ABSTRACT

Title of Dissertation: FUNCTIONALIZED ACYCLIC CUCURBIT[N]URIL MOLECULAR CONTAINERS AS REVERSAL AGENTS FOR DRUGS

Shweta Ganapati, Doctor of Philosophy, 2017

Dissertation directed by: Professor Lyle Isaacs,
Department of Chemistry & Biochemistry

The study of molecular containers has a prominent place in the scientific literature with many applications, including drug reversal. The clinical use of the cyclodextrin based reversal agent Bridion™ has greatly improved the post-operative safety of patients who undergo surgery aided by NMBAs such as rocuronium.

Chapter 1 introduces molecular containers, CB[n], and reports the use of the acyclic CB[n] known as Calabadion 2 as a broad spectrum reversal agent for NMBAs in rats. It also proposes the potential use of molecular containers as reversal agents for the treatment of overdose of illicit drugs in the context of available therapies.

Chapter 2 establishes that Calabadion 2 displays good to high levels of selectivity toward the NMBAs rocuronium, vecuronium, and cisatracurium both in vitro and based on simulations designed to capture the essence of the biological
system. The excretion profile of Calabadion 2 after NMBA reversal in rats was studied by a 1H NMR assay. It is reported that more than 50% of Calabadion 2 is eliminated intact by the kidneys within 1 hour.

Chapter 3 establishes that CB[n] based molecular containers - Calabadion 1, Calabadion 2, and CB[7] display higher affinities than p-sulfo$\text{calix}[4]$arene and HP-β-cyclodextrin toward a panel of illicit drugs for which there are currently no USFDA approved pharmacotherapies. Calabadion 2 but not CB[7] is able to ameliorate the hyperlocomotive activity of rats treated with methamphetamine. The excretion profile of fentanyl and Calabadion 1 post reversal in rats was studied by HPLC and 1HNMR. It is reported that on an average 24% fentanyl and 40% Calabadion 1 are eliminated by the kidneys within 1 hour.

Chapter 4 discusses the synthesis and molecular recognition properties of three new acyclic CB[n] hosts IV-2a – IV-2c which incorporate alkyl linkers of varying lengths- ethyl, hexyl, and decyl; capping one end of Calabadion 1. These hosts were less water soluble than Calabadion 1 due to the loss of two sulfonate groups and did not undergo intermolecular self-association. However, the intramolecular self-inclusion of the alkyl linkers inside the cavity of these hosts led to decreased binding affinities toward guests compared to Calabadion 1.
FUNCTIONALIZED ACYCLIC CUCURBIT[6]URIL MOLECULAR CONTAINERS AS REVERSAL AGENTS FOR DRUGS

by

Shweta Ganapati

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2017

Advisory Committee:
Professor Lyle Isaacs, Chair
Professor Neil Blough
Professor Jeffery Davis
Professor Philip DeShong
Professor Srinivasa Raghavan, Dean’s Representative
Dedication

To my parents, Raji Ganapati and S. Ganapati, sister, Swechcha Ganapati, and fiancé Sumon Chatterjee; who give me the strength to endure failure and keep moving forward.
Acknowledgements

The past five years spent in the Isaacs lab at the University of Maryland (UMD) have been the most challenging and rewarding years of my life thus far. I extend my sincere gratitude to my adviser Professor Lyle Isaacs for teaching me chemistry, how to do research, and most all for holding me to high standards and serving as an example to follow.

I would like to acknowledge Professor S.V. Eswaran, Professor Rene Saksena, and Professor Ashok K. Prasad for their mentorship during my undergraduate years; and Ms. Nandini Dasgupta and Ms. Rajalakshmi Karthikeyan for my most memorable lessons in chemistry from high school.

I would like to thank senior Isaacs group members- Dr. Ben Zhang, Dr. Brittany Vinciguerra, Elizabeth Robinson, Dr. Liping Cao, Dr. Mingming Zhang, Dr. Xiaoyong Lu, Dr. David Sigwalt, and Dr. Soumen Samanta for teaching me laboratory skills, helping me troubleshoot experiments and for their advice on matters beyond chemistry. Steve Murkli, Kim Brady, Sandra Zebaze, and Wenjin Liu- thank you for support in lab and also for asking good questions that taught me new things in trying to answer them.

I would like to thank our collaborators- Professor Matthias Eikermann, Stephanie Grabitz, and Tharusan Thevathasan for their contributions to my projects and for translating our in vitro work into animal experiments.
The instrumentation facilities at UMD have been crucial to my work and I thank Dr. Yu-Fai Lam, Dr. Yinde Wang, Dr. Peter Zavalij, and Dr. Yue Li for their invaluable help.

My friends, classmates, and housemates in Maryland- thank you for your friendship and encouragement through the many milestones in graduate school and life that we have passed together!

My friends from back home in India- thank you Monalisa Goswami and Sunaina Gupta for being my sounding boards and cheerleaders. And most of all my family- parents, Swechcha, and Sumon; thank you for always pointing out the silver lining.
Table of Contents

Dedication ... ii
Acknowledgements ... iii
Table of Contents .. v
List of Tables .. vii
List of Figures ... ix
List of Schemes ... xiv
List of Abbreviations .. xv
Chapter 1: Introduction to Molecular Containers and their Application in Drug Reversal ... 1
 1.1 Introduction ... 1
 1.2 Molecular Containers .. 2
 1.3 Introduction to Cucurbit[n]urils .. 4
 1.4 Functionalization of Cucurbit[n]urils and Development of Acyclic Analogues. 9
 1.5 Drug Reversal Using Molecular Containers ... 15
 1.5.1 Reversal of Neuromuscular Blocking Agents .. 16
 1.5.2 Reversal of Drugs of Abuse ... 21
Chapter 2: Calabadion 2 as a Reversal Agent for Neuromuscular Blocking Agents 25
 2.1 Introduction ... 25
 2.1 In Vivo Selectivity of Calabadion 2 towards Neuromuscular Blocking Agents Relative to Commonly Used Drugs 26
 2.2.1 Binding Properties of II-2 towards Drugs II-3 – II-29 Investigated by \(^1\)H NMR ... 29
 2.2.2 Stoichiometry of the Complexes between II-2 and Drugs II-3 – II-29 31
 2.2.3 X-ray Crystal Structure of the II-2·II-29 Complex ... 33
 2.2.4 Measurement of K\(_a\)s between II-2 and Drugs II-3 – II-29 35
 2.2.5 Commentary on the Tabulated K\(_a\) Values .. 38
 2.2.6 Assessment of the Potential for Displacement Interactions 40
 2.2.7 Simulation of In Vivo Equilibria using Modeling Software Gepasi 42
 2.2.8 In Vitro Selvectivity of Calabadion 2 for Rocuronium ... 42
 2.2.9 In Vitro Selvectivity of Calabadion 2 for Cistracurium .. 45
 2.2.10 Influence of K\(_1\) .. 46
 2.2.11 Influence of [AChR] ... 49
 2.2.12 Summary ... 50
 2.3 Renal Elimination of Calabadion 2 in Rats Post Reversal of Neuromuscular Blockade .. 51
 2.3.1 \(^1\)H NMR Based Assay for Quantification of II-2, Rocuronium, II-2·Rocuronium Complex for Rocuronium Reversal Samples .. 52
 2.3.2 \(^1\)H NMR Based Assay for Quantification of II-2 for Cisatracurium Reversal Samples ... 55
 2.3.3 Summary ... 56
 2.4 Conclusions .. 57
Chapter 3: Molecular Containers As Reversal Agents for Drugs of Abuse 58
 3.1 Introduction .. 58
 3.2 Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the
 Hyperlocomotive Effect of Methamphetamine in Rats .. 60
 3.2.1 Qualitative Binding Study of Containers III-1 – III-5 toward Drugs of
 Abuse by 1H NMR Spectroscopy ... 61
 3.2.2 Stoichiometry and X-ray Crystal Structures of the Drug-Container
 Complexes .. 63
 3.2.3 Measurement of K_a Values between Containers III-1 – III-5 and Drugs of
 Abuse III-6 – III-12 .. 64
 3.2.4 Commentary on the Tabulated K_a Values .. 67
 3.2.5 In Vivo Reversal of Methamphetamine by Calabadian 2 69
 3.2.6 Summary .. 73
 3.3 Renal Elimination of Calabadian 1 and Fentanyl in Rats Post Reversal
 Application .. 74
 3.3.1 Fentanyl Calibration Curve ... 74
 3.3.2 Fentanyl Excreted by Rats Injected with Fentanyl and Placebo 76
 3.3.3 Fentanyl Excreted by Rats Injected with Fentanyl and Calabadian 1 78
 3.3.4 Calabadian 1 Excreted by Rats Injected with Fentanyl and Calabadian
 1 .. 79
 3.3.5 Summary .. 81
 3.3 Conclusions .. 81

Chapter 4: Synthesis and Molecular Recognition Properties of Acyclic
Cucurbit[n]urils with Alkyl Linkers .. 83
 4.1 Introduction .. 83
 4.2 Design and Synthesis of Hosts IV-2a – IV-2c ... 85
 4.3 Solubility Properties of Hosts IV-2a – IV2c ... 87
 4.4 Self-Association Properties of Hosts IV-2a – IV2c ... 87
 4.5 Binding Properties of Hosts IV-2a – IV2c and IV-1 towards Guests IV-6 –
 IV-10 Investigated by 1H NMR ... 90
 4.6 Measurement of Binding Affinities between Hosts IV-2a – IV-2c and IV-1
 and Guests IV-6 – IV-10 by Isothermal Titration Calorimetry 93
 4.7 Commentary on the Tabulated K_a Values ... 94
 4.8 Conclusions .. 96

Appendix 1 ... 98
Appendix 2 ... 167
Appendix 3 ... 248
Appendix 4 ... 318
Bibliography .. 320
List of Tables

Chapter 1

Table I.1. Binding constants measured for some guests that form 1:1 complexes with CB[n].

Table I.2. Binding constants (K_a, M^{-1}) for the host–guest complexes formed in aqueous solution.

Chapter 2

Table II.1. Binding constants determined by direct or competitive UV/Vis assays or direct ¹H NMR titrations for the interaction between II-2 and drugs II-3–II-29, drug dosages in the rat model, estimated plasma concentrations, and binding constants toward II-1.

Table II.2. Excretion of II-2, NMBA, II-2•NMBA complex measured by ¹H NMR assay for rats injected with 3.5 mg kg^{-1} rocuronium or 0.6 mg kg^{-1} cisatracurium (values for cisatracurium and II-2•cisatracurium complex excreted were not measured).

Chapter 3

Table III.1. Binding constants (K_a, M^{-1}) determined for the various container•drug complexes.

Table III.2. Excretion of III-7 and III-1 measured by HPLC and ¹H NMR assays for rats injected with 12.5 μg kg^{-1} III-7 (0.83 μg kg^{-1} min^{-1} infusion over 15 minutes) and placebo or 50 mg kg^{-1} III-1 (bolus).
Chapter 4

Table IV-1. Binding constants determined by ITC for the interaction between molecular containers IV-1, IV-2a – IV-2c and guests IV-6 – IV-10.
List of Figures

Chapter 1

Figure I-1. Chemical structures of some molecular containers.

Figure I-2. a) Structure of CB[6]•I-1 complex, and b) structures of some typical alkyl ammonium guests for CB[n].

Figure I-3. Schematic representation of the onset and reversal of neuromuscular blockade.

Figure I-4. Chemical structures of molecular containers CB[7], Calabadion 2 (I-16), Sugammadex, and guests rocuronium, vecuronium, cisatracurium, and acetylcholine.

Figure I-4. Chemical structures of some commonly abused drugs.

Figure I-5. Schematic representation of the pharmacokinetic and pharmacodynamic strategies for disrupting the effects of drugs of abuse.

Chapter 2

Figure II-1. Chemical structures of CB[n], Sugammadex (II-1), Cb 2 (II-2); and NMBAs cisatracurium, rocuronium, vecuronium.

Figure II-2. Chemical structures of drugs used in this study.

Figure II-3. 1H NMR spectra recorded (400 MHz, RT, 20 mM NaH$_2$PO$_4$ buffered D$_2$O, pH = 7.4) for a) II-26, b) II-2, c) an equimolar mixture of II-2 and II-26 (12.5 mM), and d) a 1:2 mixture of II-2 (12.5 mM) and II-26 (25 mM).

Figure II-4. Job plot constructed for mixtures of II-2 and II-26 ([II-2] + [II-26] = 1 mM) by monitoring the change in 1H NMR (400 MHz, RT, 20 mM NaH$_2$PO$_4$ buffered D$_2$O, pH = 7.4) chemical shift of H$_u$ (7.72 ppm) of II-2.
Figure II-5. Cross-eyed stereoscopic representation of the geometry of one molecule of **II-2•II-29** from the x-ray crystal structure. Color code: C, grey; H, white; N, blue; O, red; S, yellow; hydrogen bond, red–yellow striped.

Figure II-6. Cross-eyed stereoscopic representation of the packing of **II-2•II-29** in the x-ray crystal structure. Color code: C, grey; H, white; N, blue; O, red; S, yellow.

Figure II-7. a) 1H NMR (400 MHz) stack plot of the titration of **II-2** (0.976 mM) with guest **II-6** (0 – 6.57 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); b) plot of the chemical shift of H$_v$ as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (3.0 \pm 0.6) \times 10^3$ M$^{-1}$).

Figure II-8. a) UV/Vis spectra recorded during the titration of a mixture of **II-2** (9.92 μM) and dye rhodamine 6G (10.0 μM) with guest **II-28** (0 – 1.21 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH = 7.4), b) plot of absorbance at 550 nm as a function of the concentration of **II-28**. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (3.3 \pm 0.5) \times 10^6$ M$^{-1}$).

Figure II-9. Illustration of the equilibria considered in the simulations using Gepasi.

Figure II-10. Three dimensional surface plots of the concentration of AChR•NMBA at equilibrium versus log [Drug] and log K_3 for **II-2•Drug** for: a) rocuronium at [rocuronium] = [AChR] = 160 μM, [**II-2**] = 320 μM (2 eqv.), $K_1 = 10^5$ M$^{-1}$, $K_2 = 3.4 \times 10^9$ M$^{-1}$; b) cisatracurium at [cisatracurium] = [AChR] = 18 μM, [**II-2**] = 1.2 mM (64 eqv.), $K_1 = 10^5$ M$^{-1}$, $K_2 = 4.8 \times 10^6$ M$^{-1}$. The red dots mark the points corresponding to each of the 27 drugs (**II-2 – II-29**).
Figure II-11. Plot of the mole fraction of AChR•rocuronium versus log (K₁) for drugs II-3 – II-19 present at their estimated plasma concentrations from Table II-1. a) [II-2]_{initial} = 320 μM (2-fold higher than [Rocuronium]_{initial}), and b) [2]_{initial} = 960 μM (6-fold higher than [Rocuronium]_{initial}).

Figure II-12. Plot of mole fraction of AChR•rocuronium versus log [AChR].

Figure II-13. ¹H NMR spectra (600 MHz, RT, 20 mM NaH₂PO₄ buffered D₂O, pH = 7.4) of: a) free rocuronium (2 mM) shows two resonances (a and b) for the steroidal methyl groups, b) an equimolar mixture of II-2 and rocuronium (2 mM), a’ and b’ are resonances for steroidal methyl groups rocuronium bound in the II-2•rocuronium complex, and c) urine sample from a rat taken 1 h after reversal of rocuronium (3.5 mg kg⁻¹) with II-2 (10 mg kg⁻¹), a’ and b’ are resonances for steroidal methyl groups rocuronium bound in the II-2•rocuronium complex.

Chapter 3

Figure III-1. Chemical structures of: a) molecular containers, and b) drugs of abuse used in this study.

Figure III-2. ¹H NMR spectra recorded (400 MHz, RT, 20 mM sodium phosphate buffered D₂O, pH 7.4) for: a) III-6 (2 mM), b) III-1 (1 mM), c) a mixture of III-6 (1 mM) and III-1 (1 mM), and d) a mixture of III-6 (2 mM) and III-1 (1 mM).

Figure III-3. Cross-eyed stereoviews of individual complexes of: a) 1•6, and b) CB[7]•6 in the crystal. Color code: C, grey; H, white; N, blue; O, red; S, yellow; H-bond, red-yellow striped.

Figure III-4. a) UV/Vis spectra recorded during the titration of a mixture of III-2 (4.97 μM) and rhodamine 6G (4.97 μM) with methamphetamine (6, 0 – 219 μM) in
20 mM NaH₂PO₄ buffered water (pH 7.4). b) Plot of absorbance versus [2] fitted to a competitive binding model with Kₐ = (4.3 ± 1.0) x 10⁶ M⁻¹. c) ITC thermogram recorded during the titration of III-2 (87 μM) in the cell with III-12 (0.93 mM) in the syringe. d) Fitting of the data to a 1:1 binding model with Kₐ = (6.8 ± 0.1) x 10⁵ M⁻¹.

Figure III-5. Results from behavioral tests in the open field. a) Bar graph showing distance traveled in percent of the placebo + methamphetamine activity level within 20 minutes; error bars represent the standard error of the mean. *p<0.01 compared to methamphetamine + placebo. **p<0.001 compared to methamphetamine + placebo. #interaction term indication × Calabadion 2 dose: p<0.001, indicating effect modification by time of administration of Calabadion 2. Tracking plots illustrating the traveled distance of one rat within 20 minutes in the open field: b) Baseline, no methamphetamine given, c) following methamphetamine (0.3 mg kg⁻¹) + placebo, d) following methamphetamine (0.3 mg kg⁻¹) + Calabadion 2 (65 mg kg⁻¹), and e) following methamphetamine (0.3 mg kg⁻¹) + Calabadion 2 (130 mg kg⁻¹).

Figure III-6. HPLC spectrum of a standard solution of III-7 (14 μM) showing a retention time of 13.8 minutes for III-7 at 229 nm. The peak at 2.7 minutes is from trimethylamine in the buffer.

Figure III-7. Calibration curve for fentanyl using working standard solutions.

Figure III-8. HPLC spectra of: a) blank urine spiked with fentanyl, and b) one of the representative urine sample following the fentanyl injection to rat. The fentanyl peak can be seen at 14.4 and 14.3 minutes respectively.

Figure III-9. ¹H-NMR spectrum of a representative urine sample following the injection of III-7 and III-1 to a rat (600 MHz, D₂O).
Chapter 4

Figure IV-1. Chemical structures of: a) cucurbit[n]urils (CB[n]) and Calabadin 1, (IV-1) and b) guests used in this study.

Figure IV-2. 1H NMR spectra recorded (400 MHz, RT, 20 mM sodium phosphate buffered D$_2$O, pH 7.4) for: a) **IV-8** (1 mM), b) **IV-2b** (1 mM), c) a mixture of **IV-8** (0.5 mM) and **IV-2b** (0.5 mM), and d) **IV-8** (1.0 mM) and **IV-2b** (0.5 mM).

Figure IV-3. a) ITC thermogram recorded during the titration of **IV-2b** (0.1 mM) in the cell with **IV-8** (1.0 mM) in the syringe. d) Fitting of the data to a 1:1 binding model with $K_a = (1.6 \pm 0.1) \times 10^6 \text{M}^{-1}$.
List of Schemes

Chapter 1

Scheme I-1. Synthesis and structure of CB[n].

Scheme I-2. Synthesis of Me$_{10}$CB[5] from I-6 and formaldehyde.

Scheme I-3. Synthesis of mono and fully hydroxylated CB[n].

Scheme I-4. Templated synthesis of hexamer (I-7) and building-block synthesis of monofunctionalized CB[7] (I-8) and functionalized CB[8] (I-9).

Scheme I-5. Synthesis of acyclic CB[n] congeners: a) I-11, and b) I-12.

Scheme I-6. Building block synthesis of: a) glycoluril tetramer precursor (I-13), b) acyclic CB[n] congener I-14, c) Calabadion 1 (I-15), and d) Calabadion 2 (I-16).

Chapter 4

Scheme IV-1. Synthesis of hosts 2a – 2c.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR</td>
<td>proton nuclear magnetic resonance</td>
</tr>
<tr>
<td>13C NMR</td>
<td>carbon-13 nuclear magnetic resonance</td>
</tr>
<tr>
<td>Å</td>
<td>angstrom</td>
</tr>
<tr>
<td>Ach</td>
<td>acetylcholine</td>
</tr>
<tr>
<td>AChE</td>
<td>acetylcholine esterase</td>
</tr>
<tr>
<td>AChR</td>
<td>acetyl choline receptor</td>
</tr>
<tr>
<td>AgNO$_3$</td>
<td>silver nitrate</td>
</tr>
<tr>
<td>API</td>
<td>active pharmaceutical ingredients</td>
</tr>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>C</td>
<td>carbon</td>
</tr>
<tr>
<td>Cb</td>
<td>Calabadion</td>
</tr>
<tr>
<td>CB[n]</td>
<td>cucurbit[n]uril</td>
</tr>
<tr>
<td>CD</td>
<td>cyclodextrin</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>D$_2$O</td>
<td>deuterium oxide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>ESI-MS</td>
<td>electrospray ionization-mass spectrometry</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GRAS</td>
<td>generally recognized as safe</td>
</tr>
<tr>
<td>H</td>
<td>hydrogen</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HP-β-CD</td>
<td>hydroxypropyl-β-cyclodextrin</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>ITC</td>
<td>isothermal titration calorimetry</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>K</td>
<td>kelvin</td>
</tr>
<tr>
<td>Kₐ</td>
<td>binding affinity</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>KMnO₄</td>
<td>potassium permanganate</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>M.p.</td>
<td>melting point</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>M+</td>
<td>molecular ion</td>
</tr>
<tr>
<td>mAchR</td>
<td>muscarinic acetyl choline receptor</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>Symbol</td>
<td>Term</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>N</td>
<td>binding stoichiometry</td>
</tr>
<tr>
<td>NaAuCl₄</td>
<td>sodium tertrachloroaurate</td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td>sodium monophosphate</td>
</tr>
<tr>
<td>NaO₂CCD₃</td>
<td>deuterated sodium acetate</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>NMBA</td>
<td>neuromuscular blockade</td>
</tr>
<tr>
<td>o</td>
<td>ortho</td>
</tr>
<tr>
<td>p</td>
<td>pentuplet</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>PD</td>
<td>pharmacodynamic</td>
</tr>
<tr>
<td>PK</td>
<td>pharmacokinetic</td>
</tr>
<tr>
<td>pKa</td>
<td>negative logarithm of acid dissociation constant</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>SWNT</td>
<td>single-walled carbon nanotubes</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>t-BuOK</td>
<td>potassium tert-butoxide</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TMSP</td>
<td>2,2,3,3-d(4)-3-(trimethylsilyl)propanoic acid sodium salt</td>
</tr>
<tr>
<td>USFDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>UV/Vis</td>
<td>Ultra violet/ visible</td>
</tr>
<tr>
<td>Δδ</td>
<td>change in chemical shift</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ΔH</td>
<td>change in enthalpy</td>
</tr>
<tr>
<td>ΔS</td>
<td>change in entropy</td>
</tr>
<tr>
<td>μg</td>
<td>micrograms</td>
</tr>
<tr>
<td>μM</td>
<td>micromolar</td>
</tr>
<tr>
<td>π</td>
<td>pi</td>
</tr>
<tr>
<td>χ</td>
<td>mole fraction</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction to Molecular Containers and their Application in Drug Reversal

1.1 Introduction.

Interactions formed between atoms or ions lead to chemical bonds such as covalent, ionic, or metallic bonds to form molecules or crystals. There can also be associations between molecules which cause them to assemble in specific ways— which is the realm of supramolecular chemistry. These interactions between molecules are called non-covalent interactions and consist of weaker forces than the chemical bond, such as ion-dipole interactions, hydrogen bonding, \(\pi-\pi \) interactions, and the hydrophobic effect. \(^1\) Non-covalent interactions are widespread in natural systems and despite being individually orders of magnitude weaker than the chemical bond; they can collectively exert a significant influence over the properties of the system. In proteins and nucleic acids they are responsible for maintaining the three dimensional structure of macromolecules, and they form the basis for the recognition between enzyme-substrate, antibody-antigen, and hormone-receptor pairs.\(^2\) The first synthetic systems with molecular recognition ability were designed by Pederson, Lehn, and Cram who made crown ethers and cryptands which bound alkali metal ions in their cavity and more complex molecular hosts which could encapsulate guest molecules within their structures through non-covalent interactions.\(^3\) Since their seminal work, the scientific literature has been flooded with many synthetic molecular
containers and their unique applications. This chapter discusses some of the most popular containers, with a focus on CB[n] and their therapeutic use as drug reversal agents.

1.2 Molecular Containers.

Just like everyday containers, molecular containers hold and protect their cargo—except they do so at the molecular level. The container molecule is referred to as the molecular host and the cargo, generally a smaller molecule that is encapsulated within the structural cavity of the host, is called the guest. The chemical environment within the host cavity can be quite different from the environment outside (such as that of the solvent) and has the ability to stabilize and even alter the properties of the guest; including its pK_a, conformation, and optical properties.\(^4\)

Figure 1-1. Chemical structures of some molecular containers.
Host-guest chemistry has led to exciting applications in molecular machines, sensors, catalysis, separation techniques, and the formulation, delivery and sequestration of drugs and other guests. Some well-known containers in the literature include crown ethers, calixarenes, cyclodextrins, and cucurbiturils (Figure I-I).

Crown ethers are polyethers arranged in the shape of a ring and were first reported by Pedersen in 1967. The oxygen atoms in their structure act as Lewis bases that bind to and stabilize alkali metal cations within the ring through ion-dipole interactions. The size of the ring can be synthetically varied to accommodate a range of cations with varying size and charge densities. Crown ethers have been used as phase transfer catalysts. Over the next few decades, much more complex molecular hosts have emerged in the literature with more sophisticated molecular recognition features.

For example, calixarenes are composed of phenols linked by methylene bridges at the meta position with bulky alkyl groups in the para position. This creates a bowl-shaped hydrophobic cavity that is able to bind hydrophobic guests and ions with moderate affinities on the order of 10^4 M^{-1}. Calixarenes have been studied for their use as ionophores for membrane transport, extractants, stationary phases, electrode ionophores and in optical, electrochemical, biological sensing applications.

Cyclodextrins (CDs) are currently the most widely used molecular containers for commercial applications. CDs are water soluble hosts made of linked glucose units which bind hydrophobic guests in water with moderate
affinities (very few > 10^4 M$^{-1}$). They have been classified as “generally recognized as safe” (GRAS) by the United States Food and Drug Administration (USFDA), and can be synthesized in various sizes ($\alpha = 6$ sugar units, $\beta = 7$ sugar units, $\delta = 8$ sugar units) and with varied functionalization. Some CDs currently in the market include Captisol® (a functionalized β-CD used to formulate insoluble active pharmaceutical ingredients (APIs), Bridion® or Sugammadex (a δ-CD used as a reversal agent for neuromuscular blocking agent (NMBA) rocuronium, and Febreze™ (a household odor eliminator with HP-β-CD as the active ingredient).

1.3 Introduction to Cucurbit[n]urils.

Over the last two decades, a newer class of containers called cucurbit[n]urils (CB[n], $n =$ number of glycoluril units) has gained the attention of chemists. Their outstanding molecular recognition ability far surpasses other synthetic molecular containers in terms of binding affinity (K_a routinely $10^8 - 10^9$ M$^{-1}$), and even reaches and exceeds affinities observed in biological receptors.

CB[n] are composed of glycoluril units linked together by methylene bridges to form closed rings. They were synthesized for the first time in 1905 by Behrend and co-workers. The resulting material of unknown structure came to be known as “Behrend’s Polymer,” and was recrystallized from sulfuric acid, to give a white crystalline product. Behrend’s Polymer was found to form complexes with various metal salts such as KMnO$_4$, AgNO$_3$,
and NaAuCl₄ as observed by the induced color change in these salt solutions upon complexation.⁹

![Scheme I-1](image)

Scheme I-1. Synthesis and structure of CB[n].

It was only in 1981 that Mock et al. elucidated the structure of this molecule by X-ray crystallography as cucurbit[6]uril, consisting of 6 glycoluril units linked by 12 methylene bridges (Scheme I-1). The highly symmetrical molecule had a pumpkin-like shape and was named “cucurbituril” after the Latin name for the gourd family-*cucurbitaceae*.¹⁰ Since then several research groups have worked towards the synthesis and isolation of other members of the cucurbit[n]uril family. The work of Mock,¹⁰ Day,¹¹ Kim,¹² Tao,¹³ and Isaacs¹⁴,¹⁵ has led to the synthesis of CB[5], CB[6], CB[7], CB[8], CB[10], and CB[14]. The Day and Isaacs groups have intensively studied the mechanism of CB[n] formation and their recognition properties.¹⁶

There are a few different structural features of the CB[n] family which contribute to its unprecedented molecular recognition ability. The cavity of CB[n] (lined with methine groups) is hydrophobic and is well suited to stabilize the hydrophobic parts of a guest such as alkyl and aromatic groups
in water by the hydrophobic effect. Additionally, the inclusion of a hydrophobic guest within the host cavity expels high energy water molecules previously occupying the cavity (in aqueous solution) further stabilizing to the complex. In contrast to the cavity, the CB[n] portal is lined with electrostatically negative carbonyl groups which stabilize the cationic (such as ammonium groups) parts of the guest, when they are appropriately positioned for ion-dipole interaction. The host structure is relatively rigid, making size and shape complementarity necessary for guest inclusion. Figure I-2a illustrates these interactions between CB[6] and guest I-1. The K_a for this complex in 50 mM NaO_2CCD_3-buffered D_2O (pD 4.74) is (8.97 ± 1.43) × 10^7 M^-1. The height of CB[n] homologues is uniformly 9.1 Å, and therefore having six carbon atoms as linker positions the ammonium groups in I-1 at the appropriate distance from the two portals to benefit from ion-dipole interactions.

