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Since 2006, commercial electronics manufacturers have been banned from using 

lead-based materials and other toxic materials in their products due to the RoHS 

directive from the European Union. This led to industries transitioning to lead-free 

materials to be used in solder and surface finishes of their products. Although all of 

commercial electronics industry has transitioned to lead-free materials, some of the 

reliability and safety critical products used in industries such as defense, aerospace, 

automobile, and healthcare sectors are still exempted from the lead-free regulation. 

These industries are hesitant to transition to lead-free due to lack of data and hence 

the confidence on the long-term reliability of lead-free electronics. Known issues of 

tin whiskers and solder interconnect fatigue which can arise later in a products life 

have raised concerns related to the use of lead-free materials in electronic assemblies.  

To address these concerns, 10 year old lead-free systems were examined to determine 

the solder interconnect degradation level and tin whisker risk level.   
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Chapter 1: Introduction 

 Since the Restriction of Hazardous Substances (RoHS) regulations came into 

effect, lead which was an important alloying element in solders and surface finishes 

was banned from being used in electronic assemblies of certain applications. This 

study focuses on assessing the impact of long-term storage and usage on lead-free 

solders and surface finishes. 

RoHS Regulation 

In 2002, the European Union (EU) passed the Waste Electrical & Electronic 

Equipment (WEEE) directive to mandate the reuse, recycling, and recovery of 

electrical and electronic equipment waste that was being disposed of in European 

landfills. The goal was to reduce the release of hazardous substances into the 

environment. The WEEE directive required manufacturers to register their products 

and implement a plan to recycle in each EU country, and manufacturers were required 

to provide refurbishment, treatment, and reuse guidelines for each WEEE-compliant 

product. 

Ten categories of electrical and electronic equipment were covered by the WEEE 

directive, including household appliances, information technology and 

telecommunications equipment, lighting equipment, electrical and electronic tools 

(with the exception of large-scale stationary industrial tools), toys, leisure and sports 

equipment, medical devices (with the exception of all implanted and infected 

products), monitoring and control instruments, and automatic dispensers. The WEEE 
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directive was applicable to all of the products falling into the 10 categories placed in 

the market after August 13, 2005. 

Realizing that controlling the waste stream alone would not solve the issues 

associated with hazardous substances, efforts were made to restrict hazardous 

substances at their origins [1]. As a result, in 2003, the Restriction of Hazardous 

Substances (RoHS) directive limited the use of certain hazardous substances in 

electrical and electronic equipment in EU member states and provided a mechanism 

for restricting additional substances in the future [2]. The RoHS directive 

(2002/95/EC) became effective on July 1, 2006, and was applicable to the 10 

categories of products listed in the WEEE directive, as well as to electric light bulbs 

and luminaires used in households. 

Effective July 1, 2006, the Restriction of Hazardous Substances (RoHS) directive 

[3] legislated by the European Union (EU) banned the placement of electrical and 

electronic equipment containing lead, cadmium, mercury, hexavalent chromium, 

polybrominated biphenyl (PBB), and polybrominated diphenyl ether (PBDE) flame 

retardants into the EU region. Of these substances, lead was the most prominent 

material used in the electronic packaging industry in the form of eutectic tin-lead in 

solder interconnects as finish coatings for leaded packages. The RoHS directive was 

updated in July 2011 as RoHS 2 [4], and although it did not restrict any additional 

materials, the directive provided deadlines for some exempted applications unless a 

technical reason was provided for continuing the exemption. In particular, the RoHS 

2 directive required medical devices and monitoring and control instruments to 

comply with current RoHS restrictions by July 2014 and industrial control and 
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monitoring instruments to comply by July 2017. For all other equipment, unless 

explicitly excluded, compliance is required by July 2019. 

In order to comply with the RoHS directive, most electronics part manufacturers 

have shifted to lead-free systems. Substitute alloys to Sn-Pb alloy were being tested 

even before the RoHS regulations came into effect. After years of testing across 

industry and academic research centers alternative tin-based alloys such as Sn-Ag, 

Sn-Ag-Cu, and Sn-Ag-Cu-Bi and other micro-alloys have been suggested to replace 

lead-based connections and coatings. Of all these possibilities, tin-silver-copper 

(SAC) alloy has been widely accepted as the most suitable replacement for eutectic 

tin-lead alloy [5]-[7] due to its mechanical, electrical, and metallurgical properties, 

which match closely with Sn-Pb alloy. Although most commercial electronics 

manufacturers have shifted to lead-free materials in their products, few sectors of 

products such as defense, aerospace, and automobile have largely stayed out of this 

transition. They have been either exempted or excluded from RoHS regulations due 

to reliability concerns with switching to lead-free materials [8]. The electrical and 

electronic equipment explicitly excluded were equipment used in military and space 

applications, large-scale stationary industrial tools, large-scale fixed installations, 

implantable medical devices, transportation applications (except for electric two-

wheel vehicles), non-road mobile machinery, photovoltaic panels designed for 

permanent use, and equipment designed solely for the purpose of research and 

development [9]. The use of high melting temperature–type solders (i.e., lead-based 

alloys containing 85% or more lead by weight) remained exempt in the RoHS 2 

directive for all applications. However, since all exemptions are bound to expire at 
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some point in the near future, the electronics industry will need to continually 

evaluate the options if the exemptions are to expire. Also, some of these 

manufacturers have been investigating, and in some cases using, lead-free parts 

because they are the only parts that are affordable and available on the market. For 

example, it is nearly impossible to purchase high-density ball grid array (BGA) 

packages in leaded versions [10]. These industries employ products that are expected 

to stay in operation for many years, sometimes under harsher conditions or in storage 

for many years before being deployed [11]. In addition, defense equipment 

manufacturers are procuring and storing components in bulk to counter problems of 

technology and part obsolescence [12]. Hence these reliability critical and risk-averse 

industries have been hesitant to make the transition to lead-free electronics due to 

lack of confidence on long-term reliability of lead-free electronics [13]. Hence, there 

is a need for studies on analyzing effects of long-term (≥10 years) aging on reliability 

and properties of lead-free systems and interconnects. 

