeled trees. A leaf x of τ with label α · π ∈ F ∗ · V ∗ may

have its initial feature removed, in that the image m1(x) will be a leaf of merge(τ, σ)

whose feature string looks just like that of x, but without the first feature. With

move, we have an map of unlabeled trees τ → move(τ), sending all nodes in τ0 to

a dummy ‘trace’ node; all features in τ0 are removed under this map. We also have

a map τ0 → move(τ) embedding τ0 into the moved position, with -x removed.

We would like to define morphisms which include composites of mappings of

the above type, so that we can use these morphisms as SCs. We define a morphism

f : τ → σ to be a map of unlabeled trees such that if x ∈ Lτ has label α · π, then

f(x) is in Lσ with label α′ · π′, where α′ is α with some initial substring removed,

and π′ is π with some initial substring removed. This will allow composites of

structural changes under merge to be morphisms, since each step will remove more

42

and more features from the front. This will also allow the replacement of a subtree

of τ with a trace node while deleting features to be a morphism. We call this

category (Strict)MGExp. The functor N(−) : SMGExp→ Set turns SMGExp

into a construct. The ‘subtrees’ Stabler describes are embeddings in this construct.

However, this is again a very ‘strict’ category, in that isomorphic objects must be

identically labeled. Since the phonetic string π and specific features α are part of

the label structure, any two sentences with different words will be nonisomorphic.

We can weaken this in various ways by allowing more morphisms between objects,

though if we are allow multiple comparisons between feature-structures with the

same map between underlying unlabeled trees, then the category will not be concrete

under the functor taking an MG-object to its set of nodes.

2.5 Constituency and C-Command

We will now restrict to DSOs given by a set X together with a partial domi-

nance ordering on X. A partial ordering is a preorder which meets an antisymmetry

condition: if x ≤ y and y ≤ x, then we have x = y. Such objects have an al-

gebraic representation, and there is a close connection between constituency and

c-command in this form. We denote the category of partial orders, sets X with a

fixed partial ordering ≤X , together with order-preserving functions between them

as Pos. We call a partial order finite if its underlying set of nodes is finite, and

denote the category of finite partial orders and order-preserving functions by FPos.

We first characterize trees and forests, decomposition of forests into trees, and then

43

characterize a relationship between constituency and c-command in trees.

2.5.1 Forests and trees in FPos

We define trees and forests in this section, and describe how to systematically

decompose forests into trees in a unique way.

Definition 2.5.1. A partial order P is a linear order iff for every pair of elements

x, y ∈ P , either x ≤ y or y ≤ x.

Definition 2.5.2. A finite partial order P is a forest of trees if for every x ∈ P ,

{y ∈ P | y ≤ x} is a linear order.

Definition 2.5.3. A forest of trees P is a tree if it has a minimum z ∈ P , such

that z ≤ x for all x ∈ P .

The property of being a forest is hereditary under subspaces. That is, if X is a

forest and S ⊂ X is a subset given the subspace ordering, then S is a forest. There

is an intuitive sense in which all forests are made up of trees - each ‘connected’ as a

subspace - while ‘disconnected’ from each other. We call a subset U ⊂ X open if for

every x ∈ U and x ≤ y in X, we have y ∈ U . We say that a collection {Si ⊂ S}i∈I

of subsets of S cover S if we have
⋃
i∈I Si = S. We say that the collection is an open

cover of S if each Si is open in S. We say that the sets in a collection {Si ⊂ S}i∈I

are pairwise disjoint if for any Si and Sj such that Si 6= Sj, we have Si ∩ Sj = ∅.

Definition 2.5.4. A subset S ⊂ X of a finite partial order given the subspace

ordering is connected if there is no open cover of S where the open sets in the

cover are pairwise disjoint.

44

Definition 2.5.5. The connected components of a partial order X are the con-

nected subspaces S ⊂ X which are maximal with respect to subset inclusion.

For any partial order X, the connected components are closed (the complement

of an open set), and are always disjoint. When X is finite, they are also open. When

X is a finite partial order, a subspace S is connected iff it is possible to ‘zig-zag’ up

or down between any two elements s, s′ ∈ S, where we form a sequence of elements

zi ∈ S, where s ≤ z1 or s ≥ z1, and similarly zi ≤ zi+1 or zi ≥ zi+1 for each step in

the sequence, such that eventually we get to s′.8

Claim 2.5.1. If P is a finite forest, the connected components of P are the open

subspaces Ti ⊂ P , each a tree, such that any pair Ti ∩ Tj = ∅ is disjoint if i 6= j,

and
⋃
i∈I Ti = P .

We write a union of disjoint sets as sums, so the above proposition can be stated

that every finite forest P factors uniquely as the disjoint union P = T1 + . . . + Tn,

up to rearrangement of the summands. Applying this statement to trees, any open

subset U ⊂ T of a tree is a forest, and hence factors into constituents of T , with

U = K1 + . . . Kn. In this way, the open sets of a tree T can be thought of families

of disjoint constituents of T . A constituent of a tree T will then be an embedding

of a connected open subset of T .

The mapping which takes in a finite partial order X and returns the set of

connected components of X is actually a functor κ : FPos→ FSet, where FSet is

8For this proof, and a description of the relationship between topological connectivity and paths,

see May [28].

45

Figure 2.4: A disconnected partial ordering on the set {a, b, c, d, e}. It has two
connected components: the subspaces corresponding to {a, b} and {c, d, e}. X is a
forest, and each connected component of X is a tree.

the category of finite sets and set-functions. To see this, note that for any order-

preserving function f : X → Y between partially ordered sets, if a and b in X are

any two elements in the same connected component, then f(a) and f(b) are in the

same connected component. Denoting the set of connected components of a space

X by κ(X), the behavior of κ on an order-preserving function κ(f) : κ(X)→ κ(Y)

takes any component K ⊂ X to the component of Y containing f(a), where a is

any element of K. This is well-defined since any two elements of K are taken to the

same component of Y . We will later see how this functor is induced as an adjoint

arising from a string a functors originating in the forgetful functor from FPos to

FSet in §3.4.

2.5.2 C-command

We denote the set of open sets of a finite partial order as O(X). Every

U ∈ O(X) corresponds to a family of constituents κU . The basic motivating fact

is that there is a naturally arising unary operation on O(X) which takes in a con-

stituent and returns the open set corresponding to the c-commanding constituents

when X is a tree.

Definition 2.5.6. Given a finite partial order X and open subset U, V ∈ O(X), we

46

define the relative pseudo-complement operator U ⇒ V to be the largest open

subset W such that W ∩ U ⊂ V . We define the pseudo-complement of U to be

U ⇒ ∅. This is the largest open subset V such that U ∩ V = ∅. We denote this

pseudo-complement as ¬U .

The relative pseudo-complement operation arises naturally as part of an in-

duced Heyting algebra structure on O(X). It is related to the modus ponens law,

in that U ∩ (U ⇒ V) ⊂ V by definition, which is formally similar to the relation

A ∧ (A ⇒ B) ` B from logic. Note that when O(X) = P(X), then the pseudo-

complement is just the usual complement. We show how this operation arises nat-

urally on O(X) in §3.4. We now recall the traditional definition of c-command.

Definition 2.5.7. Let T be a a tree. We say that x c-commands y in T if for every

node z properly dominating x in T , z dominates y, and neither x or y dominate the

other. Proper domination means that z ≤ x and z 6= x. We say that a constituent

K c-commands a constituent C if the root node of K c-commands the root node of

C.

Claim 2.5.2. If X is a tree and K ⊂ X is a constituent - that is, a connected open

subset of X - then κ(¬K) is exactly the set of constituents c-commanding K.9

9The claim can also be interpreted as saying that the set of points in a constituent K and the

set of points G in the collection of constituents c-commanding K are maximally disjoint amongst

the dominance-closed sets of X. That is, ¬K = G and ¬G = K. The binary c-command relation

can be recovered from ‘uncurrying’ this operator: for a tree X, denote the set of constituents

of X by constX . We have a negation operator constX → O(X) taking K to ¬K. We have a

function O(κ) : O(X) → P(constX) mapping each open set U to the set of components κ(U),

47

Proof. Let K ⊂ X be a constituent, and let V be a connected component of ¬K.

Then V is itself a constituent since it is open and connected; call its root v. Let

x ∈ X be any element properly dominating v, i.e. x ≤ v and x 6= v. Suppose that

x ∈ ¬K. Denote by Ux its upset {y ∈ X such that x ≤ y}. Since ¬K is open, we

have Ux ⊂ ¬K. But Ux is connected, contradicting the maximality of V amongst

the connected subspaces of ¬K. Hence, if x < v, then x 6∈ ¬K. In other words,

Ux ∩ K 6= ∅. For any two constituents in a tree, either one is contained in the

other, or they are disjoint. If Ux ⊂ K, then V ⊂ K, contradicting the fact that

¬K ∩K = ∅. Hence, K ⊂ Ux, and x dominates all nodes in K.

As is the general theme in category theory, we would like to express this

result in terms of morphisms. We now illustrate that in this format there is a close

connection between constituency and c-command. We say that an order-preserving

function between partial orders f : X → Y is an open map if for every open

subset U ⊂ X, the image f(U) = {y ∈ Y such that ∃x ∈ U, f(x) = y} is open in

Y . An order-preserving function f between trees is open if and only if f preserves

constituents, i.e. for every constituent K ⊂ X, the image f(K) is a constituent of

which is a set of constituents. The powerset P(constX) is in a canonical bijection with the set of

characteristic functions {true, false}constX . Composing the two functions, we have a map constX →

{true, false}constX taking a constituent K to the function sending a constituent C to true if and

only if C c-commands K. We can uncurry this to a function constX × constX → {true, false}

sending (C,K) to true if and only if C c-commands K. This can be viewed as a characteristic

function of a subset R ⊂ constX × constX , the c-command relation on the set of constituents of

X.

48

Figure 2.5: The open subset K = {j,m} is a constituent. Its negation ¬K is the
largest open subset disjoint from K, and is circled. Being an open subset of a tree
(i.e. being a forest), implies that this space decomposes uniquely into connected
components (each a constituent), the corresponding to {b, d, e, h, i}, {f} and {k}.
These three constituents consisting of these elements are exactly the constituents
c-commanding K.

Y .

Claim 2.5.3. A function f : X → Y is order-preserving if and only if for every

V ∈ O(Y), the inverse image f−1(V) = {x ∈ X such that f(x) ∈ V } is an element

of O(X). An order-preserving function f is an open map if and only if it preserves

relative pseudo-complements, in that f−1(U ⇒ V) = f−1(U)⇒ f−1(V).

Proof. This is a specialization of a result from locale theory, see, e.g., Johnstone [29]

and Mac Lane & Moerdijk [30].

Given a constituent-preserving map f : X → Y between trees, we then know

that for any constituent K ⊂ Y , we have f−1(¬K) = ¬f−1(K). It is then not

surprising that c-command relations which hold in Y are pulled back to c-command

relations in X.

49

Claim 2.5.4. Let f : X → Y be an open map between finite trees. If K ⊂ Y is a

constituent and V c-commands K in Y , then the connected components of f−1(V)

are exactly the constituents of X which map into V which c-command at least one

of the connected components of f−1(K).

Proof. Suppose f : X → Y is an open map and V,K ⊂ Y are two constituents such

that V c-commands K. We write x < U for an open subset U if x < u for all u ∈ U .

⇒) Choose any connected component L of f−1V . We show it c-commands

some component of f−1K. Let x be the greatest element such that x < L. Since

f is order preserving, f(x) ≤ f(l) for all l ∈ L, and f(l) ∈ V . V has a root r

and since the points above f(l) form a linear order, r and f(x) must be linearly

ordered. If r ≤ f(x), then f(x) ∈ V ; but in this case, x < l both map into V , and

hence the upset of x would be in the preimage of V , contradicting the maximality

of L as a connected component of f−1V . So f(x) < r, hence f(x) < V . Since

V c-commands K by hypothesis, f(x) < K. Let Z be the upset of x in X. By

the assumption that f is open, f(Z) is the upset of f(x), which contains K. Now,

choose any point m ∈ K. By the assumption of openness, there must be some point

z ∈ Z such that f(z) = m. This z belongs to some connected component of f−1K,

and suppose this component is dominated by p (note that p cannot be smaller than

x by monotonicity). Then x < p < z, so in particular x < Kp, where Kp is the

upset of p in X. Then, for every node dominating L, this node will dominate Kp.

In particular, we have produced a component Kp of f−1K which L c-commands.

⇐) Choose any L ⊂ X such that f(L) ⊂ V and L c-commands some compo-

50

like

I like

like your

your friend

→

like

I like

like him

Figure 2.6: A constituent-preserving map loosely preserves c-command up to images
in Y . For example, since I c-commands him in Y , the preimage I c-commands the
preimage your friend in X.

nent of f−1K. We show that L is a component of f−1V . Clearly, L ⊂ f−1V , and

L is connected, so it must be contained in some connected component L′ of f−1V .

Suppose that L ⊂ L′ is proper, i.e. L 6= L′, and suppose the roots are l and l′,

respectively. Since L c-commands some component, call it C, l′ must dominate C,

i.e. l′ < C. But then ∅ 6= f(L′ ∩ C = C) ⊂ V ∩K, contradicting the assumption

that V c-commands K. So L = L′, and L is a connected component of f−1V .

2.6 Summary

The purpose of this chapter was primarily to introduce standard category-

theoretic methods to analyze DSOs. By looking at representable constructs, we

showed how we can recover notions of isomorphisms of DSOs and subobjects of

DSOs in a general setting which is amenable to many formalizations of DSOs. We

then gave an original result relating constituent structure and c-command for order-

theoretic DSOs: morphisms f : X → Y between trees which preserve constituency

on the nose pull c-command relations in Y back to c-command relations in X.

51

Chapter 3: Structural Changes, Grammatical Relations, and Deriva-

tions

3.1 Overview

We introduce structural changes, which are the main novel contribution of

the research presented in this thesis. By ‘adding structural change (SC) data’ to a

grammar, we mean that instead of simply returning a derived syntactic object Z

given a tuple of input DSOs (A1, . . . , An), we will give explicit information relating

the structure of each Ai to the structure of Z in terms of morphisms. One of the main

reasons to do this is so that we can handle all structural changes in a uniform way,

and not as sui generis operations. We then demonstrate that many grammatical

properties become easy to state. In particular, we can describe projection, selection,

agreement, and many other dependencies very easily, even when the DSOs have

rich structure such as feature geometry. Isomorphisms of DSOs will scale up to

isomorphisms between SCs. We can then extract information about how connected

two DSOs become over a particular SC, such that we can recover grammatical

relations from a typology of these connectivity properties. We then introduce a

näıve model of derivations as families of DSOs connected by SCs. We then describe

52

grammars, isomorphisms of derivations and subderivations, and isomorphisms and

equivalences of languages using this richer structure. We finally revise our model of

derivations to a more restrictive one which is a well-behaved representable construct.

3.2 Structural Changes and Grammatical Relations

Structural changes (SCs) can be represented as tuples of functions (defined on

the sets of nodes) from a tuple of DSOs into a new DSO. In Fig. 1.5, we have a pair

of DSOs (‘her parents’, ‘pet the furry dog’) mapping into the DSO ‘her parents pet

the furry dog’. However, it is not simply the case that we have assigned this output

DSO to this pair: the pair of functions f and g between sets of nodes explicitly

map nodes of the input trees to nodes of the output tree, e.g. the node for ‘dog’ in

the input DSO is mapped to a corresponding node for ‘dog’ in the output DSO by

g. Moreover, f and g ‘preserve the structure’ of the input DSOs; that is, they are

morphisms.

Fix a category A of DSOs. We tentatively formalize a SC on an n-tuple

of A objects (A1, . . . , An) as an output DSO Z together with an n-tuple of A-

morphisms fi : Ai → Z. Isomorphisms of DSOs naturally induce isomorphisms of

SCs on a fixed tuple: given two SCs on an n-tuple (fi : Ai → Z : 1 ≤ i ≤ n)

and (gi : Ai → Y : 1 ≤ i ≤ n), we say that they are isomorphic if there is an

A-isomorphism k : Z → Y such that for each fi, we have k ◦ fi = gi. We tentatively

formalize an n-ary rule G as assignment which takes in an n-tuple of A-objects

(A1, . . . , An) and returns a set G(A1, . . . , An) of SCs (fi : Ai → Z : 1 ≤ i ≤ n), such

53

that no two elements of the set are isomorphic. We do not require that G is defined

for all n-tuples, and we allow it to return a set such that the result does not have to

be deterministic. We now look at some examples which can be used in a linguistic

context. For simplicity, we will first just consider A = FPos. We will consider very

unrestricted rules for now so that we do not have to keep track of as many details

about the DSOs involved.

Phrasal attachment. We can construct a binary phrasal attachment rule G. Let

G(A,B) be defined whenever A and B both have a least element (root). We are

going to define this rule such that it attaches the left operand to the right one. We

define G(A,B) to be a singleton. The output DSO Z consists of the disjoint union of

points of A and B, together with all of the order relations in A or B. Additionally,

we add a relation r ≤ a from the root r of B to each element a ∈ A. We then define

the SC to be the two order-preserving inclusions f : A → Z and g : B → Z. An

example is given in Fig. 3.1.

in

the

living room

v

pet

the

dog

v

in

the

living room

pet

the

dog

f, g

Figure 3.1: A pair of order-preserving functions attaching the root of the first
operand to the root of the other.

Specifier/agreeing adjunct attachment. We construct a rule which attaches

two phrases, but also attaches two ‘features’ within those phrases. Let A and B

be any two orders with least elements rA and rB, along with any other selection

54

of elements kA ∈ A and kB ∈ B such that kA 6= rA and kB 6= rB. We intend to

again attach A to B, but we will also introduce a dependency kA ≤ kB, indicating a

dependence of the element kA on kB. For example, A could be an adjunct and kA and

kB gender features, such that the gender feature of the adjunct becomes dependent

on the gender feature of the head of the phrase B it attaches to. Or, kA and kB

could be case features or category and EPP features. In this unrestricted version

of the rule, we will let G(A,B) consist of many SCs, one for each pair (kA, kB) of

non-root elements of A and B. For each such pair, we will have a DSO ZkA,kB which

again consists of the disjoint union of elements of A and B. It will have all the order

relations from both A and B, but additionally have relations of the form rB ≤ a for

all a ∈ A, and relations kA ≤ b for all b ∈ B such that kB ≤ b. Associated to this

DSO will be the order-preserving inclusions f : A → ZkA,kB and g : B → ZkA,kB .

An example is given in Fig. 3.2.

old

φo

books

φb about

geometry

books

old

φo

φb

about

geometry

f, g

Figure 3.2: A pair of order-preserving functions attaching the root of the first
operand to the root of the other, while also attaching the gender feature of the
head noun to the gender feature of the adjunct.

Selection. Consider objects A and B just as in the previous example. We will

model selection distinctly from agreement/licensing by identifying kA and kB instead

of creating a dependency between them. For each such (kA, kB) pair, we construct

ZkA,kB which is like the disjoint union of A and B, except kA and kB are identified. It

55

has the minimum order relations necessary such that the inclusions f : A→ ZkA,kB

and g : B → ZkA,kB are order-preserving. That is, it is the transitive closure of the

order relations f(a) ≤ f(a′) and g(b) ≤ g(b′) whenever a ≤ a′ in A or b ≤ b′ in B.

An example is given in Fig. 3.3.

dog

φ n

the

d =n

the

dog

φ n

df, g

Figure 3.3: A pair of order-preserving functions attaching the root of the first
operand to the root of the other, while also identifying a selector feature and cate-
gory feature.

More structure. We also give one example with more structure to illustrate how

if DSOs are more richly structured, the SCs will be as well. Let AL be the category

of sets X together with a dominance preorder ≤X , precedence preorder �X , with

one unary predicate λX on X for each λ ∈ L. The morphisms f : X → Y of

AL are again functions between underlying sets which preserve ≤, �, such that if

λX(x) = true, then λY (f(x)) = true. We define a specifier-merge rule which will

attach one phrase to another, and linearize the attacher before the attachee in terms

of precedence.1 Let A and B be any objects which have a root with respect to ≤,

such that elements are totally ordered with respect to � in both. For any such pair

of objects, we define G(A,B) to be a singleton. The output DSO Z will consist

of the disjoint union of elements of A and B, with λZ(x) = true if and only if

λA(x) = true or λB(x) = true. It will have all the dominance relations in A and B,

but additionally relations r ≤ a from the root r of B to each element a ∈ A. It will

1This will differ from the way we describe unselected specifiers in §3.2.1 which uses features.

56

have all the precedence relations of A and B, but additionally precedence relations

a � b for each a ∈ A and b ∈ B. The SC maps into Z are given by the inclusions

f : A→ Z and g : B → Z. An example is given in Fig. 3.4.

the

detective
the � detective
D(the) =
N(detective) =
true

drank

some

coffee
drank � some � coffee
V (drank) = D(some) =
N(coffee) = true

drank

the

detective

some

coffee
the � detective �
drank � some � coffee
D(the) =
N(detective) =
V (drank) = D(some) =
N(coffee) = true

f

g

Figure 3.4: Specifier-merge with precedence and syntactic type data. Assume that
all λX(x) = false unless indicated otherwise.

Head-adjunction. We can also give a (non-copying) SC associated to head ad-

junction. Given items X and Y with roots x and y, instead of introducing a relation

x < y or y < x, we can use the other option of the trichotomy, x = y. This will have

the automatic effect of unioning the features of the heads. An example is given in

Fig. 3.5. This is similar to the Distributed Morphology operation of Fusion, while

keeping track of the feature structure of each.2 This is depicted in Fig. 3.5. However,

such an operation might be ‘too symmetric’ for use in linguistics. For example, the

technology for extending minimal domains outlined in Chomsky [6] and reviewed

in Hornstein [32] allows head-adjunction to extend a domain related to movement.

However, in the case of successive head-adjunction, the extension only applies as far

2“Fusion combines two sister nodes into a single X0, with features of both input nodes” Bobaljik

[31], p. 14

57

as the last head adjoined. That is, “Importantly, each successive adjunction doesn’t

extend the previous chain.” Hornstein [32], p. 156. The problem with the model of

head adjunction just proposed can easily be made asymmetric. If f and g are the

category features of the heads, we simply introduce an asymmetry f ≤ g between

the category features. Then, we get the correct result that feature structures are

automatically unioned, the labels are ‘flattened’, such that they become inseparable,

yet we have an asymmetry between the categories involved.

head1

f

. . .

. . .

head2

g

. . .

. . .

head1 = head2

f

. . .

. . . g

. . .

. . .

Figure 3.5: The SC induced by identifying the labels of two heads.

3.2.1 Grammatical Relations

Many syntactic properties can be recovered by analyzing the images of nodes

under SC morphisms. Most primitive among them is projection. For example, in

Fig. 3.4, we can tell that it is the right operand which projects, as it is the root

of that DSO which maps to the root of the output DSO. We do not have to make

any assumptions about whether the rule G projects the left or right operand - this

can be recovered just by looking at the SC itself. More general syntactic relations

58

can be recovered in a similar manner by tracking the images of nodes and what

dependencies are introduced.

Each rule above can be seen as a sort of attaching or gluing of two structures.

This will be made precise in Chapter 4. We will now use a category theoretic

generalization of intersections to measure how much DSOs were glued together over

a SC. Consider the ‘classical’ case of a tree T with constituents K and C, viewed as

subsets of T . Intersecting K and C gives one of three results: K, C, or ∅. K results

exactly when K ⊂ C is a subconstituent, and conversely C when C ⊂ K. ∅ results

when there is no dependency between the two phrases. So, intersecting two phrases

tells us about whether there is a dependency between them or not. We generalize

this analysis to when K and C are related to T by arbitrary morphisms, such that

we can measure dependencies introduced over SCs.

We first generalize intersections to pullbacks.

Definition 3.2.1. In any category C, given a pair of morphisms f : A → C and

g : B → C, a pullback of f and g, if it exists, is an object A ×C B together with

morphisms πA : A×CB → A and πB : A×CB → B such that (1) f ◦πA = g◦πB; and

(2) if π′A : Z → A and π′B : Z → B are any morphisms such that f ◦ π′A = g ◦ π′B,

then there is a unique morphism u : Z → A ×C B such that π′A = πA ◦ u and

π′B = πB ◦ u. See Fig. 3.6.

based on Borceux [23] 2.5.1

The second condition is often called a universal requirement, in that all so-

lutions to the problem “find morphisms kA : Z → A and kB : Z → B such that

59

Z

A×C B B

A C

u

π′B

π′A

πB

πA g

f

Figure 3.6: A pullback diagram. (A×C B, πA, πB) is a pullback of f and g.

f ◦kA = g◦kB” factor through a pullback. While the solution to a universal problem

may not be unique - that is, there may be multiple pullbacks (πA : A×CB → A, πB :

A ×C B → B) and (π′A : (A ×C B)′ → A, π′B : (A ×C B)′ → B), the universality

requirement guarantees that there is a unique isomorphism u : A×CB → (A×CB)′

between any two pullbacks such that π′A ◦ u = πA and π′B ◦ u = πB.

We show how to compute the pullback of two morphisms f : A → C and

g : B → C in various categories. The pullback of functions f and g in Set can be

computed as A×C B = {(a, b) ∈ A×B | f(a) = g(b)} together with the coordinate

projections. Note that when f and g are subset inclusions, the intersection A ∩ B

together with the inclusions A ∩ B ↪→ A and A ∩ B ↪→ B is a pullback of f and g.

In Proset, the pullback of two order-preserving functions can be computed on the

underlying set, then giving A×C B the order relations (a, b) ≤ (a′, b′) if and only if

a ≤ a′ and b ≤ b′. Pullbacks in Pos and FPos are computed identically. If A is a

category of partial orders with predicates on it, then for a predicate λ, λ(a, b) will

be true in the pullback if and only if both λ(a) and λ(b) are true.

We will be interested in the case when C is an output DSO, and each of A

60

and B is either a head, with f or g the associated SC, or a constituent subset of

C, with f or g the associated subset inclusion function. Consider the derivation of

‘the dog’ given in Fig. 1.7, with A the DSO corresponding to the lexical item ‘the’,

B the DSO corresponding to the lexical item ‘dog’, and C the DSO corresponding

to the derived object ‘the dog’, with f and g the SCs. The pullback of f and g is

the singleton {(= n, n)}, indicating that it is this pair of features which becomes

identified in C.

Now consider the derivation of ‘big old tree’ given in Fig. 1.6. In particular, let

C be the DSO corresponding to ‘old tree’, A the lexical item ‘old’, B the lexical item

‘tree’, and f and g the respective SC functions corresponding to the first application

of adjunction in the derivation. The pullback of f and g is empty, indicating that

no features of the two lexical items have identified under this adjunction operation.

However, setting A and B equal to the subsets of C corresponding to the constituents

dominated by the images of ‘old’ and ‘tree’ (that is, A = {old, φo, φt} and B = C),

the pullback (intersection) of the two inclusions is A, indicating that ‘tree’ dominates

‘old’ in C. That is, by the time the derivation produces C there is a dependency

between the two lexical items. This indicates that at least ‘phrasal-attachment’ has

occurred. Furthermore, let A be the subset {old, φo, φt} ⊂ C, corresponding to the

constituent dominated by the image of ‘old’ with f the substructure embedding, and

B the lexical item ‘tree’ together with g, the SC mapping it into C. The pullback

of these two functions is essentially the singleton {φt}, indicating that this feature

of the head ‘tree’ is a dependent of ‘old’ by the stage C. The nonemptiness of

this pullback indicates that agreement or licensing has occurred, in that the phrase

61

min(x)×C min(y) max(x)×C min(y) min(y)

min(x)×C max(y) max(x)×C max(y) max(y)

min(x) max(x) C

Figure 3.7: The 2-by-2 pullback comparison of the head-level and phrasal-level
constituents associated to points x and y at a DSO C containing them, considered
as pullback diagrams in FPos.

projected by old depends on some feature originating from the head tree whose

projected phrase it is attached to.

These comparisons can be given a general treatment. Let min(x) and min(y)

be two lexical items which both map into a common stage C under SCs f and g.

Denote by max(x) the subset of C of elements dominated by some element in the

image of f , and similarly denote by max(y) the subset of elements dominated by

some element in the image of g. Note that f : min(x) → C must factor through

max(x) ↪→ C, and similarly for g. We can collect up all cross-comparisons of

‘overlap’ of minimal and maximal projections of the two lexical items at C, given

in Fig. 3.7.

If any one of the pullbacks in Fig. 3.7 is nonempty, then all sets it maps into

must be nonempty. In particular, if x and y are the images of the roots of the

lexical items in C, and we have an immediate domination relation y ≤ x,3 then at

least min(x) ×C max(y) is nonempty (and hence so is max(x) ×C max(y)). We

think of the immediate domination relation y ≤ x as indicating that xP is in the

3We say that a immediately dominates b if a ≤ b, a 6= b, and if a ≤ z ≤ b, then z = a or z = b.

62

minimal domain of yP [6]. There are then only three ‘degrees of connectivity’ that

x and y can have according to this metric - either (1) all of the other pullbacks are

empty, in which case we can think of the xP as a pure adjunct of the yP, undergoing

no other feature connectivity; (2) min(x)×C min(y) is nonempty (and hence so is

max(x)×C min(y)), in which case two features of the heads have identified, which

we may think of as indicating selection; or (3) max(x)×Cmin(y) is nonemtpy while

min(x) ×C min(y) is empty, indicating that the xP is dependent on some feature

of the head y, but has not identified with it, which we may think of as indicating

an (unselected) specifier which undergoes licensing or agreement.

It is also a nice consequence that using these definitions, we have a natural

ordering of grammatical relations by connectivity: selected arguments are the most

connected, unselected licensed or agreeing phrases less so, and pure adjuncts the

least connected. To state this formally, we first note that we are, at this level

of granularity, only interested in whether each pullback is nonempty. Recall that

if any one of the pullbacks is nonempty, then every pullback it maps into must

also be nonempty, since a function out of a nonempty set must take values in a

nonempty set. We can then view the 4 pullbacks as being elements in a partial order,

ordered by implication of nonemptiness. We are then interested in 6 possibilities,

corresponding to the upsets of this partial order: (1) all pullbacks are empty; (2)

all but max(x)×C max(y) are empty; (3) only min(x)×C min(y) and max(x)×C

min(y) are empty; (4) only min(x)×C min(y) and min(x)×C max(y) are empty;

(5) only min(x)×C min(y) is empty; or (6) all are nonempty. These are naturally

ordered by subset inclusion, indicating increasing degree of connectivity. Further

63

Selected Argument

Unselected Spec

Adjunct −Adjunct

−Spec

Disconnected

Figure 3.8: The 6 upsets of the ‘lattice of impliciation of nonemptiness of the 2-by-2
pullback diagram of the head and phrasal projections of two points’. We give each
element of the lattice a name corresponding to its meaning in the case of one being
in the minimal domain of the other.

restricting attention to when min(x) and min(y) have roots x and y such that these

elements map to elements x and y in C where an immediate domination relation

y ≤ x holds, we will only be in half of the situations since min(x) ×C max(y),

and hence max(x) ×C max(y), will both be nonempty. We name the elements of

this partial order accordingly in Fig. 3.8. In the case where y ≤ x is an immediate

domination relation in C, we say that x is an Adjunct of y if only min(x)×Cmax(y)

and max(x)×Cmax(y) are nonempty. Similarly, we say that x is anUnselected Spec

of y if only min(x) ×C min(y) is empty when y ≤ x is an immediate domination

relation. Finally, we say x is a Selected Argument of y if none of the pullbacks are

nonempty when y ≤ x is an immediate domination relation.

It is natural to then ask what the ‘extraneous’ connectivity relations mean.

These can notably only occur when it is not the case that the xP is contained in yP,

i.e. when y 6≤ x. We will more generally say that x is R-related to y when R is one of

64

the elements in Fig. 3.8 and the relevant pullbacks are empty, regardless of whether

there is a dominance relationship between x and y. For example, if x is an Adjunct of

y, it is Adjunct related to it, and so on. Disconnected has the obvious meaning: the

intersection of the two phrases in C is empty - they have no elements in common.

-Adjunct is the adjunction relation in reverse. x is -Adjunct related to y if some

element of the head min(y) enters the phrase max(x) but does not identify with

it, and no element of the head min(x) enters the phrase max(y). In particular, if y

is an Adjunct of x, then x is -Adjunct related to y. The only ‘new’ relation then is

-Spec. Such a relation can only occur when there is some element in the intersection

of max(x) and max(y), but this element is not the image of a feature from either

head. This relation is also symmetric, in that x is -Spec related to y if and only

if y is -Spec related to x. Such a configuration could arise if both the xP and the

yP are licensed by a common feature originating outside of their projecting heads.

One such case might be when there is a wh feature on a complementizer C which

licenses multiple wh-phrases in the case of multiple wh-movement. An example is

given in Fig. 3.9. It can also arise in other feature-sharing contexts, such as multiple

adjuncts engaging in concord with a gender feature from a head noun. The idea is

that these phrases are not totally disconnected, but neither depends directly on the

other. This relation gets ordered as weaker than an adjunction relation.

More subtle grammatical relations can be defined based on similar notions

by requiring specific kinds of features to be in the pullbacks, such as when we are

working in category when features are typed, or by describing more specific configu-

rations which must hold between elements of heads and their images. Summarizing,

65

C

Obj Subj T

m g h n . . .

wh k

Figure 3.9: Moving multiple NPs - {Obj,m, g} and {Subj, n, k} - to the same wh
feature. This leads to a -Spec relation between the Obj and Subj, since their phrases
overlap on a wh element, but this element did not arise from the heads projecting
either phrase.

the basic relations, using the SC data, can be recovered as a typology of connectivity

properties of labels and features and are naturally ordered as above.

3.3 Derivations

The previous section motivated using tuples of morphisms to model SCs in-

duced by a grammatical rule. Ehrig, et al. [5] describes a direct derivation as a

special kind of morphism f : A→ B between graphs with extra structure. A gen-

eral derivation is a composite of such maps, which can be thought of as the net

structural change. However, we want to allow operations which take in tuples of

objects and give structural change morphisms from each input to the output object.

Additionally, we want to study the structure of the whole sequence of structural

changes parameterized over a sequence of steps, and not just the net structural

change. We will describe a general näıve model of derivations in this section, which

we will revise for technical reasons in §3.5. To use the SCs as we have introduced

them, we should think of a derivation as a partial order, where each node p in the

66

partial order corresponds to a DSO Ap, and each order relation q ≤ p corresponds

to a morphism fq,p : Ap → Aq arising from a SC. In this sense, a derivation of

A-objects is a diagram of objects from A linked together by morphisms of A. We

could formalize a derivation using the following definitions.4

Note 1. Any partial order (P,≤) can be turned into a category whose objects are

elements p ∈ P , such that there is exactly one morphism p→ q if and only if q ≤ p.

Definition 3.3.1. A diagram of shape P is a functor F : P → A. We designate

F (p) ≡ Fp and F (p ≤ q) = !p,q : Aq → Ap. The functorial condition says that

!p,p = 1Fp is the identity on Fp and !q,p◦!p,r = !q,r.

Definition 3.3.2. Given a category A, an A-derivation is a functor F : P → A,

where P is a finite partial order.

Usually, we are interested in cases where P is a tree. If p1, . . . , pn are ‘sisters’

in P , with x < pi an immediate ordering relation for all pi, then we can think of

the maps Fpi → Fx as the structural changes from the n-tuple of inputs to Fx.
5

Intuitively, a morphism of derivations µ : (P, F) → (Q,G) is a map of underlying

states p 7→ p together with an A-morphism µp : Fp → Gp for each state p ∈ P which

is ‘compatible’ with net structural changes.

4The definitions for functors and natural transformations were given in Defn. ?? and Defn.

2.3.9.
5We do not view the sisters as ‘ordered’, though we do view them as ‘distinct’ operands. That

is, we think of this structural change as modeling an operation with n distinguished argument

slots, but the slots are not linearly ordered with respect to each other.

67

Claim 3.3.1. Fix any category A. Let D(A) be the collection of diagrams

F : P → A for any finite partial order P . We define a morphism (m,µ) : (P, F)→

(Q,G) to be an order-preserving function m : P → Q and natural transformation

µ : F → G◦m of functors from P to A. Composition of morphisms (m,µ) : (P, F)→

(Q,G) and (n, ν) : (Q,G) → (R,H) is given by an order-preserving function nm,

where (nm)(p) = n(m(p)), and natural transformation ν ?m µ : F → H ◦ (nm) with

coordinates νm(p) ◦ µp : Fp → Gm(p) → Hn(m(p)). These data give a category.

A morphism of A-derivations is a correspondence between states, together with

an A-morphism for each DSO in correspondence. The naturality condition says that

if !q,p : Fp → Fq is a net structural change in F corresponding to !mq,mp : Gmp → Gmq

in G, then µq◦!q,p = !mq,mp ◦ µp. We describe the isos in any category of derivations.

Claim 3.3.2. If (m,µ) : (P, F) → (Q,G) is an isomorphism, then (1) m is an

isomorphism of partial orders, such that µ : F → G ◦m is a natural isomorphism

of functors. Hence, each µp : Fp → Gmp is an A-iso. This induces an isomorphism

between each structural change in correspondence.

A is isomorphic to a subcategory of D(A), taking each DSO a in A to the

derivation consisting of just one step - the object a itself. Intuitively, DSOs are

simply single-state derivations, and we can include these single-state derivations

into the category of all derivations. We construct this functor explicitly below.

Claim 3.3.3. The map i : A → D(A) sending a 7→ (∗, !a : ∗ → A), where ∗ is a

one-point partial order, and !a is the assignment sending the single object of ∗ to a,

and sending a morphism f : a→ b to the derivation morphism (1∗, !f), where !f has

68

the single coordinate f : a → b, is a functor. i is isomorphic to a full subcategory

embedding. We often denote (∗, !a) as a.