![Diagram](image_url)

Figure I-2. a) Structure of CB[6]·I-1 complex, and b) structures of some typical alkyl ammonium guests for CB[n].
While cavity depth is constant across CB[n] homologues, cavity volumes and diameters increase systematically with the increase in \(n \), which is the number of glycoluril units.\(^1\) CB[5] has the smallest cavity with a volume of 68 Å\(^3\) which makes it an appropriately sized host for small gases such as Kr, CO\(_2\), CO, O\(_2\), and N\(_2\), and organic solvents such as methanol and acetonitrile.\(^2\) CB[6] is larger (142 Å\(^3\)) and shows high affinity for guest I-1 \((K_a = (4.49 \pm 0.84) \times 10^8 \text{ M}^{-1})\), but its volume can just about accommodate the larger guest I-2 \((K_a = (550 \pm 30 \text{ M}^{-1})\), upon heating. Still larger adamantyl guests such as I-3 and I-4 cannot be included within CB[6]. However, CB[7] with a volume of 242 Å\(^3\) is an excellent host for I-3 \((K_a = (4.23 \pm 1.00) \times 10^{12} \text{ M}^{-1})\). The larger guest I-4 packs more tightly into the larger (367 Å\(^3\)) cavity of CB[8] \((K_a = (4.33 \pm 1.11) \times 10^{11} \text{ M}^{-1})\) as compared to CB[7] where it can only be partially included \((K_a = (2.50 \pm 0.39) \times 10^4 \text{ M}^{-1})\). Table I-1 summarizes the \(K_a \) values of guests I-1 – I-4 toward CB[6], CB[7], and CB[8].\(^3\)

Table I.1. Binding constants measured for some guests that form 1:1 complexes with CB[n].\(^4\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>((4.49 \pm 0.84) \times 10^8)</td>
<td>((8.97 \pm 1.43) \times 10^9)</td>
<td>-</td>
</tr>
<tr>
<td>I-2</td>
<td>((550 \pm 30)</td>
<td>((1.84 \pm 0.34) \times 10^9)</td>
<td>-</td>
</tr>
<tr>
<td>I-3</td>
<td>-</td>
<td>((4.23 \pm 1.00) \times 10^{12})</td>
<td>((8.19 \pm 1.75) \times 10^8)</td>
</tr>
<tr>
<td>I-4</td>
<td>-</td>
<td>((2.50 \pm 0.39) \times 10^4)</td>
<td>((4.33 \pm 1.11) \times 10^{11})</td>
</tr>
</tbody>
</table>
In 2014, the Isaacs group published a CB[7]-diadamantane guest (I-5) complex with an attomolar dissociation constant ($K_a = 7.2 \times 10^{17} \text{ M}^{-1}, \text{D}_2\text{O}$), comparable to and exceeding the avidin-biotin affinity ($K_a \approx 10^{15} \text{ M}^{-1}$).20 The optimal packing, 14 ion-dipole interactions, and desolvation of the CB[7] portal in the complex and the resultant thermodynamic stabilization demonstrated the scope of optimizing host-guest interactions to meet and exceed affinities compared to their biological counterparts.

CB[8] with an even larger cavity volume could further expand the scope of high affinity host-guest complexes and even forms ternary complexes with two identical or different guests.21 However applications of CB[8], especially in biological systems are severely limited by its poor ($< 50 \mu\text{M}$) aqueous solubility which is ascribed to its extensive self-association through CH•••O hydrogen bonding between methine protons of one CB[8] molecule with the ureidyl carbonyl portal of another.22,23 CB[10] is also insoluble in water, whereas CB[14] has a 360° twisted cavity; neither are suitable for encapsulation of biologically relevant molecules.

There is a need for improving the properties of CB[n] such as aqueous solubility, facile synthesis, and incorporation of additional recognition features while retaining their impressive molecular recognition features. Thus, research in CB[n] field has branched out to functionalization approaches to make a diverse array of CB[n]-type receptors.
1.4 Functionalization of Cucurbit[n]urils and Development of Acyclic Analogues.

Syntheses of functionalized derivatives of cyclic CB[n] have involved the use of the following strategies: (a) homomeric/heteromeric cyclization of functionalized glycolurils with formaldehyde to obtain fully or partially functionalized CB[5] and CB[6] (Scheme I-2), (b) direct functionalization of preformed CB[n] to give mono and fully functionalized (n=5-8) derivatives (Scheme I-3), and (c) the building block approach using glycoluril oligomers to give monofunctionalized CB[n] (n = 6-8) (Scheme I-4).

The first fully characterized functionalized derivative of CB[n]-decamethylcucurbit[5]uril (Me₁₀CB[5]) was reported by the Stoddart group in 1992.²⁴ It was synthesized by the homomeric cyclization of dimethylglycoluril with formaldehyde in hydrochloric acid and water (Scheme I-2). The cyclization approaches from functionalized glycolurils have succeeded in improving the solubility of CB[6] derivatives in water and organic solvents.²⁵,²⁶ However, the reactions of substituted glycolurils tend to favor
smaller CB\([n]\) homologues, CB\([5]\) and CB\([6]\) due to 1,5-diaxial interactions between substituents on adjacent glycoluril rings that comprise the methylene bridged eight-membered rings. Such 1, 5-diaxial interactions are expected to increase as the size of the CB\([n]\) increases. 27 This issue can be circumvented by starting with preformed CB\([n]\) including CB\([7]\) and CB\([8]\). The direct hydroxylation of CB\([n=5-8]\) with K\(_2\)S\(_2\)O\(_8\) was introduced by Kim in 2003. 28

\[\text{Scheme I-3. Synthesis of mono and fully hydroxylated CB\([n]\).} \]

The resulting fully hydroxylated CB\([n]\) could be modified to provide tailored CB\([n]\) derivatives with different functional groups, frequently accompanied by enhanced solubility in common organic solvents.

Monofunctionalized CB\([n]\) present an exciting advance in the CB\([n]\) field as they give more regiochemical control for further modifications. In 2011, the Isaacs group reported the templated synthesis of the glycoluril hexamer (I-7) 29 which led to the synthesis of the first monofunctionalized CB\([7]\) with enhanced aqueous solubility in 2012. 30 Monofunctionalized CB\([7]\) has been used for targeted delivery application 31-33 and covalently attached to Fujita type cages for stimuli responsive drug release. 34 Functionalized CB\([8]\) with
enhanced aqueous solubility was also synthesized in a later work using a related strategy (Scheme I-4).

In 2015 Bardelang and co-workers reported a direct photochemical monohydroxylation of CB[n] (n = 5-8) using hydrogen peroxide in one step under mild reaction conditions.

Functionalization approaches for closed CB[n] have led to improved solubilities of CB[6] and CB[8], improved ease of synthesis and purification, and the ability to chemically attach CB[n] to various scaffolds.

Simultaneous development of water soluble acyclic CB[n] analogues, most notably by Isaacs and co-workers has opened up new avenues in CB[n] modification. The first acyclic congener of CB[6] was reported by the Isaacs group in 2003 (Scheme I-5a).³⁷ Compound **I-11** was synthesized by the alkylation of functionalized glycoluril (I-10) to introduce an *ortho*-xylelene linker, circumventing the difficulties in CB[6] synthesis. Carboxylic acid groups were incorporated on the convex face of the structure to improve water-solubility. Remarkably, the C-shaped preorganized compound **I-11** showed recognition properties towards alkyldiammonium ions similar to CB[6], with only a moderate reduction in affinity.

![Scheme I-5. Synthesis of acyclic CB[n] congeners: a) I-11, and b) I-12.](image)

This was followed by the development of compound **I-12** by Sindelar, which retained the glycoluril trimer backbone while incorporating aromatic walls.³⁸ Compound **I-12** was able to bind bispyridinium ethylene and methylviologen guests with moderate (10⁴ M⁻¹) affinities. Through their experience with the
synthesis and study of molecular clips and glycoluril oligomers, Isaacs and co-workers recognized the importance of the carbonyl portal in CB[n] recognition. This led to the design of compound I-14, with a glycoluril tetramer backbone and aromatic walls with carboxylic acid groups to facilitate aqueous solubility (Scheme I-6). The affinity of host I-14 towards dialkyl ammonium, adamantyl ammonium, and aromatic ammonium guests was comparable to that of CB[6] and CB[7], and ranged from 10^5 - 10^9 M$^{-1}$.

A further modification to the design of \textbf{I-14}, involved the replacement of the carboxylic acid groups by sulfonate groups to obtain Calabadion 1 (\textbf{I-15}). The solubility of \textbf{I-15} was 346 mM in water and 105 mM in phosphate buffer (pH 7.4) which is significantly higher than either CB[7] (20-30 mM) or compound \textbf{I-14} (1-2 mM). Calabadion 2 (\textbf{I-16}) was designed by incorporating naphthalene walls in place of the benzene walls of Calabadion 1, and its solubility in water and buffer was 18 mM and 14 mM, respectively. Compounds \textbf{I-15} and \textbf{I-16} demonstrated excellent affinity towards poorly water soluble active pharmaceutical ingredients (APIs) and were able to increase their bioavailability in mice by acting as solubilizing agents.40 While \textbf{I-16} has lower inherent water solubility than \textbf{I-15}, its larger aromatic walls allowed it to enhance the solubility of insoluble drugs at lower concentrations. Compounds \textbf{I-15} and \textbf{I-16} have also been reported as solubilizing agents for single walled carbon nanotubes (SWNTs) at 1000 times lower concentrations than surfactants while maintaining their optical properties,41 and as hosts for hydrocarbons for their uptake into water for potential application in separation, sequestration, and transformation of gaseous and liquid hydrocarbons.42

The enhanced aqueous solubility and comparable or in some cases improved affinities of the Calabadion hosts (when compared to the cyclic CB[n]) prompted the Isaacs group to carry out numerous structural modifications to them in order to better understand the structure-affinity relationships. Some modifications include changing the solubilizing group,43
aromatic group, length of the alkyl arm, and size of the glycoluril backbone. Chapter 4 discusses the effect of introducing alkyl linkers of varying sizes to Calabadion 1.

Another application of I-16 was reported in 2012. It was found that I-16 binds neuromuscular blocking agents (NMBAs) with affinities ranging from 10^6 – 10^9 M$^{-1}$, and reverses their effects in vivo. The application of molecular containers as reversal agents for different classes of drugs is described in detail in the following section.

1.5 Drug Reversal Using Molecular Containers.

As described in the previous sections, molecular containers can alter the property of the guest encapsulated within their cavities. The biological activity of a drug is one such property. A drug exhibits its activity in the free state, however when it is completely bound within the cavity of a host, it can lose its ability to interact with its biological target(s) (Scheme I-7).

![Scheme I-7. Schematic representation of drug reversal by encapsulation within a molecular container.](image)

This effect can be used to sequester drugs in vivo whose activity is no longer desired. Factors such as the relative binding affinity between drug•container and drug•biological receptor, the concentrations of drug, container, and
binding sites on biological receptor, and the selectivity of the container toward the drug relative to other molecules in the system play a role in determining the feasibility of this reversal. Sections 1.5.1 and 1.5.2 discuss the scope for using molecular containers as reversal agents for two different classes of drugs- NMBAs and drugs of abuse respectively.

1.5.1 Reversal of Neuromuscular Blocking Agents.

Annually, more than 400 million patients receive curare-type NMBAs during surgical procedures in operating rooms, intensive care units, and emergency medicine departments. NMBAs such as rocuronium and cisatracurium are often used as an essential adjunct to general anesthesia to block neuromuscular transmission (muscle relaxation) dose-dependently. This facilitates endotracheal intubation, optimizes surgical conditions, prevents potentially harmful movements during surgery, and also requires that the patient be put on mechanical ventilation. To speed up the recovery of the muscle function of the patient and to prevent residual neuromuscular block, it is often necessary to reverse the biological effect of NMBAs at the end of the surgery. This can be achieved by a few different mechanisms: (1) natural metabolism / excretion of the N MBA, (2) displacement of the N MBA from the acetylcholine receptor (AChR) by an increased local acetylcholine (ACh) concentration resulting from the inhibition of acetylcholine esterase (AChE) by drugs such as neostigmine, or (3) the encapsulation of the N MBA by a molecular container (Figure I-3). The first mechanism can be too slow or unreliable, especially in cases of deep
neuromuscular blockade. This results in muscle spasms and breathing problems in the patient from incomplete reversal, leading to increased healthcare costs from readmission to ICU and in some cases, mortality. In the second mechanism, there can be cardiovascular side-effects from neostigmine itself due to an agonistic effect at muscarinic acetylcholine receptor (mAChR) and may even induce a (depolarizing) neuromuscular block via agonistic effects at nicotinergic receptors (nAChR). Hence this mechanism also does not improve respiratory safety.

Figure I-3. Schematic representation of the onset and reversal of neuromuscular blockade.

A major advance in the clinical practice of anesthesia was made by the introduction of a γ-cyclodextrin-derived molecular container known as Sugammadex, marketed as Bridion™ by Merck with sales of more than $340 million in 2014 (Figure I-4); which binds rocuronium with high affinity ($K_a = 1.79 \times 10^7 \text{ M}^{-1}$) in water and reverses the effects of rocuronium in vivo. Sugammadex reverses neuromuscular block by sequestering rocuronium in the
bloodstream, thereby depleting its concentration at the neuromuscular junction.56 The Sugammadex•rocuronium complex is subsequently excreted in the urine.

Sugammadex has had a major impact on the clinical practice of anesthesia in Europe since it came into use in 2008. Its use in the United States was delayed by the US FDA because of hypersensitivity events, but the drug was approved for clinical use in 2015.57-59 While Sugammadex is able to reverse steroidal NMBAs such and rocuronium, it is not useful for reversing benzylisoquinolinium NMBAs such as cisatracurium due to weak binding affinity. As a result, there is a real need to develop alternative classes of molecular containers that function as reversal agents for the full range of clinically important NMBAs.

Given the high K_a values typically observed for CB[n] for alkyl ammonium guests,18 their low toxicity60 and ability to cross cell membranes,61 CB[n]-type receptors represent a potential alternative to the γ-cyclodextrin derivative Sugammadex for the reversal of neuromuscular block. Among the known CB[n], only CB[8] and CB[10] are large enough to encapsulate the steroidal nucleus of NMBAs like rocuronium, but unfortunately the water solubility of these containers is poor (<50 μM) which severely limits their potential to function as \textit{in vivo} reversal agents for NMBAs. Conversely, water-soluble CB[7] is neither voluminous enough to encapsulate the steroidal ring system nor is its C=O···O=C distance of ~ 6.1 Å appropriate to electrostatically complement the N···N separation (~ 11.0 Å) of the steroidal NMBAs rocuronium and vecuronium. In fact, Macartney has shown that CB[7] binds to the ammonium ends of the steroidal NMBAs rather than the steroidal ring system. In
addition to this, CB[7] has poor selectivity for NMBAs compared to acetylcholine which implies that it could preferentially bind ACh instead of NMBA in vivo, further hindering NMBA reversal (Table I-2.).

Figure I-4. Chemical structures of molecular containers CB[7], Calabadian 2 (I-16), Sugammadex, and guests rocuronium, vecuronium, cisatracurium, and acetylcholine.

In 2012, the Isaacs group reported that acyclic CB[n]-type receptor I-6 binds steroidal NMBAs 100-fold stronger and the benzylisoquinoline type NMBA cisatracurium 1000-fold stronger than Sugammadex in water (Table I-2.). In vivo experiments in rats showed that I-16 reverses deep neuromuscular blockade induced by steroidal NMBAs rocuronium and vecuronium in a dose dependent
manner and restores the train-of-four ratio to 0.9 faster than placebo and Sugammadex.48,63,64

Table I-2. Binding constants (K_a, M$^{-1}$) for the host–guest complexes formed in aqueous solution.

<table>
<thead>
<tr>
<th>Guest</th>
<th>CB[7]</th>
<th>Sugammadex</th>
<th>Calabion 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine</td>
<td>(7.0 ± 1.3) $\times 10^5$</td>
<td>-</td>
<td>(1.8 ± 0.2) $\times 10^5$</td>
</tr>
<tr>
<td>Cisatracurium</td>
<td>-</td>
<td>4.89×10^3</td>
<td>(4.8 ± 0.9) $\times 10^6$</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>(2.2 ± 0.3) $\times 10^5$</td>
<td>5.72×10^6</td>
<td>(1.6 ± 0.2) $\times 10^9$</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>(1.5 ± 0.2) $\times 10^4$</td>
<td>1.79×10^7</td>
<td>(3.4 ± 0.6) $\times 10^9$</td>
</tr>
</tbody>
</table>

The same trend is observed for recovery of spontaneous breathing, which is also rapid with I-16 as compared to experiments using placebo or Sugammadex.48 Unlike Sugammadex, Calabion 2 (I-16) displays a high *in vitro* binding affinity towards cisatracurium and also causes the *in vivo* reversal of the benzylisoquinolinium NMBA cisatracurium.63,64 These previously published *in vivo* and *in vitro* results together indicate the potential of I-16 to act as a broad spectrum reversal agent of NMBAs. However, there is the possibility that a patient who has been or is being treated with NMBAs during surgery may have previously taken other drugs and/or need to be treated with other drugs post-
surgically. For example, many surgical patients are treated with a variety of other drugs including antibiotics, antihistamines, and antiarrhythmics. Accordingly, for the further development of I-16 it is important to assess whether the binding of I-16 toward rocuronium, vecuronium, or cisatracurium can be compromised by the presence of other drugs. The toxicity or other adverse effects of the host molecule and / or the host•NMBA complex are also important considerations. Chapter 2 addresses these issues of selectivity of Calabadion 2 toward NMBAs relative to other drugs and the pharmacokinetics of the excretion of container and drug in rats.

1.5.2 Reversal of Drugs of Abuse.

The recreational use of drugs of abuse is a major problem worldwide and overdoses and the associated mortality are common. For example, the Substance Abuse and Mental Health Services Administration (SAMHSA) estimated that 10.2% of the US population 12 and older (27 million) had used an illicit drug in the past month. Illicit drugs include methamphetamine, cocaine, marijuana, heroin, hallucinogens (ketamine, phencyclidine), inhalants, or prescription-type psychotherapeutics (pain relievers, tranquilizers, stimulants, and sedatives) when used non-medically (Figure I-4.).

![Chemical structures of some commonly abused drugs.](Figure I-4)
The healthcare costs of emergency room visits related to illicit drugs was \approx \$11 billion in 2011 and overall costs associated with crime and lost work productivity was \approx \$193 billion.68 Accordingly, the treatments for illicit drug overdose and addiction is an important biomedical problem with significant socioeconomic consequences.

Current treatments for drug overdose and addiction are based on either pharmacodynamic (PD) or pharmacokinetic (PK) strategies. PD strategies aim to disrupt the effects of the illicit drug at its site(s) of action (e.g. drug receptors) in the body. This approach is being used clinically for treating opioid overdose and addiction.69 Some examples of anti-opioid drugs that work by the PD strategy include: opioid receptor antagonists naloxone and naltrexone which are used to treat overdose and addiction; methadone, levomethadyl acetate (LAAM), and buprenorphine which are used to treat withdrawal; and non-opioid agents (such as \(\alpha_2\) adrenergic agents) clonidine and lofexidine which are used for managing withdrawal.70 While this treatment approach has been successful for opioids, there are currently no pharmacotherapies approved by the US FDA to treat cocaine, methamphetamine, or cannabis use disorders.71 In contrast, the PK strategy does not require a precise molecular level knowledge of the drug-receptor interaction needed in the PD strategy, but only the ability to decrease drug concentration below its effective concentration.72 For example, enzyme based therapeutics (e.g. human butyrylcholine esterase) are being explored that can hydrolyze cocaine into its inactive metabolites (ecgonine methyl ester and benzoic acid), thereby creating a negative concentration gradient between the brain and
blood which results in a reduced concentration of the drug at its receptor in the brain.69,73-75 Immunotherapeutics are also being developed for cocaine, methamphetamine, and fentanyl, most notably by Janda,76-79 which act as peripheral blockers by binding and sequestering the “antigenic” drug and preventing it from crossing the blood brain barrier.80,81

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure_i-5.png}
\caption{Schematic representation of the pharmacokinetic and pharmacodynamic strategies for disrupting the effects of drugs of abuse.}
\end{figure}

The PK strategy has also been implemented using synthetic molecular container compounds to directly compete with biological molecular recognition events for the reversal of NMBAs as outlined in section 1.5.1. However in the context of molecular recognition of drugs of abuse by molecular containers only
sensing applications82 have been reported for some amphetamine type molecules using phosphonate cavitands83,84 and CB[n] derivatives.85 Chapter 3 describes the recent work on the recognition properties of some common molecular containers towards a panel of frequently abused drugs. The \textit{in vivo} reversal of methamphetamine by Calabadion 2 is reported as well as the pharmacokinetics of excretion of Calabadion 1 and fentanyl after the reversal of fentanyl in rats.
Chapter 2: Calabadion 2 as a Reversal Agent for Neuromuscular Blocking Agents

2.1 Introduction.

Muscle relaxant drugs such as rocuronium, vecuronium (steroidal neuromuscular blocking agents- NMBAs) and cisatracurium (benzylisoquinolinium NMA) are widely used pre-surgically to block the patients muscle function and optimize surgical conditions. Post-surgical reversal of neuromuscular blockade through the use of AChE inhibitors such as neostigmine is not optimal due to side effects arising from incomplete reversal of NMBAs and cardiovascular issues. The γ-cyclodextrin based molecular container- II-1 marketed by Merck as Bridion™ has greatly improved the safety of N MBA reversal for rocuronium and vecuronium in Europe, and has recently been approved by the United States Food and Drug Administration after
concerns regarding hypersensitivity were addressed in clinical trials.57,59 Isaacs et al. have designed and synthesized the acyclic CB[n] based container \textbf{II-2}, which has shown faster reversal of steroidal NMBAs such as rocuronium and vecuronium. Container \textbf{II-2} also shows a broader scope and also reverses the structurally distinct benzylisoquinolinium NMBA cisatracurium. The faster rate of reversal and broader scope can both be attributed to the order(s) of magnitude higher \(K_a\)s shown by \textbf{II-2} toward these three NMBAs compared to \textbf{II-1}.48 For the further development of \textbf{II-2} as a broad spectrum reversal agent for NMBAs in the clinic, we have addressed two important issues in this chapter: (1) the \textit{in vitro} selectivity of \textbf{II-2} toward different NMBAs in the presence of other drugs commonly found on anesthesia trays in hospitals and (2) the pharmacokinetic profile of \textbf{II-2} after NMBA reversal in rat urine.

\textbf{2.2 In Vitro Selectivity of Calabadion 2 towards Neuromuscular Blocking Agents Relative to Commonly Used Drugs.}

The superior \(K_a\)s and faster / broader scope of \textit{in vivo} reversal of NMBAs by \textbf{II-2} compared with \textbf{II-1} is a promising preliminary result for its development for clinical use. However, there is the possibility that a patient who has been or is being treated with NMBAs during surgery may have previously taken other drugs and/or need to be treated with other drugs post-surgically. For example, many surgical patients are treated with a variety of other drugs including antibiotics, antihistamines, and antiarrhythmics.65 Accordingly, for the further development of \textbf{II-2} it is important to assess whether the binding of \textbf{II-2} toward rocuronium,
vecuronium, or cisatracurium can be compromised by the presence of other drugs.

![Chemical structures of CB[n], Sugammadex (II-1), Cb 2 (II-2); and NMBAs cisatracurium, rocuronium, vecuronium.](image)

Figure II-1. Chemical structures of CB[n], Sugammadex (II-1), Cb 2 (II-2); and NMBAs cisatracurium, rocuronium, vecuronium.

In this study, we determine the binding constant of II-2 toward 27 drugs that are commonly used during and after surgery. We use the experimentally determined values of K_a and used them as known inputs to explore by simulations (Gepasi™) the behavior of the multicomponent system comprising II-2, rocuronium or vecuronium or cisatracurium, acetylcholine receptor (AChR), and drug using estimated or known values of clinical drug concentration ranges and AChR binding constants.

Thus we assessed the potential for these 27 drugs to induce displacement of rocuronium, vecuronium, or cisatracurium from the cavity of II-2. The results of these simulations are presented in the form of three dimensional plots that connect the K_a of the II-2•drug complex and the dosage of drug with the equilibrium concentration of the AChR•N MBA complex. These drugs were selected to include a variety of drug classes such as antibiotics, antiarrythmics, analgesics,
etc. which are typically present on standard anesthesia trays at hospitals. Cationic drugs were selected specifically as they are expected to have higher affinity towards our anionic acyclic CB[n]-type container II-2, and therefore pose the highest potential for displacing NMBAs from the II-2•NMBA complexes.

Figure II-2. Chemical structures of drugs used in this study.
2.2.1 Binding Properties of II-2 towards Drugs II-3 – II-29 Investigated by \(^1\)H NMR.

Initially, we investigated the ability of container II-2 to bind drugs II-3 – II-29 by \(^1\)H NMR spectroscopy. For complexes between II-2 and drugs II-3 – II-29 we commonly observed upfield shifting of guest resonances which indicates that these protons on the guest (drug) are located in the cavity of II-2. All of the II-2•drug complexes display intermediate to fast kinetics of exchange on the \(^1\)H NMR timescale.

These preliminary \(^1\)H NMR observations suggested that complexes between container II-2 and drugs II-3 – II-29 would be of moderate stability in water. In contrast, complexes between II-2 and NMBAs cisatracurium, rocuronium and vecuronium exhibit slow exchange on the chemical shift timescale. To facilitate further discussion of the NMR results we present the \(^1\)H NMR spectra recorded for II-26 (procaine), II-2, the II-2•II-26 complex, and a mixture of II-2•II-26 with excess II-26 present (Figure II-3). These \(^1\)H NMR spectra display a number of interesting features, which provide insight the nature of the II-2•II-26 complex. For example, the aromatic peaks H\(_e\), and H\(_f\) of II-26 shift considerably upfield (> 1 ppm) upon binding to one equivalent of II-2 (Figure II-3c). This dramatic upfield shift reflects the anisotropic shielding environment provided by the two aromatic naphthalene sidewalls of II-2. Given the aromatic nature of drug II-26, we surmise that π-π interactions are formed within the II-2•II-26 complex. In the spectrum containing two equivalents of II-
to one equivalent of II-2 (Figure II-3d) H_e and H_f shift back downfield (relative to Figure II-3c) to a position that is the average of the completely bound and completely free form of II-26. This indicates a fast kinetics of exchange between free guest II-26 and the II-2•II-26 complex relative to the 1H NMR chemical shift time scale.

Figure II-3. 1H NMR spectra recorded (400 MHz, RT, 20 mM NaH$_2$PO$_4$ buffered D$_2$O, pH = 7.4) for a) II-26, b) II-2, c) an equimolar mixture of II-2 and II-26 (12.5 mM), and d) a 1:2 mixture of II-2 (12.5 mM) and II-26 (25 mM).
In contrast, the aromatic protons H_u and H_v of host II-2 undergo a downfield shift (H_u, 7.72 ppm; H_v, 7.17 ppm) upon formation of the II-2•II-26 complex. The observed downfield shift is due to the disruption of edge-to-face π-π interactions between the tips of free host II-2 which are disrupted upon formation of the II-2•II-26 complex. Addition of a second equivalent of II-26 results in little additional shifting and sharpening of the resonances for H_u and H_v because the II-2•II-26 complex is largely formed at both stoichiometries.

Interestingly, the resonances for H_a, H_b, and H_c of 2-diethylaminoethyl sidechain also show significant upfield shifts upon binding to II-2 which is probably reflects partial inclusion of the sidechain in the shielding region defined by the glycoluril tetramer backbone and the aromatic naphthalene sidewalls. Analogous phenomena were seen in the ¹H NMR spectra recorded for the remaining II-2•drug complexes in accord with the previously established preferences of CB[n]-type receptors to bind the hydrophobic portions of guests within the hydrophobic cavity whereas the cationic ammonium groups reside at the ureidyl carbonyl portals and benefit from ion-dipole interactions.86,18

2.2.2 Stoichiometry of the Complexes between II-2 and Drugs II-3 – II-29.

It is well known that CB[n]-type receptors generally form host•guest complexes with 1:1 stoichiometry. In order to confirm the 1:1 stoichiometry of the complexes between II-2 and drugs II-3 – II-29 we created Job plots.
Figure II-4. Job plot constructed for mixtures of **II-2** and **II-26** ([**II-2**] + [**II-26**] = 1 mM) by monitoring the change in 1H NMR (400 MHz, RT, 20 mM NaH$_2$PO$_4$ buffered D$_2$O, pH = 7.4) chemical shift of H$_u$ (7.72 ppm) of **II-2**.

In Job plots, a series of samples containing host and guest at a constant total concentration ([host] + [guest] = constant) are prepared and are investigated by an appropriate spectroscopic technique. A plot of the change in spectroscopic signal versus mole fraction displays a maximum at the mole fraction that corresponds to the stoichiometry of the host•guest complex. Figure II-4 shows the Job plot constructed using **II-2** and **II-26** at a total concentration of 1 mM. The Job plot displays a maximum at a mole fraction of 0.5 which confirms the 1:1 stoichiometry of the **II-2•II-26** complex. Job plots were constructed for several additional drugs and are given in Appendix 1.
2.2.3 X-ray Crystal Structure of the II-2•II-29 Complex.

We were fortunate to obtain single crystals of the II-2•II-29 complex by slow evaporation of an aqueous solution of the complex and to solve its x-ray crystal structure.

Figure II-5. Cross-eyed stereoscopic representation of the geometry of one molecule of II-2•II-29 from the x-ray crystal structure. Color code: C, grey; H, white; N, blue; O, red; S, yellow; hydrogen bond, red–yellow striped.

Figure II-5 shows a cross-eyed stereoview of one molecule of II-2•II-29 in the crystal which displays a number of interesting features. As described previously, the glycoluril tetramer backbone of II-2 imparts an overall C-shape to the receptor whereas the terminal naphthalene sidewalls help to define a hydrophobic box-like cavity. Interestingly, host II-2 within the II-2•II-29 complex adopts a helical (chiral) conformation where the two naphthalene sidewalls are splayed out-of-plane with respect to the glycoluril tetramer backbone; both senses of handedness are observed in the crystal in a 1:1 ratio. Furthermore, the ammonium ion unit of guest II-29 engages in an N-H•••O=C hydrogen bond (N•••O distance = 2.803 Å; N-H•••O angle = 160.9°) with the carbonyl portal. The furan ring is
enclosed within the cavity of II-2 but does not engage in π-π stacking interactions with naphthalene sidewalls. In addition, one of the amidine N-H groups at the opposite carbonyl portal appears to engage in a weak hydrogen bond (N•••O distance = 3.231 Å; N-H•••O angle = 147.2°)

Figure II-6. Cross-eyed stereoscopic representation of the packing of II-2·II-29 in the x-ray crystal structure. Color code: C, grey; H, white; N, blue; O, red; S, yellow.

Finally, Figure II-5 shows that the naphthalene sidewalls of II-2 in the II-2·II-29 complex do not undergo edge-to-face π-π interactions which is in accord with the downfield shift observed for H_u and H_v upon complex formation. The three dimensional packing of the individual molecules of II-2·II-29 complex in the crystal is also intriguing (Figure II-6). As shown in Figure II-6, two molecules of the II-2·II-29 complex of the same helicity pack next to one another by interactions between the convex faces of the aromatic sidewalls (marked with @ symbol). Additional homochiral pairs of the II-2·II-29 complex extend along the z-axis with alternating sense of helicity. Quite interestingly, adjacent pairs of
the **II-2**•**II-29** complex are held together by reciprocal pairs of close CH•••π interactions (CH•••π distance = 2.798, 2.868 Å; CH•••π angle = 161.7˚, 149.1˚) between molecules of complex **II-2**•**II-29** of opposite helicity.