Literature Review 

There have been several studies conducted to assess the reliability of lead-free 

solders under thermal cycling conditions, vibrations, and corrosive environment  [14]-

[28]. In additions, there have been studies conducted to assess properties of 

specifically SAC405 solder joints that are exposed to high temperature isothermal 

aging. Ma et al. [29] aged SAC405 solder samples that were reflowed and extracted 

from glass tubes at 125ºC for six months. The samples were subjected to tensile 

testing and after 200 hours the elastic modulus of solder decreased from 41 MPa to 30 

GPa, while the ultimate tensile strength (UTS) dropped from 49 MPa to 28 MPa, and 
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the yield strength decreased from 35 MPa to 21 MPa. Venkatadri et al. [30] studied 

the effect of different temperatures 70 ºC, 100 ºC, and 125 ºC on the knoop hardness 

and microstructure evolution of SAC405 solder bumps. Knoop hardness reduced by 

32% at the end of 3000 hours depending on the aging temperature. The Ag3Sn and 

Cu6Sn5 IMC particle sizes were observed to increase at different rates. Hasnine et al. 

[31] studied the effect of aging on SAC solder bumps at 125 ºC. Single crystal solder 

bumps were prepared to conduct nanoindentation testing. Hardness and young’s 

modulus were found to decrease considerably after few days of aging. Specifically, 

the hardness of SAC405 solders decreased from 0.32 GPa to 0.28 GPa. Grain 

orientation was found to influence the mechanical properties of solders.  

Ma et al. [32] conducted room temperature (RT) aging for 63 days on water 

quenched and reflowed SAC405 samples extracted from glass tubes. When subjected 

to tensile loading, the properties were found to change at higher rate in the first few 

days of sample preparation. Water quenched samples were found to have higher 

variation in their properties after aging than the reflowed samples. The study found 

the elastic modulus to drop from 40.5 GPa to 37.9 GPa, and ultimate strength dropped 

from 46.8 MPa to 34.9 MPa for reflowed samples. The pure tin matrix area seemed to 

have increased while the Ag3Sn IMCs coarsened and grew longer. Xiao et al. [33] 

conducted RT aging of cast Sn 3.9Ag0.6Cu alloy samples. After 35 days of aging the 

tensile strength of solder casts were found to reduce by 25% from 60MPa to 45 MPa. 

There were no change in Ag3Sn particle size observed and the pure tin region was 

found to increase in area. In summary, all these studies report a drop in mechanical 
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properties that they measured after aging and have mainly attributed this to the IMC 

particle size coarsening over aging. 

Tin whiskers remain a potential reliability risk especially in cases of pure tin 

finish on leaded packages and connectors. Moon et al. [34] showed that no whiskers 

were observed for pure electroplated bright tin deposited onto copper substrates after 

2 months at ambient conditions. SOIC, SOT, TO-220, and QFN packages with matte 

tin finish over copper substrates were studied under biased and non-biased condition 

at 51℃-dry and 51 ℃-85% RH environment for 3000 hours [35]. No whiskers were 

found until 1000 hours under any condition. However, in the same study, whiskers 

initiated in some of the samples stored under ambient conditions after a period of nine 

months. Lin et al. [36] studied tin whiskers on samples with electroless deposited tin 

stripes ranging from 50 to 200 µm thickness. Some whiskers were formed in as little 

as 1 hour at 50 ℃ under a current density was 3.6×105 A/cm2. When the current 

density was reduced to 4.5×104 A/cm2, no whiskers were observed, even after 

hundreds of hours of current stressing. Many other studies have been conducted under 

differing stress conditions to understand the mechanism of tin whisker growth. 

However due to lack of consistency in results across studies, the concern for whiskers 

still prevail which makes its further research necessary.  

Most of these studies have been conducted under accelerated conditions such as 

high temperature/high humidity conditions. The few studies conducted to understand 

the effect of ambient conditions have ranged from few days to few months of aging 

(exposure to conditions that causes degradation). In addition, the samples used to 

study the isothermal room temperature (RT) aging effect have been either cast or 



 

 7 

 

extracted samples. None of these conditions are representative of a commercially 

assembled electronic assembly’s lifecycle conditions. This study strives to fill this 

knowledge gap by analyzing lead-free solder joints, and tin finish leads on 

commercially produced printed circuit boards (PCBs) that have been used and stored 

for more than 10 years. This study provides us an opportunity to evaluate the effects 

of usage and storage in room temperature on lead-free electronic assemblies. 

Henceforth in this paper, RT aging and RT usage and storage will be used 

interchangeably. Nano-indentation was carried out to characterize the mechanical 

properties of solders that have been aged by measuring their hardness and elastic 

modulus. Microstructural analysis was conducted to study the particle size and 

particle quantity distribution of Ag3Sn particles over Sn matrix. The microstructure 

changes along with creep testing results were analyzed to understand the effect of 

long-term room temperature usage on SAC405 solder joints Based on these results, a 

qualitative relationship between mechanical properties and the microstructure of the 

solders has been established. In addition, pure tin coated leads of integrated chips 

(ICs) on the board were inspected for growth of tin whiskers under RT conditions. 
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Chapter 2: System Level Reliability Analysis 
 

As mentioned earlier commercial electronics such as computers were the first to 

switch to lead-free materials and hence they provide us a time line of >10 years that 

would help us analyze the impact of long-term storage and usage on their reliability. 

In addition, the computer motherboards can be considered to be representative of 

other electronic systems as they are made of different component types such as 

capacitors, resistors, inductors, and integrated chips (ICs) that are part of most 

electronics.  