We will now assume that A is a representable construct, such that we can

describe points of a derivation. Let � be an object of A representing a faithful

functor U : A → Set. We can use the inclusion above to turn � into a deriva-

tion. Whenever U : A → Set is concrete and represented by �, we call a map

x : �→ (P, F) a point. A point of a derivation is given by a selection of state p,

along with an A-morphism xp : �→ Fp. In other words, it is simply a selection of

state Fp together with an element in U(Fp). � as a derivation represents a functor

D(A)(�,−) : D(A) → Set. D(A)(�, (P, F)) is the set of points of (P, F), and

consists of the disjoint union of all U(Fp). Whenever U : A → Set is concretely

representable, it makes sense to define a projection relation on the points of (P, F).

Definition 3.3.3. Let U : A → Set be a construct represented by �. Given two

points x and y of (P, F), living in DSOs Fp and Fq such that q ≤ p, we call y a

projection of x if !q,p(x) = y.

While it is obvious that all properties of derived objects are invariant under iso

of derivations, this gives an example of a relation between points living in different

objects in a derivation preserved under iso (and in fact arbitrary morphisms). We

saw in §3.2.1 that we can describe grammatical relations as a typology of facts

about dependencies introduced over the course of derivational steps. For example,

we might näıvely think of two points x ∈ Fp and y ∈ Fq as undergoing selection

if there is an element z ∈ Fr such that both x and y project to z. In the case of

69

digraphs, we might think of x as becoming dependent on y if there is an edge (a, b)

in some DSO Fr such that x projects to a and y to b. In each case, the relevant

relationships between points of the derivation are preserved under isomorphisms

of derivations, capturing the intuition that isomorphic derivations have isomorphic

grammatical relations between corresponding parts.

More formally, we reconstruct grammatical relations within any derivation

(P, F), relativized to some step of the derivation. We want to relativize grammatical

relations at C, where C = Fc for some c ∈ P . We will call a stage A = Fa in (P, F) a

head if a is a maximum, in that a ≤ p for any p ∈ P implies a = p. We want A to be a

construct over FPos, in that we are provided with a faithful functor U : A→ FPos

taking each A object to its underlying dominance partial order. We will also usually

be interested in the case where composition of this functor with the forgetful functor

V : FPos→ Set is representable. Suppose that A and B are heads of (P, F) in any

category A of DSOs which have underlying domination finite partial orders, such

that A and B have roots ra and rb with respect to those orderings. Suppose that

C is any stage such that c ≤ a and c ≤ b, so that we have maps !c,a : A → C and

!c,b : B → C. We will also have associated constituent inclusions max(a) ↪→ U(C)

and max(b) ↪→ U(C), where max(a) is the collection of points of U(C) dominated

by some element in the image of U(!c,a) and max(b) is the collection of points

of U(C) dominated by some element in the image of U(!c,b), such that we have

factorizations U(A) → max(a) ↪→ U(C) and U(B) → max(b) ↪→ U(C). We can

then carry out the pullback constructions of §3.2.1 between these functions to find

70

the grammatical relations from A to B at the stage C.6 We will again be especially

interested in the case when U(!c,b)(rb) < U(!c,a)(ra) is an immediate domination

relation in U(C).

3.3.1 Sums

Much like in §2.5.1, where we formed forests from trees and decomposed forests

into trees, there are similar constructions we can perform on derivations. Being able

to assemble many derivations into a larger one will be useful for constructing a

language recursively. We will need a notion of ‘disjoint union’ of derivations, but

which keeps track of all of the derivational structure. Such ‘structured sums’ of

objects can be defined in any category.

Definition 3.3.4. Let C be any category, and A and B any two objects of that

category. A coproduct or sum of A and B in C, if it exists, is an object A + B

together with coprojection morphisms κA : A → A + B and κB : B → A + B,

such that for any pair of morphisms f : A → Z and g : B → Z, there is a unique

morphism u : A+B → Z such that f = u ◦ κA and g = u ◦ κB. See the diagram in

Fig. 3.10. We say that a category C has sums if there exists a sum for any pair

(A,B) of objects from C.

see, e.g., Borceux [23], 2.2

6This is similar to the way that other grammatical domains and relations relative to some point

in the derivation. “Recall that domain and minimal domain are understood derivationally, not

representationally.” Chomsky [9], p. 299.

71

A A+B B

Z

κA

f
u

κB

g

Figure 3.10: A coproduct diagram.

Like all universal constructions, the sum A + B of two objects is given up

to unique isomorphism. We give examples of categories which have sums and the

construction of sums in those categories.7

• In Set, the sum of two sets A+B is given by their disjoint union together with

the two inclusions κA : A ↪→ A+B and κB : B ↪→ A+B. Explicitly, this can

be constructed by fixing two indexing singletons {1} and {2}, and constructing

(A × {1}) ∪ (B × {2}) = {(a, 1) or (b, 2) such that a ∈ A or b ∈ B} together

with the functions mapping a 7→ (a, 1) and b 7→ (b, 2).8 To see that this

has the desired universal property, take any two functions f : A → Z and

g : B → Z. We describe the sum of these functions as the universal map

u : A + B → Z, which must be the uniquely defined function such that

u(a) = f(a) and u(b) = g(b).

• In Proset, the sum of two preorders A and B can be computed as having as

7It is worth noting that all of these sums are concrete, in that U(A+B) = U(A)+U(B), where

U : C → Set is the associated forgetful functor turning them into constructs. This need not be the

case in general: that is, the sum of two objects in a construct need not have underlying set which

is the disjoint union of their underlying sets.
8Like the Cartesian product × itself, there are many ways to construct a disjoint union. How-

ever, described by the universal property, all methods of constructing the disjoint union will be in

a canonical bijection with each other.

72

underlying set the disjoint union of the underlying sets of A and B. We turn

this set into a preorder using the relations x ≤ y if and only if x ≤ y in A or

x ≤ y in B, depending on which set the elements originated from. The sums

in Pos and FPos can be computed identically.

• For a more complex example, take our category AL of sets A together with a

dominance preorder ≤A, precedence preordering �A, and collection of unary

predicates λA on A, one for each λ ∈ L. The sum of two objects

(A,≤A,�A, {λA}{λ∈L}) and (B,≤B,�B, {λB}{λ∈L}) has underlying set which

is the disjoint union of A and B. It has dominance relations x ≤ y if and

only if x ≤A y or x ≤B y. It has precedence relations x � y if and only if

x �A y or x �B y. λA+B(x) = true if and only if λA(x) = true or λB(x) =

true for each λ ∈ L. To see that this has the universal property, take any

two AL morphisms f : (A,≤A,�A, {λA}{λ∈L}) → (Z,≤Z ,�Z , {λZ}{λ∈L}) and

g : (B,≤B,�B, {λB}{λ∈L})→ (Z,≤Z ,�Z , {λZ}{λ∈L}). Note that the function

u : A + B → Z sending a 7→ f(a) and b 7→ g(b) is the unique function such

that u ◦ κA = f and u ◦ κB = g, so if we can show that it is a morphism,

then we will have constructed the required universal map. To see that it is,

note that if x ≤ y in A+B, then either x ≤ y in A, in which case we already

know u(x) ≤ u(y), since f(x) ≤ f(y) and f is a morphism, or x ≤ y in B,

in which case u(x) ≤ u(y) is still true since g is a morphism. We can argue

similarly for the � relation on A + B. Finally, note that λA+B(x) = true

only if λA(x) = true or λB(x) = true. If x is from A, then we know that

73

u(a) = f(a), and since f is a morphism, we must have λZ(f(a)) = true. We

argue identically for B, and so u is in fact an AL-morphism.

Claim 3.3.4. Any category D(A) has a coproduct for each pair of derivations

(P, F) and (Q,G). It is given by a state space with underlying set P +Q, with the

coproduct preordering on it. We construct F + G as the functor (F + G)(x) = Fx

or Gx, depending on whether x ∈ P or Q, and (F + G)(x ≤ y) is F (x ≤ y) or

G(x ≤ y). The coprojections are given by the inclusions P,Q ↪→ P + Q, such that

the coordinates of the natural transformations are isomorphisms.

3.3.2 Yields

When a derivation (P, F) has a state diagram with root r such that r ≤ p for

all p ∈ P , then for all objects in (P, F), we have a unique map !r,p : Fp → Fr. In

this case, it makes sense to think of Fr as the yield of the derivation, that is, the

final output object. When the category of DSOs A has sums, then intuitively if

derivations-with-roots (P, F) and (Q,G) have yields Fr and Gs, their sum should

yield Fr + Gs. We now want to see when we can define a yield functor in general,

such that this functor takes any derivation in D(A) to its yield in A.

Recall that for any A, we have an inclusion i : A ↪→ D(A) taking each DSO a

to i(a) = (∗, !a : ∗ → A), which we usually just write as a. For any derivation (P, F)

and DSO a, a morphism (!, µ) : (P, F)→ a is given by a morphism µp : Fp → a for

each p ∈ P . If a derivation (P, F) has a final state (root) r, then a morphism from

that derivation to any derived object is determined totally by its value on the final

74

DSO Fr. Similarly, if (P, F) and (Q,G) are two derivations with roots r and s, a

morphism (P +Q,F +G)→ a is determined totally by a pair of maps Fr → a and

Gs → a, and hence, if A has sums, a single map Fr + Gs → a. We want a general

method which assigns to each derivation its ‘yield’ as a functor > : D(A) → A

which has the property that derivation morphisms from (P, F) to any DSO a are

determined totally by A-morphisms >(P, F) → a. Moreover, we actually want

natural transformations ε : > ◦ i → 1A and η : 1D(A) → i ◦ > such that ε is a

natural isomorphism and for any derivation (P, F), DSO a, and derivation morphism

(!, µ) : (P, F) → i(a), we have a factorization (!, µ) = i(εa) ◦ i(>(!, µ)) ◦ η(P,F) :

(P, F) → i(>(P, F)) → i(>(i(a))) ≈ i(a). This first derivation homomorphism

takes the derivation to its yield, the second is the induced morphism from its yield

to a, and the last is the isomorphism i(>(i(a))) ≈ i(a) given by ε.

We already know that for this to be possible, A must have all sums, since we

can always take sums of derivations. Consider now the fact that every category of

derivations will have an empty derivation (∅, E) such that ∅ is the empty set, and

E : ∅ → A is the only possible functor with empty image. This is the derivation

with no stages at all. For any DSO a, we will have a unique derivation morphism

(!, µ) : (∅, E)→ i(a) which is given by the inclusion m : ∅ ↪→ ∗, such that µ has no

coordinate morphisms. If this derivation is to have a yield >(∅, E), it must be an

object 0 of A with the property that there is a unique A-morphism ! : 0 → a for

any DSO a. Such an object in any category is called an initial object.

Definition 3.3.5. In any category C, an object 0 is called an initial object if for

75

any object C of C, there is a unique C-morphisms ! : 0→ C.

see, e.g. Borceux [23], 2.3

Such objects can often be thought of as empty objects. Consider the following

examples.

• Set has an initial object ∅. For any set X, there is a unique function to it

from ∅, given by the inclusion ! : ∅ ↪→ X.

• Proset, Pos, FPos, and AL all have initial object ∅ with the only possible

orderings and type-determinations on it.

• D(A) has an initial object given by the empty derivation (∅, E).

Finally, to guarantee the existence of a yield functor, we need one more con-

struction to be possible in A known as a pushout.

Definition 3.3.6. Let C be any category, and let f : A → B and g : A → C be

any two morphisms. A pushout of f and g is an object B +A C together with

morphisms κB : B → B +A C and κC : C → B +A C such that κB ◦ f = κC ◦ g, and

for any κ′B : B → Z and κ′C : B → Z such that κ′B ◦ f = κ′C ◦ g, there is a unique

morphism u : B +A C → Z such that u ◦ κB = κ′B and u ◦ κC = κ′C . See Fig. 3.11.

We again say that C has pushouts if it has a pushout for every pair of morphisms

(f : A→ B, g : A→ C).

Pushouts are again determined up to a unique isomorphism. We give con-

structions of them in some categories. We will need the notion of an equivalence

76

A B

C B +A C

Z

f

g κB κ′B

κC

κ′C

u

Figure 3.11: A pushout diagram.

relation on a set X. A relation E ⊂ X ×X is an equivalence relation if the follow-

ing properties hold: (reflexivity) (x, x) ∈ E for each x ∈ X; (symmetry) (x, y) ∈ E

implies (y, x) ∈ E; and (transitivity) if (x, y) ∈ E and (y, z) ∈ E, then (x, z) ∈ E.

We write x ∼ y if (x, y) ∈ E. We will also need the notion of a quotient by an

equivalence relation. Let X be any set and E an equivalence relation on it. Then,

for any element x ∈ X there is a set {y ∈ X such that x ∼ y} which we denote [x],

called the equivalence class of x. Note that for any points x, y ∈ X, either [x] = [y]

(if and only if x ∼ y) or [x] ∩ [y] = ∅ (if and only if x 6∼ y). We write the set

X/E = {[x] such that x ∈ X}, and call this set the quotient of X by E. There is a

canonical function q : X → X/E called the quotient map which sends x 7→ [x]. This

is well-defined, since each element belongs to exactly one equivalence class. For any

relation R ⊂ X×X, there is a unique smallest equivalence relation on X containing

R. It can be computed by taking the intersection of all equivalence relations E on

X such that R ⊂ E. Note that if R is an equivalence relation, this relation is just

R itself. We call this the equivalence relation generated by R.

• Consider two functions f : A → B and g : A → C in Set. We construct

B +A C as follows. First construct the disjoint union B +C. We know that if

77

a ∈ A is any element, then we must have κA(f(a)) = κB(g(a)) in B+AC. We

construct an equivalence relation on B + C. We start by building a relation

R on B + C consisting of the relations (f(a), g(a)) for each element a ∈ A.

We then take the equivalence relation E generated by R, and construct the

quotient map q : B + C → (B + C)/E. We define (B + C)/E ≡ B +A C and

we give the two coprojections to it as κB ≡ q ◦ iB : B ↪→ B + C → B +A C

and κC ≡ q ◦ iC : B ↪→ B + C → B +A C, where iB and iC are the inclusions

into the disjoint union.

To see that (B+AC, κB, κC) is actually a pushout, we must check two things.

First, we must check that κB ◦ f = κC ◦ g. To see this, take any element

a ∈ A. By definition, κB(f(a)) = [f(a)] and κC(g(a)) = [g(a)]. But since

(f(a), g(a)) ∈ R by definition, these elements are equivalent in the equivalence

relation generated by R, hence [f(a)] = [g(a)].

Now we must check that for any functions κ′B : B → Z and κ′C : C → Z such

that κ′B ◦ f = κ′C ◦ g, we have a unique function u : B +A C → Z such that

u ◦ κB = κ′B and u ◦ κC = κ′C . For any x ∈ B +A C, x must come from some

b ∈ B or c ∈ C - i.e. there exists a b ∈ B or c ∈ C such that κB(b) = x or

κC(c) = x. u(x) must be equal to κ′B(b) or κ′C(c) if it is to meet the conditions

u ◦ κB = κ′B and u ◦ κC = κ′C . We define u(x) to be the element κ′B(b), where

b is any b ∈ B such that q(b) = x, or κ′C(c), where c ∈ C is any element such

that q(c) = x. We must make sure that this is well-defined. First note that

for any s, t ∈ B + C, q(s) = q(t) if and only if there is some a ∈ A such that

78

a has image s under f or g and image t under f or g. If s, t ∈ B, this is only

possible only if s = t since f is a function, and similarly if s, t ∈ C, this is

possible only if x = y since g is a function. So u might only be ill-defined if

s and t are from distinct sets. Let b ∈ B be any element such that q(b) = x

and c ∈ C any element such that q(c) = x. This implies that there is some

a ∈ A such that f(a) = b and g(a) = c. To make sure that u is well-defined,

we must check that κ′B(b) = κ′C(c), since u as we have defined it wants to send

x to both of these elements of Z. But κ′B(b) = κ′B(f(a)) = κ′C(g(a)) = κ′C(c),

so this map is well-defined. We have u ◦ κB = κ′B and u ◦ κC = κ′C by the

construction of u, and so u gives the unique required function.

• Consider any two order-preserving functions f : A → B and g : A → C in

Proset. We construct their pushout as follows. Let B +A C have underlying

set (B + C)/E as above, with inclusion functions also as above. We turn

B +A C into a preorder by taking the smallest preorder containing the all the

relations of the form κB(b) ≤ κB(b′) whenever b ≤ b′ in B and κC(c) ≤ κC(c′)

whenever c ≤ c′ in C.

• We construct pushouts in Pos. First note that if (P,≤) is any preordered

set, we can construct an equivalence relation on it p ∼ p′ whenever p ≤ p′

and p′ ≤ p. Denote this equivalence relation as E and construct the quotient

map q : P → P/E. P/E inherits a preordering from P by taking the smallest

preorder containing all relations of the form q(p) ≤ q(p′) whenever p ≤ p′ in

P . This preordering on P/E is actually a partial order, and we call it the

79

soberification of P , and the quotient q is order-preserving. Now, given two

order-preserving functions between partial orders f : A → B and g : A →

C, we construct a pushout. First, construct the pushout of preorders with

coprojections B ↪→ B + C → (B + C)/E and C ↪→ B + C → (B + C)/E. To

complete a computation of the pushout in Pos, compose each of these order-

preserving functions with the soberification quotient. Note that this gives an

example of a pushout which is not concrete, in that the underlying set of the

pushout of f and g is not necessarily the pushout of the underlying sets.

We now define yields in general and characterize when they exist.

Claim 3.3.5. Let A be any category and let D(A) be the category of derivations

over it, where we write i : A→ D(A) for the canonical inclusion of DSOs into deriva-

tions. We say that a functor > : D(A)→ A together with a natural transformation

η : 1D(A) → i◦> and natural isomorphism ε : >◦i→ 1A, if it exists, is a yield func-

tor if every morphism of the form (!, µ) : (P, F)→ i(a) for any (P, F) in D(A) and

a in A factors as i(εa)◦ i(>(!, µ))◦η(P,F) : (P, F)→ i(>(P, F))→ i(>(i(a))) ≈ i(a).

This functor is unique up to natural isomorphism, in that if > and >′ are any

two yield functors, then they are naturally isomorphic. Furthermore, this functor

exists if and only if A has all sums, pushouts, and an initial object.

Notably, if (P, F) has a root r, then >(P, F) is isomorphic to Fr, and if (P +

Q,F + G) is the sum of rooted derivations, then >(P + Q,F + G) is isomorphic

to Fr + Gs. Also, the yield of the empty derivation is the initial object of A. The

proof of these facts, as well as a construction of the yield functor, is actually very

80

straightforward, but only after introducing an extremely important piece of category

theoretic machinery called an adjunction, which we will develop in §3.4. However,

we delay adjunctions so that we can immediately apply sums and yields to the

recursive construction of languages.

3.3.3 Grammars, Languages, and Equivalences

We can define a language to be a subclass L ⊂ D(A), considered as a full

subcategory. Given languages i : L ↪→ D(A) and j : M ↪→ D(A), we can

define strong extensional equivalences between languages. Two languages are

equivalent iff for every derivation ∆ in L there is an isomorphic derivation in M

and conversely.

Definition 3.3.7. A strong extensional equivalence between languages is a

pair of functors F : L �M : G together with natural isos j ◦ F ≈ i and i ◦ G ≈

j. This can be strengthened to a strong extensional isomorphism between

languages by requiring j ◦ F = i and i ◦G = j.

However, we are usually interested in languages which are recursively con-

structed in some simple way. In these cases, strong extensional equivalences of

languages also become more meaningful. We define a grammar over A to be a pair

G consisting of a set lex of objects of A together with a set rules of rules of

any finite arity over A. We are usually only interested in cases where both sets

are finite, though nothing essential changes if they are not. Intuitively, given an

n-ary rule G ∈ rules, an n-tuple of derivations ((P1, F1), . . . , (Pn, Fn)) with yields

81

Z

A1 . . . An

W . . . X Y . . . Z

f1 fn

Figure 3.12: Informal picture of the derivation constructed by extending a family of
rooted derivations with yields Ai along a SC (fi : Ai → Z : 1 ≤ i ≤ n).

>(Pi, Fi) = Ai, and SC (fi : Ai → Z : 1 ≤ i ≤ n) ∈ G(A1, . . . , An), there is an ex-

tension of the tuple (Pi, Fi) along (fi : Ai → Z : 1 ≤ i ≤ n). Its states should be the

disjoint union of all states in the (Pi, Fi) together with Z. Since each component of

the SC fi : Ai → Z corresponds to a morphism of derivations (!, µi) : (Pi, Fi)→ Z,

which in turn corresponds to a family of morphisms µip : Fi,p → Z, one for each

state Fi,p in (Pi, Fi), we will have an A-morphism from each state Fi,p in one of the

derivations to Z. The connecting SCs in this extension should then consist of all

the SCs from each of the derivations in the tuple, together with these ‘new’ maps µip

from each Fi,p to Z. This is especially intuitive when each of the input derivations

has a root, in which case this root will be Ai. A figure representing such an extension

is given in Fig. 3.12.

By the definition of coproducts and yields, the tuple of morphisms given by an

SC corresponds to a single morphism
∐

1≤i≤n(Pi, Fi) ≡ (P1, F1) + . . . + (Pn, Fn) →

i(Z). Viewing SCs this way is useful, as we can then describe extensions in a uniform

way, regardless of the arity of the SC. We want to functorialize extensions, such that

given a morphism from a derivation to a derived object (!, µ) : (P, F)→ Z, we have

an extended derivation consisting of (P, F) stages with Z on top, together with all

82

the SCs in (P, F) plus SCs of the form µp : Fp → Z. We can then use this functor

to construct derivations recursively.

3.3.3.1 Extensions

We will construct a functor which takes in maps from derivations to DSOs

and returns a derivation containing all of those derivations with the new DSO ‘on

top’, connected by the new SCs. Given a map µ : (P, F)→ Z from a derivation to

a DSO, we will formalize the extension of (P, F) along µ as the smallest derivation

containing (P, F), Z, and the morphisms µp : Fp → Z. We first construct a category

of operations on derivations.

Definition 3.3.8. Given categories and functors

E
T−→ C

S←− D

the comma category (T ↓ S), also written (T, S), has as objects all triples 〈e, d, f〉

with d ∈ Obj D, e ∈ Obj E and f : Te→ Sd, and as arrows 〈e, d, f〉 → 〈e′, d′, f ′〉 all

pairs 〈k, h〉 of arrows k : e→ e′, h : d→ d′ such that f ′ ◦ Tk = Sh ◦ f . In pictures,

Objects

〈e, d, f〉

Te

Sd

f ;
Arrows

〈k, h〉

Te Te′

Sd Sd′

f

Tk

f ′

Sh

,

with the square commutative. The composite 〈k′, h′〉 ◦ 〈k, h〉 is 〈k′ ◦ k, h′ ◦ h〉, when

defined.

Mac Lane [26], II.6

83

(P, F) Z

(Q,G) Y

µ

(f,φ) k

ν

Figure 3.13: A morphism of operations on derivations.

We then define the category of operations on D(A) to be the comma category

given by 1D(A) : D(A) → D(A) ← A : i, which we write D(A)/A. Its objects are

morphisms (!, µ) : (P, F) → Z, which we will just write as µ, from any derivation

(P, F) to a DSO Z. A morphism of this category from µ : (P, F) → Z to ν :

(Q,G) → Y is a pair ((f, φ), k) where (f, φ) : (P, F) → (Q,G) is a derivation

morphism, and k : Z → Y is an A-morphism, such that ν ◦ (f, φ) = i(k) ◦ µ

as derivation morphisms. See Fig. 3.13. We want to give a characterization of

extensions as a functor ext : D(A)/A→ A up to natural isomorphism. We are going

to characterize it using a universal property. Given an operation µ : (P, F) → Z,

we will construct the extension of (P, F) along µ as the ‘simplest’ derivation ext(µ)

which both (P, F) and Z map into, such that the image of each state Fp has a SC

to the image of Z in ext(µ), such that µp : Fp → Z is carried to this SC.

We first formalize the property of morphisms out of (P, F) and Z given above,

and then describe the universal such one. Given an operation µ : (P, F) → Z, we

will be interested in derivations (Q,G) which both (P, F) and Z map into, and hence

we can just consider maps out of the sum (P, F)+i(Z). The underlying finite partial

order of this sum is the sum of P and a single index for the stage Z, which we call z.

We say that a derivation morphism (n, ν) : (P, F) + i(Z) → (Q,G) takes µ-images

to SCs if it has the following properties: (1) n(z) ≤ n(p) for all p ∈ P , and (2) we

84

Fp Z

Gn(p) Gn(z)

µp

νp νz

!n(z),n(p)

Figure 3.14: (n, ν) : (P, F)+Z → (Q,G) takes µ-images to SCs if the above diagram
commutes for each p ∈ P .

have νz ◦ µp = !n(z),n(p) ◦ νp for every p ∈ P . See Fig. 3.14. We say that a morphism

extµ : (P, F) + Z → ext(µ) is the universal such morphism if it takes µ-images to

SCs, and for any derivation morphism (n, ν) : (P, F) + i(Z) → (Q,G) which takes

µ-images to SCs, there is a unique derivation morphism (x, χ) : ext(µ) → (Q,G)

such that (n, ν) = (x, χ) ◦ extµ. This formalizes the notion that the extension is the

‘simplest derivation’ that (P, F), Z, and the SCs in µ map into.

Suppose that ((f, φ), k) : (µ : (P, F)→ Z)→ (ν : (Q,G)→ Y) is a morphism

of operations. We will show that there is a morphism of derivations ext((f, φ), k) :

ext(µ)→ ext(ν) which maps p 7→ f(p) and z 7→ y with coordinates φp : Fp → Gf(p)

and k : Z → Y which is induced by the universal property of extensions, and hence

leads to a functor ext : D(A)/A → A. Write the extensions ext(µ) = (M,S) and

ext(ν) = (N, T), and the extension extν ≡ (b, β) : (Q,G) + Y → (N, T). Suppose

we have a morphism of operations given by the pair of morphisms (f, φ) : (P, F)→

(Q,G) and k : Z → Y . We can take the sum of derivations (Q,G) and Y to get a

derivation (Q,G) + Y and compose (f, φ) and k with the coprojection inclusions to

get a pair of maps κ(Q,G) ◦ (f, φ) : (P, F)→ (Q,G)→ (Q,G) + Y and κY ◦ k : Z →

Y → (Q,G) +Y . We can then take the sum of (P, F) and Z, and use the coproduct

property to get a single map (κ(Q,G) ◦ (f, φ)) + (κY ◦ k) : (P, F) + Z → (Q,G) + Y .

85

Fp Z

Gf(p) Y

Nb(f(p)) Nb(y)

µp

γp=φp k=γz

βf(p)

νf(p)

βy

!b(y),b(f(p))

Figure 3.15: The composite of extν ≡ (b, β) and the sum (κ(Q,G)◦(f, φ))+(κY ◦k) ≡

(g, γ) is a map which takes µ-images to SCs.

We will write this derivation morphism as (g, γ). For any p ∈ P , g maps p 7→ f(p),

and it maps z 7→ y. For each p ∈ P , γp : Fp → Gf(p) will simply be the component

φp, while γz : Z → Y will just be k. We now show that the composite (b, β) ◦ (g, γ)

takes µ-images to SCs, in which case, by definition, there will be a uniquely induced

(x, χ) : (M,S)→ (N, T), such that (b, β)◦ (g, γ) = (x, χ)◦extµ. This morphism will

give the behavior of ext on morphisms of D(A)/A. First, note that for all p ∈ P ,

we have b(g(z)) = b(y) ≤ b(g(p)), since (b, β) takes ν-images to SCs. Now note

that k ◦ µp = νf(p) ◦ φp, since ((f, φ), k) is a morphism of operations. However, the

maps φp and k are just the components of (g, γ); that is, k = γz and φp = γp. Also,

βy◦νf(p) = !b(y),b(f(p))◦βf(p) since (b, β) takes ν-images to SCs. We can compose these

squares to obtain the equality (βy ◦γz)◦µp = !b(y),b(f(p))◦(βf(p)◦γp), i.e. (b, β)◦(g, γ)

takes µ-images to SCs. See Fig. 3.15.

To finally show that ext actually gives a functor, we must construct extµ :

(P, F)+Z → ext(µ) for any operation µ : (P, F)→ Z. We construct this derivation

as follows, writing ext(µ) ≡ (M,S). The underlying partial order of ext(µ) is the

sum of P and the singleton {z} as partial orders, and we add relations z ≤ p for

86

all p ∈ P . We let !p,p′ : Sp′ → Sp just be the SC !p,p′ : Fp′ → Fp from (P, F)

whenever p, p′ ∈ P . We define !z,p : Sp → Sz be µp : Fp → Z otherwise. These

data give a derivation since µ was a morphism of derivations. Furthermore, to

show that extµ is a derivation morphism, we must just show that the inclusions

(P, F) ↪→ ext(µ) and Z → ext(µ) are derivation morphisms. But this is obvious,

since the first is simply a subderivation inclusion, and the second is just the map

sending Z to Sz isomorphically. To show this has the universal property, take any

derivation morphism (f, φ) : (P, F) + Z → (Q,G) taking µ-images to SCs. We

define (x, χ) : (M,S) → (Q,G) to be the derivation morphism taking p 7→ f(p)

and z 7→ f(z), together with the components χp = φp and χz = φz. x is evidently

order-preserving on the points P ⊂ M , since f is. For the only ‘new’ relations

z ≤ p, we know that f(z) = x(z) ≤ x(p) = f(p) is order-preserving since (f, φ)

maps µ-images to projection. Similarly, we already know that components χp are all

compatible since (f, φ) restricted to (P, F) is a derivation morphism, which describes

the behavior of χ on P ⊂ M . For the SCs !z,p : Sp → Sz, we again know that

χz◦!z,p ≡ φz ◦µp =!fz,fp ◦φp ≡!fz,fp ◦χp since (f, φ) takes µ-images to SCs. We have

finally proven the following claim.

Claim 3.3.6. Let µ : (P, F) → Z be any morphism from a derivation (P, F) to a

DSO Z. Then there is a universal derivation morphism extµ : (P, F) → ext(µ) ≡

(M,S) taking µ-images to SCs given by the derivation with states P +{z}, together

with the order relations z ≤ p for all p ∈ P and p ≤ p′ whenever the relation holds

in P . Sp = Fp whenever p ∈ P and Sz = Z. Finally, !p,p′ : Sp′ → Sp is equal

87

to !p,p′ : Fp′ → Fp in (P, F) whenever p, p′ ∈ P , and !z,p : Sp → Sz is equal to

µp : Fp → Z whenever p ∈ P .

This determines a functor ext : D(A)/A → A up to natural isomorphism,

which maps µ to ext(µ). Given a morphism of operations ((f, φ), k) : (µ : (P, F)→

Z) → (ν : (Q,G) → Y), ext returns the morphism of derivations ext((f, φ), k) :

ext(µ) → ext(ν) which maps p 7→ f(p) and z 7→ y and has coordinate morphisms

φp : Fp → Gf(p) and k : Z → Y . It arises as the unique morphism (x, χ) : ext(µ)→

ext(ν) such that extν ◦ ((κ(Q,G) ◦ (f, φ))+(κY ◦k)) = (x, χ)◦ extµ. This factorization

exists and is unique since extν ◦ ((κ(Q,G) ◦ (f, φ)) + (κY ◦ k)) takes µ-images to SCs

and extµ is universal with respect to this property.

3.3.3.2 Languages from Grammars

We can finally give a recursive construction of languages given a grammar

G = (lex,rules).

Definition 3.3.9. Let G = (lex,rules) be a grammar. Then we define the lan-

guage generated by G , L (G), to be the following class of derivations:

• If A ∈ lex, then i(A) is in L (G).

• If (Pi, Fi) are derivations in L (G) with yields Ai, G ∈ rules any rule, and

(fi : Ai → Z : 1 ≤ i ≤ n) any element of G(A1, . . . , An), then we obtain

an n-tuple of derivation morphisms i(fi) ◦ η(Pi,Fi) : (Pi, Fi) → i(>(Pi, Fi)) =

i(Ai) → i(Z) by composing the component of the natural transformation

taking each derivation to its yield with the component SC. We can then take

88

the sum of derivation morphisms to obtain a single morphism which we write

µ :
∐

1≤i≤n(Pi, Fi)→ Z. In this case, ext(µ) is in L (G).

Such grammars only generate derivations whose underlying partial orders P

are trees. Such grammars are constructed from rules which are ‘Markovian’, in

that they only rely on the yield - in this case, the final state - of each of the input

derivations. However, we can also generalize rules to ones which care about the

structure of the whole derivation.9 We now re-define an n-ary rule on derivations G

to be an assignment which takes in an n-tuple of derivations ((P1, F1), . . . , (Pn, Fn))

and returns a set G((P1, F1), . . . , (Pn, Fn)) of n-tuples of derivation morphisms (µi :

(Pi, Fi) → Z : 1 ≤ i ≤ n). We again require that G((P1, F1), . . . , (Pn, Fn)) contain

no isomorphic SCs, again defining an isomorphism of SCs (µi : (Pi, Fi) → Z : 1 ≤

i ≤ n) and (νi : (Pi, Fi) → Y : 1 ≤ i ≤ n) as an isomorphism u : Z → Y of

A-objects such that u ◦ µi = νi for each i. We now give a revised definition.

Definition 3.3.10. Let G = (lex,rules) be a grammar. Then we define the

language generated by G , L (G), to be the following class of derivations:

• If A ∈ lex, then i(A) is in L (G).

• If (Pi, Fi) are derivations in L (G), G ∈ rules any rule, and (µi : (Pi, Fi) →

Z : 1 ≤ i ≤ n) any element of G((P1, F1), . . . , (Pn, Fn)), we can take the

sum of derivation morphisms to obtain a single morphism which we write

µ :
∐

1≤i≤n(Pi, Fi)→ Z. In this case, ext(µ) is in L (G).

9This will make the statement of rules and extensions much more natural, and it is always

straightforward to restrict to the Markovian case.

89

Grammars of the first sort are clearly special grammars of the second sort,

where each rule is defined for any tuple of derivations whenever it is defined for

their yields, and these SCs can be obtained by composing with the coordinates of

the natural transformation taking each derivation to its yield.

3.3.3.3 Equivalences of Languages

We now want to consider two grammar G and H which produce equivalent

languages L (G) and L (H). Intuitively, two grammars lead to extensionally equiv-

alent languages if and only if for each lexical item in one, there is an isomorphic

lexical item in the other and conversely, and for each tuple of generated derivations

((P1, F1), . . . , (Pn, Fn)) and structural change (µi : (Pi, Fi)→ Z : 1 ≤ i ≤ n) in one,

there is a tuple of isomorphic derivations ((Q1, R1), . . . , (Qn, Rn)) in the other with

an isomorphic structural change on them, and conversely. However, we must be

careful, as it does not have to be the case that the ith derivation in the first tuple is

isomorphic to the ith one in the second: rather, we may rearrange which derivations

in the tuple are in correspondence, and the SCs will be isomorphic once the input

derivations have been appropriately aligned.

Claim 3.3.7. Let G and H be two grammars. The following are equivalent:

• For every A ∈ lexG , there is an isomorphic B ∈ lexH , and conversely. Also,

for every SC (µi : (Pi, Fi) → Z : 1 ≤ i ≤ n) ∈ G((P1, F1), . . . , (Pn, Fn))

for some rule G ∈ rulesG such that each (Pi, Fi) is in L (G), there is some

SC (νi : (Qi, Ri) → Y : 1 ≤ i ≤ n) ∈ H((Q1, R1), . . . , (Qn, Rn)) for some

90

rule H ∈ rulesH such that each (Qi, Ri) is in L (H), such that there is a

bijection α : {1, . . . , n} → {1, . . . , n}, a collection of derivation isomorphisms

(fi, φi) : (Pi, Fi) → (Qα(i), Rα(i)), and isomorphism k : Z → Y , such that

να(i) ◦ (fi, φi) = k ◦ µi for each i.

• L (G) and L (H) are equivalent.

Proof. ⇒) Construct isomorphisms between the derivations by induction on the

generation of the languages.

⇐) The objects with one state in each language are exactly the lexicons. Since for

every derivation in one, there must be an isomorphic derivation in the other, then

a fortiori for each lexical item in one there is an isomorphic one in the other. Now

suppose that ((P1, F1), . . . , (Pn, Fn)) is a tuple of derivations in L (G), and that

there is some SC (µi : (Pi, Fi)→ Z : 1 ≤ i ≤ n) ∈ G((P1, F1), . . . , (Pn, Fn)) for some

rule G ∈ rulesG . Then, ext(µ) is in L (G), and by assumption of equivalence, there

is some isomorphic derivation (Q,R) in L (H). By the inductive construction of

L (H), (Q,R) must have been constructed from derivations isomorphic to the trees

(Qi, Ri) which are components of the forest obtained by removing the final stage of

(Q,R). The isomorphism between ext(µ) and (Q,R) leads to a bijection between the

(Pi, Fi) and (Qi, Ri) such that the derivations in correspondence under this bijection

are isomorphic. Moreover, there must be some SC (νi : (Qi, Ri)→ Y : 1 ≤ i ≤ n) ∈

H((Q1, R1), . . . , (Qn, Rn)) for some rule H ∈ rulesH such that (Qi, Ri) extended

along ν produce (Q,R), giving the requisite isomorphisms between SCs. We could

argue conversely starting with a SC in L (H).

91

Notice at the level of an entire language, we do not care which rule an SC

originated from nor which position each operand goes into in the tuple of operands.

Rather, we just care that given a SC used in one language, there is an isomor-

phic tuple, possibly rearranged, such that an isomorphic SC is possible on them

in the other language. This does not mean that at the level of grammars or

rules we cannot tell these apart. We could of course describe more rigid rela-

tionships requiring the rules to be in a bijection such that corresponding rules have

a more strict relationship between them. For example, one way to describe iso-

morphism at the level of grammar would not only require a bijection putting in

correspondence isomorphic lexical items, but also a bijection between rule-sets,

such that for each pair of rules G and H in correspondence, it must be that for

each SC (µi : (Pi, Fi) → Z : 1 ≤ i ≤ n) ∈ G((P1, F1), . . . , (Pn, Fn)) there is

a SC (νi : (Qi, Ri) → Y : 1 ≤ i ≤ n) ∈ H((Q1, R1), . . . , (Qn, Rn)) such that

there exist isomorphisms (fi, φi) : (Pi, Fi) → (Qi, Ri) and k : Z → Y such that

νi ◦ (fi, φi) = k ◦ µi for each i.10 Such a rigid notion of isomorphism would not be

extensional, since it could in principle require that even SCs which are not used are

in correspondence.