2.2.4 Measurement of K_as between II-2 and Drugs II-3 – II-29.

After having established the inclusion binding of drugs **II-3** – **II-29** inside container **II-2** by 1H NMR spectroscopy, we decided to measure the binding affinity (K_a, M$^{-1}$) for the **II-2**•**II-3** – **II-2**•**II-29** complexes. For this purpose, we employed three different strategies: (1) direct UV/Vis titrations (for UV/Vis active drug **II-4**), (2) direct 1H NMR titrations (for drugs **II-3**, **II-5** – **II-7**, **II-9**, **II-11**, and **II-13** with K_a < 5000 M$^{-1}$), and (3) UV/Vis competition titrations (for UV/Vis inactive drugs with K_a > 5000 M$^{-1}$). The detailed procedures and models used to analyze the data using Scientist™ are given in Appendix 1. For example, Figure II-7a shows the 1H NMR spectra recorded during the titration of a fixed concentration of **II-2** (0.976 mM) with **II-6** (0 – 6.57 mM). As described above, upon formation of the **II-2**•guest complexes, we generally observe a downfield shift of H_u and H_v because the tips of the naphthalene sidewalls are no longer engaged in edge-to-face π-π interactions. Figure II-7b shows a plot of chemical shift of H_v versus [**II-6**] which was fitted to a standard 1:1 binding model using Scientist™ (Appendix 1) which allowed us to determine $K_a = (3.0 \pm 0.6) \times 10^3$ M$^{-1}$ for the **II-2**•**II-6** complex. Similar 1H NMR titrations were performed for guests **II-3**, **II-5** – **II-7**, **II-9**, **II-11**, and **II-13** (Appendix 1) and the results are presented in Table II-1.
Figure II-7. a) 1H NMR (400 MHz) stack plot of the titration of II-2 (0.976 mM) with guest II-6 (0 – 6.57 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); b) plot of the chemical shift of H$_v$ as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (3.0 \pm 0.6) \times 10^3$ M$^{-1}$).

Next, to determine the K_a values for the stronger II-2•guest complexes we performed competition experiments monitored by UV/Vis spectroscopy.87 For this purpose, we employed Rhodamine 6G which undergoes significant changes in its UV/Vis spectrum upon formation of the II-2•Rhodamine 6G complex ($K_a = 2.3 \pm 0.2 \times 10^6$ M$^{-1}$).48 Addition of competitive guests displace indicator
Rhodamine 6G from the II-2•Rhodamine 6G complex and reverse the observed UV/Vis changes.

Figure II-8. a) UV/Vis spectra recorded during the titration of a mixture of II-2 (9.92 µM) and dye rhodamine 6G (10.0 µM) with guest II-28 (0 – 1.21 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4), b) plot of absorbance at 550 nm as a function of the concentration of II-28. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (3.3 \pm 0.5) \times 10^6 \text{ M}^{-1}$).

Figure II-8 shows the absorbance data obtained from the competitive UV/Vis titration of II-2•Rhodamine 6G with II-28 (0 – 1.21 mM). We fit a plot of absorbance versus [II-28] to the standard competitive binding model...
(Appendix 1)\(^{48,39}\) to determine the K\(_a\) for the **II-2•II-28** complex (K\(_a\) = (3.3 ± 0.5) × 10\(^6\) M\(^{-1}\)) using the known K\(_a\) of **II-2•rhodamine 6G** ((2.3 ± 0.2) × 10\(^6\) M\(^{-1}\))\(^{48}\) as input. Analogous UV/Vis competition experiments were performed which allowed us to measure the remaining K\(_a\) values given in Table II-1. For purposes of comparison, the K\(_a\) values for Sugammadex (**II-1**) toward drugs **II-3 – II-29** as reported by Zwiers are also given in Table II-1.\(^{65}\)

2.2.5 Commentary on the Tabulated K\(_a\) Values.

An examination of the binding constants given in Table II-1 reveals that the K\(_a\) values for this set of 27 drugs ranges from a low of 2.0 × 10\(^3\) M\(^{-1}\) for diclofenac **II-3** to a high of 4.5 × 10\(^6\) M\(^{-1}\) for ranitidine **II-29**; 13 out of 27 drugs have K\(_a\) > 10\(^5\) M\(^{-1}\) whereas 14 out of 27 have K\(_a\) < 10\(^5\) M\(^{-1}\).

Some of the trends can be readily understood given the well-known binding preferences of CB[n] and acyclic CB[n]-type receptors for hydrophobic and (di)cationic guests.\(^{86,18}\) For example, among the weaker binders (K\(_a\) < 10\(^5\) M\(^{-1}\)) we find neutral or anionic compounds like diclofenac (**II-3**), acetaminophen (**II-8**), chloramphenicol (**II-9**), and aminophylline (**II-11**) as well as highly hydrophilic and hydroxylated compounds like tetracycline (**II-4**), kanamycin (**II-6**), doxycycline (**II-13**), and vancomycin (**II-14**). Other weak binders include the zwitterionic compounds amoxicillin (**II-5**) and cefepime (**II-7**). Conversely, among the stronger binders (K\(_a\) > 10\(^5\) M\(^{-1}\)) we find compounds that better satisfy the binding preferences of **II-2**.
Table II-1. Binding constants determined by direct or competitive UV/Vis assays or direct 1H NMR titrations for the interaction between II-2 and drugs II-3-II-29, drug dosages in the rat model, estimated plasma concentrations, and binding constants toward II-1.

<table>
<thead>
<tr>
<th>Drug</th>
<th>K_a with II-2 (M$^{-1}$)</th>
<th>Dosage in rat model (mg kg$^{-1}$)</th>
<th>Est. Plasma Concentration in Rats (μM)</th>
<th>K_a with II-1 (M$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine</td>
<td>(1.8 ± 0.2) × 105</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cisatracurium</td>
<td>(4.8 ± 0.9) × 106</td>
<td>0.7</td>
<td>18.3</td>
<td>4.89 × 103</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>(1.6 ± 0.2) × 109</td>
<td>0.7</td>
<td>26.7</td>
<td>5.72 × 106</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>(3.4 ± 0.6) × 109</td>
<td>3.5</td>
<td>160</td>
<td>1.79 × 107</td>
</tr>
<tr>
<td>II-3</td>
<td>(2.0 ± 0.4) × 103</td>
<td>10</td>
<td>763</td>
<td>2.50 × 104</td>
</tr>
<tr>
<td>II-4</td>
<td>(2.3 ± 0.2) × 103</td>
<td>10-20</td>
<td>819</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-5</td>
<td>(3.0 ± 0.4) × 103</td>
<td>10-20</td>
<td>997</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-6</td>
<td>(3.0 ± 0.6) × 103</td>
<td>10-20</td>
<td>752</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-7</td>
<td>(4.6 ± 0.5) × 103</td>
<td>10-40</td>
<td>1040</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-8</td>
<td>(5.9 ± 0.5) × 103</td>
<td>100-300</td>
<td>32122</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-9</td>
<td>(5.9 ± 1.8) × 103</td>
<td>45-80</td>
<td>4696</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-10</td>
<td>(8.6 ± 0.8) × 103</td>
<td>0.5-1</td>
<td>63.1</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-11</td>
<td>(1.4 ± 0.4) × 104</td>
<td>3-100</td>
<td>5948</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-12</td>
<td>(2.1 ± 0.2) × 104</td>
<td>0.5-2</td>
<td>88.5</td>
<td>-</td>
</tr>
<tr>
<td>II-13</td>
<td>(3.3 ± 1.0) × 104</td>
<td>5-10</td>
<td>355</td>
<td>2.40 × 104</td>
</tr>
<tr>
<td>II-14</td>
<td>(4.4 ± 0.3) × 104</td>
<td>20</td>
<td>335</td>
<td>1.78 × 104</td>
</tr>
<tr>
<td>II-15</td>
<td>(4.8 ± 0.3) × 104</td>
<td>20-40</td>
<td>1615</td>
<td>1.12 × 104</td>
</tr>
<tr>
<td>II-16</td>
<td>(8.3 ± 0.6) × 104</td>
<td>0.001</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>II-17</td>
<td>(1.9 ± 0.1) × 104</td>
<td>6.25-12.5</td>
<td>709</td>
<td>1.02 × 104</td>
</tr>
<tr>
<td>II-18</td>
<td>(1.9 ± 0.1) × 104</td>
<td>0.018</td>
<td>1.67</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-19</td>
<td>(2.5 ± 0.1) × 104</td>
<td>0.005-0.015</td>
<td>1.60</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-20</td>
<td>(5.3 ± 0.4) × 104</td>
<td>0.2-0.4</td>
<td>9.60</td>
<td>2.44 × 104</td>
</tr>
<tr>
<td>II-21</td>
<td>(5.9 ± 0.7) × 104</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II-22</td>
<td>(8.0 ± 0.7) × 104</td>
<td>0.01-0.1</td>
<td>3.04</td>
<td>1.84 × 104</td>
</tr>
<tr>
<td>II-23</td>
<td>(8.2 ± 0.9) × 104</td>
<td>20</td>
<td>1532</td>
<td>-</td>
</tr>
<tr>
<td>II-24</td>
<td>(9.3 ± 0.9) × 104</td>
<td>0.1-0.3</td>
<td>18.2</td>
<td><1.00 × 104</td>
</tr>
<tr>
<td>II-25</td>
<td>(9.7 ± 1.1) × 104</td>
<td>0.02-0.15</td>
<td>14.0</td>
<td>2.61 × 104</td>
</tr>
<tr>
<td>II-26</td>
<td>(9.8 ± 0.5) × 104</td>
<td>1-2</td>
<td>133</td>
<td>-</td>
</tr>
<tr>
<td>II-27</td>
<td>(2.8 ± 0.1) × 104</td>
<td>0.25-0.45</td>
<td>21.4</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-28</td>
<td>(3.3 ± 0.5) × 104</td>
<td>0.02-0.05</td>
<td>1.22</td>
<td><1.00 × 103</td>
</tr>
<tr>
<td>II-29</td>
<td>(4.5 ± 0.7) × 104</td>
<td>6-10</td>
<td>553</td>
<td>5.40 × 103</td>
</tr>
</tbody>
</table>

a) measured by direct 1H NMR titration. b) measured by direct UV/Vis titration, c) measured by UV/Vis competition assay using rhodamine 6G, d) reference.48
For example, the two linear dications procaine (II-26) and suxmethonium chloride (II-27) are among the strongest binding drugs. In accord with the preference of CB[n]-type receptors for hydrophobic bicyclic and polycyclic cations, \(^{19,86,18,89,90}\) compounds like morphine (II-20), naloxone (II-22), atropine (II-28) are among the better binders for II-2. Recently, we reported that II-2 is an outstanding solubilizing agent for insoluble drugs that are aromatic cations due to the formation of π–π interactions between the insoluble drug and the naphthalene walls of II-2 which define a hydrophobic box.\(^{44}\) The observed stronger binding between II-2 and aromatic ammonium ions dibucaine (II-21), propranolol (II-25), and imipramine (II-23) are consistent with the previously delineated binding preferences of II-2.

2.2.6 Assessment of the Potential for Displacement Interactions.

We undertook the measurement of the binding constants for the complexes between II-2 and drugs II-3 – II-29 with the goal of assessing the potential for these drugs to interfere with the in vivo use of II-2 as a reversal agent for neuromuscular block induced by rocuronium, vecuronium, or cisatracurium. Given the high level of complexity of the in vivo system (e.g. metabolism, excretion, biodistribution, other binding partners) we created a minimalist model that is amenable to appropriate simulations. Figure II-9 shows the three equilibria that we decided to consider, namely the binding of NMBA to the acetylcholine (AChR) receptor and to Calabadizon 2 as well as the binding of drug to Calabadizon 2. With a knowledge of the three \(K_a\) values (\(K_1 - K_3\)) and the total concentrations
of NMBA, AChR and drug it is possible to calculate the concentrations of each species present at equilibrium. It should be noted that the total concentration of displacing drug in this model represent an upper limit to what would be observed in vivo because drugs can also be bound to plasma proteins and are subject to rapid distribution to peripheral compartments such as the intercellular space. Accordingly, our model is a conservative screening technique that will generally overestimate the displacement potential of a given drug. Our goal of the simulations was to systematically explore the influence of the different K_a values and total concentrations on the equilibrium concentration of the AChR•NMBA complex since the occupation of the biological receptor by NMBA is ultimately what controls the biological function. The simulations are meant to inform and serve as a stepping stone toward future *in vivo* selectivity experiments which will ultimately determine the selectivity of II-2 towards NMBAs over other drugs in the actual biological system.

$$\text{AChR + NMBA} \xleftrightarrow{K_1} \text{AChR•NMBA}$$

$$\text{Calabadin 2 + NMBA} \xleftrightarrow{K_2} \text{Calabadin 2•NMBA}$$

$$\text{Calabadin 2 + Drug} \xleftrightarrow{K_3} \text{Calabadin 2•Drug}$$

Figure II-9. Illustration of the equilibria considered in the simulations using Gepasi.
2.2.7 Simulation of In Vivo Equilibria Using modelling Software Gepasi.

We decided to perform the simulations using the freely available software package Gepasi91-93 which is capable of performing both kinetic and thermodynamic simulations of user defined interaction networks. The Gepasi software is very powerful and capable of performing multiple simulations where one or more variables are scanned sequentially (using the scan function), which allowed us to develop insight into the influence of each variable. The equilibrium concentrations of each species determined by the Gepasi simulations were exported to and visualized using Microsoft Excel. Below we present simulations using values derived from the data for rocuronium and cisatracurium. An analogous simulation for vecuronium is presented in Appendix 1.

2.2.8 In Vitro selectivity of Calabadion 2 for Rocuronium.

For the simulations using II-2, rocuronium, and drugs II- 3 – II-29 we fixed the equilibrium constants $K_2 \ (3.4 \times 10^9 \ \text{M}^{-1})$ and K_3 using the values in Table 1. We set the total concentration of rocuronium equal to 160 μM to mimic the initial \textit{in vivo} plasma concentration in the rat; this value was calculated based on the known dosage (3.5 mg kg$^{-1}$, twice the ED90), the average mass (370 g) and the average plasma volume (15.2 mL) of the male \textit{Sprague-Dawley} rats used in our previous experiments.94 The initial concentration of AChR was defined as equal to the initial concentration of NMBA (160 μM) for simplicity. Figure II-10
shows a three dimensional plot of the mole fraction of AChR•Rocuronium (z-axis) as a function of the total concentration of drug (e.g. \(\text{II-3 – II-29}\), x-axis), and \(\log K_3\) (y-axis) obtained from the simulations.

Figure II-10. Three dimensional surface plots of the concentration of AChR•NMBA at equilibrium versus \(\log [\text{Drug}]\) and \(\log K_3\) for \(\text{II-2•Drug}\) for: a) rocuronium at [rocuronium] = [AChR] = 160 \(\mu\)M, [\(\text{II-2}\)] = 320 \(\mu\)M (2 eqv.), \(K_1 = 10^5\) M\(^{-1}\), \(K_2 = 3.4 \times 10^9\) M\(^{-1}\); b) cisatracurium at [cisatracurium] = [AChR] = 18 \(\mu\)M, [\(\text{II-2}\)] = 1.2 mM (64 eqv.), \(K_1 = 10^5\) M\(^{-1}\), \(K_2 = 4.8 \times 10^6\) M\(^{-1}\). The red dots mark the points corresponding to each of the 27 drugs (\(\text{II-2 – II-29}\)).
The range of the x-axis from 0.1 μM to 100 mM was chosen to span the range of plasma concentrations of drug II-3 – II-29 given in Table II-1 whereas the range of the y-axis from 10^3 to 10^7 M$^{-1}$ was chosen to span the range of K_3 values given in Table II-1 for drugs II-3 – II-29. This surface plot represents the general behavior of $[\text{AChR}\cdot\text{Rocuronium}]_{\text{equilibrium}}$ over the full range of dosages and K_3 of potentially interfering drugs studied in this work. As can be readily seen, there is a plateau region in the lower left region of the plot that corresponds to situations where the drugs do not display any ability to displace rocuronium from the II-2•rocuronium complex and therefore $[\text{AChR}\cdot\text{rocuronium}]$ is low.

Conversely, as $[\text{Drug}]$ and/or log K_3 is increased the $[\text{AChR}\cdot\text{rocuronium}]$ increases. The region in the upper right hand side of the plot corresponds to situations where drugs with these combinations of $[\text{Drug}]$ and log K_3 values are expected to display the ability to displace rocuronium from the II-2•rocuronium complex resulting in the increase in the concentration of AChR•rocuronium. The data points corresponding to the individual combinations of plasma concentrations and K_3 values for each drug are marked on the 3D surface of Figure II-10a as red dots. According to the constraints of this simulation, none of the drugs possess any substantial ability to displace rocuronium from II-2•rocuronium. From the shape of Figure II-10a, it is easy to see that drugs with a combination of a high value of K_3 and a large dose are most likely to displace rocuronium from II-2•rocuronium.
2.2.9 In vitro selectivity of Calabadion 2 for Cisatracurium.

The binding affinity of II-2 toward the NMBA (K₂) relative to potentially competing drugs plays a major role in influencing how much NMBA is bound to the AChR at equilibrium. Calabadion 2 (II-2) binds cisatracurium (K₂ = (4.8 ± 0.9) x 10⁶ M⁻¹) approximately 103-fold weaker than rocuronium (K₂ = (3.4 ± 0.6) x 10⁹ M⁻¹) and therefore we would expect that the potential for displacement of cisatracurium from the II-2•cistracurium complex by drugs II-3 – II-29 would be more significant than for rocuronium. For the purpose of the simulations, we created a three dimensional plot of the equilibrium concentration of AChR•cisatracurium (z-axis) as a function of the concentration of the potentially interfering drug over a range of concentrations (1 μM – 100 mM, full range of average dosage of drugs II-3 – II-29, Table II-1, x-axis), and the change in K₃ over the range 10³ – 10⁷ M⁻¹ (range of Kₐ values measured for drugs II-3 – II-29 with II-2, Table II-1, y-axis) as shown in Figure II-10b. For this simulation, we fixed the total concentration of cisatracurium at 18.3 μM (Table II-1) and the concentration of Calabadion 2 at 1183 μM (64 equivalents) which is derived from our previous in vivo experiments which found that a dose of 80 mg kg⁻¹ was effective at reversing cisatracurium. As for the case of rocuronium, we fixed K₁ = 10⁵ M⁻¹ and [AChR] as 18.3 μM. Figure II-10b represents the general behavior of [AChR•cisatracurium] over the full range of drug concentrations and K₃ values of potentially interfering drugs studied in this work. Similar to the case of rocuronium, there is a large plateau region where [AChR•Rocuronium] is low and
displacement of cisatracurium from the II-2\textbullet{}cisatracurium complex is not significant. The upper right side of the Figure II-10b is the region where both drug concentration and \(K_3 \) are high and where the displacement of cisatracurium from the II-2\textbullet{}cisatracurium complex is most significant. The data points corresponding to the individual concentrations and \(K_3 \) values for each drug are marked on the 3D surface of Figure II-10b as red dots. Once again, all of the drugs lie in the plateau region which indicates that they do not displace cisatracurium from the II-2\textbullet{}cisatracurium complex. Simulations using lower doses of II-2 (32 or 16 equivalents) display higher equilibrium mole fractions of AChR\textbullet{}cisatracurium for drugs II-29 and II-23 (Appendix 1). Of course, the dramatic simplifications introduced into our model means that future in vivo experiments are needed to determine if drugs with high combinations of \(K_3 \) and dosage (e.g. ranitidine (II-29) and imipramine (II-23)) nearby the edge of the plateau result in displacement of II-2\textbullet{}cisatracurium in practice. In this regard, it is worth mentioning that we previously found that the in vivo onset and duration of action of succinylcholine (II-27) with its high \(K_3 \) value (2.7 \(\times \) 10\(^6\) M\(^{-1}\)) is unaffected by prior treatment with II-2.\(^{64}\) Accordingly, the fact that a drug possesses a high \(K_3 \) value toward II-2 is insufficient to conclude that undesirable displacement interactions will occur.

2.2.10 Influence of \(K_1 \).

The simulations described above assessed the influence of a range of [Drug] and \(K_3 \) values on [AChR\textbullet{}rocuronium] or [AChR\textbullet{}cisatracurium] but were
conducted at a single value of K_1 (10^5 M^{-1}) that was not drawn from experimental data, but rather based on the known *in vivo* ability of II-2 to function as a reversal agent for rocuronium and cisatracurium. Accordingly, we thought it was important to study the influence of K_1 on the equilibrium concentration of AChR•rocuronium.

Figure II-11. Plot of the mole fraction of AChR•rocuronium versus log (K_1) for drugs II-3 – II-19 present at their estimated plasma concentrations from Table II-1. a) $[\text{II-2}]_{\text{initial}} = 320 \mu\text{M}$ (2-fold higher than $[\text{Rocuronium}]_{\text{initial}}$), and b) $[2]_{\text{initial}} = 960 \mu\text{M}$ (6-fold higher than $[\text{Rocuronium}]_{\text{initial}}$).
Figure II-11a shows the simulations performed where K_1 is scanned from 10^4 to 10^7 M^{-1} and where $[\text{II-2}] = 320 \mu\text{M}$, [rocuronium] = 160 \mu\text{M}, $K_2 = 3.4 \times 10^9 \text{ M}^{-1}$, and [drug] and K_3 are taken from Table II-1. As can be readily seen, as K_1 is increased the concentration of AChR•rocuronium increases because the difference in free energy between AChR•rocuronium and II-2•rocuronium decreases. At high values of K_1 the concentration of AChR•rocuronium is most significant for ranitidine (II-29). The reason ranitidine possesses the highest potential to displace rocuronium from II-2•rocuronium to form II-2•II-29 is due not only to its relatively high binding constant ($K_3 = (4.5 \pm 0.7) \times 10^6 \text{ M}^{-1}$) but also due to its high therapeutic dose (6-10 mg kg$^{-1}$) which served as inputs to the simulation.

Three other drugs that display significant amounts of AChR•rocuronium at high K_1 values are II-23, II-17, and II-15 (Figure II-11a) which similarly possess a combination of moderate to large K_3 and high therapeutic dose values. Figure II-11b shows the simulation of the system when $[\text{II-2}]$ is increased to 960 \mu\text{M} (6-fold higher than rocuronium). As can be seen, the concentration of AChR•rocuronium at equilibrium is decreased in all cases relative to Figure II-11a. However, the effect is most dramatic for compound II-29 which has the highest K_a value but the lowest therapeutic concentrations among II-29, II-23, II-17 and II-15. The excess of II-2 therefore sequesters more significant amounts of II-29 as its II-2•II-29 complex than is possible for II-23, II-17, and II-15 with their higher therapeutic concentrations. Overall, this simulation establishes that:
(1) the potential for displacement of NMBA from the II-2•NMBA complex is reduced by maximizing the difference between K_2 and K_1, and (2) that the use of concentrations of II-2 at the level of the therapeutic concentration of the competing drug can be used to reduce displacement of the II-2•NMBA complex.

2.2.11 Influence of [AChR].

Lastly, in the simulations described above, we have somewhat arbitrarily fixed [AChR] as being equal to the concentration of NMBA. Therefore, we decided to investigate the influence of [AChR] on [AChR•rocuronium] in the presence of ranitidine ([II-29] = 553 μM) by performing simulations with [AChR] spanning the 1.6 μM to 16000 μM range. The other variables were fixed as follows: [rocuronium] = 160 μM, [II-2] = 320 μM, $K_1 = 10^5$ M$^{-1}$, $K_2 = 3.4 \times 10^9$ M$^{-1}$, and $K_3 = 4.5 \times 10^6$ M$^{-1}$.

![Figure II-12. Plot of mole fraction of AChR•rocuronium versus log [AChR].](image)
Figure II-12 shows plots of the mole fraction of AChR•rocuronium relative to [AChR] (left axis) and relative to [Rocuronium] (right axis) as a function of [AChR]. These two curves cross when [AChR] = [rocuronium] = 160 μM. At low [AChR] the mole fraction of AChR•rocuronium is ≈ 5%; as [AChR] increases beyond the fixed concentration of rocuronium (160 mM) the mole fraction of AChR•rocuronium drops by necessity. Conversely, if [AChR] is high then the mole fraction of AChR•rocuronium increases because of Le Chateliers principle.

2.1.12 Summary

In summary, we measured the binding constants for the complexes between II-2 and drugs II-3 – II-29 by a combination of direct 1H NMR titrations, direct UV/Vis titrations, and competitive UV/Vis binding assays using the II-2•rhodamine 6G complex. The binding constants range from 2000 M$^{-1}$ (for II-3) to 4.5 x 106 M$^{-1}$ (for II-29). The 1:1 stoichiometry of the complexes were confirmed by Job plots whereas the complexation induced changes in 1H NMR chemical shift were used to shed light on the geometry of selected II-2•drug complexes. The x-ray crystal structure of the II-2•ranitidine complex showed: (1) the expected inclusion of the furan ring in the cavity of II-2, (2) the ammonium ion bound at the C=O portal, and (3) an end-to-end helical twist of the acyclic CB[n] receptor II-2. Simulations were performed to assess the potential for drugs II-3 – II-29 to displace NMBA from the II-2•NMBA complex resulting in the formation of AChR•NMBA complex. Global simulations reveal that drugs that
possess high values of K₃ and/or high therapeutic concentrations have the highest potential to display displacement interactions. For rocuronium and vecuronium none of the drugs display significant displacement potential although ranitidine (II-29) should be assessed in future in vivo studies. For cisatracurium, drugs II-29 and II-23 display both high dose and high K₃ and lie near the edge of the plateau in Figure II-10b and consequently must be closely evaluated in future in vivo studies. The more significant potential for displacement seen in the cisatracurium simulations can be traced to fact that K₂ for II-2•cisatracurium (K₂ = (4.8 ± 0.9) x 10⁶ M⁻¹), is 700-fold lower than for II-2•rocuronium (K₂ = (3.4 ± 0.6) x 10⁹ M⁻¹).

2.3 Renal Elimination of Calabadion 2 in Rats Post Reversal of Neuromuscular Blockade.

An important issue in the development of II-2 as a reversal agent for NMBAs is establishing that it can be safely administered and gets eliminated rapidly without forming harmful metabolites. In vivo studies in Swiss Webster mice and Sprague-Dawley rats by the Briken and Eikermann groups respectively, have shown that II-2 displayed low cytotoxicity in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS) based cell viability and adenylate kinase release cell necrosis assays, did not inhibit the human ether-à-go-go-related channel, and was not mutagenic (Ames test). A cumulative dose of 1.6g kg⁻¹ (well above the therapeutic dose needed for NMBA reversal) of II-2 over three consecutive days (100, 500, and 1,000 mg kg⁻¹)
proved to be well tolerated and nonlethal in adult male *Sprague-Dawley* rats.\(^{48,64,95}\)

In the following study we describe the quantification of the urinary elimination of II-2 and rocuronium in *Sprague-Dawley* rats after compound II-2 was used to reverse the neuromuscular blockade induced by rocuronium and cisatracurium. Our collaborator Professor Eikermann and co-workers at Massachusetts General Hospital injected *Sprague Dawley* rats with varying doses of II-2 to reverse rocuronium or cisatracurium induced NMB. One hour after administration of the reversal agent, all the urine was collected from the bladder of these rats, and stored at -80 °C. We designed a \(^1\)H NMR based assay to get a preliminary understanding of the pharmacokinetic profile of II-2.

2.3.1 \(^1\)H NMR Based Assay for Quantification of II-2, Rocuronium, and II-2•rocuronium complex for Rocuronium Reversal Samples.

When rocuronium binds within the cavity of II-2 in water, the steroidal skeleton of the drug is encapsulated within the hydrophobic cavity of II-2. As a result of the shielding effects of the cavity, the axial steroidal methyl protons of rocuronium undergo a dramatic upfield shift in their \(^1\)H NMR resonance. The signals for the methyl proton of bound rocuronium are detected at 0.23 and -0.32 ppm. Fortunately, none of the other compounds excreted in the urine of *Sprague-Dawley* rats had signals which could be observed at less than 0.8 ppm. By using a suitable internal standard (2,2,3,3-d(4)-3-(trimethylsilyl)propanoic acid sodium salt) of known concentration which also has \(^1\)H NMR signal in this upfield and uncluttered region, we could quantify the rocuronium bound to II-2 in solution.
Figure II-13. 1H NMR spectra (600 MHz, RT, 20 mM NaH$_2$PO$_4$ buffered D$_2$O, pH = 7.4) of: a) free rocuronium (2 mM) shows two resonances (a and b) for the steroidal methyl groups, b) an equimolar mixture of II-2 and rocuronium (2 mM), a’ and b’ are resonances for steroidal methyl groups rocuronium bound in the II-2•rocuronium complex, and c) urine sample from a rat taken 1 h after reversal of rocuronium (3.5 mg kg$^{-1}$) with II-2 (10 mg kg$^{-1}$), a’ and b’ are resonances for steroidal methyl groups rocuronium bound in the II-2•rocuronium complex.

From the urine samples of rats injected with 3.5 mg kg$^{-1}$ of rocuronium, 0.1 mL aliquots were withdrawn and evaporated under high vacuum. The residue was dissolved in a solution containing a known concentration of 2,2,3,3-d(4)-3-(trimethylsilyl)propanoic acid sodium salt (TMSP) as internal standard.
and the sample was diluted to a total volume of 0.6 mL with 20 mM phosphate buffered D$_2$O (pH = 7.4). The concentration of the II-2•rocuronium complex was determined by 1H NMR spectroscopy (Figure II-13) by comparing the integral for diagnostic peaks of the complex (methyl groups at 0.23 ppm and -0.32 ppm, 3H each) relative to the internal standard (-0.02 ppm, 9H).

Concentrations of free II-2 and rocuronium were measured by adding a two-fold molar excess of rocuronium or II-2 respectively to the above mentioned solution. Addition of excess II-2 bound any free rocuronium as the II-2•rocuronium complex, whereas addition of excess rocuronium bound any free II-2 which allowed the determination of free II-2 and free rocuronium in the original sample by using the mass balance expressions. When administered in low dosage (5 to 10 mg kg$^{-1}$), 62 ± 17 % (mean ± SD) of II-2 was detected in urine. The excretion of rocuronium was proportionate to the equivalents of II-2 administered. For samples Rocuronium1 - Rocuronium4 (Table II-2), 3.5 mg kg$^{-1}$ rocuronium was reversed with 5 mg kg$^{-1}$ (0.5 equivalents) of II-2. This resulted in the excretion of 56 ± 8 % of rocuronium in the form of the II-2•rocuronium complex. Whereas for samples Rocuronium5 - Rocuronium8, 3.5 mg kg$^{-1}$ rocuronium was reversed with 10 mg kg$^{-1}$ (1.0 equivalent) of II-2. This resulted in a higher percentage of rocuronium excreted- 73 ± 21 % in the form of the II-2•rocuronium complex. Rocuronium was eliminated in the form of the II-2•rocuronium complex due to the high K$_a$ of the II-2•rocuronium complex ((3.4 ± 0.6) x 109 M$^{-1}$) which prevents other weaker binding substances in urine from
displacing rocuronium from its complex with \(\text{II-2}\). The results are summarized in Table II-2.

2.3.2 \(\text{1H}\) NMR Based Assay for Quantification of \(\text{II-2}\) for Cisatracurium Reversal Samples.

For the samples of rats injected with 0.6 mg kg\(^{-1}\) of cisatracurium, it was only possible to measure the total concentration of \(\text{II-2}\) eliminated because we could not detect any diagnostic resonances for bound or free cisatracurium. The degradation of cisatracurium via Hoffmann elimination under physiological conditions further complicates the analysis (see Appendix 1).

Table II-2. Excretion of \(\text{II-2}\), NMBA, \(\text{II-2} \cdot \text{NMBA}\) complex measured by \(\text{1H}\) NMR assay for rats injected with 3.5 mg kg\(^{-1}\) rocuronium or 0.6 mg kg\(^{-1}\) cisatracurium (values for cisatracurium and \(\text{II-2} \cdot \text{cisatracurium}\) complex excreted were not measured, *n.m. = not measured.).