Lead-free Systems Information 

First the seven lead-free computer systems were examined for system level 

reliability, of which six were manufactured and used from 2006/2007 and one was 

manufactured in 2007 and never used. These systems were considered as room 

temperature aged samples going through real-time loading—environment and 

operation—conditions. Figures 1a and 1b show the systems that were examined. As 

can be seen the used systems were completely assembled, and the stored system was 

a bare motherboard that had never been used or assembled with processors and 

Random-Access Memory (RAM) cards. Analysis of these systems were able to 

provide an understanding of the degradation modes and mechanisms that can be 

expected in used and unused lead-free systems that were stored idle in room 

temperature and humidity conditions.  
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(a) 

 

(b) 

Figure 1 (a) Used computers (with service tag) (b) Stored computer (bare 

motherboard) 
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The objective of this study was to evaluate the state of health of the lead-free 

computer systems. These results were compared with the estimates from literature 

failure models in the later section.  

Used System Diagnosis 

The computer systems were physically observed for any external defects and 

damages such as cracks, damages to the casing, CD drivers missing, not powering 

ON, noise and vibration felt around the casing, etc. The defects were observed and 

captured using digital camera and documented for possible correlation with other 

defects found at later stages of evaluation. Once the external hardware issues were 

documented, the computers were examined for functional soundness of both critical 

hardware parts such as processors, hard drives, audio cards, RAM, cooling fan, etc. 

and software operation. DELL computers have in-built sensors that can retrieve status 

of health (SOH) data for all the parts that are mentioned above. These sensor data 

were accessed using certain DELL Enhanced Pre-boot System Assessment (ePSA) 

diagnostic tool that can be run on the system while booting and retrieve information 

on necessary devices. This diagnosis returns attribute data on the health of the critical 

components of the system e.g., a system with a faulty hard drive returns failure 

message when the tool is applied on the hard drive of the system. The diagnosis also 

provided system temperature and fan speed data based on the availability of 

corresponding sensors in the system. All abnormal fluctuations and anomalous data 

were documented and used for system performance analysis. There were cases when 

the system did not power up, which then posed a challenge in using the tool as it is 

not possible to run diagnosis on those systems. These cases were compared with the 



 

 11 

 

initial physical examination and find out if any missing components such as RAM or 

hard drive are causing these start-up issues. These system level state of health data 

were collected and documented against each system’s service tag for future reference 

and comparison against other systems hardware and performance. 

Stored System Diagnosis 

The stored system was assembled with new processor and RAM to assess its basic 

functional integrity as they were never used or assembled during its lifecycle. The 

system motherboard had most of the critical components such as Northbridge, audio 

cards, video cards, etc. pre-assembled on them. Hence only the processor and RAM 

were the remaining components required to power up the system and operate them 

just like other used systems. The processor and RAM were selected based on the 

architecture of the motherboard. The board being an Optiplex 755 make, it required 

Intel Q6700 processor (shown in figure 3 (a)) with 2.66GHz core with 775 connector 

pads to match the board pins. The required RAM specification was 2GB 800MHz 

DDR2 (shown in figure 3 (b)). The challenge was to procure these components as 

these processors are outdated and are seldom used in the current computers. Hence, 

we had to dig into the legacy market/sellers selling these parts online. Once we got 

hold of the processor and RAM we needed a working computer which was 

compatible with the motherboard configuration we had. This enabled us to run the 

motherboard in the same condition, i.e. with usual fan cooling in an enclosed system, 

with other accessories such as hard drives, CD-drives operating simultaneously. This 

would enable us to have confidence over the functional evaluation of the stored 



 

 12 

 

system, as against just powering up with no actual loading on the processor and 

RAM. 

 

Figure 2 Stored Motherboard Testing 

The motherboard of the computer whose auxiliary systems were used was 

replaced with our stored motherboard. Once the motherboard was replaced, the 

processor and RAM were assembled on to the stored motherboard (shown in figure 

4). The thermal grease was applied over the casing of the processor to provide a 

smooth thermal transient connection between the processor and the cooler. The cooler 

also acts as mechanical constraint for tight fit between processor pads and mating 

pins. Once the assembly was secured the system was powered ON. The system was 

connected to monitor and the operating system booted without any issues. We were 

able to browse through the system and perform normal computations without any 

notable lag or malfunction. This provided a good indication of the functional integrity 

of the stored system.  
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Diagnosis of Intermittent Functionality of a Used System 

One of the used systems with service id J9NLCC1 did not power ON initially. 

When the power was supplied it emitted a rhythmic beep sound. It was a periodic four 

beeps followed by a pause and was accompanied by fan rotating with high sound. 

When researched into DELL database it was found that these sounds relate to RAM 

failure. Hence the RAMs of this system were replaced by the new RAM that was 

installed in the stored system. Once replaced the used system powered ON and booted 

normally. This confirmed that the issue lied with either RAM cards or RAM slots. To 

identify where exactly the problem lies, the RAMs that were originally installed in the 

used system was assembled in another healthy used system. When the healthy used 

system was powered ON with the J9NLCC1 RAM it booted up normally and didn’t 

exhibit any issues in the functionality. This confirmed the fault site to be located in 

the RAM slots. After multiple iterations of assembly and removal of RAMs in the 

faulty used system it was deduced that the system powered ON even with the 

originally installed RAM, which indicated the presence of an intermittent failure.  

Summary of System Level Testing 

The seven lead-free computer systems, both stored and used, were subjected 

to non-destructive analysis. The systems were diagnosed using DELL ePSA 

diagnostic software to determine the current state of health of the overall system and 

critical parts such as processor, RAM, hard-drive and other audio-video cards. The 

stored system was assembled with new processor and RAM to boot it up and examine 

its health. The diagnosis showed that all the systems, except one used system, were 

defect free and exhibited healthy functionality in all computational tasks. One system, 
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which did not boot up was found to have intermittent contact failure between RAM 

cards and their slot interconnects. However even that system started functioning once 

the RAM card was pulled out and connected back. Overall, all lead-free computer 

systems were working fine as intended. 
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Chapter 3: Solder Reliability FEA Analysis 
 

CalcePWA is a module of CalceSARA (Simulation Assisted Reliability 

Assessment) software which assesses reliability of interconnects based on physics of 

failure models. CalcePWA was used to run the reliability analysis on the CAD model 

of the board to compare our physical inspection results with thermal fatigue model 

estimations. The solder material (SAC), component standoff height, thickness and 

number of layers in the board, and 104 components from the board such as surface 

mount capacitors, inductors, BGA, and QFPs were modeled to make the simulation 

CAD representative of the actual board. Time to failure of lead-free solder joints 

under temperature cycling was estimated to see if the reliability model estimates 

agree with the real-time inspection findings. The simulation was run for room 

temperature condition (20-30°C) with the dwell time at maximum (30°C) and 

minimum temperature (20°C) set at 480 minutes while the ramp time set at 240 mins 

so that the temperature range is set to undergo one cycle per day. 