However, such a weak notion has many uses. For example, suppose we are

given an n-ary rule G, and a partitioning of D(A)n, the category of n-tuples of

derivations, into i equivalence classes. We could split the rule G into i different

rules, where Gi is only defined on the ith equivalence class, but takes exactly the

same values as G where defined. Two grammars on the same lexical items, one

10We return to a more subtle notion of an equivalence between rules in §4.2.

92

containing the rule G and the other the rules Gi instead, should be viewed as

equivalent, since overall they can produce the same derivations. Additionally, if a

grammar contains ‘redundant’ rules G and H, such that each SC arising from H

can already be produced using G, the language generated shouldn’t be viewed as

significantly different from the language generated by a grammar containing only

G.

More simply, an equivalence of languages cares only about structure and not

cardinality, even when languages are finite. Consider the following two languages

presented in Fig. 3.16 (where the objects may be typed to only lead to the com-

binations in the figure). These two languages cannot be isomorphic since they

don’t even contain the same number of derivations. However, they are equivalent

- for each derivation in one, there is an isomorphic derivation in the other, and

conversely. This has practical benefits. Suppose for a moment that all grammat-

ical rules are replete, in that for any rule G and SC (µi : (Pi, Fi) → Z : 1 ≤

i ≤ n) ∈ G((P1, F1), . . . , (Pn, Fn)), if there are isomorphisms (fi, φi) : (Pi, Fi) →

(Qi, Ri), then there is a structural change (νi : (Qi, Ri) → Y : 1 ≤ i ≤ n) ∈

G((Q1, R1), . . . , (Qn, Rn)) which is isomorphic, in that there is an isomorphism

k : Z → Y such that νi ◦ (fi, φi) = k ◦ µi. Suppose we have a grammar G , and we

add a lexical item to G which fits in the same frames as an existing lexical item in G

to construct G ′. This again should not essentially change the structure of G , and of

course the languages generated by the two grammars will be equivalent, since every

derivation in L (G ′) will be isomorphic to one in L (G) under the isomorphisms

replacing each occurrence of the new lexical item and its images under SCs with

93

Language 1 x

y

x

x y

y

Language 2 x

y

x

x y

y

y

a

a y

a

Figure 3.16: Two nonisomorphic equivalent languages.

the lexical item it was already isomorphic to in G and its images under SCs. If we

add a different lexical item (or even multiple lexical items), but (each) isomorphic

to the one we added to obtain G ′, to obtain G ′′, we should not only have another

equivalence between the languages generated by G ′′ and G , but also between those

generated by G ′ and G ′′. Since equivalences are only about the existence of isomor-

phic derivations and lexical items, it is again the case that simply adding new words

to a grammar which are isomorphic to existing ones does not change the essential

structure of the language generated.

3.4 Aside: Adjunctions and (Co)limits

Adjoint functors are one of the central unifying notions in category theory. A

functor may have a left or right adjoint, which can be thought of as a ‘best approx-

imate inverse’ from the left or right side. Adjoints will unify many constructions

in this thesis, and make proving statements about certain constructions, such as

94

yields, more straightforward.

Definition 3.4.1. An adjunction between two functors L : C → D and R : D → C

is a pair of natural transformations η : 1C → RL and ε : LR→ 1D, such that

• For any object C in C, εLC ◦ L(ηC) : LC → LRLC → LC is the identity

• For any object D in D, R(εD) ◦ ηRD : RD → RLRD → RD is the identity

These equalities are often represented by following diagrams:

L

LRL L

1LLη

εL

R

RLR R

1RηR

Rε

The natural transformations η and ε are called the unit and counit. When we have

such natural transformations relating L and R, we say that L is left adjoint to R

and that R is right adjoint to L, written L a R. Given any morphism f : LC → D

in D, we can take its adjoint R(f) ◦ ηC : C → RLC → RD; conversely, given any

morphism g : C → RD in C, we can take its adjoint εD ◦ L(g) : LC → LRD → D.

These correspondences give a bijection D(LC,D) ≈ C(C,RD) for any C in C and

D in D. based on Mac Lane [26], IV and Borceux [23], Ch. 3

An important property of adjoints is that they determine each other uniquely

up to natural isomorphism, if they exist. That is, if F, F ′ a G are both left adjoint

to G, then F and F ′ are naturally isomorphic. Conversely, if F a G,G′ are both

right adjoint to F , then G and G′ are naturally isomorphic. Also, the bijections

D(LC,D) ≈ C(C,RD) between hom-sets determine the unit and counit: ηC can

be recovered by taking the adjoint of 1LC : LC → LC for each C, and εD can be

recovered by taking the adjoint of 1RD : RD → RD for each D.

95

We give examples of adjoint functors which have occurred already in this thesis.

• s a i, where i : Pos → Proset is the inclusion of the category of partial

orders into the category of preorders and s : Proset → Pos is the functor

sending each preorder to its soberification. The unit η : 1Proset → is is the

natural transformation with coordinates ηP : P → i(s(P)) such that ηP is the

order-preserving quotient function sending a preorder P to its soberification.

The counit ε : si → Pos is a natural isomorphism, since the soberification of

any partial order, considered as a preorder, is already a partial order.

• δ a U , where U : FPos → FSet is the forgetful functor mapping a finite

partial order (X,≤X) to its underlying set X and δ : FSet → FPos is the

‘discrete’ functor sending any finite set X to the partial order with only the

reflexive relations such that x ≤ y if and only if x = y. The unit η : 1FSet →

Uδ is a natural isomorphism. The counit ε : δU → 1FPos has coordinates

εP : δ(UP)→ P such that εP is underlying the identity function. It is order-

preserving since any partial order must contain the relations of the form p ≤ p.

• κ a δ, where δ : FSet→ FPos is the discrete functor and κ : FPos→ FSet

is the connected components functor. The unit η : 1FPos → δκ is the natural

transformation with coordinates ηP : P → δ(κ(P)) mapping each element of

x to the connected component it is contained in. That is, it is the quotient

function associated to the equivalence relation ‘is in the same component as’.

The counit ε : κδ → 1FSet is a natural isomorphism.

• Let Set×Set be the category whose objects are pairs of sets (A,B) and whose

96

morphisms are pairs of set functions (f : A→ A′, g : B → B′). Let i : Set→

Set×Set be the functor which maps a set to its ‘diagonal’ A 7→ (A,A) and a

function to its diagonal f : A → B 7→ (f : A → B, f : A → B). This functor

has a left adjoint + : Set × Set → Set taking a pair (A,B) to its coproduct

A+B and a pair of morphism (f : A→ A′, g : B → B′) to (f + g) : A+B →

A′ + B′ which maps a 7→ f(a) and b 7→ g(b). The unit η : 1Set×Set → i ◦ + is

the natural transformation with coordinates η(A,B) : (A,B)→ (A+B,A+B)

which is the pair of coprojections (κA, κB). The counit ε : + ◦ i → 1Set has

coordinates εA : A+ A→ A, such that εA maps each copy of A back to A.

This last example shows that coproducts can be computed as a kind of adjoint.

This is in fact true in any category C with coproducts: the functor taking in a pair

of objects (A,B) of C and returning A+B can be viewed as a functor + : C×C → C

and it arises as the left adjoint to the inclusion C → C×C mapping C 7→ (C,C). The

category C×C is isomorphic to the category C2 whose objects are functors F : 2→ C

and whose morphisms are natural transformations, where 2 is a category consisting

of two objects {1, 2} with only the identity morphisms.

A pushout can also be seen as arising as the left adjoint of a functor category.

Let J be the category consisting of three objects {1, 2, 3} together with the identity

morphisms and two morphisms x : 1 → 2 and y : 1 → 3. A functor F : J → C is

essentially a selection of three objects A,B,C together with morphisms f : A→ B

and g : A→ C. We have an inclusion functor i : C → CJ mapping each object C to

the diagram all of whose objects are C and whose morphisms are the identity on C.

97

An element of the set CJ(F, i(X)) is determined by a pair of maps k : B → X and

h : C → X such that kf = hg. If i has a left adjoint L, then such pairs of maps

are in a correspondence with maps CJ(LF,X). But, we already know that if C has

pushouts, then the functor taking a diagram F to its pushout LF has this property.

So CJ can be viewed as the category of diagrams of shape (x : 1 → 2, y : 1 → 3)

and the functor L takes each such diagram to its pushout.

Similarly, consider the empty category E with no objects or morphisms. CE

is the category consisting of just one object, the functor F : E → C, and it can be

thought of as the empty diagram in C. There is again a functor i : C → CE taking

every object to this element. This has a left adjoint if and only if C has an initial

object, and L : CE → C is the functor sending the single object of CE to this initial

element.

More generally, for any category J whose total collection of morphisms is a set,

we can describe the category CJ whose objects are functors F : J → C and whose

morphisms are natural transformations between them. For every such category we

have a diagonal inclusion functor i : C → CJ which sends each object C to the

functor i(C) : J→ C which returns C for each object j in J and returns the identity

on C for each morphism of J. We say that C has colimits of type J if i has a left

adjoint. We say that C has all finite colimits if it has colimits of type J for any

category J whose collection of morphisms is finite. While it may sound like it is

difficult to check if a category C has all finite colimits, this condition can actually

be reduced to simple ones.

98

Claim 3.4.1. The following are equivalent.

• C has all finite colimits.

• C has pushouts and an initial object.

There is another very important basic colimit construction called a coequalizer.

Coequalizers are colimits of diagrams of the shape 1⇒ 2. We compute coequalizers

in Set. Given two functions f, g : A ⇒ B in Set, the coequalizer is given by the

quotient q : B → B/E, where E is the equivalence relation generated by relations

of the form (f(a), g(a)) for any a ∈ A. The equivalent statements in Claim. 3.4.1

are additionally equivalent to the following statement.

• C has all binary coproducts, coequalizers, and an initial object.

Summarizing, in Set, the initial object is the empty set, the coproduct is the

disjoint union, and coequalizers are essentially quotients by the transitive closure of

a relation. Colimits in many concrete categories can be thought of as abstractions

of these. Another important property of left adjoints is that they preserve colimits.

This means that given a diagram F : J → C and functor L : C → D which has a

right adjoint, if F has a colimit K, then LK is a colimit of the diagram LF : J→ D

in D. As an application of this fact, recall how we constructed pushouts in Pos.

We can first compute the pushout in Proset and then apply s. This works since s

is a left adjoint, and hence carries the pushout in Proset to the pushout in Pos.

We now rephrase yield functors as adjoints.

99

Claim 3.4.2. i : A → D(A) has a left adjoint > if and only if A has all finite

colimits. If it exists, we call > the yield functor of D(A).

Proof. First note that the original definition of a yield functor is equivalent to the

statement that> is left adjoint to i. Given a derivation F : P → A, the yield functor

returns the colimit of this diagram. This is since if K is a colimit of F , then maps

from K → A to any DSO A are in correspondence with morphisms (P, F)→ A by

the construction of a colimit. Then notice that we can draw all pushout diagrams

and the empty diagram in A using derivations, hence A must have all pushouts and

an initial object. We know that > carries sums to sums and that it is determined

unique up to isomorphism since it is a left adjoint.

Colimits have a natural dual called limits. Given a category J whose collection

of morphisms is a set, we say that C has all limits of type J if the inclusion i : C → CJ

has a right adjoint. We give a simple example. A limit of type 2 is called a product.

A product of a diagram selecting the pair (A,B) characterizes an object P together

with maps πA : P → A and πB : P → B, such that for any object Z with maps

f : Z → A and g : Z → B, there is a unique u : Z → P such that πA ◦ u = f

and πB ◦ u = g. In Set, the Cartesian product A×B together with the projections

πA : A × B → A mapping (a, b) 7→ a and πB : A × B → B mapping (a, b) 7→ b

gives such a product. For any functions f : Z → A and g : Z → B, there is a

unique function u : Z → A×B mapping z 7→ (f(z), g(z)) such that πA ◦ u = f and

πB ◦ u = g. Summarizing, the left adjoint of i : Set → Set2 gives disjoint unions,

while the right adjoint gives Cartesian products.

100

Consider the category J with morphisms x : 1 → 2 and y : 1 → 3. The left

adjoint to i : C → CJ gives pushouts. The right adjoint gives pullbacks, as used in

§3.2.1 on grammatical relations.

Consider again any one-object category ∗, and the unique functor i : C → ∗

mapping all objects of C to the single object of ∗. This functor has a left adjoint

only if C has an initial object. It has a right adjoint R : ∗ → C only if C has a

terminal object. A terminal object 1 of C is an object such that every object X of

C has exactly one morphism to 1. In Set, any singleton is a terminal object.

Consider again the inclusion i : C → C1⇒2. This has a left adjoint only if C

has all coequalizers. We say that it has all equalizers if it has a right adjoint. We

compute equalizers in Set. Given a pair of functions f, g : A ⇒ B, the equalizer

can be computed as the subset inclusions {a ∈ A such that f(a) = g(a)} ↪→ A.

We again say that C has all finite limits if it has all limits of type J for every

category J with a finite number of morphisms. We have the following result, dual

to the one for finite colimits.

Claim 3.4.3. The following are equivalent.

• C has all finite limits.

• C has pullbacks and a terminal object.

• C has all binary products, equalizers, and a terminal object.

A dual property of right adjoints is that they preserve limits. This means that

given a diagram F : J → C and functor R : C → D which has a left adjoint, if F

has a limit K, then RK is a limit of the diagram RF : J→ D in D.

101

See, e.g., Awodey [33] or Mac Lane & Moerdijk [30] for proofs of these facts,

as well as explicit constructions of general finite limits and colimits from simpler

ones.

It is also useful to be able to define (co)limits in a more general setting without

reference to their existence everywhere in the category. Given a diagram F : J→ C,

we define a cocone on F to be a natural transformation µ : F → i(C) for some

object C of C. This is essentially a map µj : F (j) → C for each j ∈ J such that

‘everything commutes’. We say that a cocone κ : F → i(C) is a colimit of F if for

every cocone µ : F → i(D), there is a unique C-morphism u : C → D such that

µ = i(u) ◦ κ. We call the maps κj : F (j) → C the coprojections to the colimit.

The inclusion i : C → CJ has a left adjoint if and only if every diagram F in CJ has

a colimiting cocone. Conversely, we call a natural transformation µ : i(C) → F a

cone on F . A cone π : i(C)→ F on F is a limit of F if for every cone µ : i(D)→ F

on F , there is a unique morphism u : D → C such that µ = π ◦ i(u). We call the

components πj : C → F (j) the projections. i has a right adjoint if and only if for

every diagram F it has a limiting cone. We can now state our definitions and results

for preservation of (co)limits in this more general setting. A functor U : C → D is

said to preserve (co)limits if for any diagram F : J → C, if F has a (co)limit K,

then UK is a (co)limit of UF . Left adjoints preserve all colimits that exist in C,

while right adjoints preserve all limits that exist in C, even if C and C do not have

all limits or colimits.

We give another example of an adjunction which occurred in the description

of c-command. Let X be any finite partial order, and let O(X) be the set of open

102

subsets of X. We turn O(X) into a category. For any open subsets U, V ∈ O(X),

let O(X)(V, U) consist of exactly one morphism if and only if V ⊂ U . This category

has binary products: for any two objects V and U , their product is V ∩ U . We

can construct a functor U ∩ − : O(X) → O(X) for any object U , which maps

V 7→ U ∩ V and W ⊂ V to U ∩ W ⊂ U ∩ V . This functor has a right adjoint

U ⇒ − which takes V to the largest open set W such that U ∩W ⊂ V . The counit

of this adjunction is given by U ∩ (U ⇒ V) ⊂ V . We can use this construction

to define U ⇒ V for any U, V ∈ O(X) to give the relative pseudo-complement

operation of §2.5.2. Note that we can carry out an identical construction in Set.

The product in this category takes a pair (A,B) to the set A × B. For any set

A, we can construct the functor A × − : Set → Set mapping B 7→ A × B and

f : B → C to 1A × f : A × B → A × C. This functor has a right adjoint (−)A

mapping B 7→ BA = {f : A → B such that f is a function} and g : B → C to

gA : BA → CA taking a function f : A → B to g ◦ f : A → C. The counit of this

adjunction is given by function application εB : A × BA → B mapping (a, f) to

f(a).

There is finally a very special case of adjunctions known as an equivalence of

categories. An equivalence of categories between C and D is a pair of functors F :

C → D and G : D → C together with an adjunction η : 1C → GF and ε : FG→ 1D

such that each of these natural transformations is a natural isomorphism. In this

case, we have F a G and G a F . Given a functor F : C → D, it is one half of an

equivalence of categories if and only if: (1) F is full; (2) F is faithful; and (3) for

each object D of D, there is some C in C such that FC is isomorphic to D. If a

103

functor F meets this last condition, we often say that it is isomorphism-dense. By

construction, equivalent languages are equivalent categories.

3.5 Representably Concrete Derivations

Chapter 2 showed that categories (representable constructs) A make for good

models of syntactic objects and structural changes between them. In §3.3, we con-

structed a category D(A) of derivations over A which are diagrams of objects from

A connected by structural changes from A. However, even when A is a repre-

sentable construct, D(A) need not be. In this section, we will construct a much

more restrictive category of derivations which forms a construct, and is much better

behaved mathematically. We first illustrate how despite their intuitive construc-

tion, categories D(A) do not have many desirable properties. We then move onto

an alternative but closely related model of derivations which does have many good

concrete properties.

3.5.1 D(A) Need Not Be a Representable Construct

D(A) is rarely representably concrete, even when A is. For example, when

A = Grph, there is an empty graph ∅, corresponding to a derivation with one state,

and also a derivation ∅ → ∅ with two states. There are two distinct morphisms from

the first to the second. If � is any derivation with all empty DSOs, then it will not

even be able to tell apart nodes of a DSO G in a derivation with just one state,

104

and hence it cannot represent a faithful functor.11 However, if � has any nonempty

DSO, then there are no maps from � to ∅ or ∅ → ∅, so both have empty set of

points. But there is only one function from the empty set to itself, so this cannot

represent a faithful functor either. Hence, there is no object representing a faithful

functor to Set, so D(Grph) is not a representable construct. We can make similar

arguments for many categories of derivations over representable constructs, such as

D(FPos).

One of the main problems causing this is that totally empty objects are part

of the structure of a derivation. Recall that when A is concretely representable by

�, the functor D(i(�),−) : D(A) → Set takes a derivation (F, P) to its set of

‘points’ - the disjoint union of the points in each DSO Fp occurring in it. In this

sense, empty stages aren’t ‘visible’ from the set of points of the derivation.

We can consider the subcategory C of derivations with no empty stages and

the functor U : C → Set taking each derivation to its set of points. This functor

is faithful, so we can describe subderivations with respect to it. However, it is not

possible to define a subderivation on an arbitrary subset. Consider the derivation

in Fig. 3.17, call it (P, F). {the′, the, dog} is a subset on this derivation. It is not

possible to construct a subderivation on this subset. We cannot put the′ and dog in

the same step in the subderivation, since we will then be forced to map this stage

11Any maps f, g : H → G precomposed with the empty map ! : ∅ → H are the empty map

! : ∅ → G. Since there are graphs with more than one vertex G, and hence multiple homomorphisms

x, y : 1→ G, the functor represented by the empty graph is not faithful. We can embed Grph in

D(Grph) and recreate the problem.

105

the′

dog′

the dog

Figure 3.17: A derivation with no subderivation on {the′, the, dog}.

both the to top stage of (P, F) and the lexical item dog. If they are to be in different

stages in the subderivation, then we will be forced to construct a SC mapping dog

to the′, but then the inclusion will not be a morphism since the component maps do

not give a natural transformation. We can argue similarly to show that there is no

possible subderivation structure on this subset no matter how we divide the points

into stages. However, it is still possible to describe the derivational relationships

between these points. For example, we can tell that the projects to the′, and that

the′ depends derivationally on dog, but dog does not project to the′.

We will construct a category very closely related to D(FPos) which is a rep-

resentable construct (which will imply it has no ‘empty’ stages), such that many

concrete constructions on them are possible, such as subderivations on arbitrary

subsets.

3.5.2 Representably Concrete Derivations of Finite Partial Orders

We construct a category very similar to D(FPos), except it is concretely

representable and has many other good concrete properties. For any partial order

(X,≤) and x ∈ X, let Ux = {y ∈ X | x ≤ y}.

106

Definition 3.5.1. A derivation ∆ consists of: (1) a set |∆| of points; (2) a partial

ordering ≤ on |∆|; and (3) for each point x ∈ ∆, a partial order >x and an order-

preserving surjection !x : Ux → >x. The assignments in (3) must meet the condition:

if y ≤ x, then there exists an order-preserving function fy,x : >x → >y such that

!y ◦ iy,x = fy,x◦!x, where iy,x : Ux ↪→ Uy is the subspace inclusion. If such a function

exists, it is unique.

Claim 3.5.1. Define a morphism of derivations φ : ∆→ Γ to be (1) a function

|φ| : |∆| → |Γ|; (2) such that a ≤∆ b implies that φ(a) ≤Γ φ(b); and (3) for every

x ∈ ∆, there must exist a (necessarily unique) order-preserving function φx : >x →

>φ(x) such that !φ(x) ◦ φ = φx◦!x : Ux → >φ(x). The class of derivations with these

morphisms forms a category Der.

There is an obvious faithful functor Der → D(FPos) mapping a derivation

∆ to its underlying fposet (|∆|,≤∆) with diagram taking x to >x, and an ordering

x ≤ y to the map fx,y : >y → >x. However, the advantage of this category over

D(FPos) is that the underlying function |φ| of a morphism φ by definition induces

all of the relevant comparisons between DSOs, hence we have the following result.

Claim 3.5.2. The functor |·| : Der → Set is faithful (hence Der is a construct).

It is represented by 1, the derivation consisting of a singleton with the only possible

derivation structure.

One natural question is what the embeddings of derivations are. In fact, for

any subset S ⊂ |∆|, there is a unique derivation structure with underlying set S

whose inclusion is an embedding, and all embeddings are isomorphic to one of this

107

form. Even better, the ordering between states in the subderivation is just the

ordering between them in ∆, and each derived object is associated to an embedding

of finite partial orders.

Claim 3.5.3. Let S ⊂ |∆| be any subset. For any a, b ∈ S, define a ≤S b iff a ≤∆ b.

For any a ∈ S, define >Sa = {k ∈ >∆
a | (∃x ∈ S) : (a ≤ x) and (!a(x) = k)},

with the ordering k ≤ c in >Sa iff the relation holds in >∆
a . Construct the map

!Sa : {x ∈ S | a ≤ x} = Sa → >Sa sending each x ∈ Sa to !a(x). This defines a

derivation S with underlying set S, and the function S ↪→ |∆| underlies a morphism

i : S ↪→ ∆, and this morphism is an embedding. Furthermore, any embedding

j : σ ↪→ ∆ is isomorphic to one of this form.

Notice one difference between Der and D(FPos) is that every point of a Der-

derivation corresponds to a ‘stage’. We should then actually think of the DSOs >x

as (possibly total) fragments of DSOs or derivational steps. We will again have an

inclusion of DSOs into derivations given by a functor i : FPos → Der. However,

this map will associate a finite partial order A to a derivation with one point for

every point of A.

Claim 3.5.4. The map i : FPos ↪→ Der (1) sending (P,≤) 7→ (P,≤P , id) where

for each x ∈ P , idx : Ux → >x is an iso; and (2) sending f : P → Q to a derivation

morphism acting as f on underlying points is a functor, and it is isomorphic to a

full subcategory inclusion. This functor has a left adjoint > : Der→ FPos, and we

denote >(∆) as >∆. When ∆ has root r, then >∆
∼= >r. Similarly, if ∆ is the sum

of rooted derivations ∆1 +. . .+∆n with roots r1, . . . rn, then >∆
∼= >r1 +. . .>rn . We

108

call this left adjoint the yield functor. Furthermore, there is a forgetful functor

F : Der→ FPos sending a derivation (∆,≤∆,>(−)) to the underlying partial order

(∆,≤∆). F is right adjoint to i.

Summarizing, we have a string of adjoints > a i a F . This string of adjoints

is very similar to the string of adjoints κ a δ a U , where U : FPos → FSet is the

forgetful functor from finite partial orders to their underlying sets. In this way we

can think of Der as putting ‘order relations on partial orders’, or more precisely,

projection relations on partial orders. We make this precise.

Claim 3.5.5. Define projection as a relation on the points of ∆: x @ y if and

only if fx,y : >y → >x maps the root of >y to the root of >x. Any morphism

φ : ∆ → Γ preserves projection, in the sense that x @∆ y implies φx @Γ φy. For a

subderivation S ↪→ ∆, and points x, y ∈ S, x @∆ y additionally implies x @S y.

The two functors U : FPos→ FSet and F : Der→ FPos are similar in that

they both forget structure. i is similar to the discrete functor, in that for any DSO

A, i(A) is ‘discrete’ with respect to projection, as x @∆ y implies x = y. Finally,

> is similar to κ, in that each point >∆ represents a ‘component’ with respect to

projection - it is essentially the quotient of the underlying partial order of ∆ by the

relation ‘is in the same projection component as’.

3.5.3 Concrete Properties of Der

We will describe some more concrete properties of morphisms of Der. We have

a dual notion to that of monomorphisms (Defn. 2.3.6) called an epimorphism. A

109

map e : A→ B is an epimorphism if for any maps f, g : B ⇒ C such that fe = ge,

then f = g. In other words, e is an epimorphism if it is right-cancellable. We have

the following results.

Claim 3.5.6. Let φ : ∆→ Γ be a morphism of derivations.

1. φ is an isomorphism iff it is (1) a bijection; such that (2) a ≤∆ b iff φa ≤Γ φb;

(3) each induced φx : >x → >φx is an isomorphism; (4) inducing isomorphisms

of structural changes as in the diagram:

>x >φ(x)

>y >φ(y)

∼

∼

!x,y !φx,φy

2. φ is a monomorphism iff its underlying set function is an injection

3. φ is an epimorphism iff its underlying set function is a surjection

Claim 3.5.7. Der has all finite limits and colimits and they are preserved by the

functor U : Der → FPos taking each derivation to its underlying partial order.

Monomorphisms arising as equalizers coincide with subderivations, so the notion

of subderivation can actually be stated internal to Der, without any reference to

underlying sets. In particular, having all finite limits means that Der has

1. A terminal object 1

The terminal objects are singletons ∗ together with the only possible derivation

structure. Any derivation has exactly one morphism ! : ∆ → 1 sending all

points to the single point of 1.

110

2. For any pair of derivations (∆,Γ), a product derivation ∆× Γ

A product of ∆ and Γ is given by the set |∆| × |Γ| together with the ordering

(d, g) ≤ (d′, g′) iff d ≤∆ d′ and g ≤Γ g′. For each point (d, g), >(d,g) =

>d×>g = {(k, c) | k ∈ >d, c ∈ >g} with the ordering (k, c) ≤ (k′, c′) iff k ≤ k′

in >d and c ≤ c′ in >g. Note that U(d,g) = Ud × Ug, and we give the map

!(d,g) : Ud×Ug → >d×>g by !(d,g)(a, b) = (!d(a), !g(b)). This gives a derivation

∆×Γ. The projection functions π∆ : ∆×Γ→ ∆ and πΓ : ∆×Γ→ Γ sending

(d, g) 7→ d and (d, g) 7→ g, respectively, are morphisms, and turn ∆× Γ into a

product.

3. For any pair of morphisms a, b : ∆⇒ Γ, an equalizer s : S → ∆

The equalizer S is constructed as the subderivation on S = {x ∈ ∆ | a(x) =

b(x)}, with s the associated embedding. Conversely, every subderivation em-

bedding arises as an equalizer.

while having all finite colimits means that Der has

1. An initial object 0

The initial derivation is given by the empty set ∅ together with the only possi-

ble derivation structure. For any derivation ∆, there is exactly one morphism

! : 0→ ∆ given by the empty function.

2. For any pair of derivations ∆,Γ a coproduct or sum derivation ∆ + Γ

The sum is given by the disjoint union |∆|+ |Γ| together with the coproduct

ordering. A point x ∈ |∆| + |Γ| corresponds to exactly one element of either

111

∆ or Γ, and we associate >x with the derived object in ∆ or Γ. The subset

inclusions into the disjoint union ∆,Γ ↪→ ∆ + Γ give coproduct inclusions.

3. For any pair of morphisms a, b : ∆ ⇒ Γ a coequalizer c : Γ → Γ̃. The

underlying set can be computed by first taking the underlying coequalizer of

finite partial orders: construct the relation R on |Γ| of pairs (a(d), b(d)) for

each d ∈ |∆|, and construct the quotient q : |Γ| → |Γ|/E by the transitive

closure of this relation. |Γ|/E inherits order relations from (|Γ|,≤Γ) of the form

q(g) ≤ q(g′) whenever g ≤ g′ in Γ. We take the smallest preorder containing

these relations to turn |Γ|/E into a preorder, such that q is an order-preserving

function. We then take the soberification s(|Γ|/E) of this preorder, obtaining

an order-preserving function s(q) : |Γ| → s(|Γ|/E) between partial orders. We

define the underlying partial order of Γ̃ to be s(|Γ|/E). We turn this partial

order into a derivation. We first construct a diagram of finite partial orders as

follows: for each x ∈ |Γ̃|, we take the partial order P = {g ∈ Γ such that x ≤

s(q)(g)} and the associated diagram F : P → FPos mapping F (g) = >g and

F (g ≤ g′) = fg,g′ . We first define >x to be the colimit of F . We hence have

obtained a collection of partial orders >x for each point x ∈ Γ̃. We want to

simultaneously quotient every object in this collection by the relation ‘g ∼ g′ if

s(q)(g) = s(q)(g′)’. On each >x, for each g, g′ ∈ Γ such that s(q)(g) = s(q)(g′)

we add the relation ((κg◦!g)(g), (κg′◦!g′)(g′)), where κg : >g → >x and κg′ :

>g′ → >x are the coprojections from the diagram F associated to x to the

colimit. We then take the quotient of >x by the equivalence relation generated

112

by this relation followed by soberification to obtain order-preserving functions

qx : >x → >̃x. For each point x ∈ Γ̃, we define the function !x : Ux → >̃x.

Given a point y ∈ Ux, choose any g ∈ Γ mapping to it under s(q), and

construct the map qx ◦ κg◦!g : Ug → >g → >x → >̃x. We define !x(y) to be

the image of g under this map.

Factorization systems. We call a morphism φ : ∆→ Γ a regular monomor-

phism if it arises as the equalizer of some pair of maps. We simplify the definitions

in Adámek, et al. [25] for a (Epi,RegMon) factorization system.

Definition 3.5.2. Let C be any category in which the composite of any two regular

monomorphisms is again a regular monomorphism. We say that (Epi,RegMon) is

a factorization system for C if:

1. For any morphism f : c→ d in C, there is a factorization of f = m ◦ e

c d

k

f

e
m

as an epimorphism followed by a regular monomorphism.

2. For any epimorphism e : a → b and regular monomorphism m : c → d and

pair of arbitrary morphisms f : a→ c and g : b→ d such that ge = mf , there

is a unique diagonal u : b→ c such that ue = f and mu = g.

a b

c d

e

f gu

m

The above axioms will guarantee that a factorization is essentially unique.

If we have any two epi-regular mono factorizations a
e−→ k

m−→ b and a
e′−→ k′

m′−→

113

b, then there is a unique isomorphism u : k
∼−→ k′ which is the diagonal of the

associated square. We claim that (Epi,RegMon) is a factorization system for

Der. Concretely, this will mean that every morphism factors as a surjection onto

its image given the subderivation structure, followed by an embedding.

Claim 3.5.8. The classes Epi (equivalently, surjections) and Emb (equivalently,

embeddings) form a factorization system for Der. That is, every morphism φ :

∆→ Γ factors as an epimorphism followed by an embedding ∆→ im(φ) ↪→ Γ up to

unique isomorphism of embeddings, where im(φ) = {g ∈ Γ | (∃d ∈ ∆) : φ(d) = g}.

We will prove all of these claims together.

Proof. That each of the constructions above produces the appropriate (co)limit can

be checked by direct computation. Hence, Der has all finite (co)limits. That U

preserves limits is automatic since U is a right adjoint; that it preserves colimits is

given by the constructions.

An isomorphism φ : ∆ → Γ must be a bijection since Der is a construct. To

see that order-relations hold in ∆ if and only if they hold in Γ is ensured by the fact

that φ and its inverse must be order-preserving. That an isomorphism extends to

an isomorphism between each DSO can be checked just be constructing the inverses

at each point.

We now show that φ is a monomorphism if and only if it is injective. That a

monomorphism φ has underlying injective function follows immediately from the fact

that the forgetful functor is representable: suppose that φ : ∆ → Γ is a monomor-

phism. The underlying set function is isomorphic to φ◦− : Der(1,∆)→ Der(1,Γ).

114

If x, y : 1 → ∆ are any two points of ∆ and φ ◦ x = φ ◦ y, then x = y since φ is

a monomorphism. Now suppose that φ is injective. Let f, g : Ξ ⇒ ∆ be any two

morphisms such that φ ◦ f = φ ◦ g. Suppose f 6= g. Then there is some point x ∈ Ξ

such that f(x) 6= g(x). By assumption, φ(f(x)) = φ(g(x)). But since φ is injective,

f(x) = g(x), a contradiction. So f(x) = g(x) for all points of Ξ, and hence f = g

since Der is a construct. So φ is a monomorphism.

To prove our claim about epimorphisms and image-factorizations, we need the

following lemma, whose proof is in Appendix A.

Lemma 3.5.8.1. Let X be any finite partial order and i : S → X any injective

order-preserving function considered as a subset, and take the pushout of preorders

of i with itself to obtain X+SX. Then, X+SX is already antisymmetric, and hence

the forgetful functor from FPos to Set preserves this pushout, and s(x) = t(x) if

and only if x ∈ S.

We now prove that a morphism φ : ∆ → Γ is epimorphic if and only if it is

surjective. (Surj ⇒ Epi) Suppose that φ is surjective. Let a, b : Γ⇒ Ξ be any pair

of morphisms such that aφ = bφ. For any point g ∈ Γ, we can find some d ∈ ∆

such that φ(d) = g by surjectivity. Then aφ(d) = bφ(d) implying that a(g) = b(g)

for all g ∈ Γ, so a = b. (¬ Surj ⇒ ¬ Epi) Suppose that φ is not surjective.

Then there is some point g ∈ Γ such that there is no d ∈ ∆ where φ(d) = g.

Construct the subset |Γ| − {g} ≡ S. S can be turned into a subderivation with

inclusion i : S → Γ. We can take the pushout of this morphism with itself leading

to morphisms s, t : Γ⇒ Γ +S Γ. Since U preserves colimits, and by Lemma 3.5.8.1,

115

these have the property that s(x) = t(x) iff x ∈ S, i.e. iff x 6= g. Then sφ = tφ,

since for all d ∈ ∆, φ(d) 6= g. But by construction, s 6= t, since s(g) 6= t(g).

We now show that a morphism is an equalizer of some pair of morphisms if and

only if it is a subderivation embedding. (Reg ⇒ Emb) If m is regular, then there

exist morphisms a, b : ∆ ⇒ Γ such that m is their equalizer. We apply |·| to get a

diagram of sets. Now suppose we have a derivation Σ and function f : |Σ| → |S|

such that |m|f underlies a morphism.

|S| |∆| |Γ|

|Σ|

|m| |a|

|b|
f

|m|f

Now, |a|(|m|f) = (|a||m|)f and |b|(|m|f) = (|b||m|)f . But |a||m| = |b||m|, so

|a|(|m|f) = |b|(|m|f), and |m|f is a morphism equalizing a and b. So there must

be a unique morphism u : Σ → S such that mu = |m|f . We apply the |·| functor

to obtain the equality |m||u| = |m|f of set functions. But |m| is injective, so

|u| = f , showing that f underlies a morphism. (Emb ⇒ Reg) Let m : S → ∆ be

an embedding. We construct the pushout of m along itself to obtain morphisms

s, t : ∆ ⇒ ∆ +S ∆. By Lemma 3.5.8.1, s(d) = t(d) iff d ∈ S. Let Σ be any

derivation and h : Σ→ ∆ any morphism whose set-theoretic image fits in S. h has

image inside S iff sh = th, i.e. if it equalizes s and t. Since S is an embedding, h

factors as a morphism g : Σ→ S such that mg = h. This shows that m equalizes s

and t, and that it is universal with respect to equalizing s and t.

We finally prove factorization. Let φ : ∆ → Γ be any morphism. Denote by

im(φ) the set of points g ∈ Γ such that there is some d ∈ ∆ where φ(d) = g. As a

subset of Γ, we can give this the unique subderivation structure. By the universal

116

property of embeddings, φ will factor as a set-function through im(φ), and hence

must factor through it as a morphism. This morphism is clearly surjective. So,

every morphism factors as an epimorphism followed by a regular monomorphism.

Now, let e : ∆ → Γ be any epimorphism (surjection), and let m : Ξ → Π be any

regular monomorphism, and let f : ∆ → Ξ and g : Γ → Π be any morphisms

such that ge = mf . We construct the requisite unique diagonal d : Γ → Ξ by a

diagram chase. Choose any element b ∈ Γ. Since e is epimorphic, it is surjective,

so we can find some element a ∈ ∆ such that e(a) = b. We tentatively assign b to

f(a), and we must make sure that this is well-defined. Fixing b ∈ Γ, choose any

two elements a, a′ ∈ ∆ such that e(a) = e(a′) = b. Clearly, g(e(a)) = g(e(a′)) and

hence m(f(a)) = m(f(a′)). But since m is injective, f(a) = f(a′). So choice of a

mapping to b does not matter, and the function d : |Γ| → |Ξ| mapping b to f(a) for

any a such that e(a) = b is well-defined. By construction, for any element a ∈ ∆,

d(e(a)) = f(a). For any b ∈ Γ, d(b) is equal to f(a) for any a mapping to b. Choose

any such a, and notice that g(b) = g(e(a)) = m(f(a)) = m(d(b)). So de = f and

g = md. We must now only prove that d is a morphism. But g = md, and g is a

morphism. Since m is an embedding, d must be a morphism.