<table>
<thead>
<tr>
<th>Rat I.D. (NMBA, rat number)</th>
<th>(\text{II-2}) Dosage (mg kg(^{-1})), equivalents of NMBA</th>
<th>NMBA Dosage (m kg(^{-1}))</th>
<th>Urine Volume (mL)</th>
<th>(\text{II-2}) Excreted (%)</th>
<th>(\text{II-2}) Excreted (mg)</th>
<th>NMBA Excreted (%)</th>
<th>(\text{II-2} \cdot \text{NMBA}) Complex Excreted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocuronium1</td>
<td>5, 0.5</td>
<td>3.5</td>
<td>0.87</td>
<td>51.4</td>
<td>0.77</td>
<td>51.4</td>
<td>51.4</td>
</tr>
<tr>
<td>Rocuronium2</td>
<td>5, 0.5</td>
<td>3.5</td>
<td>0.85</td>
<td>46.6</td>
<td>0.67</td>
<td>46.6</td>
<td>46.6</td>
</tr>
<tr>
<td>Rocuronium3</td>
<td>5, 0.5</td>
<td>3.5</td>
<td>1.4</td>
<td>54.6</td>
<td>0.83</td>
<td>59.9</td>
<td>45.5</td>
</tr>
<tr>
<td>Rocuronium4</td>
<td>5, 0.5</td>
<td>3.5</td>
<td>1.08</td>
<td>69.2</td>
<td>0.96</td>
<td>66</td>
<td>53.8</td>
</tr>
<tr>
<td>Rocuronium5</td>
<td>10, 1.0</td>
<td>3.5</td>
<td>1.69</td>
<td>37.5</td>
<td>1.00</td>
<td>56.3</td>
<td>37.5</td>
</tr>
<tr>
<td>Rocuronium6</td>
<td>10, 1.0</td>
<td>3.5</td>
<td>0.52</td>
<td>87.4</td>
<td>2.30</td>
<td>87.4</td>
<td>87.4</td>
</tr>
<tr>
<td>Rocuronium7</td>
<td>10, 1.0</td>
<td>3.5</td>
<td>0.69</td>
<td>76.6</td>
<td>2.04</td>
<td>76.6</td>
<td>76.6</td>
</tr>
<tr>
<td>Rocuronium8</td>
<td>10, 1.0</td>
<td>3.5</td>
<td>0.68</td>
<td>90.4</td>
<td>2.41</td>
<td>90.4</td>
<td>90.4</td>
</tr>
<tr>
<td>Cisatracurium1</td>
<td>40, 32</td>
<td>0.6</td>
<td>1.32</td>
<td>100</td>
<td>10.91</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Cisatracurium2</td>
<td>60, 48</td>
<td>0.6</td>
<td>0.64</td>
<td>34.2</td>
<td>5.42</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Cisatracurium3</td>
<td>60, 48</td>
<td>0.6</td>
<td>0.71</td>
<td>10.7</td>
<td>1.68</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Cisatracurium4</td>
<td>60, 48</td>
<td>0.6</td>
<td>0.75</td>
<td>76.9</td>
<td>13.80</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Cisatracurium5</td>
<td>80, 64</td>
<td>0.6</td>
<td>0.87</td>
<td>27.6</td>
<td>5.65</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Cisatracurium6</td>
<td>80, 64</td>
<td>0.6</td>
<td>0.69</td>
<td>60.5</td>
<td>13.31</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Cisatracurium7</td>
<td>80, 64</td>
<td>0.6</td>
<td>0.94</td>
<td>35.5</td>
<td>8.14</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Cisatracurium8</td>
<td>80, 64</td>
<td>0.6</td>
<td>1.08</td>
<td>0</td>
<td>0</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
</tbody>
</table>
The total amounts of II-2 eliminated in the samples from rats treated with cisatracurium were obtained using the analytical technique described in section 2.2.1. This assay relies on the addition of an excess of rocuronium to form a tight II-2•rocuronium complex which displays diagnostic resonances in the 1H NMR spectrum (Figure II-13). When administered in moderate doses (40 to 80 mg kg$^{-1}$), 49 ± 31% (mean ± SD) of the II-2 was detected in the urine samples. The results are summarised in Table II-2.

2.3.3 Summary.

In summary, we designed a 1H NMR based assay for the quantification of II-2 eliminated in the urine of Sprague-Dawley rats, taking advantage of the diagnostic steroidal methyl peaks of rocuronium which shift dramatically upfield when bound in the cavity of II-2. We used this property to measure the amount II-2 excreted when administered at low doses (5-10 mg kg$^{-1}$) for the reversal of rocuronium as 62 ± 17%. We were also able to measure the amounts of free and bound rocuronium excreted by this assay and found that most of the rocuronium is excreted as its complex with II-2. When 0.5 equivalent of II-2 is used to reverse rocuronium, 56 ± 8% of rocuronium is excreted and when 1.0 equivalent of II-2 is used for the reversal of rocuronium 73 ± 21% of rocuronium is excreted. For samples in which cisatracurium was reversed with moderate dosages of II-2 (40-80 mg kg$^{-1}$), 49 ± 31% of II-2 was detected in the urine samples.
2.4 Conclusions.

In conclusion, we have established that II-2 displays good to high levels of selectivity toward the NMBAs rocuronium, vecuronium, and cisatracurium both *in vitro* and in simulations designed to capture the essence of the biological system. The studies serve as a guide that allows us to prioritize the investigation of the efficacy of II-2 as a reversal agent for neuromuscular block when other drugs (e.g. II-3 – II-29) have already been or need to be subsequently administered.

By studying the excretion profile of II-2 after NMBA reversal in *Sprague-Dawley* rats, we have established that more than 50% of II-2 (and rocuronium) is eliminated intact by the kidney within 1 hour of reversal administration.

Taken together, the results of the selectivity studies and pharmacodynamic studies serve to establish the high potential for the further development of Calabadion 2 (II-2) as a broad spectrum reversal agent for both amino-steroidal as well as benzylisoquinolinium type NMBAs.
Chapter 3: Molecular Containers as Reversal Agents for Drugs of Abuse

The work presented in this chapter was taken from Ganapati, S.; Grabitz, S. D.; Murkli, S.; Scheffenbichler, F.; Rudolph, M. I.; Zavalij, P. Y.; Eikermann, M.; Isaacs, L., Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the Hyperlocomotive Effect of Methamphetamine in Rats. *Chembiochem* 2017, In press: http://dx.doi.org/10.1002/cbic.201700289. All experiments discussed in this chapter were carried out by me except the *in vivo* studies presented in section 3.2.5, which were carried out by Professor Eikermann and his students.

3.1 Introduction.

The recreational use and abuse of illicit drugs is a major societal and healthcare issue worldwide.\(^6\) The cost of emergency department visits due to drug overdose runs into billions of dollars per annum.\(^6\) Many patients do not survive drug-overdose.

Current treatment strategies in the clinic include pharmacodynamic (PD) approaches for opioid overdose using drugs such as naloxone and naltrexone which block the effect of opioids at their biological receptors.\(^6\) For non-opioid drugs such as cocaine and methamphetamine, the clinical treatment strategies involve treating the adverse effects of overdose (such as elevated heart rate, hyperthermia, psychosis, etc.) rather than disrupting the effect of the drug itself.\(^7\) Research efforts have been underway to develop pharmacokinetic (PK) strategies such as immunotherapeutics\(^8\) and enzyme based therapeutics\(^7\) which would
lower the concentration of the illicit drug at its receptors and thus prevent or reverse its biological effects. The key advantage of the PK approach over the PD approach is that it does not require a detailed understanding of the interaction of the drug with its biological receptor(s).

The PK strategy has also been implemented using synthetic molecular container compounds to directly compete with biological molecular recognition events. For example, Sugammadex which is a γ-cyclodextrin derivative that is marketed worldwide by Merck under the trade name Bridion™ acts as a reversal agent for NMBAs such as rocuronium and vecuronium by sequestering them \textit{in vivo}.54

In the studies reported in this chapter we have investigated the potential use of different classes of molecular containers such as cyclodextrins, CB[n], and calixarenes as reversal agents for opioid and non-opioid drugs of abuse. We started by investigating which class of molecular hosts would serve as good lead compounds for structural optimization for this application, based on the \textit{in vitro} binding affinity measurements (section 3.2). This was followed by \textit{in vivo} studies of methamphetamine reversal by molecular host \textbf{III-2} guided by the \textit{in vitro} binding data (section 3.2.5), and finally pharmacokinetic studies for the renal elimination of \textbf{III-1} and \textbf{III-7} post reversal of fentanyl in \textit{Sprague-Dawley} rats.
3.2 Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the Hyperlocomotive Effect of Methamphetamine in Rats.

We chose to screen the affinity of the five molecular containers (Calabadiion 1 and 2, CB[7], III-4, and HP-β-CD) toward a panel of drugs of abuse (III-6 – III-12) in order to inform and prioritize subsequent in vivo work. The molecular containers used in this study were selected for several reasons. First, all of these classes of containers are known to bind to hydrophobic cations (e.g. for sensing, drug delivery, and reversal applications) which is a common structural element in drugs III-6 – III-12. Second, these molecular containers possess good levels of aqueous solubility (≥ 10 mM) which is required for efficient formulation. Third, all of these containers are easily synthesized on large scale by efficient procedures which make them viable scaffolds for further medicinal chemical optimization.

Figure III-1. Chemical structures of: a) molecular containers, and b) drugs of abuse used in this study.
Finally, all of these containers display good biocompatibility (in vitro and in vivo) and one (HP-β-CD) has even been used to formulate drugs administered to humans (e.g. Janssen’s formulation of Itraconazole (Sporonox™). The disparate molecular structures of the five containers will result in different binding modes and types of interactions (ion-dipole, ion-ion, hydrophobic, π−π, etc.) between container and drug; an important goal of our study was to determine which class of molecular containers serves as the best lead scaffold for further medicinal chemistry optimization in the future. In particular, the use of molecular containers to treat intoxication with drugs of abuse – as opposed to addiction where long circulation times would be needed – seems most promising. The drug panel includes stimulants (III-6, III-8), hallucinogens (III-9, III-10), and prescription-type psychotherapeutics used for pain relief (III-7, III-11, III-12). All these drugs contain the amino functional group which is protonated at physiological pH.

3.2.1 Qualitative Binding Study of Containers III-1 – III-5 toward Drugs of Abuse by 1H NMR Spectroscopy.

For containers III-1 – III-4 whose cavity constitutes an NMR shielding region we typically observe upfield shifts in the 1H NMR resonances of included drugs III-6 – III-12, although the kinetics of exchange is generally fast on the chemical shift timescale (Appendix 2) for III-1 – III-4. For example, Figure III-1a-d shows the 1H NMR spectra recorded for methamphetamine (III-6), Calabadion 1, a 1:1 mixture of III-1 and III-6, and a 1:2 mixture of III-1 and III-6.
The 1H NMR resonances for the aromatic ring of III-6 (H_e – H_g) shift significantly upfield within III-1•III-6 (Figure III-1c) and appear as sharp resonances at 1:1 stoichiometry. When 2 equivalents of III-6 are present (Figure III-1d) the resonances for H_e – H_g shift back toward the chemical shifts the resonances for H_e – H_g shift back toward the chemical shifts for free III-6 due to the fast kinetics of guest exchange on the chemical shift timescale.

Figure III-2. 1H NMR spectra recorded (400 MHz, RT, 20 mM sodium phosphate buffered D$_2$O, pH 7.4) for: a) III-6 (2 mM), b) III-1 (1 mM), c) a mixture of III-6 (1 mM) and III-1 (1 mM), and d) a mixture of III-6 (2 mM) and III-1 (1 mM).

The resonances for the aromatic wall of III-1 (H_u) appear as a pair of doublets due to the chiral nature of the guest which renders these protons
diastereotopic (u, u’) in the complex. For HP-β-CD, 1H NMR was not a useful analytical tool because only very minor changes in guest chemical shift are typically observed upon HP-β-CD•guest binding.

3.2.2 Stoichiometry and X-ray Crystal Structures of the Drug•Container Complexes.

The 1:1 nature of the various host•guest complexes was established by either Job plots (Appendix 2), x-ray crystallography, 1H NMR, isothermal titration calorimetry (ITC), or literature precedent. We were fortunate to obtain single crystals of CB[7]•III-6 and III-1•III-6 that were suitable for structure determination by x-ray crystallography.$^{[17]}$ Figure III-2 shows stereoscopic representations of individual structures of the CB[7]•III-6 and III-1•III-6 complexes in the crystal.

In accord with the NMR studies, the aromatic ring of III-6 is bound within the cavity of III-1 featuring π–π stacking (Figure III-2a). The ammonium ion is H-bonded to one of the ureidyl C=O groups (H•••O=C, 2.093 Å; N-H•••O angle, 140.0°) and also benefits from ion-dipole interactions with the carbonyl portal. The C-shaped backbone of III-1 undergoes a helical distortion within the III-1•III-6 complex as observed previously with different guests.$^{[40,43,44,46]}$
Figure III-3. Cross-eyed stereoviews of individual complexes of: a) 1•6, and b) CB[7]•6 in the crystal. Color code: C, grey; H, white; N, blue; O, red; S, yellow; H-bond, red-yellow striped.

The crystal structure of CB[7]•III-6 (Figure III-2b) also shows a deep penetration of the aromatic ring of III-6 into the cavity of CB[7] along with ion-dipole and H-bonding interactions at the ureidyl C=O portal. Interestingly, four CB[7]•methamphetamine complexes pack into a square in the crystal driven by interactions between the C-H groups on the convex face of CB[7] and the C=O portal on an adjacent CB[7].

3.2.3 Measurement of K_as between Containers III-1 – III-5 and Drugs of Abuse III-6 – III-12.

After having qualitatively investigated the binding between III-1 – III-5 and III-6 – III-12 by 1H NMR and confirming the binding mode for III-6 toward
CB[7] and III-1 by x-ray crystallography we set out to measure the K_a values of the various complexes initially using NMR and UV/Vis methods and later incorporating isothermal titration calorimetry (ITC) when this instrument became available to us in the later stages of our study. For this purpose, we employed various binding assays as appropriate. For example, for the weaker complexes (K_a < 5000 M^{-1}) formed between hosts III-3 and III-4 whose cavities constitute NMR shielding regions and drugs III-6 and III-8 – III-11 we used direct ^1H NMR titrations of guest with host and fitted the change in chemical shift to a standard 1:1 binding model (Table III-1, Appendix 2). Based on our extensive experience measuring CB[n]•guest binding constants, we chose a ^1H NMR competition assay^{18,90,20} to determine K_a = 1.2 x 10^8 M^{-1} for CB[7]•methamphetamine. For stronger complexes involving III-1 and III-2 we employed UV/Vis competition assays developed by us previously.^{39} For this purpose, we form the III-1•rhodamine 6G or III-2•rhodamine 6G complexes which show different UV/Vis spectra than free rhodamine 6G and then titrate those complexes with drug which induces the reverse UV/Vis change. Based on a knowledge of the total concentrations of container, rhodamine 6G and the III-1•rhodamine 6G and III-2•rhodamine 6G binding constants we fitted the change in UV/Vis absorbance versus [drug] to a competition binding model^{39} to extract the unknown container•drug complex K_a value (Table III-1). For example, Figure III-3a shows the UV/Vis spectra recorded when a solution of III-2 (4.97 μM) and rhodamine 6G (4.97 μM) was titrated with a solution of methamphetamine (0 – 219 μM)
whereas Figure III-3b shows the fitting of the data to the competition binding model to extract $K_a = 4.3 \times 10^6$ M$^{-1}$ for III-2•methamphetamine.

Figure III-4. a) UV/Vis spectra recorded during the titration of a mixture of III-2 (4.97 μM) and rhodamine 6G (4.97 μM) with methamphetamine (6, 0 – 219 μM) in 20 mM NaH$_2$PO$_4$ buffered water (pH 7.4). b) Plot of absorbance versus [2] fitted to a competitive binding model with $K_a = (4.3 \pm 1.0) \times 10^6$ M$^{-1}$. c) ITC thermogram recorded during the titration of III-2 (87 μM) in the cell with hydromorphone (0.93 mM) in the syringe. d) Fitting of the data to a 1:1 binding model with $K_a = (6.8 \pm 0.1) \times 10^5$ M$^{-1}$.

The remaining complexes – mainly HP-β-CD•drug but also container•fentanyl and container•hydromorphone – were measured by ITC when the instrumentation became available in the lab (Table III-1, Appendix 2). For example, Figure III-3c,d shows the thermogram recorded for the titration of III-2 (87 μM) with hydromorphone III-12 (0 – 200 μM) which was fitted with the MicroCal PEAQ-ITC analysis software to deliver $K_a = (6.8 \pm 0.1) \times 10^5$ M$^{-1}$ and $\Delta H = -2.1 \pm 0.3$ kcal mol$^{-1}$ for the III-2•III-12 complex.
Table III-1. Binding constants (Kₐ, M⁻¹) determined for the various container•drug complexes.

<table>
<thead>
<tr>
<th>Guest</th>
<th>III-1</th>
<th>III-2</th>
<th>III-3</th>
<th>III-4</th>
<th>III-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-6</td>
<td>(7.5 ± 2.9) × 10⁶ᵃ</td>
<td>(4.3 ± 1.0) × 10⁶ᵃ</td>
<td>1.2 × 10⁸ᶜ</td>
<td>(3.8 ± 0.6) × 10⁴ᵇ</td>
<td>(1.9 ± 0.3) × 10²ᵈ</td>
</tr>
<tr>
<td>III-7</td>
<td>(1.1 ± 0.04) × 10¹⁰ᵈ</td>
<td>(7.6 ± 0.5) × 10⁶ᵈ</td>
<td>(1.8 ± 0.1) × 10⁷ᵈ</td>
<td>(1.1 ± 0.1) × 10⁴ᵈ</td>
<td>(3.0 ± 0.5) × 10³ᵈ</td>
</tr>
<tr>
<td>III-8</td>
<td>(6.6 ± 0.4) × 10⁵ᵃ</td>
<td>(1.0 ± 0.1) × 10⁶ᵃ</td>
<td>(2.3 ± 0.2) × 10³ᵇ</td>
<td>(4.3 ± 1.5) × 10⁴ᵇ</td>
<td>(1.7 ± 0.3) × 10²ᵈ</td>
</tr>
<tr>
<td>III-9</td>
<td>(1.1 ± 0.1) × 10⁴ᵃ⁺⁺</td>
<td>(2.1 ± 0.1) × 10⁵⁺⁺</td>
<td>(6.4 ± 1.2) × 10²ᵇ</td>
<td>(2.0 ± 0.2) × 10⁴ᵈ</td>
<td>(1.1 ± 0.2) × 10²ᵈ</td>
</tr>
<tr>
<td>III-10</td>
<td>(4.7 ± 0.5) × 10⁴ᵃ</td>
<td>(2.1 ± 0.1) × 10⁵ᵃ</td>
<td>(4.4 ± 0.9) × 10³ᵇ</td>
<td>(4.5 ± 0.3) × 10⁴ᵈ</td>
<td>(1.0 ± 0.03) × 10³ᵈ</td>
</tr>
<tr>
<td>III-11</td>
<td>(5.3 ± 0.3) × 10⁵ᵃ</td>
<td>(5.3 ± 0.4) × 10⁵⁺⁺</td>
<td>n.b.</td>
<td>(4.9 ± 0.3) × 10³ᵇ</td>
<td>n.b.</td>
</tr>
<tr>
<td>III-12</td>
<td>(1.8 ± 0.03) × 10⁵ᵈ</td>
<td>(6.8 ± 0.1) × 10⁵ᵈ</td>
<td>n.b.</td>
<td>(1.0 ± 0.04) × 10⁴ᵈ</td>
<td>(2.8 ± 0.5) × 10²ᵈ</td>
</tr>
</tbody>
</table>

a) Measured by UV/Vis competition assay. b) Measured by direct ¹H NMR titration. c) Measured by ¹H NMR competition assay. d) Measured by ITC. n.b. – no binding detected by ITC. e) Reference.⁹⁵ f) Reference.⁹⁷

The other ITC derived thermodynamic parameters given in Table III-1 were carried out analogously. Previously, we have shown that the results of UV/Vis competition assays and direct ITC titrations involving Calabadiions 1 and 2 and guests give comparable values which gives us confidence in comparisons between Kₐ values measured by the different techniques.⁹⁷

3.2.4 Commentary on the Tabulated Kₐ Values.

An examination of the Kₐ values given in Table III-1 reveals that they span a wide dynamic range from no binding to over 10⁸ M⁻¹. HP-β-CD, which is well known as a promiscuous and low affinity host, unsurprisingly displays modest Kₐ values in the 0 – 10³ M⁻¹ range. The lack of charge complementarity

67
between neutral HP-β-CD and cationic drugs as well as the absence of typical high affinity binding epitopes (e.g. adamantyl residue) on the drugs is presumably responsible for the weaker binding. In contrast, the tetraanionic calix[4]arene derivative III-4 displays larger K_a values but they cluster in the narrow range of $1.0 \times 10^4 - 4.9 \times 10^4$ M$^{-1}$. The lack of selectivity in this case may be due to the relative importance of the electrostatic contributions to the binding free energy.

Most interesting, and encouraging as lead compounds for the further development of reversal agents for in vivo intoxication with drugs of abuse, are the three CB[n]-type molecular containers Calabadion 1 and 2 and CB[7]. These three containers bind to selected drugs of abuse with K_a values that fall in the $10^4 - 10^8$ M$^{-1}$ range. Given the presence of phenethylammonium binding epitopes it is not surprising that CB[7] displays high affinity toward both methamphetamine ($K_a = 1.2 \times 10^8$ M$^{-1}$) and fentanyl ($K_a = 1.8 \times 10^7$ M$^{-1}$). Furthermore, CB[7] discriminates against the more sterically encumbered drugs ($K_a < 4400$ M$^{-1}$) due to unfavorable steric interactions in the CB[7]•guest complexes. In contrast, the acyclic CB[n]-type containers Calabadion 1 and Calabadion 2 have a more flexible cavity which can flex to accommodate a range of guest sizes and display both good levels of affinity (K_a from $10^4 - 10^7$ M$^{-1}$) and some selectivity toward the panel of drugs of abuse. The complexes between the tetraanionic Calabadions and cationic drugs benefit from electrostatic interactions and π−π interactions between guest aromatic rings and host aromatic walls. Similar to CB[7], Calabadion 1 and Calabadion 2 display highest affinity toward methamphetamine and fentanyl with K_a values in the $10^6 - 10^7$ M$^{-1}$ range. Among Calabadions 1 and
2 and CB[7], CB[7] displays the highest levels of affinity and selectivity toward the drugs of abuse panel. However, the affinity and selectivity of III-1 and III-2 seen herein and also documented in the context of neuromuscular block reversal, is substantial and suggests that III-1 and III-2 could serve as core scaffolds for further structural optimization. We are mindful of the fact that metabolites of amino acids, especially phenylalanine, will likely display similar binding affinity toward Calabadian 2 as methamphetamine does which could compromise in vivo efficacy. Accordingly, and given the fact that Calabadian•guest complexes are eliminated in the urine over several hours, we do not envision the use of Calabadian 2 for long term treatment of methamphetamine addiction. However, such consideration of circulation time and discrimination against related metabolites are less relevant in the context of treatment of drug overdose and intoxication where dose can simply be adjusted to prevent mortality.

3.2.5 In Vivo Reversal of Methamphetamine by Calabadian 2.

Accordingly, we decided to test the ability of an acyclic CB[n]-type receptor and unfunctionalized CB[7] as an in vivo reversal agent for methamphetamine intoxication. We choose Calabadian 2 as the acyclic CB[n] test compound because of its documented high biocompatibility (e.g. low in vitro cytotoxicity, high in vivo maximum tolerated dose, passed Ames test, no hERG ion channel inhibition) and because of its generally higher binding affinity toward its guests. With the help of our collaborators Eikermann and co-workers, we set out to determine whether the high in vitro binding affinities of
Calabadion 2 and CB[7] toward methamphetamine could prevent or reverse its in vivo biological effects. For this assay, Eikermann and co-workers took advantage of the known increase of locomotor activity (e.g. movement) of rats upon treatment with methamphetamine. A total of 21 male Sprague-Dawley rats (weight, mean ± SD: 288 ± 14 g) were tested repeatedly in a randomized controlled crossover setting. A single bolus of methamphetamine (0.3 mg kg⁻¹) or placebo was injected intravenously via a tail vein catheter to assess baseline locomotor activity. Two types of studies were performed. In the treatment studies, Calabadion 2 (65 or 130 mg kg⁻¹) or CB[7] (45 or 90 mg kg⁻¹) was administered 30 seconds after methamphetamine whereas in the prevention studies, rats were pretreated with Calabadion 2 (Figure III-5) 30 seconds before methamphetamine treatment via tail vein catheter. The catheter was flushed with 1 mL normal saline in between injections to ensure that methamphetamine was not simply complexed by Calabadion 2 inside the catheter. The animals were placed in the center of a 100 x 100 x 40 cm open field and their locomotor activity was video recorded for 20 minutes. The location of the rat and the total distance traveled was analyzed using the ANYmaze (version 4.5, Stoelting, Wood Dale, IL, USA) software. Values are given in percent of the placebo + methamphetamine activity level and reported as mean ± standard error of the mean. As expected, the rats only treated with placebo in addition to methamphetamine exhibit enhanced levels of locomotor activity relative to their baseline: (n = 21; 26.5 ± 4.9) m vs. (5.8 ± 1.5) m; p<0.001. Encouragingly, the preventive use of Calabadion 2 (65 or 130 mg kg⁻¹) significantly decreased the traveled distance by (64.1 ± 8.4)% (p=0.001) and
(74.4 ± 3.8)% (p<0.001), respectively, compared to placebo + methamphetamine (Figure III-5a).

Figure III-5. Results from behavioral tests in the open field. a) Bar graph showing distance traveled in percent of the placebo + methamphetamine activity level within 20 minutes; error bars represent the standard error of the mean. *p<0.01 compared to methamphetamine + placebo. **p<0.001 compared to methamphetamine + placebo. #interaction term indication × Calabadion 2 dose: p<0.001, indicating effect modification by time of administration of Calabadion 2. Tracking plots illustrating the traveled distance of one rat within 20 minutes in the open field: b) Baseline, no methamphetamine given, c) following methamphetamine (0.3 mg kg⁻¹) + placebo, d) following methamphetamine (0.3 mg kg⁻¹) + Calabadion 2 (65 mg kg⁻¹), and e) following methamphetamine (0.3 mg kg⁻¹) + Calabadion 2 (130 mg kg⁻¹).
Similarly, the treatment study with Calabadion 2 (130 mg kg\(^{-1}\)) significantly decreased the traveled distance by (43.8 ± 11.2)\% compared to placebo + methamphetamine (p=0.004), whereas no significant reduction of methamphetamine induced hyperlocomotion was observed when treated with 65 mg kg\(^{-1}\) of 2 (p=0.625). As a control, it was determined that a bolus of Calabadion 2 alone (130 mg kg\(^{-1}\)) without methamphetamine did not affect the locomotion compared to baseline (33.5 ± 17.7\% vs. 32.9 ± 15.0\%; p = 0.982). A smaller dose of Calabadion 2 was required in a prevention setting compared to a treatment setting to reverse methamphetamine-induced hyperlocomotion (interaction effect of indication × Calabadion 2 dose for locomotor activity: p<0.001), indicating effect modification. In our previous studies of the use of Calabadion 1 and 2 to reverse neuromuscular block, we found that the majority of the drug was eliminated in the urine of the rats as the non-metabolized Calabadion•drug complex within two hours.\(^{63,64,95}\)

We posit that Calabadion 2 functions in a similar way to modulate the hyperlocomotive effect induced by methamphetamine described herein. The substantially higher doses of Calabadion 2 required for methamphetamine reversal than for neuromuscular block reversal likely reflects the tighter binding of methamphetamine to its biological targets and/or kinetic issues of intravenous sequestration of methamphetamine once it has crossed the blood-brain barrier. We expect that the Calabadion framework will enable a medicinal chemistry structural optimization to enhance both binding affinity and selectivity. In
contrast, treatment with CB[7] (45 mg kg$^{-1}$ or 90 mg kg$^{-1}$) did not affect the distance traveled compared to placebo + methamphetamine: (87.0 ± 42.6)%, p=0.773 and (119.5 ± 55.4)%, p=0.739, respectively). As a control, it was verified that injection of CB[7] alone had no significant effect on locomotion compared to baseline (19.3 ± 6.0% vs. 21.6 ± 6.9%; p =0.546).

3.2.6 Summary.

In summary, we have screened the binding affinity of molecular containers III-1 – III-5 toward seven drugs of abuse by a combination of direct and competitive 1H NMR, UV/Vis, and ITC binding assays. The structures of the III-1•methamphetamine and CB[7]•methamphetamine complexes were solved by single crystal x-ray diffraction. Calabadion 1 and Calabadion 2, in particular, display very good levels of affinity across the full range of drugs and display highest affinity toward methamphetamine and fentanyl. We find that the hyperlocomotive activity of rats given methamphetamine could be both prevented and treated by Calabadion 2 (65 or 130 mg kg$^{-1}$). The documented biocompatibility of the Calabadiions40,95,99 and their convergent building block synthesis44 suggest fruitful pathways toward their further structural optimization for development as reversal agents for intoxication with non-opioid drugs of abuse for which no treatments are currently available.
3.3 Renal Elimination of Calabadian 1 and Fentanyl in Rats Post Reversal Application.

In order to gain insight into the in vivo reversal capability and pharmacokinetic profiles of the drugs of abuse and Calabadian type reversal agents studied in section 3.2, our collaborator Professor Eikermann and co-workers are performing in vivo reversal studies for the most promising drug container•complexes using the K_as in Table III-1 as a guide. The III-7•III-1 complex has a K_a of $(1.1 \pm 0.04) \times 10^7$ M$^{-1}$ and is one of the tightest complexes determined in this work. Accordingly, the Eikermann group treated two groups of 6 male Sprague-Dawely rats with an infusion of III-7 (0.83 μg kg$^{-1}$ min$^{-1}$ over 15 minutes), followed by a bolus dose of placebo (saline) or test reversal agent (III-1, 50 mg kg$^{-1}$). One hour after placebo or reversal agent administration, bladder surgeries were performed; the urine was collected, and subsequently was analyzed by us. The quantification of III-7 was achieved with an HPLC based assay and that of III-1 was done by 1H NMR.

3.3.1 Fentanyl Calibration Curve.

The dosage of III-7 used for the two rat groups was too low (12.5 μg kg$^{-1}$) to be detected by 1H NMR. Therefore a more sensitive HPLC based assay for measuring the μM concentrations of III-7 in the urine was designed. Based on the literature precedent for the pharmacokinetics of intravenously administered III-7 in rat muscle and plasma and a further 10-20% loss expected due to metabolism.
of III-7 being eliminated in urine, we estimated that about 24-34 % of III-7 should be excreted unmetabolized. We modified an assay previously published by the Isaacs group for the detection of albendazole and its metabolites in mouse plasma by HPLC to obtain a calibration curve for fentanyl.