CalcePWA Software Modeling 

The CalcePWA software consists of a set of simulation tools that use various 

thermo-mechanical stress and damage models. Using information on materials, 

hardware configurations, and expected life cycle loads, CalcePWA simulation can 

help in: 

• Checking whether the boards will pass qualification 

• Estimating operational lifetime 

• Ranking potential failure mechanisms 
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• Identifying weak links in assembly design 

Design Capture 

Design capture is the first step in the virtual qualification process. The goal of this 

step is to identify and document part and board architecture, material properties, and 

the expected life cycle loads. In this step the details including physical dimensions, 

functionality, and constitutive elements (e.g., material properties) of the board and all 

the components on the board are gathered. Sources of data typically include a bill of 

materials, manufacturers’ data books, part drawings, and board layout CAD files. The 

PoF methodology requires that all the intrinsic material properties be identified and 

documented. This includes part information (e.g., substrate material, encapsulants, 

underfills, leads, and platings), interconnects (e.g., solder composition, conductive 

adhesives, socket materials), and the makeup of the printed wiring board (e.g., resin 

system, plating, embedded passives). The properties of the identified materials are 

then retrieved from the CALCE Materials Database or looked up from references and 

used for stress modeling. 

Life Cycle Loading Characterization 

The definition and characterization of the product life cycle environment is often 

an uncertain aspect of the reliability prediction process. A product’s life cycle 

environment should be characterized in order to describe the severity and the duration 

of the loading conditions during the non-operational (storage, transport, testing) and 

the operational conditions of the product. Life cycle loading characterization is 

carried out to identify and record the operational environments of the product. 



 

 17 

 

Examples of environmental loads needed for life cycle loading characteristics include 

temperature limits, average temperature, frequency of temperature cycles, mechanical 

vibration, and electrical loads. The level of these experienced loads should be 

accompanied with details of rate of change and duration of exposure. Loads 

experienced by parts during non-operating phases such as assembly, transportation, 

storage, handling, and rework should be taken into account. Life cycle loads can be 

obtained based upon interviews with the manufacturer, interviews with the end-user, 

and the use of sensors placed on the part during operation, or using CALCE’s prior 

experience with similar environments. 

Load Transformation 

Thermo-mechanical stresses and deformation are the major contributors to 

interconnect failures. Thermal stresses are usually associated with mechanical 

(structural) failures (e.g., ductile rupture, brittle fracture, creep, stress relaxation, 

thermal shock, stress, and corrosion). The load transformation step takes environment 

and architecture as input and produces the stress fields (e.g., temperature, 

displacement, and curvature). 

Failure Risk Assessment 

Failure can occur due to elastic deformation, especially of a slender structure due 

to overstress. Stresses such as fatigue cause damage in the materials that accumulates 

irreversibly and causes the product to fail when the damage exceeds the endurance. 

Accumulated damage does not disappear when the stresses are removed. The failure 

risk assessment process is accomplished using a failure model consisting of a stress 
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model and a damage model. Stress models correlate the environmental and 

operational loads, package architecture, and material properties to stress, strain, and 

energy distributions within the interconnects. The result of the stress models is a 

strain hysteresis loop. The energy partitioning model then assumes that the damage to 

the interconnect over one thermal/vibration cycle is equal to the work dissipated in 

one hysteresis loop. The damage model roughly determines the number of cycles to 

failure. In the damage assessment step, the damage for each part is defined in terms of 

a damage ratio (DR), which, for thermal cycling simulation, is the ratio of the number 

of cycles applied to the number of cycles (or other equivalent units) it can survive. 

The times of failure reported represent an estimate of time to 50% failure. 

Ranking Potential Failure under Life Cycle Loads and Accelerated Test Plan 

CalcePWA gives the potential failure of the components in terms of the damage 

ratio. The damage ratio is defined as the ratio of the number of cycles experienced to 

the number of cycles to failure. The components are ranked in decreasing order of 

damage ratios. The various damage assessment models as applied to individual parts 

are also listed in the results. 

Solder Joint Thermal Fatigue Models 

Engelmaier developed the semi-empirical solder joint fatigue model, commonly 

known as the Engelmaier model, in the early 1980s [37]. The model was given as 

 

……..  (1) 

In CalcePWA, the results are reported as damage ratios: 
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…….. (2) 

where the applied cycles to failure are the cycles specified by the standard, and 

available cycles to failure are the cycles from the simulation results. Damage ratios 

are calculated based on Miner’s rule which states that if there are k different stress 

levels and the average number of cycles to failure at the ith stress is Ni, then the 

damage fraction, Dtotal [38], is: 

……. (3) 

Dtotal >= 1 means damage has produced a failure at the site. 