The constructions are all well-behaved with respect to projection. That is,

(a, b) @ (a′, b′) in ∆ × Γ if and only if a @ a′ and b @ b′; a @ b in a subderivation

S ↪→ ∆ if and only if the relation holds in ∆; x @ b in ∆ + Γ if and only if the

projection relation holds in one of the summands.

117

3.5.4 Constituency in Der

We have seen many nice properties of Der as a representably concrete cate-

gory: isomorphisms are special bijections; embeddings special injections; coproducts

‘structured disjoint unions’ and products ‘structured cartesian products’ of underly-

ing sets; surjections and embeddings give a factorization system for Der-morphisms

compatible with a set-function’s image-factorization.

The method for ‘concretizing’ derivations was giving mappings from the un-

derlying state-space to the DSOs which have to be surjective (every point in a DSOs

must correspond to some point in the underlying state-space). However, the cost of

this is that the partial orders underlying derivations often have many more points

than usually associated with ‘derivation trees’, and are rarely trees. We remarked

that this is one major difference between Der and D(FPos) - every point x ∈ ∆ of

a derivation corresponds to a DSO >x. We might then not want to think of every

associated DSO >x as a step of a derivation, but possibly only a fragment of one.

We would then like to group the points of a derivation together such that we can

think of points in one cluster as being in the same ‘step’.

Consider the derivation given in Fig. 3.18. Let X = {1, 2, 3, 4} together with

the partial ordering on the left in Fig. 3.18. The maps !1 : U1 → >1 and !2 : U2 → >2

must be isomorphisms since they must be surjective. We let !3 : U3 → >3 be the

map sending both 3 and 2 to a single point. Finally, !4 : U4 → >4 is the map

identifying 4 with 1 and 3 with 2, such that [4 = 1] ≤ [3 = 2]. We can think of

this as associated to the object of D(FPos) on the right in Fig. 3.18. We intend to

118

4

3

1 2

a

b
4

b 3

a 1 b 2

Figure 3.18: Partial order underlying a derivation and its DSOs and structural
changes

group the objects >3 and >4 together, viewing them as being DSOs associated to

the ‘same step’. This step should be distinct from the steps associated to DSOs >1

and >2, which are also distinct from each other. We could extrinsically specify a

partition on the set of points to give this information. However, when the intended

DSOs are all connected, we can use the existing structure to define a relation which

is often a partition of the appropriate form.

Definition 3.5.3. We say that y is close to x, written x � y, if x ≤ y, and for all

z ∈ Ux such that !x(z) =!x(y), we have y ≤ z. We say that a morphism φ : ∆ → Γ

is coherent if x � y implies that φx � φy. We say that ∆ is transitive if � is

transitive.

Essentially, x � y are close if the y dominates all points projecting to !x(y) ∈

>x. If ∆ is transitive, then closeness is a partial ordering on |∆|. In this case,

we denote the set of connected components with respect to � as T (∆). For any

transitive derivation, there is a function q∆ : |∆| → T (∆) taking a point x to the

�-component it belongs to. The ordering ≤ on |∆| induces a preordering on T (∆):

119

if x ≤ y in ∆, then we declare q∆(x) ≤ q∆(y) on T (∆), and we take the smallest

preordering on T (∆) containing these relations.

Definition 3.5.4. If ∆ is transitive and the induced ordering on T (∆) is a partial

order, then we say that ∆ is separated. Let K be an element of T (∆), ordered by

�. If K has a ≤-least element (root) t, we say that t is a term. If ∆ is separated

and each component K of T (∆) has a root, we say that ∆ is separated by terms.

Notice that the requirement that q∆ : |∆| → T (∆) induces a partial order on

T (∆) is identically the requirement that q∆ is the quotient function associated to the

equivalence relation ‘is in the same �-component as’. Therefore, if φ is coherent,

then there is an induced order-preserving map T (φ) : T (∆) → T (Γ) mapping a

component K to the �-component containing φ(x) for any x ∈ K. We now want

to generalize the results of §2.5.2 about constituent-preserving maps to separated

derivations. We first generalize open maps.

Definition 3.5.5. Call φ : ∆ → Γ open if |φ| : (|∆|,≤∆) → (|Γ|,≤Γ) is an open

map.

Claim 3.5.9. Let φ : ∆ → Γ be an open morphism between arbitrary derivations.

Then the induced map >x → >φx is surjective for each D ∈ O(∆).

This follows immediately from the surjectivity of φx : Ux → Uφ(x) by openness.

However, such maps do not have to preserve constituency ‘on the nose’. We restrict

them further to capture constituent-preserving maps, and show that these lead to

traditional constituent-preserving maps between the spaces T (∆) of states.

120

Definition 3.5.6. Let φ : ∆ → Γ be a morphism between transitive derivations.

We say that φ is constituent-preserving if (1) φ is coherent; (2) φ is an open

morphism; (3) if K ∈ T (∆), then the map φ : K → C is surjective, where C is the

component of Γ containing the image of K.

Claim 3.5.10. If φ : ∆ → Γ is a constituent-preserving morphism between sepa-

rated derivations, then T (φ) : T (∆)→ T (Γ) is an open map.

Proof. In Appendix A

Hence, in the case when T (∆) and T (Γ) are trees, we will get a constituent-

preserving map between them in the traditional sense. We give an example in Fig.

3.19.

121

see

the

d boy

n

v

see

him

d/n

v

see

=d v

the

d boy

n

see

=d v

him

d/n

the

d =n

boy

n

Figure 3.19: A constituent-preserving map between trees.

The quotient of the above map into terms gives an open map of (order-

theoretic) trees. Each point in the quotient corresponds to an equivalence class

represented by the elements in each box in the space of points. Since the map

is open, it is constituent-preserving, and preserves c-command up to those in the

image.

see

see the

the boy

→
see

see him

Closeness and separation (by terms) are well-behaved under products and

122

sums.

Claim 3.5.11. (a, b) � (a′, b′) in ∆ × Γ if and only if a � a′ and b � b′. x � y in

∆ + Γ if and only if x � y in ∆ or x � y in Γ.

Claim 3.5.12. Let ∆ and Γ be separated (by terms). Then ∆× Γ and ∆ + Γ are

separated (by terms). Furthermore, T (∆ + Γ) = T (∆) + T (Γ) and T (∆ × Γ) =

{K × C | K ∈ T (∆), C ∈ T (Γ)}.

Proof. The first claim follows since dominance holds in the product if and only

if it holds in each coordinate. The second claim follows upon noticing that the

components of a product are the products of components, applying that observation

to the � orderings on separated derivations. To see that products of derivations

separated by terms are separated by terms, simply note that a term of a product

(t, s) is a pair of terms since domination must hold in each coordinate.

However, closeness is not well-behaved under arbitrary embeddings. We call

a subderivation coherent if its embedding is a coherent morphism. There is an

important class of coherent subderivations: those which correspond to a subobjects

of some DSO.

Claim 3.5.13. Let i : S ↪→ ∆ be any embedding. If x, y ∈ S and x � y in ∆, then

x � y.

Proof. Suppose that !Sx (z) =!Sx (y) ∈ >Sx . Then !x(z) = !x(y) since i is an embedding

and y ≤ z in ∆. But then y ≤ z in S, so x � y in S.

123

Claim 3.5.14. Let K ↪→ ∆ be any coherent embedding. If ∆ is transitive, then K is

transitive. Let ∆ be any derivation, x ∈ ∆ any point, and K ⊂ >x any subset. The

subderivation inclusionK ↪→ ∆ on the setK−1 = {y ∈ ∆ | (x ≤ y) and (!x(y) ∈ K)}

is always coherent.

Proof. Transitivity in K follows from the fact that x � y in S if and only if in ∆

when the embedding is coherent. Suppose that a � b in K−1. If z ∈ ∆ is such that

!a(z) = !a(b), then !x(z) = !x(b), so z ∈ K−1, and hence b ≤ z in ∆. So a � b holds

in ∆, and the embedding is coherent.

We now give some examples of subderivations and constituent-preserving maps.

We give a base derivation in Fig. 3.20, where we have drawn boxes around the �-

components. We do not write all the derivational-dominance relations, but instead

only the close ones. We use arrows to represent the morphisms between >x where

x is a term. For the derivations presented, for each term x, >x is isomorphic to

{y such that x � y}, so this depiction is unambiguous. The top derivation in Fig.

3.21 corresponds to a constituent-preserving embedding. The middle derivation is

an open subderivation, but which is not constituent-preserving, since it includes

‘fragments’ of steps. It gives an example of a subderivation of the form K−1 for

K = {dog, red,n′, φ} ⊂ >∆. Note that this subderivation corresponding to K rep-

resents that there was a fragment of the head the - specifically the selection feature

{−n} - which went into constructing K. Finally, the bottom derivation gives an

example of an embedding which is not open, but still coherent. This more abstract

kind of subderivation ignores certain steps, which means it must also take sub-DSOs

124

the

d dog

red n′ φ

the

d −n

dog

red n φ

red dog

n φ

Figure 3.20: Informal picture of a derivation representing a DP.

at each corresponding step. However, allowing non-open subderivations in the the-

ory is very helpful: it models, e.g., the fact that the derivation for the dog seems to

be a substructure of that for the red dog in that similar operations were performed on

analogous objects, and that similar grammatical relations were introduced between

them.

We finally give an example of an incoherent subderivation. The subderivation

on the subset {the′, the, dog} of the derivation depicted in Fig. 3.22 is not coherent.

In the subderivation, we have a closeness relation the′ � dog; however, in the

superderivation, this relation does not hold due to the intervening element dog′.

We finally describe an analogy of tree-like derivations, forest-like derivations,

and factorization of the latter into the former. For any subset S ⊂ |∆|, we represent

by (S) the set {x ∈ ∆ such that ∃s ∈ S, s ≤ x}.

Definition 3.5.7. Let ∆ be separated (by terms). We say that ∆ is a forest (of

125

dog

red n φ

red dog

n φ

dog

red n′ φ

−n dog

red n φ

red dog

n φ

the

d dog

n′ φ

the

d −n

dog

n φ

Figure 3.21: We give three examples of subderivations whose associated inclusions
into the derivation in Fig. 3.20 are substructure embeddings in Der.

126

the′

dog′

the dog

Figure 3.22: The subderivation structure on {the′, the, dog} is incoherent.

terms) if for any components K,C ∈ T (∆), we have (K) ∩ (C) = (K), (C), or ∅.

We say that a forest (of terms) is a tree (of terms) if there is a unique component

R ∈ T (∆) such that (R) ∩ (K) = (K) for any component K ∈ T (∆).

Claim 3.5.15. If ∆ is a forest, then T (∆) is a forest. If ∆ is a tree, then T (∆) is

a tree.

Claim 3.5.16. Let ∆ be separated (by terms), and let U ⊂ ∆ be an open sub-

set such that ∆/U ↪→ ∆ is a constituent-preserving embedding.12 Then ∆/U is

separated (by terms). Furthermore, if ∆ is a forest (of terms), then so is ∆/U .

Proof. Since ∆/U is a coherent subderivation, we have x � y in ∆/U if and only

if the relation holds in ∆, so ∆/U is transitive, and hence if x and y are in the

same component in ∆/U , so are they in ∆. Suppose that x ∈ K ∈ T (∆/U), and

x ∈ C ∈ T (∆). Then the inclusion K ↪→ C must actually be the identity since it

must be surjective. So for any x ∈ U , if x, y ∈ K ∈ T (∆), then y ∈ U . Blocks in

∆/U then correspond to blocks in ∆, and the ordering on T (∆/U) is a partial order

since it is a sub-order of T (∆). If ∆ is separated by terms, each K ∈ T (∆/U) is

also rooted by order-preservation and surjectivity on each component.

12Where ∆/U denotes the subderivation on U .

127

Now suppose ∆ is a forest. Let K,C ∈ T (∆/U), and suppose (K) ∩ (C) 6=,

and choose some point x ∈ (K) ∩ (C) from U . Then (K) ∩ (C) = (K) or (C) in ∆

since it is a forest, and hence in ∆/U since it is open.

It is an immediate corollary that when ∆ is a tree of terms, each constituent-

preserving embedding ∆/U ↪→ ∆ factors into trees of terms ∆/(Ki). Since each

inclusion ∆/(Ki) ↪→ ∆/U and ∆/U ↪→ ∆ are constituent-preserving embeddings,

their composites are, and we get constituent-preserving embeddings ∆/(Ki) ↪→ ∆

of trees of terms, viewed as ‘derivational constituents’ of ∆. In this way, each

constituent-preserving embedding corresponds uniquely to a family of derivational

constituents of ∆. A constituent-preserving embedding from a tree of terms into a

tree of terms corresponds to all the points up to some term (‘completed step’) of ∆.

3.5.5 Extensions, Grammars, and Equivalences for Der

We generalize the results of §3.3.3 to construct derivations recursively. We

again define an n-ary rule G as a mapping which takes in a tuple of derivations

(∆1, . . . ,∆n) and returns a set G(∆1, . . . ,∆n) of SCs (fi : ∆i → Z : 1 ≤ i ≤ n) such

that no two are isomorphic. By the adjunction > a i, these again correspond to

DSO morphisms fi : >∆i
→ Z. We again characterize extensions using a universal

property. However, we will have to be more subtle with concrete derivations, since

for an operation h : ∆ → Z, we will want to add points for every point of Z. We

should add order relations z ≤ x for z ∈ Z and x ∈ ∆ if z ≤Z h(x). Each added

128

order relation should correspond to structural updates determined by h. Finally, we

should add these points in such a way that connected parts of Z are ‘close’ to each

other, but not to any points of ∆.

Definition 3.5.8. Let h : ∆→ Z be any operation. Consider any derivation E and

pair of morphisms i : ∆ → E and j : Z → E, or equivalently, a single morphism

k : ∆ +Z → E. We say that k takes h-images to projection if for every x ∈ ∆,

k(h(x)) @ k(x), that is, kx projects to k(hx) in E.

Claim 3.5.17. For any operation h : ∆→ Z, there is a universal derivation ext(h)

together with a map k : ∆ +Z → ext(h) which takes h-images to projection, in the

sense that if k′ : ∆ + Z → E is any morphism taking h-images to projection, then

there is a unique derivation morphism u : ext(h) → E make the following diagram

commute.
∆ + Z ext(h)

E

k

k′
u

We can again build a functor from this construction from a comma category

back to Der. For an operation h : ∆ → Z, we will often denote the extension as

∆h.

Definition 3.5.9. Define Der/FPos to be the comma category defined by the

following equation.

1Der : Der→ Der← FPos : i

We call this the category of operations .

Concretely, an object of Der/FPos is a triple 〈∆, P, f : ∆ → i(P)〉, which we

129

can unambiguously write as f : ∆ → P . A morphism in this category is a pair

〈φ : ∆→ Γ, h : P → Q〉 such that the following diagram commutes.

∆ P

Γ Q

f

φ h

g

Claim 3.5.18. The assignment ext : Der/FPos → FPos sending h : ∆ → Z

to ∆h extends to a functor by taking the induced maps between universal objects:

u ◦ (φ+ f) : ∆ +Z → Γ +Y → Γg takes h-images to projection, so there is a unique

k : ∆h → Γg, which we write φf . This functor is determined uniquely up to natural

iso.

We now show many ways in which this functor acts intuitively like an ‘exten-

sion of ∆ along h’ on operations h : ∆→ Z.

Claim 3.5.19. For any operation f : ∆ → Z, consider the map to the extension

k : ∆ + Z → ∆h, or equivalently, two morphisms i : ∆→ ∆h and j : Z → ∆h. We

have the following properties:

(a) i : ∆→ ∆f is an open subderivation inclusion

(b) j : Z → ∆h is a subderivation embedding, and Z → ∆h → >∆h is an isomor-

phism (call it m), where the second map is yield∆h

(c) The composite ∆ → ∆h → >∆h → Z is h, where the last map is the inverse

m−1.

A morphism 〈φ, h〉 between f : ∆ → Z and g : ∆ → Z ′ is taken to a derivation

morphism φh : ∆f → Γg with the following properties:

130

(a) φh restricted to the subdervation ∆ factors through Γ ↪→ Γg as φ:

∆f Γg

∆ Γ

φh

φ

(b) φh restricted to the subderivation Z factors through Z ′ ↪→ Γ as h:

∆f Γg

Z Z ′

φh

h

(c) >φh : >∆f → >Γg ≈ h : Z → Z ′ are isomorphic morphisms of partial orders

under the isomorphisms >∆f ≈ Z and >Γf ≈ Z ′

It is straightforward to check all of these by direct construction of the exten-

sion, which follows a procedure very similar to the functor for derivations D(A).

In the case when the codomain Z of an operation h : ∆ → Z is not connected,

we cannot expect closeness to group Z into one step, since we have by definition

considered a step a connected component of sorts. If we would like to allow such a

distinction of a disconnected object as a single step, we must extrinsically state the

partitioning of the points of the derivation. However, when Z is connected, and ∆

is already separated, the extension is well-behaved. We can observe the following

from direct construction.

Claim 3.5.20. If ∆ is separated, and h : ∆ → Z is any morphism, then ∆h is

separated. If ∆ is a forest and Z is connected, then ∆h is a tree.

We can now give the definitions for a grammar and a generative construction

of a language from it. A grammar G is a (typically finite) set of rules rules together

131

with a (typically finite) set of base items lex of finite partial orders. We describe

the language derived by G as the class of derivations L (G):

Definition 3.5.10. If G is a grammar, then we define a language L (G) recursively

as follows.

1. If X ∈ Lex, then X ∈ L (G)

2. If (∆1, . . . ,∆n) is a tuple of derivations in L (G), G ∈ rules, and (hi : ∆i →

Z : 1 ≤ i ≤ n) ∈ G(∆1, . . . ,∆n), writing the sum of these morphisms as

h : ∆1 + . . .+ ∆n → Z, then (∆1 + . . .+ ∆n)h ∈ L (G)

We consider L (G) a category by taking it to be a full subcategory of Der.

That is, the L (G)-maps between a pair of objects ∆ and Γ is just the set of Der-

maps between them. Notice that if each of the lexical items is a connected space,

and each Z in each structural change (hi : ∆i → Z : 1 ≤ i ≤ n) is connected,

then each derivation in L (G) is a tree. If each lexical item is rooted along with

each Z in each SC, then each derivation in L (G) is a tree of terms. We can again

describe an equivalence of languages as a pair of functors F : L (G)� L (H) : G

such that jF ≈ iG are naturally isomorphic, where i : L (G) ↪→ Der and j :

L (H) ↪→ Der are subcategory inclusions. When the languages consist only of

trees, we have a result analogous to Claim 3.3.7 about equivalences of languages in

terms of properties of isomorphisms of lexical items and SCs by the same reasoning.

Finally, we can consider grammatical relations in Der. One way to determine lexical

items is positionally. For a separated derivation ∆, we call a step L ∈ T (∆) a lexical

132

item if it is maximal in T (∆), i.e. for all K ∈ T (∆), if L ≤ K, then L = K.

Suppose that G is a grammar with all rooted lexical items, with all SCs having a

connected output. Then L (G) will consist of trees such that each lexical item is

rooted. In such a case, in asking about the grammatical relations between lexical

items L and M at some stage K ∈ T (∆) such that K ≤ L and M , we can consider

the net SCs >(L) → >(K) and >(M) → >(K). We will be interested in the case when

m < l is an immediate domination relation in >(K), where l and m are the images

of the roots of L and M in >(L) and >(M). We can then look at the pullbacks of

>(L) → Ul ↪→ >(K) and >(M) → Um ↪→ >(K) to compute the grammatical relation

from the lP to the mP at the step K, as in §3.2.1.

3.5.6 Adding Structure to Der

We will want to generalize Der to allow derivations over DSOs with more

structure than just the underlying dominance ordering. We will be interested in

‘dominance partial orders with extra structure’, which can be formalized as con-

structs U : A → FPos over FPos. We first construct ADer of derivations of

A-objects, and then describe axioms which guarantee the ability to carry out recur-

sive constructions with them.

Let U : A → FPos be any faithful functor. We construct ADer as the

category whose objects are partial orders (|∆|,≤∆) together with for each point

x ∈ ∆ an A-object >x, together with a surjective order-preserving function Ux →

U(>x). Additionally, the induced order-preserving maps fy,x : U(>x) → U(>y)

133

must exist and underlie A-morphisms >x → >y. A morphism of ADer is just like

a morphism in Der, except the local maps φx : U(>x) → U(>φx) must underlie

A-morphisms. Hence, ADer is also a construct. ADer always has coproducts,

computed exactly like those in Der.

We must also be given an inclusion iA : A → ADer. We will again want A

to be representably concrete, and we will want the object representing its forgetful

functor to be carried to a derivation representing the functor turning ADer into a

construct. Formally, we ask that A→ FPos→ Set is representable (say by �) such

that U(�) ∼= 1, which will imply that U : ADer→ Der→ Set is representable by

iA�.

We can also state the universal properties for extensions in any such category.

Given an operation h : ∆→ iA(Z) on an ADer, we can still describe the property

of ‘taking h-images to projection’ for an ADer morphism φ : ∆+Z → Γ by looking

at underlying derivations. We ask that such extensions exist, and if they do they

again determine a functor extA : ADer/A→ ADer.

We now axiomatize pairs UA : A→ FPos, iA : A→ ADer which we will call

extendable which allow recursive construction of languages from grammars using the

same method.

• U ◦UA : A→ FPos→ Set is represented by an object � such that UA(�) ≈

1. It is a general fact that if a functor is representable, it determines its

representer up to isomorphism, so choice of representer does not matter.

• iA has a left adjoint >A.

134

• For every operation h : ∆ → iA(Z) in ADer/A, there is a universal map

extAh : ∆ + Z → ext(h) taking h-images to projection. We write the functor

that this determines as extA : ADer/A→ ADer.

• (Ambiguously) writing U for all of the forgetful functors U : A → FPos,

U : ADer→ Der, and U : ADer/A→ Der/FPos, we have natural isomor-

phisms U ◦ extA ≈ ext ◦ U , U ◦ iA ≈ U ◦ i, and U ◦ >A ≈ > ◦ U .

These guarantee that (1) ADer is representably concrete; (2) the underlying

finite partial order of the yield of an A-derivation ∆ is the yield of its underlying

derivation; (3) the extension of an A-derivation ∆ by an A-operation h is the

extension of the underlying derivation by the underlying operation. We can again

describe SCs as morphisms and rules as assignments of SCs to tuples.

We give an example. Let A be the collection of finite sets X together with a

dominance partial order ≤X , a precedence preorder �X , and a collection of unary

predicates λX , one for each element λ in a fixed set of labels L. Morphisms of A

are again ≤ and �-preserving functions f : X → Y such that if λX(x) = true,

then λY (f(x)) = true. There is a functor UA : A → FPos mapping (X,≤X ,�X

, {λX}λ∈L) to (X,≤X), and a functor iA : A → ADer sending (X,≤,�, {λX}λ∈L)

to the A-derivation with set of points X, derivational dominance relation ≤, and for

each point x ∈ X, >x the substructure on Ux, with !x : Ux → U(>x) an isomorphism

of partial orders. This pair of functors gives an extendable category of derivations.

135

3.6 Summary

We introduced the main contribution of this research, structural changes, mod-

eled by tuples of morphisms of underlying DSOs. Projection and grammatical rela-

tion information can be recovered totally by looking at images of points under net

SCs. We in fact showed that for dependency structures with features, we can recover

traditional grammatical relations from a typology of connectivity information. This

information was computed using pullbacks, and nonemptiness of certain pullbacks

comparing the minimal and maximal projections of two lexical items produced a

set of grammatical relations they can bear to each other which came with a nat-

ural ordering by ‘degree of connectivity’. We then presented two related models

of derivations. For both, we constructed a yield functor which returns the derived

object associated to a derivation, sums of derivations, and extensions of derivations

by an operation. We also showed that yield functors arise as adjoints to natu-

ral inclusion functors. These allowed us to construct languages recursively from a

grammar, where a grammar is a collection of basic DSOs together with a set of rules

which assign SCs to tuples of derivations. We then used a special kind of equiva-

lence of categories to characterize equivalences of languages. For special recursively

constructed languages, an equivalence of languages gives the same information as a

family of isomorphisms between lexical items and SCs provided by the rules. We de-

scribed a special category of derivations of finite partial orders Der, and we showed

that this category possesses many good mathematical properties considered as a

‘set with structure’. Specifically, it has sufficient structure to be able to characterize

136

subderivations, products of derivations, quotients of derivations and many other ba-

sic constructions. Considered as ‘partial orders with structure’, we also generalized

results about constituency to objects of Der.

137

Chapter 4: Rules

4.1 Overview

In formal models of grammar such as BPS [21, 34] and Minimalist Gram-

mars [27], grammatical operations are given as functions which take in some tuple

(A1, . . . , An) of DSOs and return another DSO f(A1, . . . , An) = Z. However, we em-

bellished such assignments with SCs from each Ai to Z. Just as embellishing deriva-

tions with SC data leads to a richer theory of grammatical relations, subderivations,

isomorphisms of derivations and equivalences of languages, etc., embellishing rules

with SC data leads to a richer theory of what structure they manipulate, when they

are equivalent, and other interesting properties.

In traditional transformational grammars [1], grammatical operations were

described via a Structural Analysis (SA), which described the properties of strings

they targeted, along with a Structural Change (SC), which described string manip-

ulations performed by the operation.1 Also, given a specific string replacement rule,

1Chomsky [17] used a slightly different implementation. Strings in a set could be manipulated

by movement, dropping, addition, or adjunction of elements. The transformations were restricted

by giving an analysis K of the strings and restricting class Q of the kind of structural properties a

string must have with respect to a constituent analysis. Various methods were given for assigning

138

one could generate all the productions associated to that rule - every instance of

that replacement rule being applied in some context (those admissible by the SA).

Conversely, given all the productions associated to a rule, it is often possible to

recover basic SCs and the SA. We will develop a general theory for extracting out of

any rule a SA and will characterize when a set of basic SCs generates all productions

associated to that rule. Using basic generating SCs, we can describe formally com-

parisons between rules like ‘induces the same SC in different contexts’, such as how

local and long-distance agreement both seem to involve a common SC, namely agree-

ment. We will also be able to give a theory about compilations of SCs, which allow

us to deconstruct a SC into component parts. For example, complement-merge

may be deconstructed into a phrasal-attachment component and a selection

component. Such deconstructions turn out to be more subtle than function compo-

sition, and allow us to unify properties of different syntactic relations, such as many

of them involving phrasal-attachment ‘plus something else’. These give a much

more general theory along the lines of Hunter [8].

4.2 Maximal Condition Categories (Structural Analysis)

The basic goal of this section is to formalize the following: given a rule G,

what structural properties of the inputs does G care about? For example, a rule

that attaches the root of one argument to the root of another cares about the roots

of each. A rule that targets the closest feature of some type α with respect to some

the derived strings a constituent structure.

139

metric cares about the type α and some positional notion of closeness. A rule that

adds precedence relations from a sequence a1 � . . . � an to a sequence b1 � . . . � bk

to build the sequence a1 � . . . � an � b1 � . . . � bk cares about the last element

of the first sequence and the first element of the second sequence. We will give a

general method to answer this question for any assignment G.

The way we frame this question formally is asking for a given tuple of mor-

phisms between DSOs or derivations where a rule is defined f : (X1, . . . , Xn) →

(Y1, . . . , Yn), does f preserve the structure that is relevant to this rule? For exam-

ple, if the rule cares about the root of the ith argument (because it is going to target

it for manipulation in some way), both Xi and Yi should have roots, and fi should

take the root of Xi to the root of Yi - otherwise, f will have taken a piece of structure

relevant for applying the rule to a context where the rule is no longer applicable.

That is, we will be interested in determining if f preserves the ‘conditions’ which

are relevant for determining whether a rule can apply.

We will develop the technique for the simplest case of rules first, involving

only DSOs. Fix some category A of DSOs. We temporarily take an n-ary rule

on A to be any assignment G which takes in n-tuples of objects of A and returns

a set G(A1, . . . , An) whose elements are objects Z of A together with a tuple of

morphisms fi : Ai → Z, one for each 1 ≤ i ≤ n. We again require that this set is

not redundant, in that it only includes each SC once up to isomorphism. We allow

this to be partially defined, in that it does not have to take in all possible n-tuples,

and also multiply (non-deterministically) defined, in that it returns a set of SCs.

For any n-ary rule G, define EG to be the collection of tuples of objects of

140

A where G is defined. We will turn EG into a category which we will call the

maximal condition category of G. The idea is that we will allow as many n-

tuples of morphisms as possible between operands which ‘preserve aspects of the

structure relevant for determining how to apply G’. Given an SC (fi : Ai → Z : 1 ≤

i ≤ n) ∈ G(A1, . . . , An), any tuple (B1, . . . , Bn) in E , and any tuple of A-morphisms

ki : Ai → Bi, we would like to describe how to ‘translate’ the fi along the ki to a

SC on (B1, . . . , Bn). We can then ask if the resulting SC is in G. We will call a SC

(gi : Bi → Y : 1 ≤ i ≤ n) together with a morphism j : Z → Y the (n-ary) pushout

of (fi : Ai → Z : 1 ≤ i ≤ n) along (k1, . . . , kn) if it has the following two properties:

(1) for each fi, we have j◦fi = gi◦ki; (2) if (g′i : Bi → Y ′ : 1 ≤ i ≤ n) and j′ : Z → Y ′

are any collection of morphisms meeting condition (1), then there exists a unique

A-morphism u : Y → Y ′ such that g′i = u ◦ gi for each 1 ≤ i ≤ n and j′ = u ◦ j. A

pushout, if it exists, is unique up to isomorphism: if (gi : Bi → Y : 1 ≤ i ≤ n) and

(g′i : Bi → Y ′ : 1 ≤ i ≤ n) are both pushouts, then there is a unique isomorphism

u : Y → Y ′ such that g′i = u ◦ gi and j′ = u ◦ j by the second condition. See Fig.

4.1.

Given any n-tuple of A-morphisms (k1, . . . , kn) : (A1, . . . , An)→ (B1, . . . , Bn)

between objects of EG, we can ask whether (k1, . . . , kn) preserves the relevant as-

pects of the DSOs to evaluate the SA for G, in which case we call it condition-

preserving. We let (k1, . . . , kn) be a morphism of EG if for every SC (fi : Ai →

Z : 1 ≤ i ≤ n) ∈ G(A1, . . . , An), the pushout of (fi : Ai → Z : 1 ≤ i ≤ n) along

(k1, . . . , kn) is an element of G(B1, . . . , Bn). We give an example pushout in Fig.

4.2. We let A be the category of finite sets X with a dominance partial order,

141

A1 . . . Ai . . . An Z

B1 . . . Bi . . . Bn Y

Y ′

f1

k1 ki

fi

fn

kn j

j′

g1

g′1

gi

g′i

gn

g′n

∃!u

Figure 4.1: An n-ary pushout of a SC along a condition-preserving morphism

precedence preorder, and unary predicate λX for each λ in a fixed set of labels L.

We will intuitively describe why the diagram in Fig. 4.2 is a pushout. Fixing the

objects in the upper left, upper right, and lower right corners, as well as (f1, f2) and

(k1, k2), we want to compute the pushout. We call them (A1, A2), Z, and (B1, B2),

respectively. Given any Y and maps g1 : B1 → Y , g2 : B2 → Y , and j : Z → Y ,

the conditions k1 ◦ g1 = j ◦ f1 and k2 ◦ g2 = j ◦ f2 put restrictions on g1, g2, and

Y . g1 and g2 must map her and pet to whatever j maps the and drank to. And

since pet ≤ her in Z and j must preserve this dependency. So the commutivity con-

dition requires that g2(pet) ≤ g1(her). Similarly, g1 and g2 must send parents and

pet to whatever j sends detective and drank to. And since detective � drank in Z,

the commutivity condition requires that g1(parents) � g2(pet). So the commutiv-

ity condition requires that g introduce certain dominance and precedence relations.

The universality requirement of the pushout makes sure that no more is done then

142

necessary to meet these conditions.

When A has coproducts, we can simplify this to the usual pushout as follows.

Given an SC (fi : Ai → Z : 1 ≤ i ≤ n), we can take the coproduct to obtain

a single morphism f :
∐
Ai → Z. For a tuple A = (A1, . . . , An), denote A =

A1 + . . .+An ≡
∐
Ai, and for a map k = (k1, . . . , kn), denote k = u for the unique

map from the coproduct A to B induced by the maps κi ◦ ki, where κi : Bi → B

is the coprojection of the ith coordinate into the coproduct B. See Fig. 4.3. In

this case, we can just take the usual pushout of f along k to obtain a morphism

g : B → Y . Precomposing this morphism with each of the coprojections leads to a

family of morphism gi = g ◦ κi : Bi → Z.

It is not immediately obvious that these morphisms form a category: why

should the composite (k1, . . . , kn) ◦ (m1, . . . ,mn) = (k1 ◦m1, . . . , kn ◦mn) be an EG

morphism? Intuitively, if m preserves the relevant conditions, and k preserves the

relevant conditions, then their composite preserves the relevant conditions. For-

mally, the universal property of pushouts guarantees this, and so EG is actually a

category. We prove this using an important property of pushouts.

Claim 4.2.1. (Pushout Lemma) In any category, given the diagram in Fig. 4.4

such that the left square is a pushout, the right square is a pushout if and only if

the outer rectangle is a pushout.

A B C

D E F

f

k

g

j c

a b

Figure 4.4: Pasting pushouts

143

the

detective
the � detective
D(the) =
N(detective) =
true

drank

some

coffee
drank � some � coffee
V (drank) = D(some) =
N(coffee) = true

drank

the

detective

some

coffee
the � detective �
drank � some � coffee
D(the) =
N(detective) =
V (drank) = D(some) =
N(coffee) = true

her

parents
her � parents
D(her) =
N(parents) =
true

pet

the

dog

furry
pet � the � furry � dog
V (pet) = D(the) =
N(dog) = Adj(furry) =
true

pet

her

parents

the

dog

furry
her � parents � pet �
the � furry � dog
D(her) = N(parents) =
V (pet) = D(the) =
N(dog) = Adj(furry) =
true

f1

k1

f2

k2 j

g1

g2

Figure 4.2: An example pushout of AL objects. Here, k1 is the obvious isomorphism,
and k2 is the only possible morphism between those objects. The induced map j
maps drank 7→ pet, the 7→ her, detective 7→ parents, some 7→ the, and coffee 7→ dog

144

A1 . . . An A1 + . . .+ An

B1 . . . Bn

B1 + . . .+Bn

φ1 φn

u

κ1 κn

Figure 4.3: A sum u of a tuple of maps

We will sketch a proof of the pushout lemma since many later arguments

will take the same form, but first we show how it helps us. In a category A with

coproducts, suppose we have a SC (fi : Ai → Z : 1 ≤ i ≤ n) which pushes out to a

SC (gi : Bi → Y : 1 ≤ i ≤ n) along (k1, . . . , kn) such that (gi : Bi → Y : 1 ≤ i ≤ n)

pushes out to a SC (hi : Ci → X : 1 ≤ i ≤ n) along (l1, . . . , ln). Then, by the

pushout lemma, f pushes out to h along l ◦ k. See Fig. 4.5.

A Z

B Y

C X

f

k j

g

l m

h

Figure 4.5: The pushout lemma applied to a structural change translated along two

condition-preserving maps.

We now prove the pushout lemma for the diagram in Fig. 4.4. (Right ⇒

Outer) Let x : C → Z and y : D → Z be morphisms such that x ◦ (g ◦ f) = y ◦ k.

145

Since the left square is a pushout, we have a unique morphism u : E → Z such

that u ◦ a = y and u ◦ j = x ◦ g. Since the right square is a pushout, we then have

a unique function v : F → Z such that v ◦ b = u and v ◦ c = x. Then v ◦ c = x

and v ◦ (b ◦ a) = u ◦ a = y. Furthermore, by the uniqueness of u and v, this v

is unique. (Outer ⇒ Right) Let x : C → Z and y : E → Z be morphisms such

that x ◦ g = y ◦ j. Then x ◦ (g ◦ f) = y ◦ j ◦ f = (y ◦ a) ◦ k. Since the outer

square is a pushout diagram, there is a unique u : F → Z such that u ◦ c = x and

u◦ b◦a = y ◦a. Now consider the maps u◦ b, y : E → Z. y ◦ j = x◦g by hypothesis,

and (u ◦ b) ◦ j = u ◦ c ◦ g = x ◦ g; also (u ◦ b) ◦ a = y ◦ a. Then, since the left square

is a pushout diagram, and both of these morphisms factor x ◦ g and y ◦ a through j

and a respectively, y = u ◦ b, since this factorization must be unique. Thus we have

produced a unique u : F → Z such that u ◦ c = x and u ◦ b = y.

We now describe a rule G and its condition category. We define a binary

unrestricted specifier-merge rule on A which takes in two (dominance) rooted

A-objects (A,B) such that the precedence orders on A and B are linear orders and

returns a singleton consisting of the SC which adds: (1) domination relations r ≤ a

from the root r of B to each element of A; (2) precedence relations a � b for each

element a ∈ A and b ∈ B; and (3) leaves syntactic type unchanged. The operations

in Fig. 4.2 are examples of such SCs, and (k1, k2) is one of the morphisms of its

condition category. We describe EG for this specifier-merge rule. Given two

pairs of input objects (A,B) and (A′, B′) - A objects with roots with respect to

dominance (≤) which are linear orders with respect to precedence (�) - a pair of

maps (kA, kB) : (A,B)→ (A′, B′) pushes G-SCs out to G-SCs if and only if kA and

146

kB both map the respective roots with respect to dominance to roots, and take the�-

final (respectively, initial) element of A (respectively, B) to the �-final (respectively,

initial) element of A′ (respectively, B′). This is indicative of the fact that only the

dominance-roots are relevant for determining which dominance relations to add; we

only care about the precedence-final element of A and precedence-initial element

of B to determine which precedence relations to add; and we do not care about

syntactic type for this unrestricted version of the rule.