![HPLC spectrum of III-7](image)

Figure III-6. HPLC spectrum of a standard solution of III-7 (14 μM) showing a retention time of 13.8 minutes for III-7 at 229 nm. The peak at 2.7 minutes is from trimethylamine in the buffer.

For this purpose, a 13.13 mM stock solution of III-7 was prepared by dissolving 11.8 mg III-7 in 1.7 mL HPLC grade water. This stock solution was diluted, evaporated, and reconstituted in the HPLC mobile phase (1.3% v/v trimethylamine in 60% water, 27% methanol, 13% acetonitrile) to obtain solutions with a concentration range of 5.7 μM – 19 μM. These solutions were injected (20 μl injection volume) onto a Microsorb-MV 100-5 C18 column (5 μm, 250 × 4.6 mm) and the area under the peak at 13 – 14 min. was plotted against the gravimetric concentrations to obtain a linear calibration curve (R² = 0.99).
3.3.2 Fentanyl Excreted by Rats Injected with Fentanyl and Placebo.

For the urine samples of rats injected with fentanyl and placebo (saline), we expected about 24-34 % of III-7 to be excreted. Accordingly, the samples with Rat I.D. 1, 2, 3, 7, 8, and 9 were analyzed by HPLC. A measured volume of urine sample from these rats was evaporated under high vacuum. These samples were reconstituted in a smaller volume of mobile phase in order to make the concentrations of III-7 higher than the detection limit of our protocol. The concentrated samples were injected (20 μL) and the fentanyl peak was observed at 14 - 15 minutes. Since the retention time for fentanyl fluctuated by ± 1 minute between samples, and there were other peaks from substances present in the urine sample adjacent to the fentanyl peak, we needed to confirm the identity of the fentanyl peak. For this purpose, we ran each sample two times. First we obtained a spectrum of the original sample, followed by injecting the same sample spiked with a 2-fold excess of fentanyl. Based on comparing the retention time and position of the peak whose area increased by 2-fold in the second run to the
corresponding peak in the first run, we were able to confidently identify the fentanyl peak in the first run and distinguish it from the other substances present in the urine sample. The area of this fentanyl peak was used to calculate the corresponding gravimetric concentration of fentanyl using the calibration curve in Figure III-7.

Figure III-8. HPLC spectra of: a) blank urine spiked with fentanyl, and b) one of the representative urine sample following the fentanyl injection to rat. The fentanyl peak can be seen at 14.4 and 14.3 minutes respectively.

The concentration of III-7 in urine and the urine volume were used to calculate the weight and the weight percentage of III-7 excreted. The average percent excretion of III-7 in rats injected with III-7 + placebo was (17 ± 9) %, the results are summarized in Table III-2.
Table III-2. Excretion of III-7 and III-1 measured by HPLC and \(^1\text{H}\) NMR assays for rats injected with 12.5 \(\mu\text{g kg}^{-1}\) III-7 (0.83 \(\mu\text{g kg}^{-1} \text{ min}^{-1}\) infusion over 15 minutes) and placebo or 50 mg kg\(^{-1}\) III-1 (bolus).

<table>
<thead>
<tr>
<th>Rat I.D.</th>
<th>Rat Wt. (kg)</th>
<th>III-7 Injected (μg)</th>
<th>III-1 Injected (mg)</th>
<th>Urine Volume (mL)</th>
<th>III-7 Excreted (μg)</th>
<th>III-7 Excreted (%)</th>
<th>III-1 Excreted (mg)</th>
<th>III-1 Excreted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.357</td>
<td>4.46</td>
<td>0</td>
<td>0.344</td>
<td>0.225</td>
<td>5.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0.342</td>
<td>4.27</td>
<td>0</td>
<td>0.470</td>
<td>0.199</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0.361</td>
<td>4.15</td>
<td>0</td>
<td>0.527</td>
<td>0.759</td>
<td>18.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0.303</td>
<td>3.79</td>
<td>0</td>
<td>0.657</td>
<td>1.090</td>
<td>28.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0.301</td>
<td>3.76</td>
<td>0</td>
<td>1.080</td>
<td>0.764</td>
<td>20.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0.284</td>
<td>3.55</td>
<td>0</td>
<td>0.860</td>
<td>0.875</td>
<td>24.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0.380</td>
<td>4.75</td>
<td>19.00</td>
<td>0.860</td>
<td>0.914</td>
<td>19.2</td>
<td>4.317</td>
<td>22.7</td>
</tr>
<tr>
<td>5</td>
<td>0.360</td>
<td>4.50</td>
<td>18.00</td>
<td>0.890</td>
<td>1.135</td>
<td>25.2</td>
<td>7.127</td>
<td>39.6</td>
</tr>
<tr>
<td>6</td>
<td>0.342</td>
<td>4.27</td>
<td>17.10</td>
<td>1.250</td>
<td>1.238</td>
<td>29.0</td>
<td>7.049</td>
<td>41.2</td>
</tr>
<tr>
<td>10</td>
<td>0.301</td>
<td>3.76</td>
<td>15.05</td>
<td>0.900</td>
<td>0.905</td>
<td>24.1</td>
<td>7.405</td>
<td>49.2</td>
</tr>
<tr>
<td>11</td>
<td>0.304</td>
<td>3.80</td>
<td>15.20</td>
<td>0.505</td>
<td>0.553</td>
<td>14.5</td>
<td>6.978</td>
<td>45.9</td>
</tr>
<tr>
<td>12</td>
<td>0.307</td>
<td>3.84</td>
<td>15.35</td>
<td>0.915</td>
<td>1.224</td>
<td>31.9</td>
<td>6.000</td>
<td>39.1</td>
</tr>
</tbody>
</table>

3.3.3 Fentanyl Excreted by Rats Injected with Fentanyl and Calabadion 1.

The second group of rats were injected with III-7 followed by reversal with III-1. For these samples we designed a protocol to first separate the excreted III-7 from its III-1 complex so that we could quantify the drug and reversal agent separately. For this purpose, a known volume of urine from Rat I.D. 4, 5, 6, 10, 11, and 12 (500 μL) was evaporated under high vacuum. Each sample was mixed with 2 mL methanol, sonicated and vortexed in order to extract III-7 into solution and leave behind the insoluble compound III-1 as precipitate. These samples were
centrifuged to separate the supernatant from the precipitate. The supernatant methanol solutions were dried under high vacuum and reconstituted in 125 μL of mobile phase and injected into the HPLC system and quantified as described in section 3.3.2. The average percentage excretion of III-7 in these samples was found to be (24 ± 6) %. The results are summarized in Table III-2.

3.3.4 Calabadion 1 Excreted by Rats Injected with Fentanyl and Calabadion 1.

The urine samples from rats injected with III-1 as reversal agent (Rat I.D. 4, 5, 6, 10, 11, and 12) were analysed for the quantification of III-7 by the HPLC assay described in section 3.3.3. Since the dosage of III-1 in these samples was high enough (50 m kg⁻¹) to obtain mM quantities in urine,⁶³ we designed a ¹H NMR based assay to quantify compound III-1. The precipitate obtained from methanol in the previous step (section 3.3.3) was dried and reconstituted in 2 mL deuterium oxide, and centrifuged. The concentration of compound III-1 in this solution was measured by ¹H NMR by comparing the peak area of the methyl protons of III-1 at 1.8, 1.76 ppm with the methyl protons of a known concentration 3-(Trimethylsilyl)propionic-2,2,3,3-d₄ acid sodium salt (TMSP) internal standard at -0.05 ppm (Figure III-9). TMSP was chosen as the internal standard because it is a negatively charged molecule which does not bind to III-1, resulting in a single sharp peak at -0.005 ppm corresponding to 9 methyl protons.⁶⁴ Additionally the position of its resonance in ¹H NMR appears very upfield (at -0.05 ppm) in a region uncluttered by any other peaks from III-1 or any other substances present in the urine sample.
This separation of peaks in 1H NMR allows us to obtain reliable peak integrals which are correlated to its known concentration in the solution. We were fortunate that the methyl protons of III-1 (at 1.80 ppm and 1.76 ppm, corresponding to 12 protons) were also free from overlap from other signals in the 1H NMR spectrum and could be integrated reliably. Integrals of the methyl peaks of III-1 and TMSP were obtained by line shape fitting using the Gaussian model in TopSpin™ software. We also adjusted the acquisition parameters for collecting the 1H NMR data, such that a long delay time (D1) of 74 s was chosen so that it was approximately 5-times the T1 (relaxation time) for TMSP. This long D1
ensured that TMSP was fully relaxed between successive scans, and III-1 was also expected to be fully relaxed since larger molecules have shorted relaxation times. The concentration of III-1 calculated in urine and urine volume were used to calculate the weight percentage of III-1 excreted as (40 ± 8) %.

3.3.5 Summary.

The reversal of fentanyl was effected in Sprague-Dawley rats using molecular container III-1. The renal elimination of III-7 was analyzed by an HPLC assay for comparison between rats injected with placebo (saline) vs rats injected with reversal agent III-1. In case of placebo administration, (17 ± 9) % of III-7 was eliminated and in case of reversal by III-1, (24 ± 6) % of III-7 was eliminated in urine in 1 hour. A significant difference in renal elimination of III-7 was not observed between the two cases taking into account the errors in measurement. The elimination of III-1 by the kidneys was found to be (40 ± 8) % as measured by 1H NMR.

3.4 Conclusions.

In conclusion, we have established that CB[n] based molecular containers-III-1, III-2, and III-3 display higher affinities than calixarene (III-4) and cyclodextrin (III-5) based containers toward the panel of drugs of abuse (III-6 – III-12) studied in this work. In particular CB[7] shows the highest selectivity for smaller phenethylammonium containing drugs III-6 and III-7, whereas the Calabadian scaffold seems to be the most suitable for binding the full range drugs in this study and for further optimization of the lead reversal agents. The in vivo
reversal of methamphetamine by \textbf{III-2} and not CB[7] further establishes the Calabadion scaffold as promising for further development. By studying the excretion profile of \textbf{III-7} and \textbf{III-1} post reversal in \textit{Sprague-Dawley} rats, we have found that on an average 24\% fentanyl and 40\% Calabadion 1 are eliminated by the kidneys in 1 hour.

These results serve as encouraging preliminary data for the further development of molecular containers, especially CB[n] as reversal agents for drugs of abuse. They also point to the need for the further optimization of the Calabadion scaffold to develop reversal agents with higher \textit{in vitro} K_a values for more potent \textit{in vivo} efficacies for the sequestration of illicit drugs. Along with other PD and PK strategies being developed for the treatment of drug overdose, molecular containers show great promise to expand the toolbox of treatment options for tackling the social and healthcare issues associated with drug abuse and overdose.
Chapter 4: Synthesis and Molecular Recognition Properties of Acyclic Cucurbit[n]urils with Alkyl Linkers

4.1 Introduction.

Cucurbit[n]urils (CB[n]) are a class of molecular containers well-known for their high affinities, selectivities, and stimuli responsiveness towards various guests, especially hydrophobic diammonium cations. Accordingly, CB[n] compounds have been used in a wide range of applications, including drug delivery, drug reversal, molecular machines, and sensing ensembles. In order to expand the scope of CB[n] applications and improve their properties such as aqueous solubility, functionalization approaches to obtain modified CB[n] is an active area of research.

![Chemical structures of cucurbit[n]urils (CB[n]) and Calabadian 1, (IV-1) and b) guests used in this study.](image)

Figure IV-1. Chemical structures of: a) cucurbit[n]urils (CB[n]) and Calabadian 1, (IV-1) and b) guests used in this study.
In 2012, Isaacs and co-workers reported the synthesis of an acyclic CB[n] Calabadion 1 (Figure IV-1 a) which contains a glycoluril tetramer backbone while incorporating aromatic side walls with solubilizing sulfonate groups attached via alkyl chains. Calabadion 1 was reported as an effective solubilizing excipient for poorly water soluble drugs40 and as a reversal agent for neuromuscular blocking agents (NMBAs).48 Subsequently, the Isaacs and Sindelar groups have reported many host compounds which are structurally related to IV-1. The modular synthesis of IV-1 and related compounds has facilitated the synthesis of analogues with different solubilizing groups,43 aromatic walls,44 glycoluril oligomer lengths,46 and length of the alkyl chain connecting the solubilizing group to the glycoluril backbone.45 The effect of these structural modifications on the ability of these new hosts to bind guest molecules as compared to IV-1 has also been previously studied. From these studies, it has been found that generally a larger glycoluril oligomer (e.g.: tetramer as compared to trimer, dimer, or monomer), larger aromatic walls (e.g.: substituted naphthalene as compared to substituted benzene), and negatively charged solubilizing groups (e.g.: sulfonate as compared to neutral or positive groups) lead to more potent molecular hosts with higher binding affinities towards guests such as hydrophobic diammonium cations. The binding affinity of IV-1 toward drugs of abuse such as fentanyl and methamphetamine is also notable (~ 107 M-1) as discussed in Chapter 3, and renders it as a promising scaffold for further medicinal chemistry optimization for the purpose of developing a reversal agent for sequestering drugs of abuse.100 In this chapter we present the synthesis of three new hosts IV-2a – IV-2c, with alkyl
linkers of varying lengths capping one side of \textbf{IV-1}. We have also studied their aqueous solubility, self-association properties and molecular recognition properties toward guests (\textbf{IV-6} – \textbf{IV-10}) and compared them to those of \textbf{IV-1}.

\textbf{4.2 Design and Synthesis of Hosts IV-2a – IV2c.}

The synthesis of host \textbf{IV-1} was previously reported by the double electrophilic aromatic substitution reaction of the glycoluril tetramer bis(cyclic ether) building block (\textbf{IV-5}) with the corresponding dialkoxyaromatic sidewall \textbf{IV-4} in trifluoroacetic acid.40 The high binding affinity of \textbf{IV-1} toward various hydrophobic ammonium cations has been attributed to its ureidyl carbonyl portals resulting from the glycoluril tetramer backbone which is preorganized into a C-shape facilitating guest encapsulation. The cavity of \textbf{IV-1} is in part defined by aromatic walls which facilitate \(\pi-\pi\) interactions with guests containing aromatic groups, further stabilizing the complex. The sulfonate arms enhance the solubility of host \textbf{IV-1} in water and also provide favorable electrostatic interactions with positively charged guests. In designing congeners of \textbf{IV-1} we wanted to preserve the carbonyl portals, aromatic walls, and sulfonate solubilizing groups to maintain the recognition properties and aqueous solubility of \textbf{IV-1}, while improving the preorganization of the cavity size of the acyclic host by locking the distance between sidewalls and providing additional binding sites to the hydrophobic parts of larger guest molecules which could protrude from the host cavity.

Accordingly we hypothesized that the binding affinity of \textbf{IV-1} toward hydrophobic cations could be increased by incorporation of a covalent capping group such as an alkyl linker, on one face of the host. We reacted dibromoalkanes
of varying chain lengths (ethyl, hexyl, and decyl) with hydroquinone under basic conditions to obtain precursors with alkyl linkers, compounds IV-3a, IV-3b, and IV-3c in 13%, 50%, and 33% yield respectively (Scheme IV-1a).106,107 Precursor IV-3 was alkylated with 1,3-propanesultone to obtain the aromatic sulfonate walls with alkyl linkers, IV-4a, IV-4b, and IV-4c in 87%, 77%, and 47% yield respectively (Scheme IV-1b).

\begin{center}
\begin{tikzpicture}[scale=0.8]
\begin{scope}[every node/.style={scale=0.8},scale=0.8]
\node (a) at (0,0) {OH};
\node (b) at (1,0) {Br};
\node (c) at (2,0) {Br};
\node (d) at (3,0) {OH};
\node (e) at (4,0) {MeCN, K$_2$CO$_3$}
\node (f) at (4,1) {85 °C, 24 h};
\node (g) at (5,0) {OH};
\node (h) at (6,0) {OH};
\node (i) at (7,0) {n-Br};
\node (j) at (8,0) {IV-3a: n = 0}
\node (k) at (9,0) {IV-3b: n = 4}
\node (l) at (10,0) {IV-3c: n = 8}
\node (m) at (0,-2) {OH}
\node (n) at (1,-2) {Br}
\node (o) at (2,-2) {Br}
\node (p) at (3,-2) {OH}
\node (q) at (4,-2) {IV-4a: n = 0}
\node (r) at (5,-2) {IV-4b: n = 4}
\node (s) at (6,-2) {IV-4c: n = 8}
\node (t) at (0,-4) {OH}
\node (u) at (1,-4) {Br}
\node (v) at (2,-4) {Br}
\node (w) at (3,-4) {OH}
\node (x) at (4,-4) {IV-5
\node (y) at (0,-6) {OH}
\node (z) at (1,-6) {Br}
\node (aa) at (2,-6) {Br}
\node (ab) at (3,-6) {OH}
\node (ac) at (4,-6) {IV-2a: Linker = (CH$_2$)$_2$
\node (ad) at (5,-6) {R = CH$_3$CH$_2$CH$_2$SO$_3$Na}
\node (ae) at (6,-6) {IV-2b: Linker = (CH$_2$CH$_2$CH$_2$)$_2$
\node (af) at (7,-6) {R = CH$_3$CH$_2$CH$_2$SO$_3$Na}
\node (ag) at (8,-6) {IV-2c: Linker = (CH$_2$CH$_2$CH$_2$CH$_2$)$_2$
\node (ah) at (9,-6) {R = CH$_3$CH$_2$CH$_2$SO$_3$Na}
\end{tikzpicture}
\end{center}

Scheme IV-1. Synthesis of hosts 2a – 2c.

Compound IV-5 was refluxed with IV-4 (analogous to the synthesis of IV-1)40 in a mixture of trifluoroacetic acid and acetic anhydride, to obtain alkyl capped congeners of IV-1, compounds IV-2a, IV-2b, and IV-2c in 33%, 13%, and 26% yield respectively. Compounds IV-2a – IV2c were purified by Dowex ion exchange chromatography (Dowex® 1X2 chloride form, 200-400 mesh ion exchange resin) to isolate the hosts with the alkyl linker joining the same side of
the aromatic walls as is confirmed from the 1H NMR splitting patterns of the methylene protons of the glycoluril backbone on the same and opposite sides of the alkyl linker (Figure IV-2b and Appendix 3).

4.3 Solubility Properties of Hosts IV-2a – IV2c.

The use of molecular containers for biological applications such as drug reversal and drug solubilization requires their good inherent solubility in water as well as the aqueous solubility of their complexes with relevant guest molecules. The solubility of IV-1 was reported as 105 mM in 20 mM monosodium phosphate buffer at pD 7.4 in deuterium oxide.40 We used the same technique as that reported for IV-1 for measuring the solubility of our hosts and found that the solubilities of IV-2a, IV-2b, and IV 2c are 1.8 mM, 1.5 mM, and 1.7 mM respectively in 20 mM monosodium phosphate buffer at pD 7.4 in deuterium oxide. This dramatic drop in aqueous solubility by two orders of magnitude was unexpected, but can be attributed to the loss of two sulfonate groups per host while incorporating linkers into IV-2a – IV-2c. While this reduced aqueous solubility makes IV-2a – IV-2c less attractive for use in biological systems as compared to IV-1, we decided to investigate the effect of the alkyl linker on the self-association properties and the molecular recognition properties of these hosts toward some common guests for CB[n].

4.4 Self-Association Properties of Hosts IV-2a – IV2c.

The self-association of IV-1 has been previously studied by dilution experiments monitored by 1H NMR spectroscopy. It was found that the observed change in chemical shift with change in concentration of IV-1 fit well to a 2-fold
self-association model, and the corresponding self-association constant (K_s) of 47 M$^{-1}$ was obtained. In general the K_s of acyclic CB[n] which are structurally related IV-1 (in that they have a glycoluril backbone and aromatic walls with sulfonate arms) have been reported as less than 1000 M$^{-1}$. This low tendency to self–associate has been attributed to the electrostatic repulsion between the tetraanionic molecules.

Fortunately our dianionic hosts IV-2a – IV-2c also showed no significant changes in chemical shift in 1H NMR dilution studies over the accessible concentration range (1.0 – 0.1 mM) in deuterium oxide buffered to pD 7.4. This low tendency for self-association is a desirable property for molecular hosts as it leaves their cavity accessible for guest binding.

While the intermolecular association in IV-2a – IV-2c is low, we did note some concentration independent intramolecular features in the 1H NMR spectra of our hosts which suggest the partial inclusion of the alkyl linker within the hydrophobic cavity of each host molecule. Figure IV-2b shows the 1H NMR spectrum of host IV-2b in which the resonances of the methylene protons of the linker H_f, H_e', and H_e are shifted upfield by 0.5 ppm relative to their resonances in IV-4b (Appendix 3). This can be explained by the shielding effect of the hydrophobic cavity of IV-2b which stabilizes the alkyl linker of the host in water by the hydrophobic effect. The resonance for H_g is not significantly different between IV-2b and IV-4b indicating that its magnetic environment is unchanged and it does not enter the cavity of IV-2b. The same effect is observed for host IV-2c, in which the resonances of all the methylene protons of the alkyl linker
(except the ones directly attached to the aromatic wall) are upfield shifted by 0.2 - 0.6 ppm relative to their resonances in IV-4c (Appendix 3).

![Figure IV-2](image)

Figure IV-2. 1H NMR spectra recorded (400 MHz, RT, 20 mM sodium phosphate buffered D_2O, pH 7.4) for: a) IV-8 (1 mM), b) IV-2b (1 mM), c) a mixture of IV-8 (0.5 mM) and IV-2b (0.5 mM), and d) IV-8 (1.0 mM) and IV-2b (0.5 mM).

Since the decyl linker is longer and has more degrees of freedom than the hexyl linker we observed a broadening of the 1H NMR signals of the protons in the linker of IV-2c as compared to the sharper resonances of those in IV-2b. The
decyl linker also penetrates more deeply into the its cavity relative to the hexyl linker on account of its longer length, as is evidenced by the larger upfield shifts of its methylene protons at the mid-point of the linker. In case of host IV-2a, the linker is shortest (ethyl group) and the methylene groups are both directly attached to the aromatic walls of the host. Two well-resolved resonances are observed for the linker protons in IV-2a at 4.47 ppm and 3.87 ppm respectively. The resonance at 3.87 ppm is shifted upfield by 0.5 ppm relative its position in the \(^1\)H NMR spectrum of IV-4a (Appendix 3) which indicates that this set of protons is experiencing a different magnetic environment, potentially from the anisotropic effect of the aromatic walls of the host. The other set of protons whose chemical shift is observed at 4.47 ppm are out of the plane of the aromatic walls and therefore do not experience any shielding effect.

This phenomenon of the alkyl linker of the hosts IV-2a – IV-2c interacting with or being partially included within their cavities is expected to create an energetic penalty for guest molecules to be included within their cavities. In the following sections we investigate the thermodynamic costs of this phenomenon qualitatively and quantitatively.

4.5 Binding Properties of Hosts IV-2a – IV-2c and IV-1 towards Guests IV-6 – IV-10 Investigated by \(^1\)H NMR.

Initially, we tried to investigate the ability of hosts IV-2a – IV-2c to bind typical dicationic guests known to bind to CB\(n\) such as 1,6-diamino hexane, 1,6-diamino cyclohexane, and \(p\)-xylene diamine. We found that the complexes of these dicationic guests with our dianionic hosts IV-2a – IV-2c precipitated out
from water. We rationalize this precipitation as a consequence of the formation of a zwitterionic host-guest complex which would have lower aqueous solubility. Therefore we decided instead to study the water soluble complexes of monocationic guests IV-6 – IV10 with hosts IV-2a – IV-2c and IV-1 by ¹H NMR spectroscopy. For all these complexes we commonly observed upfield shifting of guest resonances which indicates that these protons on the guest are located in the cavity of the host molecule. The upfield shifting of guest resonances in the complexes with hosts containing alkyl linkers (IV-2a – IV-2c) was generally less than or equal to the upfield shifting of the same resonances in the complexes with host IV-1. This preliminary observation indicates that in most cases the cavity of host IV-1 better accommodates guests IV-6 – IV-10 as compared to the cavities of IV-2a – IV2c which are more constrained due to the presence of the alkyl linkers. All of the host guest complexes display fast kinetics of exchange on the ¹H NMR timescale which suggests that these complexes would be of moderate stability in water. In general, the binding of guests IV-6 – IV-10 to hosts IV-2a – IV-2c resulted in the downfield shifting of the resonances of the linker protons of the host molecule indicating that guest binding displaces the linkers from within the cavity of the host. The ¹H NMR spectrum of the IV-2b·IV-8 complex is presented in Figure IV-2 to facilitate discussion of the binding features of this complex. The resonances of the aromatic protons H_b, H_c, H_d of IV-8 undergo upfield shifting in its complex with IV-2b as a result of the anisotropic environment of the aromatic walls of the host when the host and guest are combined in a 1:1 ratio. Upon adding excess guest (2:1 ratio) we observe that the
peak corresponding to Hb, Hc, and Hd protons shifts to a position which is the average between the free (Figure IV-2a) and bound (Figure IV-2c) forms of the guest. This indicates a fast kinetics of exchange between free guest IV-8 and the IV-2a·IV-8 complex relative to the 1H NMR chemical shift time scale. The same trend is observed for the Ha methylene protons of IV-8 in free and bound form which experience the shielding effect of the cavity of the host when bound to IV-2b. The resonances of the aromatic protons of host IV-2b, Hv and Hq also undergo upfield shifting in the IV-2b·IV-8 complex as a result of the anisotropic effect of the aromatic group of IV-8. The resolution of the Hv, Hq multiplet peak of IV-2b (Figure IV-2b) into two sharp doublets (J =9.0) in the IV-2b·IV-8 complex instead of four peaks or broadening indicates the facial selectivity of the guest IV-8 in binding to the cavity, presumably with the aromatic end of IV-8 facing the alkyl linker of IV-2b and the ammonium group of IV-8 facing the sulfonate groups of IV-2b. The other noteworthy change in the spectrum of IV-2b occurs to the resonances of the Hf, He', and He protons of the linker. In the spectrum of the IV-2b·IV-8 complex these protons are shifted downfield by 0.5 ppm relative to their positions in free IV-2b, at the same positions where they were observed in the spectrum of IV-4b (Appendix 3). This downfield shift indicates that the presence of guest IV-8 in the cavity of host IV-2b necessitates the displacement of the hexyl linker from the cavity of IV-2b. Analogous phenomena were seen in the 1H NMR spectra recorded for the remaining host-guest complexes.
4.6 Measurement of Binding Affinities between Hosts IV-2a – IV-2c and IV-1 and Guests IV-6 – IV-10 by Isothermal Calorimetry (ITC).

The binding affinities (K_a) of the hosts IV-2a - IV-2c and IV-1 with monocationic guests IV-6 – IV-10 were measured by ITC (Table IV-1).

Figure IV-3. a) ITC thermogram recorded during the titration of IV-2b (0.1 mM) in the cell with IV-8 (1.0 mM) in the syringe. d) Fitting of the data to a 1:1 binding model with K_a = (1.6 ± 0.1) × 10^6 M^{-1}.

For example, Figure IV-3 shows the thermogram recorded for the titration of IV-2b (100 μM) with IV-8 (0 – 200 μM) which was fitted with the MicroCal PEAQ-ITC analysis software to deliver K_a = (1.6 ± 0.1) × 10^6 M^{-1} and ΔH = - 9.5
± 0.1 kcal mol⁻¹ for the IV-2b•IV-8 complex. The other ITC derived thermodynamic parameters given in Table IV-1 were carried out analogously.

Table IV-2. Binding constants determined by ITC for the interaction between molecular containers IV-1, IV-2a – IV-2c and guests IV-6 – IV-10.

<table>
<thead>
<tr>
<th>Guest</th>
<th>Binding Constants (M⁻¹), ΔH (kcal mol⁻¹) with various molecular containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(2.4 ± 0.1) × 10⁶, -8.7, (6.2 ± 0.9) × 10⁴, -3.9, (1.3 ± 0.1) × 10³, -5.5, (2.3 ± 0.2) × 10², -5.0</td>
</tr>
<tr>
<td>7</td>
<td>(1.7 ± 0.1) × 10⁶, -8.2, (2.3 ± 0.2) × 10⁴, -8.7, (7.9 ± 0.1) × 10³, -8.6, (3.2 ± 0.3) × 10², -6.0</td>
</tr>
<tr>
<td>8</td>
<td>(3.9 ± 0.2) × 10⁶, -10.5, (2.1 ± 0.1) × 10⁴, -11.3, (1.6 ± 0.1) × 10³, -9.5, (7.1 ± 0.4) × 10², -8.5</td>
</tr>
<tr>
<td>9</td>
<td>(4.9 ± 0.2) × 10⁵, -7.1, (2.7 ± 0.6) × 10³, -4.5, (7.2 ± 1.0) × 10⁵, -3.9, (1.5 ± 0.4) × 10⁴, -6.5</td>
</tr>
<tr>
<td>10</td>
<td>(6.2 ± 0.6) × 10⁴, -9.0, (6.9 ± 0.3) × 10², -6.9, (1.3 ± 0.03) × 10⁰, -9.6, (2.7 ± 0.2) × 10⁰, -5.7</td>
</tr>
</tbody>
</table>

Conditions: 20 mM sodium phosphate buffered water, pH 7.4, room temperature.

4.7 Commentary on the Tabulated Kₐ Values.

The Kₐ values measured for the various hosts and guests in this study ranged from 6.2 × 10³ – 6.2 × 10⁶ M⁻¹, with IV-1 being the highest affinity host toward each guest. In general, the presence of an alkyl linker and the loss of two sulfonate groups led to a decrease in binding affinity of IV-2a - IV-2c toward IV-6 – IV-10 relative to IV-1 by one or two orders of magnitude. The lowered electrostatic attraction between the dianionic hosts and monocationic guests as compared to that between the tetraanionic IV-1 and the same guests; as well as the energetic penalty of displacing the alkyl linker from within the cavities the new hosts/ decreased cavity volume led to significant losses in binding affinities.

The preference for CB[n] hosts to bind hexyl diammonium ions is well known, due to the size complementarity which leads to the positioning of the hydrophobic
hexyl chain to span the full height of the cavity of the CB[n] while the ammonium groups are appropriately placed for ion-dipole interactions with the carbonyl portals on each end.\(^\text{18}\) The same preference has been reported for IV-1 and its analogues.\(^\text{37}\) Accordingly, IV-1 binds IV-6 with an affinity of \(2.4 \times 10^6\) M\(^{-1}\). However, hosts IV-2a – IV-2c show a drastically lowered preference for IV-6. In case of IV-2b and IV-2c the 19- and 104-fold loss in affinity respectively, can be explained by the cost of displacing the hexyl and still longer decyl linkers from the cavity to accommodate the hexyl chain of IV-8. In case of IV-2a, the shorter ethyl linker brings one end of the aromatic walls close together reducing the cavity volume. Therefore, guest IV-6 has to be accommodated within the cavity of IV-2a of reduced volume, leading to a 387-fold decrease in affinity relative to IV-1. Guest IV-7 being shorter and wider than IV-6 is preferred by IV-2a and IV-2b over IV-6 on account of their decreased cavity depths due to the presence of the alkyl linker. Predictably, host IV-1 which has no such factors decreasing its cavity volume shows little preference between IV-6 and IV-7. Interestingly, IV-2c also shows little preference for IV-7 over IV-6. This lack of selectivity can be attributed to the larger decyl linker, which would need to be pushed out from the cavity to accommodate either guest IV-6 or IV-7 and the energetic penalty is same for both.