 

Simulation 

The computer board that was modeled for simulation is shown in Figure 3. Not all 

the components on the real board were modeled for the simulation. However, all the 

component types such as QFP, through hole connectors, surface mount capacitors, 

ball grid arrays (BGAs) were included in the model. Power dissipation values of 

components were provided based on datasheets and knowledge gained from past 

projects. The three highest power dissipating components were identified to be 

processor (95W), Northbridge-BGA (10W), and Southbridge-BGA (3.8W). Other 

components such as capacitors, resistors, and ICs and inductors were provided a value 

of 0.00018W, 0.0019W, and 0.0114W respectively. Type of thermal management 

system modeled has a significant impact on the final simulation results. As the heat 

generated in the computer boards are cooled by fan provided in the systems, forced 

air cooling mode was selected from the simulation. Air speed of 0.76m/s was 
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provided based on the thermal design specification of the computers. The final 

simulated board model is shown in  

Figure 4. Other important parameters that were used for modeling were got from 

physical inspection of cross-sections of board. These parameters include: 

• Thickness of the board: 1.5mm 

• Number of layers: 7 

• Solder thickness: 0.06mm 

• Solder type: SAC405 

 

Table 1 Temperature Profile used in simulation 

Ambient 

Temperature 

range 

Dwell Time at max and 

min temp. (mins) 

Ramp time 

(mins) 

No. of 

cycles 

20 to 30°C 480 240 3650 
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Figure 3 Board that was modeled 

 

 

Figure 4 CalcePWA Simulation Model of the Board with Components 
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The CalcePWA analysis results indicate that the lead-free solder joints survived 

both the RT conditions for a period of ten years. The simulation result agrees with our 

system level evaluation, where the computer boards have not failed after being used 

and stored in RT for 10 years. The simulation results showed that the solder joints of 

Northbridge BGAs had the highest damage ratio (DR). The 0603 ceramic capacitors 

that were placed close to Northbridge were found to have the second highest DR. 

Physical examination of solder joints also showed no signs of degradation such as 

cracks or voids which matches with the low damage ratio accumulated in the 

simulation as shown in Table 2.  

 

Table 2 Simulation Results Showing the Components with Top Two Highest DR 

Component Type Damage Ratio (DR) 

Northbridge BGA 0.29 

Ceramic capacitor (0603) 0.04 
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Chapter 4: Solder Joint Property Characterization 

Since the board level reliability indicated no failures and did not show any 

degradation signatures, further analysis was conducted to characterize the solder joint 

mechanical properties and microstructure. Properties of solder can give insight into 

the evolution of solder material’s resistance to certain loading conditions which could 

be then corroborated with microstructure evolution. 

 

Mechanical Property Evaluation 

For new lead-free assemblies, test boards with SAC405 solder and immersion Ag 

surface finish were designed and assembled in collaboration with Captron 

Corporation. Solder joints of surface mount ceramic capacitors were used for analysis 

of aging. Three capacitors were cut out from two aged boards while three capacitors 

were cut out, one each from one new board, for testing and microstructural analysis. 

The capacitors were ground along their length to expose the solder joint fillets on 

either side of the capacitors as shown in Figure 5. The sectioned sample was potted 

using acrylic and the potted sample was ground and polished using silicon carbide 

grit papers and diamond suspensions respectively. This provides us with six solder 

joint samples in both aged and new boards) to measure properties from. The results 

obtained from solder joints of aged boards were compared with that of new boards to 

quantify the effect of long-term aging on the microstructure and mechanical strength 

of solders. 
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Figure 5 Cross section of 10 years aged solder joint fillet under optical 

microscope 

 

Nanoindentation 

Nanoindentation is a type of indentation tests used to characterize mechanical 

properties of materials at small scale. Solder joints were subjected to nanoindentation 

to measure their hardness and young’s modulus. The indentation was carried out 

using Berkovich indenter to a depth of 1000 nm and at a strain rate of 0.05 s-1 on 

solder joint fillets on both sides of capacitor as shown in Figure 6. The 

nanoindentation measurements of aged solder are shown in Figure 7 and Figure 8. 

Figure 7 show the average modulus and hardness values with one standard deviation 

error bar of 40 indentations over six solder joints in aged solder joint while the Figure 

8 shows the average values with one standard deviation error bar. 



 

 25 

 

 

Figure 6 Indentation schematic on solder joint fillet 

 

 

Figure 7 Elastic Modulus of solder joints from our testing and literature reports 

 

Indentation schematic (not drawn to scale) 



 

 26 

 

 

Figure 8 Hardness of solder joints from our testing and literature reports 

 

The hardness and modulus are higher than typical values (40-50 GPa) reported in 

literature [31]. This could be due to the difference in the type of sample tested. Our 

study testing solder joint fillet, could have more grains than a solder bump which will 

result in constituting the effect of grain boundaries thereby increasing the overall 

modulus and hardness measured. In terms of aging effect, we find the modulus of 

SAC405 solder joint to decrease from 61 GPa to 59 GPa after ten years of aging. It is 

seen from the error bar that this drop may not necessarily indicate a change in 

modulus as it could be only a variation induced by measurement procedure.  On the 

other hand, hardness was found to increase from 0.39 to 0.47 GPa which is similar in 

magnitude to the change reported in literature but is observed in the opposite 

direction. Hasnine et al. reported a decrease in hardness by 0.08 GPa after isothermal 

aging at 125 °C. 

Creep Testing 

As discussed in the previous section the hardness of the 10 year RT aged (power 

cycled) solder joint was found to have increased. This is contrary to the literature 
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findings at elevated temperature aging. Hence creep test was conducted to identify if 

there has been work hardening that led to increase in hardness of the solder joint. The 

solder joint was subjected to nanoindentation at constant load to observe the creep 

property. 10mN constant load was applied on the solder joint for a period of 40 

seconds. The average creep displacement curves of 10 indentations each on new and 

aged solder joint are shown in Figure 9. It is clear that the aged solder joint has 

creeped lesser than the new solder joint which agrees with the hardness 

measurements. The creep is calculated based on following equation: 

𝐶 =
ℎ2 − ℎ1
ℎ1

100 

where h1 and h2 are the indentation depths/displacement at time t1 and t2; t1 is the 

time at which the 10mN load is reached and t2 is any time in the test after t1. In our 

testing, the t1 was 13 seconds and t2 was taken to be 30 seconds. The average creep of 

aged solder joint and new solder joint was found to be 0.094 and 0.091. 