The method we have sketched works for general rules. For example, if a

rule has (relativized) minimality constraints, etc. the morphisms of the maximal

condition category will have to take an element which is minimal in the relevant

sense and of the relevant type to an element which is minimal in the relevant sense

and of the relevant type. Taking the maximal condition category turns the mapping

G : EG → Set into a functor. Given a tuple of objects (A1, . . . , An), G returns

the set of G-SCs on it; given a condition-preserving morphism k : (A1, . . . , An) →

(B1, . . . , Bn), the function G(k) : G(A1, . . . , An)→ G(B1, . . . , Bn) takes each SC in

the first set to its pushout along k.

We say that a subcategory D ↪→ C is replete if for any object D of D and

isomorphism f : D → C in C, C and f are in D. Every subcategory has a repletion

obtained as the category containing all objects of C which admit an isomorphism

to some object in D, whose morphisms are morphisms of C which can be obtained

as a composite of morphisms of D and isomorphisms of C. Such repletions have

especially intuitive meanings for rules that are structural.

147

Claim 4.2.2. A subcategory D ↪→ C is equivalent to its repletion if and only if the

inclusion is pseudomonic. That is, for any objects x, y in D, the D-isomorphisms be-

tween them are exactly the C-isosmorphisms between them: Disos(x, y) = Cisos(x, y).

Proof. See, e.g. https://ncatlab.org/nlab/show/replete+subcategory.

We say that a rule G is structural if the inclusion EG ↪→ An is pseudomonic:

that is, if (A1, . . . , An) and (B1, . . . , Bn) are any pair of isomorphic tuples of objects

where the rule is defined, then it assigns them isomorphic SCs, and all (n-tuples

of A) isomorphisms between them are condition-preserving. Every structural rule

admits a repletion in an obvious way. We add tuples (B1, . . . , Bn) isomorphic some

(A1, . . . , An) already in its condition category, and define SCs on them by translating

across these isomorphisms.

The above results generalize to rules which take in objects of D(A) or objects

of ADer. However, for SCs on derivations, instead of taking a pushout in the

underlying category, we will want to take a SC (fi : ∆i → Z : 1 ≤ i ≤ n) and

tuple of morphisms of derivation (k1, . . . , kn) : (∆1, . . . ,∆n) → (Γ1, . . . ,Γn) and

translate f along k to obtain another SC. We then want to find the universal such

SC instead of taking the pushout (the universal such derivation), since the pushout

would produce a more general morphism of derivations, not necessarily one which

maps to a DSO.

Claim 4.2.3. Consider any extendable category of derivations ADer such that A

has all finite colimits. Let h : ∆ → Z be any operation and let φ : ∆ → Γ be

148

https://ncatlab.org/nlab/show/replete+subcategory

any morphism. Then there is an A-object P together with maps h′ : Γ → P and

f : Z → P such that fh = h′φ, which is universal with respect to partial orders with

this property. That is, if Q is any A-object and k : Γ→ Q and g : Z → Q any pair

of A-derivation morphisms such that gh = kφ, then there is a unique A-morphism

u : P → Q such that k = uh′ and g = uf .

∆ Z

Γ P

Q

h

φ f
g

h′

k

u

As with all universal constructions, (P, h′, f) is determined up to unique isomor-

phism, in that if (P , h′, f) is any other such A-object, then there is a unique isomor-

phism i : P → P such that h′i = h′ and fi = f . We say that (P, h′, f) is universal

with respect to φ and h. We often abuse terminology and call h′ the pushout of h

along φ.

Proof. We can construct this ‘pushout’ explicitly. We apply >A to the whole dia-

gram and take the pushout in A to obtain P and maps Z → P and >Γ → P . We

then compose the morphism ηΓ : Γ → i(>Γ) associated to the yield functor with

>Γ → P .

G will still be a functor G : EG → Set in this case. We formalize a rule on

A-derivations as follows.

Definition 4.2.1. Given a condition category EG ⊂ ADern, a rule is a functor

G : EG → Set such that:

• G(∆1, . . . ,∆n) is a set of SCs (fi : ∆i → Z : 1 ≤ i ≤ n) such that no two are

149

isomorphic.

• For any morphism k : (∆1, . . . ,∆n) → (Γ1, . . . ,Γn), G(k) is a function map-

ping each SC to its pushout along k.

For any such rule, we can expand EG by adding all of the morphisms of the

maximal condition category, or even further to its repletion.

Two rules G and H are intuitively equivalent if for each tuple (∆1, . . . ,∆n)

where G is defined, there is a tuple (Γ1, . . . ,Γn) such that ∆i ≈ Γi where H is

defined, and for each SC (fi : ∆i → Z : 1 ≤ i ≤ n) in G(∆1, . . . ,∆n), we have

a SC (gi : Γi → Y : 1 ≤ i ≤ n) in H(Γ1, . . . ,Γn) such that Z ≈ Y , and these

isomorphisms commute with the fi and gi, and conversely for any tuple (Γ1, . . . ,Γn)

where H is defined. Since we rely on translating across isomorphisms, this notion

makes most sense when both G and H are structural. We state this precisely below.

Definition 4.2.2. Let G and H be two structural n-ary rules with (pseudomonic)

inclusions k : EG ↪→ Dern and j : EH ↪→ Dern. An equivalence between two

structural rules G and H is given by the following data.

• Functors A : EG → EH and B : EH → EG

• Natural isomorphisms α : jA→ k and β : kB → j

• Natural isomorphisms η : G→ HA and ε : H → GB

These must meet the following conditions. WritingA(∆1, . . . ,∆n) as (A∆1, . . . , A∆n),

the bijection η(∆i)1≤i≤n : G(∆1, . . . ,∆n) → H(A∆1, . . . , A∆n) sends each SC (fi :

150

∆i → Z : 1 ≤ i ≤ n) in G(∆1, . . . ,∆n) to an SC (gi : A∆i → Y : 1 ≤ i ≤ n)

in H(A∆1, . . . , A∆n) such that there is an isomorphism ι : Z → Y such that for

each i, we have ι ◦ fi = gi ◦ αi, where αi is the isomorphism α−1
∆i

: ∆i = k∆i →

jA∆i = A∆i. Conversely, ε(Γi)1≤i≤n : H(Γ1, . . . ,Γn)→ G(BΓ1, . . . , BΓn) sends each

SC (gi : Γi → Y : 1 ≤ i ≤ n) in H(Γ1, . . . ,Γn) to an SC (fi : BΓi → Z : 1 ≤ i ≤ n)

in G(BΓ1, . . . , BΓn) such that there is an isomorphism ι : Y → Z such that for each

i, we have ι◦gi = fi◦βi, where βi is the isomorphism β−1
Γi

: Γi = jΓi → kBΓi = BΓi.

Finally, we ask that G(αβA) ◦ εA∆ ◦ η∆ : G(∆1, . . . ,∆n) → H(A∆1, . . . , A∆n) →

G(BA∆1, . . . , BA∆n) → G(∆1, . . . ,∆n) is the identity function, where αβA is the

morphism with components α∆i
◦ βA∆i

: BA∆i = kBA∆i → jA∆i → k∆i = ∆i,

and similarly that H(βαB) ◦ ηBΓ ◦ εΓ is the identity.

In other words, an equivalence of structural rules is given by an equivalence

between their maximal condition categories, together with a bijection between SCs

on objects in correspondence given by the equivalence of categories, such that these

bijections take isomorphic SCs to isomorphic SCs while translating along the equiv-

alence, and are mutually inverse. The information (η, ε) is actually determined by

(A,B, α, β). Each of η and ε determine each other: given η, we can recover ε just

by looking at η and the inverse of G(αβA) at each coordinate, and conversely. To

see that η is itself determined by (A,B, α, β), note that η∆ must take each SC to

an isomorphic one, composing with the isomorphisms αi. However, since each SC

is in each set only once up to isomorphism, there is only ever one such SC. So an

equivalence of rules is given by an equivalence of categories between EG and EH

151

which admits certain associated bijections at each coordinate. Finally, A and B

determine the other up to natural isomorphism. This can be seen by noting that

A and B give rise to an equivalence of categories between EG and EH with natural

transformations αβA and βαB (since i and j are pseudomonic), and hence they are

mutually adjoint. So, up to natural isomorphism, an equivalence is just given by a

functor A : EG → EH which admits an inverse and certain isomorphisms between

SCs. It is straightforward to check that this relation gives an equivalence relation

on n-ary rules given by composition of such equivalences.

We say that two rules G and H are isomorphic if EG and EH are equal,

and we have a natural isomorphism η : G → H such that η∆ : G(∆1, . . . ,∆n) →

H(∆1, . . . ,∆n) takes each SC to an isomorphic one, in that if η∆(fi : ∆i → Z : 1 ≤

i ≤ n) = (gi : ∆i → Y : 1 ≤ i ≤ n), then there is a (necessarily unique) isomorphism

ι : Z → Y such that ι ◦ fi = gi. We have the following natural result.

Claim 4.2.4. Let G and H be two n-ary structural rules. Then G and H are

equivalent if and only if their repletions are isomorphic.

Proof. ⇒) If they are equivalent rules, they lead to isomorphic repletions, since they

have isomorphic tuples with isomorphic SCs on them.

⇐) Denote the repletion of EG in Dern by ρEG. If G and H have isomorphic

repletions, then ρEG = ρEH . By Claim 4.2.2, the inclusions EG ↪→ ρEG = ρEH ←↩ EH

are equivalences of categories, since G and H are structural. As equivalences, they

determine inverses up to natural isomorphism, and we may use these inverses to

obtain an equivalence between EG and EH which gives rise to an equivalence of

152

rules.

This intuitively makes sense. Two rules are equivalent iff they do isomorphic

things to isomorphic inputs. By constructing their repletions, we extend their be-

havior, already isomorphic, onto all tuples isomorphic to ones where they are already

defined. They will have isomorphic behavior on these new tuples if and only if they

already did equivalent things to isomorphic structures.

4.3 Generating Structural Changes

Now we would like to characterize basic generating SCs for rules, having de-

fined an abstracted version of SAs. The basic idea is that a set of SCs {(fi,j : Ai,j →

Zj : 1 ≤ i ≤ n)}j∈J generates a rule G if every G-SC can be obtained as one of the

SCs in the set pushed out along a morphism of EG.

We give a single generating SC for our specifier-merge rule which uses

precedence ordering and syntactic type, so that we can show the technique works

even when our objects have ‘extra structure’ beyond dependencies. We will then

state the technique totally abstractly, showing that it doesn’t depend on any partic-

ular assumptions about the DSOs. A will consist of two elements {a, l} with root a

- i.e. a ≤ l - and linearly final element l - i.e. a � l. B will consist of two elements

{b, i}, a root b and linearly initial element i. In both objects, the elements have

no syntactic type - i.e. λ(x) = false for any λ ∈ L and any x ∈ A or B. These

objects have elements which act as dummy roots with dummy precedence final and

initial elements, and are syntactically untyped since this version of the rule does not

153

care about syntactic type. The output DSO Z consists of {a, b, i, l} with dominance

relations b ≤ i, a, l; a ≤ l; and the reflexive relations. It has precedence relations

a � l � i � b. All elements have no syntactic type, indicating that the rule doesn’t

change syntactic type. The pair of SC functions map each element to themselves.

Denote this pair (fA, fB). For any pair (X, Y) of EG objects, there is exactly one EG

morphism (kA, kB) : (A,B)→ (X, Y) taking a to the root of X, l to the precedence-

final element of X, b to the root of Y , and i to the precedence-initial element of Y .

The pushout (fA, fB) along (kA, kB) is the desired SC on (X, Y). See Fig. 4.6 for

an example.2

We can formulate generation simply using representable functors. Consider

for any category C the category whose objects are functors f : C → Set and whose

morphisms are natural transformations. We denote this category as SetC, and we

denote a set of morphisms as Nat(F,G). We denote a functor C(C,−) as yC.

Claim 4.3.1. (Yoneda Lemma) The natural transformations Nat(yC,F) from yC

to F are in bijection with the elements of the set F(C). That is, F (C) ∼= Nat(yC,F)

Proof. To construct the correspondence, see that 1C ∈ C(C,C) = yC(C), and

choose any natural transformation µ ∈ Nat(yC,F). Then µC(1C) ∈ F(C). If we

can argue that this map fully determines the behavior of the natural transformation,

then the proof is complete. Choose an element f ∈ C(A,C) = yC(A). 1C ∈ C(C,C)

2Note that we can manipulate feature activity using pushouts. If A is a category which has a

predicate α ‘inactive’ on the sets of nodes, take the morphism {x} → {x} where α(x) = false in

the first object and α(x) = true in the second. The pushout of this morphism along a morphism

mapping x 7→ a will deactivate a.

154

a

l
a � l

b

i
i � b

b

a

l

i

a � l � i � b

the

detective
the � detective
D(the) =
N(detective) =
true

drank

some

coffee
drank � some � coffee
V (drank) = D(some) =
N(coffee) = true

drank

the

detective

some

coffee
the � detective �
drank � some � coffee
D(the) =
N(detective) =
V (drank) = D(some) =
N(coffee) = true

fA

kA

fB

kB
j

f1

f2

Figure 4.6: A basic SC generating specifier-merge. There is only one EG mor-
phism sending the basic generating pair to any other EG object. Here, it maps
a 7→ the, l 7→ detective, b 7→ drank, and i 7→ drank. Intuitively, the basic SC adds
a dominance relation b ≤ a between the roots, and precedence relation l � i, while
leaving syntactic type alone. (fA, fB) and (kA, kB) determine the output DSO as
well as (f1, f2).

155

maps to f ∈ C(C,A) under the function y(f) ≡ f ◦−. But the naturality condition

means that the following diagram must commute.

1C

f

∈

∈

yC(C) = C(C,C) F(C)

yC(A) = C(A,C) F(A)

µC

f◦− F(f)

µA

3

3

µC(1C)

µA(f) = F(f)(µC(1C))

So, µA(f) must equal F(f)(µC(1C)). So the natural transformation µ : yC → F

is totally determined by the value of µC(1C). The bijection F(C) ≈ Nat(yC,F) is

given by the correspondence µC(1C)↔ µ.

A natural transformation µ : F → G in SetC for any C is an epimorphism if

and only if for every object C in C, µC : F (C) → G(C) is surjective. Given a SC

r ≡ (fi : ∆i → Z : 1 ≤ i ≤ n) ∈ G(∆1, . . . ,∆n), there will be an associated natural

transformation r̃ : y(∆1, . . . ,∆n)→ G.

Definition 4.3.1. We say that an SC r generates G if r̃ is an epimorphism in

SetEG .

We can then think of this single SC as covering the whole rule G. This is

equivalent to the statement that for any tuple (Γ1, . . . ,Γn), the function r̃(Γ1,...,Γn) :

EG((∆1, . . . ,∆n), (Γ1, . . . ,Γn)) → G(Γ1, . . . ,Γn) taking each condition-preserving

morphism k : (∆1, . . . ,∆n) → (Γ1, . . . ,Γn) to the pushout of r along k is surjec-

tive. Hence, every G-SC on (Γ1, . . . ,Γn) arises as the pushout of r along some

condition-preserving morphism.

There is a natural generalization for describing generation by a set of SCs.

Given a set of SCs {ri}i∈I , possibly on different objects, we can obtain a set of

156

natural transformations into G. We say that this set of SCs generates G if their

sum is epimorphic. This is equivalent to saying that each SC in G(Γ1, . . . ,Γn) arises

as the pushout of some ri along some condition-preserving morphism. When a rule

G is generated by a single operation r, grammatical operations essentially reduce

to the pushout method of applying rules in graph grammars [5]. The condition

categories play the generalized role of constraints and application conditions in graph

grammars [35]. We think of EG as the SA, and a generating SC r ≡ (fi : ∆i → Z :

1 ≤ i ≤ n) ∈ G(∆1, . . . ,∆n) as a basic production rule. Intuitively, a basic SC and

SA should determine the rule G. This is true.

Claim 4.3.2. Let EG ⊂ ADern be a category of tuples of A-derivations, and let

r ≡ (fi : ∆i → Z : 1 ≤ i ≤ n) ∈ G(∆1, . . . ,∆n) be a SC. Then r determines a rule

G up to isomorphism, in that if G and G′ are any two rules generated by r, then

G ≈ G′, and furthermore the bijections G(∆1, . . . ,∆n) ≈ G′(∆1, . . . ,∆n) take each

SC to an isomorphic one.

Proof. This follows straightforwardly from the definition of rules and generation. If

G : EG → Set is any rule, and r̃ : y(∆1, . . . ,∆n) → G is an epimorphism, then

every element of G(Γ1, . . . ,Γn) for any tuple can be obtained as the pushout of r

along a morphism in EG((∆1, . . . ,∆n), (Γ1, . . . ,Γn)). Then, each SC is determined

up to isomorphism of SCs. The result generalizes naturally to generation by a set

of SCs.

It is a welcome result that the SA EG and basic SC determine a rule G, but

only up to natural isomorphism. Consider the following formalization of feature-

157

sharing (which notably we use for selection) in Frampton & Gutmann [12], given in

the Bare Phrase Structure framework.

Consider [(2)] and suppose that Agree applies to the pair of nodes.

(2) {Num1, Case2, . . . }, {Per3, Num4, Case5,. . . }

[. . .] suppose that Agree induces feature sharing, so that matching

features coalesce into a single shared feature, which is valued if either of

the coalescing features is valued. So [(2)] produces:

(3) {Num6, Case7, . . . }, {Per3, Num6, Case7,. . . }

The value of Num6 is the coalescence of the values of Num1 and Num4.

The value of Case7 is the coalescence of the values of Case2 and Case5.

New indices were chosen, but index 6, for example, could just as well have

been 1 or 4. The choice of index is not a substantive question,

assuming that it is suitably distinguished. [my emphasis]

If the two coalescing features are both valued to start with, it is not

clear that the result is coherent. But this will never arise, because Agree

is driven by an unvalued feature.

A picture will make the idea clearer. Agree takes [(4a)] into [(4b)],

assuming that none of the features indicated by the ellipsis marks match.

(4)

Frampton & Gutmann [12], p. 4

158

The emphasized statement can be interpreted as meaning exactly that the

SC is determined only up to isomorphism. It is the structure of the output object

and the maps into it which are determined, not the name of the element used to

represent the identified points.

4.3.1 Inclusiveness and Weak Extension

One common assumption about grammatical operations is that they are in-

clusive. One statement of this is given by Chomsky. “The Inclusiveness Condition:

No new features are introduced by CHL [the computational procedure for human

language],” Chomsky [36], p. 113. We would like to see how this can be stated

naturally in the language of our categories of DSOs. One way to interpret the In-

clusiveness Condition (IC) is to say that a SC may only introduce structure but not

new material. If the IC is too strong, and cannot even do that, then operations

can’t do anything. This can be formalized on concrete categories by asking that a

SC fi : Ai → Z is jointly surjective, that is, for each z ∈ Z, there is some a ∈ Ai

such that fi(a) = z. When the forgetful functor commutes with sums, this can be

stated simply as saying that f :
∐
Ai → Z is surjective.

We note that epimorphisms in many of our categories of DSO are often iden-

tically the morphisms with underlying surjective functions.

• The epimorphisms in Set are exactly the surjective functions.

• The epimorphisms in FPos are exactly the order-preserving surjections.

• The epimorphisms in A of sets X with dependency partial order ≤ and prece-

159

dence preorder � are exactly the surjections.

Claim 4.3.3. In any construct, surjections are epimorphisms.

Proof. Let f : A → B be any surjective morphism. Let x, y : B ⇒ C be any two

morphisms such that xf = yf . For any b ∈ B, we can find some a ∈ A such that

f(a) = b by surjectivity. But for any a, x(f(a)) = y(f(a)), so x(b) = y(b) for all

b ∈ B, and x = y as functions, and hence as morphisms by the faithfulness of the

forgetful functor.

Sometimes, a construct may have epimorphisms which are not surjections, but

we can often discover that the two notions are coextensive using a proof technique

like that for Claim 3.5.6. Using the more abstract notion epimorphism has many

technical advantages. For one, we have the following fact.

Claim 4.3.4. Let e : A → B be any epimorphism, and let f : A → C be any

morphism. Then the pushout e′ : C → D of e along f is also an epimorphism.

Consider why this is useful. We can say that a rule G is inclusive if for every

G-SC (fi : ∆i → Z : 1 ≤ i ≤ n), the morphism >f :
∐
>∆i
→ Z is epimorphic. It

is an immediate consequence that if a rule is generated by an epimorphic SC, then

G is inclusive.

When we build derivations over constructs, we can also state a weak form of

the Extension Condition (EC). “One possibility is to stipulate that the Extension

Condition always holds: operations preserve existing structure,” Chomsky [36], p.

136. There are various levels of strengths of the EC which we can implement. A

160

very strong one is that given two objects A and B which combine to form Z, A and

B should be constituents of Z. That will clearly be too strong for our dependency

structures, where root attachment always only implies that the attachee is not a

constituent. A weaker form can be stated: a SC is weakly extensive if each morphism

>fi : >∆i
→ Z is an embedding. However, this is still quite strong - this will not

allow us to do many reasonable things like deactivate features. We may only want

to require that a SC be weakly extensive on its underlying finite partial order in

the case we are working in an extendable category UA : A → FPos. This will

imply that we add no order relations within each operand, only between elements

of different operands. We can similarly say that a rule G has the relevant property

when every SC does.

4.3.2 Example Grammar: Boston et al. 2010

We demonstrate a fragment of a more fully-fledged grammar with ‘extra struc-

ture’. We demonstrate the main properties of ‘nice’ additions of structure to DSOs

by sketching a model based on Boston, et al. (BHK) [16], from which we can gen-

eralize. Like their model, we will manipulate dependency structures. Unlike their

model, we will put features directly in these structures. Also unlike their model,

we will not allow totally empty components, though this will not affect derivations

actually used by the model. We review their model below.

We define dependency trees in terms of their nodes, with each node

in a dependecy tree labeled by an address, a sequence of positive inte-

161

gers. We write λ for the empty sequence of integers. Letters u, v, w are

variables for addresses, s, t are variables for sets of addresses, and letters

x, y are variables for sequences of addresses. If u and v are addresses,

then the concatenation of the two is as well, denoted by uv. Given an

address u and set of addresses s, we write ↑u s for the set {uv | v ∈ s}.

Given an address u and a sequence of addresses x = v1, . . . , vn, we write

↑u for the sequence uv1, . . . , uvn. Note that ↑u s is a set of addresses,

whereas ↑u x is a sequence of addresses.

A tree domain is a set t of addresses such that, for each address u

and each integer i ∈ N, if ui ∈ t, then u ∈ t (prefix-closed), and uj ∈ t

for all 1 ≤ j ≤ i (left-sibling closed). A linearization of a finite set S is

a sequence of elements of S in which each element occurs exactly once.

For the purposes of this paper, a dependency tree is a pair (t, x), where

t is a tree domain, and x is a linearization of t. A segmented dependecy

tree is a non-empty sequence (s)1, x1), . . . , (s)n, xn), where each si is a

set of addresses, each xi is a linearization of si, all sets si are pairwise

disjoint, and the union of the sets si forms a tree domain. A pair (si, xi) is

called a component, which corresponds to chains in Stabler and Keenan’s

terminology [4].

An expression is a sequence of triples (c1, τ1, γ1), . . . , (c1, τ1, γ1), where

(c1, . . . , cn) is a segmented dependency tree, each τi is a type (lexical or

derived), and each γi is a sequence of features. We write these triples

as ci :: γi (if the type is lexical), ci : γi (if the type is derived), or ci · γi

162

Figure 4.7: Merge rules on dependency trees [16]

(if the type does not matter). We use the letters α and ι as variables

for elements of an expression. Given an element α = ((s, x), τ, γ) and an

address u, we write ↑u α for the element ((↑u s, ↑u x), τ, γ).

Given an expression d with associated tree domain t, we write next(d)

for the minimal positive integer i such that i 6∈ t. BHK [16]

We reproduce their grammatical merge rules in Fig. 4.7.

We then construct a more general category of expressions than those in Boston,

et al. Define an expression to be any finite partial order s whose ‘dominance/dependency’

order is written ≤, together with (1) a partition S = {s1, . . . , sn} and a ‘chain’ pre-

ordering ⇀ on S; (2) for each each si a subset πi ⊂ si of pronouncable nodes and a

‘precedence’ preordering �i on πi; (3) a unary predicate δ ‘derived’ on the set S; and

(4) a subset γi ⊂ si of ‘active’ features on each partition, together with a preordering

�i on each set γi representing ‘checking order’. Usually, ⇀ and each �i and �i

are linear orders, but we generalize so that the category is more well-behaved: for

example, we may like to take sums of syntactic objects, where the chains are linearly

163

ordered in each of the summands, but they are not ordered with respect to chains

from the other summand.

Writing the above expression simply as σ, a morphism f : σ → τ between

derivations is a function f : s → t between partial orders, preserving ≤ such that

(1) if x, y ∈ s are in the same partition si, then f(x), f(y) are in the same partition

tj such that f̂ preserves ⇀, where f̂ : {s1, . . . , sn} → {t1, . . . , tm} is the map taking

si to tj if there exists x ∈ si such that f(x) ∈ tj; (2) if x ∈ si is such that x 6∈ πi,

then f(x) 6∈ π′j ⊂ f̂(si) = tj, and if x �i y in πi and f(x), f(y) ∈ π′j ⊂ f̂(si) = tj

are still pronounceable, then f(x) �′j f(y); (3) if δ(si) = true is ‘derived’, then

δ′(f̂(si)) = true is ‘derived’; (4) if x ∈ si is such that x 6∈ γi, then f(x) 6∈ γ′j ⊂

f̂(si) = tj, and if x�i y in γi and f(x), f(y) ∈ γ′j ⊂ f̂(si) = tj are still active, then

f(x)�′j f(y).3

It must be checked that such expressions and morphisms form a category, and

in fact they do, and we denote it A. The map U : A→ FPos taking σ to s and a

morphism f to its underlying order-preserving function on nodes is a functor, and it

is faithful. Taking the underlying set of UA gives a functor U ′ : A→ Set which is

faithful and turns A into a construct. U ′ is in fact represented by •, the expression

with one element which is active and pronounceable. Finally, we want to add various

‘types’ to features. Let B be a (finite) set of types N , V , T , wh, etc. Since having

3Notice, we allow a generalization common in morphosyntactic theories such as Distributed

Morphology [31] and nanosyntax [15] - we do not require that the pronounceable nodes are disjoint

from the features. A feature may belong both to γ, indicating that it may be actively involved in

selection, licensing, or agreement, but also π, indicating it is part of the pronounceable structure.

164

dominance
order

s

f1 . . . fn

partition
(chains)

Chσ = {S}
S = {s, f1, . . . , fn}
δ(S) = false (S is under-
ived)

π sets πS = {s}

γ sets γS = f1 � . . .� fn

Figure 4.8: A BHK lexical item as an A-object.

multiple properties is possible in principle (e.g. an element may be both N and wh),

we ‘type’ elements of the DSOs by treating the elements of B as independent unary

predicates on their sets of elements. That is, we add B-data to A by equipping the

nodes of an object σ with predicates σN , σV , etc., and morphisms must ‘preserve’

these determinations in that f : σ → τ should be a homomorphism only if it is an

A-morphism and if σX(a) = true for some type X ∈ B, then τX(f(a)) = true. Call

this category AB or simply A when B is obvious. It is again representably concrete

by the same object • with •X(∗) = false for all X ∈ B.

We can represent the syntactic objects of BHK with objects of A, and we

can represent their structural changes as morphisms of A. Given base types F =

{V,N, T, wh, . . .}, we take the product

{base (selectee), = (selector),+ (licensor),− (licensee)} × F to obtain types = N ,

+wh, −wh, etc., and we let B have at least these types. We sketch a translation.

A lexical item in BHK is roughly a tree consisting of a single node, which has

type ‘underived’, together with a finite linear order of features f0, . . . , fn. To each

lexical item s :: f1 . . . fn, we associate the A object σ depicted in Fig. 4.8.

165

We implicitly assume that each feature fi also returns ‘true’ for certain B-

predicates. For example, if a feature fi is =n or ‘select noun’ type, then σ(=,N)(fi) =

true.

A general expression in BHK is essentially a tree t with a partition4 {t1, . . . , tn}

of its nodes, together with a linear precedence ordering �i on each partition. Each

partition is designated as ‘derived (:)’ or ‘underived (::)’, and has associated to it

a finite linear order of features. BHK’s first merge rule is the case when a lexical

item selects a feature f which is the only feature associated with the first chain in

some expression. Consider a lexical item s :: f0 . . . fn and expression e = (t1,�1

)·g0, α1, . . . , αk.
5 BHK say that merge1 is defined when f0 is a selector, g0 a selectee,

and both have the same syntactic type (e.g. n). In this case, they define merge1 to

be the operation which associates to this pair a new expression. This expression has

as nodes the disjoint union of {s} and the nodes of e, with all of their dominance

4This is not quite true: while BHK require that collection of ti unions to t and the ti are pairwise

disjoint, they leave open the possibility that a particular segment ti is empty. This will allow chains

with features which are not associated to any node(s) in the dependency tree. However, for us, to

be empty, you must not only be ‘phonologically empty’, but also have no syntactic features, since

we will represent features in our dependency structures explicitly. Featureless chains may never

be selected or moved, nor may they select, so they play little role in the theory (e.g. featureless

words can never enter any derivation). Featureless chains may then only arise as the ‘final’ output

of a derivation. However, the way we model expressions does not truly delete features, but rather

just ‘deactivates’ them, so even in this case the object will not be truly empty.
5Here, αi is an arbitrary component of the partition, together with precedence order,

(un)derived type, and feature sequence. · means that it doesn’t matter if the first chain is de-

rived or underived.

166

dominance
order

σ has a (unique) root s ≤ σ τ has a root t ≤ τ

partition
(chains)

Chσ = {S}, δS = false Chτ has root T ⇀ Chτ

π sets s ∈ πS
γ sets γS has root f � γS γT has root g � γT

Figure 4.9: SA of A objects which we will apply merge1 to.

relations, as well as a relation from s to the root of e. The first chain is the partition

block {s} ∪ t1 of derived type, with string of features f1, . . . , fn. This partition has

precedence order s � x for all x ∈ t1, as well as any precedence relations from t1.

The remaining chains are α1, . . . , αn. These changes can intuitively be described as

taking the disjoint union of nodes, adding certain ≤ dependencies, combining certain

partitions, adding certain precedence relations, deleting certain features, etc., while

leaving other structure intact. We wish to formalize this fact by representing the

operation using A-pushouts.

We give a (vastly) generalized description in terms of a pair of A objects (σ, τ).

If (X, /) is any preorder and x ∈ X is a unique least element in that x / y for all

y ∈ X and if z also has this property, then x = z, we call it a root and write x / X.

We first assume that the head is overtly pronounceable (has a node which will be

precedence-ordered), and we other write minimal assumptions about the DSOs we

want to apply merge1 to in Fig. 4.9. We additionally assume that f is of type

(=, X) and g of type (base,X) for some X ∈ F . We construct a binary rule on

these objects by a universal property.

Let E be any expression in A. We can say that a pair of morphisms h : σ → E

167

and k : τ → E meet the merge1 condition if its images meet certain conditions.

For an element x of σ or τ , we write x for its image under h or k in E. Similarly,

for any partition P of σ or τ , we write P for the partition containing x for any

x ∈ P . h and k meet the merge1 condition if (1) s ≤ t; (2) f = g, which

implies that S = T which we denote ST ; (3) f, g 6∈ γST ; (4) such that if x ∈ πT

and s, x ∈ πST , then s � x; and (5) ST is derived (δ(ST) = true). There is a

universal such expression E which meets the merge1 condition determined up to

isomorphism, which we write merge1(σ, τ). By this, we mean that there is a pair of

morphisms mσ : σ → merge1(σ, τ) and mτ : τ → merge1(σ, τ) such that for any

h and k meeting the merge1 condition, there is a unique u : merge1(σ, τ) → E

such that h = u ◦ mσ and k = u ◦ mτ . It can be constructed by adding the

requisite relations, deactivating the relevant features, etc. Restricted to objects of

the kind from BHK (such as when the Ch, π, and γ sets are linear orders, πS = {s},

etc.) this construction produces the correct structural changes and assignments of

derived objects. The category of such objects is clearly replete in A2, and we can

find the maximal condition category for these structural changes. To account for

the case when the head is not associated with an element which is linearized in the

pronounceable string (i.e. it is phonologically null), we may drop the assumption

that s in σ is in πS, in which case (4) of the merge1 condition becomes vacuous

since s̄ 6∈ πST .

In simple cases, we can generate instances of merge1 and the structural

change maps as pushouts from a finite set of basic structural changes. This must be

broken down into cases, depending on whether the first component of each operand

168

dominance
order

σ has a (unique) root s ≤ σ τ has a root t ≤ τ

partition
(chains)

Chσ = {S}, δS = false Chτ has root T ⇀ Chτ

π sets {s} = πS πT has root l � πT

γ sets γS has root f � γS γT has root g � γT

Figure 4.10: A more restrictive SA for merge1.

has pronounceable elements which we intend to introduce precedence relations be-

tween. We make extra assumptions about objects in the domain of merge1 in Fig.

4.10 for the case when both have pronounceable elements, still assuming that f and

g are of types (=, X) and (base,X) for some X ∈ F .

Note that for any pair of such A2 objects, a morphism (u1, u2) : (σ, τ) →

(σ′, τ ′) which preserves the ‘properties relevant for evaluating the merge1 condition’

belongs to the maximal condition category. By ‘preserves the relevant properties’,

we mean that u1 and u2 take the ≤, ⇀, �, and� roots of σ and τ to the ≤, ⇀, �,

and � roots of σ′ and τ ′. For example, if s′ and t′ are the roots of σ′ and τ ′, then

for any k : σ′+ τ ′ → E, if there exists a morphism v : merge1(σ, τ)→ E such that

for all x ∈ σ, k(u1(x)) = v(mσ(x)) and for all x ∈ τ , k(u2(x)) = v(mτ (x)), we must

have ks′ ≤ kt′. Similar arguments show that the existence of such a v puts exactly

the constraint on k that it meet the merge1 conditions. We can then show that

for all such pairs (σ, τ), the merge1 operations on it are generated by a finite set of

SCs, pushed out along one such (u1, u2) ‘preserving the relevant properties’. Hence,

merge1 will be finitely generated when restricted to such pairs. We describe one

of the generating operations in Fig. 4.11.

169

dominance
order

a

x

b

k y

a

b

k xy

partition
ChA = {α},
α = {a, x},
δ(α) = false

ChB = {β},
β = {b, k, y},
δ(β) = false

ChC = {κ},
κ = {a, b, xy},
δ(κ) = true

π sets πα = {a} πβ = {b, k, y}, k � b, y πκ = {a, b, k}, a � k � b

γ sets γα = {x, a}, x� a γβ = {y} γκ = {a}

Figure 4.11: Generating SC for simplified merge1.

We denote these expressions in Fig. 4.11 as A, B, and C, respectively. These

objects together with the relevant condition-preserving morphisms describe the fol-

lowing properties: (A) the left operand has a pronounceable node which is the root,

and an active feature x which is at the front of the feature-list, and it consists of a

single component which is underived; and (B) the right operand has first component

with k precedence-initial amongst the pronounceable nodes, and a single active fea-

ture y. For each syntactic type X ∈ F , we must take one such triple (A,B,C) with

x of type (=, X) and y of type (base,X), and hence xy will have types (=, X) and

(base,X). In each case, there is an obvious A-morphism r : A+B → C mapping a

to a, b to b, k to k, and x and y to xy. For any (σ, τ) meeting the descriptions in Fig.

4.10 such that f is of type (=, X) and g is of type (base,X) for some X ∈ F , there

will be at most one condition-preserving morphism from one of these generating SCs

to (σ, τ). Specifically, there will be one morphism (u1, u2) : (A,B) → (σ, τ) from

the generating operation such that (i) x and f and (ii) y and g have matching type.

We take the pushout of r along the map u1 + u2 : A + B → σ + τ which takes the

170

a

x

ChA = {α},
δ(α) = false
πα = {a}
γα = {x� a}

b

k y

ChB = {β},
δ(β) = false
πβ = {b � k, y}
γβ = {y}

a

b

k xy

ChC = {κ},
δ(κ) = true
πκ = {a � k � b}
γκ = {a}

the

= n d

Chσ = {S}
δ(S) = false
πS = {the}
γS = {= n� d}

boat

n

Chτ = {T}
δ(T) = false
πT = {boat}
γT = {n}

the

boat

n

d

Chζ = {ST}
δ(ST) = true
πST = {the � boat}
γST = {d}

rA

u1

rB

u2 j

mσ

mτ

Figure 4.12: The pushout of a generating BHK rule along a condition-preserving
morphism (u1, u2)

root a to the root of σ, the element x to f , the root b to the root of τ , the element

y to the feature g, and k to l. It can be checked that the pushout of r along u1 + u2

induces the appropriate structural changes. These base generating rules handle all

of the original cases under the assumption that both operands have initial compo-

nents with pronounceable elements. We can produce variants lacking x or k with

empty π-sets for when one operand or the other has a silent initial component; the

condition-preserving maps between the associated DSOs will have empty π-sets and

preserve roots otherwise.