For each of the hosts in this study, guest IV-8 results in one of the tightest complexes from group of guests IV-6 – IV-10 due to its aromatic ring which can undergo favorable \(\pi-\pi\) interactions with the aromatic walls of each host molecule. All hosts also display a preference for the quaternary ammonium adamantyl guest
IV-10 over the primary ammonium adamantyl guest IV-9. This selectivity is most pronounced for IV-1 (13-fold). We rationalize this selectivity based on the improved ion-dipole interactions between the N-methyl ammonium groups with the ureidyl carbonyl portal of the host. For hosts IV-2a – IV-2c we only observe a 2-3 fold selectivity for IV-10 over IV-9. This can be explained based on the partial encapsulation of IV-9 and IV-10 in the cavities of IV-2a – IV-2c on account of the decreased cavity volumes of these hosts. The evidence for partial encapsulation comes from the 1H NMR resonance of the methyl protons of IV-10 when bound to IV-2a – IV-2c. This resonance does not undergo upfield shifting in their host-guest complexes (Appendix 3), indicating that IV-10 is not encapsulated within the host cavities. In contrast, the 1H NMR resonance of the same N-methyl protons when bound to IV-1 undergoes a substantial upfield shifting potentially due to the out of plane helicity for IV-1 leading to a shielding effect by one of its aromatic walls. Therefore, the presence or absence of methyl groups on the ammonium nitrogen protruding outside of the cavities of IV-2a – IV-2c does not significantly affect their binding affinities.

4.8 Conclusions.

Three new hosts IV-2a – IV-2c were synthesized with alkyl linkers of varying lengths- ethyl, hexyl, and decyl; capping one end of the previously reported host IV-1. These new hosts were less water soluble than IV-1 due to the loss of two sulfonate groups and did not undergo intermolecular self-association. However, the intramolecular self-inclusion of the alkyl linkers inside the cavity of these hosts led to decreased binding affinities toward guests relative to IV-1. Future
work will try to overcome these disadvantages in the solubility and molecular recognition properties of IV-2a – IV-2c by incorporating linkers with more rigidity and/or hydrophilic groups that do not undergo self-inclusion processes, such as aromatic walls connected by oligoethylene glycol units. Such linkers would lead to entropic gains from the improved preorganization of the acyclic CB[n] cavity and enthalpic gains from the favorable interactions between the capping linker and encapsulated guest; without the energetic penalty of self-inclusion or loss in aqueous solubility.
Appendix 1

Calabadion 2 as a Reversal Agent for Neuromuscular Blocking Agents: *In Vitro* Selectivity of an Acyclic Cucurbit[n]uril Molecular Container towards Neuromuscular Blocking Agents Relative to Commonly Used Drugs\(^9\)\(^7\) and Renal Elimination of Calabadion 2 in Rats Post Reversal of Neuromuscular Blockade.\(^6\)\(^4\)

Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>General experimental details</td>
<td>99</td>
</tr>
<tr>
<td>Procedures and binding models for UV/Vis titrations</td>
<td>100-101</td>
</tr>
<tr>
<td>UV/Vis spectra and plots of absorbance data for</td>
<td></td>
</tr>
<tr>
<td>(K_a) determination of various drugs with II-2</td>
<td>102-121</td>
</tr>
<tr>
<td>Binding model for (^1)H NMR titrations and plots of chemical shift data for</td>
<td></td>
</tr>
<tr>
<td>(K_a) determination by direct (^1)H NMR titrations</td>
<td>122-129</td>
</tr>
<tr>
<td>(^1)H NMR stack plots for drugs with II-2</td>
<td>130-156</td>
</tr>
<tr>
<td>Job plots of selected drugs with II-2</td>
<td>157-161</td>
</tr>
<tr>
<td>Three dimensional surface plot of [AChR•NMBA] versus log [Drug]</td>
<td></td>
</tr>
<tr>
<td>and log (K_3) for vecuronium with 2 equivalents of Calabadion 2</td>
<td>162</td>
</tr>
<tr>
<td>Three dimensional surface plot of [AChR•NMBA] versus log [Drug]</td>
<td></td>
</tr>
<tr>
<td>and log (K_3) for cisatracurium with 32 equivalents of Calabadion 2</td>
<td>162</td>
</tr>
<tr>
<td>Three dimensional surface plot of [AChR•NMBA] versus log [Drug]</td>
<td></td>
</tr>
<tr>
<td>and log (K_3) for cisatracurium with 16 equivalents of Calabadion 2</td>
<td>163</td>
</tr>
<tr>
<td>Study of Hoffmann Degradation of Cisatracurium</td>
<td>164-166</td>
</tr>
</tbody>
</table>
General experimental details. Drugs used for measuring binding constants with II-2 were purchased from commercial suppliers and used without further purification. Compound II-2 was prepared according to the literature procedure.40 1H NMR spectra were measured on commercial spectrometers operating at 400 or 600 MHz. UV-Vis absorbance was measured on a Varian Cary 100 UV spectrophotometer.

Determination of K_a between Host II-2 with various drugs using UV/Vis spectroscopy. K_a values up to 10^4 M\(^{-1}\) can be measured reliably by 1H NMR spectroscopic methods. For values that exceed this level it is necessary to use other techniques such as UV/Vis, fluorescence, or isothermal titration calorimetry. UV/Vis spectroscopy was used in this work.

The K_a between II-2 and II-4 (tetracycline, UV/Vis active drug) was determined by direct titration of a fixed concentration of II-4 with increasing concentrations of II-2. The K_a value was determined by fitting the change in absorbance as a function of host concentration to a 1:1 binding model. In order to determine the K_a value for II-2 toward guests which were not UV/Vis active, an indicator displacement assay involving the addition of guest to a solution of II-2 and dye Rhodamine 6G was used. The change in UV/Vis absorbance as a function of guest concentration was fitted to a competitive binding model which allowed determination of the K_a values based on the known total concentrations of II-2, Rhodamine 6G, and drug. The known K_a value of the II-2-Rhodamine 6G complex (2.3×10^6 M\(^{-1}\)) was used as input in the competitive binding model.48
Binding Models Used to Determine Values of K_a with Micromath Scientist

1:1 Binding Model for UV/Vis.
// Micromath Scientist Model File
// 1:1 Host:Guest binding model
//This model assumes the guest concentration is fixed and host concentration is varied
IndVars: ConcHostTot
DepVars: SpectroscopicSignal
Params: K_a, ConcGuestTot, SpectroscopicSignalMin, SpectroscopicSignalMax
$K_a = \frac{\text{ConcHostGuest}}{\text{ConcHostFree} \times \text{ConcGuestFree}}$
ConcHostTot = ConcHostFree + ConcHostGuest
ConcGuestTot = ConcGuestFree + ConcHostGuest
SpectroscopicSignal = SpectroscopicSignalMin + (SpectroscopicSignalMax - SpectroscopicSignalMin) * (ConcHostGuest/ConcGuestTot)

//Constraints
0 < ConcHostFree < ConcHostTot
0 < K_a
0 < ConcGuestFree < ConcGuestTot
0 < ConcHostGuest < ConcHostTot

Competitive Binding (Indicator Displacement) Models.

Competitive Model Fitting Absorbance at One Wavelength.
// MicroMath Scientist Model File
IndVars: ConcAntot
DepVars: Absorb
Params: ConcHtot, ConcGtot, Khg, Kha, AbsorbMax, AbsorbMin
$K_hg = \frac{\text{ConcHG}}{\text{ConcH} \times \text{ConcG}}$
$K_ha = \frac{\text{ConcHAn}}{\text{ConcH} \times \text{ConcAn}}$
Absorb = AbsorbMin + (AbsorbMax - AbsorbMin)*(ConcHG/ConcGtot)
ConcHtot = ConcH + ConcHG + ConcHAn
ConcGtot = ConcHG + ConcG
ConcAntot = ConcAn + ConcHAn
0 < ConcHG < ConcHtot
0 < ConcH < ConcHtot
0 < ConcG < ConcGtot
0 < ConcAn < ConcAntot

Competitive Model Fitting Absorbance at Two Wavelengths.
// MicroMath Scientist Model File
IndVars: ConcAntot
DepVars: Absorb1, Absorb2
Params: Khg, Kha, AbsorbMax1, AbsorbMin1, AbsorbMax2, AbsorbMin2

\[\text{Khg} = \frac{\text{ConcHG}}{(\text{ConcH} \times \text{ConcG})} \]

\[\text{Kha} = \frac{\text{ConcHAn}}{(\text{ConcH} \times \text{ConcAn})} \]

\[\text{Absorb1} = \text{AbsorbMin1} + \frac{(\text{AbsorbMax1} - \text{AbsorbMin1}) \times (\text{ConcHG}/0.00001)}{\text{ConcHG}} \]

\[\text{Absorb2} = \text{AbsorbMin2} + \frac{(\text{AbsorbMax2} - \text{AbsorbMin2}) \times (\text{ConcHG}/0.00001)}{\text{ConcHG}} \]

\[0.00001 = \text{ConcH} + \text{ConcHG} + \text{ConcHAn} \]

\[0.00001 = \text{ConcHG} + \text{ConcG} \]

\[\text{ConcAntot} = \text{ConcAn} + \text{ConcHAn} \]

\[0 < \text{ConcHG} < 0.00001 \]

\[0 < \text{ConcH} < 0.00001 \]

\[0 < \text{ConcG} < 0.00001 \]

\[0 < \text{ConcAn} < \text{ConcAntot} \]

Figure II-S1. (A) UV/Vis spectra from the titration of II-2 (0–610 µM) with guest II-4 (57.3 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₃₉₀ as a function of the concentration of II-2. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.3 \pm 0.2) \times 10^3$ M$^{-1}$).
Figure II-S2. (A) UV/Vis spectra from the titration of II-2 (5.07 µM) and Rhodamine 6G (5.01 µM) with guest II-8 (0 – 6.08 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-8. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (5.9 ± 0.5) × 10³ M⁻¹).
Figure II-S3. (A) UV/Vis spectra from the titration of II-2 (10.1 µM) and Rhodamine 6G (9.96 µM) with guest II-10 (0 – 4.32 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-10. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (8.6 ± 0.8) × 10³ M⁻¹).
Figure II-S4. (A) UV/Vis spectra from the titration of II-2 (9.98 µM) and Rhodamine 6G (9.96 µM) with guest II-12 (0 – 1.11 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-12. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (2.1 ± 0.2) x 10⁴ M⁻¹).
Figure II-S5. (A) UV/Vis spectra from the titration of II-2 (10.2 μM) and Rhodamine 6G (9.96 μM) with guest II-14 (0 – 447 μM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-14. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (4.4 ± 0.3) × 10⁴ M⁻¹).
Figure II-S6. (A) UV/Vis spectra from the titration of II-2 (9.92 µM) and Rhodamine 6G (10.0 µM) with guest II-15 (0 – 2.05 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH = 7.4); (B) plot of the A$_{550}$ as a function of the concentration of II-15. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (4.8 \pm 0.3) \times 10^4$ M$^{-1}$).
Figure II-S7. (A) UV/Vis spectra from the titration of II-2 (9.92 µM) and Rhodamine 6G (10.0 µM) with guest II-16 (0 – 1.32 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-16. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (8.3 ± 0.6) × 10⁴ M⁻¹).
Figure II-S8. (A) UV/Vis spectra from the titration of II-2 (10.1 µM) and Rhodamine 6G (9.96 µM) with guest II-17 (0 – 486 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-17. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (1.9 ± 0.1) × 10⁵ M⁻¹).
Figure II-S9. (A) UV/Vis spectra from the titration of II-2 (10.2 μM) and Rhodamine 6G (9.96 μM) with guest II-18 (0 – 686 μM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-18. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (1.9 ± 0.6) \times 10^{5} \text{ M}^{-1})
Figure II-S10. (A) UV/Vis spectra from the titration of II-2 (10.2 µM) and Rhodamine 6G (10.3 µM) with guest II-19 (0 – 510 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-19. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (2.5 ± 0.7) × 10⁵ M⁻¹).
Figure II-S11. (A) UV/Vis spectra from the titration of II-2 (5.07 µM) and Rhodamine 6G (5.01 µM) with guest II-20 (0 – 107 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-20. The solid line represents the best non-linear fit of the data to a competitive binding model \(K_a = (5.3 \pm 0.4) \times 10^5 \text{M}^{-1} \).
Figure II-S12. (A) UV/Vis spectra from the titration of II-2 (12.5 µM) and Rhodamine 6G (12.4 µM) with guest II-21 (0–131µM) in 20mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-21. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (5.9 ± 0.7) × 10⁵ M⁻¹).
Figure II-S13. (A) UV/Vis spectra from the titration of \textbf{II-2} (9.92 \textmu M) and Rhodamine 6G (10.0 \textmu M) with guest \textbf{II-22} (0 – 968 \textmu M) in 20 mM NaH$_2$PO$_4$ buffer (pH = 7.4); (B) plot of the A_{550} as a function of the concentration of \textbf{II-22}. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (8.0 \pm 0.7) \times 10^5$ M$^{-1}$).
Figure II-S14. (A) UV/Vis spectra from the titration of II-2 (5.07 µM) and Rhodamine 6G (5.01 µM) with guest II-23 (0 – 616 µM) in 20 mM NaH2PO4 buffer (pH = 7.4); (B) plot of the A550 as a function of the concentration of II-23. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (8.2 ± 0.9) x 10^5 M^{-1}).
Figure II-S15. (A) UV/Vis spectra from the titration of II-2 (5.07 µM) and Rhodamine 6G (5.01 µM) with guest II-24 (0 – 237 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A_{550} as a function of the concentration of II-24. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (9.3 \pm 0.9) \times 10^5$ M⁻¹).
Figure II-S16. (A) UV/Vis spectra from the titration of II-2 (10.1 µM) and Rhodamine 6G (9.96 µM) with guest II-25 (0 – 345 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-25. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (9.7 \pm 1.1) \times 10^5$ M⁻¹).
Figure II-S17. (A) UV/Vis spectra from the titration of II-2 (10.1 µM) and Rhodamine 6G (9.96 µM) with guest II-26 (0 – 450 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-26. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₗₒ = (9.8 ± 0.5) × 10⁵ M⁻¹).
Figure II-S18. (A) UV/Vis spectra from the titration of II-2 (9.92 µM) and Rhodamine 6G (10.0 µM) with guest II-27 (0 – 552 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-27. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (2.8 \pm 0.1) \times 10^6$ M⁻¹).
Figure II-S19. (A) UV/Vis spectra from the titration of II-2 (9.92 µM) and Rhodamine 6G (10.0 µM) with guest II-28 (0 – 1.21 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-28. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (3.3 \pm 0.5) \times 10^6$ M⁻¹).
Figure II-S20. (A) UV/Vis spectra from the titration of II-2 (5.07 µM) and Rhodamine 6G (5.01 µM) with guest II-29 (0 – 14.2 µM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of II-29. The solid line represents the best non-linear fit of the data to a competitive binding model (Kₐ = (4.5 ± 0.7) × 10⁶ M⁻¹).
1:1 Binding Models for NMR

Model Fitting Absorbance at One Chemical Shift.
// Micromath Scientist Model File
// 1:1 Host:Guest binding model for NMR
//This model assumes the guest concentration is fixed and host concentration is varied
IndVars: ConcHostTot
DepVars: Deltaobs
Params: Ka, ConcGuestTot, Deltasat, Deltazero
Ka = ConcHostGuest/(ConcHostFree*ConcGuestFree)
ConcHostTot=ConcHostFree + ConcHostGuest
ConcGuestTot=ConcGuestFree + ConcHostGuest
Deltaobs = Deltazero + (Deltasat - Deltazero) * (ConcHostGuest/ConcGuestTot)
//Constraints
0 < ConcHostFree < ConcHostTot
0 < Ka
0 < ConcGuestFree < ConcGuestTot
0 < ConcHostGuest < ConcHostTot

Model Fitting Absorbance at Two Chemical Shifts.
// Micromath Scientist Model File
IndVars: ConcHost
DepVars: CSA, CSB
Params: Ka, CSAzero, CSAsat, CSBzero, CSBsat
Ka = ConcHG/(ConcHfree*ConcGfree)
ConcHost=ConcHfree+ConcHG
0.0001=ConcGfree+ConcHG
CSA = CSAzero + ((CSAsat-CSAzero)*(ConcHG/0.0001))
CSB = CSBzero + ((CSBsat-CSBzero)*(ConcHG/0.0001))
0<ConcHfree<ConcHost
0<ConcGfree<0.0001
Figure II-S21. (A) 1H NMR (600 MHz) stack plot of the titration of II-2 (0.104 mM) with guest II-3 (0 - 1.03 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); (B) plot of the chemical shift at 7.67 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (2.0 \pm 0.4) \times 10^3 \text{ M}^{-1}$).
Figure II-S22. (A) 1H NMR (600 MHz) stack plot of the titration of II-2 (0 - 4.5 mM) with guest II-5 (1.86 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); (B) plot of the chemical shift at 1.46 ppm as a function of host concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (3.0 \pm 0.4) \times 10^3$ M$^{-1}$).
Figure II-S23. (A) 1H NMR (400 MHz) stack plot of the titration of II-2 (0.976 mM) with guest II-6 (0 - 7.24 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); (B) plot of the chemical shift at 7.17 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (3.0 \pm 0.6) \times 10^3$ M$^{-1}$).
Figure II-S24. (A) 1H NMR (600 MHz) stack plot of the titration of II-2 (0.199 mM) with guest II-7 (0 - 1.26 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); (B) plot of the chemical shift at 7.69 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (4.6 \pm 0.5) \times 10^3$ M$^{-1}$).
Figure II-S25. (A) 1H NMR (600 MHz) stack plot of the titration of II-2 (1.50 mM) with guest II-9 (0 - 2.7 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); (B) plot of the chemical shift at 7.15 and 7.72 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (5.9 \pm 1.8) \times 10^3 \text{ M}^{-1}$).
Figure II-S26. (A) 1H NMR (600 MHz) stack plot of the titration of II-22 (0.150 mM) with guest II-11 (0 - 1.3 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); (B) plot of the chemical shift at 7.12 and 7.68 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (1.4 \pm 0.4) \times 10^4$ M$^{-1}$).
Figure II-S27. (A) 1H NMR (600 MHz) stack plot of the titration of II-2 (0.150 mM) with guest II-13 (0 - 1.26 mM) in 20 mM NaH$_2$PO$_4$ buffered D$_2$O (pH = 7.4); (B) plot of the chemical shift at 7.12 and 7.68 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (3.3 \pm 1.0) \times 10^4$ M$^{-1}$).
Figure II-S28. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-3, b) II-2, c) an equimolar mixture of II-2 and II-3 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-3 (10 mM).
Figure II-S29. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-4, b) II-2, c) an equimolar mixture of II-2 and II-4 (12.5 mM), and d) a 1:2 mixture of II-2 (12.5 mM) and II-4 (25 mM).
Figure II-S30. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-5, b) II-2, c) an equimolar mixture of II-2 and II-5 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-5 (10 mM).
Figure II-S31. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-6, b) II-2, c) an equimolar mixture of II-2 and II-6 (12.5 mM), and d) a 1:2 mixture of II-2 (12.5 mM) and II-6 (25 mM).
Figure II-S32. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-7, b) II-2, c) an equimolar mixture of II-2 and II-7 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-7 (10 mM).
Figure II-S33. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-8, b) II-2, c) an equimolar mixture of II-2 and II-8 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-8 (10 mM).
Figure II-S34. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-9, b) II-2, c) an equimolar mixture of II-2 and II-9 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-9 (10 mM).
Figure II-S35. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-10, b) II-2, c) an equimolar mixture of II-2 and II-10 (4 mM), and d) a 1:2 mixture of II-2 (4 mM) and II-10 (8 mM).
Figure II-S36. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-11, b) II-2, c) an equimolar mixture of II-2 and II-11 (4 mM), and d) a 1:2 mixture of II-2 (4 mM) and II-11 (8 mM).
Figure II-S37. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-12, b) II-2, c) an equimolar mixture of II-2 and II-12 (4 mM), and d) a 1:2 mixture of II-2 (4 mM) and II-12 (8 mM).
Figure II-S38. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-13, b) II-2, c) an equimolar mixture of II-2 and II-13 (12.5 mM), and d) a 1:2 mixture of II-2 (4 mM) and II-13 (8 mM).
Figure II-S39. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-14, b) II-2, c) an equimolar mixture of II-2 and II-14 (4 mM), and d) a 1:2 mixture of II-2 (1 mM) and II-14 (2 mM).
Figure II-S40. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-15, b) II-2, c) an equimolar mixture of II-2 and II-15 (12.5 mM), and d) a 1:2 mixture of II-2 (12.5 mM) and II-15 (25 mM).
Figure II-S41. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-16, b) II-2, and c) an equimolar mixture of II-2 and II-16 (2 mM), and d) a 1:2 mixture of II-2 (0.7 mM) and II-16 (1.3 mM).
Figure II-S42. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-17, b) II-2, and c) an equimolar mixture of II-2 and II-17 (4 mM).
Figure II-S43. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-18, b) II-2, c) an equimolar mixture of II-2 and II-18 (4 mM), and d) a 1:2 mixture of II-2 (4 mM) and II-18 (8 mM).
Figure II-S44. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-19, b) II-2, c) an equimolar mixture of II-2 and II-19 (4 mM), and d) a 1:2 mixture of II-2 (4 mM) and II-19 (8 mM).
Figure II-S45. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-20, b) II-2, c) an equimolar mixture of II-2 and II-20 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-20 (10 mM).
Figure II-S46. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-21, b) II-2, and c) an equimolar mixture of II-2 and II-21 (4 mM), and d) a 1:2 mixture of II-2 (2 mM) and II-21 (4 mM).
Figure II-47. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-22, b) II-2, c) an equimolar mixture of II-2 and II-22 (12.5 mM), and d) a 1:2 mixture of II-2 (6.25 mM) and II-22 (12.5 mM).
Figure II-S48. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-23, b) II-2, c) an equimolar mixture of II-2 and II-23 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-23 (10 mM).
Figure II-S49. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-24, b) II-2, c) an equimolar mixture of II-2 and II-24 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-24 (10 mM).
Figure II-S50. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-25, b) II-2, and c) an equimolar mixture of II-2 and II-25 (2 mM), and d) a 1:2 mixture of II-2 (0.7 mM) and II-25 (1.3 mM).
Figure II-S51. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-26, b) II-2, c) an equimolar mixture of II-2 and II-26 (4 mM), and d) a 1:2 mixture of II-2 (4 mM) and II-26 (8 mM).
Figure II-S52. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-27, b) II-2, c) an equimolar mixture of II-2 and II-27 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-27 (10 mM).
Figure II-S53. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-28, b) II-2, c) an equimolar mixture of II-2 and II-28 (12.5 mM), and d) a 1:2 mixture of II-2 (12.5 mM) and II-28 (25 mM).
Figure II-S54. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) II-29, b) II-2, c) an equimolar mixture of II-2 and II-29 (5 mM), and d) a 1:2 mixture of II-2 (5 mM) and II-29 (10 mM).
Figure II-S55. Job plot establishing 1:1 binding of II-6 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).

Figure II-S56. Job plot establishing 1:1 binding of II-7 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).
Figure II-S57. Job plot establishing 1:1 binding of II-13 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).

Figure II-S58. Job plot establishing 1:1 binding of II-15 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).
Figure II-S59. Job plot establishing 1:1 binding of II-20 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).

Figure II-S60. Job plot establishing 1:1 binding of II-21 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).
Figure II-S61. Job plot establishing 1:1 binding of II-22 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).

Figure II-S62. Job plot establishing 1:1 binding of II-23 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).
Figure II-S63. Job plot establishing 1:1 binding of II-28 (0 - 1 mM) with II-2 (0 - 1 mM) based on change in chemical shift of 1H NMR (400 MHz, D$_2$O).
Figure II-S64. Three dimensional surface plot of the equilibrium mole fraction of AChR•vecuronium versus log [Drug] and log K_3 for vecuronium at [Vecuronium] = [AChR] = 27 μM, [II-2] = 54 μM (2 eqv.), $K_1 = 10^5$ M$^{-1}$, $K_2 = 1.6 \times 10^9$ M$^{-1}$. The red dots mark the points corresponding to each of the 27 drugs (II-3 – II-29).

Figure II-S65. Three dimensional surface plot of the equilibrium mole fraction of AChR•cisatracurium versus log [Drug] and log K_3 at [Cisatracurium] = [AChR] = 18 μM, [II-2] = 576 μM (32 eqv.), $K_1 = 10^5$ M$^{-1}$, $K_2 = 4.8 \times 10^6$ M$^{-1}$. The red dots mark the points corresponding to each of the 27 drugs (II-3 – II-29).
Figure II-S66. Three dimensional surface plot of the equilibrium mole fraction of AChR•cistracurium versus log [Drug] and log K_3 at [Cisatracurium] = [AChR] = 18 μM, [II-2] = 288 μM (16 eqv.), $K_1 = 10^5$ M$^{-1}$, $K_2 = 4.8 \times 10^6$ M$^{-1}$. The red dots mark the points corresponding to each of the 27 drugs (II-3 – II-29).
Study of Hoffmann Degradation of Cisatracurium.

![Chemical structures](image)

Figure II-S67. Probable pathway for the Hoffmann degradation of cisatracurium to laudanosin and pentamethylene diacrylate.

The Hoffmann degradation of cisatracurium was studied in the Krebs-Henseleit buffer (pH = 7.4, 37.5 °C), using 1H-NMR. The Krebs-Henseleit buffer consisted of the following dissolved in deuterium oxide (D$_2$O): monopotassium phosphate (1.0 mM), magnesium sulphate heptahydrate (0.6 mM), potassium chloride (5.0 mM), sodium bicarbonate (30.0 mM), α-D-glucose monohydrate (20.0 mM), sodium chloride (118 mM), and calcium chloride (2.5 mM).

Figure II-S67 shows the most probable pathway for the degradation of cisatracurium to form laudanosin and pentamethylene diacrylate.
A 3.5 mM solution of cisatracurium in Krebs-Henseleit buffer was monitored by \(^1\text{H} \) NMR every 10 min for 1 hour, and then hourly for 5 h. The last reading was taken 24 hours after the solution was prepared.

The conversion of cisatracurium into pentamethylene diacrylate was monitored by the appearance of its characteristic alkene proton peaks: \(\text{H}_x \)(2H, 6.35 ppm), \(\text{H}_y \)(2H, 6.13 ppm), and \(\text{H}_z \)(2H, 6.56 ppm), which increased in intensity over time. The peaks for \(\text{H}_a \)(4H, 1.90 ppm) and \(\text{H}_b \)(2H, 1.63 ppm) in cisatracurium overlap with those of pentamethylene diacrylate; hence their integrals represent the total concentration of cisatracurium added. These integrals can be compared to those of \(\text{H}_x \), \(\text{H}_y \), and \(\text{H}_z \) to quantify the extent of degradation with time.

![Rate of Formation of 3](image)

Figure II-S68. Plot of the formation of pentamethylene diacrylate over 24 h.
Figure II-S69. ^1H NMR spectra recorded (600 MHz, 37.5 °C, Krebs-Henseleit buffer in D$_2$O at pH = 7.4) for 3.5 mM cisatracurium at: a) 10 min, b) 1 h, c) 6 h, and d) 24 h.
Appendix 2

Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the Hyperlocomotive Effect of Methamphetamine in Rats

[a] Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and [b] Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114

Supporting Information

Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>General experimental details</td>
<td>168</td>
</tr>
<tr>
<td>¹H NMR based binding studies between various hosts and guests</td>
<td>169-203</td>
</tr>
<tr>
<td>Procedures and binding models for UV/Vis titrations</td>
<td>204-205</td>
</tr>
<tr>
<td>UV/Vis spectra and plots of absorbance data for Kₐ determination for various guests and hosts</td>
<td>206-215</td>
</tr>
<tr>
<td>Procedure and binding model for ¹H NMR titrations</td>
<td>216</td>
</tr>
<tr>
<td>¹H NMR stack plots and plots of chemical shift data for Kₐ determination by direct ¹H NMR titration</td>
<td>217-225</td>
</tr>
<tr>
<td>Procedure for Kₐ determination by ITC</td>
<td>226</td>
</tr>
<tr>
<td>ITC data for Kₐ determination for various guests and hosts</td>
<td>227-243</td>
</tr>
<tr>
<td>Job plots of selected hosts with methamphetamine</td>
<td>244</td>
</tr>
<tr>
<td>Details of the in vivo experiments</td>
<td>245-247</td>
</tr>
</tbody>
</table>
General experimental details.