The aged solder joint being harder than the new solder joint resists the 

deformation under indentation and hence shows lower displacement as compared to 

new solder joints. The creep data ascertains the presence of work/cyclic hardening 

effect on the solder joints. The hardening occurs due to initiation of multiple 

dislocation points over ten years of aging due to power cycling undergone by the 

solder joints. These dislocations points trap each other and prevent their relative 

motion leading to increase in hardness. 
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Figure 9 Creep displacement of SAC405 solder joint under 10mN load 

 

Microstructure Analysis 

Microstructure of solder joints were analyzed before being subjected to 

nanoindentation. The bulk solder, away from the interfacial IMCs, were used for this 

microstructure analysis. The change in size and number of particles of secondary 

Ag3Sn particles in the bulk solder have been reported to have impact on mechanical 

properties of solder. As explained in the introduction section, increase or decrease in 

hardness is related to finer dispersed or coarsened larger Ag3Sn particles respectively. 

The solder joints were inspected under ESEM to analyze Ag3Sn IMC particle size and 

quantity. This analysis was conducted to investigate if the Ag3Sn size evolution 

agrees with the hardness measurement. Images of six solder joints, one from solder 

joint on each side of three capacitors were used to analyze the IMC particles. 

Quantitative Analysis of IMC particle size 

The quantitative analysis of IMC particles was performed using image analysis 

software ImageJ. High quality ESEM images were taken up for analysis using 
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ImageJ. Once the ESEM image was imported into the ImageJ tool, the image was 

calibrated to change the measurement units from pixel to micrometer. For calibration, 

the image was zoomed into the scale on the bottom right corner of the ESEM image. 

Then a line was drawn on top of the scale line provided and its length is measured in 

pixels. Then using the set scale option, the default scale is removed and the measured 

length in pixels is converted to the value mentioned in the scale of the ESEM image. 

Once the scale is set, the picture size will change from being displayed in pixels to 

micrometer. This assures that the calibration has been completed. If all the images are 

captured under the same magnification, then there is an option called “Global” that 

can be checked to carry forward the same calibration scale to next images.  

Once the calibration is completed, then the image is smoothened to filter the 

pixels that are not IMC particles. This can be done using multiple filter techniques in-

built in the software such as Fast Fourier transformation (FFT) filer and bandpass 

filter. In our analysis, we used bandpass filter where 20 pixels were smoothened to 3 

pixels. When this is done, a change in image quality can be noted as the image 

appears smoother than previously it had. Then, the smoothened ESEM image of 

solder joint microstructure was converted to binary image where Ag3Sn were made 

black while rest of the image was made white. However, it is important to play with 

the thresholding option to improve the differentiation between Ag3Sn particles and 

rest of the image. After multiple trials, a threshold setting of 99-255 was adopted for 

further analysis. This setting was carried over to all images later to keep the 

processing constant and making the comparison between aged and new solder joints 

fairer. The black Ag3Sn particles were approximated as circles by the software and 
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the circles’ area (IMC particle size) were output by the particle analyzer. However, 

the size of pixels where measured initially by zooming in closer and using drawing 

tool to measure area of pixels which are also in black color. After multiple 

measurements, it was deduced that the pixels had an average size of 0.15 microns and 

hence all particles under the size of 0.15 were omitted from the output.  

The ESEM image and the corresponding binary image of solder joints are shown 

in Figure 10 and Figure 11. The results of particle analyzer are shown in Figure 12. 

The overall distribution did not show any difference between aged and new solder 

joint. The lack of coarsening could have been due to relatively benign (office) 

environment the computers were used in. This is not uncommon as SAC405 solders 

have shown to maintain their IMC particle size and resisted coarsening under 

temperature cycling [39] [40]. It was reported that the IMC particles in SAC alloys 

with higher silver content such as SAC405 do not move enough to coalesce and grow 

in size as compared to low Ag alloys such as SAC105 and SAC205. 

To get further confidence on the difference or indifference in the distributions 

quantitatively, t-test was conducted. Null hypothesis is that there is no effect of aging 

on the IMC particle size and the alternate hypothesis is that aging has caused 

significant evolution of IMC particles. The p-value which is a measure of 

similarity/dissimilarity of the distributions should be <0.05 to reject the null 

hypothesis. However, for the t-test to be applicable to two distributions, they should 

have similar variance. This is confirmed by conducted a f-test where the null 

hypothesis is that the two distributions have same variance and the alternate 

hypothesis is that the two distributions do not have same variance. The null 
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hypothesis is rejected if the p-value of f-test is less than 0.05. The f-test was 

conducted for our distributions and the p-value was found to be 0.1. This confirmed 

the null hypothesis thereby ascertaining that both distributions have same 

variance/standard deviation.  

Following the f-test, the t-test was conducted and it yielded a p value of 0.4. Since 

it is more than 0.05 we accept the null hypothesis and ascertain that the aging did not 

change the microstructure. This finding differs from the literature reports where the 

Ag3Sn particles have been observed to increase in size after aging at elevated 

temperatures.  

 
 

(a)                                     (b) 

Figure 10 (a) ESEM image and (b) Binary image of 10-year-old solder joint 
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(a)         (b) 

Figure 11 (a) ESEM image and (b) Binary image of new solder joint 

  

  

(a)         (b) 

Figure 12 Ag3Sn IMC particle size distribution of (a) aged and (b) new solder 

joints 
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Interfacial IMC Thickness Measurement 

Interfacial IMCs have a significant impact on the life of the solder joints as their 

brittle property causes crack initiation and propagation through them under high 

strain rate loads. It should be noted that the interfacial IMCs refer to the intermetallic 

formed during the reflow process between the copper pad and solder to form the 

assembly. This is different from the bulk solder IMCs that were discussed previously. 

Interfacial IMCs of SAC/Cu solder-pad assembly are generally comprised of Cu3Sn 

and Cu6Sn5 and grow in thickness over time. Due to the brittle nature of these IMCs, 

lower IMC thickness are generally preferred. Interfacial IMC thickness was measured 

in new and aged solder joints to characterize the effect of room temperature usage on 

solder joints. Interfacial IMCs of three solder joints each from new and aged boards 

were measured and compared. As shown in figure, the IMC thickness of new and 

aged solder joint were found to be 2.5 and 5 µm respectively. This shows that the 

solder joint’s vulnerability to drop loads increases with aging time.  