We walk through an example in Fig. 4.12 for the case when f is of type (=, N)

171

and g is of type (base,N) where both of the relevant π-sets are nonempty. The map

u1 : A → σ must map a 7→ the since it must map the root to the root; it must

map x 7→ = n since it is the root with respect to the active feature ordering �.

u2 : B → τ must map b 7→ boat since it must map the root to the root; it must map

k 7→ boat since this element is also initial with respect to the pronounceable node

order �; it must map y 7→ n since this is initial with respect to the active feature

ordering �. If (j : C → ζ, (mσ,mτ) : (σ, τ) → ζ) are to complete this diagram,

the images of the and boat must have the dependency relation mσ(the) ≤ mτ (boat)

since j must preserve dependency order; we must also have the precedence ordering

mσ(the) � mτ (boat) since j must preserve precedence; the components S and T

must map into the same component since j must preserve components, and it must

be of derived type since j must take derived components to derived components;

the images of the two nominal features must be the same element since they are

mapped to the same element in C, and their image mσ(= n) = mτ (n) must not be

in γST since xy 6∈ γκ, which ‘deletes’ the features. In ζ, n will be of types (=, N) and

(base,N). d will be of type (base,D), since we are not forced to change syntactic

type. The map j will map a 7→ the, b 7→ boat, k 7→ boat and xy 7→ n. These maps

form a pushout since it is the ‘simplest’ such maps meeting these requirements.

While writing out the structural changes as pushouts is a bit cumbersome, it is

straightforward, though some care should be taken when adding precedence ordering

� or chain ordering ⇀. We must make sure we have ‘generic representatives’ for

� and ⇀ ‘anchors’ (such as the first or last elements) so that we can specify when

172

ordering is added between them.6 For example, k above was a ‘dummy’ element

which represents the � initial node in the first chain of some expression e, and

adding a relation x � k will then add x � y for all π elements y of this first chain.

We must create alternate pushouts (which simply make no reference to a pronounced

node or node in a particular chain) for variants when they are empty, and no such

relation should be added. Continuing in the manner above gives operations on A

comparable to those in BHK [16]. Traditional Minimalist Grammars can be modeled

similarly, where the underlying dependency trees are all discrete: the only data used

are the feature types, component partitions, and π and γ-set distinction.

4.4 Compilations of Structural Changes

In this section, we explore an analytic benefit of having structured rules. We

will study compiling a sequence of n-ary SCs. For example, we may have an op-

eration which merges a specifier but also agrees with it/checks some licensing con-

figuration. We would like to see this single binary operation as a ‘compilation’ of

two others - elementary merge additionally with an agree operation. Similarly,

complement-merge might be a compilation of merge along with selection, while

adjunction is just merge. This is similar, but not identical, to the theory developed

in Hunter [8]. The tools presented here are mainly for analytical purposes - to make

sense of how certain SCs can be seen as composed of more primitive ones. However,

we do not incorporate this technology into the grammar, we just analyze simple

6None of the operations in BHK add ordering relations between active features, so we do not

need to worry about similar constructions with �.

173

cases where we can see certain rules G as arising from ‘compiled’ rules.

4.4.1 Categories of Sequences

We first need to connect up the conditions of m rules we wish to compile. We

will develop the theory only for Der-rules for simplicity, though similar constructions

can be carried out in categories of derivations with more structure. Fix some finite

sequence S = (S, S ′, . . . , S(m)) of subcategories of Dern. These are to represent

the conditions for m many n-ary rules. We define a sequence of S to be an m-

tuple (A,A′, . . . , A(m)) with A(i) ∈ S(i), considered with (n-tuples of) derivation

homomorphisms l(i) : A(i) → A(i−1) for all m ≥ i ≥ 1. We can write a sequence as

A(m) l(m)

−−→ . . .
l′−→ A. It is to be thought of as a generalized parameter, in that we will

use it to combine rules r(i) : A(i) → B(i), taking the output of r(i), and using A(i+1)

to select parameters in it with r(i)l(i+1) : A(i+1) → A(i) → B(i).

A morphism of sequences of S is an m-tuple of (n-tuples of) derivation

homomorphisms with φ(i) : A(i) → X(i) in S(i), creating a commutative diagram:

A(m) X(m)

.

A′ X ′

A X

l(m)

φ(m)

k(m)

l′′ k′′

φ′

l′ k′

φ

We write the category of S-sequences as S∗. Each S(i) is by definition a

subcategory of Dern. We can take the pullback of all these subcategories, writing

174

it
⋂

S = C. An object in this category is an n-tuple (∆1, . . . ,∆n) which is in

each S(i). A morphism in this category is an n-tuple of derivation homomorphisms

(φ1, . . . , φn) : (∆1 . . . ,∆n) → (Γ1, . . . ,Γn), i.e. a morphism in Dern, such that this

Dern-morphism is in each S(i). C ⊂ Dern can be thought of as the subcategory of

n-tuples which are in S(i) for all i and preserve S(i)-properties for all i. That is, it

describes the conditions which are the conjunction of the conditions in S. There is

a natural ‘diagonal’ inclusion functor δ : C → S∗, sending each (∆1, . . . ,∆n) to the

S-sequence consisting of only (∆1, . . . ,∆n)’s with the identity morphism between

each object in the sequence. We intend to compile the m rules into a single rule on

the condition category C.

Take any object A∗ ≡ A(m) → . . . → A in S∗, and consider the representable

functor S∗(A∗,−). We compose δ with this functor, which gives for each C-object

(∆1, . . . ,∆n) the set S∗(A∗, δ(∆1, . . . ,∆n)). We claim that each morphism in this

set is totally determined by its first component, φ : A → (∆1, . . . ,∆n). We write

φ suggestively as l, and notice that there is only one way to make the diagrams

commute:

A(m) (∆1, . . . ,∆n)

.

A′ (∆1, . . . ,∆n)

A (∆1, . . . ,∆n)

l(m)

ll′···l(m)

l′′

ll′

l′

l

Then, we can think of the sequence map A∗ → δ(∆1, . . . ,∆n) simply as a

175

morphism l : A→ (∆1, . . . ,∆n) in S such that l · · · l(i) is in S(i) for each i. In other

words, this gives a ‘spear’ of selection of parameters in (∆1, . . . ,∆n) as depicted in

the diagram A(m) l(m)

−−→ . . .→ A′
l′−→ A

l−→ (∆1, . . . ,∆n). Looking at the composite of

the mappings from A(i) to (∆1, . . . ,∆n) gives an S(i)-preserving setting of parameters

in (∆1, . . . ,∆n). Since l : A→ (∆1, . . . ,∆n) totally determines all coordinates of the

S∗ morphism, we informally write the map of sequences as l : A∗ → (∆1, . . . ,∆n).

Claim 4.4.1. The inclusion δ : C =
⋂

S → S∗ is always full. That is, for any pair

of objects ∆,Γ ∈ C, the inclusion C(∆,Γ)→ S∗(δ∆, δΓ) is actually bijective.

Proof. We show the map is surjective. Choose any l∗ : δ∆ → δΓ. We know that

this is determined by the first map l : ∆→ Γ, and hence all coordinates of l∗ are l.

This is the image of l under δ.

4.4.2 Sequences of Operations and Compilations

Given a sequence A∗ in S∗, we define a sequence of operations on A∗ to simply

be a collection of FPos maps r(i) :
∐

1≤j≤n>A(i)
j
→ B(i) which we informally write

r(i) : A(i) → B(i). That is, it is an operation in the same sense we have been using,

specified for each object in the sequence. We write the whole sequence of operations

informally as r∗ : A∗ → B∗.

Given a sequence of operations r∗ : A∗ → B∗ and a setting of parameters

l : A∗ → (∆1, . . . ,∆n) from A∗ to an object of C, we construct the result of applying

the sequence of operations r∗ to (∆1, . . . ,∆n) along l as follows:

1. Construct the diagram below and take a universal diagram to push out r along

176

l:∐
i∈nAi B

∐
i∈n ∆i P

+ili

r

r

This is just the typical translation of the operation r to (∆1, . . . ,∆n) along l.

We write the above diagram in shorthand to reduce clutter:7

A B

∆ P

r

l l

r

2. Compose l′1 + . . . + l′n : A′1 + . . . + A′n → A1 + . . . + An with r to obtain

r(l′) : A′1 + . . . + A′n → B,8 thought of as applying the operation r to the

parameter-translation l′. We further compose this with l to get a selection of

parameters by A′ in the output of the first operation acting on ∆:

A′ B′

A B

∆ P

r(l′)

r′

r

l l

r

We then take the pushout of r′ and lrl′ to obtain a new output.

3. After m steps, the process completes, giving a ‘staircase’

7The notation A is now ambiguous between A = (A1, . . . , An) and
∐
Ai. However, since B is in

FPos ↪→ Der, not Dern, the notation r : A→ B disambiguates, indicating we must mean
∐
Ai.

8We also ambiguously write as l′ to mean l′ = (l′1, . . . , l
′
n) or their sum +il

′
i. Again, the notation

r(l′) disambiguates: r has domain
∐
Ai so we must mean the sum of the coordinates of l′.

177

A(m) B(m)

. . . B(m−1) X(m−1)

A′′

A′ B′ X ′

A B X

∆ P P ′ . . . P (m−1) P (m)

r(m−1)l(m)

r(m)

r′(l′′)

r′′

r(l′)

r′

r

l

r r′ r′′ r(m−1) r(m)

The process seems so ad hoc that it might not even be functorial in C. However,

this is not the case. The pushout lemma guarantees that we can ‘paste’ pushout

squares together to obtain a pushout square. Repeated applications of the pushout

lemma show that we could also have started from the top of the staircase, pushing

the vertical map out along the horizontal map sharing its domain. In particular, we

may compute P (m) as the pushout of l along a map A→ . . .→ X, the composition

of all maps lying even with the first ‘step’ of the staircase once all squares are filled

in. We write r∗ : A → X for this function, so that P (m) can be computed directly

from l and r∗. We call r∗ the compilation of operations r∗ : A∗ → B∗.

4.4.3 The Rule Generated by a Sequence of Rules

Let S = (S, . . . , S(m)) be a sequence of subcategories of Dern. We want to say

when a given sequence of operations r∗ : A∗ → B∗ generates a C-rule G : C → Set

when C =
⋂

S. Let G : C → Set be a C-rule, and let r∗ : A∗ → B∗ be an

S-sequence of operations with compilation r∗ : A → Z. We construct a functor

178

Fr : S∗(A∗, δ−)→ G as follows. Each element of S∗(A∗, δ(∆)) for a given ∆ ∈ C is

essentially an S-morphism l : A → ∆. We take l to an operation h : ∆ → P if we

can construct a pushout diagram of operations:

A ∆

Z P

l

r∗ h

We again say that the rule G is generated by this sequence of operations r∗ : A∗ →

B∗ iff this natural transformation is epimorphic.

We give a proposition of how rule compilation simplifies when the rule is

generated by a sequence of operations r(i) : A(i) → B(i) where the A(i) are all equal

and A(i) → A(i−1) is the identity for all i. In other words, all the rules to be compiled

act on the same object lying in
⋂

S.

Claim 4.4.2. Let S = (S, . . . , S(m)) be a sequence of subcategories of Dern, and let

G :
⋂

S = C → Set be a rule generated by the sequence r∗ : A∗ → B∗. If A∗ = δA

for some A ∈ C, then G is generated by the compilation r∗ : A→ Z ∈ G(A), in the

sense that the natural transformation r̃∗ : yA→ G associated to r∗ ∈ G(A) by the

Yoneda Lemma is epimorphic.

Proof. This follows from the fullness of the inclusion
⋂

S ⊂ S∗. Fullness implies

i : C(A,−) → S∗(δA, δ−) with coordinates i∆ : C(A,∆) → S∗(δA, δ∆) mapping

h : A→ ∆ to δh : δA→ δ∆ is a natural isomorphism. Furthermore, the composition

of i with any epimorphism S∗(δA, δ−) → G is an epimorphism, giving a single

operation generating G by the Yoneda Lemma.

179

4.4.4 A Note on Sequences

While we have constructed compilations of operations in terms of sequences,

it may be that what we are really interested in is a family of operations f (i) :

M (i) → N (i) on some other domain M (i), where we apply each operation to the

coordinate A(i) of the parameter sequence. The reason we use the ‘intermediate’

step of introducing sequences of parameters A∗ separate from these rules is that

we may need more elements in toto than required by any one of the operations to

accommodate them all simultaneously. We introduce the sequence A∗ having at

least the requisite structure to be able to relate all rules in the family, and then

apply the family of operations to the sequence to get a sequence of rules from the

family.

Formally, we say that an S family of operations is simply a collection of (epi-

morphic) operations f (i) : M (i) → N (i) where M (i) is in S(i), with no connecting

morphisms. We apply this family to the sequence A∗ along family of morphisms

φ(i) : M (i) → A(i), where each morphism is in S(i) respectively by taking the req-

uisite pushout at each coordinate to obtain operations r(i) : A(i) → B(i). With all

inputs of operations now linked, we can apply the sequence as just described.

4.4.5 Examples

We look at the compilations of some sequences of rules.

Argument selection. We view argument selection as adjunction plus selection.

We let (A1, A2) be two isomorphic trees each consisting of two elements, {a, c} and

180

{b, d}, respectively, with dominance relations a ≤ c and b ≤ d. We let r be the SC

adding the relation a ≤ b. We let r′ be the SC identifying c and d on these same

objects, and we let (l′1, l
′
2) : (A1, A2)→ (A′1, A

′
2) be the identity morphism. We can

think of r as adjoin or phrasal-attachment, and r′ as select or feature-

identification. The compilation given in Fig. 4.13 is the SC which simultaneously

adds the relations a ≤ b and c = d, and can be thought of as typical merge involving

argument selection.

Figure 4.13: Compilation of adjunction and selection. The b phrase is an argument

of the a phrase, since it is in its minimal domain, and the selection feature c and

selectee d have identified.

Agreeing adjunction. Like argument selection is phrasal attachment followed by

feature identification, adjoining a phrase which undergoes agreement with the adjoi-

nee can be seen as phrasal-attachment followed by featural-attachment.

Let (A1, A2), (A′1, A
′
2), (l′1, l

′
2), and r be as above. Let r′ be the operation adding the

relation d ≤ c. The compilation is the SC which simultaneously adds the relations

a ≤ b and d ≤ c. We may want to view licensing, such as by an EPP or wh feature,

similarly, with the distinction between agreeing adjuncts and specifiers being about

181

the type of feature involved, if we wish to make such a distinction.

Figure 4.14: Compilation of adjunction and licensing/agreement. The b phrase is

an agreeing adjunct/unselected argument of the a phrase, since b is in the minimal

domain of a, and a licensing feature of the head a has attached to a feature of b (or

more loosely, gone into the domain of b).

‘Pure’ adjunction can be viewed simply as the phrasal-attachment SC

above, involving no manipulations of features. We can then say in what sense ‘agree-

ing adjunction’, ‘argument selection’, and ‘pure adjunction’ all involve a phrasal-

attachment component, but also how they differ in terms of what other things they

do to features.

4.4.6 Local and Long-Distance Agreement

Suppose ∆ and Γ are trees yielding rooted DSOs >∆ and >Γ with roots d and

g, and that L and M are the unique lexical items with roots l and m projecting

to d and g. We can construct a SC attaching g ≤ d, and additionally perform an

agreement operation, creating a dependency y ≤ x for some x ∈ >∆ and y ∈ >Γ

182

such that x projects from some element in >l and y projects from some element in

>m. That is, some feature of the adjoinee becomes dependent on a feature of the

adjoiner. We could think of this as local agreement - the agreement must take place

between two features projecting from the heads of the phrases we are merging at

that moment. For example, g could be a tense projection, y an unvalued φ-feature,

d a determiner projection, and x a φ-feature which y will depend on, and hence get

its value from.

There are also languages which exhibit long-distance agreement (LDA) phe-

nomena, where a probe, like tense, gets a feature valued from some feature in a

lower clause. Examples of this, as well a more robust analysis of conditions under

which it occurs, are given in Polinsky & Potsdam [37]. We first reproduce an exam-

ple of local agreement in Hindi-Urdu, whereby the main and auxiliary verbs show

agreement with the surface subject. Here, we can think of some probe related to

the main and auxiliary verbs parh-taa thaa as the probe which will get valued by a

gender feature M sitting in the subject phrase Rahul.

(1) Rahul
Rahul.M

kitaab
book.F

parh-taa
read-Hab.MSg

thaa
be.Pst.MSg

‘Rahul used to read (a/the) book.’

Bhatt [38], p. 759

However, when the subject has quirky case marking, the probe gets valued by

a gender feature sitting in a lower nominal phrase (or TP). This is shown in the

example below.

183

(2) Vivek-ne
Vivek-Erg

[[kitaab
book.F

parh-nii]
read-Inf.F

chaah-ii]
want.FSg

‘Vivek wanted to read the book.’

Bhatt [38], p. 760

Let’s suppose that the probe gets its value from the nearest valued gender

feature on the nonfinite tense head. We show the SC associated with this select-

and-LDA in Fig. 4.15. We will not represent head-adjunction for clarity. In this

example, the tense head selects the want phrase (represented by the v features

identifying) while also undergoing LDA with the φ-feature of the nonfinite tense

head (represented by adding a dependency from the φ-feature of tense to the φ-

feature of inf).

The SC of the first kind can be obtained as a pushout of the generating SC

given in Fig. 4.16. y is the root of the attachee, and φ a gender probe, while x is the

root of the attaching phrase, and ψ a valued feature which is the goal originating

from the same head projecting x. In practice, this generating SC likely also has

nodes representing the licensing of the specifier by an EPP feature on the probe,

left out for simplicity. We represent a generator for a select-and-LDA rule in Fig.

4.17. The xP is again attached to the root y which contains a probe φ. However, the

feature φ probes for a feature ψ which may be in a zP embedded within the xP. This

pushes out to the SC in Fig. 4.15. These generating SCs will be associated with

different condition categories, capturing the fact that they have different conditions

on application (local or long-distance). We now focus just on the generating SCs

to show that, despite this, they do similar things to the structure targeted. In

184

want tense

v inf t φt v

φinf t read

v book

φF n

→
tense

want

t φt v inf

φinf t read

v book

φF n

Figure 4.15: Long-distance agreement. tense selects the want phrase, indicated by
the v features identifying. tense also undergoes long-distance agreement with the
φ-feature.

185

x y

ψ φ

→

y

x φ

ψ

Figure 4.16: A generating SC for phrasal attachment where ψ gets valued by φ.

particular, we want to show that both contain an agreement component. Consider

the sequence of parameters including the lefthand pair of DSOs in Fig. 4.16 into

the lefthand pair of DSOs in Fig. 4.17. We intend to compile the sequence of rules

given in Fig. 4.18. The bottom SC in the sequence represents selection, and can be

obtained as a pushout from the basic generating selection SC from §4.4.5. The top

SC represents the agreement SC from Fig. 4.16. The compilation of this sequence

of rules is the SC given in Fig. 4.17. Even if we included the information in the

local agreement SC which included specifier licensing, we could see that there is a

sequence of rules generating each basic SC, such that in each sequence there is a

SC generated by the generating agreement SC in Fig. 4.16. Each rule can then be

decomposed to extract out an isomorphic agreement component, though applied in

different contexts (local or long-distance). The locality difference can be seen from

the fact that the comparison of inputs in the sequence of rules breaks the locality -

while we intend x and ψ to originate from the same head in the top SC, they will

be taken to elements which do not in the bottom SC, showing that the attaching

phrase is dissociated from the agreement-goal in the long-distance case.

We can also compare local and long-distance SCs where the probe gives value

to some feature in a goal, though it is less clear-cut empirically whether this happens

186

x y

c z s φ

ψ

→

y

x φ

c = s z

ψ

Figure 4.17: A generating SC for selection of xP by y, identifying selection features

c and s, while φ also targets ψ in a zP for LDA.

x y

ψ φ

→

y

x φ

ψ

↓

x y

c z s φ

ψ

→

y

x φ

c = s z

ψ

Figure 4.18: A sequence of rules which compiles to a select-and-LDA generating SC.

187

or not. One such example might be long-distance assignment of nominative to

objects in sentences with quirky subjects, outlined in Zaenen, Maling, & Thrainsson

[39] and Schütze [40], though neither take this approach.

4.5 Summary

Rules were formalized as assignments of SCs to tuples of input DSOs or deriva-

tions. We gave a technique which extracted the structural analysis associated to the

structure a rule targets for any rule. This was done by constructing a maximal

condition category whose objects are the tuples a rule can take as inputs and whose

morphisms are exactly the morphisms preserving the properties of the structure

which were relevant to applying the rule. There is also a natural repletion of each

such category, which extends a rule to all isomorphic tuples. We then described

when a set of basic SCs generates all the SCs in a rule. When a rule is generated by

a finite set of basic SCs, rules essentially reduce to transformations like those used

in graph grammars. We then formalized properties of rules like the Inclusiveness

Condition and the Extension Condition in terms of SCs. For the IC, we proved

that if a base generating rule is inclusive, the rule it generates will be as well. We

made precise what it means for two rules to induce the same structural change in

different contexts. This can be modeled by showing that two rules have isomorphic

SCs in sequences which compile to their generators. We then sketched a translation

of Minimalist Grammars into our model, and gave generators for one of the merge

rules. We finally showed how to take multiple rules and compile them into a single

188

rule. This generalized the intuition from Hunter [8] that many operations involve a

phrasal-attachment component ‘plus’ some other structural changes. We gave

a general theory of these compilations, which extends not only to adjunct-merger

versus argument-merger, but also operations which have an agreement or licensing

component.

189

Chapter 5: Movement

5.1 Overview and Background

The SCs considered up to this point are functions, and hence assign each node

in each input DSO to a single node in the output DSO. Hence, these SCs cannot

duplicate structure. Syntactic movement is the theory behind many phenomena in

language where a phrase seems to be interpreted or have syntactic effects in positions

other than where it is pronounced. One model of movement used by mainstream

grammar models is given by copying - total duplication of some substructure of a

DSO, along with chain information which relates the copies [6]. This can be con-

trasted with non-copying approaches to movement, which do not duplicate material

at all, but simply delay linearization of a string or tree until it reaches its final

position.

5.1.1 Non-Copying Models of Movement

There are non-copying approaches to movement which we can implement with

the technology developed already. These methods mimic Minimalist Grammars.

Standard Minimalist Grammars do not actually copy elements to represent move-

190

Figure 5.1: Move rules on dependency trees [16]

ment. Rather, if a phrase is merged or moved into a non-final position, it is put

into a stack, but not linearized with other elements in the phrase marker. Only

at the final position is the string linearized with other elements in the sentence.

We demonstrate this with the move rules from the Minimalist Grammar building

dependency structures in BHK [16], which we emulated in §4.3.2.

In Fig. 5.1, move1DG is the mapping used when the moving component (t, y) :

−f has just one feature left, and hence will be moving to its final position, since only

feature drive movement in this formalism, and there will be no features remaining.

In this case, the component is joined with the initial component, and its elements

are linearized with respect to the elements of the initial component. Specifically, this

combined component is linearized such that each element from the moved component

gets ordered before each element of the head component. No dependencies are

affected by this operation. We reproduce an example of a move1DG-style mapping

of this kind in Fig. 5.2

When the ‘moving’ component has more than one feature left, such that delet-

ing the first feature will still leave it with movement features, the initial feature is

simply deleted, and the component is not actually combined with any other com-

191

Figure 5.2: A move1DG-style mapping [16]

ponent or linearized with anything else.1 This is the case for mappings fitting the

schema in move2DG. Similarly, when items are merged and will have features re-

maining after merger, they are put into a separate component and not linearized.

1This raises the question as to what ‘successive cyclic’ movement (see citations in, e.g., Fox &

Pesetsky [41]) looks like in formal minimalist grammars. In early proposals, minimalist grammars

manipulated trees [27]. In these models, constituents were put into moved positions explicitly,

leaving an empty node in the earlier positions. Later models [22] got rid of this articulated

structure entirely, so that only sequences of strings were produced. There are also semi-articulated

models, which have ‘moving windows’ showing local relations like complement and specifier to the

current head [8, 11]. In fully articulated minimalist grammars of the first kind, it was possible

to express extensions to the grammar to model relativized minimality, phasehood/barriers, etc.,

though these were largely discarded in later formal minimalist grammars as they were shown to

be weakly equivalent to grammars lacking this technology. In particular, the BHK model does not

represent a reconfiguration of dependencies when an element is moved, and so, other than the fact

that a particular head might trigger deletion of a feature, a moved item in no sense ever sits in a

cyclic position.

192

We could straightforwardly implement this type of movement using SCs of the form

we have studied so far, similar to the sketch given in §4.3.2.

5.1.2 True Copying: Kobele 2006

True copying in formal grammars was studied by Kobele [11]. Kobele remarks

on a number of issues raised by copying, which we will be able to study more precisely

using the technology in this thesis.

Although we have been speaking loosely of traces as being ‘struc-

turally identical’ to their antecedents, a moment’s reflection should re-

veal that it is not clear exactly what this should be taken to mean. There

are two aspects of structure that might be relevant to us here - the first is

the derived structure, what Chomsky [9] calls the structural description

of an expression, and the second is what we might call the derivational

structure, the derivational process itself. Clearly, ‘copying’ the deriva-

tional structure guarantees identity of derived structure. Kobele [11],

p. 138

Kobele also comments on a technical issue: “[W]e need to make sure that the

syntactic features that drive the derivation don’t get duplicated [. . .] [An] option,

if we take the copied structure to include the features, is to reformulate our feature

checking operations so as to apply to all chain members whenever any one of them

enters into the appropriate configuration.” Kobele develops multiple alternative

grammars as formal instantiations of each of these approaches in Kobele [11]. We

193

Figure 5.3: An array of 3 copies of every, corresponding to the features d, -k,
-q. [11]

will focus on ‘true’ copying of structure, both of the derivational type.

We look at Kobele’s ‘true’ copying method as an example for comparison.

This method (for the most part) does not copy features. We can tell whether a

lexical item is going to trigger movement just by looking at its feature structure. If

a lexical item contains a feature of the form −f , it will trigger movement. Kobele

creates duplicates of a lexical item for each movement and selectee feature when it

is initially inserted. For example, when the lexical item every:: =n d -k -q is

selected, we immediately create 3 copies of it for each of the features d, -k, and

-q. The ‘chain relation’ between these copies is represented by putting these three

copies in an array, depicted in Fig. 5.3. The features in the array are ordered from

bottom to top.

Kobele extends merge to a coordinate-wise merge. If a lexical item is to be

merged with the array in Fig. 5.3, it must be triplicated at insertion. In this way,

in Kobele [11], copying is done at the beginning of a derivation, not ‘online’. We

reproduce Kobele’s example for the formation of the DP every rotting carcass which

is to occur in three positions - a complement position associated to d, a case position

associated to +k, and another position associated to +q, which Kobele introduces for

194

Figure 5.4: Triplicating lexical items to be merged into a phrase which will be copied
3 times. [11]

Figure 5.5: An array for a derived DP which will be in a 3-part chain. [11]

the semantics of MGs. We must triplicate carcass::n and rotting::=n n. These

can be coordinate-wise merged, which produces a triple of the same expression.

These arrays and their merger are depicted in Fig. 5.4.2 This array can be merged

with the array for every to give a full DP which will be part of a 3-part chain. We

reproduce this in Fig. 5.5.

Each coordinate in the array in Fig. 5.5 will be linearized separately, indicating

the ‘copies’ of this DP in the derived object. Kobele derives the sentence Every rot-

ting carcass arrived, first merging the DP every rotting carcass with arrive::=d v.

We remove the bottom coordinate in the array, since =d will select the d feature.

2The triples (x, y, z) on the lefthand side of components represent the Specifier, Head, and

Complement positions in this Minimalist Grammar, instead of giving a single string.

195

Figure 5.6: The result of merging arrive with the DP. The bottom coordinate of the
DP array is removed and linearized. [11]

Figure 5.7: A case feature driving movement from the bottom coordinate of the
second component. [11]

The result is reproduced in Fig. 5.6. More functional material is added until a +k

feature is at the head. We show this step and movement for +k and +q in Fig. 5.7

The only remaining issue is ‘remnant movement’ - what to do if a coordinate

which will be a target for re-merger has moving components within it. A vP which

will be part of a two-part chain is depicted in Fig. 5.8, and this vP contains a DP

John which will move two more times.3 The base position will be associated with

selection of the feature v, and the higher position will be a topic position associated

with a +top feature. The issue is that when the v is selected, the coordinate which

3The strikethroughs indicate that that part of the string will not be pronounced. A substring

is crossed out immediately if it was linearized by an operation when there were still coordinates

left in its associated chain.

196

Figure 5.8: A vP which will be part of a 2-part chain which has components which
will also move. [11]

Figure 5.9: The result of merging the vP into a complement position which had a
moving DP in it. The moving subexpression is deleted. [11]

it belongs to will leave behind a component with moving parts. Kobele stipulates

“When a chain link is put into storage, all of its moving subexpressions are elimi-

nated,” Kobele [11], p. 169. We merge the vP with a progressive head ε::=v prog.4

The bottom coordinate is selected and linearized, and the moving component from

that coordinate is deleted immediately. This results in the structure given in Fig.

5.9. More functional material is added until a +k feature is at the head. We show

this step and movement for +k and +q in Fig. 5.10. More functional material is

added until a +top feature is at the head. We show this step and movement for

+top in Fig. 5.11.

4Technically, this head uses a =>v feature which triggers head movement immediately instead

of regular complement selection, but this does not matter for copying.

197

Figure 5.10: Two copies of John are re-merged in a higher position. [11]

Figure 5.11: vP movement to a topic position. [11]

5.1.3 Copying In a Structured Model

This chapter will focus on copying in a category of structured derivations. Like

Kobele [11], we will develop a model with ‘true’ copying and chain-formation, where

substructures are multiplied. Unlike Minimalist Grammars in Stabler & Keenan [4]

and BHK [16], this will allow us to represent how items in a chain engage in different

dependencies in different positions. Unlike Kobele, we will implement a more stan-

dard copying model, where copies and chains are generated during the derivation,

so elements do not have to be ‘pre-multiplied’ at insertion (and hence we will not

need special operations which delete extraneous copies). Summarizing, we give a

direct implementation of the mainstream ‘copy, form-chain, re-merge’ technology of

Chomsky [6] in the language of structured derivations. We will show how it auto-

matically leads to a system where valuation of a feature in one member of a chain

198

values all copies of it, following one of Kobele’s leads. However, we will derivation-

ally capture the observation that traces are not necessarily ‘structurally identical’

to their antecedents, as, throughout the derivation, operations will manipulate the

features of moving items.

5.2 Algebras and Chains

Considering a DSO simply as a finite partial order, we represent ‘chain-data’ as

a function e : T → T from the DSO to itself, which preserves dominance ordering. e

takes each element x ∈ T back to the most recent element it is a copy of, and fixes x

if it is a base-copy. See Fig. 5.12 for an example. Given two DSOs-with-chain-data

(T, e) and (S, y), we define a chain-preserving morphism to be a morphism of DSOs

f : T → S such that f ◦ e = y ◦ f : that is, if x ∈ T is a copy of e(x), then f(x) is

a copy of f(e(x)). This is the category of 1-algebras over FPos. In general, given

any category C, the category of 1-algebras over it consists of objects X together

with a self-morphism e : X → X, and its morphisms (X, e)→ (Y, f) are morphisms

k : X → Y such that k ◦ e = f ◦ k. We denote this category T(C).

199

t t

the2 v the2 v

boy2 the1 runs boy2 the1 runs

boy1 boy1

Figure 5.12: Chain-data can be given as a map from a DSO to itself. Copies are

taken to elements they were copied from, while all elements where the mapping is

not drawn are fixed.

The 1-algebras over Set are just sets X together with a unary operation e :

X → X, and morphisms are just homomorphisms in the usual sense of model-

theory [42]. Let e : X → X be a function. We describe a set of fixpoints Fix(e) =

{x ∈ X such that e(x) = x}. Given a point x ∈ X, its orbit is the set Orb(x) = {y ∈

X such that en(x) = y for some n ∈ N}, where en(x) is short for e(e(...e(x)...)),

where e has been applied n times. The orbit of a point naturally forms a preorder

x / e(x) / e(e(x)) / e(e(e(x))) / . . ., and we can consider the order relations from all

the orbits as a preordering on X. If k : (X, e)→ (Y, f) is a homomorphism, then it

preserves the / preordering. We say that a point x is cyclic if en(x) = x for some

n ∈ N. We say that (X, e) is acyclic if the only cyclic elements are the fixpoints.

(X, e) is acyclic if and only if / forms a partial order on X. In this case, each orbit

is clearly a linear order. The category of acyclic 1-alegbras forms a subcategory

A(Set) ↪→ T(Set), and it has a left adjoint. All of these terms and results can be

found in Benabou [43]. For our purposes, (X, e) will usually be acyclic, and we read

200

the linear order x / y as ‘x is a copy of y’.

When T is a tree, we think of constituents dominated by the minimal elements

of T − Fix(e) as copied constituents. If x is one such minimal element, then the

constituent dominated by e(x) is the copy of Ux.

Claim 5.2.1. Suppose T is a tree and e : T → T an order-preserving function such

that for any x ∈ T , we have e(x) 6< x and x 6< e(x). If x ∈ T − Fix(e) is minimal

amongst the points in that set (i.e. y ∈ T − Fix(e) and y ≤ x implies x = y), then

x c-commands e(x).

Proof. Suppose y < x. Then e(y) ≤ e(x), since e is order-preserving. y is fixed since

x is minimal among the non-fixed points, so e(y) = y ≤ e(x).

Copying a constituent K ⊂ X is straightforward - we just form the coproduct

K + X. We want to systematically add copy-data while copying this constituent.

Let (X, e) be a 1-algebra of finite partial orders, and let K ⊂ X be a constituent. We

form another 1-algebra structure on K +X. We have a subset inclusion i : K ↪→ X

and self-map e : X → X, and we can sum them to get a map i + e : K + X → X.

This map takes each element of the copy K to the element it came from in X,

and takes every element of X to whatever it was already a copy of. To turn this

into a 1-algebra structure on K +X, we compose this function with the coproduct

inclusion κX : X ↪→ K+X, giving a map κX(i+e) : K+X → K+X. If we want to

combine two DSOs-with-copy-data without adding any new chain information, we

can take their coproduct. Given two 1-algebras of partial orders (X, e) and (Y, f),

their coproduct in T(FPos) is given by X + Y with the map sending x 7→ e(x) if

201

x ∈ X and y 7→ f(y) if y ∈ Y , which we will denote e+ f .

We will take a non-copying SC on (X, e) and (Y, f) to be a map k : (X +

Y, e + f) → (Z, g) which is an order-preserving homomorphism of 1-algebras. We

can take a SC on (X, e) copying K ⊂ X to be an order-preserving homomorphism

of 1-algebras k : (K+X, κX(i+e))→ (Z, g). That is, if we do not copy, we just take

the sum as usual, which is equivalent to looking at a pair of maps out of the DSOs-

with-copy-data. We can view the process of taking (X, e) with a chosen K ⊂ X

and forming (K + X, κX(i + e)) as the copy and form chain constructions of

Chomsky [6]. An n-ary non-copying rule can be described on DSOs-with-copy-data

as usual. We define a copying rule to be an assignment of sets of non-isomorphic

SCs k : (K + X, κX(i + e)) → (Z, g) to a 1-algebra of finite partial orders together

with a fixed subset inclusion ((X, e), K ⊂ X). That is, the class of objects that a

copying rule acts on consists of pairs ((X, e), K ⊂ X), where (X, e) is a 1-algebra of

finite partial orders and K ⊂ X is a subset inclusion. Condition categories for both

types of rules can be developed. The process is identical for the non-copying case.

Claim 5.2.2. Let k : ((X, e), i : K ↪→ X) → ((Y, f), j : C ↪→ Y) be a 1-algebra

homomorphism such that there is a function u : K → C such that the following

diagram commutes.

K X

C Y

u

i

k

j

In this case, k̂ : (K + X, κX(i + e))→ (C + Y, κY (j + f)) which maps x ∈ K

to k(x) ∈ C and x ∈ X to k(x) ∈ Y is a 1-algebra morphism.

Proof. k̂ is clearly order-preserving. If x ∈ K, then k(i(x)) = j(k(x)), since u must

202

just act like k on K. If x ∈ X, then f(k(x)) = k(e(x)) since k is a homomorphism.

So k̂ is a homomorphism.

We will consider such a morphism k condition-preserving for G if for every

G-SC h : (K + X, κX(i + e)) → (Z, g), h pushed out along k̂ is a G-SC. When

generalizing to derivations, we will want to consider derivation morphisms e : ∆→

∆.

Claim 5.2.3. The inclusion iT : T(FPos) ↪→ T(Der) has a left adjoint >T :

T(Der)→ T(FPos).

Proof. We produce the unit natural transformation η : 1 → iT>T from the unit of

the adjunction > a i. For (∆, e), we apply > to e to obtain (>∆,>e). To see that

the regular unit map η∆ : (∆, e) → (>∆,>e) is in fact a homomorphism, just use

its naturality property on the diagram below.

∆ ∆

>∆ >∆

e

η∆ η∆

>e

We will describe a non-copying SC on derivations-with-copy data as usual

- a morphism (∆1 + . . . + ∆n, e1 + . . . + en) → (Z, g). Non-copying rules will

work the same for derivations. We can describe a copying SC on a derivation-

with-copy data-with-subderivation ((∆, e), i : S ↪→ ∆), where i is a subderivation

inclusion, as a homomorphism (S + ∆, κ∆(i+ e))→ (Z, g). Particularly important

among such derivations-with-subderivations are those where S is of the form K−1

for some K ⊂ >x. That is, recalling the construction of §3.5.4, given a sub-DSO in

203

a derivation, we will have an associated coherent subderivation which we can copy.

We put off describing condition categories and generation until §5.2.1.

We can also describe extensions for T(Der) derivations. Given a morphism

h : (∆, e) → (Z, g), we can take the usual extension ext(h). However, (e, g) is also

a morphism of operations in the typical sense from h : ∆ → Z to itself. Hence,

we apply the functor ext to it to get a derivation morphism ext(e, g) : ext(h) →

ext(h), obtaining a 1-algebra structure on ext(h). We write this functor extC :

T(Der)/T(FPos)→ T(Der).

5.2.1 Universal Constructions On Algebras of Derivations

We now compute many universal constructions on 1-algebras of finite partial

orders and derivations. It is important to note that in general, pushouts in T(C) do

not coincide with pushouts in C, though by the universal properties we will always

have a unique C-map from the pushout in C to the underlying C-object of the pushout

in T(C). We will see many of examples of this by construction. We start with a

simple case, for which we will invoke many representative proof techniques.