Drugs used for measuring binding constants, host p-sulfo calix[4]arene, and hydroxypropyl β-cyclodextrin (HP-β-CD) were purchased from commercial suppliers and used without further purification. Calabadion 1, Calabadion 2, and CB[7] were prepared according to the literature procedures.40,108 1H NMR spectra were measured on Bruker instruments operating at 400 or 600 MHz. UV/Vis spectra were measured on a Varian Cary 100 UV spectrophotometer. ITC data was collected on a Malvern Microcal PEAQ-ITC instrument.
Figure III-S1. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) methamphetamine, b) Calabion 1, c) an equimolar mixture of methamphetamine and Calabion 1 (1 mM), and d) a 2:1 mixture of methamphetamine (2 mM) and Calabion 1 (1 mM).
Figure III-S2. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) methamphetamine, b) Calabadion 2, c) an equimolar mixture of methamphetamine and Calabadion 2 (2 mM), and d) a 2:1 mixture of methamphetamine (2 mM) and Calabadion 2 (1 mM).
Figure III-S3. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) methamphetamine, b) CB[7], c) an equimolar mixture of methamphetamine and CB[7] (2 mM), and d) a 2:1 mixture of methamphetamine (2 mM) and CB[7] (1 mM).
Figure III-S4. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) methamphetamine, b) p-sulfo calix[4]arene, c) an equimolar mixture of methamphetamine and p-sulfo calix[4]arene (2 mM), and d) a 2:1 mixture of methamphetamine (2 mM) and p-sulfo calix[4]arene (1 mM).
Figure III-S5. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) methamphetamine, b) HP-β-CD, c) an equimolar mixture of methamphetamine and HP-β-CD (1 mM), and d) a 2:1 mixture of methamphetamine (2 mM) and HP-β-CD (1 mM).
Figure III-S6. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) fentanyl, b) Calabadion 1, c) an equimolar mixture of fentanyl and Calabadion 1 (1 mM), and d) a 2:1 mixture of fentanyl (2 mM) and Calabadion 1 (1 mM).
Figure III-S7. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) fentanyl, b) Calabadion 2, c) an equimolar mixture of fentanyl and Calabadion 2 (1 mM), and d) a 2:1 mixture of fentanyl (2 mM) and Calabadion 2 (1 mM).
Figure III-S8. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) fentanyl, b) CB[7], c) an equimolar mixture of methamphetamine and fentanyl (1 mM), and d) a 2:1 mixture of fentanyl (2 mM) and CB[7] (1 mM).
Figure III-S9. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) fentanyl, b) p-sulfo calix[4]arene, c) an equimolar mixture of fentanyl and p-sulfo calix[4]arene (1 mM), and d) a 2:1 mixture of fentanyl (2 mM) and p-sulfo calix[4]arene (1 mM).
Figure III-S10. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) fentanyl, b) HP-β-CD, c) an equimolar mixture of fentanyl and HP-β-CD (1 mM), and d) a 2:1 mixture of fentanyl (2 mM) and HP-β-CD (1 mM).
Figure III-S11. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) cocaine, b) Calabadian 1, c) an equimolar mixture of cocaine and Calabadian 1 (2 mM), and d) a 2:1 mixture of cocaine (2 mM) and Calabadian 1 (1 mM).
Figure III-S12. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) cocaine, b) Calabadian 2, c) an equimolar mixture of cocaine and Calabadian 2 (2 mM), and d) a 2:1 mixture of cocaine (2 mM) and Calabadian 2 (1 mM).
Figure III-S13. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) cocaine, b) CB[7], c) an equimolar mixture of cocaine and CB[7] (2 mM), and d) a 2:1 mixture of cocaine (2 mM) and CB[7] (1 mM).
Figure III-S14. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) cocaine, b) p-sulfo calix[4]arene, c) an equimolar mixture of cocaine and p-sulfo calix[4]arene (2 mM), and d) a 2:1 mixture of cocaine (2 mM) and p-sulfo calix[4]arene (1 mM).
Figure III-S15. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) cocaine, b) HP-β-CD, c) an equimolar mixture of cocaine and HP-β-CD (1 mM), and d) a 2:1 mixture of cocaine (2 mM) and HP-β-CD (1 mM).
Figure III-S16. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) ketamine, b) Calabadion 1, c) an equimolar mixture of ketamine and Calabadion 1 (1 mM), and d) a 2:1 mixture of ketamine (2 mM) and Calabadion 1 (1 mM).
Figure III-S17. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) ketamine, b) Calabation 2, c) an equimolar mixture of ketamine and Calabadion 2 (1 mM), and d) a 2:1 mixture of ketamine (2 mM) and Calabadion 2 (1 mM).
Figure III-S18. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) ketamine, b) CB[7], c) an equimolar mixture of ketamine and fentanyl (1 mM), and d) a 2:1 mixture of ketamine (2 mM) and CB[7] (1 mM).
Figure III-S19. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) ketamine, b) p-sulfo calix[4]arene, c) an equimolar mixture of ketamine and p-sulfo calix[4]arene (1 mM), and d) a 2:1 mixture of ketamine (2 mM) and p-sulfo calix[4]arene (1 mM).
Figure III-S20. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) ketamine, b) HP-β-CD, c) an equimolar mixture of ketamine and HP-β-CD (1 mM), and d) a 2:1 mixture of ketamine (2 mM) and HP-β-CD (1 mM).
Figure III-S21. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) phencyclidine, b) Calabadion 1, c) an equimolar mixture of phencyclidine and Calabadion 1 (2 mM), and d) a 2:1 mixture of phencyclidine (2 mM) and Calabadion 1 (1 mM).
Figure III-S22. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) phencyclidine, b) Calabadion 2, c) an equimolar mixture of phencyclidine and Calabadion 2 (2 mM), and d) a 2:1 mixture of phencyclidine (2 mM) and Calabadion 2 (1 mM).
Figure III-S23. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) phencyclidine, b) CB[7], c) an equimolar mixture of phencyclidine and CB[7] (2 mM), and d) a 2:1 mixture of phencyclidine (2 mM) and CB[7] (1 mM).
Figure III-S24. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) phencyclidine, b) p-sulfo calix[4]arene, c) an equimolar mixture of phencyclidine and p-sulfo calix[4]arene (2 mM), and d) a 2:1 mixture of phencyclidine (2 mM) and p-sulfo calix[4]arene (1 mM).
Figure III-S25. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) phencyclidine, b) HP-β-CD, c) an equimolar mixture of phencyclidine and HP-β-CD (1 mM), and d) a 2:1 mixture of phencyclidine (2 mM) and HP-β-CD (1 mM).
Figure III-S26. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) morphine, b) Calabadiol, c) an equimolar mixture of morphine and Calabadiol 1 (2 mM), and d) a 2:1 mixture of morphine (2 mM) and Calabadiol 1 (1 mM).
Figure III-S27. \(^1\)H NMR spectra recorded (400 MHz, RT, D\(_2\)O) for: a) morphine, b) Calabadion 2, c) an equimolar mixture of morphine and Calabadion 2 (2 mM), and d) a 2:1 mixture of morphine (2 mM) and Calabadion 2 (1 mM).
Figure III-S28. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) morphine, b) CB[7], c) an equimolar mixture of morphine and CB[7] (2 mM), and d) a 2:1 mixture of morphine (2 mM) and CB[7] (1 mM).
Figure III-S29. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) morphine, b) p-sulfo calix[4]arene, c) an equimolar mixture of morphine and p-sulfo calix[4]arene (2 mM), and d) a 2:1 mixture of morphine (2 mM) and p-sulfo calix[4]arene (1 mM).
Figure III-S30. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) morphine, b) HP-β-CD, c) an equimolar mixture of morphine and HP-β-CD (1 mM), and d) a 2:1 mixture of morphine (2 mM) and HP-β-CD (1 mM).
Figure III-S31. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) hydromorphone, b) Calabadian 1, c) an equimolar mixture of hydromorphone and Calabadian 1 (1 mM), and d) a 2:1 mixture of f hydromorphone (2 mM) and Calabadian 1 (1 mM).
Figure III-S32. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) hydromorphone, b) Calabadion 2, c) an equimolar mixture of hydromorphone and Calabadion 2 (1 mM), and d) a 2:1 mixture of hydromorphone (2 mM) and Calabadion 2 (1 mM).
Figure III-S33. 1H NMR spectra recorded (400MHz, RT, D$_2$O) for: a) hydromorphone, b) CB[7], c) an equimolar mixture of hydromorphone and fentanyl (1 mM), and d) a 2:1 mixture of hydromorphone (2 mM) and CB[7] (1 mM).
Figure III-S34. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) hydromorphone, b) p-sulfo calix[4]arene, c) an equimolar mixture of hydromorphone and p-sulfo calix[4]arene (1 mM), and d) a 2:1 mixture of hydromorphone (2 mM) and p-sulfo calix[4]arene (1 mM).
Figure III-S35. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for: a) hydromorphone, b) HP-β-CD, c) an equimolar mixture of hydromorphone and HP-β-CD (1 mM), and d) a 2:1 mixture of hydromorphone (2 mM) and HP-β-CD (1 mM).
Determination of K_a between hosts Calabadion 1 and Calabadion 2 and various drugs of abuse using UV/Vis spectroscopy.

K_a values up to 10^4 M$^{-1}$ can be measured by direct 1H NMR titration. For values that exceed this level it is necessary to use other techniques such as UV/Vis, fluorescence, or isothermal titration calorimetry. UV/Vis spectroscopy was used in this work.

In order to determine the K_a value for Calabadion 1 and Calabadion 2 toward UV/Vis inactive drugs of abuse, an indicator displacement assay involving the addition of drug to a solution of host and dye rhodamine 6G was used. The change in UV/Vis absorbance as a function of drug concentration was fitted to a competitive binding model which allowed determination of the K_a values. The known K_a values between Calabadion1•rhodamine 6G (4.8 x 10^5 M$^{-1}$) and Calabadian 2 •rhodamine 6G (2.3 x 10^6 M$^{-1}$) were used as inputs in the competitive binding model.48
Competitive Binding (Indicator Displacement) Model Used to Determine

Values of K_a with MicroMath Scientist

// MicroMath Scientist Model File
IndVars: ConcAntot
DepVars: Absorb
Params: ConcHtot, ConcGtot, Khg, Kha, AbsorbMax, AbsorbMin
Khg = ConcHG / (ConcH * ConcG)
Kha = ConcHAn / (ConcH * ConcAn)
Absorb = AbsorbMin + (AbsorbMax-AbsorbMin)*(ConcHG/ConcGtot)
ConcHtot = ConcH + ConcHG + ConcHAn
ConcGtot = ConcHG + ConcG
ConcAntot = ConcAn + ConcHAn
0 < ConcHG < ConcHtot
0 < ConcH < ConcHtot
0 < ConcG < ConcGtot
0 < ConcAn < ConcAntot

// MicroMath Scientist Model File
IndVars: ConcAntot
DepVars: Absorb1, Absorb2
Params: Khg, Kha, AbsorbMax1, AbsorbMin1, AbsorbMax2, AbsorbMin2
Khg = ConcHG / (ConcH * ConcG)
Kha = ConcHAn / (ConcH * ConcAn)
Absorb1 = AbsorbMin1 + (AbsorbMax1-AbsorbMin1)*(ConcHG/0.00001)
Absorb2 = AbsorbMin2 + (AbsorbMax2-AbsorbMin2)*(ConcHG/0.00001)
0.00001 = ConcH + ConcHG + ConcHAn
0.00001 = ConcHG + ConcG
ConcAntot = ConcAn + ConcHAn
0 < ConcHG < 0.00001
0 < ConcH < 0.00001
0 < ConcG < 0.00001
0 < ConcAn < ConcAntot
Figure III-S36. a) UV/Vis spectra from the titration of Calabadion 1 (5.02 µM) and rhodamine 6G (4.97 µM) with guest methamphetamine (0 – 581 µM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the A_{550} as a function of methamphetamine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (7.5 \pm 2.9) \times 10^6$ M⁻¹).
Figure III-S37. a) UV/Vis spectra from the titration of Calabadion 2 (4.97 µM) and rhodamine 6G (4.97 µM) with guest methamphetamine (0 – 219 µM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the A₅₅₀ as a function of methamphetamine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (4.3 \pm 1.0) \times 10^6$ M⁻¹).
Figure III-S38. a) UV/Vis spectra from the titration of Calabadian 1 (5.02 µM) and rhodamine 6G (4.97 µM) with guest cocaine (0 – 885 µM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the A$_{550}$ as a function of cocaine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (6.6 \pm 0.4) \times 10^5$ M$^{-1}$).
Figure III-S39. a) UV/Vis spectra from the titration of Calabadion 2 (4.97 µM) and rhodamine 6G (4.97 µM) with guest cocaine (0 – 745 µM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the A₅₅₀ as a function of cocaine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model (Kₐ = (1.0 ± 0.1) x 10⁶ M⁻¹).
Figure 40. a) UV/Vis spectra from the titration of Calabadion 1 (5.01 µM) and rhodamine 6G (4.96 µM) with ketamine (0 – 2.44 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH = 7.4); b) plot of the A_{550} as a function of the concentration of ketamine. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (1.1 \pm 0.1) \times 10^4$ M$^{-1}$).
Figure 41. a) UV/Vis spectra from the titration of Calabadion 2 (9.18 µM) and rhodamine 6G (10.00 µM) with ketamine (0 – 0.35 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH = 7.4); b) plot of the A$_{550}$ as a function of the concentration of ketamine. The solid line represents the best non-linear fit of the data to a competitive binding model ($K_a = (1.8 \pm 0.1) \times 10^5$ M$^{-1}$).
Figure III-S42. a) UV/Vis spectra from the titration of Calabadion 1 (5.02 µM) and rhodamine 6G (4.97 µM) with guest phencyclidine (0 – 1.62 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the A₅₅₀ as a function of phencyclidine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (4.7 \pm 0.5) \times 10^4$ M⁻¹).
Figure III-S43. a) UV/Vis spectra from the titration of Calabadian 2 (4.97 µM) and rhodamine 6G (4.97 µM) with guest phencyclidine (0 – 1.24 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the A$_{550}$ as a function of phencyclidine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.1 \pm 0.1) \times 10^5$ M$^{-1}$).
Figure III-S44. a) UV/Vis spectra from the titration of Calabadion 1 (5.00 µM) and rhodamine 6G (5.01 µM) with guest morphine (0 – 1.58 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the A_{550} as a function of morphine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (5.3 \pm 0.3) \times 10^5$ M$^{-1}$).
Figure III-S45. a) UV/Vis spectra from the titration of Calabadion 2 (5.07 µM) and rhodamine 6G (5.01 µM) with guest morphine (0 – 107 µM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the A$_{550}$ as a function of morphine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (5.3 \pm 0.4) \times 10^5$ M$^{-1}$).
Determination of K_a between hosts CB[7] and p-sulfo calix[4]arene and various drugs of abuse using 1H NMR.

The K_a values of complexes which were less than 10^4 M$^{-1}$ were determined by direct 1H NMR titrations. The concentration of either the host or guest was kept constant while varying the concentration of the other component. The change in chemical shift of a selected signal of the species whose concentration was fixed was monitored. The change in chemical shift as a function of the concentration of the species being varied was fitted to a 1:1 binding model to determine the K_a.

1:1 Binding Model for NMR

// Micromath Scientist Model File
// 1:1 Host:Guest binding model
// This model assumes the guest concentration is fixed and host concentration is varied
IndVars: ConcHostTot
DepVars: SpectroscopicSignal
Params: K_a, ConcGuestTot, SpectroscopicSignalMin, SpectroscopicSignalMax
$K_a = \frac{\text{ConcHostGuest}}{\text{ConcHostFree} \times \text{ConcGuestFree}}$
ConcHostTot = ConcHostFree + ConcHostGuest
ConcGuestTot = ConcGuestFree + ConcHostGuest
SpectroscopicSignal = SpectroscopicSignalMin + (SpectroscopicSignalMax - SpectroscopicSignalMin) * (ConcHostGuest / ConcGuestTot)
// Constraints
0 < ConcHostFree < ConcHostTot
0 < K_a
0 < ConcGuestFree < ConcGuestTot
0 < ConcHostGuest < ConcHostTot

Figure III-S46. One of the 1H NMR (600 MHz) spectra used in the determination of K_{rel} for CB[7]-methamphetamine and CB[7]-TMSP.
Sample Determination of K_{rel} for the Competition between TMSP and Methamphetamine for CB[7].

Equation 1 was used to determine K_{rel} for the competition of TMSP and methamphetamine for CB[7]. For this purpose, a solution containing CB[7] (500.2 μM), TMSP (600.6 μM), and methamphetamine (598.7 μM) was prepared and allowed to reach equilibrium (Figure III-S46). Next the relative concentrations of TMSP$_{\text{free}}$ and CB[7]•TMSP were determined by integration of the appropriate resonances in the 1H NMR spectrum (Figure III-S46: TMSP$_{\text{free}}$: -0.005 ppm; CB[7]•TMSP: -0.700 ppm). Using the relative concentrations and the mass balance expression (equation 2) [$\text{TMSP}_{\text{free}}$] = 478.5 μM and [CB[7]•TMSP] = 122.1 μM were calculated. Equation 3 was then used to calculate [CB[7]•methamphetamine] = 378.1 μM using the known value of CB[7]•TMSP.18 Lastly, equation 4 was used to calculate [methamphetamine]$_{\text{free}}$ = 220.6 μM using the known value of [CB[7]•TMSP].

\[
K_{\text{rel}} = \frac{[\text{CB[7]•Methamphetamine}][\text{TMSP}_{\text{free}}]}{[\text{CB[7]•TMSP}][\text{methamphetamine}_{\text{free}}]} \quad (1)
\]

\[
[\text{TMSP}]_{\text{Total}} = 600.6 \text{ μM} = [\text{TMSP}]_{\text{free}} + [\text{CB[7]•TMSP}] \quad (2)
\]

\[
[\text{CB[7]}]_{\text{Total}} = 500.2 \text{ μM} = [\text{CB[7]•TMSP}] + [\text{CB[7]•methamphetamine}] \quad (3)
\]

\[
[\text{methamphetamine}]_{\text{Total}} = 598.7 \text{ μM} = [\text{methamphetamine}_{\text{free}} + [\text{CB[7]•methamphetamine}] \quad (4)
\]

Substitution of the values of [CB[7]•TMSP], [TMSP]$_{\text{free}}$, [CB[7]•methamphetamine], and [methamphetamine]$_{\text{free}}$ into equation 1 gave K_{rel} = 6.72. These determinations were done in triplicate from independently prepared stock solutions and the average values were used in the calculations of K_a. In
preparing the solutions for the above determinations a small excess of TMSP was used to ensure there is no free CB[7]. The K_a for CB[7]•methamphetamine was calculated using the average K_{rel} and the known value of CB[7]•TMSP ($(1.82 \pm 0.22) \times 10^7$ M$^{-1}$). 18
Figure III-S47. a) 1H NMR stack plot from the titration of methamphetamine (111 µM) with host p-sulfo calix[4]arene (0 – 361 µM) in 20 mM NaH$_2$PO$_4$ buffer (pD 7.4); b) plot of the change in chemical shift of methamphetamine at 2.70 ppm as a function of p-sulfo calix[4]arene concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (3.8 \pm 0.6) \times 10^4$ M$^{-1}$).
Figure III-S48. a) 1H NMR stack plot from the titration of cocaine (103 µM) with host CB[7] (0 – 588 µM) in 20 mM NaH$_2$PO$_4$ buffer (pD 7.4); b) plot of the change in chemical shift of cocaine at 2.87 ppm as a function of CB[7] concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.3 \pm 0.2) \times 10^3$ M$^{-1}$).
Figure III-S49. a) 1H NMR stack plot from the titration of p-sulfo calix[4]arene (350 µM) with guest cocaine (0 – 2.52 mM) in 20 mM NaH$_2$PO$_4$ buffer (pD 7.4); b) plot of the change in chemical shift of p-sulfo calix[4]arene at 2.14 ppm as a function of cocaine concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (4.3 \pm 1.5) \times 10^4$ M$^{-1}$).
Figure III-S50. (A) 1H NMR (600 MHz) stack plot from the titration of ketamine (1.00 mM) with host CB[7] (0 – 4.9 mM) in 20 mM NaH$_2$PO$_4$ buffered (pH = 7.4) D$_2$O; (B) plot of the chemical shift at 2.3 ppm as a function of host CB[7] concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (6.4 \pm 1.2) \times 10^2$ M$^{-1}$).
Figure III-S51. a) 1H NMR stack plot from the titration of phencyclidine (1.00 mM) with host CB[7] (0 – 6.64 mM) in 20 mM NaH$_2$PO$_4$ buffer (pD 7.4); b) plot of the change in chemical shift of phencyclidine at 3.72 ppm as a function of CB[7]. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (4.4 \pm 0.9) \times 10^3$ M$^{-1}$).
Figure III-S52. a) 1H NMR stack plot from the titration of morphine (100 µM) with host p-sulfo calix[4]arene (0 – 498 µM) in 20 mM NaH$_2$PO$_4$ buffer (pD 7.4); b) plot of the change in chemical shift of morphine at 5.41 ppm and 5.77 ppm as a function of p-sulfo calix[4]arene concentration. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (4.9 \pm 0.3) \times 10^4$ M$^{-1}$).
Determination of K_a between various hosts and drugs of abuse using Isothermal Titration Calorimetry (ITC).

All ITC experiments were conducted in the 200 μL working volume of the sample cell of the PEAQ ITC instrument. We used an injection syringe of 40 μL capacity. In each case, the host and guest solutions were prepared in a 20 mM NaH$_2$PO$_4$ buffer (pH 7.4). The sample cell was filled to capacity (200 μL) with the host solution and the guest solution was titrated in (first injection = 0.4μL, subsequent 18 injections = 2 μL). In case of Figure III-S61 and III-S69 two sets of 19 injections were concatenated to obtain the binding isotherm. The binding data was fitted using the 1:1 binding model in MicroCal PEAQ-ITC analysis software.
Figure III-S53. a) Plot of DP vs time from the titration of HP-β-CD (3.01 mM) and with guest methamphetamine (46.9 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.9 \pm 0.3) \times 10^2$ M$^{-1}$, $ΔH = -0.26 \pm 0.07$ kcal/mol, $-TΔS = -2.86$ kcal/mol).
Figure III-S54. a) Plot of DP vs time from the titration of CB[7] (18.0 µM) and with guest fentanyl (0.20 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.8 \pm 0.1) \times 10^7$ M$^{-1}$, $\Delta H = -30.4 \pm 0.17$ kcal/mol, $-T\Delta S = 20.5$ kcal/mol).
Figure III-S55. a) Plot of DP vs time from the titration of Calabadian 1 (46.8 µM) and with guest fentanyl (0.499 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.1 \pm 0.04) \times 10^7$ M$^{-1}$, $\Delta H = -20.9 \pm 0.06$ kcal/mol, $-T\Delta S = 3.99$ kcal/mol).
Figure III-S57. a) Plot of DP vs time from the titration of Calabadion 2 (100 µM) and with guest fentanyl (1.00 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (7.6 \pm 0.5) \times 10^6$ M⁻¹, $\Delta H = -20.2 \pm 0.07$ kcal/mol, $-T\Delta S = 10.8$ kcal/mol).
Figure III-S58. a) Plot of DP vs time from the titration of HP-β-CD (506 µM) and with guest fentanyl (11.2 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (3.0 \pm 0.5) \times 10^3$ M⁻¹, $\Delta H = 5.38 \pm 0.58$ kcal/mol, $-T\Delta S = -10.1$ kcal/mol).
Figure III-S59. a) Plot of DP vs time from the titration of p-sulfo calix[4]arene (82.4 µM) and with guest fentanyl (1.50 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model (Kₐ = (1.1 ± 0.1) x 10⁴ M⁻¹, ΔH = -9.99 ± 0.73 kcal/mol, -TΔS = -4.45 kcal/mol).
Figure III-S60. a) Plot of DP vs time from the titration of HP-β-CD (4.69 mM) and with guest cocaine (47.0 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.7 \pm 0.3) \times 10^2$ M⁻¹, $\Delta H = -1.60 \pm 0.32$ kcal/mol, $-T\Delta S = -1.43$ kcal/mol).
Figure III-S61. a) Plot of DP vs time from the titration of HP-β-CD (1.8 mM) and with guest ketamine (18.2 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.1 \pm 0.2) \times 10^2$ M$^{-1}$).
Figure III-S62. a) Plot of DP vs time from the titration of p-sulfo calix[4]arene (101 µM) and with guest ketamine (1.00 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.0 \pm 0.2) \times 10^4$ M$^{-1}$, $\Delta H = -11.6 \pm 0.58$ kcal/mol, $-T\Delta S = 5.75$ kcal/mol).
Figure III-S63. a) Plot of DP vs time from the titration of HP-β-CD (502 μM) and with guest phencyclidine (24.2 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.0 \pm 0.03) \times 10^3$ M$^{-1}$, $\Delta H = -3.22 \pm 0.15$ kcal/mol, $-\Delta S = -0.899$ kcal/mol).
Figure III-S64. a) Plot of DP vs time from the titration of calix[4]arene (101 μM) and with guest phencyclidine (1.11 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best nonlinear fit of the data to a 1:1 binding model ($K_a = (4.5 \pm 0.3) \times 10^4$ M$^{-1}$, $\Delta H = -7.07 \pm 0.27$ kcal/mol, $-T\Delta S = 0.724$ kcal/mol).
Figure III-S65. a) Plot of DP vs time from the titration of Calabadion 1 (100 µM) and with guest hydromorphone (1.00 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.8 \pm 0.03) \times 10^5$ M$^{-1}$, $\Delta H = -11.20 \pm 0.04$ kcal/mol, $-T\Delta S = 3.99$ kcal/mol).
Figure III-S66. a) Plot of DP vs time from the titration of Calabadion 2 (87 µM) and with guest hydromorphone (0.934 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (6.8 \pm 0.1) \times 10^5$ M$^{-1}$, $\Delta H = -12.1 \pm 0.03$ kcal/mol, $-T\Delta S = 4.16$ kcal/mol).
Figure III-S67. a) Plot of DP vs time from the titration of HP-β-CD (1.7 mM) and with guest hydromorphone (26.2 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.8 \pm 0.5) \times 10^2 \ M^{-1}$, $\Delta H = 1.35 \pm 0.27 \ kcal/mol$, $-T\Delta S = -4.68 \ kcal/mol$).
Figure III-S68. a) Plot of DP vs time from the titration of \(p \)-sulfo calix[4]arene (101 µM) and with guest hydromorphone (2.51 mM) in 20 mM NaH\(_2\)PO\(_4\) buffer (pH 7.4); b) plot of the \(\Delta H \) as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model (\(K_a = (1.0 \pm 0.04) \times 10^8 \) M\(^{-1}\), \(\Delta H = -9.52 \pm 0.33 \) kcal/mol, \(-T\Delta S = 4.04 \) kcal/mol).
Figure III-S69. a) Plot of DP vs time from the titration of Calabadion 2 (150 µM) and with guest methamphetamine (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.0 \pm 0.1) \times 10^6$ M$^{-1}$, $\Delta H = -10.0 \pm 0.04$ kcal/mol, $-T\Delta S = 1.45$ kcal/mol).
Figure III-S70. a) Plot of DP vs time from the titration of p-sulfo calix[4]arene (98.9 μM) and with guest methamphetamine (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.3 \pm 0.6) \times 10^4$ M$^{-1}$, $\Delta H = -3.16 \pm 0.84$ kcal/mol, $-T\Delta S = -2.45$ kcal/mol).
Job plots of selected hosts with methamphetamine showing 1:1 binding.

Figure III-S71. Job plot establishing 1:1 binding of methamphetamine (0-10 mM) with Calabadion 1 (0-10 mm) based on change in 1H NMR chemical shift of methyl resonance of methamphetamine at 2.69 ppm (400 MHz, D$_2$O).

Figure III-S72. Job plot establishing 1:1 binding of methamphetamine (0-10 mM) with Calabadion 2 (0-10 mm) based on change in 1H NMR chemical shift of methyl resonance of methamphetamine at 1.27 ppm (400 MHz, D$_2$O).
Details of the *in vivo* experiments.

Care and Use of Animals.

All experiments involving rats (21 male Sprague-Dawley rats, weight, mean ± SD: 288 ± 14 g) were conducted after approval was obtained from the Subcommittee on Research Animal Care at Massachusetts General Hospital, Boston, MA (Protocol 2011N00181). Experiments were conducted at the research laboratories of the Massachusetts General Hospital, Boston, Massachusetts. All institutional guidelines for animal care and usage for research purposes were followed.

General surgical procedures.

All animals were anesthetized (5% isoflurane for induction; 1.5% isoflurane for maintenance in 70% N₂O/ 30% O₂) for placement of a tail vein intravenous catheter (24 gauge; 19 mm). Rectal temperature was kept stable/ steady at 37.0±0.1°C using a thermostatic heating pad (FHC, Bowdoinham, ME). After placement of the catheter the isoflurane anesthesia was stopped and 30 minutes were given to the animal to regain full consciousness. The venous catheter was removed after completion of the injections prior to any behavioral testing. All animals were tested repeatedly with 72h of break to allow recreation between the experiments.

Behavioral Testing

All animals were placed within one minute after the last injection in the center of a 100 cm × 100 cm × 40 cm open field for a total time of 20 minutes. The rat’s
activity in the open field was videotaped while it was left undisturbed in the testing room.

The primary endpoint, total distance traveled in the open field, was quantified using the video tracking software ANY-maze (version 4.5, Stoelting, Wood Dale, IL, USA).

Statistical Analysis

Values are given in percent of the placebo + methamphetamine activity level and reported as mean ± standard error of the mean unless otherwise specified. Statistical analysis was performed using SPSS 22.0 (SPSS Inc. Chicago, IL).

To evaluate the effect of the testing drugs on locomotor activity, we built multiple mixed linear models (MLM) with an identity link function for normally distributed probability and defined the intercept as random effects.

Using the previously described MLM, we tested for a fixed main effect of placebo + methamphetamine vs. baseline on locomotor activity to evaluate if methamphetamine induces hyperlocomotion.

The testing drug’s ability to reverse methamphetamine induced hyperlocomotion at different doses was determined by testing the fixed main effect of high dose + methamphetamine vs. placebo + methamphetamine and low dose + methamphetamine vs. placebo + methamphetamine on locomotor activity, respectively.

In order to ensure that the testing compound itself does not interfere with the outcome, we assessed the sole effect of the testing compound at the higher dose on locomotion and compared it to the baseline.
To evaluate if Calabadion 2’s reversal effect is modified by the time of administration (indication) we used the same MLM as previously described and tested for the fixed interaction effect of indication and Calabadion 2 dose ("prevention/treatment" x “Calabadion 2 dose”).

Figure III-S73. Tracking plots illustrating the traveled distance of one rat within 20 minutes in the open field: A) Baseline, no methamphetamine given, B) Following methamphetamine (0.3 mg kg\(^{-1}\)) + placebo, C) Following methamphetamine (0.3 mg kg\(^{-1}\)) + Calabadion 2 (65 mg kg\(^{-1}\)), and D) Following methamphetamine (0.3 mg kg\(^{-1}\)) + Calabadion 2 (130 mg kg\(^{-1}\)). Calabadion dose-dependently ameliorated methamphetamine–induced hyperlocomotion.
Appendix 3

Synthesis and Molecular Recognition Properties of Acyclic Cucurbit[n]urils with Alkyl Linkers

Shweta Ganapati,[a] and Lyle Isaacs*[a]

[a]Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742

Supporting Information

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>General experimental details</td>
<td>249</td>
</tr>
<tr>
<td>Synthetic procedures and characterization data</td>
<td>250-276</td>
</tr>
<tr>
<td>1H NMR stack plots for the interaction between various hosts and guests</td>
<td>277-296</td>
</tr>
<tr>
<td>ITC data for K_a determination for various guests and hosts</td>
<td>297-317</td>
</tr>
</tbody>
</table>
General Experimental Details. Starting materials were purchased from commercial suppliers and were used without further purification or were prepared by literature procedures. Compound 1 and 5 were prepared according to literature procedures. The synthesis of IV-3a, IV-3b, and IV-3c from dibromoalkanes and hydroquinone were performed by procedures similar to those reported in the literature. The characterization data matches the reported data.

Melting points were measured on a Meltemp apparatus in open capillary tubes and are uncorrected. IR spectra were measured on a JASCO FT/IR 4100 spectrometer and are reported in cm$^{-1}$. NMR spectra were measured on Bruker spectrometers operating at 400 or 600 MHz for 1H and 200 MHz for 13C NMR. ITC data was collected on a Malvern Microcal PEAQ-ITC instrument. Mass spectrometry was performed using a JEOL AccuTOF electrospray instrument (ESI).
Synthetic Procedures and Characterization Data.

Compound IV-3a. A mixture of hydroquinone (17.55 g, 159 mmol) and potassium carbonate (44.00 g, 318 mmol) in acetonitrile (123 mL) was heated to 85 °C under N₂. 1,2-dibromoethane (3.0 g, 1.4 mL, 15.9 mmol) was added dropwise and the reaction was stirred for 12 h. The reaction mixture was cooled and filtered and the filtrate was evaporated under reduced pressure to obtain the crude solid product. This crude product was washed with water (375 mL) and recrystallized from ethanol (75 mL) to obtain IV-3a as an off white solid (0.51 g, 2.1 mmol, 13%). M.p. = 212-214 °C. IR (ATR, cm⁻¹): 3365w(br), 2943 w, 1512s, 1452m, 1373w, 1268w, 1211s, 1109 m, 1081w, 1070m, 1011w, 954s, 943w, 831s, 813m, 756s. \(^1\)H NMR (600 MHz, DMSO): 8.91 (s, 2H), 6.78 (d, \(J = 8.9\), 4H), 6.67 (d, \(J = 8.9\), 4H), 4.14 (s, 4H). \(^{13}\)C NMR (150 MHz, DMSO, 1,4-dioxane as internal reference): \(\delta \) 151.4, 151.2, 115.8, 115.5, 67.0. High-Res MS (ESI): \(m/z\) 245.0825 ([M - H]⁻), calculated for C\(_{14}\)H\(_{13}\)O\(_4\)⁻ 245.0814.