 

Figure 13 Interfacial IMC Thickness Change 
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Chapter 5:  Tin Whisker 
 

Tin whiskers remain a potential reliability risk, especially for tin-finished 

products. Tin whiskers are filamentary growths that spontaneously grow from 

electroplated tin surfaces. Whisker growth starts after an incubation period that varies 

from seconds to years. Tin whiskers present risks for electrical shorting, metal vapor 

arcing, and mechanical obstruction failure. 

Inspected Samples Information 

Leads of ICs (integrated chips) and electrical connectors were studied to identify 

the effect of room temperature usage on tin whisker formation. The ICs were cross-

sectioned to reveal the lead finish and lead material itself. This was performed to 

confirm the lead finish material, the underlying lead material which helps to 

characterize their whisker propensity. The cross-sectioned components with leads 

were taken up for analysis under ESEM-EDS to identify the materials. The EDS 

showed spectrum of tin when the thin finish material was scanned using EDS, while 

the lead material itself was confirmed to be copper.  

Tin Whisker Inspection 

These components before being cross-sectioned were subjected to tin whisker 

inspection. As per JEDEC Standard 22-A121A, minimum total area of inspection is 

to be 75 mm2, and a minimum of 18 leads should be inspected with at least 1.7 mm2 

of area inspected in each lead. In this study, two quad flat packages (QFP) with a total 

of 126 gull wing type leads and two electrical connectors from one used motherboard 

were inspected which constitutes an area of over 100 mm2. The leads were studied 
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using optical microscope and ESEM/EDS (environmental scanning electron 

microscopy/energy dispersive spectroscopy) to detect the presence of whiskers. 

 

 

Figure 14 Components inspected for tin whiskers 

 

ESEM images of the lead in Figure 15 (a) and (b) show thin forms over the lead. 

These were categorized to be not tin whiskers specifically due to the absence of 

striated patterns that is typical of whiskers. EDS analysis was conducted further to 

ascertain the presence or absence of whiskers. 85 mm2 of area was inspected across 

two leaded components and an additional 40 mm2 of area was inspected across the 

two connectors and no whiskers were found through ESEM inspection and EDS 

analysis.  
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(a)          (b)    

Figure 15 (a) ESEM Image at 300X magnification (b) ESEM Image at 1000X 

 

Figure 16 ESEM Image of Connectors 
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Whisker Risk Estimation 

To compare our finding with historical tin whisker growth characteristics, failure 

probability due to tin whisker shorting was estimated using 

calceWhiskerRiskCalculator. The probability is computed based on whisker growth 

characteristics (length and distribution) collected from past experiments and results. 

The lead spacing, number of leads, and finish material are the inputs to risk analysis. 

The parameters were collected from datasheets of parts that were inspected.  

The following assumptions are made in the CALCE tin whisker risk calculator: 

• Full surface area of a conductor is considered.   

• Bridging spans shortest distance between conductors.   

• Whisker growth can be extrapolated from measured data.   

Failure occurs when lw  ls, where lw is the length of a whisker and ls is the 

spacing between the two adjacent conductors. Because whiskers have been observed 

to change orientation, the growth angle is no longer considered.  

 

Figure 17 Lead-spacing and Tin-whisker Length 
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CALCE has measured whisker growth characteristics (length and density 

distributions) for matte tin over copper and bright tin over brass coupons. Whisker 

length distributions after 4 years (48 months) were found to follow log normal 

distributions. The growth rates are estimated based on past and current growth 

measurement. A potential failure site is defined by the area of tin which can form tin 

whiskers, the gap length which a whisker must cross to create a short, the growth 

characteristic of the tin finish, and the percent of the containment offered by an 

insulating barrier material such a conformal coat. The number of pairs is used to 

determine the failure probability for a set of same-type failure sites.  

 Figure 18 shows the distribution of whisker length collected by CALCE for tin 

coating on copper base and tin coating on brass base. The results from the CALCE 

Tin Whisker Risk Calculator are provided for each defined failure site in the defined 

system. For each site, the maximum simulated whisker length is provided along with 

the probability of failure for the failure site. At the bottom, the system reliability is 

presented.  

Fs = 1 – (1 – Fi)n 

Fs - site unreliability for n pairs at a single pair unreliability of Fi  

Fsys = 1 – i(1 – Fsi) 

Fsys - System unreliability 



 

 39 

 

 

Figure 18 Whisker Growth Distribution 

 

Whisker Risk Simulation Conditions 

For our simulation, we considered the finish of leads to be pure tin over copper. 

The estimator generates a Monte Carlo simulation of different lengths of tin whisker 

and matches them with lead spacing. Based on the number of iterations we enter in 

the beginning the number of random length are taken from which the instances which 

crosses the lead-spacing and forms a short are captured and corresponding probability 

is calculated. The whisker risk calculator was simulated for 10 years of expected life 

with pure tin finish and without conformal coating. The longest whisker estimated by 

the calculator was 0.53mm and the shortest whisker was found to be 0.31mm which is 

different from our observation where we didn’t find any whiskers. 
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Table 3 CalceWhiskerRiskCalculator Result 

S.No. Number of 

conductor 

pairs 

Spacing 

between 

leads (mm) 

Area (mm2) Longest 

Whisker 

(mm) 

1 22 0.41 1.56 0.42 

2 124 0.48 3.56 0.53 

3 40 0.3 1 0.31 

4 60 0.2 0.8 0.39 
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Chapter 6:  Conclusions 
 

Base on the testing conducted on solder joints and investigation performed on the 

surface finish of leads and interconnects, following are the key points obtained from 

this study.  

Mechanical Properties of Solder Joint 

This is one of the first articles to study the effect of long-term (>10 years) room 

temperature (RT) aging on fully assembled lead-free electronic assemblies over ten 

years. The effect of RT aging on mechanical properties including hardness and elastic 

modulus of SAC405 solder joints were characterized. Although modulus dropped by 

2GPa, it is not considered significant drop as it is within one standard deviation of the 

measurement variation.  This result is different from the elevated temperature aging 

results reported in literature as the modulus is expected to drop more as the 

temperature increases. The change in modulus is attributed to the atomic distance and 

so the modulus decreases as the atomic distance increases at high temperatures. As 

our samples have been only exposed to room temperature usage the atomic distance is 

not expected to have increased enough to cause a significant drop in modulus.  