Claim 5.2.4. T(FSet) has pushouts.

We will need the following definitions and lemmas.

Definition 5.2.1. Let X be a set, and e : X → X a function. We call an equivalence

relation ∼ on X e-compatible if x ∼ x′ implies e(x) ∼ e(x′).

Claim 5.2.5. If e : X → X is any function, and k : X → Y any surjective

function, then there is at most one 1-algebra structure f : Y → Y on Y such that

204

k : (X, e)→ (Y, f) is a 1-algebra homomorphism.

Proof. Let f : Y → Y be any function such that k is a homomorphism. For any y ∈

Y , we can select some x ∈ X such that k(x) = y. Then k(e(x)) = f(k(x)) = f(y),

determining f .

Claim 5.2.6. For a 1-algebra (X, e), a quotient q : X → X̃ by an equivalence

relation ∼ underlies a homomorphism if and only if ∼ is e-compatible.

Proof. (e-compatible ⇒ homomorphism) Suppose that ∼ is e-compatible. If X̃ has

a compatible 1-algebra structure, it must be ẽ : X̃ → X̃ mapping [x] 7→ [e(x)],

since q is surjective. Since ∼ is e-compatible, this is well-defined, since we can

choose any x′ ∼ x and e(x′) ∼ e(x). (Homomorphism ⇒ e-compatible) Suppose

that q : (X, e) → (X̃, ẽ) is a homomorphism. Then for any x ∼ x′, we have

q(e(x)) = ẽ(q(x)) = ẽ(q(x′)) = q(e(x′)), and so e(x) ∼ e(x′).

Claim 5.2.7. Let e : X → X be any function, and R ⊂ X ×X any relation. There

is a unique smallest e-compatible equivalence relation on X containing R.

Proof. Note that if ∼ and ≈ are two e-compatible equivalence relations on X, then

the intersection ∼ ∩ ≈ is an e-compatible equivalence relation on X. Also, =

is an e-compatible equivalence relation on X, and it contains R. We take the

intersection of all e-compatible equivalence relations containing R to obtain the

smallest e-compatible equivalence relation containing R.

These are special cases of standard results about kernels of algebraic homo-

morphisms. The general case appears in, e.g. Birkhoff [44]. We now prove the initial

claim by construction.

205

Proof. Consider a pair of homomorphisms as in the following diagram.

(A, x) (B, y)

(C, z)

h

g

We first construct the set B + C. We call the coproduct inclusions κB and

κC . Since we must have κB(b) = κC(c) whenever there is an a ∈ A such that

b = h(a) = g(a) = c, we construct a relation R on B+C of points we want to identify.

For each a ∈ A, we add the relation (h(a), g(a)). We form the 1-algebra (B+C, y+z),

and take the smallest (y + z)-compatible equivalence relation on B + C containing

R. We then construct the quotient map q : (B + C, y + z) → (˜(B + C), ˜(y + z)).

This quotient is the pushout, considered with the two coproduct inclusions followed

by composition with the quotient map q.

We can use these to construct pushouts in T(FPos). Note that if X is any

preorder, and e : X → X an order-preserving function, then by functoriality, the

soberification s(e) : s(X) → s(X) is order-preserving. Furthermore, the unit quo-

tient map q : (X, e)→ (s(X), s(e)) is a homomorphism of 1-algebras of preorders.

Claim 5.2.8. T(FPos) has pushouts.

Proof. Consider a pair of homomorphisms of 1-algebras of finite partial orders as in

the following diagram.

(A, x) (B, y)

(C, z)

h

g

First construct the pushout in T(FSet) to get q : (B+C, y+z)→ (˜(B + C), ˜(y + z)).

206

We turn ˜(B + C) into a preorder by adding relations q(b) ≤ q(b′) whenever b ≤ b′

and similarly for relations in C, and taking the smallest preorder containing those

relations. However, ˜(y + z) is not necessarily order-preserving with respect to that

ordering. For each s ≤ t in ˜(B + C), we add a relation ˜(y + z)(s) ≤ ˜(y + z)(t), and

take the smallest preorder containing these relations. This produces a new preorder

≤′ on ˜(B + C), though we may have added relations in the closure not preserved by

˜(y + z). We then add relations of the form ˜(y + z)(s) ≤ ˜(y + z)(t) whenever s ≤′ t,

and take the smallest preorder containing these relations to obtain ≤′′. After finitely

many steps, this process will stabilize, giving a preorder ≤(n) such that ≤(n+1)=≤(n).

˜(y + z) is then order-preserving on ˜(B + C) with respect to this order. We then take

the soberification of this map to get an order-preserving function between partial

orders s ˜(y + z) : s(˜(B + C),≤(n))→ s(˜(B + C),≤(n)).

Claim 5.2.9. Given a SC h : (∆, e)→ (Z, s) and morphism of 1-algebras of deriva-

tions φ : (∆, e)→ (Γ, g), there are k : (Γ, g)→ (P, f) and j : (Z, s)→ (P, f) which

are universal among such 1-algebras of finite partial orders and maps into them.

See diagram below.

(∆, e) (Γ, g)

(Z, s) (P, f)

(Q, r)

φ

e k
x

j

y

u

We say that k is the pushout of e along φ by abuse of notation. When we

need to distinguish it from a ‘real’ pushout, we will refer to the square as (p-hom,d-

hom)-universal.

207

Proof. These can be obtained by applying > and taking the pushout in T(FPos),

then precomposing with the unit morphisms.

We can then straightforwardly construct maximal condition categories for

copying and non-copying rules on derivations-with-copy-data. However, generation

of rules is less straightforward: we do not want the basic generating SCs to have any

copy-data, as we do not usually think of SA being specified in terms of properties

of chains/copies of DSOs/derivations, but rather only hierarchical, syntactic type,

or other information on the underlying DSO.

Claim 5.2.10. Let h : ∆ → Z be any operation on a derivation such that the

function underlying >h : >∆ → Z is surjective, (Γ, g) any 1-algebra on a derivation,

and let φ : ∆ → Γ be any morphism of derivations. Then there is a 1-algebra on

a finite partial order (P, f) together with a 1-algebra morphism k : (Γ, g) → (P, f)

and order-preserving function j : Z → P such that j ◦ e = k ◦ φ as morphisms of

derivations which is universal with respect to that property. See diagram below

∆ (Γ, g)

Z (P, f)

(Q, r)

φ

e k
x

j

y

u

We call k the pushout of e along φ by abuse of notation. When we need to

distinguish this construction from a usual pushout, we will say that this diagram is

(poset,d-hom)-universal.

Proof. To compute the pushout, first apply > to the diagram, and take the pushout

of finite partial orders to obtain an order-preserving function e′ : >Γ → S. Since e

208

is surjective, e′ is surjective, since epimorphisms are preserved under pushout. We

form a relation x ∼ y if e′(x) = e′(y) on >Γ. We take the smallest g-compatible

equivalence relation containing ∼, call it ≡, and take the quotient q : >Γ → >Γ/ ≡.

q induces a preordering on >Γ/ ≡ and also a function g′ : Γ/ ≡→ Γ/ ≡ on it.

However, g′ is not necessarily order-preserving with respect to the induced ordering.

We iteratively add order relations to >Γ/ ≡ until the process stabilizes, as in the

proof of Claim 5.2.8, finally obtaining an order-preserving map of 1-algebras of

preorders q : (>Γ,>g) → (>Γ/ ≡, g′). We then apply the soberification functor to

g′ to obtain a 1-algebras of partial orders (s(>Γ/ ≡), s(g′)) which we write (P, f),

and we compose q with the quotient to obtain a map q′ : (>Γ,>g) → (P, f). Since

e′ : >Γ → S is the pushout of orders, this function factors through e′ uniquely as

r : S → P . From the pushout of orders, we have a map v : Z → S which we

compose with r to get a map j : Z → P . We precompose q′ with the unit map

η(Γ,g) : (Γ, g) → (>Γ,>g) to obtain a homomorphism of 1-algebras of derivations

k : (Γ, g) → (P, f). (P, f), j and k as constructed give a pushout in the sense

above.

This shows that when an operation h : ∆ → Z is inclusive, and we have a

translation φ from ∆ to the derivation underlying a derivation-with-copy-data (Γ, g),

we can do h in the context φ by finding the best morphism preserving copy data out

of (Γ, g) which completes the diagram. The reason we require h to be inclusive is

that only (>Γ,>g) has information about copy data: if we introduced new points

from Z which were not identified with points in >Γ, then we would not know what

209

elements they should be copies of.

If we are to use such operations for generation of rules on derivations-with-

copy data, then we must make sure that we can compose them with pushouts of

operations on 1-algebras of derivations to obtain another pushout. That is, we must

verify the following claim.

Claim 5.2.11. Suppose the left square is (poset,d-hom)-universal. Then the right

square is a (p-hom,d-hom)-universal if and only if the whole square is (poset,d-hom)-

universal.

M (∆, e) (Γ, g)

X (Z, s) (Q, s)

k

r h (hom)

φ (hom)

h′ (hom)

g f (hom)

Proof. Identical to the proof of the regular Pushout Lemma, using the universal

properties of each square.

We now give a precise statement of copying and non-copying rules on derivations-

with-copy data in preparation for a precise statement of generation by a basic SC.

Definition 5.2.2. We define Ts(Der) to be the category whose objects are 1-

algebras of derivations, together with a subderivation inclusion. A morphism k :

((∆, e), i : S ↪→ ∆) → ((Γ, f), j : T ↪→ ∆) is a morphism of derivations k : ∆ → Γ

such that k◦e = f ◦k, such that there is a (necessarily unique) morphism u : S → T

such that k ◦ i = j ◦ u. u will just be k restricted to S and T . This category can be

thought of as the category of derivations with copy data, together with a specified

subpart which is to be copied.

Definition 5.2.3. We define a functor form-chain : Ts(Der) → T(Der) which

210

takes an object ((∆, e), i : S ↪→ ∆) to the derivation S + ∆ together with the

self-map κ∆ ◦ (i + e) : S + ∆ → ∆ ↪→ S + ∆. Given a morphism k : ((∆, e), i :

S ↪→ ∆) → ((Γ, f), j : T ↪→ ∆), we get a T(Der)-morphism form-chain(k) :

(S + ∆, κ∆(i+ e))→ (T + Γ, κΓ(j + f)) which maps x ∈ S to u(x) ∈ T and x ∈ ∆

to k(x) ∈ Γ).

The proof that this gives a functor is just like the proof of Claim 5.2.2, and

will be proven diagrammatically in the proof of Claim 5.2.13.

Definition 5.2.4. A copying rule is an assignment G which takes in objects

((∆, e), i : S ↪→ ∆) of Ts(Der) and returns a set of non-isomorphic homomorphisms

of 1-algebras of derivations h : form-chain((∆, e), i : S ↪→ ∆) → (Z, g). We let

EG ⊂ Ts(Der) be the subclass of objects where G is defined. G can be turned into a

functor by taking its maximal condition category. We let a Ts(Der)-morphism

k : ((∆, e), i : S ↪→ ∆) → ((Γ, f), j : T ↪→ ∆) between two objects in EG be a

morphism of EG if for every G-SC h on ((∆, e), i : S ↪→ ∆), the pushout of h along

form-chain(k) is a G-SC on ((Γ, f), j : T ↪→ ∆).

Definition 5.2.5. A (non-copying) n-ary rule is an assignment G which takes

in n-tuples of T(Der) objects ((∆1, e1), . . . , (∆n, en)) and returns a set of tuples of

non-isomorphic homomorphisms of 1-algebras of derivations hi : (∆i, ei) → (Z, g),

or equivalently single morphisms h :
∐

(∆i, ei) → (Z, g). We let EG ⊂ T(Der)n

be the subclass of tuples where G is defined. G can be turned into a functor

by taking its maximal condition category. We let a T(Der)n-morphism k :

((∆1, e1), . . . , (∆n, en)) → ((Γ1, f1), . . . , (Γn, fn)) between two objects in EG be a

211

morphism in EG if for every G-SC h on ((∆1, e1), . . . , (∆n, en)), the pushout of h

along
∐
k is a G-SC on ((Γ1, f1), . . . , (Γn, fn)).

We now want to describe generation of rules on derivations-with-copy-data.

The main problem is that our usual definition required us to use an object EG

together with an SC on it to generate the rule, and to ‘translate’ this SC along an

EG morphism. Suppose, for example, that we are trying to generate a binary non-

copying rule using an operation (∆1 + ∆2, e1 + e2)→ (Z, g). The generating SC has

copy-data on it, and parameter-settings k : ((∆1, e1), (∆2, e2)) → ((Γ1, f1), (Γ2, f2))

must preserve this copy data. But, even in the simple case where our generating

objects have the trivial identity functions for copy data, they will not be able to

target anything that is a copy, since k must preserve copy data. This is why we

are usually interested in generating a rule using an object without copy data. We

showed in Claim 5.2.10 that it is sometimes possible to find maps which preserve

copy data completing a diagram of morphisms, not all of which preserve copy data,

which are universal with respect to this property. Specifically, given an inclusive

operation h : ∆ → Z without copy data, a derivation with copy data (Γ, g), and a

morphism φ : ∆ → Γ, there is a reasonable way to universally push h out along φ

to obtain a map h′ : (Γ, g) → (Z, t), adding the restriction that the pushout must

preserve copy data. Further, if we take the pushout of h along φ to obtain h′, then

take the pushout of h′ along ψ : (Γ, g)→ (Ξ, x) to obtain h′′, this is just the pushout

of h along ψ ◦ φ. So this will functorially construct operations on derivations-with-

copy data, and we have hope of describing generation by a SC without copy data.

212

There is a remaining problem, however. Which maps φ : ∆→ Γ should we consider?

We cannot simply use maps from EG, since these include information about copy

data, and ∆, even if it arises as the underlying derivation of some derivation-with-

copy data, likely will not correspond uniquely to one. We will, for simplicity, allow

ourselves to stipulate which morphisms we should use. To do this, we first need to

make precise functors which link derivations with and without copy data.

Claim 5.2.12. We define sDer to be the category whose objects pairs (∆, i : S ↪→

∆) of derivations together with a subderivation embedding. A morphism φ : (∆, i :

S ↪→ ∆)→ (Γ, j : T ↪→ Γ) is a morphism φ : ∆→ Γ such that there is a (necessarily

unique) u : S → T such that φ ◦ i = j ◦ u. u must just be φ restricted to S taking

values in the subset underlying T .

There is a faithful functor sV : Ts(Der)→ sDer taking ((∆, e), i : S ↪→ ∆) 7→

(∆, i : S ↪→ ∆) which maps each Ts(Der)-morphism to itself.

There is a faithful functor V n : T(Der)n → Dern mapping ((∆1, e1), . . . , (∆n, en)) 7→

(∆1, . . . ,∆n) and each n-tuple of homomorphisms of 1-algebras of derivations to it-

self.

There is a functor copy : sDer → Der mapping (∆, i : S ↪→ ∆) 7→ S + ∆

such that copy ◦ sV = V ◦ form-chain.

We first describe generation for non-copying rules. Consider VE : EG ↪→

T(Der)n → Dern. We call a subcategory i : D ↪→ Dern a lift of VE , if there

exists a (necessarily unique) morphism W : EG → D such that i ◦ W = VE . W

is necessarily the functor acting just like VE restricted to EG. We are going to use

213

D to specify which morphisms ∆ → VE(Γ, g) we want to push a base generating

SC r :
∐

∆ → Z out along. We say that a base generating SC r :
∐

∆ → Z

generates a non-copying rule G : EG → Set if there is a natural transformation

r̃ : D(∆, VE−) → G with coordinates r̃(Γ,g) : D(∆, VE(Γ, g)) → G(Γ, g) which map

a D-morphism φ : ∆ → Γ to the (poset,d-hom)-universal pushout of r along
∐
φ,

which is epimorphic. That such universal constructions give rise to a natural trans-

formation when they exist, as is always the case when r is inclusive, is guaranteed by

Claims 5.2.10 and 5.2.11. Again, D, EG, and r determine G uniquely up to natural

isomorphism.

We can proceed similarly for copying rules. Consider VE : EG ↪→ Ts(Der) →

sDer. We call a subcategory i : D ↪→ sDer a lift of VE , if there exists a (necessarily

unique) morphism W : EG → D such that i ◦ W = VE . W is necessarily the

functor acting just like VE restricted to EG. We are going to use D to specify

which morphisms (∆, i : S ↪→ ∆) → VE((Γ, g), j : T ↪→ Γ) we want to push

a base generating SC r : copy(∆, i : S ↪→ ∆) → Z out along. We say that

a base generating SC r : copy(∆, i : S ↪→ ∆) → Z generates a copying rule

G : EG → Set if there is a natural transformation r̃ : D((∆, i : S ↪→ ∆), VE−)→ G

with coordinates r̃(Γ,g) : D((∆, i : S ↪→ ∆), VE((Γ, g), j : T ↪→ Γ)) → G((Γ, g), j :

T ↪→ Γ) which map a D-morphism φ : (∆, i : S ↪→ ∆) → (Γ, j : T ↪→ Γ) to the

(poset,d-hom)-universal pushout of r along copy(φ), which is epimorphic. Note

that generating rules with objects and morphisms of sDer will allow us to control

properties of where the substructure to be copied may be taken from, but ignores

existing copy structure on the input.

214

Using this technology we can describe when movement and non-movement

variants of a rule are similar in a manner similar to §4.4.6. Specifically, two rules of

different types may have isomorphic generating operations, or isomorphic operations

which push out to an SC in a sequence of SCs compiling to a generator of each rule.

5.2.2 Grammars with Copying

We can describe grammars on derivations with copy data. The base lexical

items lex will be a set of objects of T(FPos) and we usually specify that they all

have trivial chain data - that is, they are all of the form (P, 1P). rules will be

separated into two kinds, copy and non-copying.

Definition 5.2.6. Given a grammar G = (lex,rules), we describe the language

L (G) generated by G .

• If (P, f) ∈ lex, then (P, f) ∈ L (G).

• If G is a non-copying rule in rules, (∆i, ei) ∈ L (G), and h :
∐

(∆i, ei) →

(Z, s) ∈ G((∆1, e1), . . . , (∆n, en)), then extC(h) ≡ (ext(h), ext(
∐
ei, s)) ∈

L (G).

• If G is a copying rule in rules, (∆, e) ∈ L (G), and h : form-chain((∆, e), i :

S ↪→ ∆)→ (Z, s) ∈ G((∆, e), i : S ↪→ ∆), then extC(h) ∈ L (G).

We can consider such languages as full subcategories of T(Der), and describe

equivalences of languages identically to how we did in §3.5.5.

215

5.2.3 Adding Structure to Grammars with Copying

We can add copy data systematically to any extendable category of A-derivations

to obtain an extendable category of A-derivations with copy data. However, there

are a few technical caveats right away. Given a subset S ⊂ ∆ of the set underly-

ing an A-derivation ∆, it is not guaranteed that a substructure exists on it, unlike

the case with regular derivations. We will then have to take care to make sure

that our rules target actual substructures. Also, as with basic A-derivations, not

all pushouts/universal constructions may exist, especially once we have added the

1-algebra structure, though they can be defined in general.

Let (UA : A → FPos, iA : A → ADer) give the data for a category of

extendable A-derivations. We get an induced iTA : T(A) → T(ADer) which takes

(P, f) to (iA(P), iA(f)). We can construct the left adjoint using >A. Given a 1-

algebra of A-derivations (∆, e) to the morphism e, we get a 1-algebra of A-objects

(>∆,>e). To get the components of the unit, we just use the naturality of the unit

for >A a iA.

The above proof shows that we can often emulate proofs and constructions

from T(Der) in T(ADer) totally diagrammatically. For example, we construct

Ts(ADer) as the category of 1-algebras of A-derivations together with an em-

bedding of A-derivations ((∆, e), i : S ↪→ ∆), whose morphisms k : ((∆, e), i :

S ↪→ ∆) → ((Γ, g), j : T ↪→ Γ) are homomorphisms of 1-algebras of A-derivations

k : (∆, e) → (Γ, g) such that there exists as (necessarily unique) u : S → T such

that k ◦ i = j ◦ u. u is necessarily k restricted to S. It is straightforward to prove

216

the following claim diagrammatically.

Claim 5.2.13. The map form-chain : Ts(ADer)→ T(ADer) sending ((∆, e), i :

S ↪→ ∆) to the derivation S + ∆ together with the self-map κ∆ ◦ (i+ e) : S + ∆→

∆ ↪→ S + ∆, and a morphism k : ((∆, e), i : S ↪→ ∆) → ((Γ, f), j : T ↪→ ∆) to the

T(Der)-morphism form-chain(k) : (S + ∆, κ∆(i+ e))→ (T + Γ, κΓ(j+ f)) which

maps x ∈ S to u(x) ∈ T and x ∈ ∆ to k(x) ∈ Γ), is a functor.

Proof. The following diagram commutes by hypothesis on k.

S

∆

∆

T

Γ

Γ

i

u

k

e

k
j

f

So the following diagram commutes.

S + ∆ ∆

T + Γ Γ

i+e

u+k k

j+f

We can sum the right vertical map with u using the coprojections κ∆ and κΓ,

to obtain the following commutative diagram.

S + ∆ ∆ S + ∆

T + Γ Γ T + Γ

i+e

u+k k

κ∆

u+k

j+f κΓ

The horizontal maps give the 1-algebra structures on S + ∆ and T + Γ, and

commutivity shows that form-chain(k) = u+ k is a homomorphism of 1-algebras.

217

Similarly, extA extends to an extension functor keeping track of copy data

extA,C : T(ADer)/T(A) → T(ADer) by taking an SC h : (∆, e) → (P, f) to

(extA(h), extA(e, f)), since (e, f) can be considered as a morphism of operations from

h : ∆→ P to itself. Coproducts will work identically to coproducts in ADer. Since

we have a yield functor, coproducts, extensions, and a form-chain functor, we can

recursively construct languages from grammars just as with regular derivations.

5.3 Example: Greek Case Concord

We have already mentioned that in general, a pushout in T(C) does not neces-

sarily have the pushout in C as its underlying object. We will see that this is actually

a desirable effect for modeling certain phenomena involving chains. Primarily, we

will see that adding 1-algebra data will affect all lower copies in a chain when af-

fecting one part, partially addressing Kobele’s comment about duplicating features

which drive the derivation. This aligns with our theme that interesting proper-

ties of structure are captured by morphisms: 1-algebra data describes chains on an

object, while universal constructions using morphisms preserving 1-algebra struc-

ture percolate structural change effects throughout chains. Consider the following

delayed-agreement effect from Ancient Greek, based on Andrews [45].

(3) emmenomen
we.abide.by

hois
which.dat

ho:mologe:samen
we.have.agreed

dikaiois
just.dat

ousz,
being.dat

e:
or

ou?
not

‘Do we abide by those things which we consider just, or not?’

The important fact is that the adjective dikaiois and participle ousz both

engage in case-concord with hois. However, hois does not get dat case until it

218

Assigner

dat . . .

being

which caseb just

casej

casew

Figure 5.13: A feature-sharing structure representing concord, where the case of the

participle being and adjective just depend on the case of which.

moves into the matrix clause for assignment from emmenomen. The idea is that in

a feature-sharing configuration, after undergoing concord with the head wh-item,

when the wh-item gets valued for case, the lower items match ‘automatically’.

For our purposes, it does not matter if we believe that one or the other of the

participle or adjective engages in case concord with the other, and then in turn with

the wh-item, of if they both simply enter into concord with the wh-item directly.

We assume the latter for simplicity. We assume that we have built up the structure

in Fig. 5.13. Call this structure T , and we will assume for simplicity that no copying

has yet taken place, such that the chain-data is simply the identity function on T .

We intend to copy the constituent ‘which ≤ casew’ (denoted K) and attach it

to Assigner (i.e. add the relation Assigner ≤ which), while also valuing its case (i.e.

adding the relation casew ≤ dat). However, if we take the ‘normal’ pushout, the

induced copy data self-map is not order-preserving. If the map from (K +T, κT (i+

219

id)) to Z must meet the SC requirements for copying, then the induced 1-algebra

operation on Z to itself must take the higher copy of which to the lower copy, and

similarly for casew. Denoting these higher copies with a ′ symbol and the induced

self-map g : Z → Z, we have case′w ≤ dat′, yet g(case′w) = casew 6≤ dat = g(dat).

The (poset,d-hom)-universal map will simultaneously add a relation from the base

copy of casew to dat. See Fig. 5.14.

Similar logic can be used to also explain the simpler observation - when one

object in a chain gets Case, the whole chain gets Case. The explanation of this and

the more complex phenomenon follow straightforwardly from this model, assuming

that case may get its value under the transitivity of dominance/dependence. When-

ever we add a dependency relation a ≤ b to some element a which is a copy of e(a),

the universal construction preserving 1-algebra structure will also add a dependency

relation e(a) ≤ b, so that e is order-preserving (assuming that b is a base-copy).5

We can also extend this sort of logic when the DSOs have more structure. We start

with a simple example involving feature activity. Let A be the category of finite

partial orders together with a single predicate ι ‘inactive’. That is, if X is an A-

object, and x ∈ X is such that ιX(x) = false, then x is ‘not inactive’, i.e. active,

but a morphism f : X → Y may deactivate it. Conversely, if ιX(x) = true, then

x is inactive, and since morphisms f must preserve ι, x cannot be ‘re-activated’ by

5This is incongruous with late-insertion theories, which allow an XP to be attached to a high

copy in a chain without attaching to the lower copy. Such theories are usually used in explanations

of phenomena like Antecedent Contained Deletion [46]. We would instead have to use richer forms

of scattered deletion [6] and/or trace conversion to explain such phenomena.

220

kA

fA

kB

fB

h

j

Figure 5.14: A ‘pushout’ of an SC without change-data to a copying construction.

Here, the wh-phrase is K ⊂ T , and k maps a 7→ which′, b 7→ case′w, c 7→ Assigner,

d 7→ dat. The base copy of casew becomes dependent on dat, since the chain-data

function on Z must be order-preserving.

221

a

x

b

y

dog

φ n

the

d =n

b

a

x = y

the

dog

φ n

d

k1

f1

k2

f2
g1 g2

j

Figure 5.15: If the element x = y is inactive, then j must carry it to an inactive
feature, so g1 and g2 must deactiveate n and =n.

some SC. We remind the reader how we can use a pushout to deactivate a feature.

In Fig. 5.15, if x = y, since j must preserve ι, the image n must be inactive, and

so g1 and g2 deactivate the selection and selectee feature. However, no other ele-

ments are deactivated. Now, in Fig. 5.14, suppose that fA(b) is inactive, which will

require that h(case′w) is inactive. However, we cannot only deactivate this feature,

since g(h(casew)) must also be inactive, since g must be a morphism. Hence, the

(poset,d-hom)-universal pushout for A-structures will also deactivate the lower fea-

ture in the chain. Thus, (poset,d-hom)-universal pushout for A-structures will not

only attach a feature to all lower parts of a chain if attaching it to one part, but it

will also deactivate all lower copies.

5.4 Summary

Many current formal models of movement do not align with the informal de-

scription of copying and chain-formation in Chomsky [6]. In the case of standard

222

Minimalist Grammars, they do not actually copy material, but rather delay lin-

earization or other incorporation into the structure until an object reaches its final

position. This does not structurally represent the ‘multiple positions’ associated

with items in the chain in the DSOs, but rather requires us to reconstruct them

from the derivational history. In Kobele’s model, copying is done at the beginning

of a derivation, as opposed to ‘online’. Features are also deliberately not redupli-

cated in this process, though lexical items are. However, extraneous copies may

arise in this model when doing remnant movement due to this ‘pre-multiplication’

of elements. We implement a model of copying similar to Kobele’s, but which forms

copies online and adds chain-link information, following the intuition in Chomsky [6].

Since copies are formed ‘online’, the process does not create extraneous copies. One

consequence of formalizing copies in terms of unary algebras is that affecting one el-

ement in a chain affects all lower copies, since the unary algebra must preserve DSO

structure, whatever structure that may be. This formalizes a version of copying

where fragments of a derivation are copied, and features in a chain are all checked

simultaneously. We then described maximal condition categories, grammars, and

rule generation for these richer grammars with copy data. Most constructions were

straightforward to abstract from simpler grammars without copy data by using simi-

lar universal constructions and diagrammatic properties relating derivations, DSOs,

SCs, and other basic parts of the formalism.

223

Chapter 6: Comparisons to Other Models, and Conclusions

The defining property of the model of derivations sketched here is that it

emphasizes DSOs as ‘structured sets’ and derivations as collections of DSOs and

‘structure-preserving functions’ between these sets. We compare notions of structure

in this model to those in formal Minimalist Grammars (MGs) and Bare Phrase

Structure (BPS), particularly with respect to notions of isomorphism, equivalence,

and substructures. We leave with some closing remarks about the generality of the

models presented here, as well as their connection to other theories of generative

morphosyntax.

6.1 Comparison to Minimalist Grammars and Bare Grammars

Stabler & Keenan (S&K) [3,4] view a grammar as a set of expressions, together

with partial operations. Their method is general, accounting for many variants of

formal MGs. We show by example notions of isomorphism and constituent in these

grammars are about the combinatorics of the grammar, while our notions are about

the structure of the derivations and DSOs as structured sets. In other words, the

combinatorial method formalizes properties related to ‘when operations are defined’,

while the categorical approach is about ‘what operations do to structure’.

224

S&K define a grammar to be a tuple (G, f1, . . . , fn), where G is a set of expres-

sions, and fi : G+ → G are partial functions taking finite tuples (g1, . . . , gk) ∈ Gk to

elements of G. Recall that in the formalism presented here, DSOs are sets of nodes

endowed with extra structure relating to dominance, precedence, feature type and

activity, etc., and hence isomorphisms between DSOs are mutually inverse bijections

which preserve this structure in both directions. However, S&K define isomorphism

combinatorially: two objects x, y ∈ G are isomorphic in their sense if there is a

automorphism π of G such that πx = y takes one object to the other. An auto-

morphism of G is a bijection π : G → G such that fi(πg1, . . . , πgk) is defined if

and only if fi(g1, . . . , gk) is defined, and it has value π(fi(g1, . . . , gk)). This notion

of isomorphism is about what other elements an expression x can combine with for

each fi, not ‘intrinsic’ structure. For example, embedding a grammar in another can

decrease the isomorphisms between objects, simply by virtue of there being more

items to combine with. While also a useful notion, it is quite distinct from the

notion of isomorphism of DSOs in our categories A. We give an example in Fig.

6.1. In Language 1, the lexical items ε:: =x a and ε:: =y are isomorphic, since we

can interchange them and leave the operations of the grammar intact, since it just

so happens that merge is not defined anywhere for this language. This language

has an obvious inclusion into Language 2. However, in Language 2, the items are

no longer isomorphic due to the presence of ε:: y a. merge is now defined for the

pair (ε:: =y, ε:: y a) resulting in merge(ε:: =y, ε:: y a) = ε:: a. If we attempt to

interchange the two lexical items, then merge(ε:: =x a, ε:: y a) would have to be

defined, contrary to fact.

225

Language 1 ε:: =x a ε:: =y

Language 2 ε:: =x a ε:: =y ε:: y a ε:: a

Figure 6.1: Language 1 is a sublanguage of Language 2. While the two lexical items

in Language 1 are ‘isomorphic’ using the definitions in K&S, they are not in the

larger language, using the same definition.

This difference extends to ‘higher order’ comparisons like isomorphisms of

rules. Recall that for the models presented here, we embellished rules with SC

data. That is, not only did a rule return output objects Z for a given tuple

(A1, . . . , An), but it specifically told us how structure was manipulated via giv-

ing mappings fi : Ai → Z. It is then not surprising that equivalences which are

definable from ‘algebraic’ MGs cannot detect this information. Consider the follow-

ing grammar. Let T be the set of binary unlabeled trees, where each pair of sisters

has a precedence ordering � or �, and let G = T1 + T2 + T3 be the disjoint union

of three copies of T . Define f1(t, s) to be the tree whose root immediately branches

into t and s, with the relation t � s, and suppose that f1 is defined only on t, s ∈ T1

and outputs an element of T1. Let f2 be an identical function, but which is defined

only on T2 and outputs an element of T2. Finally, let f3 be the same operation

on T3, but taking values f3(t, s) in T3 such that the ordering between immediate

daughters of the root t � s is reversed. Since automorphisms as defined do not

allow permutation of the operations, there is no formal way to say that f1 and f2

induce the same structural change, while f3 performs attachment in the opposite

direction.

226

There is a reasonable weakening of automorphism: let an automorphism (π, κ)

of (G, f1, . . . , fn) be a pair where π is a permutation of G and κ a permutation

of the fi such that fi(g1, . . . , gk) is defined if and only if κ(fi)(πg1, . . . , πgk) is,

such that κ(fi)(πg1, . . . , πgk) has value π(fi(g1, . . . , gk)) if defined. A permutation

π interchanging the versions of each s in T1 and T2 and κ interchanging f1 and

f2 is one such automorphism, but so is π interchanging s and s′ in T1 and T3,

where s′ is just s with reversed � ordering, while κ interchanges f1 and f3. This

shows that these combinatorics do not detect what the operations ‘do’, just where

they are defined. In contrast, an isomorphism between structural changes §3.3.3.3

(or, at a higher level, an equivalence of rules §4.2) requires that it ‘do isomorphic

things’ to the structures in question, so this difference can be detected easily. It

is straightforward to describe a bijection π between T1 and T2 which takes each

binary ordered tree to an isomorphic one, giving an explicit isomorphism φ between

each tree in correspondence. Interpreting f1 and f2 as embellished with SCs, we

can describe an isomorphism between the operations under this bijection. We view

f1(t, s) as associated to a pair of morphisms f1,t : t → f1(t, s) and f1,s : s →

f1(t, s). Given binary ordered trees t, s, π(t), π(s) ∈ T1 with isomorphisms φ : t →

π(t) and ψ : s → π(s), we want to describe an ‘isomorphism’ between the rules

f1 and f2. We will have a pair of morphisms f2,π(t) : π(t) → f2(π(t), π(s)) and

f2,π(s) : π(s) → f2(π(t), π(s)), the SCs associated to f2 at the pair (π(t), π(s)). An

isomorphism χ : f1(t, s)→ π(f1(t, s)) = f2(π(t), π(s)) commutes with these SCs, in

that χ◦f1,t = f2,π(t) ◦φ and χ◦f1,s = f2,π(s) ◦ψ. However, notice what happens if we

try to do something similar between f1 and f3 using a bijection π between T1 and

227

T3, together with isomorphisms between each binary ordered tree in correspondence.

There will not be isomorphisms commuting with the SCs in correspondence, since

the attachment order is opposite. That is, using isomorphism φ : t → π(t) and

ψ : s → π(s) with the structural changes f1,t, f1,s, f3,π(t), and f3,π(s), there will be

no isomorphism χ : f1(t, s) → f3(π(t), π(s)) commuting with the SCs, φ, and ψ.

The induced bijection χ on underlying sets will not be a morphism, since it will not

preserve the reversed sisterhood ordering between the two immediate daughters.

The difference also extends to notions like equivalences of languages. S&K [4]

presents an issue in comparing different languages of different sizes. Adding a word

to a language will change the number of symmetries of the language, and hence not

lead to equivalent languages. However, S&K [4] note ‘we would like to say that

adding a single name to a language does not (significantly) change the structure of

the language.’ S&K [4] resolve this by defining a notion of a free lexical extension,

or more generally a notion of a grammar G being free for s, where s is a new lexical

item, in S&K [3]. A free lexical extension of a grammar G is a grammar G′ which

is the same as G, except it has more lexical items, and additionally for each lexical

item t in G′ which is not in G, there is some lexical item s in G which is isomorphic

to t in G′.

When grammars G,G′ are identical except that LexG ⊂ LexG′ , we say

that G′ is a lexical extension of G. A lexical extension of G′ of G is free

iff for every s ∈ LexG′ − LexG, there is a t ∈ LexG such that s 'G′ t.

where 'G′ means that there is an automorphism of G′ taking s to t.

228

However, free lexical extensions are still not equivalences of languages, unlike

in our model. Similarly, consider two free lexical extensions G′ and G′′ of a grammar

G, each adding a different number of words, but for each new word t in G′, there

is some new word s in G′′ such that there is a word r in G which both t and s are

isomorphic to in their respective languages, and conversely. Intuitively, G′ and G′′

should still be equivalent, but they are not, nor is one a free lexical extension of

the other. We showed that our definition of equivalence of languages from §3.3.3.3

can detect this similarity straightforwardly using a uniform notion of equivalence of

languages.

The number and ‘names’ of operations can also affect language equivalence.

If (G, f) is a grammar, we call a partial function g : G+ → G a subfunction of

f if for every tuple (a1, . . . , an) that g is defined on, f is defined there as well,

and g(a1, . . . , an) = f(a1, . . . , an), which we will write g ⊂ f . Intuitively, given a

grammar (G, f), adding a subfunction g ⊂ f to the grammar should not change

the language - each instance of a g SC could already be performed by f . However,

this is not the case. The languages generated by (G, f) and (G, f, g) do not have

to have the same symmetry groups, which is the main formal notion defining the

structure of a language in those S&K [3, 4]. For example, let G = {a, b, c, x, y} be

the grammar with f the partial function taking values f(a, b) = x and f(a, c) = y

and undefined everywhere else. The bijection p : G → G interchanging x with y

and b with c is an automorphism, producing a nonidentity automorphism. Now let

(G, f, g) be the same grammar, with g the partial function taking value g(a, b) = x

and undefined everywhere else. Every derivation in one language, in the sense

229

of sequences of mappings of specified tuples to elements in the language, can be

performed in the other, ignoring the ‘name’ of the operation used. However, (G, f, g)

has only the trivial automorphism: p is not an automorphism because g(pa, pb) =

g(a, c) is undefined. Hence, the isomorphisms between words in the two languages

are not the same, showing that the languages do not have the same ‘structure’.