Compound IV-3b. A mixture of hydroquinone (27.10 g, 246 mmol) and potassium carbonate (68.00 g, 492 mmol) in acetonitrile (190 mL) was heated to 85 °C under N₂. 1,6-dibromohexane (6.0 g, 3.8 mL, 24.6 mmol) was added dropwise and the reaction was stirred for 12 h. The reaction mixture was cooled and filtered and the filtrate was evaporated under reduced pressure to obtain the crude solid product. This crude product was washed with water (500 mL) and recrystallized from ethanol (100 mL) to obtain
IV-3b as an off white solid (3.66 g, 12.3 mmol, 50%). M.p. = 178-180 °C. IR (ATR, cm\(^{-1}\)): 3381w(br), 2944w, 2866w, 1506s, 1477m, 1452m, 1395w, 1374m, 1299m, 1221s, 1167m, 1104s, 1072w, 1022s, 826s, 806m, 763s, 732m. \(^1\)H NMR (600 MHz, DMSO): 8.85 (s, 2H), 6.72 (d, \(J = 8.9\), 4H), 6.65 (d, \(J = 8.9\), 4H), 3.84 (t, \(J = 6.5\), 4H), 1.72-1.63 (m, 4H), 1.48-1.38 (m, 4H). \(^1\)C NMR (150 MHz, DMSO): \(\delta\) 151.5, 151.1, 115.7, 115.3, 67.8, 28.8, 25.4. High-Res MS (ESI): \(m/z\) 301.1443 ([M - H]\(^+\)), calculated for C\(_{18}\)H\(_{21}\)O\(_4\) 301.1440.

Compound IV-3c. A mixture of hydroquinone (11.00 g, 100 mmol) and potassium carbonate (27.64 g, 200 mmol) in acetonitrile (160 mL) was heated to 85 °C under N\(_2\). 1,10-dibromodecane (3 g, 2.2 mL, 10 mmol) was added dropwise and the reaction was stirred for 12 h. The reaction mixture was cooled and filtered and the filtrate was evaporated under reduced pressure to obtain the crude solid product. This crude product was washed with water (500 mL) and recrystallized from ethanol (75 mL) to obtain **IV-3c** as an off white solid (1.18 g, 3.3 mmol, 33%). M.p. = 146-148 °C. IR (ATR, cm\(^{-1}\)): 3420w(br), 2931w, 2917w, 2852w, 1509m, 1473w, 1451w, 1395w, 1371w, 1299w, 1227s, 1168w, 1104w, 1048w, 822s, 767s. \(^1\)H NMR (600 MHz, DMSO): 8.84 (s, 2H), 6.72 (d, \(J = 8.9\), 4H), 6.65 (d, \(J = 8.9\), 4H), 3.82 (t, \(J = 6.5\), 4H), 1.64 (p, \(J = 7.0\), 4H), 1.41-1.34 (m, 4H), 1.34-1.22 (m, 8H). \(^1\)C NMR (150 MHz, DMSO, 1, 4-dioxane as internal reference): \(\delta\) 151.5, 151.0, 115.6, 115.3, 67.8, 28.9, 28.8, 28.7, 25.5. High-Res MS (ESI): \(m/z\) 357.2080 ([M - H]\(^+\)), calculated for C\(_{22}\)H\(_{29}\)O\(_4\) 357.2066.
Compound IV-4a. A solution of 1,3-propanesultone (1.34 g, 11 mmol) in 1,4-dioxane (11 mL) was added to a solution of IV-3a (1.2 g, 4.1 mmol) in aqueous sodium hydroxide solution (10 wt%, 9 mL). This mixture was stirred at RT for 12 h and then filtered to collect the crude solid. The crude product was washed with acetone (30 mL). The filtered solid was dissolved in hot water (15 mL) and precipitated with ethanol (30 mL) to obtain the off white solid IV-4a (1.91 g, 3.6 mmol, 87%). M.p. > 300 °C. IR (ATR, cm⁻¹): 3422w(br), 2942w, 2520w, 1512s, 1450w, 1285w, 1201s, 1053s, 943m, 758m, 734m. ¹H NMR (600 MHz, D₂O): 7.06-7.04 (m, 4H), 7.04-7.02 (m, 4H), 4.37 (s, 4H), 4.18 (t, J = 6.3, 4H), 3.13-3.09 (m, 4H), 2.25-2.18 (m, 4H). ¹³C NMR (150 MHz, D₂O, 1, 4-dioxane as internal reference): δ 152.3, 151.9, 115.9, 115.8, 67.0, 66.7, 47.3, 23.8. High-Res MS (ESI): m/z 489.0882 ([M - 2Na + H]⁻), calculated for C₂₀H₂₅O₁₀S₂ 489.0889.

Compound IV-4b. A solution of 1,3-propanesultone (7.7 g, 63 mmol) in tetrahydrofuran (152 mL) was added to a solution of IV-3b (7.6 g, 25.2 mmol) in aqueous sodium hydroxide solution (10 wt%, 76 mL). This mixture was stirred at RT for 12 h and then filtered to collect the crude solid. The crude product was washed with acetone (200 mL). The filtered solid was dissolved in hot water (100 mL) and precipitated with ethanol (200 mL) to obtain the off white solid IV-4b (11.5 g, 9.4 mmol, 77%). M.p. > 300 °C. IR (ATR, cm⁻¹): 2941w, 2905w, 2870w, 1508s, 1475m, 1399w, 1289w, 1220s, 1188s, 1170s, 1115m, 1050s, 1031s, 830s, 805m, 767s, 755m,
Compound IV-4c. A solution of 1,3-propanesultone (1.00 g, 8.25 mmol) in tetrahydrofuran (20 mL) was added to a solution of IV-3c (1.2 g, 3.3 mmol) in aqueous sodium hydroxide solution (10 wt%, 10 mL). This mixture was stirred at RT for 12 h and then filtered to collect the crude solid. The crude product was washed with acetone (30 mL). The filtered solid was dissolved in hot water (15 mL) and precipitated with ethanol (30 mL) to obtain the off white solid IV-4c (1.0 g, 1.6 mmol, 47%). M.p. > 300 °C. IR (ATR, cm⁻¹): 2935w, 2924w, 2853w, 1508s, 1475m, 1396w, 1289w, 1217s, 1115w, 1046s, 1029s, 827s, 768m, 731m. ¹H NMR (600 MHz, DMSO, 1, 4-dioxane as internal reference): 7.02-7.00 (m, 4H), 7.00-6.98 (m, 4H), 4.14 (t, J = 6.3, 4H), 4.05 (t, J = 6.5 4H), 3.11-3.07 (m, 4H), 2.23-2.16 (m, 4H), 1.74 (p, J = 6.9, 4H), 1.44 (p J = 7.3, 4H), 1.39-1.30 (m, 8H). ¹³C NMR (150 MHz, DMSO, 1, 4-dioxane as internal reference): δ 152.6, 152.6, 115.3, 115.2, 67.8, 67.1, 48.0, 28.9, 28.8, 25.5, 25.4. High-Res MS (ESI): m/z 601.2131 ([M - 2Na +H]⁺), calculated for C₂₈H₄₀NaO₁₀S₂ 601.2141.

Compound IV-2a. Compound IV-4a (1.8 g, 3.4 mmol) was added to a solution of IV-5 (1.3 g, 1.7 mmol) in a mixture of trifluoroacetic acid (130
mL) and acetic anhydride (130 mL). This solution was stirred and heated at 70 °C for 3 h. The reaction mixture was cooled to room temperature, treated with methanol (130 mL), and the solvent was removed under reduced pressure to obtain the crude product. The crude product was washed three times with a mixture of water (50 mL) and acetone (100 mL). The dark orange colored solid obtained was loaded onto a Dowex® 1X2 chloride form, 200-400 mesh ion exchange resin (50 g). The column was eluted with increasing concentrations of hydrochloric acid (HCl) starting from plain water (750 mL) to 6M HCl (750 mL) to 12 M HCl (300 mL). The eluted fractions were analyzed by 1H NMR and the almost pure compound IV-2a was obtained in the fractions eluted with 12 M HCl. This fraction was dried under reduced pressure and washed with a mixture of water and methanol (1:1, v/v, 100 mL). Finally, the solid obtained was dissolved in water and the pH of the solution was adjusted to 7 using aqueous sodium hydroxide (1M). The solvent was removed under reduced pressure and the solid was further dried under high vacuum to obtain pure IV-2a as a light orange solid (0.72 g, 0.56 mmol, 33%). M.p. > 300 °C. IR (ATR, cm$^{-1}$): 3447w (br), 1712s, 1466s, 1422m, 1377m, 1228s, 1182s, 1084m, 1036s, 974m, 926w, 794s, 760s, 731m. 1H NMR (600 MHz, D$_2$O): 7.17 (d, $J = 9.0$, 2H), 7.05 (d, $J = 9.0$, 2H), 5.63 (d, $J = 15.5$, 2H), 5.54 (d, $J = 15.5$, 2H), 5.50 - 5.42 (m, 8H), 5.26 (d, $J = 16.4$, 2H), 4.47 (d of d, $J = 5.4$, 2H), 4.33 (d, $J = 16.4$, 2H), 4.31 (d, $J = 15.7$, 2H), 4.27 – 4.24 (m, 4H), 4.19 – 4.14 (m, 6H), 3.87 (d of d, $J = 5.4$, 2H), 3.29-
3.13 (m, 4H), 2.30 (p, J = 7.2, 4H), 1.76 (s, 6H), 1.75 (s, 6H). 13C NMR (125 MHz, D$_2$O, 1, 4-dioxane as internal reference): δ 157.3, 156.2, 155.9, 154.5, 151.2, 149.0, 127.8, 127.7, 117.9, 113.9, 81.4, 78.9, 77.4, 71.1, 70.8, 70.6, 68.0, 51.8, 47.9, 47.7, 47.5, 35.4, 33.7, 24.2, 14.5, 13.7. High-Res MS (ESI): m/z 616.1650 ([M - 2Na]$^{2-}$), calculated for C$_{50}$H$_{56}$N$_{16}$O$_{18}$S$_{2}$$^{2-}$ 616.1700.

Compound IV-2b. Compound IV-4b (2.0 s g, 3.4 mmol) was added to a solution of IV-5 (1.3 g, 1.7 mmol) in a mixture of trifluoroacetic acid (130 mL) and acetic anhydride (130 mL). This solution was stirred and heated at 70 °C for 3 h. The reaction mixture was cooled to room temperature, treated with methanol (130 mL), and the solvent was removed under reduced pressure to obtain the crude product. The crude product was washed three times with a mixture of water (50 mL) and acetone (100 mL). The dark orange colored solid obtained was loaded onto a Dowex® 1X2 chloride form, 200-400 mesh ion exchange resin (50 g). The column was eluted with increasing concentrations of hydrochloric acid (HCl) starting from plain water (750 mL) to 6M HCl (750 mL) to 12 M HCl (300 mL). The eluted fractions were analyzed by 1H NMR and the almost pure compound IV-2b was obtained in the fractions eluted with 12 M HCl. This fraction
was dried under reduced pressure and washed with a mixture of water and methanol (1:1, v/v, 100 mL). Finally, the solid obtained was dissolved in water and the pH of the solution was adjusted to 7 using aqueous sodium hydroxide (1M). The solvent was removed under reduced pressure and the solid was further dried under high vacuum to obtain pure IV-2b as a light yellow solid (0.30 g, 0.56 mmol, 13%). M.p. > 300 °C. IR (ATR, cm\(^{-1}\)):
3449w (br), 2939w, 1719s, 1464m, 1425w, 1378w, 1314m, 1230m, 1181m, 1084m, 1036s, 972m, 924w, 797s, 758m, 730w. \(^1\)H NMR (600 MHz, D\(_2\)O): 7.01-6.96 (m, 4H), 5.72 (d, \(J = 15.4\), 1H), 5.57 (d, \(J = 15.4\), 1H), 5.56 (d, \(J = 15.7\), 2H), 5.53 (d, \(J = 15.7\), 2H), 5.46 (d, \(J = 9.0\), 2H), 5.38 (d, \(J = 16.4\), 2H), 5.37 (d, \(J = 9.1\), 4H), 5.25 (d, \(J = 16.4\), 2H), 4.36 (d, \(J = 15.7\), 2H), 4.32 (d, \(J = 16.4\), 2H), 4.24 – 4.12 (m, 4H), 4.22 (d, \(J = 15.7\), 2H), 4.16 (d, \(J = 15.4\), 1H), 4.13 (d, \(J = 16.4\), 2H), 4.03 (d, \(J = 15.4\), 1H), 3.90-3.76 (m, 4H), 3.127-3.11 (m, 4H), 2.34-2.23 (m, 4H), 1.76 (s, 6H), 1.75 (s, 6H), 1.39-1.26 (m, 4H), 1.18-1.09 (m, 2H), 1.05-0.95 (m, 2H). \(^{13}\)C NMR (150 MHz, DMSO, 1, 4-dioxane as internal reference): \(\delta\) 156.0, 155.2, 154.8, 154.1, 150.2, 150.0, 127.8, 126.6, 113.9, 113.5, 77.3, 76.9, 70.5, 70.2, 69.5, 68.5, 64.6, 59.2, 48.5, 48.3, 48.0, 35.7, 34.4, 28.0, 25.6, 24.0, 16.8, 15.0. High-Res MS (ESI): m/z 644.2016 ([M - 2Na]\(^2\)), calculated for C\(_{54}\)H\(_{64}\)N\(_{16}\)O\(_{18}\)S\(_{2}\)\(^2\) - 644.2013.

Compound IV-2c. Compound IV-4c (1.7 g, 2.6 mmol) was
added to a solution of **IV-5** (1.0 g, 1.3 mmol) in a mixture of trifluoroacetic acid (100 mL) and acetic anhydride (100 mL). This solution was stirred and heated at 70 °C for 3 h. The reaction mixture was cooled to room temperature, treated with methanol (100 mL), and the solvent was removed under reduced pressure to obtain the crude product. The crude product was washed three times with a mixture of water (50 mL) and acetone (100 mL). The dark orange colored solid obtained was loaded onto a Dowex® 1X2 chloride form, 200-400 mesh ion exchange resin (50 g). The column was eluted with increasing concentrations of hydrochloric acid (HCl) starting from plain water (750 mL) to 6M HCl (750 mL) to 12 M HCl (300 mL). The eluted fractions were analyzed by ^1^H NMR and the almost pure compound **IV-2c** was obtained in the fractions eluted with 12 M HCl. This fraction was dried under reduced pressure and washed with a mixture of water and methanol (1:1, v/v, 100 mL). Finally, the solid obtained was dissolved in water and the pH of the solution was adjusted to 7 using aqueous sodium hydroxide (1M). The solvent was removed under reduced pressure and the solid was further dried under high vacuum to obtain pure **IV-2c** as an off white solid (0.47 g, 0.34 mmol, 26%). M.p. > 300 °C. IR (ATR, cm⁻¹): 3435w (br), 2930w, 1721s, 1463s, 1425m, 1378m, 1313m, 1230s, 1181s, 1085m, 1037s, 972m, 924w, 823m, 797s, 757m, 731m. ^1^H NMR (600 MHz, D₂O): 7.10-6.98 (m, 4H), 5.72 (d, J = 15.2, 1H), 5.64 (d, J = 15.2, 1H), 5.59 (d, J = 15.7, 2H), 5.56 (d, J = 15.7, 2H), 5.45 (d, J = 9.0, 2H), 5.45 (d, J = 16.5, 2H), 5.40 (d, J = 9.0, 2H), 5.31
(d, J = 16.5, 2H), 4.31 (d, J = 15.7, 2H), 4.23 (d, J = 15.7, 2H), 4.20 – 4.08 (m, 11H), 4.06 (d, J = 15.2, 1H), 4.01-3.93 (m, 2H), 3.28-3.09 (m, 4H), 2.35-2.22 (m, 4H), 1.78 (s, 6H), 1.74 (s, 6H), 1.58-1.46 (m, 2H), 1.40-1.27 (m, 2H), 1.12-0.93 (m, 4H), 0.91-0.75 (m, 6H), 0.75-0.65 (m, 2H). \(^{13}\)C NMR (150 MHz, DMSO, 1, 4-dioxane as internal reference): δ 156.1, 155.2, 154.6, 154.0, 150.2, 150.1, 128.1, 114.0, 113.6, 113.5, 77.5, 76.4, 70.7, 70.4, 69.8, 68.6, 64.6, 59.2, 48.4, 48.3, 48.2, 34.7, 34.5, 28.5, 27.2, 27.1, 25.6, 24.2, 16.6, 15.7. High-Res MS (ESI): m/z 672.2341 ([M - 2Na]^{2-}), calculated for C_{58}H_{72}N_{16}O_{18}S_{2}^{2-} 672.2326.
Figure IV-S1. 1H NMR spectra (600 MHz, DMSO) recorded for IV-3a.
Figure IV-S2. 13C NMR spectra (150 MHz, DMSO, 1, 4-dioxane as internal reference) recorded for IV-3a.
Figure IV-S3. 1H NMR spectra (600 MHz, DMSO) recorded for IV-3b.
Figure IV-S4. 13C NMR spectra (150 MHz, DMSO) recorded for IV-3b.
Figure IV-S5. 1H NMR spectra (600 MHz, DMSO) recorded for IV-3c.
Figure IV-S6. 13C NMR spectra (150 MHz, DMSO, 1, 4-dioxane as internal reference) recorded for IV-3c.
Figure IV-S7. 1H NMR spectra (600 MHz, D$_2$O) recorded for IV-4a.
Figure IV-S8. 13C NMR spectra (150 MHz, D$_2$O, 1, 4-dioxane as internal reference) recorded for IV-4a.
Figure IV-S9. 1H NMR spectra (600 MHz, D$_2$O) recorded for IV-4b.
Figure IV-S10. 13C NMR spectra (150 MHz, DMSO, 1, 4-dioxane as internal reference) recorded for IV-4b.
Figure IV-S11. 1H NMR spectra (600 MHz, D$_2$O) recorded for IV-4c.
Figure IV-S12. 13C NMR spectra (150 MHz, DMSO, 1, 4-dioxane as internal reference) recorded for IV-4c.
Figure IV-S13. 1H NMR spectra (600 MHz, D$_2$O) recorded for IV-2a.
Figure IV-S14. 13C NMR spectra (125 MHz, D$_2$O, 1, 4-dioxane as internal reference) recorded for IV-2a.
Figure IV-S15. 1H NMR spectra (600 MHz, D$_2$O) recorded for IV-2b.
Figure IV-S16. 13C NMR spectra (150 MHz, DMSO, 1, 4-dioxane as internal reference) recorded for IV-2b.
Figure IV-S17. 1H NMR spectra (600 MHz, D$_2$O) recorded for IV-2c.
Figure IV-S18. 13C NMR spectra (150 MHz, DMSO, 1, 4-dioxane as internal reference) recorded for IV-2c.
Figure IV-S19. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-6, b) IV-1, c) an equimolar mixture of IV-6 and IV-1 (1 mM), and d) a 2:1 mixture of IV-6 (2 mM) and IV-1(1 mM).
Figure IV-S20. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-6, b) IV-2a, c) an equimolar mixture of IV-6 and IV-2a (0.5 mM), and d) a 2:1 mixture of IV-6 (1 mM) and IV-2a (0.5 mM).
Figure IV-S21. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-6, b) IV-2b, c) an equimolar mixture of IV-6 and IV-2b (0.5 mM), and d) a 2:1 mixture of IV-6 (1 mM) and IV-2b (0.5 mM).
Figure IV-S22. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-6, b) IV-2c, c) an equimolar mixture of IV-6 and IV2c (0.3 mM), and d) a 2:1 mixture of IV-6 (0.6 mM) and IV-2c (0.3 mM).
Figure IV-S23. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-7, b) IV-1, c) an equimolar mixture of IV-7 and IV-1 (1 mM), and d) a 2:1 mixture of IV-7 (2 mM) and IV-1 (1 mM).
Figure IV-S24. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-7, b) IV-2a, c) an equimolar mixture of IV-7 and IV-2a (0.5 mM), and d) a 2:1 mixture of IV-7 (1 mM) and IV-2a (0.5 mM).
Figure IV-S25. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-7, b) IV-2b, c) an equimolar mixture of IV-7 and IV-2b (0.5 mM), and d) a 2:1 mixture of IV-7 (1 mM) and IV-2b (0.5 mM).
Figure IV-S26. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-7, b) IV-2c, c) an equimolar mixture of IV-7 and IV-2c (1 mM), and d) a 2:1 mixture of IV-7 (2 mM) and IV-2c (1 mM).
Figure IV-S27. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-8, b) IV-1, c) an equimolar mixture of IV-8 and IV-1 (1 mM), and d) a 2:1 mixture of IV-8 (2 mM) and IV-1 (1 mM).
Figure IV-S28. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-8, b) IV-2a, c) an equimolar mixture of IV-8 and IV-2a (0.5 mM), and d) a 2:1 mixture of IV-8 (1 mM) and IV-2a (0.5 mM).
Figure IV-S29. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-8, b) IV-2b, c) an equimolar mixture of IV-8 and IV-2b (0.5 mM), and d) a 2:1 mixture of IV-8 (1 mM) and IV-2b (0.5 mM).
Figure IV-S30. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-8, b) IV-2c, c) an equimolar mixture of IV-8 and IV-2c (0.3 mM), and d) a 2:1 mixture of IV-8 (0.6 mM) and IV-2c (0.3 mM).
Figure IV-S31. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-9, b) IV-1, c) an equimolar mixture of IV-9 and IV-1 (0.5 mM), and d) a 2:1 mixture of IV-9 (1.0 mM) and IV-1 (0.5 mM).
Figure IV-S32. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-9, b) IV-2a, c) an equimolar mixture of IV-9 and IV-2a (0.5 mM), and d) a 2:1 mixture of IV-9 (1.0 mM) and IV-2a (0.5 mM).
Figure IV-S33. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-9, b) IV-2b, c) an equimolar mixture of IV-9 and IV-2b (0.5 mM), and d) a 2:1 mixture of IV-9 (1.0 mM) and IV-2b (0.5 mM).
Figure IV-S34. 1H NMR spectra recorded (600 MHz, RT, D$_2$O) for a) IV-9, b) IV-2c, c) an equimolar mixture of IV-9 and IV-2c (0.25 mM), and d) a 2:1 mixture of IV-9 (0.5 mM) and IV-2c (0.25 mM).
Figure IV-S35. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-10, b) IV-1, c) an equimolar mixture of IV-10 and IV-1 (1 mM), and d) a 2:1 mixture of IV-10 (2 mM) and IV-1 (1 mM).
Figure IV-S36. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-10, b) IV-2a, c) an equimolar mixture of IV-10 and IV-2a (0.5 mM), and d) a 2:1 mixture of IV-10 (1 mM) and IV-2a (0.5 mM).
Figure IV-S37. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-10, b) IV-2b, c) an equimolar mixture of IV-10 and IV-2b (0.5 mM), and d) a 2:1 mixture of IV-10 (1 mM) and IV-2b (0.5 mM).
Figure IV-S38. 1H NMR spectra recorded (400 MHz, RT, D$_2$O) for a) IV-10, b) IV-2c, c) an equimolar mixture of IV-10 and IV-2c (1 mM), and d) a 2:1 mixture of IV-10 (2 mM) and IV-2c (1 mM).
Determination of K_a between various hosts guests using Isothermal Titration Calorimetry (ITC).

All ITC experiments were conducted in the 200 μL working volume of the sample cell of the PEAQ ITC instrument. We used an injection syringe of 40 μL capacity. In each case, the host and guest solutions were prepared in a 20 mM NaH$_2$PO$_4$ buffer (pH 7.4). The sample cell was filled to capacity (200 μL) with the host solution and the guest solution was titrated in (first injection = 0.4μL, subsequent 18 injections = 2 μL). In case of Figures IV-S40, IV-S42, IV-S48 and IV-S56 two sets of 19 injections were concatenated to obtain the binding isotherm. In case of Figure IV-S50 the first set of 19 injections was followed by an additional 26.4 μL of titrant added over 10 injections and these 29 injections were concatenated to obtain the binding isotherm. The binding data was fitted using the 1:1 binding model in MicroCal PEAQ-ITC analysis software.
Figure IV-S39. a) Plot of DP vs time from the titration of IV-1 (70.5 μM) with guest IV-6 (0.507 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model (K_a = (2.4 ± 0.1) × 10⁶ M⁻¹, ΔH = -8.7 ± 0.05 kcal/mol, N = 0.95).
Figure IV-S40. a) Plot of DP vs time from the titration of IV-2a (100 μM) with guest IV-6 (2.00 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (6.2 \pm 0.9) \times 10^3$ M$^{-1}$, $\Delta H = -3.94 \pm 0.35$ kcal/mol, $N = 1.00$).
Figure IV-S41. a) Plot of DP vs time from the titration of IV-2b (0.1 mM) with guest IV-6 (1.0 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.3 \pm 0.05) \times 10^5$ M⁻¹, $\Delta H = -5.5 \pm 0.06$ kcal/mol, $N = 1.16$).
Figure IV-S42. a) Plot of DP vs time from the titration of IV-2c (0.2 mM) with guest IV-6 (1.01 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.3 \pm 0.2) \times 10^4$, $\Delta H = -4.98 \pm 0.16$ kcal/mol, $N = 0.97$).
Figure IV-S43. a) Plot of DP vs time from the titration of IV-1 (0.1 mM) with guest IV-7 (1.0 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.7 \pm 0.1) \times 10^6$ M⁻¹, $\Delta H = -8.2 \pm 0.04$ kcal/mol, N = 0.84).
Figure IV-S44. a) Plot of DP vs time from the titration of IV-2a (0.1 mM) with guest IV-7 (1.0 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.3 \pm 0.2) \times 10^4 \text{ M}^{-1}$, $\Delta H = -8.7 \pm 0.5 \text{ kcal/mol}$, $N = 0.62$).
Figure IV-S45. a) Plot of DP vs time from the titration of IV-2b (0.2 mM) with guest IV-7 (2.0 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (7.9 \pm 0.1) \times 10^5 \text{ M}^{-1}$, $\Delta H = -8.62 \pm 0.02 \text{ kcal/mol}$, $N = 1.10$).
Figure IV-S46. a) Plot of DP vs time from the titration of IV-2c (0.1 mM) with guest IV-7 (2.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (3.2 \pm 0.3) \times 10^4$ M$^{-1}$, $\Delta H = -6.0 \pm 0.23$ kcal/mol, N = 0.84).
Figure IV-S47. a) Plot of DP vs time from the titration of IV-1 (0.1 mM) with guest IV-8 (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (3.9\pm 0.2) \times 10^6$ M$^{-1}$, ΔH = -10.5 ± 0.03 kcal/mol, N = 0.95).
Figure IV-S48. a) Plot of DP vs time from the titration of IV-2a (0.25 mM) with guest IV-8 (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.1 \pm 0.1) \times 10^4$ M$^{-1}$, $\Delta H = -11.3 \pm 0.19$ kcal/mol, $N = 0.61$).
Figure IV-S49. a) Plot of DP vs time from the titration of IV-2b (0.1 mM) with guest IV-8 (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.6 \pm 0.1) \times 10^6$ M$^{-1}$, $\Delta H = -9.5 \pm 0.05$ kcal/mol, N = 1.25).
Figure IV-S50. a) Plot of DP vs time from the titration of IV-2c (0.1 mM) with guest IV-8 (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (7.1 \pm 0.4) \times 10^4$ M$^{-1}$, $\Delta H = -8.5 \pm 0.12$ kcal/mol, $N = 1.30$).
Figure IV-S51. a) Plot of DP vs time from the titration of IV-1 (0.1 mM) with guest IV-9 (1.0 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (4.9 \pm 0.2) \times 10^5$ M$^{-1}$, $\Delta H = -7.1 \pm 0.05$ kcal/mol, N = 0.82).
Figure IV-S52. a) Plot of DP vs time from the titration of IV-2a (0.15 mM) with guest IV-9 (0.99 mM) in 20 mM NaH₂PO₄ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.7 \pm 0.6) \times 10^4$ M⁻¹, $\Delta H = -4.48 \pm 0.48$ kcal/mol, $N = 0.69$).
Figure IV-S53. a) Plot of DP vs time from the titration of IV-2b (0.10 mM) with guest IV-9 (0.99 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (7.2 \pm 1.0) \times 10^5$ M$^{-1}$, $\Delta H = -3.86 \pm 0.17$ kcal/mol, $N = 0.98$).
Figure IV-S54. a) Plot of DP vs time from the titration of \textbf{IV-2c} (0.50 mM) with guest \textbf{IV-9} (5.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.5 \pm 0.0) \times 10^4$ M$^{-1}$, $\Delta H = -6.47 \pm 0.06$ kcal/mol, $N = 0.88$).
Figure IV-S55. a) Plot of DP vs time from the titration of IV-1 (0.1 mM) with guest IV-10 (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (6.2 \pm 0.6) \times 10^6$ M$^{-1}$, $\Delta H = -9.0 \pm 0.09$ kcal/mol, $N = 1.00$).
Figure IV-S56. a) Plot of DP vs time from the titration of IV-2a (0.25 mM) with guest IV-10 (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (6.9 \pm 0.3) \times 10^4$ M$^{-1}$, $\Delta H = -6.9 \pm 0.07$ kcal/mol, N = 0.73).
Figure IV-S57. a) Plot of DP vs time from the titration of IV-2b (0.1 mM) with guest IV-10 (0.78 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (1.3 \pm 0.03) \times 10^6$ M$^{-1}$, $\Delta H = -9.6 \pm 0.04$ kcal/mol, $N = 1.03$).
Figure IV-S58. a) Plot of DP vs time from the titration of IV-2c (0.1 mM) with guest IV-10 (1.0 mM) in 20 mM NaH$_2$PO$_4$ buffer (pH 7.4); b) plot of the ΔH as a function of molar ratio. The solid line represents the best non-linear fit of the data to a 1:1 binding model ($K_a = (2.7 \pm 0.2) \times 10^5$ M$^{-1}$, $\Delta H = -5.7 \pm 0.1$ kcal/mol, $N = 1.42$).
Appendix 4

List of Publications

I am listed as an author in the following peer-reviewed articles:

Methamphetamine in Rats. *Chembiochem* **2017**, In press:

http://dx.doi.org/10.1002/cbic.201700289.
Bibliography

323

72. Montoya Ivan, D. Adicciones 2012, 24, 95-103.

http://www.bu.edu/orccommittees/iacuc/policies-andguidelines/
anesthesia-and-analgesia-in-research-animals/