On the other hand, the hardness was found to increase by 20% from 0.39 GPa to 

0.47 GPa after 10 years of aging. This again is opposite of what has been reported in 

literature under elevated temperature aging conditions. The increase in hardness 

agrees with the creep test results of the solder joints where the aged solder joint 

creeped lesser than the new solder joint. This is an indication of the presence of work 

hardening in the solder joints due to continuous power cycling over the ten years of 

usage.  
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Microstructure of Solder Joint 

Microstructure analysis of the solder joints revealed that the IMC particles had not 

increased in size significantly. This shows that the Ag3Sn particles in SAC405 solder 

do not move enough under RT usage to cause coarsening thereby decrease hardness.  

Tin Whiskers 

Tin whisker inspection showed no signs of tin whiskers which was backed by the 

estimates of calceWhiskerRiskCalculator simulation. The inspection results and 

analysis conclusions show that the long-term room temperature aged solder joints 

which were power cycled during the computer’s usage are reliable and did not fail. 

These findings provide considerable confidence on the reliability of SAC soldered 

electronic assemblies which are to be stored or used for many number of years in 

controlled environment conditions.  

From all the analysis conducted at system level and interconnect level, it is 

evident that lead-free systems do not possess serious reliability concerns under room 

temperature storage and usage. However, it is important to assess the risk and 

reliability concerns for new products based on each components materials and feature 

sizes such as lead spacing, solder ball diameter, and electrical parameters. 

 

 

  



 

 43 

 

Chapter 7:  Contributions 
 

This is the first study to analyze the reliability and degradation of commercial 

produced lead-free electronic assembly. The contributions from the study are 

summarized below: 

Mechanical Properties of Lead-free Solder 

Determined the mechanical properties of 10 years room temperature aged 

SAC405 solder joint. 

• Hardness and modulus of SAC405 solder joints were measured using 

nanoindentation 

• Identified the hardness increases after room temperature aging (usage/power 

cycling) unlike has been reported in literature where the hardness decreases 

after aging 

Microstructure of SAC405 Solder Joint 

Evaluated the change in size of Ag3Sn IMC particles in bulk SAC405 solder joint 

after 10 years of aging 

• Found that the IMC particle size did not change in size after 10 years of aging 

which is contrary to literature findings where the elevated temperature aging 

has been found to increase the IMC size 

In addition to the above findings, certain additional analysis could be conducted 

to further explore the effects of long-term aging. Work/cyclic hardening has been 

postulated as the reason for increase in hardness observed after aging. To confirm the 

hypothesis, further analysis could be conducted to investigate for presence of 
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dislocation zones on the bulk solder. For this, a sample of solder could be taken up for 

transmission electron microscope (TEM) analysis where the solder material could be 

observed at nano level to look for dislocation regions. 

Also, crystallographic study could be conducted to understand the effect of grain 

orientation on the hardness measurements. The solder joints can be taken up for 

observation under electron backscatter diffraction (EBSD) analysis to evaluate grain 

orientations using which the hardness measurements can be normalized to single 

reference plane direction. This will help in eliminating the effect of harder planes and 

help identify if grain directions had an impact on the hardness of the solder joints. 

Further investigation could be conducted on BGA components of the board to see 

the effect of higher power dissipations on solder joints. It would reveal if these 

components underwent higher degradation and show any reduction in strength 

(modulus and hardness) as they are exposed to higher temperatures than solder joints. 
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Appendices 
 

Appendix A: Interfacial IMC Measurement 

The interfacial IMC thickness was measured using a combination of ESEM and 

ImageJ image processing software. The same solder joints of surface mount 

capacitors that were used for nanoindentation were used for IMC thickness analysis. 

The cross-sectioned and potted solder joint samples were taken up for ESEM analysis 

to capture images of interfacial IMC which would then be used in ImageJ for 

quantitative measurements. The solder joint samples in the ESEM were moved 

progressively after capturing IMC at one point to a different location of the same IMC 

in the solder-pad interface to capture another image. In this manner six images were 

captured in each solder joint and in total six solder joints were analyzed in the new 

and aged boards. 
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Figure 19 ESEM Image of Interfacial IMC of Aged Solder Joint 

 

The captured ESEM images are then imported into the ImageJ processing software 

for further quantitative measurements. The imported image is processed further to 

differentiate different features of the images such as the bulk solder, interfacial IMC, 

and the solder pad distinctively. To distinguish the features, the images are processed 

using one of the in-built filters in the software. For this study, a bandpass filter was 

used where the larger features were approximated to 20 pixels, while the smaller 

features were approximated to 3 pixels. The filter image was then subjected to 

thresholding process. This will further ease the measurement process by making the 

region of interest the desired color and rest of the image to be in a different color. The 

thresholding can be manually adjusted and fixed at a point which makes the 

interfacial IMC as different as possible from rest of the image. 

Once the desired image quality is obtained, contour tool is used from drawing toolbar 

to mark the outline of the interfacial IMC as shown in Figure 20. The area of the 

contour was measured which provides us the area of the IMC. Then a line is drawn to 
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measure the length of the IMC which is then used to divide the area of the contour to 

obtain the thickness of the IMC. This is repeated for all the images and the average of 

all the images is taken to be the thickness of aged and new solder joint. 

 

Figure 20 ImageJ Image with the contour in yellow color 

 

Appendix B: Creep Deformation Charts 

 
 

Figure 21 Creep Displacement Curves of New Solder Joints 
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Figure 22 Creep Displacement Curves of Aged Solder Joints 
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Appendix C: Nanoindentation Measurement Distribution 

 
Figure 23 Distribution of Elastic Modulus of New and Aged Solder Joint 

 

 
Figure 24 Distribution of Hardness of New and Aged Solder Joint 
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