This is clearly not the case for equivalences between languages of structured

derivations. Since a grammar with f and grammar with f and g will overall induce

isomorphic SCs and derivations, our definition of equivalence of languages from

§3.3.3.3 can detect this similarity. Relatedly, recall our example where f2 and f3

induce the same structural change, but in opposite directions - i.e. they would

behave the same if their inputs were reversed. We can still tell these apart as rules

- which keep track of the ordering of the inputs - but overall they will lead to

equivalent languages, which ignore that distinction, as derivations only keep track

of which tuples of DSOs (ignoring order) map to other DSOs, and the overall SC.

This is essentially the content of Claim 3.3.7.

Constituency in K&S-style grammars is defined roughly through being an

operand. More precisely, x is a constituent of y if there is a sequence of opera-

tions, the first of which takes x in as an argument, where we can successively apply

the other operations eventually yielding y. However, this actually only gives the in-

formation that x eventually maps to y; it does not in any sense identify a ‘subpart’

of y that x is associated to. Since the DSOs are not structured sets, we cannot define

substructures as in §2.3. Moreover, constituency in this model only refers to the

existence of such a sequence of operations mapping x into y; that is, x may still be a

230

constituent of y even if there is a derivation of y not using x. For example, suppose

that we have lexical items λ::=yx, λ::y, λ::x, and λ::=xx in a minimalist grammar.

Then λ::=yx and λ::y will be constituents of λ:x, even though there is a deriva-

tion merge(λ::=xx, λ::x) of λ:x without them. This also shows that constituency

in this sense is not an embedding relation of any form - there is no ‘subpart’ of λ:x

corresponding to λ::y, for example.

6.2 Comparison to Bare Phrase Structure

Bare Phrase Structure (BPS) (Collins & Stabler (C&S) [47], [34, 36]) takes

an alternative approach to phrase-markers. BPS uses the set-theoretic ∈-relation to

describe constituency. We fix the instantiation of BPS described in Chomsky [21,36]

and formalized in C&S. In these models, merge is a structure-building operation

which takes two objects A and B and forms {A,B}.1 From this definition, we

can recover an ‘immediately contains’ relation between the objects A and B and

{A,B} by using the elementhood relation. Explicitly, we say that X is immediately

contained in Y if and only if X ∈ Y .2 General containment is defined as the

transitive closure of this relation. Explicitly, we can inductively define containment

by saying that X is contained in Y if X ∈ Y or X ∈ Z for some Z contained in Y .

Strictly speaking, this is a relation which is defined on the entire model of the

ambient set-theory, not on a single set X which represents a single syntactic object,

as in the case of the precedence and dominance relations between elements of a

1C&S, Def. 13
2C&S, Def. 8

231

DSO. That is, containment is a relation between sets in the entire class of sets, not

between elements (‘nodes’) of a single syntactic object. Accordingly, a substructure

with respect to the ∈-relation refers not to a subset of any object in the model, but

rather to a submodel of the model of set theory [42].

It is straightforward to show that constituents are not in general subsets of a

BPS syntactic object X.

(23) Let A, B, C, and D be lexical items or complex syntactic objects.

Construct X = merge(A,merge(B,merge(C,D))) = {A, {B, {C,D}}}.

Then, {C,D} is contained in X, but {C,D} 6⊂ X.

As syntactic objects X are also not models of set-theory, but rather the el-

ements of such a model, the submodel relationship which preserves the ∈ relation

also cannot be the correct notion of substructure for syntactic objects.

We now present arguments that the ∈ relation, and its transitive closure, while

providing an accurate characterization of the containment relation,3 do not provide

a substructure relation between syntactic objects. Unfortunately, constituency can-

not be used to determine the appropriate notion of substructure, since, in trees, ‘A

contains B’ is coextensive with ‘the constituent dominated by B is a substructure

of the constituent dominated by A’. In other words, we cannot tell the contain-

ment relation apart from substructure inclusions between constituents. However,

in slightly relaxed notions of substructures, ∈ is clearly behaving as a primitive

3Ignoring issues relating to ‘occurrences’ of lexical items - i.e. non-tree structures resulting from

the elementhood graphs of sets.

232

containment relation between nodes, and not a substructure inclusion. We turn to

some motivating examples.

In C&S, lexical items are treated as a triple of sets of features (sem, syn,

and phon). The features of a syntactic object X are formalized externally with

a triggers function. C&S keep track of which features have been satisfied by

removing elements from the sets of features associated to X via trigger. Chomsky

suggests in “Categories & Transformations” (CT) that certain formal features may

be erased upon satisfaction, or at the interfaces.4 We first look at how C&S formalize

their calculus of features.

(24) (C&S Def. 26) triggers is any function from each syntactic object A to a

subset of the trigger features of A, meeting the following conditions:

(i) If A is a lexical item with n trigger features, then triggers(A) returns

all of those n trigger features. (So when n = 0, triggers(A) = {}.)

(ii) If A is a set, then A = {B,C} where triggers(B) is nonempty, and

triggers(C) = {}, and triggers(A) = triggers(B) − {TF}, for

some trigger feature TF ∈ triggers(B).

(iii) Otherwise, triggers(A) is undefined.

This goes hand in hand with their definition of triggered merge.

(25) (C&S Def. 27) Given any syntactic objects A, B, where triggers(A) 6= {}

and triggers(B) = {}, merge(A,B) = {A,B}.
4Chomsky [9], p. 280: “Erasure is a ‘stronger form’ of deletion, eliminating the element entirely

so that it is inaccessible to any operation, not just to interpretability at LF.”

233

The idea is that two items may only merge when one has remaining trigger

features, and the other does not. If defined, the trigger features of {A,B} are

just those of the triggering object A with the triggering feature removed. Notice,

however, that trigger keeps track of the feature changes externally, in that no

features of heads contained in A or B are changed. Under such a method, the set-

theoretic structure of syntactic objects alone does not encode the featural changes.

We want to ‘internalize’ the feature calculus so that merge actually results in

changes in the structure of the objects it combines.

We have at least two reasonable options for formally realizing these notions

of erasure/deletion within a syntactic object itself: by removing the element in

question from the syntactic object, or by changing the element in some way which

marks it as inoperative. We will show that either method results in an object which

the ∈ relation and its transitive closure both fail to treat as related to the original

object in any straightforward way. We will extend the argument to cases of agree.

6.2.1 Method one: removal of the feature

For any sets A and B, we can construct a set A−B = {a ∈ A : a 6∈ B}, their

difference, which removes B-elements from A.

Let A be a lexical item and X and Y be syntactic objects (lexical items or

otherwise). We treat lexical items as in CT, where A is literally a set of features.

Take the syntactic object merge(A, Y) = {A, Y }.5 Suppose that when this object

5For simplicity, we delete no features in the first step, though the argument still holds if we do

remove a feature of A (or Y) during this first step.

234

is merged with X, a feature of the head A is checked, removing f ∈ A, resulting in

the object {X, {A − {f}, Y }}. Alternatively, if features are not deleted in syntax,

we may say that some interface only sees the structure {X, {A − {f}, Y }}, which

should be a substructure of {X, {A, Y }}. In the first case, we should like to describe

in what sense {A− {f}, Y } is a substructure of {A, Y } in that they have the same

phrase structure, with the former simply missing a feature of the latter. In the

second case, we should like to describe how {X, {A− {f}, Y }} is a substructure of

{X, {A, Y }}.

As expected, a subset relation fails to hold in both cases: {X, {A−{f}, Y }} 6⊂

{X, {A, Y }}, and {A − {f}, Y } 6⊂ {A, Y }. However, there is also no containment

relation between the syntactic objects. In fact, there is no straightforward set-

theoretic relation between these objects. While a subset relation A− {f} ⊂ A does

hold, {A − {f}, Y } 6⊂ {A, Y }. More generally, for any constituent M containing a

head A from which we remove a feature, the resulting constituent M ′ will simply

be a distinct set from M (often with the same number of elements as M). In this

example, {X, {A − {f}, Y }} and {X, {A, Y }} have the same number of elements,

though A and A− {f} do not, assuming A is finite.

On the other hand, there are canonical ways to draw graph-theoretic objects

from well-founded sets. One method produces trees: draw a set X as a root, and

write all of its elements as immediate daughters. We repeat the process at each child,

writing the same element multiple times if necessary. This process is described in

Aczel [48].

235

(24)

{X, {A, Y }}

X

elements contained in X

{A, Y }

A

a1 . . . f . . . an

Y

elements contained in Y

For syntactic objects K, we can define a set X of occurrences of contained

elements, with R ⊂ X ×X being the immediate containment relation between the

appropriate occurrences; see C&S, §4, Def. 18 for a formal treatment. We can

define a subgraph relation between two graphs (X,R) and (Y, S) if X ⊂ Y and we

have a relation xRx′ for x, x′ ∈ X if and only if xSx′ in Y . We can then form the

graph-theoretic tree associated to {X, {A − {f}, Y }}, which is clearly a subgraph

of the graph in (24). We could similarly use the containment relation in place of

the immediate containment relation, which would describe the syntactic objects as

partially ordered sets, with the substructure relation being a subspace inclusion of

finite partial orders.

6.2.2 Method two: changing (the value of) a feature

Changing the ‘value’ or otherwise adding diacritical marks to an element is

another way to formally represent the status of a feature in a syntactic object. In

236

this case, suppose that we have again constructed {A, Y } which we intend to merge

with X in a way which will alter a feature f ∈ A. This alteration could be realized

as a bijection m : A→ A′, where A′ is the same set as A, except the feature f has

been replaced by f̄ , the ‘inoperative’ form of f .

However, {A, Y } is not a subset of {X, {A′, Y }}, nor do we have a contain-

ment relation between the two sets. Much like subsets are not the relevant notion

of substructure for BPS sets, neither will bijection be the appropriate notion of iso-

morphism of underlying hierarchical structure, nor will functions be the appropriate

notion of homomorphism. For, depending on whether we allow merge to combine

identical sets or not, every BPS set will have cardinality 1 or 2, and hence be in

a bijection with the set 1 = {0} or 2 = {0, 1}. So while {A′, Y } and {A, Y } are

‘isomorphic’ in that there is a bijection between them, so are they both isomorphic

to {X, {A, Y }}, showing that this is not the correct notion of ‘isomorphism’ between

the objects, in that it totally ignores constituency.

Again, we may convert {A, Y } and {X, {A′, Y }} into graph- or order-theoretic

trees. We can define an isomorphism between graphs (X,R) and (Y, S) as a bijection

m : X → Y such that xRx′ in X if and only if (mx)S(mx′) in Y (or similarly, an

isomorphism of partial orders as a bijection m : P → Q such that x ≤ x′ in P if and

only if m(x) � m(x′) in Q). Using these definitions, two graph- or order-theoretic

trees (X,R) and (Y, S) will be isomorphic if and only if they have the same number

of nodes with the same constituency relations.6 Using this definition, the graphs

6Though, this ignores the ‘occurrence’ relations which indicate which nodes are ‘copies’ of

others. On the other hand, the multidominant picture of a tree, called the canonical picture in

237

associated to {A, Y } and {A′, Y } will be isomorphic, such that {A, Y } is isomorphic

to a subgraph of {X, {A′, Y }} in the appropriate way.

Alternatively, we might think of this ‘value’ or ‘activity’ as a property of a

feature which is explicitly part of its structure. This again has a straightforward

formalization when the syntactic objects are graphs: we define a graph-with-value

as a graph (X,R) together with a function ν : X → {true, false} where we interpret

ν(x) = true as meaning ‘x is inactive’. We define a homomorphism between graphs-

with-values f : (X,R, ν) → (X ′, R′, ν ′) as a graph homomorphism such that if

ν(x) = true, then ν ′(f(x)) = true, i.e. inactive features stay inactive, but active

features may be deactivated. Using this structure, the inclusion of an operand A

into larger object X, while deactivating a feature in A, would be a homomorphism.

6.2.3 Agree

The above examples showed that the feature-deletion and feature-valuation

methods of modeling merge do not lead to substructure embeddings or homo-

morphisms between BPS sets in any obvious sense. In contrast, relations between

derived syntactic objects are straightforward when represented as graphs (possibly

with extra structure). Chomsky [49] has a ‘valuation’ version of agreement, which is

subject to similar analysis as the valuation case for selection above. We look now at

a feature-sharing approach to agreement, and similarly show that the structural re-

lation between the input structures and output structures is given straightforwardly

by graph homomorphisms, while there is no clear associated notion for sets.

Azcel [48], and given in Fig. 3 in C&S, would not have this issue, and could be used instead.

238

We recall the architecture for agreement as feature-sharing from Frampton

& Gutmann [12] discussed in §4.3, which is couched in the set-theoretic model of

BPS. The arrow ‘Agree’ in Frampton & Gutmann’s figure in §4.3 can clearly be

viewed as a pair of graph homomorphisms from each graph on the lefthand side

to the graph on the righthand side, or as a single graph homomorphism from the

‘structured disjoint union’ of the graphs on the lefthand side to the graph on the

righthand side. If we view the valuations as properties attached to the nodes of the

graph, then we can additionally view this map Agree as a graph homomorphism

which preserves those properties (e.g. a pl node gets taken to a pl node). However,

it is again difficult to describe the relationship above when we view the objects as

BPS sets. Usually at least one of A or B above will be in a phrase when agreement

is applied. Suppose it is B, and we have B ∈ . . . ∈ X. We intend to construct

from A and X an object {A′, X ′}, where A′ and X ′ are exactly A and X, but where

the number and case features have been replaced accordingly. Again, we will have

no subset, containment, or other obvious set-theoretic relation between A or X and

{A′, X ′}.

We mentioned in §4.3 that isomorphisms appear implicitly here. Frampton

& Gutmann note that the specific index for the element representing the shared

feature does not matter, so long as it is suitably distinguished. Again, while the

set-theoretic statement of this is somewhat complex (and relies on knowing the

specific indices used elsewhere in syntactic objects contained in the current one),

the graph-theoretic notion is quite elegant: the righthand side above is determined

up to isomorphism of graphs (possibly with values assigned to nodes).

239

6.2.4 Graph structure

We finally note that it is really the graph structure which we may associate

to a BPS set which is the object of interest for reasons other than just statement of

formal mathematical relations like substructures, isomorphisms, and general homo-

morphisms. §4 of C&S describes many of the important syntactic relations through

paths associated to a BPS set. Specifically, a path is a sequence of constituents

contained in a BPS set 〈X1, . . . , Xn〉 such that Xi ∈ Xi+1. For a BPS set X, the

paths from constituents to X determine a graph structure. The positions that a

constituent occurs in in X are stated with respect to these paths, and hence this

is also how relations like c-command are stated, as well as chains, similar to the

method described by Chomsky [9], Ch. 4. Importantly, these properties like c-

command and minimality/locality which are relevant for describing interpretations

of and application of operations to syntactic objects then care about this path (i.e.

graph) structure. The BPS formalism is then largely used insofar as it encodes

graph structures. This is reenforced by the preceding discussions, where we showed

that graph morphisms naturally described structural similarity between different

objects, not set functions or morphisms between models of set theory.

6.3 Conclusions

The previous sections show that while on an intuitive level, the models pre-

sented here have many connections with other mainstream formalizations like formal

Minimalist Grammars or Bare Phrase Structure, at a technical level they are quite

240

different.

First turning to DSOs, objects in our models are ‘structured sets’ - formally,

representably concrete categories. Isomorphisms between objects are then induced,

and are special bijections which preserve the relations between and properties of the

nodes occurring in a structure. However, in formal Minimalist Grammars, DSOs

are not structured sets (or at least this is not part of the formalization of them),

and hence ‘isomorphisms’ between objects are determined combinatorially. In Bare

Phrase Structure, there is a tempting notion of isomorphism between structures

given by putting SOs contained in two SOs X and Y in correspondence, though

exactly how one should do this is dependent on how we correspond the objects with

graph structures. For example, how we count occurrences of a SO which is contained

in X and integrate them into the hierarchical structure associated to X will affect

which structures are isomorphic. Different canonical ways to do this are given in

Azcel [48], showing that the correspondence between set and graph structures is not

unique. In any event, the relevant notion seems to boil down to isomorphisms of

the more traditional sort used in the theory presented here. There are other related

issues using a purely set-theoretic characterization of SOs, such as how to represent

ordered pairs versus unordered pairs as in Chomsky [21]. Since the ∈ relation is used

to describe the structure of a syntactic object, using it to also encode ordered pair

structure can lead to ambiguity as to what object a set is to represent. We avoid

such issues by describing the structure we care about directly in the categorical

data.

As concrete categories, DSOs in our model have a natural notion of substruc-

241

ture which can be defined in general for many different models. In contrast, most

formal Minimalist Grammars have no such notion of substructure on the DSOs.

For example, while it is often ‘obvious’ that two DSOs combining to form a third

correspond to ‘parts’ of the output, these parts are not part of the formal theory.

Similarly, §6.2 showed that the ∈ relation is not sufficient to describe general sub-

structures in BPS, such as those obtained by deleting a feature, and similarly feature

checking/replacement does not arise as a homomorphism. More generally, being able

to identify substructures and containment relations between them is often part of

how we intuitively view the targeting of substructures for copying, description of

minimality or binding theory configurations, probe-goal relations, etc. It was the

existence of these substructures which also allowed for our formalization of ‘online

copying’ in §5.2.

The ‘structure’ we endow sets with to describe DSOs goes hand-in-hand with

the notion of ‘morphism’ preserving that structure. This is how we formalized struc-

tural changes, which makes all other constructions presented in the thesis possible.

Namely, being able to talk about what structure a rule ‘targets’, as in §4.2, and

how it can be generated from a ‘basic’ SC, as in §4.3, required both that DSOs are

structured and that SCs relate the structures of inputs and outputs. Our construc-

tion of maximal condition categories allows us to perform standard constructions

like finding the repletion of the category, thereby extending a structural rule to be

able to apply to all tuples of objects isomorphic to ones it was originally defined on.

Description of when a rule is associated with SCs meeting versions of Inclusiveness

or Extension relied on properties of the underlying functions or morphisms. In for-

242

mal Minimalist Grammars, only the assignments of outputs to inputs is formalized,

making such constructions and analyses impossible. The ‘inverse’ of introduction of

structure is the measurement of what structure was introduced, leading to the the-

ory of grammatical relations in §3.2.1. In Minimalist Grammars, these grammatical

relations must be stated by proxy, associating a particular operand of a particular

operation with a particular kind of grammatical relation - associations which do

not follow from general principles about the structural relations introduced. Stem-

ming from our ability to formalize basic SCs which are applied ‘in some context’ is

the analysis of deconstruction of rules into component SCs in §4.4, which is again

unstateable without data of this sort. Similarly, it is from these deconstructions

that we are able to talk about what aspects of a SC are similar between differ-

ent rules, such as sharing a phrasal attachment or agreement component, as well

as demonstrate how movement involves similar SCs as merge-operations after us-

ing the form-chain functor. In Minimalist Grammars, at a formal level, all the

grammatical operations are simply distinct, as are all instances of their application.

That the structure of DSOs leads immediately to a theory of SCs aligns with

the category-theoretic motto that it is the ‘morphisms which matter’. This extended

to other parts of the theory, such as the connection between constituent-preserving

maps and description of c-command as negation in §2.5.2. Similarly, we used unary

algebras to keep track of chain data on derivations. Universal constructions which

must preserve chain data (i.e. be unary algebra homomorphisms) automatically in-

duced the desirable property that applying a SC to one element in a chain spreads to

its copies. Being able to consider SCs as morphisms and knowing the isomorphisms

243

between DSOs allowed us to construct a more robust theory of language equivalence

in §3.3.3.3 which, while still caring about combinatorics of the grammar, ignores

structurally irrelevant properties like cardinality, the number or indexation of rules

used to induce the SCs, or particular notation/indexation used to describe copies,

occurrences, feature identification, extensions, etc. §6.1 showed that isomorphisms

of languages in S&K’s sense is combinatorial and very rigid. We gave examples

showing that there are readily constructed examples of languages which we would

like to be equivalent, despite neither being isomorphic, having the same symmetries,

nor being in a free lexical extension relation.

One tenet of traditional minimalist syntax we have rejected is that operations

do not union structure. Chomsky argues as follows in Categories & Transformations :

The label γ must be constructed from the two constituents α and β.

Suppose these are lexical items, each a set of features. Then the simplest

assumption would be that γ is either

(6) a. the intersection of α and β

b. the union of α and β

c. one or the other of α, β

The options (6a) and (6b) are immediately excluded: the intersection

of α, β will generally be irrelevant to output conditions, often null; and

the union will be not only irrelevant but “contradictory” if α, β differ in

value for some feature, the normal case. We are left with (6c): the label

γ is either α or β; one or the other projects and is the head of K. If α

244

projects, then K = {α, {α, β}}

Chomsky [9], p. 244

We, however, reject that (6b) is automatically excluded: the pushout con-

structions of §4.3 in many ways act like a ‘structured union’ of DSOs, capturing the

intuition that a DSO formed out of A and B does in fact consist of parts of both

A and B. In fact, this is essential: it is exactly the ‘inclusions’ into the ‘unioned

structure’ which give information about how the two inputs formed and are related

to the output object.

6.3.1 Generality

The technique was also developed in great generality, making only enough as-

sumptions about the DSOs to guarantee the existence of certain constructions. We

have given examples throughout which illustrate how feature-sharing is easily admit-

ted into the model. Similarly, nothing we have done excludes using feature geometric

structures [50], and in fact many of our proposed SCs such as for head-adjunction

will automatically keep track of that geometry when ‘unioning’. Similarly, models

like the one presented in Bye & Svenonius [15] which combines aspects of Mirror

Theory [14] and nanosyntax [51] are easily modeled. Both models which allow and

models which restrict feature movement [9] can easily be modeled as well. In all

cases, the theories of structural analyses, structural changes, copies, etc. can still

be implemented straightforwardly. We take this to be a benefit of the methods

presented here - they show that the constructions we use to model copying, con-

245

stituency, projection, etc. are very simple abstract properties, and do not care about

idiosyncratic aspects of the notation or formalization used.

246

Appendix A: Proofs

Lemma 3.5.8.1. Let X be any finite partial order and i : S → X any injective

order-preserving function considered as a subset, and take the pushout of preorders

of i with itself to obtain X+SX. Then, X+SX is already antisymmetric, and hence

the forgetful functor from FPos to Set preserves this pushout, and s(x) = t(x) if

and only if x ∈ S.

Proof. We identify S with a subset of X. The pushout of sets X +S X is effectively

the set X ‘doubled’ where we have identified points from S in each copy. As a set

pushout, the functions s, t : X ⇒ X +S X have the property that s(x) = t(x) iff

x ∈ S. To complete the theorem, we must simply show that the induced preordering

on X +S X is already antisymmetric.

If we look in each ‘copy’ of X in X +S X, the ordering looks just as it does

on X. We transitively add relationships a ≤ b between elements in different copies

of X − S if there is an element y ∈ S such that a ≤ y ≤ b. If a ≤ b and b ≤ a

in a single copy of X, then a = b by virtue of antisymmetry there. If a and b are

in different copies of X − S such that a ≤ b and b ≤ a in X +S X, then we must

have elements y, y′ ∈ S such that a ≤ y ≤ b and b ≤ y′ ≤ a. Viewing all of these

as elements of X, this means that b and a are equally ordered in X, so the only

247

elements y between them are representatives of a = b. But by assumption a, b 6∈ S,

a contradiction. So distinct copies of a point in X − S cannot be ordered as such,

and the ordering is antisymmetric.

Claim 3.5.10. If φ : ∆ → Γ is a constituent-preserving morphism between sepa-

rated derivations, then T (φ) : T (∆)→ T (Γ) is an open map.

Proof. The theorem can be proven using an alternate characterization of open maps,

and then using a back-and-forth method to construct blockwise order sequences in

the domain and codomain.

The following are equivalent:

(1) f : X → Y is an open map of finite preorders

(2) For every x ∈ X, if y ≥ f(x) ∈ Y , then there exists some z ∈ X such that

f(z) = y and z ≥ x.

If f is an open map, and U ⊂ X an open subset, then f(U) ⊂ Y is open.

By finiteness, U is generated by some finite set {x1, . . . , xn} ⊂ X such that for all

x ∈ U , x ≥ xi for some xi, a generator. Then for any f(xi) ≤ y, by openness, some

element of U must map to y. Since this holds for all open sets, and for any x ∈ X

the set {x′ ∈ X : x′ ≥ x} is open, (1) ⇒ (2). If (2) holds, then for any U we can

use (2) on the generators to produce the necessary elements of U to hit all points

greater than some element in the image f(U), so that this map is surjective, and

then f is open, so that (2)⇒ (1).

248

We now introduce terminology related to the partition into close-components.

On a finite partial order X, an equivalence relation ∼ is said to be regular or a

regular partition of X if the induced quotient on preorders q : X → X̃ is actually a

map of partial orders. [52] gives the following results for regular morphisms in the

category FPos (Codara uses ‘poset’ to mean ‘finite poset’).

Definition 2.7 (Blockwise order). Let (P,≤) be a poset and let

π = {B1, B2, . . . , Bk} be a partition of the set P . For x, y ∈ P , x is

blockwise under y with respect π, written

x .π y,

if and only if there exists a sequence

x = x0, y0, x1, y1, . . . , xn, yn = y ∈ P

satisfying the following conditions:

(1) for all i ∈ {0, . . . , n}, there exists j such that xi, yi ∈ Bj,

(2) for all i ∈ {0, . . . , n− 1}, yi ≤ xi+1.

Codara [52]

In other words, the blockwise ordering on a poset P with partition π is just

the (pre)ordering between elements of P , such that we are allowed at any point to

‘jump’ to any other element in the same block while zig-zagging from x to y.

Definition 2.8 (Fibre-coherent map). Consider two partially ordered

sets (P,≤P) and (Q,≤). Let f : P → Q be a function, and let πf =

249

{f−1(q) | q ∈ f(P)} be the set of fibres of f . We say f is a fibre-

coherent map whenever for any p1, p2 ∈ P , f(p1) ≤ f(p2) if and only

if p1 .πf p2.

Codara [52]

Codara gives the following result using these definitions.

Proposition 2.4 In FPos, regular epimorphisms are precisely fibre-

coherent surjections.

Codara [52]

Codara characterizes regular partitions as follows.

Definition 3.4 A regular partition of a poset P is a poset (πf ,�)

where πf is the set of fibres of a fibre-coherent surjection f : P → Q, for

some poset Q, and � is the partial order on πf defined by

f−1(q1) � f−1(q2) if and only if q1 ≤ q2,

for each q1, q2 ∈ Q.

Codara [52]

Finally, giving the following result:

Theorem 3.2. If P is a poset, (π = {B1, B2, . . . , Bk},�) is a regular

partition of P if and only if π is a partition of the underlying set P , and

� is a partial order on π such that for each pair Bi, Bj of blocks of π,

250

and for all x ∈ Bi, y ∈ Bj,

x .π y if and only if Bi � Bj,

where .π is the blockwise quasiorder induced by π.

Codara [52]

And by Def 3.4, this blockwise order is actually the partial order P/ ∼. Sum-

marizing, f : P → Q is a regular epimorphism of finite posets if and only if for the

partition π on P of fibres of f , the blockwise ordering of elements in P coincides

with the ordering of the image of the blocks they are contained in under f .

Now suppose that a ∈ ∆ has equivalence class [a] in T (∆) and φ : ∆ → Γ

is a constituent-preserving map. By coherence, it induces a map f between the

quotients of points f : T (∆) → T (Γ), taking f([a]) = [b]. To show that f is open,

for any [c] such that [b] ≤ [c] in T (Γ), we must find some [z] such that [z] ≥ [a] in

T (∆) and [z] maps to [c].

We denote the equivalence relation ‘is in the same close-component’ by ∼. If

f([a]) = [b], that means there is some point x such that x ∼ a, such that φ(x) = y

and y ∼ b. Now, if we have [c] ≥ [b], by the regularity of the partition, we must

have that c is blockwise greater than b in T (Γ). Choose some sequence satisfying

the blockwise ordering requirements, so that c = x0 ∼ y0 ≥ x1 ∼ y1 ≥ . . . ≥ xn ∼

yn = b. We construct a blockwise path in ∆ mapping to this blockwise path by a

back-and-forth method. Start with b = yn.

Since we have established that there is some point x mapping to y ∼ b under φ,

there is a component K containing x, a component C containing b and a surjective

251

map φ : K → C. By surjectivity, there is some ŷn ∼ a mapping to yn and x̂n ∼ a

mapping to xn. In the blockwise sequence, we assume that there is some step

xn ≤ yn−1. But since x̂n hits the point xn, and φ is open, there must be some point

x̂n ≤ ŷn−1 of ∆ which hits yn−1.

Now, for the inductive step, suppose there is some point ŷi hitting yi from the

sequence. There must be some x̂i ∼ ŷi hitting xi ∼ yi since there are components K ′

and C ′ containing ŷi and yi such that φ : K ′ → C ′ is surjective. From the blockwise

ordering sequence, we have xi ≤ yi−1. But φ is open, and x̂i maps to xi, so there is

some element x̂i ≤ ŷi−1 mapping to yi−1.

Continuing, we obtain a blockwise ordering ŷ . ŷn−1 . ŷn−2 ŷ0 in ∆,

where ŷi hits yi in the sequence. In particular, this final ŷ0 hits y0 ∼ c. Since

equivalence classes in T (∆) are ordered iff elements in their class are blockwise

ordered, we have that [a] ≤ [ŷ0]. Since ŷ0 hits y0 ∼ c, [ŷ0] must be mapped to [c], so

we can always produce the necessarily element, and the map is open.

252

Bibliography

[1] Noam Chomsky. Syntactic Structures. Mouton, 1957.

[2] Edward P Stabler. Computational perspectives on minimalism. Oxford hand-
book of linguistic minimalism, pages 617–643, 2011.

[3] Edward L Keenan and Edward P Stabler. Language variation and linguistic
invariants. Lingua, 120(12):2680–2685, 2010.

[4] Edward P Stabler and Edward L Keenan. Structural similarity within and
among languages. Theoretical Computer Science, 293(2):345–363, 2003.

[5] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, An-
nika Wagner, and Andrea Corradini. Algebraic approaches to graph transfor-
mation: part ii: single pushout approach and comparison with double pushout
approach. In Handbook of Graph Grammars, pages 247–312, 1997.

[6] Noam Chomsky. A minimalist program for linguistic theory. In Kenneth Hale
and Samuel J. Keyser, editors, The view from Building 20: Essays in linguis-
tics in honor of Sylvain Bromberger, pages 1—52. Cambridge, Mass.: MIT
Press, 1993. [Reprinted in Noam Chomsky, The minimalist program, 167-217.
Cambridge, Mass.: MIT Press, 1995].

[7] Luigi Rizzi. Relativized minimality. The MIT Press, 1990.

[8] Tim Hunter. Deconstructing merge and move to make room for adjunction.
Syntax, 18(3):266–319, 2015.

[9] Noam Chomsky. The minimalist program. Cambridge, Mass.:MIT Press, 1995.

[10] Pieter Muysken. Parametrizing the notion head. Journal of Linguistic Research,
2:57–76, 1982.

[11] Gregory Michael Kobele. Generating Copies: An investigation into structural
identity in language and grammar. PhD thesis, Citeseer, 2006.

253

[12] John Frampton and Sam Gutmann. Agreement is feature sharing. Ms., North-
eastern University, 2000.

[13] David Pesetsky and Esther Torrego. The syntax of valuation and the inter-
pretability of features. Phrasal and clausal architecture: Syntactic derivation
and interpretation, pages 262–294, 2007.

[14] Michael Brody. Mirror theory: Syntactic representation in perfect syntax. Lin-
guistic Inquiry, 31(1):29–56, 2000.

[15] Peter Svenonius and Patrik Bye. Non-concatenative morphology as epiphe-
nomenon. 2011.

[16] Marisa Ferrara Boston, John T Hale, and Marco Kuhlmann. Dependency struc-
tures derived from minimalist grammars. In The Mathematics of Language,
pages 1–12. Springer, 2010.

[17] Noam Chomsky. The logical structure of linguistic theory. 1975.

[18] Omer Preminger. How can feature-sharing be asymmetric? valuation as over
geometric feature structures. 2017.

[19] Chris Barker and Geoffrey K Pullum. A theory of command relations. Linguis-
tics and Philosophy, 13(1):1–34, 1990.

[20] Richard S Kayne. The antisymmetry of syntax. Number 25. mit Press, 1994.

[21] Noam Chomsky. On phases. Current Studies in Linguistics Series, 45:133,
2008.

[22] John Torr and Edward P Stabler. Coordination in minimalist grammars: Ex-
corporation and across the board (head) movement. In The 12th International
Workshop on Tree Adjoining Grammars and Related Formalisms, page 1, 2016.

[23] Francis Borceux. Basic category theory. Cambridge Univ. Press, 1994.

[24] Bodo Pareigis. Category theory. 2018.

[25] Jǐŕı Adámek, Horst Herrlich, and George E Strecker. Abstract and concrete
categories. the joy of cats. 2004.

[26] Saunders Mac Lane. Categories for the working mathematician. Springer-
Verlag, 1971.

[27] Edward Stabler. Derivational minimalism. In Logical aspects of computational
linguistics, pages 68–95. Springer, 1996.

[28] JP May. Finite topological spaces. Notes for REU, 2003.

[29] Peter T Johnstone. Complemented sublocales and open maps. Annals of Pure
and Applied Logic, 137(1):240–255, 2006.

254

[30] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic: a first
introduction to topos theory. Springer-Verlag, 1992.

[31] Jonathan David Bobaljik. Distributed morphology. Ms., University of Con-
necticut, 2015.

[32] Norbert Hornstein, Jairo Nunes, and Kleanthes K. Grohmann. Understanding
minimalism. Cambridge University Press, 2005.

[33] Steve Awodey. Category theory. OUP Oxford, 2010.

[34] Naoki Fukui. Merge and bare phrase structure. The Oxford handbook of lin-
guistic minimalism, pages 73–95, 2011.

[35] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of algebraic graph transformation. volume xiv of monographs in
theoretical computer science. an eatcs series, 2006.

[36] Noam Chomsky. Minimalist inquiries: The framework. Number 15. MIT Work-
ing Papers in Linguistics, MIT, Department of Linguistics, 1998.

[37] Maria Polinsky and Eric Potsdam. Long-distance agreement and topic in tsez.
Natural Language & Linguistic Theory, 19(3):583–646, 2001.

[38] Rajesh Bhatt. Long distance agreement in hindi-urdu. Natural Language &
Linguistic Theory, 23(4):757, 2005.

[39] Annie Zaenen, Joan Maling, and Höskuldur Thráinsson. Case and grammat-
ical functions: The icelandic passive. Natural Language & Linguistic Theory,
3(4):441–483, 1985.

[40] Carson T Schütze. Towards a minimalist account of quirky case and licensing
in icelandic. MIT working papers in linguistics, 19:321–375, 1993.

[41] Danny Fox and David Pesetsky. Cyclic linearization of syntactic structure.
Theoretical linguistics, 31(1-2):1–45, 2005.

[42] Chen Chung Chang and H Jerome Keisler. Model theory. Elsevier, 1990.

[43] Jean Bénabou and Bruno Loiseau. Orbits and monoids in a topos. Journal of
Pure and applied algebra, 92(1):29–54, 1994.

[44] Garrett Birkhoff. Lattice theory. American Mathematical Society, 1967.

[45] Avery D Andrews. Case agreement of predicate modifiers in ancient greek.
Linguistic Inquiry, 2(2):127–151, 1971.

[46] Danny Fox. Antecedent-contained deletion and the copy theory of movement.
Linguistic Inquiry, 33(1):63–96, 2002.

255

[47] Chris Collins and Edward Stabler. A formalization of minimalist syntax. Syn-
tax, 2016.

[48] Peter Aczel. Non-well-founded sets. 1988.

[49] Noam Chomsky. Derivation by phase. Number 18. MIT, Department of Lin-
guistics, 1999.

[50] Heidi Harley and Elizabeth Ritter. Person and number in pronouns: A feature-
geometric analysis. Language, 78(3):482–526, 2002.

[51] Michal Starke. Nanosyntax: A short primer to a new approach to language.
Nordlyd, 36(1):1–6, 2010.

[52] Pietro Codara. Partitions of a finite partially ordered set. Springer, 2009.

256

	Dedication
	Acknowledgements
	List of Figures
	Introduction
	Background and Motivation
	Organization of This Thesis
	Overview of the Theory

	Derived Syntactic Objects
	Overview
	Categories of DSOs
	Representably Concrete Categories of DSOs
	Representability

	Categorifications of Existing Models
	Constituency and C-Command
	Forests and trees in FPos
	C-command

	Summary

	Structural Changes, Grammatical Relations, and Derivations
	Overview
	Structural Changes and Grammatical Relations
	Grammatical Relations

	Derivations
	Sums
	Yields
	Grammars, Languages, and Equivalences

	Aside: Adjunctions and (Co)limits
	Representably Concrete Derivations
	D(A) Need Not Be a Representable Construct
	Representably Concrete Derivations of Finite Partial Orders
	Concrete Properties of Der
	Constituency in Der
	Extensions, Grammars, and Equivalences for Der
	Adding Structure to Der

	Summary

	Rules
	Overview
	Maximal Condition Categories (Structural Analysis)
	Generating Structural Changes
	Inclusiveness and Weak Extension
	Example Grammar: Boston et al. 2010

	Compilations of Structural Changes
	Categories of Sequences
	Sequences of Operations and Compilations
	The Rule Generated by a Sequence of Rules
	A Note on Sequences
	Examples
	Local and Long-Distance Agreement

	Summary

	Movement
	Overview and Background
	Non-Copying Models of Movement
	True Copying: Kobele 2006
	Copying In a Structured Model

	Algebras and Chains
	Universal Constructions On Algebras of Derivations
	Grammars with Copying
	Adding Structure to Grammars with Copying

	Example: Greek Case Concord
	Summary

	Comparisons to Other Models, and Conclusions
	Comparison to Minimalist Grammars and Bare Grammars
	Comparison to Bare Phrase Structure
	Method one: removal of the feature
	Method two: changing (the value of) a feature
	Agree
	Graph structure

	Conclusions
	Generality

	Proofs
	Bibliography

